intel/compiler: Optimize integer add with 0 into mov
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_fs_live_variables.h"
35 #include "brw_nir.h"
36 #include "brw_vec4_gs_visitor.h"
37 #include "brw_cfg.h"
38 #include "brw_dead_control_flow.h"
39 #include "dev/gen_debug.h"
40 #include "compiler/glsl_types.h"
41 #include "compiler/nir/nir_builder.h"
42 #include "program/prog_parameter.h"
43 #include "util/u_math.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset((void*)this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->size_written = dst.component_size(exec_size);
80 break;
81 case BAD_FILE:
82 this->size_written = 0;
83 break;
84 case IMM:
85 case UNIFORM:
86 unreachable("Invalid destination register file");
87 }
88
89 this->writes_accumulator = false;
90 }
91
92 fs_inst::fs_inst()
93 {
94 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99 init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104 init(opcode, exec_size, dst, NULL, 0);
105 }
106
107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108 const fs_reg &src0)
109 {
110 const fs_reg src[1] = { src0 };
111 init(opcode, exec_size, dst, src, 1);
112 }
113
114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115 const fs_reg &src0, const fs_reg &src1)
116 {
117 const fs_reg src[2] = { src0, src1 };
118 init(opcode, exec_size, dst, src, 2);
119 }
120
121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124 const fs_reg src[3] = { src0, src1, src2 };
125 init(opcode, exec_size, dst, src, 3);
126 }
127
128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129 const fs_reg src[], unsigned sources)
130 {
131 init(opcode, exec_width, dst, src, sources);
132 }
133
134 fs_inst::fs_inst(const fs_inst &that)
135 {
136 memcpy((void*)this, &that, sizeof(that));
137
138 this->src = new fs_reg[MAX2(that.sources, 3)];
139
140 for (unsigned i = 0; i < that.sources; i++)
141 this->src[i] = that.src[i];
142 }
143
144 fs_inst::~fs_inst()
145 {
146 delete[] this->src;
147 }
148
149 void
150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152 if (this->sources != num_sources) {
153 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156 src[i] = this->src[i];
157
158 delete[] this->src;
159 this->src = src;
160 this->sources = num_sources;
161 }
162 }
163
164 void
165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166 const fs_reg &dst,
167 const fs_reg &surf_index,
168 const fs_reg &varying_offset,
169 uint32_t const_offset)
170 {
171 /* We have our constant surface use a pitch of 4 bytes, so our index can
172 * be any component of a vector, and then we load 4 contiguous
173 * components starting from that.
174 *
175 * We break down the const_offset to a portion added to the variable offset
176 * and a portion done using fs_reg::offset, which means that if you have
177 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
178 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
179 * later notice that those loads are all the same and eliminate the
180 * redundant ones.
181 */
182 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184
185 /* The pull load message will load a vec4 (16 bytes). If we are loading
186 * a double this means we are only loading 2 elements worth of data.
187 * We also want to use a 32-bit data type for the dst of the load operation
188 * so other parts of the driver don't get confused about the size of the
189 * result.
190 */
191 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193 vec4_result, surf_index, vec4_offset);
194 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
195
196 shuffle_from_32bit_read(bld, dst, vec4_result,
197 (const_offset & 0xf) / type_sz(dst.type), 1);
198 }
199
200 /**
201 * A helper for MOV generation for fixing up broken hardware SEND dependency
202 * handling.
203 */
204 void
205 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
206 {
207 /* The caller always wants uncompressed to emit the minimal extra
208 * dependencies, and to avoid having to deal with aligning its regs to 2.
209 */
210 const fs_builder ubld = bld.annotate("send dependency resolve")
211 .quarter(0);
212
213 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
214 }
215
216 bool
217 fs_inst::is_send_from_grf() const
218 {
219 switch (opcode) {
220 case SHADER_OPCODE_SEND:
221 case SHADER_OPCODE_SHADER_TIME_ADD:
222 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
223 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
224 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
225 case SHADER_OPCODE_URB_WRITE_SIMD8:
226 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
227 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
228 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
229 case SHADER_OPCODE_URB_READ_SIMD8:
230 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
231 case SHADER_OPCODE_INTERLOCK:
232 case SHADER_OPCODE_MEMORY_FENCE:
233 case SHADER_OPCODE_BARRIER:
234 return true;
235 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
236 return src[1].file == VGRF;
237 case FS_OPCODE_FB_WRITE:
238 case FS_OPCODE_FB_READ:
239 return src[0].file == VGRF;
240 default:
241 if (is_tex())
242 return src[0].file == VGRF;
243
244 return false;
245 }
246 }
247
248 bool
249 fs_inst::is_control_source(unsigned arg) const
250 {
251 switch (opcode) {
252 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
253 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
254 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
255 return arg == 0;
256
257 case SHADER_OPCODE_BROADCAST:
258 case SHADER_OPCODE_SHUFFLE:
259 case SHADER_OPCODE_QUAD_SWIZZLE:
260 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
261 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
262 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
263 case SHADER_OPCODE_GET_BUFFER_SIZE:
264 return arg == 1;
265
266 case SHADER_OPCODE_MOV_INDIRECT:
267 case SHADER_OPCODE_CLUSTER_BROADCAST:
268 case SHADER_OPCODE_TEX:
269 case FS_OPCODE_TXB:
270 case SHADER_OPCODE_TXD:
271 case SHADER_OPCODE_TXF:
272 case SHADER_OPCODE_TXF_LZ:
273 case SHADER_OPCODE_TXF_CMS:
274 case SHADER_OPCODE_TXF_CMS_W:
275 case SHADER_OPCODE_TXF_UMS:
276 case SHADER_OPCODE_TXF_MCS:
277 case SHADER_OPCODE_TXL:
278 case SHADER_OPCODE_TXL_LZ:
279 case SHADER_OPCODE_TXS:
280 case SHADER_OPCODE_LOD:
281 case SHADER_OPCODE_TG4:
282 case SHADER_OPCODE_TG4_OFFSET:
283 case SHADER_OPCODE_SAMPLEINFO:
284 return arg == 1 || arg == 2;
285
286 case SHADER_OPCODE_SEND:
287 return arg == 0 || arg == 1;
288
289 default:
290 return false;
291 }
292 }
293
294 bool
295 fs_inst::is_payload(unsigned arg) const
296 {
297 switch (opcode) {
298 case FS_OPCODE_FB_WRITE:
299 case FS_OPCODE_FB_READ:
300 case SHADER_OPCODE_URB_WRITE_SIMD8:
301 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
302 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
303 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
304 case SHADER_OPCODE_URB_READ_SIMD8:
305 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
306 case VEC4_OPCODE_UNTYPED_ATOMIC:
307 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
308 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
309 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
310 case SHADER_OPCODE_SHADER_TIME_ADD:
311 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
312 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
313 case SHADER_OPCODE_INTERLOCK:
314 case SHADER_OPCODE_MEMORY_FENCE:
315 case SHADER_OPCODE_BARRIER:
316 return arg == 0;
317
318 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
319 return arg == 1;
320
321 case SHADER_OPCODE_SEND:
322 return arg == 2 || arg == 3;
323
324 default:
325 if (is_tex())
326 return arg == 0;
327 else
328 return false;
329 }
330 }
331
332 /**
333 * Returns true if this instruction's sources and destinations cannot
334 * safely be the same register.
335 *
336 * In most cases, a register can be written over safely by the same
337 * instruction that is its last use. For a single instruction, the
338 * sources are dereferenced before writing of the destination starts
339 * (naturally).
340 *
341 * However, there are a few cases where this can be problematic:
342 *
343 * - Virtual opcodes that translate to multiple instructions in the
344 * code generator: if src == dst and one instruction writes the
345 * destination before a later instruction reads the source, then
346 * src will have been clobbered.
347 *
348 * - SIMD16 compressed instructions with certain regioning (see below).
349 *
350 * The register allocator uses this information to set up conflicts between
351 * GRF sources and the destination.
352 */
353 bool
354 fs_inst::has_source_and_destination_hazard() const
355 {
356 switch (opcode) {
357 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
358 /* Multiple partial writes to the destination */
359 return true;
360 case SHADER_OPCODE_SHUFFLE:
361 /* This instruction returns an arbitrary channel from the source and
362 * gets split into smaller instructions in the generator. It's possible
363 * that one of the instructions will read from a channel corresponding
364 * to an earlier instruction.
365 */
366 case SHADER_OPCODE_SEL_EXEC:
367 /* This is implemented as
368 *
369 * mov(16) g4<1>D 0D { align1 WE_all 1H };
370 * mov(16) g4<1>D g5<8,8,1>D { align1 1H }
371 *
372 * Because the source is only read in the second instruction, the first
373 * may stomp all over it.
374 */
375 return true;
376 case SHADER_OPCODE_QUAD_SWIZZLE:
377 switch (src[1].ud) {
378 case BRW_SWIZZLE_XXXX:
379 case BRW_SWIZZLE_YYYY:
380 case BRW_SWIZZLE_ZZZZ:
381 case BRW_SWIZZLE_WWWW:
382 case BRW_SWIZZLE_XXZZ:
383 case BRW_SWIZZLE_YYWW:
384 case BRW_SWIZZLE_XYXY:
385 case BRW_SWIZZLE_ZWZW:
386 /* These can be implemented as a single Align1 region on all
387 * platforms, so there's never a hazard between source and
388 * destination. C.f. fs_generator::generate_quad_swizzle().
389 */
390 return false;
391 default:
392 return !is_uniform(src[0]);
393 }
394 default:
395 /* The SIMD16 compressed instruction
396 *
397 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
398 *
399 * is actually decoded in hardware as:
400 *
401 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
402 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
403 *
404 * Which is safe. However, if we have uniform accesses
405 * happening, we get into trouble:
406 *
407 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
408 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
409 *
410 * Now our destination for the first instruction overwrote the
411 * second instruction's src0, and we get garbage for those 8
412 * pixels. There's a similar issue for the pre-gen6
413 * pixel_x/pixel_y, which are registers of 16-bit values and thus
414 * would get stomped by the first decode as well.
415 */
416 if (exec_size == 16) {
417 for (int i = 0; i < sources; i++) {
418 if (src[i].file == VGRF && (src[i].stride == 0 ||
419 src[i].type == BRW_REGISTER_TYPE_UW ||
420 src[i].type == BRW_REGISTER_TYPE_W ||
421 src[i].type == BRW_REGISTER_TYPE_UB ||
422 src[i].type == BRW_REGISTER_TYPE_B)) {
423 return true;
424 }
425 }
426 }
427 return false;
428 }
429 }
430
431 bool
432 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo) const
433 {
434 if (devinfo->gen == 6 && is_math())
435 return false;
436
437 if (is_send_from_grf())
438 return false;
439
440 /* From GEN:BUG:1604601757:
441 *
442 * "When multiplying a DW and any lower precision integer, source modifier
443 * is not supported."
444 */
445 if (devinfo->gen >= 12 && (opcode == BRW_OPCODE_MUL ||
446 opcode == BRW_OPCODE_MAD)) {
447 const brw_reg_type exec_type = get_exec_type(this);
448 const unsigned min_type_sz = opcode == BRW_OPCODE_MAD ?
449 MIN2(type_sz(src[1].type), type_sz(src[2].type)) :
450 MIN2(type_sz(src[0].type), type_sz(src[1].type));
451
452 if (brw_reg_type_is_integer(exec_type) &&
453 type_sz(exec_type) >= 4 &&
454 type_sz(exec_type) != min_type_sz)
455 return false;
456 }
457
458 if (!backend_instruction::can_do_source_mods())
459 return false;
460
461 return true;
462 }
463
464 bool
465 fs_inst::can_do_cmod()
466 {
467 if (!backend_instruction::can_do_cmod())
468 return false;
469
470 /* The accumulator result appears to get used for the conditional modifier
471 * generation. When negating a UD value, there is a 33rd bit generated for
472 * the sign in the accumulator value, so now you can't check, for example,
473 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
474 */
475 for (unsigned i = 0; i < sources; i++) {
476 if (type_is_unsigned_int(src[i].type) && src[i].negate)
477 return false;
478 }
479
480 return true;
481 }
482
483 bool
484 fs_inst::can_change_types() const
485 {
486 return dst.type == src[0].type &&
487 !src[0].abs && !src[0].negate && !saturate &&
488 (opcode == BRW_OPCODE_MOV ||
489 (opcode == BRW_OPCODE_SEL &&
490 dst.type == src[1].type &&
491 predicate != BRW_PREDICATE_NONE &&
492 !src[1].abs && !src[1].negate));
493 }
494
495 void
496 fs_reg::init()
497 {
498 memset((void*)this, 0, sizeof(*this));
499 type = BRW_REGISTER_TYPE_UD;
500 stride = 1;
501 }
502
503 /** Generic unset register constructor. */
504 fs_reg::fs_reg()
505 {
506 init();
507 this->file = BAD_FILE;
508 }
509
510 fs_reg::fs_reg(struct ::brw_reg reg) :
511 backend_reg(reg)
512 {
513 this->offset = 0;
514 this->stride = 1;
515 if (this->file == IMM &&
516 (this->type != BRW_REGISTER_TYPE_V &&
517 this->type != BRW_REGISTER_TYPE_UV &&
518 this->type != BRW_REGISTER_TYPE_VF)) {
519 this->stride = 0;
520 }
521 }
522
523 bool
524 fs_reg::equals(const fs_reg &r) const
525 {
526 return (this->backend_reg::equals(r) &&
527 stride == r.stride);
528 }
529
530 bool
531 fs_reg::negative_equals(const fs_reg &r) const
532 {
533 return (this->backend_reg::negative_equals(r) &&
534 stride == r.stride);
535 }
536
537 bool
538 fs_reg::is_contiguous() const
539 {
540 switch (file) {
541 case ARF:
542 case FIXED_GRF:
543 return hstride == BRW_HORIZONTAL_STRIDE_1 &&
544 vstride == width + hstride;
545 case MRF:
546 case VGRF:
547 case ATTR:
548 return stride == 1;
549 case UNIFORM:
550 case IMM:
551 case BAD_FILE:
552 return true;
553 }
554
555 unreachable("Invalid register file");
556 }
557
558 unsigned
559 fs_reg::component_size(unsigned width) const
560 {
561 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
562 hstride == 0 ? 0 :
563 1 << (hstride - 1));
564 return MAX2(width * stride, 1) * type_sz(type);
565 }
566
567 /**
568 * Create a MOV to read the timestamp register.
569 */
570 fs_reg
571 fs_visitor::get_timestamp(const fs_builder &bld)
572 {
573 assert(devinfo->gen >= 7);
574
575 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
576 BRW_ARF_TIMESTAMP,
577 0),
578 BRW_REGISTER_TYPE_UD));
579
580 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
581
582 /* We want to read the 3 fields we care about even if it's not enabled in
583 * the dispatch.
584 */
585 bld.group(4, 0).exec_all().MOV(dst, ts);
586
587 return dst;
588 }
589
590 void
591 fs_visitor::emit_shader_time_begin()
592 {
593 /* We want only the low 32 bits of the timestamp. Since it's running
594 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
595 * which is plenty of time for our purposes. It is identical across the
596 * EUs, but since it's tracking GPU core speed it will increment at a
597 * varying rate as render P-states change.
598 */
599 shader_start_time = component(
600 get_timestamp(bld.annotate("shader time start")), 0);
601 }
602
603 void
604 fs_visitor::emit_shader_time_end()
605 {
606 /* Insert our code just before the final SEND with EOT. */
607 exec_node *end = this->instructions.get_tail();
608 assert(end && ((fs_inst *) end)->eot);
609 const fs_builder ibld = bld.annotate("shader time end")
610 .exec_all().at(NULL, end);
611 const fs_reg timestamp = get_timestamp(ibld);
612
613 /* We only use the low 32 bits of the timestamp - see
614 * emit_shader_time_begin()).
615 *
616 * We could also check if render P-states have changed (or anything
617 * else that might disrupt timing) by setting smear to 2 and checking if
618 * that field is != 0.
619 */
620 const fs_reg shader_end_time = component(timestamp, 0);
621
622 /* Check that there weren't any timestamp reset events (assuming these
623 * were the only two timestamp reads that happened).
624 */
625 const fs_reg reset = component(timestamp, 2);
626 set_condmod(BRW_CONDITIONAL_Z,
627 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
628 ibld.IF(BRW_PREDICATE_NORMAL);
629
630 fs_reg start = shader_start_time;
631 start.negate = true;
632 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
633 BRW_REGISTER_TYPE_UD),
634 0);
635 const fs_builder cbld = ibld.group(1, 0);
636 cbld.group(1, 0).ADD(diff, start, shader_end_time);
637
638 /* If there were no instructions between the two timestamp gets, the diff
639 * is 2 cycles. Remove that overhead, so I can forget about that when
640 * trying to determine the time taken for single instructions.
641 */
642 cbld.ADD(diff, diff, brw_imm_ud(-2u));
643 SHADER_TIME_ADD(cbld, 0, diff);
644 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
645 ibld.emit(BRW_OPCODE_ELSE);
646 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
647 ibld.emit(BRW_OPCODE_ENDIF);
648 }
649
650 void
651 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
652 int shader_time_subindex,
653 fs_reg value)
654 {
655 int index = shader_time_index * 3 + shader_time_subindex;
656 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
657
658 fs_reg payload;
659 if (dispatch_width == 8)
660 payload = vgrf(glsl_type::uvec2_type);
661 else
662 payload = vgrf(glsl_type::uint_type);
663
664 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
665 }
666
667 void
668 fs_visitor::vfail(const char *format, va_list va)
669 {
670 char *msg;
671
672 if (failed)
673 return;
674
675 failed = true;
676
677 msg = ralloc_vasprintf(mem_ctx, format, va);
678 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
679
680 this->fail_msg = msg;
681
682 if (debug_enabled) {
683 fprintf(stderr, "%s", msg);
684 }
685 }
686
687 void
688 fs_visitor::fail(const char *format, ...)
689 {
690 va_list va;
691
692 va_start(va, format);
693 vfail(format, va);
694 va_end(va);
695 }
696
697 /**
698 * Mark this program as impossible to compile with dispatch width greater
699 * than n.
700 *
701 * During the SIMD8 compile (which happens first), we can detect and flag
702 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
703 * SIMD16+ compile altogether.
704 *
705 * During a compile of dispatch width greater than n (if one happens anyway),
706 * this just calls fail().
707 */
708 void
709 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
710 {
711 if (dispatch_width > n) {
712 fail("%s", msg);
713 } else {
714 max_dispatch_width = n;
715 compiler->shader_perf_log(log_data,
716 "Shader dispatch width limited to SIMD%d: %s",
717 n, msg);
718 }
719 }
720
721 /**
722 * Returns true if the instruction has a flag that means it won't
723 * update an entire destination register.
724 *
725 * For example, dead code elimination and live variable analysis want to know
726 * when a write to a variable screens off any preceding values that were in
727 * it.
728 */
729 bool
730 fs_inst::is_partial_write() const
731 {
732 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
733 (this->exec_size * type_sz(this->dst.type)) < 32 ||
734 !this->dst.is_contiguous() ||
735 this->dst.offset % REG_SIZE != 0);
736 }
737
738 unsigned
739 fs_inst::components_read(unsigned i) const
740 {
741 /* Return zero if the source is not present. */
742 if (src[i].file == BAD_FILE)
743 return 0;
744
745 switch (opcode) {
746 case FS_OPCODE_LINTERP:
747 if (i == 0)
748 return 2;
749 else
750 return 1;
751
752 case FS_OPCODE_PIXEL_X:
753 case FS_OPCODE_PIXEL_Y:
754 assert(i == 0);
755 return 2;
756
757 case FS_OPCODE_FB_WRITE_LOGICAL:
758 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
759 /* First/second FB write color. */
760 if (i < 2)
761 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
762 else
763 return 1;
764
765 case SHADER_OPCODE_TEX_LOGICAL:
766 case SHADER_OPCODE_TXD_LOGICAL:
767 case SHADER_OPCODE_TXF_LOGICAL:
768 case SHADER_OPCODE_TXL_LOGICAL:
769 case SHADER_OPCODE_TXS_LOGICAL:
770 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
771 case FS_OPCODE_TXB_LOGICAL:
772 case SHADER_OPCODE_TXF_CMS_LOGICAL:
773 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
774 case SHADER_OPCODE_TXF_UMS_LOGICAL:
775 case SHADER_OPCODE_TXF_MCS_LOGICAL:
776 case SHADER_OPCODE_LOD_LOGICAL:
777 case SHADER_OPCODE_TG4_LOGICAL:
778 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
779 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
780 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
781 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
782 /* Texture coordinates. */
783 if (i == TEX_LOGICAL_SRC_COORDINATE)
784 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
785 /* Texture derivatives. */
786 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
787 opcode == SHADER_OPCODE_TXD_LOGICAL)
788 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
789 /* Texture offset. */
790 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
791 return 2;
792 /* MCS */
793 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
794 return 2;
795 else
796 return 1;
797
798 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
799 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
800 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
801 /* Surface coordinates. */
802 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
803 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
804 /* Surface operation source (ignored for reads). */
805 else if (i == SURFACE_LOGICAL_SRC_DATA)
806 return 0;
807 else
808 return 1;
809
810 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
811 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
812 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
813 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
814 /* Surface coordinates. */
815 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
816 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
817 /* Surface operation source. */
818 else if (i == SURFACE_LOGICAL_SRC_DATA)
819 return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
820 else
821 return 1;
822
823 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
824 assert(src[2].file == IMM);
825 return 1;
826
827 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
828 assert(src[2].file == IMM);
829 return i == 1 ? src[2].ud : 1;
830
831 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
832 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
833 assert(src[2].file == IMM);
834 if (i == 1) {
835 /* Data source */
836 const unsigned op = src[2].ud;
837 switch (op) {
838 case BRW_AOP_INC:
839 case BRW_AOP_DEC:
840 case BRW_AOP_PREDEC:
841 return 0;
842 case BRW_AOP_CMPWR:
843 return 2;
844 default:
845 return 1;
846 }
847 } else {
848 return 1;
849 }
850
851 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
852 assert(src[2].file == IMM);
853 if (i == 1) {
854 /* Data source */
855 const unsigned op = src[2].ud;
856 return op == BRW_AOP_FCMPWR ? 2 : 1;
857 } else {
858 return 1;
859 }
860
861 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
862 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
863 /* Scattered logical opcodes use the following params:
864 * src[0] Surface coordinates
865 * src[1] Surface operation source (ignored for reads)
866 * src[2] Surface
867 * src[3] IMM with always 1 dimension.
868 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
869 */
870 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
871 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
872 return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;
873
874 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
875 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
876 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
877 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
878 return 1;
879
880 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
881 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
882 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
883 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
884 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
885 /* Surface coordinates. */
886 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
887 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
888 /* Surface operation source. */
889 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR)
890 return 2;
891 else if (i == SURFACE_LOGICAL_SRC_DATA &&
892 (op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC))
893 return 0;
894 else
895 return 1;
896 }
897 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
898 return (i == 0 ? 2 : 1);
899
900 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: {
901 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
902 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
903 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
904 /* Surface coordinates. */
905 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
906 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
907 /* Surface operation source. */
908 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR)
909 return 2;
910 else
911 return 1;
912 }
913
914 default:
915 return 1;
916 }
917 }
918
919 unsigned
920 fs_inst::size_read(int arg) const
921 {
922 switch (opcode) {
923 case SHADER_OPCODE_SEND:
924 if (arg == 2) {
925 return mlen * REG_SIZE;
926 } else if (arg == 3) {
927 return ex_mlen * REG_SIZE;
928 }
929 break;
930
931 case FS_OPCODE_FB_WRITE:
932 case FS_OPCODE_REP_FB_WRITE:
933 if (arg == 0) {
934 if (base_mrf >= 0)
935 return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
936 else
937 return mlen * REG_SIZE;
938 }
939 break;
940
941 case FS_OPCODE_FB_READ:
942 case SHADER_OPCODE_URB_WRITE_SIMD8:
943 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
944 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
945 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
946 case SHADER_OPCODE_URB_READ_SIMD8:
947 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
948 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
949 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
950 if (arg == 0)
951 return mlen * REG_SIZE;
952 break;
953
954 case FS_OPCODE_SET_SAMPLE_ID:
955 if (arg == 1)
956 return 1;
957 break;
958
959 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
960 /* The payload is actually stored in src1 */
961 if (arg == 1)
962 return mlen * REG_SIZE;
963 break;
964
965 case FS_OPCODE_LINTERP:
966 if (arg == 1)
967 return 16;
968 break;
969
970 case SHADER_OPCODE_LOAD_PAYLOAD:
971 if (arg < this->header_size)
972 return REG_SIZE;
973 break;
974
975 case CS_OPCODE_CS_TERMINATE:
976 case SHADER_OPCODE_BARRIER:
977 return REG_SIZE;
978
979 case SHADER_OPCODE_MOV_INDIRECT:
980 if (arg == 0) {
981 assert(src[2].file == IMM);
982 return src[2].ud;
983 }
984 break;
985
986 default:
987 if (is_tex() && arg == 0 && src[0].file == VGRF)
988 return mlen * REG_SIZE;
989 break;
990 }
991
992 switch (src[arg].file) {
993 case UNIFORM:
994 case IMM:
995 return components_read(arg) * type_sz(src[arg].type);
996 case BAD_FILE:
997 case ARF:
998 case FIXED_GRF:
999 case VGRF:
1000 case ATTR:
1001 return components_read(arg) * src[arg].component_size(exec_size);
1002 case MRF:
1003 unreachable("MRF registers are not allowed as sources");
1004 }
1005 return 0;
1006 }
1007
1008 namespace {
1009 unsigned
1010 predicate_width(brw_predicate predicate)
1011 {
1012 switch (predicate) {
1013 case BRW_PREDICATE_NONE: return 1;
1014 case BRW_PREDICATE_NORMAL: return 1;
1015 case BRW_PREDICATE_ALIGN1_ANY2H: return 2;
1016 case BRW_PREDICATE_ALIGN1_ALL2H: return 2;
1017 case BRW_PREDICATE_ALIGN1_ANY4H: return 4;
1018 case BRW_PREDICATE_ALIGN1_ALL4H: return 4;
1019 case BRW_PREDICATE_ALIGN1_ANY8H: return 8;
1020 case BRW_PREDICATE_ALIGN1_ALL8H: return 8;
1021 case BRW_PREDICATE_ALIGN1_ANY16H: return 16;
1022 case BRW_PREDICATE_ALIGN1_ALL16H: return 16;
1023 case BRW_PREDICATE_ALIGN1_ANY32H: return 32;
1024 case BRW_PREDICATE_ALIGN1_ALL32H: return 32;
1025 default: unreachable("Unsupported predicate");
1026 }
1027 }
1028
1029 /* Return the subset of flag registers that an instruction could
1030 * potentially read or write based on the execution controls and flag
1031 * subregister number of the instruction.
1032 */
1033 unsigned
1034 flag_mask(const fs_inst *inst, unsigned width)
1035 {
1036 assert(util_is_power_of_two_nonzero(width));
1037 const unsigned start = (inst->flag_subreg * 16 + inst->group) &
1038 ~(width - 1);
1039 const unsigned end = start + ALIGN(inst->exec_size, width);
1040 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
1041 }
1042
1043 unsigned
1044 bit_mask(unsigned n)
1045 {
1046 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
1047 }
1048
1049 unsigned
1050 flag_mask(const fs_reg &r, unsigned sz)
1051 {
1052 if (r.file == ARF) {
1053 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
1054 const unsigned end = start + sz;
1055 return bit_mask(end) & ~bit_mask(start);
1056 } else {
1057 return 0;
1058 }
1059 }
1060 }
1061
1062 unsigned
1063 fs_inst::flags_read(const gen_device_info *devinfo) const
1064 {
1065 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
1066 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
1067 /* The vertical predication modes combine corresponding bits from
1068 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
1069 */
1070 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
1071 return flag_mask(this, 1) << shift | flag_mask(this, 1);
1072 } else if (predicate) {
1073 return flag_mask(this, predicate_width(predicate));
1074 } else {
1075 unsigned mask = 0;
1076 for (int i = 0; i < sources; i++) {
1077 mask |= flag_mask(src[i], size_read(i));
1078 }
1079 return mask;
1080 }
1081 }
1082
1083 unsigned
1084 fs_inst::flags_written() const
1085 {
1086 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
1087 opcode != BRW_OPCODE_CSEL &&
1088 opcode != BRW_OPCODE_IF &&
1089 opcode != BRW_OPCODE_WHILE)) ||
1090 opcode == FS_OPCODE_FB_WRITE) {
1091 return flag_mask(this, 1);
1092 } else if (opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL ||
1093 opcode == FS_OPCODE_LOAD_LIVE_CHANNELS) {
1094 return flag_mask(this, 32);
1095 } else {
1096 return flag_mask(dst, size_written);
1097 }
1098 }
1099
1100 /**
1101 * Returns how many MRFs an FS opcode will write over.
1102 *
1103 * Note that this is not the 0 or 1 implied writes in an actual gen
1104 * instruction -- the FS opcodes often generate MOVs in addition.
1105 */
1106 unsigned
1107 fs_inst::implied_mrf_writes() const
1108 {
1109 if (mlen == 0)
1110 return 0;
1111
1112 if (base_mrf == -1)
1113 return 0;
1114
1115 switch (opcode) {
1116 case SHADER_OPCODE_RCP:
1117 case SHADER_OPCODE_RSQ:
1118 case SHADER_OPCODE_SQRT:
1119 case SHADER_OPCODE_EXP2:
1120 case SHADER_OPCODE_LOG2:
1121 case SHADER_OPCODE_SIN:
1122 case SHADER_OPCODE_COS:
1123 return 1 * exec_size / 8;
1124 case SHADER_OPCODE_POW:
1125 case SHADER_OPCODE_INT_QUOTIENT:
1126 case SHADER_OPCODE_INT_REMAINDER:
1127 return 2 * exec_size / 8;
1128 case SHADER_OPCODE_TEX:
1129 case FS_OPCODE_TXB:
1130 case SHADER_OPCODE_TXD:
1131 case SHADER_OPCODE_TXF:
1132 case SHADER_OPCODE_TXF_CMS:
1133 case SHADER_OPCODE_TXF_MCS:
1134 case SHADER_OPCODE_TG4:
1135 case SHADER_OPCODE_TG4_OFFSET:
1136 case SHADER_OPCODE_TXL:
1137 case SHADER_OPCODE_TXS:
1138 case SHADER_OPCODE_LOD:
1139 case SHADER_OPCODE_SAMPLEINFO:
1140 return 1;
1141 case FS_OPCODE_FB_WRITE:
1142 case FS_OPCODE_REP_FB_WRITE:
1143 return src[0].file == BAD_FILE ? 0 : 2;
1144 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1145 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1146 return 1;
1147 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
1148 return mlen;
1149 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1150 return mlen;
1151 default:
1152 unreachable("not reached");
1153 }
1154 }
1155
1156 fs_reg
1157 fs_visitor::vgrf(const glsl_type *const type)
1158 {
1159 int reg_width = dispatch_width / 8;
1160 return fs_reg(VGRF,
1161 alloc.allocate(glsl_count_dword_slots(type, false) * reg_width),
1162 brw_type_for_base_type(type));
1163 }
1164
1165 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1166 {
1167 init();
1168 this->file = file;
1169 this->nr = nr;
1170 this->type = BRW_REGISTER_TYPE_F;
1171 this->stride = (file == UNIFORM ? 0 : 1);
1172 }
1173
1174 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1175 {
1176 init();
1177 this->file = file;
1178 this->nr = nr;
1179 this->type = type;
1180 this->stride = (file == UNIFORM ? 0 : 1);
1181 }
1182
1183 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1184 * This brings in those uniform definitions
1185 */
1186 void
1187 fs_visitor::import_uniforms(fs_visitor *v)
1188 {
1189 this->push_constant_loc = v->push_constant_loc;
1190 this->pull_constant_loc = v->pull_constant_loc;
1191 this->uniforms = v->uniforms;
1192 this->subgroup_id = v->subgroup_id;
1193 for (unsigned i = 0; i < ARRAY_SIZE(this->group_size); i++)
1194 this->group_size[i] = v->group_size[i];
1195 }
1196
1197 void
1198 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1199 {
1200 assert(stage == MESA_SHADER_FRAGMENT);
1201
1202 /* gl_FragCoord.x */
1203 bld.MOV(wpos, this->pixel_x);
1204 wpos = offset(wpos, bld, 1);
1205
1206 /* gl_FragCoord.y */
1207 bld.MOV(wpos, this->pixel_y);
1208 wpos = offset(wpos, bld, 1);
1209
1210 /* gl_FragCoord.z */
1211 if (devinfo->gen >= 6) {
1212 bld.MOV(wpos, fetch_payload_reg(bld, payload.source_depth_reg));
1213 } else {
1214 bld.emit(FS_OPCODE_LINTERP, wpos,
1215 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1216 component(interp_reg(VARYING_SLOT_POS, 2), 0));
1217 }
1218 wpos = offset(wpos, bld, 1);
1219
1220 /* gl_FragCoord.w: Already set up in emit_interpolation */
1221 bld.MOV(wpos, this->wpos_w);
1222 }
1223
1224 enum brw_barycentric_mode
1225 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1226 {
1227 /* Barycentric modes don't make sense for flat inputs. */
1228 assert(mode != INTERP_MODE_FLAT);
1229
1230 unsigned bary;
1231 switch (op) {
1232 case nir_intrinsic_load_barycentric_pixel:
1233 case nir_intrinsic_load_barycentric_at_offset:
1234 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1235 break;
1236 case nir_intrinsic_load_barycentric_centroid:
1237 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1238 break;
1239 case nir_intrinsic_load_barycentric_sample:
1240 case nir_intrinsic_load_barycentric_at_sample:
1241 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1242 break;
1243 default:
1244 unreachable("invalid intrinsic");
1245 }
1246
1247 if (mode == INTERP_MODE_NOPERSPECTIVE)
1248 bary += 3;
1249
1250 return (enum brw_barycentric_mode) bary;
1251 }
1252
1253 /**
1254 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1255 */
1256 static enum brw_barycentric_mode
1257 centroid_to_pixel(enum brw_barycentric_mode bary)
1258 {
1259 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1260 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1261 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1262 }
1263
1264 fs_reg *
1265 fs_visitor::emit_frontfacing_interpolation()
1266 {
1267 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1268
1269 if (devinfo->gen >= 12) {
1270 fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
1271
1272 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_W);
1273 bld.ASR(tmp, g1, brw_imm_d(15));
1274 bld.NOT(*reg, tmp);
1275 } else if (devinfo->gen >= 6) {
1276 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1277 * a boolean result from this (~0/true or 0/false).
1278 *
1279 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1280 * this task in only one instruction:
1281 * - a negation source modifier will flip the bit; and
1282 * - a W -> D type conversion will sign extend the bit into the high
1283 * word of the destination.
1284 *
1285 * An ASR 15 fills the low word of the destination.
1286 */
1287 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1288 g0.negate = true;
1289
1290 bld.ASR(*reg, g0, brw_imm_d(15));
1291 } else {
1292 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1293 * a boolean result from this (1/true or 0/false).
1294 *
1295 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1296 * the negation source modifier to flip it. Unfortunately the SHR
1297 * instruction only operates on UD (or D with an abs source modifier)
1298 * sources without negation.
1299 *
1300 * Instead, use ASR (which will give ~0/true or 0/false).
1301 */
1302 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1303 g1_6.negate = true;
1304
1305 bld.ASR(*reg, g1_6, brw_imm_d(31));
1306 }
1307
1308 return reg;
1309 }
1310
1311 void
1312 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1313 {
1314 assert(stage == MESA_SHADER_FRAGMENT);
1315 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1316 assert(dst.type == BRW_REGISTER_TYPE_F);
1317
1318 if (wm_prog_data->persample_dispatch) {
1319 /* Convert int_sample_pos to floating point */
1320 bld.MOV(dst, int_sample_pos);
1321 /* Scale to the range [0, 1] */
1322 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1323 }
1324 else {
1325 /* From ARB_sample_shading specification:
1326 * "When rendering to a non-multisample buffer, or if multisample
1327 * rasterization is disabled, gl_SamplePosition will always be
1328 * (0.5, 0.5).
1329 */
1330 bld.MOV(dst, brw_imm_f(0.5f));
1331 }
1332 }
1333
1334 fs_reg *
1335 fs_visitor::emit_samplepos_setup()
1336 {
1337 assert(devinfo->gen >= 6);
1338
1339 const fs_builder abld = bld.annotate("compute sample position");
1340 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1341 fs_reg pos = *reg;
1342 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1343 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1344
1345 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1346 * mode will be enabled.
1347 *
1348 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1349 * R31.1:0 Position Offset X/Y for Slot[3:0]
1350 * R31.3:2 Position Offset X/Y for Slot[7:4]
1351 * .....
1352 *
1353 * The X, Y sample positions come in as bytes in thread payload. So, read
1354 * the positions using vstride=16, width=8, hstride=2.
1355 */
1356 const fs_reg sample_pos_reg =
1357 fetch_payload_reg(abld, payload.sample_pos_reg, BRW_REGISTER_TYPE_W);
1358
1359 /* Compute gl_SamplePosition.x */
1360 abld.MOV(int_sample_x, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 0));
1361 compute_sample_position(offset(pos, abld, 0), int_sample_x);
1362
1363 /* Compute gl_SamplePosition.y */
1364 abld.MOV(int_sample_y, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 1));
1365 compute_sample_position(offset(pos, abld, 1), int_sample_y);
1366 return reg;
1367 }
1368
1369 fs_reg *
1370 fs_visitor::emit_sampleid_setup()
1371 {
1372 assert(stage == MESA_SHADER_FRAGMENT);
1373 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1374 assert(devinfo->gen >= 6);
1375
1376 const fs_builder abld = bld.annotate("compute sample id");
1377 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uint_type));
1378
1379 if (!key->multisample_fbo) {
1380 /* As per GL_ARB_sample_shading specification:
1381 * "When rendering to a non-multisample buffer, or if multisample
1382 * rasterization is disabled, gl_SampleID will always be zero."
1383 */
1384 abld.MOV(*reg, brw_imm_d(0));
1385 } else if (devinfo->gen >= 8) {
1386 /* Sample ID comes in as 4-bit numbers in g1.0:
1387 *
1388 * 15:12 Slot 3 SampleID (only used in SIMD16)
1389 * 11:8 Slot 2 SampleID (only used in SIMD16)
1390 * 7:4 Slot 1 SampleID
1391 * 3:0 Slot 0 SampleID
1392 *
1393 * Each slot corresponds to four channels, so we want to replicate each
1394 * half-byte value to 4 channels in a row:
1395 *
1396 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1397 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1398 *
1399 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1400 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1401 *
1402 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1403 * channels to read the first byte (7:0), and the second group of 8
1404 * channels to read the second byte (15:8). Then, we shift right by
1405 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1406 * values into place. Finally, we AND with 0xf to keep the low nibble.
1407 *
1408 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1409 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1410 *
1411 * TODO: These payload bits exist on Gen7 too, but they appear to always
1412 * be zero, so this code fails to work. We should find out why.
1413 */
1414 const fs_reg tmp = abld.vgrf(BRW_REGISTER_TYPE_UW);
1415
1416 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
1417 const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
1418 hbld.SHR(offset(tmp, hbld, i),
1419 stride(retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UB),
1420 1, 8, 0),
1421 brw_imm_v(0x44440000));
1422 }
1423
1424 abld.AND(*reg, tmp, brw_imm_w(0xf));
1425 } else {
1426 const fs_reg t1 = component(abld.vgrf(BRW_REGISTER_TYPE_UD), 0);
1427 const fs_reg t2 = abld.vgrf(BRW_REGISTER_TYPE_UW);
1428
1429 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1430 * 8x multisampling, subspan 0 will represent sample N (where N
1431 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1432 * 7. We can find the value of N by looking at R0.0 bits 7:6
1433 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1434 * (since samples are always delivered in pairs). That is, we
1435 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1436 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1437 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1438 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1439 * populating a temporary variable with the sequence (0, 1, 2, 3),
1440 * and then reading from it using vstride=1, width=4, hstride=0.
1441 * These computations hold good for 4x multisampling as well.
1442 *
1443 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1444 * the first four slots are sample 0 of subspan 0; the next four
1445 * are sample 1 of subspan 0; the third group is sample 0 of
1446 * subspan 1, and finally sample 1 of subspan 1.
1447 */
1448
1449 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1450 * accomodate 16x MSAA.
1451 */
1452 abld.exec_all().group(1, 0)
1453 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1454 brw_imm_ud(0xc0));
1455 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1456
1457 /* This works for SIMD8-SIMD16. It also works for SIMD32 but only if we
1458 * can assume 4x MSAA. Disallow it on IVB+
1459 *
1460 * FINISHME: One day, we could come up with a way to do this that
1461 * actually works on gen7.
1462 */
1463 if (devinfo->gen >= 7)
1464 limit_dispatch_width(16, "gl_SampleId is unsupported in SIMD32 on gen7");
1465 abld.exec_all().group(8, 0).MOV(t2, brw_imm_v(0x32103210));
1466
1467 /* This special instruction takes care of setting vstride=1,
1468 * width=4, hstride=0 of t2 during an ADD instruction.
1469 */
1470 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1471 }
1472
1473 return reg;
1474 }
1475
1476 fs_reg *
1477 fs_visitor::emit_samplemaskin_setup()
1478 {
1479 assert(stage == MESA_SHADER_FRAGMENT);
1480 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1481 assert(devinfo->gen >= 6);
1482
1483 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1484
1485 fs_reg coverage_mask =
1486 fetch_payload_reg(bld, payload.sample_mask_in_reg, BRW_REGISTER_TYPE_D);
1487
1488 if (wm_prog_data->persample_dispatch) {
1489 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1490 * and a mask representing which sample is being processed by the
1491 * current shader invocation.
1492 *
1493 * From the OES_sample_variables specification:
1494 * "When per-sample shading is active due to the use of a fragment input
1495 * qualified by "sample" or due to the use of the gl_SampleID or
1496 * gl_SamplePosition variables, only the bit for the current sample is
1497 * set in gl_SampleMaskIn."
1498 */
1499 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1500
1501 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1502 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1503
1504 fs_reg one = vgrf(glsl_type::int_type);
1505 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1506 abld.MOV(one, brw_imm_d(1));
1507 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1508 abld.AND(*reg, enabled_mask, coverage_mask);
1509 } else {
1510 /* In per-pixel mode, the coverage mask is sufficient. */
1511 *reg = coverage_mask;
1512 }
1513 return reg;
1514 }
1515
1516 fs_reg
1517 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1518 {
1519 if (!src.abs && !src.negate)
1520 return src;
1521
1522 fs_reg temp = bld.vgrf(src.type);
1523 bld.MOV(temp, src);
1524
1525 return temp;
1526 }
1527
1528 void
1529 fs_visitor::emit_discard_jump()
1530 {
1531 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1532
1533 /* For performance, after a discard, jump to the end of the
1534 * shader if all relevant channels have been discarded.
1535 */
1536 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1537 discard_jump->flag_subreg = sample_mask_flag_subreg(this);
1538
1539 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1540 discard_jump->predicate_inverse = true;
1541 }
1542
1543 void
1544 fs_visitor::emit_gs_thread_end()
1545 {
1546 assert(stage == MESA_SHADER_GEOMETRY);
1547
1548 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1549
1550 if (gs_compile->control_data_header_size_bits > 0) {
1551 emit_gs_control_data_bits(this->final_gs_vertex_count);
1552 }
1553
1554 const fs_builder abld = bld.annotate("thread end");
1555 fs_inst *inst;
1556
1557 if (gs_prog_data->static_vertex_count != -1) {
1558 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1559 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1560 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1561 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1562 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1563 prev->eot = true;
1564
1565 /* Delete now dead instructions. */
1566 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1567 if (dead == prev)
1568 break;
1569 dead->remove();
1570 }
1571 return;
1572 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1573 break;
1574 }
1575 }
1576 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1577 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1578 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1579 inst->mlen = 1;
1580 } else {
1581 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1582 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1583 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1584 sources[1] = this->final_gs_vertex_count;
1585 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1586 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1587 inst->mlen = 2;
1588 }
1589 inst->eot = true;
1590 inst->offset = 0;
1591 }
1592
1593 void
1594 fs_visitor::assign_curb_setup()
1595 {
1596 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1597
1598 unsigned ubo_push_length = 0;
1599 unsigned ubo_push_start[4];
1600 for (int i = 0; i < 4; i++) {
1601 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1602 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1603 }
1604
1605 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1606
1607 uint64_t used = 0;
1608
1609 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1610 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1611 for (unsigned int i = 0; i < inst->sources; i++) {
1612 if (inst->src[i].file == UNIFORM) {
1613 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1614 int constant_nr;
1615 if (inst->src[i].nr >= UBO_START) {
1616 /* constant_nr is in 32-bit units, the rest are in bytes */
1617 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1618 inst->src[i].offset / 4;
1619 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1620 constant_nr = push_constant_loc[uniform_nr];
1621 } else {
1622 /* Section 5.11 of the OpenGL 4.1 spec says:
1623 * "Out-of-bounds reads return undefined values, which include
1624 * values from other variables of the active program or zero."
1625 * Just return the first push constant.
1626 */
1627 constant_nr = 0;
1628 }
1629
1630 assert(constant_nr / 8 < 64);
1631 used |= BITFIELD64_BIT(constant_nr / 8);
1632
1633 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1634 constant_nr / 8,
1635 constant_nr % 8);
1636 brw_reg.abs = inst->src[i].abs;
1637 brw_reg.negate = inst->src[i].negate;
1638
1639 assert(inst->src[i].stride == 0);
1640 inst->src[i] = byte_offset(
1641 retype(brw_reg, inst->src[i].type),
1642 inst->src[i].offset % 4);
1643 }
1644 }
1645 }
1646
1647 uint64_t want_zero = used & stage_prog_data->zero_push_reg;
1648 if (want_zero) {
1649 assert(!compiler->compact_params);
1650 fs_builder ubld = bld.exec_all().group(8, 0).at(
1651 cfg->first_block(), cfg->first_block()->start());
1652
1653 /* push_reg_mask_param is in 32-bit units */
1654 unsigned mask_param = stage_prog_data->push_reg_mask_param;
1655 struct brw_reg mask = brw_vec1_grf(payload.num_regs + mask_param / 8,
1656 mask_param % 8);
1657
1658 fs_reg b32;
1659 for (unsigned i = 0; i < 64; i++) {
1660 if (i % 16 == 0 && (want_zero & BITFIELD64_RANGE(i, 16))) {
1661 fs_reg shifted = ubld.vgrf(BRW_REGISTER_TYPE_W, 2);
1662 ubld.SHL(horiz_offset(shifted, 8),
1663 byte_offset(retype(mask, BRW_REGISTER_TYPE_W), i / 8),
1664 brw_imm_v(0x01234567));
1665 ubld.SHL(shifted, horiz_offset(shifted, 8), brw_imm_w(8));
1666
1667 fs_builder ubld16 = ubld.group(16, 0);
1668 b32 = ubld16.vgrf(BRW_REGISTER_TYPE_D);
1669 ubld16.group(16, 0).ASR(b32, shifted, brw_imm_w(15));
1670 }
1671
1672 if (want_zero & BITFIELD64_BIT(i)) {
1673 assert(i < prog_data->curb_read_length);
1674 struct brw_reg push_reg =
1675 retype(brw_vec8_grf(payload.num_regs + i, 0),
1676 BRW_REGISTER_TYPE_D);
1677
1678 ubld.AND(push_reg, push_reg, component(b32, i % 16));
1679 }
1680 }
1681
1682 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1683 }
1684
1685 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1686 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1687 }
1688
1689 /*
1690 * Build up an array of indices into the urb_setup array that
1691 * references the active entries of the urb_setup array.
1692 * Used to accelerate walking the active entries of the urb_setup array
1693 * on each upload.
1694 */
1695 void
1696 brw_compute_urb_setup_index(struct brw_wm_prog_data *wm_prog_data)
1697 {
1698 /* Make sure uint8_t is sufficient */
1699 STATIC_ASSERT(VARYING_SLOT_MAX <= 0xff);
1700 uint8_t index = 0;
1701 for (uint8_t attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1702 if (wm_prog_data->urb_setup[attr] >= 0) {
1703 wm_prog_data->urb_setup_attribs[index++] = attr;
1704 }
1705 }
1706 wm_prog_data->urb_setup_attribs_count = index;
1707 }
1708
1709 static void
1710 calculate_urb_setup(const struct gen_device_info *devinfo,
1711 const struct brw_wm_prog_key *key,
1712 struct brw_wm_prog_data *prog_data,
1713 const nir_shader *nir)
1714 {
1715 memset(prog_data->urb_setup, -1,
1716 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1717
1718 int urb_next = 0;
1719 /* Figure out where each of the incoming setup attributes lands. */
1720 if (devinfo->gen >= 6) {
1721 if (util_bitcount64(nir->info.inputs_read &
1722 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1723 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1724 * first 16 varying inputs, so we can put them wherever we want.
1725 * Just put them in order.
1726 *
1727 * This is useful because it means that (a) inputs not used by the
1728 * fragment shader won't take up valuable register space, and (b) we
1729 * won't have to recompile the fragment shader if it gets paired with
1730 * a different vertex (or geometry) shader.
1731 */
1732 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1733 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1734 BITFIELD64_BIT(i)) {
1735 prog_data->urb_setup[i] = urb_next++;
1736 }
1737 }
1738 } else {
1739 /* We have enough input varyings that the SF/SBE pipeline stage can't
1740 * arbitrarily rearrange them to suit our whim; we have to put them
1741 * in an order that matches the output of the previous pipeline stage
1742 * (geometry or vertex shader).
1743 */
1744 struct brw_vue_map prev_stage_vue_map;
1745 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1746 key->input_slots_valid,
1747 nir->info.separate_shader, 1);
1748
1749 int first_slot =
1750 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1751 &prev_stage_vue_map);
1752
1753 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1754 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1755 slot++) {
1756 int varying = prev_stage_vue_map.slot_to_varying[slot];
1757 if (varying != BRW_VARYING_SLOT_PAD &&
1758 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1759 BITFIELD64_BIT(varying))) {
1760 prog_data->urb_setup[varying] = slot - first_slot;
1761 }
1762 }
1763 urb_next = prev_stage_vue_map.num_slots - first_slot;
1764 }
1765 } else {
1766 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1767 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1768 /* Point size is packed into the header, not as a general attribute */
1769 if (i == VARYING_SLOT_PSIZ)
1770 continue;
1771
1772 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1773 /* The back color slot is skipped when the front color is
1774 * also written to. In addition, some slots can be
1775 * written in the vertex shader and not read in the
1776 * fragment shader. So the register number must always be
1777 * incremented, mapped or not.
1778 */
1779 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1780 prog_data->urb_setup[i] = urb_next;
1781 urb_next++;
1782 }
1783 }
1784
1785 /*
1786 * It's a FS only attribute, and we did interpolation for this attribute
1787 * in SF thread. So, count it here, too.
1788 *
1789 * See compile_sf_prog() for more info.
1790 */
1791 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1792 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1793 }
1794
1795 prog_data->num_varying_inputs = urb_next;
1796 prog_data->inputs = nir->info.inputs_read;
1797
1798 brw_compute_urb_setup_index(prog_data);
1799 }
1800
1801 void
1802 fs_visitor::assign_urb_setup()
1803 {
1804 assert(stage == MESA_SHADER_FRAGMENT);
1805 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1806
1807 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1808
1809 /* Offset all the urb_setup[] index by the actual position of the
1810 * setup regs, now that the location of the constants has been chosen.
1811 */
1812 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1813 for (int i = 0; i < inst->sources; i++) {
1814 if (inst->src[i].file == ATTR) {
1815 /* ATTR regs in the FS are in units of logical scalar inputs each
1816 * of which consumes half of a GRF register.
1817 */
1818 assert(inst->src[i].offset < REG_SIZE / 2);
1819 const unsigned grf = urb_start + inst->src[i].nr / 2;
1820 const unsigned offset = (inst->src[i].nr % 2) * (REG_SIZE / 2) +
1821 inst->src[i].offset;
1822 const unsigned width = inst->src[i].stride == 0 ?
1823 1 : MIN2(inst->exec_size, 8);
1824 struct brw_reg reg = stride(
1825 byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1826 offset),
1827 width * inst->src[i].stride,
1828 width, inst->src[i].stride);
1829 reg.abs = inst->src[i].abs;
1830 reg.negate = inst->src[i].negate;
1831 inst->src[i] = reg;
1832 }
1833 }
1834 }
1835
1836 /* Each attribute is 4 setup channels, each of which is half a reg. */
1837 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1838 }
1839
1840 void
1841 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1842 {
1843 for (int i = 0; i < inst->sources; i++) {
1844 if (inst->src[i].file == ATTR) {
1845 int grf = payload.num_regs +
1846 prog_data->curb_read_length +
1847 inst->src[i].nr +
1848 inst->src[i].offset / REG_SIZE;
1849
1850 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1851 *
1852 * VertStride must be used to cross GRF register boundaries. This
1853 * rule implies that elements within a 'Width' cannot cross GRF
1854 * boundaries.
1855 *
1856 * So, for registers that are large enough, we have to split the exec
1857 * size in two and trust the compression state to sort it out.
1858 */
1859 unsigned total_size = inst->exec_size *
1860 inst->src[i].stride *
1861 type_sz(inst->src[i].type);
1862
1863 assert(total_size <= 2 * REG_SIZE);
1864 const unsigned exec_size =
1865 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1866
1867 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1868 struct brw_reg reg =
1869 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1870 inst->src[i].offset % REG_SIZE),
1871 exec_size * inst->src[i].stride,
1872 width, inst->src[i].stride);
1873 reg.abs = inst->src[i].abs;
1874 reg.negate = inst->src[i].negate;
1875
1876 inst->src[i] = reg;
1877 }
1878 }
1879 }
1880
1881 void
1882 fs_visitor::assign_vs_urb_setup()
1883 {
1884 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1885
1886 assert(stage == MESA_SHADER_VERTEX);
1887
1888 /* Each attribute is 4 regs. */
1889 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1890
1891 assert(vs_prog_data->base.urb_read_length <= 15);
1892
1893 /* Rewrite all ATTR file references to the hw grf that they land in. */
1894 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1895 convert_attr_sources_to_hw_regs(inst);
1896 }
1897 }
1898
1899 void
1900 fs_visitor::assign_tcs_urb_setup()
1901 {
1902 assert(stage == MESA_SHADER_TESS_CTRL);
1903
1904 /* Rewrite all ATTR file references to HW_REGs. */
1905 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1906 convert_attr_sources_to_hw_regs(inst);
1907 }
1908 }
1909
1910 void
1911 fs_visitor::assign_tes_urb_setup()
1912 {
1913 assert(stage == MESA_SHADER_TESS_EVAL);
1914
1915 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1916
1917 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1918
1919 /* Rewrite all ATTR file references to HW_REGs. */
1920 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1921 convert_attr_sources_to_hw_regs(inst);
1922 }
1923 }
1924
1925 void
1926 fs_visitor::assign_gs_urb_setup()
1927 {
1928 assert(stage == MESA_SHADER_GEOMETRY);
1929
1930 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1931
1932 first_non_payload_grf +=
1933 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1934
1935 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1936 /* Rewrite all ATTR file references to GRFs. */
1937 convert_attr_sources_to_hw_regs(inst);
1938 }
1939 }
1940
1941
1942 /**
1943 * Split large virtual GRFs into separate components if we can.
1944 *
1945 * This is mostly duplicated with what brw_fs_vector_splitting does,
1946 * but that's really conservative because it's afraid of doing
1947 * splitting that doesn't result in real progress after the rest of
1948 * the optimization phases, which would cause infinite looping in
1949 * optimization. We can do it once here, safely. This also has the
1950 * opportunity to split interpolated values, or maybe even uniforms,
1951 * which we don't have at the IR level.
1952 *
1953 * We want to split, because virtual GRFs are what we register
1954 * allocate and spill (due to contiguousness requirements for some
1955 * instructions), and they're what we naturally generate in the
1956 * codegen process, but most virtual GRFs don't actually need to be
1957 * contiguous sets of GRFs. If we split, we'll end up with reduced
1958 * live intervals and better dead code elimination and coalescing.
1959 */
1960 void
1961 fs_visitor::split_virtual_grfs()
1962 {
1963 /* Compact the register file so we eliminate dead vgrfs. This
1964 * only defines split points for live registers, so if we have
1965 * too large dead registers they will hit assertions later.
1966 */
1967 compact_virtual_grfs();
1968
1969 int num_vars = this->alloc.count;
1970
1971 /* Count the total number of registers */
1972 int reg_count = 0;
1973 int vgrf_to_reg[num_vars];
1974 for (int i = 0; i < num_vars; i++) {
1975 vgrf_to_reg[i] = reg_count;
1976 reg_count += alloc.sizes[i];
1977 }
1978
1979 /* An array of "split points". For each register slot, this indicates
1980 * if this slot can be separated from the previous slot. Every time an
1981 * instruction uses multiple elements of a register (as a source or
1982 * destination), we mark the used slots as inseparable. Then we go
1983 * through and split the registers into the smallest pieces we can.
1984 */
1985 bool *split_points = new bool[reg_count];
1986 memset(split_points, 0, reg_count * sizeof(*split_points));
1987
1988 /* Mark all used registers as fully splittable */
1989 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1990 if (inst->dst.file == VGRF) {
1991 int reg = vgrf_to_reg[inst->dst.nr];
1992 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1993 split_points[reg + j] = true;
1994 }
1995
1996 for (int i = 0; i < inst->sources; i++) {
1997 if (inst->src[i].file == VGRF) {
1998 int reg = vgrf_to_reg[inst->src[i].nr];
1999 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
2000 split_points[reg + j] = true;
2001 }
2002 }
2003 }
2004
2005 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2006 /* We fix up undef instructions later */
2007 if (inst->opcode == SHADER_OPCODE_UNDEF) {
2008 /* UNDEF instructions are currently only used to undef entire
2009 * registers. We need this invariant later when we split them.
2010 */
2011 assert(inst->dst.file == VGRF);
2012 assert(inst->dst.offset == 0);
2013 assert(inst->size_written == alloc.sizes[inst->dst.nr] * REG_SIZE);
2014 continue;
2015 }
2016
2017 if (inst->dst.file == VGRF) {
2018 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2019 for (unsigned j = 1; j < regs_written(inst); j++)
2020 split_points[reg + j] = false;
2021 }
2022 for (int i = 0; i < inst->sources; i++) {
2023 if (inst->src[i].file == VGRF) {
2024 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2025 for (unsigned j = 1; j < regs_read(inst, i); j++)
2026 split_points[reg + j] = false;
2027 }
2028 }
2029 }
2030
2031 int *new_virtual_grf = new int[reg_count];
2032 int *new_reg_offset = new int[reg_count];
2033
2034 int reg = 0;
2035 for (int i = 0; i < num_vars; i++) {
2036 /* The first one should always be 0 as a quick sanity check. */
2037 assert(split_points[reg] == false);
2038
2039 /* j = 0 case */
2040 new_reg_offset[reg] = 0;
2041 reg++;
2042 int offset = 1;
2043
2044 /* j > 0 case */
2045 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
2046 /* If this is a split point, reset the offset to 0 and allocate a
2047 * new virtual GRF for the previous offset many registers
2048 */
2049 if (split_points[reg]) {
2050 assert(offset <= MAX_VGRF_SIZE);
2051 int grf = alloc.allocate(offset);
2052 for (int k = reg - offset; k < reg; k++)
2053 new_virtual_grf[k] = grf;
2054 offset = 0;
2055 }
2056 new_reg_offset[reg] = offset;
2057 offset++;
2058 reg++;
2059 }
2060
2061 /* The last one gets the original register number */
2062 assert(offset <= MAX_VGRF_SIZE);
2063 alloc.sizes[i] = offset;
2064 for (int k = reg - offset; k < reg; k++)
2065 new_virtual_grf[k] = i;
2066 }
2067 assert(reg == reg_count);
2068
2069 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2070 if (inst->opcode == SHADER_OPCODE_UNDEF) {
2071 const fs_builder ibld(this, block, inst);
2072 assert(inst->size_written % REG_SIZE == 0);
2073 unsigned reg_offset = 0;
2074 while (reg_offset < inst->size_written / REG_SIZE) {
2075 reg = vgrf_to_reg[inst->dst.nr] + reg_offset;
2076 ibld.UNDEF(fs_reg(VGRF, new_virtual_grf[reg], inst->dst.type));
2077 reg_offset += alloc.sizes[new_virtual_grf[reg]];
2078 }
2079 inst->remove(block);
2080 continue;
2081 }
2082
2083 if (inst->dst.file == VGRF) {
2084 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2085 inst->dst.nr = new_virtual_grf[reg];
2086 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
2087 inst->dst.offset % REG_SIZE;
2088 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2089 }
2090 for (int i = 0; i < inst->sources; i++) {
2091 if (inst->src[i].file == VGRF) {
2092 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2093 inst->src[i].nr = new_virtual_grf[reg];
2094 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
2095 inst->src[i].offset % REG_SIZE;
2096 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2097 }
2098 }
2099 }
2100 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2101
2102 delete[] split_points;
2103 delete[] new_virtual_grf;
2104 delete[] new_reg_offset;
2105 }
2106
2107 /**
2108 * Remove unused virtual GRFs and compact the vgrf_* arrays.
2109 *
2110 * During code generation, we create tons of temporary variables, many of
2111 * which get immediately killed and are never used again. Yet, in later
2112 * optimization and analysis passes, such as compute_live_intervals, we need
2113 * to loop over all the virtual GRFs. Compacting them can save a lot of
2114 * overhead.
2115 */
2116 bool
2117 fs_visitor::compact_virtual_grfs()
2118 {
2119 bool progress = false;
2120 int *remap_table = new int[this->alloc.count];
2121 memset(remap_table, -1, this->alloc.count * sizeof(int));
2122
2123 /* Mark which virtual GRFs are used. */
2124 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
2125 if (inst->dst.file == VGRF)
2126 remap_table[inst->dst.nr] = 0;
2127
2128 for (int i = 0; i < inst->sources; i++) {
2129 if (inst->src[i].file == VGRF)
2130 remap_table[inst->src[i].nr] = 0;
2131 }
2132 }
2133
2134 /* Compact the GRF arrays. */
2135 int new_index = 0;
2136 for (unsigned i = 0; i < this->alloc.count; i++) {
2137 if (remap_table[i] == -1) {
2138 /* We just found an unused register. This means that we are
2139 * actually going to compact something.
2140 */
2141 progress = true;
2142 } else {
2143 remap_table[i] = new_index;
2144 alloc.sizes[new_index] = alloc.sizes[i];
2145 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2146 ++new_index;
2147 }
2148 }
2149
2150 this->alloc.count = new_index;
2151
2152 /* Patch all the instructions to use the newly renumbered registers */
2153 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2154 if (inst->dst.file == VGRF)
2155 inst->dst.nr = remap_table[inst->dst.nr];
2156
2157 for (int i = 0; i < inst->sources; i++) {
2158 if (inst->src[i].file == VGRF)
2159 inst->src[i].nr = remap_table[inst->src[i].nr];
2160 }
2161 }
2162
2163 /* Patch all the references to delta_xy, since they're used in register
2164 * allocation. If they're unused, switch them to BAD_FILE so we don't
2165 * think some random VGRF is delta_xy.
2166 */
2167 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2168 if (delta_xy[i].file == VGRF) {
2169 if (remap_table[delta_xy[i].nr] != -1) {
2170 delta_xy[i].nr = remap_table[delta_xy[i].nr];
2171 } else {
2172 delta_xy[i].file = BAD_FILE;
2173 }
2174 }
2175 }
2176
2177 delete[] remap_table;
2178
2179 return progress;
2180 }
2181
2182 static int
2183 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
2184 {
2185 if (prog_data->nr_params == 0)
2186 return -1;
2187
2188 /* The local thread id is always the last parameter in the list */
2189 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
2190 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
2191 return prog_data->nr_params - 1;
2192
2193 return -1;
2194 }
2195
2196 /**
2197 * Struct for handling complex alignments.
2198 *
2199 * A complex alignment is stored as multiplier and an offset. A value is
2200 * considered to be aligned if it is {offset} larger than a multiple of {mul}.
2201 * For instance, with an alignment of {8, 2}, cplx_align_apply would do the
2202 * following:
2203 *
2204 * N | cplx_align_apply({8, 2}, N)
2205 * ----+-----------------------------
2206 * 4 | 6
2207 * 6 | 6
2208 * 8 | 14
2209 * 10 | 14
2210 * 12 | 14
2211 * 14 | 14
2212 * 16 | 22
2213 */
2214 struct cplx_align {
2215 unsigned mul:4;
2216 unsigned offset:4;
2217 };
2218
2219 #define CPLX_ALIGN_MAX_MUL 8
2220
2221 static void
2222 cplx_align_assert_sane(struct cplx_align a)
2223 {
2224 assert(a.mul > 0 && util_is_power_of_two_nonzero(a.mul));
2225 assert(a.offset < a.mul);
2226 }
2227
2228 /**
2229 * Combines two alignments to produce a least multiple of sorts.
2230 *
2231 * The returned alignment is the smallest (in terms of multiplier) such that
2232 * anything aligned to both a and b will be aligned to the new alignment.
2233 * This function will assert-fail if a and b are not compatible, i.e. if the
2234 * offset parameters are such that no common alignment is possible.
2235 */
2236 static struct cplx_align
2237 cplx_align_combine(struct cplx_align a, struct cplx_align b)
2238 {
2239 cplx_align_assert_sane(a);
2240 cplx_align_assert_sane(b);
2241
2242 /* Assert that the alignments agree. */
2243 assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1)));
2244
2245 return a.mul > b.mul ? a : b;
2246 }
2247
2248 /**
2249 * Apply a complex alignment
2250 *
2251 * This function will return the smallest number greater than or equal to
2252 * offset that is aligned to align.
2253 */
2254 static unsigned
2255 cplx_align_apply(struct cplx_align align, unsigned offset)
2256 {
2257 return ALIGN(offset - align.offset, align.mul) + align.offset;
2258 }
2259
2260 #define UNIFORM_SLOT_SIZE 4
2261
2262 struct uniform_slot_info {
2263 /** True if the given uniform slot is live */
2264 unsigned is_live:1;
2265
2266 /** True if this slot and the next slot must remain contiguous */
2267 unsigned contiguous:1;
2268
2269 struct cplx_align align;
2270 };
2271
2272 static void
2273 mark_uniform_slots_read(struct uniform_slot_info *slots,
2274 unsigned num_slots, unsigned alignment)
2275 {
2276 assert(alignment > 0 && util_is_power_of_two_nonzero(alignment));
2277 assert(alignment <= CPLX_ALIGN_MAX_MUL);
2278
2279 /* We can't align a slot to anything less than the slot size */
2280 alignment = MAX2(alignment, UNIFORM_SLOT_SIZE);
2281
2282 struct cplx_align align = {alignment, 0};
2283 cplx_align_assert_sane(align);
2284
2285 for (unsigned i = 0; i < num_slots; i++) {
2286 slots[i].is_live = true;
2287 if (i < num_slots - 1)
2288 slots[i].contiguous = true;
2289
2290 align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1);
2291 if (slots[i].align.mul == 0) {
2292 slots[i].align = align;
2293 } else {
2294 slots[i].align = cplx_align_combine(slots[i].align, align);
2295 }
2296 }
2297 }
2298
2299 /**
2300 * Assign UNIFORM file registers to either push constants or pull constants.
2301 *
2302 * We allow a fragment shader to have more than the specified minimum
2303 * maximum number of fragment shader uniform components (64). If
2304 * there are too many of these, they'd fill up all of register space.
2305 * So, this will push some of them out to the pull constant buffer and
2306 * update the program to load them.
2307 */
2308 void
2309 fs_visitor::assign_constant_locations()
2310 {
2311 /* Only the first compile gets to decide on locations. */
2312 if (push_constant_loc) {
2313 assert(pull_constant_loc);
2314 return;
2315 }
2316
2317 if (compiler->compact_params) {
2318 struct uniform_slot_info slots[uniforms + 1];
2319 memset(slots, 0, sizeof(slots));
2320
2321 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2322 for (int i = 0 ; i < inst->sources; i++) {
2323 if (inst->src[i].file != UNIFORM)
2324 continue;
2325
2326 /* NIR tightly packs things so the uniform number might not be
2327 * aligned (if we have a double right after a float, for
2328 * instance). This is fine because the process of re-arranging
2329 * them will ensure that things are properly aligned. The offset
2330 * into that uniform, however, must be aligned.
2331 *
2332 * In Vulkan, we have explicit offsets but everything is crammed
2333 * into a single "variable" so inst->src[i].nr will always be 0.
2334 * Everything will be properly aligned relative to that one base.
2335 */
2336 assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0);
2337
2338 unsigned u = inst->src[i].nr +
2339 inst->src[i].offset / UNIFORM_SLOT_SIZE;
2340
2341 if (u >= uniforms)
2342 continue;
2343
2344 unsigned slots_read;
2345 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2346 slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE);
2347 } else {
2348 unsigned bytes_read = inst->components_read(i) *
2349 type_sz(inst->src[i].type);
2350 slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE);
2351 }
2352
2353 assert(u + slots_read <= uniforms);
2354 mark_uniform_slots_read(&slots[u], slots_read,
2355 type_sz(inst->src[i].type));
2356 }
2357 }
2358
2359 int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2360
2361 /* Only allow 16 registers (128 uniform components) as push constants.
2362 *
2363 * Just demote the end of the list. We could probably do better
2364 * here, demoting things that are rarely used in the program first.
2365 *
2366 * If changing this value, note the limitation about total_regs in
2367 * brw_curbe.c.
2368 */
2369 unsigned int max_push_components = 16 * 8;
2370 if (subgroup_id_index >= 0)
2371 max_push_components--; /* Save a slot for the thread ID */
2372
2373 /* We push small arrays, but no bigger than 16 floats. This is big
2374 * enough for a vec4 but hopefully not large enough to push out other
2375 * stuff. We should probably use a better heuristic at some point.
2376 */
2377 const unsigned int max_chunk_size = 16;
2378
2379 unsigned int num_push_constants = 0;
2380 unsigned int num_pull_constants = 0;
2381
2382 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2383 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2384
2385 /* Default to -1 meaning no location */
2386 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2387 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2388
2389 int chunk_start = -1;
2390 struct cplx_align align;
2391 for (unsigned u = 0; u < uniforms; u++) {
2392 if (!slots[u].is_live) {
2393 assert(chunk_start == -1);
2394 continue;
2395 }
2396
2397 /* Skip subgroup_id_index to put it in the last push register. */
2398 if (subgroup_id_index == (int)u)
2399 continue;
2400
2401 if (chunk_start == -1) {
2402 chunk_start = u;
2403 align = slots[u].align;
2404 } else {
2405 /* Offset into the chunk */
2406 unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE;
2407
2408 /* Shift the slot alignment down by the chunk offset so it is
2409 * comparable with the base chunk alignment.
2410 */
2411 struct cplx_align slot_align = slots[u].align;
2412 slot_align.offset =
2413 (slot_align.offset - chunk_offset) & (align.mul - 1);
2414
2415 align = cplx_align_combine(align, slot_align);
2416 }
2417
2418 /* Sanity check the alignment */
2419 cplx_align_assert_sane(align);
2420
2421 if (slots[u].contiguous)
2422 continue;
2423
2424 /* Adjust the alignment to be in terms of slots, not bytes */
2425 assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0);
2426 assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0);
2427 align.mul /= UNIFORM_SLOT_SIZE;
2428 align.offset /= UNIFORM_SLOT_SIZE;
2429
2430 unsigned push_start_align = cplx_align_apply(align, num_push_constants);
2431 unsigned chunk_size = u - chunk_start + 1;
2432 if ((!compiler->supports_pull_constants && u < UBO_START) ||
2433 (chunk_size < max_chunk_size &&
2434 push_start_align + chunk_size <= max_push_components)) {
2435 /* Align up the number of push constants */
2436 num_push_constants = push_start_align;
2437 for (unsigned i = 0; i < chunk_size; i++)
2438 push_constant_loc[chunk_start + i] = num_push_constants++;
2439 } else {
2440 /* We need to pull this one */
2441 num_pull_constants = cplx_align_apply(align, num_pull_constants);
2442 for (unsigned i = 0; i < chunk_size; i++)
2443 pull_constant_loc[chunk_start + i] = num_pull_constants++;
2444 }
2445
2446 /* Reset the chunk and start again */
2447 chunk_start = -1;
2448 }
2449
2450 /* Add the CS local thread ID uniform at the end of the push constants */
2451 if (subgroup_id_index >= 0)
2452 push_constant_loc[subgroup_id_index] = num_push_constants++;
2453
2454 /* As the uniforms are going to be reordered, stash the old array and
2455 * create two new arrays for push/pull params.
2456 */
2457 uint32_t *param = stage_prog_data->param;
2458 stage_prog_data->nr_params = num_push_constants;
2459 if (num_push_constants) {
2460 stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t,
2461 num_push_constants);
2462 } else {
2463 stage_prog_data->param = NULL;
2464 }
2465 assert(stage_prog_data->nr_pull_params == 0);
2466 assert(stage_prog_data->pull_param == NULL);
2467 if (num_pull_constants > 0) {
2468 stage_prog_data->nr_pull_params = num_pull_constants;
2469 stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t,
2470 num_pull_constants);
2471 }
2472
2473 /* Up until now, the param[] array has been indexed by reg + offset
2474 * of UNIFORM registers. Move pull constants into pull_param[] and
2475 * condense param[] to only contain the uniforms we chose to push.
2476 *
2477 * NOTE: Because we are condensing the params[] array, we know that
2478 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2479 * having to make a copy.
2480 */
2481 for (unsigned int i = 0; i < uniforms; i++) {
2482 uint32_t value = param[i];
2483 if (pull_constant_loc[i] != -1) {
2484 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2485 } else if (push_constant_loc[i] != -1) {
2486 stage_prog_data->param[push_constant_loc[i]] = value;
2487 }
2488 }
2489 ralloc_free(param);
2490 } else {
2491 /* If we don't want to compact anything, just set up dummy push/pull
2492 * arrays. All the rest of the compiler cares about are these arrays.
2493 */
2494 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2495 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2496
2497 for (unsigned u = 0; u < uniforms; u++)
2498 push_constant_loc[u] = u;
2499
2500 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2501 }
2502
2503 /* Now that we know how many regular uniforms we'll push, reduce the
2504 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2505 */
2506 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2507 for (int i = 0; i < 4; i++) {
2508 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2509
2510 if (push_length + range->length > 64)
2511 range->length = 64 - push_length;
2512
2513 push_length += range->length;
2514 }
2515 assert(push_length <= 64);
2516 }
2517
2518 bool
2519 fs_visitor::get_pull_locs(const fs_reg &src,
2520 unsigned *out_surf_index,
2521 unsigned *out_pull_index)
2522 {
2523 assert(src.file == UNIFORM);
2524
2525 if (src.nr >= UBO_START) {
2526 const struct brw_ubo_range *range =
2527 &prog_data->ubo_ranges[src.nr - UBO_START];
2528
2529 /* If this access is in our (reduced) range, use the push data. */
2530 if (src.offset / 32 < range->length)
2531 return false;
2532
2533 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2534 *out_pull_index = (32 * range->start + src.offset) / 4;
2535
2536 prog_data->has_ubo_pull = true;
2537 return true;
2538 }
2539
2540 const unsigned location = src.nr + src.offset / 4;
2541
2542 if (location < uniforms && pull_constant_loc[location] != -1) {
2543 /* A regular uniform push constant */
2544 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2545 *out_pull_index = pull_constant_loc[location];
2546
2547 prog_data->has_ubo_pull = true;
2548 return true;
2549 }
2550
2551 return false;
2552 }
2553
2554 /**
2555 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2556 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2557 */
2558 void
2559 fs_visitor::lower_constant_loads()
2560 {
2561 unsigned index, pull_index;
2562
2563 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2564 /* Set up the annotation tracking for new generated instructions. */
2565 const fs_builder ibld(this, block, inst);
2566
2567 for (int i = 0; i < inst->sources; i++) {
2568 if (inst->src[i].file != UNIFORM)
2569 continue;
2570
2571 /* We'll handle this case later */
2572 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2573 continue;
2574
2575 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2576 continue;
2577
2578 assert(inst->src[i].stride == 0);
2579
2580 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2581 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2582 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2583 const unsigned base = pull_index * 4;
2584
2585 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2586 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2587
2588 /* Rewrite the instruction to use the temporary VGRF. */
2589 inst->src[i].file = VGRF;
2590 inst->src[i].nr = dst.nr;
2591 inst->src[i].offset = (base & (block_sz - 1)) +
2592 inst->src[i].offset % 4;
2593 }
2594
2595 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2596 inst->src[0].file == UNIFORM) {
2597
2598 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2599 continue;
2600
2601 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2602 brw_imm_ud(index),
2603 inst->src[1],
2604 pull_index * 4);
2605 inst->remove(block);
2606 }
2607 }
2608 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2609 }
2610
2611 bool
2612 fs_visitor::opt_algebraic()
2613 {
2614 bool progress = false;
2615
2616 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2617 switch (inst->opcode) {
2618 case BRW_OPCODE_MOV:
2619 if (!devinfo->has_64bit_float &&
2620 !devinfo->has_64bit_int &&
2621 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2622 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2623 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2624 assert(inst->dst.type == inst->src[0].type);
2625 assert(!inst->saturate);
2626 assert(!inst->src[0].abs);
2627 assert(!inst->src[0].negate);
2628 const brw::fs_builder ibld(this, block, inst);
2629
2630 if (inst->src[0].file == IMM) {
2631 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2632 brw_imm_ud(inst->src[0].u64 >> 32));
2633 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2634 brw_imm_ud(inst->src[0].u64));
2635 } else {
2636 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2637 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1));
2638 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2639 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0));
2640 }
2641
2642 inst->remove(block);
2643 progress = true;
2644 }
2645
2646 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2647 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2648 inst->dst.is_null() &&
2649 (inst->src[0].abs || inst->src[0].negate)) {
2650 inst->src[0].abs = false;
2651 inst->src[0].negate = false;
2652 progress = true;
2653 break;
2654 }
2655
2656 if (inst->src[0].file != IMM)
2657 break;
2658
2659 if (inst->saturate) {
2660 /* Full mixed-type saturates don't happen. However, we can end up
2661 * with things like:
2662 *
2663 * mov.sat(8) g21<1>DF -1F
2664 *
2665 * Other mixed-size-but-same-base-type cases may also be possible.
2666 */
2667 if (inst->dst.type != inst->src[0].type &&
2668 inst->dst.type != BRW_REGISTER_TYPE_DF &&
2669 inst->src[0].type != BRW_REGISTER_TYPE_F)
2670 assert(!"unimplemented: saturate mixed types");
2671
2672 if (brw_saturate_immediate(inst->src[0].type,
2673 &inst->src[0].as_brw_reg())) {
2674 inst->saturate = false;
2675 progress = true;
2676 }
2677 }
2678 break;
2679
2680 case BRW_OPCODE_MUL:
2681 if (inst->src[1].file != IMM)
2682 continue;
2683
2684 /* a * 1.0 = a */
2685 if (inst->src[1].is_one()) {
2686 inst->opcode = BRW_OPCODE_MOV;
2687 inst->src[1] = reg_undef;
2688 progress = true;
2689 break;
2690 }
2691
2692 /* a * -1.0 = -a */
2693 if (inst->src[1].is_negative_one()) {
2694 inst->opcode = BRW_OPCODE_MOV;
2695 inst->src[0].negate = !inst->src[0].negate;
2696 inst->src[1] = reg_undef;
2697 progress = true;
2698 break;
2699 }
2700
2701 if (inst->src[0].file == IMM) {
2702 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2703 inst->opcode = BRW_OPCODE_MOV;
2704 inst->src[0].f *= inst->src[1].f;
2705 inst->src[1] = reg_undef;
2706 progress = true;
2707 break;
2708 }
2709 break;
2710 case BRW_OPCODE_ADD:
2711 if (inst->src[1].file != IMM)
2712 continue;
2713
2714 if (brw_reg_type_is_integer(inst->src[1].type) &&
2715 inst->src[1].is_zero()) {
2716 inst->opcode = BRW_OPCODE_MOV;
2717 inst->src[1] = reg_undef;
2718 progress = true;
2719 break;
2720 }
2721
2722 if (inst->src[0].file == IMM) {
2723 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2724 inst->opcode = BRW_OPCODE_MOV;
2725 inst->src[0].f += inst->src[1].f;
2726 inst->src[1] = reg_undef;
2727 progress = true;
2728 break;
2729 }
2730 break;
2731 case BRW_OPCODE_OR:
2732 if (inst->src[0].equals(inst->src[1]) ||
2733 inst->src[1].is_zero()) {
2734 /* On Gen8+, the OR instruction can have a source modifier that
2735 * performs logical not on the operand. Cases of 'OR r0, ~r1, 0'
2736 * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV.
2737 */
2738 if (inst->src[0].negate) {
2739 inst->opcode = BRW_OPCODE_NOT;
2740 inst->src[0].negate = false;
2741 } else {
2742 inst->opcode = BRW_OPCODE_MOV;
2743 }
2744 inst->src[1] = reg_undef;
2745 progress = true;
2746 break;
2747 }
2748 break;
2749 case BRW_OPCODE_CMP:
2750 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2751 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2752 inst->src[1].is_zero() &&
2753 (inst->src[0].abs || inst->src[0].negate)) {
2754 inst->src[0].abs = false;
2755 inst->src[0].negate = false;
2756 progress = true;
2757 break;
2758 }
2759 break;
2760 case BRW_OPCODE_SEL:
2761 if (!devinfo->has_64bit_float &&
2762 !devinfo->has_64bit_int &&
2763 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2764 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2765 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2766 assert(inst->dst.type == inst->src[0].type);
2767 assert(!inst->saturate);
2768 assert(!inst->src[0].abs && !inst->src[0].negate);
2769 assert(!inst->src[1].abs && !inst->src[1].negate);
2770 const brw::fs_builder ibld(this, block, inst);
2771
2772 set_predicate(inst->predicate,
2773 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2774 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
2775 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)));
2776 set_predicate(inst->predicate,
2777 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2778 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
2779 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1)));
2780
2781 inst->remove(block);
2782 progress = true;
2783 }
2784 if (inst->src[0].equals(inst->src[1])) {
2785 inst->opcode = BRW_OPCODE_MOV;
2786 inst->src[1] = reg_undef;
2787 inst->predicate = BRW_PREDICATE_NONE;
2788 inst->predicate_inverse = false;
2789 progress = true;
2790 } else if (inst->saturate && inst->src[1].file == IMM) {
2791 switch (inst->conditional_mod) {
2792 case BRW_CONDITIONAL_LE:
2793 case BRW_CONDITIONAL_L:
2794 switch (inst->src[1].type) {
2795 case BRW_REGISTER_TYPE_F:
2796 if (inst->src[1].f >= 1.0f) {
2797 inst->opcode = BRW_OPCODE_MOV;
2798 inst->src[1] = reg_undef;
2799 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2800 progress = true;
2801 }
2802 break;
2803 default:
2804 break;
2805 }
2806 break;
2807 case BRW_CONDITIONAL_GE:
2808 case BRW_CONDITIONAL_G:
2809 switch (inst->src[1].type) {
2810 case BRW_REGISTER_TYPE_F:
2811 if (inst->src[1].f <= 0.0f) {
2812 inst->opcode = BRW_OPCODE_MOV;
2813 inst->src[1] = reg_undef;
2814 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2815 progress = true;
2816 }
2817 break;
2818 default:
2819 break;
2820 }
2821 default:
2822 break;
2823 }
2824 }
2825 break;
2826 case BRW_OPCODE_MAD:
2827 if (inst->src[0].type != BRW_REGISTER_TYPE_F ||
2828 inst->src[1].type != BRW_REGISTER_TYPE_F ||
2829 inst->src[2].type != BRW_REGISTER_TYPE_F)
2830 break;
2831 if (inst->src[1].is_one()) {
2832 inst->opcode = BRW_OPCODE_ADD;
2833 inst->src[1] = inst->src[2];
2834 inst->src[2] = reg_undef;
2835 progress = true;
2836 } else if (inst->src[2].is_one()) {
2837 inst->opcode = BRW_OPCODE_ADD;
2838 inst->src[2] = reg_undef;
2839 progress = true;
2840 }
2841 break;
2842 case SHADER_OPCODE_BROADCAST:
2843 if (is_uniform(inst->src[0])) {
2844 inst->opcode = BRW_OPCODE_MOV;
2845 inst->sources = 1;
2846 inst->force_writemask_all = true;
2847 progress = true;
2848 } else if (inst->src[1].file == IMM) {
2849 inst->opcode = BRW_OPCODE_MOV;
2850 /* It's possible that the selected component will be too large and
2851 * overflow the register. This can happen if someone does a
2852 * readInvocation() from GLSL or SPIR-V and provides an OOB
2853 * invocationIndex. If this happens and we some how manage
2854 * to constant fold it in and get here, then component() may cause
2855 * us to start reading outside of the VGRF which will lead to an
2856 * assert later. Instead, just let it wrap around if it goes over
2857 * exec_size.
2858 */
2859 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2860 inst->src[0] = component(inst->src[0], comp);
2861 inst->sources = 1;
2862 inst->force_writemask_all = true;
2863 progress = true;
2864 }
2865 break;
2866
2867 case SHADER_OPCODE_SHUFFLE:
2868 if (is_uniform(inst->src[0])) {
2869 inst->opcode = BRW_OPCODE_MOV;
2870 inst->sources = 1;
2871 progress = true;
2872 } else if (inst->src[1].file == IMM) {
2873 inst->opcode = BRW_OPCODE_MOV;
2874 inst->src[0] = component(inst->src[0],
2875 inst->src[1].ud);
2876 inst->sources = 1;
2877 progress = true;
2878 }
2879 break;
2880
2881 default:
2882 break;
2883 }
2884
2885 /* Swap if src[0] is immediate. */
2886 if (progress && inst->is_commutative()) {
2887 if (inst->src[0].file == IMM) {
2888 fs_reg tmp = inst->src[1];
2889 inst->src[1] = inst->src[0];
2890 inst->src[0] = tmp;
2891 }
2892 }
2893 }
2894
2895 if (progress)
2896 invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
2897 DEPENDENCY_INSTRUCTION_DETAIL);
2898
2899 return progress;
2900 }
2901
2902 /**
2903 * Optimize sample messages that have constant zero values for the trailing
2904 * texture coordinates. We can just reduce the message length for these
2905 * instructions instead of reserving a register for it. Trailing parameters
2906 * that aren't sent default to zero anyway. This will cause the dead code
2907 * eliminator to remove the MOV instruction that would otherwise be emitted to
2908 * set up the zero value.
2909 */
2910 bool
2911 fs_visitor::opt_zero_samples()
2912 {
2913 /* Gen4 infers the texturing opcode based on the message length so we can't
2914 * change it.
2915 */
2916 if (devinfo->gen < 5)
2917 return false;
2918
2919 bool progress = false;
2920
2921 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2922 if (!inst->is_tex())
2923 continue;
2924
2925 fs_inst *load_payload = (fs_inst *) inst->prev;
2926
2927 if (load_payload->is_head_sentinel() ||
2928 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2929 continue;
2930
2931 /* We don't want to remove the message header or the first parameter.
2932 * Removing the first parameter is not allowed, see the Haswell PRM
2933 * volume 7, page 149:
2934 *
2935 * "Parameter 0 is required except for the sampleinfo message, which
2936 * has no parameter 0"
2937 */
2938 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2939 load_payload->src[(inst->mlen - inst->header_size) /
2940 (inst->exec_size / 8) +
2941 inst->header_size - 1].is_zero()) {
2942 inst->mlen -= inst->exec_size / 8;
2943 progress = true;
2944 }
2945 }
2946
2947 if (progress)
2948 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
2949
2950 return progress;
2951 }
2952
2953 bool
2954 fs_visitor::opt_register_renaming()
2955 {
2956 bool progress = false;
2957 int depth = 0;
2958
2959 unsigned remap[alloc.count];
2960 memset(remap, ~0u, sizeof(unsigned) * alloc.count);
2961
2962 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2963 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2964 depth++;
2965 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2966 inst->opcode == BRW_OPCODE_WHILE) {
2967 depth--;
2968 }
2969
2970 /* Rewrite instruction sources. */
2971 for (int i = 0; i < inst->sources; i++) {
2972 if (inst->src[i].file == VGRF &&
2973 remap[inst->src[i].nr] != ~0u &&
2974 remap[inst->src[i].nr] != inst->src[i].nr) {
2975 inst->src[i].nr = remap[inst->src[i].nr];
2976 progress = true;
2977 }
2978 }
2979
2980 const unsigned dst = inst->dst.nr;
2981
2982 if (depth == 0 &&
2983 inst->dst.file == VGRF &&
2984 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2985 !inst->is_partial_write()) {
2986 if (remap[dst] == ~0u) {
2987 remap[dst] = dst;
2988 } else {
2989 remap[dst] = alloc.allocate(regs_written(inst));
2990 inst->dst.nr = remap[dst];
2991 progress = true;
2992 }
2993 } else if (inst->dst.file == VGRF &&
2994 remap[dst] != ~0u &&
2995 remap[dst] != dst) {
2996 inst->dst.nr = remap[dst];
2997 progress = true;
2998 }
2999 }
3000
3001 if (progress) {
3002 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
3003 DEPENDENCY_VARIABLES);
3004
3005 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
3006 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != ~0u) {
3007 delta_xy[i].nr = remap[delta_xy[i].nr];
3008 }
3009 }
3010 }
3011
3012 return progress;
3013 }
3014
3015 /**
3016 * Remove redundant or useless discard jumps.
3017 *
3018 * For example, we can eliminate jumps in the following sequence:
3019 *
3020 * discard-jump (redundant with the next jump)
3021 * discard-jump (useless; jumps to the next instruction)
3022 * placeholder-halt
3023 */
3024 bool
3025 fs_visitor::opt_redundant_discard_jumps()
3026 {
3027 bool progress = false;
3028
3029 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
3030
3031 fs_inst *placeholder_halt = NULL;
3032 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
3033 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
3034 placeholder_halt = inst;
3035 break;
3036 }
3037 }
3038
3039 if (!placeholder_halt)
3040 return false;
3041
3042 /* Delete any HALTs immediately before the placeholder halt. */
3043 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
3044 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
3045 prev = (fs_inst *) placeholder_halt->prev) {
3046 prev->remove(last_bblock);
3047 progress = true;
3048 }
3049
3050 if (progress)
3051 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3052
3053 return progress;
3054 }
3055
3056 /**
3057 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
3058 * from \p r.offset which overlaps the region starting at \p s.offset and
3059 * spanning \p ds bytes.
3060 */
3061 static inline unsigned
3062 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
3063 {
3064 const int rel_offset = reg_offset(s) - reg_offset(r);
3065 const int shift = rel_offset / REG_SIZE;
3066 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
3067 assert(reg_space(r) == reg_space(s) &&
3068 shift >= 0 && shift < int(8 * sizeof(unsigned)));
3069 return ((1 << n) - 1) << shift;
3070 }
3071
3072 bool
3073 fs_visitor::compute_to_mrf()
3074 {
3075 bool progress = false;
3076 int next_ip = 0;
3077
3078 /* No MRFs on Gen >= 7. */
3079 if (devinfo->gen >= 7)
3080 return false;
3081
3082 const fs_live_variables &live = live_analysis.require();
3083
3084 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3085 int ip = next_ip;
3086 next_ip++;
3087
3088 if (inst->opcode != BRW_OPCODE_MOV ||
3089 inst->is_partial_write() ||
3090 inst->dst.file != MRF || inst->src[0].file != VGRF ||
3091 inst->dst.type != inst->src[0].type ||
3092 inst->src[0].abs || inst->src[0].negate ||
3093 !inst->src[0].is_contiguous() ||
3094 inst->src[0].offset % REG_SIZE != 0)
3095 continue;
3096
3097 /* Can't compute-to-MRF this GRF if someone else was going to
3098 * read it later.
3099 */
3100 if (live.vgrf_end[inst->src[0].nr] > ip)
3101 continue;
3102
3103 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
3104 * things that computed the value of all GRFs of the source region. The
3105 * regs_left bitset keeps track of the registers we haven't yet found a
3106 * generating instruction for.
3107 */
3108 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
3109
3110 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3111 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3112 inst->src[0], inst->size_read(0))) {
3113 /* Found the last thing to write our reg we want to turn
3114 * into a compute-to-MRF.
3115 */
3116
3117 /* If this one instruction didn't populate all the
3118 * channels, bail. We might be able to rewrite everything
3119 * that writes that reg, but it would require smarter
3120 * tracking.
3121 */
3122 if (scan_inst->is_partial_write())
3123 break;
3124
3125 /* Handling things not fully contained in the source of the copy
3126 * would need us to understand coalescing out more than one MOV at
3127 * a time.
3128 */
3129 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
3130 inst->src[0], inst->size_read(0)))
3131 break;
3132
3133 /* SEND instructions can't have MRF as a destination. */
3134 if (scan_inst->mlen)
3135 break;
3136
3137 if (devinfo->gen == 6) {
3138 /* gen6 math instructions must have the destination be
3139 * GRF, so no compute-to-MRF for them.
3140 */
3141 if (scan_inst->is_math()) {
3142 break;
3143 }
3144 }
3145
3146 /* Clear the bits for any registers this instruction overwrites. */
3147 regs_left &= ~mask_relative_to(
3148 inst->src[0], scan_inst->dst, scan_inst->size_written);
3149 if (!regs_left)
3150 break;
3151 }
3152
3153 /* We don't handle control flow here. Most computation of
3154 * values that end up in MRFs are shortly before the MRF
3155 * write anyway.
3156 */
3157 if (block->start() == scan_inst)
3158 break;
3159
3160 /* You can't read from an MRF, so if someone else reads our
3161 * MRF's source GRF that we wanted to rewrite, that stops us.
3162 */
3163 bool interfered = false;
3164 for (int i = 0; i < scan_inst->sources; i++) {
3165 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
3166 inst->src[0], inst->size_read(0))) {
3167 interfered = true;
3168 }
3169 }
3170 if (interfered)
3171 break;
3172
3173 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3174 inst->dst, inst->size_written)) {
3175 /* If somebody else writes our MRF here, we can't
3176 * compute-to-MRF before that.
3177 */
3178 break;
3179 }
3180
3181 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
3182 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
3183 inst->dst, inst->size_written)) {
3184 /* Found a SEND instruction, which means that there are
3185 * live values in MRFs from base_mrf to base_mrf +
3186 * scan_inst->mlen - 1. Don't go pushing our MRF write up
3187 * above it.
3188 */
3189 break;
3190 }
3191 }
3192
3193 if (regs_left)
3194 continue;
3195
3196 /* Found all generating instructions of our MRF's source value, so it
3197 * should be safe to rewrite them to point to the MRF directly.
3198 */
3199 regs_left = (1 << regs_read(inst, 0)) - 1;
3200
3201 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3202 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3203 inst->src[0], inst->size_read(0))) {
3204 /* Clear the bits for any registers this instruction overwrites. */
3205 regs_left &= ~mask_relative_to(
3206 inst->src[0], scan_inst->dst, scan_inst->size_written);
3207
3208 const unsigned rel_offset = reg_offset(scan_inst->dst) -
3209 reg_offset(inst->src[0]);
3210
3211 if (inst->dst.nr & BRW_MRF_COMPR4) {
3212 /* Apply the same address transformation done by the hardware
3213 * for COMPR4 MRF writes.
3214 */
3215 assert(rel_offset < 2 * REG_SIZE);
3216 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
3217
3218 /* Clear the COMPR4 bit if the generating instruction is not
3219 * compressed.
3220 */
3221 if (scan_inst->size_written < 2 * REG_SIZE)
3222 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
3223
3224 } else {
3225 /* Calculate the MRF number the result of this instruction is
3226 * ultimately written to.
3227 */
3228 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
3229 }
3230
3231 scan_inst->dst.file = MRF;
3232 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
3233 scan_inst->saturate |= inst->saturate;
3234 if (!regs_left)
3235 break;
3236 }
3237 }
3238
3239 assert(!regs_left);
3240 inst->remove(block);
3241 progress = true;
3242 }
3243
3244 if (progress)
3245 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3246
3247 return progress;
3248 }
3249
3250 /**
3251 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
3252 * flow. We could probably do better here with some form of divergence
3253 * analysis.
3254 */
3255 bool
3256 fs_visitor::eliminate_find_live_channel()
3257 {
3258 bool progress = false;
3259 unsigned depth = 0;
3260
3261 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3262 /* The optimization below assumes that channel zero is live on thread
3263 * dispatch, which may not be the case if the fixed function dispatches
3264 * threads sparsely.
3265 */
3266 return false;
3267 }
3268
3269 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3270 switch (inst->opcode) {
3271 case BRW_OPCODE_IF:
3272 case BRW_OPCODE_DO:
3273 depth++;
3274 break;
3275
3276 case BRW_OPCODE_ENDIF:
3277 case BRW_OPCODE_WHILE:
3278 depth--;
3279 break;
3280
3281 case FS_OPCODE_DISCARD_JUMP:
3282 /* This can potentially make control flow non-uniform until the end
3283 * of the program.
3284 */
3285 return progress;
3286
3287 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3288 if (depth == 0) {
3289 inst->opcode = BRW_OPCODE_MOV;
3290 inst->src[0] = brw_imm_ud(0u);
3291 inst->sources = 1;
3292 inst->force_writemask_all = true;
3293 progress = true;
3294 }
3295 break;
3296
3297 default:
3298 break;
3299 }
3300 }
3301
3302 if (progress)
3303 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
3304
3305 return progress;
3306 }
3307
3308 /**
3309 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3310 * instructions to FS_OPCODE_REP_FB_WRITE.
3311 */
3312 void
3313 fs_visitor::emit_repclear_shader()
3314 {
3315 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3316 int base_mrf = 0;
3317 int color_mrf = base_mrf + 2;
3318 fs_inst *mov;
3319
3320 if (uniforms > 0) {
3321 mov = bld.exec_all().group(4, 0)
3322 .MOV(brw_message_reg(color_mrf),
3323 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3324 } else {
3325 struct brw_reg reg =
3326 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
3327 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3328 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3329
3330 mov = bld.exec_all().group(4, 0)
3331 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
3332 }
3333
3334 fs_inst *write = NULL;
3335 if (key->nr_color_regions == 1) {
3336 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3337 write->saturate = key->clamp_fragment_color;
3338 write->base_mrf = color_mrf;
3339 write->target = 0;
3340 write->header_size = 0;
3341 write->mlen = 1;
3342 } else {
3343 assume(key->nr_color_regions > 0);
3344
3345 struct brw_reg header =
3346 retype(brw_message_reg(base_mrf), BRW_REGISTER_TYPE_UD);
3347 bld.exec_all().group(16, 0)
3348 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3349
3350 for (int i = 0; i < key->nr_color_regions; ++i) {
3351 if (i > 0) {
3352 bld.exec_all().group(1, 0)
3353 .MOV(component(header, 2), brw_imm_ud(i));
3354 }
3355
3356 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3357 write->saturate = key->clamp_fragment_color;
3358 write->base_mrf = base_mrf;
3359 write->target = i;
3360 write->header_size = 2;
3361 write->mlen = 3;
3362 }
3363 }
3364 write->eot = true;
3365 write->last_rt = true;
3366
3367 calculate_cfg();
3368
3369 assign_constant_locations();
3370 assign_curb_setup();
3371
3372 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3373 if (uniforms > 0) {
3374 assert(mov->src[0].file == FIXED_GRF);
3375 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3376 }
3377
3378 lower_scoreboard();
3379 }
3380
3381 /**
3382 * Walks through basic blocks, looking for repeated MRF writes and
3383 * removing the later ones.
3384 */
3385 bool
3386 fs_visitor::remove_duplicate_mrf_writes()
3387 {
3388 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3389 bool progress = false;
3390
3391 /* Need to update the MRF tracking for compressed instructions. */
3392 if (dispatch_width >= 16)
3393 return false;
3394
3395 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3396
3397 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3398 if (inst->is_control_flow()) {
3399 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3400 }
3401
3402 if (inst->opcode == BRW_OPCODE_MOV &&
3403 inst->dst.file == MRF) {
3404 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3405 if (prev_inst && prev_inst->opcode == BRW_OPCODE_MOV &&
3406 inst->dst.equals(prev_inst->dst) &&
3407 inst->src[0].equals(prev_inst->src[0]) &&
3408 inst->saturate == prev_inst->saturate &&
3409 inst->predicate == prev_inst->predicate &&
3410 inst->conditional_mod == prev_inst->conditional_mod &&
3411 inst->exec_size == prev_inst->exec_size) {
3412 inst->remove(block);
3413 progress = true;
3414 continue;
3415 }
3416 }
3417
3418 /* Clear out the last-write records for MRFs that were overwritten. */
3419 if (inst->dst.file == MRF) {
3420 last_mrf_move[inst->dst.nr] = NULL;
3421 }
3422
3423 if (inst->mlen > 0 && inst->base_mrf != -1) {
3424 /* Found a SEND instruction, which will include two or fewer
3425 * implied MRF writes. We could do better here.
3426 */
3427 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
3428 last_mrf_move[inst->base_mrf + i] = NULL;
3429 }
3430 }
3431
3432 /* Clear out any MRF move records whose sources got overwritten. */
3433 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3434 if (last_mrf_move[i] &&
3435 regions_overlap(inst->dst, inst->size_written,
3436 last_mrf_move[i]->src[0],
3437 last_mrf_move[i]->size_read(0))) {
3438 last_mrf_move[i] = NULL;
3439 }
3440 }
3441
3442 if (inst->opcode == BRW_OPCODE_MOV &&
3443 inst->dst.file == MRF &&
3444 inst->src[0].file != ARF &&
3445 !inst->is_partial_write()) {
3446 last_mrf_move[inst->dst.nr] = inst;
3447 }
3448 }
3449
3450 if (progress)
3451 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3452
3453 return progress;
3454 }
3455
3456 /**
3457 * Rounding modes for conversion instructions are included for each
3458 * conversion, but right now it is a state. So once it is set,
3459 * we don't need to call it again for subsequent calls.
3460 *
3461 * This is useful for vector/matrices conversions, as setting the
3462 * mode once is enough for the full vector/matrix
3463 */
3464 bool
3465 fs_visitor::remove_extra_rounding_modes()
3466 {
3467 bool progress = false;
3468 unsigned execution_mode = this->nir->info.float_controls_execution_mode;
3469
3470 brw_rnd_mode base_mode = BRW_RND_MODE_UNSPECIFIED;
3471 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
3472 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
3473 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
3474 execution_mode)
3475 base_mode = BRW_RND_MODE_RTNE;
3476 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
3477 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
3478 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
3479 execution_mode)
3480 base_mode = BRW_RND_MODE_RTZ;
3481
3482 foreach_block (block, cfg) {
3483 brw_rnd_mode prev_mode = base_mode;
3484
3485 foreach_inst_in_block_safe (fs_inst, inst, block) {
3486 if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3487 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3488 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3489 if (mode == prev_mode) {
3490 inst->remove(block);
3491 progress = true;
3492 } else {
3493 prev_mode = mode;
3494 }
3495 }
3496 }
3497 }
3498
3499 if (progress)
3500 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3501
3502 return progress;
3503 }
3504
3505 static void
3506 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3507 {
3508 /* Clear the flag for registers that actually got read (as expected). */
3509 for (int i = 0; i < inst->sources; i++) {
3510 int grf;
3511 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3512 grf = inst->src[i].nr;
3513 } else {
3514 continue;
3515 }
3516
3517 if (grf >= first_grf &&
3518 grf < first_grf + grf_len) {
3519 deps[grf - first_grf] = false;
3520 if (inst->exec_size == 16)
3521 deps[grf - first_grf + 1] = false;
3522 }
3523 }
3524 }
3525
3526 /**
3527 * Implements this workaround for the original 965:
3528 *
3529 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3530 * check for post destination dependencies on this instruction, software
3531 * must ensure that there is no destination hazard for the case of ‘write
3532 * followed by a posted write’ shown in the following example.
3533 *
3534 * 1. mov r3 0
3535 * 2. send r3.xy <rest of send instruction>
3536 * 3. mov r2 r3
3537 *
3538 * Due to no post-destination dependency check on the ‘send’, the above
3539 * code sequence could have two instructions (1 and 2) in flight at the
3540 * same time that both consider ‘r3’ as the target of their final writes.
3541 */
3542 void
3543 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3544 fs_inst *inst)
3545 {
3546 int write_len = regs_written(inst);
3547 int first_write_grf = inst->dst.nr;
3548 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3549 assert(write_len < (int)sizeof(needs_dep) - 1);
3550
3551 memset(needs_dep, false, sizeof(needs_dep));
3552 memset(needs_dep, true, write_len);
3553
3554 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3555
3556 /* Walk backwards looking for writes to registers we're writing which
3557 * aren't read since being written. If we hit the start of the program,
3558 * we assume that there are no outstanding dependencies on entry to the
3559 * program.
3560 */
3561 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3562 /* If we hit control flow, assume that there *are* outstanding
3563 * dependencies, and force their cleanup before our instruction.
3564 */
3565 if (block->start() == scan_inst && block->num != 0) {
3566 for (int i = 0; i < write_len; i++) {
3567 if (needs_dep[i])
3568 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3569 first_write_grf + i);
3570 }
3571 return;
3572 }
3573
3574 /* We insert our reads as late as possible on the assumption that any
3575 * instruction but a MOV that might have left us an outstanding
3576 * dependency has more latency than a MOV.
3577 */
3578 if (scan_inst->dst.file == VGRF) {
3579 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3580 int reg = scan_inst->dst.nr + i;
3581
3582 if (reg >= first_write_grf &&
3583 reg < first_write_grf + write_len &&
3584 needs_dep[reg - first_write_grf]) {
3585 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3586 needs_dep[reg - first_write_grf] = false;
3587 if (scan_inst->exec_size == 16)
3588 needs_dep[reg - first_write_grf + 1] = false;
3589 }
3590 }
3591 }
3592
3593 /* Clear the flag for registers that actually got read (as expected). */
3594 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3595
3596 /* Continue the loop only if we haven't resolved all the dependencies */
3597 int i;
3598 for (i = 0; i < write_len; i++) {
3599 if (needs_dep[i])
3600 break;
3601 }
3602 if (i == write_len)
3603 return;
3604 }
3605 }
3606
3607 /**
3608 * Implements this workaround for the original 965:
3609 *
3610 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3611 * used as a destination register until after it has been sourced by an
3612 * instruction with a different destination register.
3613 */
3614 void
3615 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3616 {
3617 int write_len = regs_written(inst);
3618 unsigned first_write_grf = inst->dst.nr;
3619 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3620 assert(write_len < (int)sizeof(needs_dep) - 1);
3621
3622 memset(needs_dep, false, sizeof(needs_dep));
3623 memset(needs_dep, true, write_len);
3624 /* Walk forwards looking for writes to registers we're writing which aren't
3625 * read before being written.
3626 */
3627 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3628 /* If we hit control flow, force resolve all remaining dependencies. */
3629 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3630 for (int i = 0; i < write_len; i++) {
3631 if (needs_dep[i])
3632 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3633 first_write_grf + i);
3634 }
3635 return;
3636 }
3637
3638 /* Clear the flag for registers that actually got read (as expected). */
3639 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3640
3641 /* We insert our reads as late as possible since they're reading the
3642 * result of a SEND, which has massive latency.
3643 */
3644 if (scan_inst->dst.file == VGRF &&
3645 scan_inst->dst.nr >= first_write_grf &&
3646 scan_inst->dst.nr < first_write_grf + write_len &&
3647 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3648 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3649 scan_inst->dst.nr);
3650 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3651 }
3652
3653 /* Continue the loop only if we haven't resolved all the dependencies */
3654 int i;
3655 for (i = 0; i < write_len; i++) {
3656 if (needs_dep[i])
3657 break;
3658 }
3659 if (i == write_len)
3660 return;
3661 }
3662 }
3663
3664 void
3665 fs_visitor::insert_gen4_send_dependency_workarounds()
3666 {
3667 if (devinfo->gen != 4 || devinfo->is_g4x)
3668 return;
3669
3670 bool progress = false;
3671
3672 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3673 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3674 insert_gen4_pre_send_dependency_workarounds(block, inst);
3675 insert_gen4_post_send_dependency_workarounds(block, inst);
3676 progress = true;
3677 }
3678 }
3679
3680 if (progress)
3681 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3682 }
3683
3684 /**
3685 * Turns the generic expression-style uniform pull constant load instruction
3686 * into a hardware-specific series of instructions for loading a pull
3687 * constant.
3688 *
3689 * The expression style allows the CSE pass before this to optimize out
3690 * repeated loads from the same offset, and gives the pre-register-allocation
3691 * scheduling full flexibility, while the conversion to native instructions
3692 * allows the post-register-allocation scheduler the best information
3693 * possible.
3694 *
3695 * Note that execution masking for setting up pull constant loads is special:
3696 * the channels that need to be written are unrelated to the current execution
3697 * mask, since a later instruction will use one of the result channels as a
3698 * source operand for all 8 or 16 of its channels.
3699 */
3700 void
3701 fs_visitor::lower_uniform_pull_constant_loads()
3702 {
3703 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3704 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3705 continue;
3706
3707 if (devinfo->gen >= 7) {
3708 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3709 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3710
3711 ubld.group(8, 0).MOV(payload,
3712 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3713 ubld.group(1, 0).MOV(component(payload, 2),
3714 brw_imm_ud(inst->src[1].ud / 16));
3715
3716 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3717 inst->src[1] = payload;
3718 inst->header_size = 1;
3719 inst->mlen = 1;
3720
3721 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
3722 } else {
3723 /* Before register allocation, we didn't tell the scheduler about the
3724 * MRF we use. We know it's safe to use this MRF because nothing
3725 * else does except for register spill/unspill, which generates and
3726 * uses its MRF within a single IR instruction.
3727 */
3728 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3729 inst->mlen = 1;
3730 }
3731 }
3732 }
3733
3734 bool
3735 fs_visitor::lower_load_payload()
3736 {
3737 bool progress = false;
3738
3739 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3740 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3741 continue;
3742
3743 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3744 assert(inst->saturate == false);
3745 fs_reg dst = inst->dst;
3746
3747 /* Get rid of COMPR4. We'll add it back in if we need it */
3748 if (dst.file == MRF)
3749 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3750
3751 const fs_builder ibld(this, block, inst);
3752 const fs_builder ubld = ibld.exec_all();
3753
3754 for (uint8_t i = 0; i < inst->header_size;) {
3755 /* Number of header GRFs to initialize at once with a single MOV
3756 * instruction.
3757 */
3758 const unsigned n =
3759 (i + 1 < inst->header_size && inst->src[i].stride == 1 &&
3760 inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ?
3761 2 : 1;
3762
3763 if (inst->src[i].file != BAD_FILE)
3764 ubld.group(8 * n, 0).MOV(retype(dst, BRW_REGISTER_TYPE_UD),
3765 retype(inst->src[i], BRW_REGISTER_TYPE_UD));
3766
3767 dst = byte_offset(dst, n * REG_SIZE);
3768 i += n;
3769 }
3770
3771 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3772 inst->exec_size > 8) {
3773 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3774 * a straightforward copy. Instead, the result of the
3775 * LOAD_PAYLOAD is treated as interleaved and the first four
3776 * non-header sources are unpacked as:
3777 *
3778 * m + 0: r0
3779 * m + 1: g0
3780 * m + 2: b0
3781 * m + 3: a0
3782 * m + 4: r1
3783 * m + 5: g1
3784 * m + 6: b1
3785 * m + 7: a1
3786 *
3787 * This is used for gen <= 5 fb writes.
3788 */
3789 assert(inst->exec_size == 16);
3790 assert(inst->header_size + 4 <= inst->sources);
3791 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3792 if (inst->src[i].file != BAD_FILE) {
3793 if (devinfo->has_compr4) {
3794 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3795 compr4_dst.nr |= BRW_MRF_COMPR4;
3796 ibld.MOV(compr4_dst, inst->src[i]);
3797 } else {
3798 /* Platform doesn't have COMPR4. We have to fake it */
3799 fs_reg mov_dst = retype(dst, inst->src[i].type);
3800 ibld.quarter(0).MOV(mov_dst, quarter(inst->src[i], 0));
3801 mov_dst.nr += 4;
3802 ibld.quarter(1).MOV(mov_dst, quarter(inst->src[i], 1));
3803 }
3804 }
3805
3806 dst.nr++;
3807 }
3808
3809 /* The loop above only ever incremented us through the first set
3810 * of 4 registers. However, thanks to the magic of COMPR4, we
3811 * actually wrote to the first 8 registers, so we need to take
3812 * that into account now.
3813 */
3814 dst.nr += 4;
3815
3816 /* The COMPR4 code took care of the first 4 sources. We'll let
3817 * the regular path handle any remaining sources. Yes, we are
3818 * modifying the instruction but we're about to delete it so
3819 * this really doesn't hurt anything.
3820 */
3821 inst->header_size += 4;
3822 }
3823
3824 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3825 if (inst->src[i].file != BAD_FILE) {
3826 dst.type = inst->src[i].type;
3827 ibld.MOV(dst, inst->src[i]);
3828 } else {
3829 dst.type = BRW_REGISTER_TYPE_UD;
3830 }
3831 dst = offset(dst, ibld, 1);
3832 }
3833
3834 inst->remove(block);
3835 progress = true;
3836 }
3837
3838 if (progress)
3839 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3840
3841 return progress;
3842 }
3843
3844 void
3845 fs_visitor::lower_mul_dword_inst(fs_inst *inst, bblock_t *block)
3846 {
3847 const fs_builder ibld(this, block, inst);
3848
3849 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3850 if (inst->src[1].file == IMM &&
3851 (( ud && inst->src[1].ud <= UINT16_MAX) ||
3852 (!ud && inst->src[1].d <= INT16_MAX && inst->src[1].d >= INT16_MIN))) {
3853 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3854 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3855 * src1 are used.
3856 *
3857 * If multiplying by an immediate value that fits in 16-bits, do a
3858 * single MUL instruction with that value in the proper location.
3859 */
3860 if (devinfo->gen < 7) {
3861 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type);
3862 ibld.MOV(imm, inst->src[1]);
3863 ibld.MUL(inst->dst, imm, inst->src[0]);
3864 } else {
3865 ibld.MUL(inst->dst, inst->src[0],
3866 ud ? brw_imm_uw(inst->src[1].ud)
3867 : brw_imm_w(inst->src[1].d));
3868 }
3869 } else {
3870 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3871 * do 32-bit integer multiplication in one instruction, but instead
3872 * must do a sequence (which actually calculates a 64-bit result):
3873 *
3874 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3875 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3876 * mov(8) g2<1>D acc0<8,8,1>D
3877 *
3878 * But on Gen > 6, the ability to use second accumulator register
3879 * (acc1) for non-float data types was removed, preventing a simple
3880 * implementation in SIMD16. A 16-channel result can be calculated by
3881 * executing the three instructions twice in SIMD8, once with quarter
3882 * control of 1Q for the first eight channels and again with 2Q for
3883 * the second eight channels.
3884 *
3885 * Which accumulator register is implicitly accessed (by AccWrEnable
3886 * for instance) is determined by the quarter control. Unfortunately
3887 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3888 * implicit accumulator access by an instruction with 2Q will access
3889 * acc1 regardless of whether the data type is usable in acc1.
3890 *
3891 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3892 * integer data types.
3893 *
3894 * Since we only want the low 32-bits of the result, we can do two
3895 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3896 * adjust the high result and add them (like the mach is doing):
3897 *
3898 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3899 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3900 * shl(8) g9<1>D g8<8,8,1>D 16D
3901 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3902 *
3903 * We avoid the shl instruction by realizing that we only want to add
3904 * the low 16-bits of the "high" result to the high 16-bits of the
3905 * "low" result and using proper regioning on the add:
3906 *
3907 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3908 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3909 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3910 *
3911 * Since it does not use the (single) accumulator register, we can
3912 * schedule multi-component multiplications much better.
3913 */
3914
3915 bool needs_mov = false;
3916 fs_reg orig_dst = inst->dst;
3917
3918 /* Get a new VGRF for the "low" 32x16-bit multiplication result if
3919 * reusing the original destination is impossible due to hardware
3920 * restrictions, source/destination overlap, or it being the null
3921 * register.
3922 */
3923 fs_reg low = inst->dst;
3924 if (orig_dst.is_null() || orig_dst.file == MRF ||
3925 regions_overlap(inst->dst, inst->size_written,
3926 inst->src[0], inst->size_read(0)) ||
3927 regions_overlap(inst->dst, inst->size_written,
3928 inst->src[1], inst->size_read(1)) ||
3929 inst->dst.stride >= 4) {
3930 needs_mov = true;
3931 low = fs_reg(VGRF, alloc.allocate(regs_written(inst)),
3932 inst->dst.type);
3933 }
3934
3935 /* Get a new VGRF but keep the same stride as inst->dst */
3936 fs_reg high(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type);
3937 high.stride = inst->dst.stride;
3938 high.offset = inst->dst.offset % REG_SIZE;
3939
3940 if (devinfo->gen >= 7) {
3941 if (inst->src[1].abs)
3942 lower_src_modifiers(this, block, inst, 1);
3943
3944 if (inst->src[1].file == IMM) {
3945 ibld.MUL(low, inst->src[0],
3946 brw_imm_uw(inst->src[1].ud & 0xffff));
3947 ibld.MUL(high, inst->src[0],
3948 brw_imm_uw(inst->src[1].ud >> 16));
3949 } else {
3950 ibld.MUL(low, inst->src[0],
3951 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3952 ibld.MUL(high, inst->src[0],
3953 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3954 }
3955 } else {
3956 if (inst->src[0].abs)
3957 lower_src_modifiers(this, block, inst, 0);
3958
3959 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3960 inst->src[1]);
3961 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3962 inst->src[1]);
3963 }
3964
3965 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
3966 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3967 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3968
3969 if (needs_mov || inst->conditional_mod)
3970 set_condmod(inst->conditional_mod, ibld.MOV(orig_dst, low));
3971 }
3972 }
3973
3974 void
3975 fs_visitor::lower_mul_qword_inst(fs_inst *inst, bblock_t *block)
3976 {
3977 const fs_builder ibld(this, block, inst);
3978
3979 /* Considering two 64-bit integers ab and cd where each letter ab
3980 * corresponds to 32 bits, we get a 128-bit result WXYZ. We * cd
3981 * only need to provide the YZ part of the result. -------
3982 * BD
3983 * Only BD needs to be 64 bits. For AD and BC we only care + AD
3984 * about the lower 32 bits (since they are part of the upper + BC
3985 * 32 bits of our result). AC is not needed since it starts + AC
3986 * on the 65th bit of the result. -------
3987 * WXYZ
3988 */
3989 unsigned int q_regs = regs_written(inst);
3990 unsigned int d_regs = (q_regs + 1) / 2;
3991
3992 fs_reg bd(VGRF, alloc.allocate(q_regs), BRW_REGISTER_TYPE_UQ);
3993 fs_reg ad(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
3994 fs_reg bc(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
3995
3996 /* Here we need the full 64 bit result for 32b * 32b. */
3997 if (devinfo->has_integer_dword_mul) {
3998 ibld.MUL(bd, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
3999 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4000 } else {
4001 fs_reg bd_high(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4002 fs_reg bd_low(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4003 fs_reg acc = retype(brw_acc_reg(inst->exec_size), BRW_REGISTER_TYPE_UD);
4004
4005 fs_inst *mul = ibld.MUL(acc,
4006 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4007 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4008 mul->writes_accumulator = true;
4009
4010 ibld.MACH(bd_high, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4011 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4012 ibld.MOV(bd_low, acc);
4013
4014 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 0), bd_low);
4015 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 1), bd_high);
4016 }
4017
4018 ibld.MUL(ad, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
4019 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4020 ibld.MUL(bc, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4021 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1));
4022
4023 ibld.ADD(ad, ad, bc);
4024 ibld.ADD(subscript(bd, BRW_REGISTER_TYPE_UD, 1),
4025 subscript(bd, BRW_REGISTER_TYPE_UD, 1), ad);
4026
4027 ibld.MOV(inst->dst, bd);
4028 }
4029
4030 void
4031 fs_visitor::lower_mulh_inst(fs_inst *inst, bblock_t *block)
4032 {
4033 const fs_builder ibld(this, block, inst);
4034
4035 /* According to the BDW+ BSpec page for the "Multiply Accumulate
4036 * High" instruction:
4037 *
4038 * "An added preliminary mov is required for source modification on
4039 * src1:
4040 * mov (8) r3.0<1>:d -r3<8;8,1>:d
4041 * mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw
4042 * mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d"
4043 */
4044 if (devinfo->gen >= 8 && (inst->src[1].negate || inst->src[1].abs))
4045 lower_src_modifiers(this, block, inst, 1);
4046
4047 /* Should have been lowered to 8-wide. */
4048 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
4049 const fs_reg acc = retype(brw_acc_reg(inst->exec_size), inst->dst.type);
4050 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
4051 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
4052
4053 if (devinfo->gen >= 8) {
4054 /* Until Gen8, integer multiplies read 32-bits from one source,
4055 * and 16-bits from the other, and relying on the MACH instruction
4056 * to generate the high bits of the result.
4057 *
4058 * On Gen8, the multiply instruction does a full 32x32-bit
4059 * multiply, but in order to do a 64-bit multiply we can simulate
4060 * the previous behavior and then use a MACH instruction.
4061 */
4062 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
4063 mul->src[1].type == BRW_REGISTER_TYPE_UD);
4064 mul->src[1].type = BRW_REGISTER_TYPE_UW;
4065 mul->src[1].stride *= 2;
4066
4067 if (mul->src[1].file == IMM) {
4068 mul->src[1] = brw_imm_uw(mul->src[1].ud);
4069 }
4070 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
4071 inst->group > 0) {
4072 /* Among other things the quarter control bits influence which
4073 * accumulator register is used by the hardware for instructions
4074 * that access the accumulator implicitly (e.g. MACH). A
4075 * second-half instruction would normally map to acc1, which
4076 * doesn't exist on Gen7 and up (the hardware does emulate it for
4077 * floating-point instructions *only* by taking advantage of the
4078 * extra precision of acc0 not normally used for floating point
4079 * arithmetic).
4080 *
4081 * HSW and up are careful enough not to try to access an
4082 * accumulator register that doesn't exist, but on earlier Gen7
4083 * hardware we need to make sure that the quarter control bits are
4084 * zero to avoid non-deterministic behaviour and emit an extra MOV
4085 * to get the result masked correctly according to the current
4086 * channel enables.
4087 */
4088 mach->group = 0;
4089 mach->force_writemask_all = true;
4090 mach->dst = ibld.vgrf(inst->dst.type);
4091 ibld.MOV(inst->dst, mach->dst);
4092 }
4093 }
4094
4095 bool
4096 fs_visitor::lower_integer_multiplication()
4097 {
4098 bool progress = false;
4099
4100 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4101 if (inst->opcode == BRW_OPCODE_MUL) {
4102 /* If the instruction is already in a form that does not need lowering,
4103 * return early.
4104 */
4105 if (devinfo->gen >= 7) {
4106 if (type_sz(inst->src[1].type) < 4 && type_sz(inst->src[0].type) <= 4)
4107 continue;
4108 } else {
4109 if (type_sz(inst->src[0].type) < 4 && type_sz(inst->src[1].type) <= 4)
4110 continue;
4111 }
4112
4113 if ((inst->dst.type == BRW_REGISTER_TYPE_Q ||
4114 inst->dst.type == BRW_REGISTER_TYPE_UQ) &&
4115 (inst->src[0].type == BRW_REGISTER_TYPE_Q ||
4116 inst->src[0].type == BRW_REGISTER_TYPE_UQ) &&
4117 (inst->src[1].type == BRW_REGISTER_TYPE_Q ||
4118 inst->src[1].type == BRW_REGISTER_TYPE_UQ)) {
4119 lower_mul_qword_inst(inst, block);
4120 inst->remove(block);
4121 progress = true;
4122 } else if (!inst->dst.is_accumulator() &&
4123 (inst->dst.type == BRW_REGISTER_TYPE_D ||
4124 inst->dst.type == BRW_REGISTER_TYPE_UD) &&
4125 !devinfo->has_integer_dword_mul) {
4126 lower_mul_dword_inst(inst, block);
4127 inst->remove(block);
4128 progress = true;
4129 }
4130 } else if (inst->opcode == SHADER_OPCODE_MULH) {
4131 lower_mulh_inst(inst, block);
4132 inst->remove(block);
4133 progress = true;
4134 }
4135
4136 }
4137
4138 if (progress)
4139 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4140
4141 return progress;
4142 }
4143
4144 bool
4145 fs_visitor::lower_minmax()
4146 {
4147 assert(devinfo->gen < 6);
4148
4149 bool progress = false;
4150
4151 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4152 const fs_builder ibld(this, block, inst);
4153
4154 if (inst->opcode == BRW_OPCODE_SEL &&
4155 inst->predicate == BRW_PREDICATE_NONE) {
4156 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
4157 * the original SEL.L/GE instruction
4158 */
4159 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4160 inst->conditional_mod);
4161 inst->predicate = BRW_PREDICATE_NORMAL;
4162 inst->conditional_mod = BRW_CONDITIONAL_NONE;
4163
4164 progress = true;
4165 }
4166 }
4167
4168 if (progress)
4169 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
4170
4171 return progress;
4172 }
4173
4174 bool
4175 fs_visitor::lower_sub_sat()
4176 {
4177 bool progress = false;
4178
4179 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4180 const fs_builder ibld(this, block, inst);
4181
4182 if (inst->opcode == SHADER_OPCODE_USUB_SAT ||
4183 inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4184 /* The fundamental problem is the hardware performs source negation
4185 * at the bit width of the source. If the source is 0x80000000D, the
4186 * negation is 0x80000000D. As a result, subtractSaturate(0,
4187 * 0x80000000) will produce 0x80000000 instead of 0x7fffffff. There
4188 * are at least three ways to resolve this:
4189 *
4190 * 1. Use the accumulator for the negated source. The accumulator is
4191 * 33 bits, so our source 0x80000000 is sign-extended to
4192 * 0x1800000000. The negation of which is 0x080000000. This
4193 * doesn't help for 64-bit integers (which are already bigger than
4194 * 33 bits). There are also only 8 accumulators, so SIMD16 or
4195 * SIMD32 instructions would have to be split into multiple SIMD8
4196 * instructions.
4197 *
4198 * 2. Use slightly different math. For any n-bit value x, we know (x
4199 * >> 1) != -(x >> 1). We can use this fact to only do
4200 * subtractions involving (x >> 1). subtractSaturate(a, b) ==
4201 * subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)).
4202 *
4203 * 3. For unsigned sources, it is sufficient to replace the
4204 * subtractSaturate with (a > b) ? a - b : 0.
4205 *
4206 * It may also be possible to use the SUBB instruction. This
4207 * implicitly writes the accumulator, so it could only be used in the
4208 * same situations as #1 above. It is further limited by only
4209 * allowing UD sources.
4210 */
4211 if (inst->exec_size == 8 && inst->src[0].type != BRW_REGISTER_TYPE_Q &&
4212 inst->src[0].type != BRW_REGISTER_TYPE_UQ) {
4213 fs_reg acc(ARF, BRW_ARF_ACCUMULATOR, inst->src[1].type);
4214
4215 ibld.MOV(acc, inst->src[1]);
4216 fs_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]);
4217 add->saturate = true;
4218 add->src[0].negate = true;
4219 } else if (inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4220 /* tmp = src1 >> 1;
4221 * dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp));
4222 */
4223 fs_reg tmp1 = ibld.vgrf(inst->src[0].type);
4224 fs_reg tmp2 = ibld.vgrf(inst->src[0].type);
4225 fs_reg tmp3 = ibld.vgrf(inst->src[0].type);
4226 fs_inst *add;
4227
4228 ibld.SHR(tmp1, inst->src[1], brw_imm_d(1));
4229
4230 add = ibld.ADD(tmp2, inst->src[1], tmp1);
4231 add->src[1].negate = true;
4232
4233 add = ibld.ADD(tmp3, inst->src[0], tmp1);
4234 add->src[1].negate = true;
4235 add->saturate = true;
4236
4237 add = ibld.ADD(inst->dst, tmp3, tmp2);
4238 add->src[1].negate = true;
4239 add->saturate = true;
4240 } else {
4241 /* a > b ? a - b : 0 */
4242 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4243 BRW_CONDITIONAL_G);
4244
4245 fs_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]);
4246 add->src[1].negate = !add->src[1].negate;
4247
4248 ibld.SEL(inst->dst, inst->dst, brw_imm_ud(0))
4249 ->predicate = BRW_PREDICATE_NORMAL;
4250 }
4251
4252 inst->remove(block);
4253 progress = true;
4254 }
4255 }
4256
4257 if (progress)
4258 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4259
4260 return progress;
4261 }
4262
4263 /**
4264 * Get the mask of SIMD channels enabled during dispatch and not yet disabled
4265 * by discard. Due to the layout of the sample mask in the fragment shader
4266 * thread payload, \p bld is required to have a dispatch_width() not greater
4267 * than 16 for fragment shaders.
4268 */
4269 static fs_reg
4270 sample_mask_reg(const fs_builder &bld)
4271 {
4272 const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
4273
4274 if (v->stage != MESA_SHADER_FRAGMENT) {
4275 return brw_imm_ud(0xffffffff);
4276 } else if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
4277 assert(bld.dispatch_width() <= 16);
4278 return brw_flag_subreg(sample_mask_flag_subreg(v) + bld.group() / 16);
4279 } else {
4280 assert(v->devinfo->gen >= 6 && bld.dispatch_width() <= 16);
4281 return retype(brw_vec1_grf((bld.group() >= 16 ? 2 : 1), 7),
4282 BRW_REGISTER_TYPE_UW);
4283 }
4284 }
4285
4286 static void
4287 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
4288 fs_reg *dst, fs_reg color, unsigned components)
4289 {
4290 if (key->clamp_fragment_color) {
4291 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
4292 assert(color.type == BRW_REGISTER_TYPE_F);
4293
4294 for (unsigned i = 0; i < components; i++)
4295 set_saturate(true,
4296 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
4297
4298 color = tmp;
4299 }
4300
4301 for (unsigned i = 0; i < components; i++)
4302 dst[i] = offset(color, bld, i);
4303 }
4304
4305 uint32_t
4306 brw_fb_write_msg_control(const fs_inst *inst,
4307 const struct brw_wm_prog_data *prog_data)
4308 {
4309 uint32_t mctl;
4310
4311 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
4312 assert(inst->group == 0 && inst->exec_size == 16);
4313 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
4314 } else if (prog_data->dual_src_blend) {
4315 assert(inst->exec_size == 8);
4316
4317 if (inst->group % 16 == 0)
4318 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
4319 else if (inst->group % 16 == 8)
4320 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
4321 else
4322 unreachable("Invalid dual-source FB write instruction group");
4323 } else {
4324 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
4325
4326 if (inst->exec_size == 16)
4327 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
4328 else if (inst->exec_size == 8)
4329 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
4330 else
4331 unreachable("Invalid FB write execution size");
4332 }
4333
4334 return mctl;
4335 }
4336
4337 static void
4338 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
4339 const struct brw_wm_prog_data *prog_data,
4340 const brw_wm_prog_key *key,
4341 const fs_visitor::thread_payload &payload)
4342 {
4343 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
4344 const gen_device_info *devinfo = bld.shader->devinfo;
4345 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
4346 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
4347 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
4348 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
4349 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
4350 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
4351 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
4352 const unsigned components =
4353 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
4354
4355 assert(inst->target != 0 || src0_alpha.file == BAD_FILE);
4356
4357 /* We can potentially have a message length of up to 15, so we have to set
4358 * base_mrf to either 0 or 1 in order to fit in m0..m15.
4359 */
4360 fs_reg sources[15];
4361 int header_size = 2, payload_header_size;
4362 unsigned length = 0;
4363
4364 if (devinfo->gen < 6) {
4365 /* TODO: Support SIMD32 on gen4-5 */
4366 assert(bld.group() < 16);
4367
4368 /* For gen4-5, we always have a header consisting of g0 and g1. We have
4369 * an implied MOV from g0,g1 to the start of the message. The MOV from
4370 * g0 is handled by the hardware and the MOV from g1 is provided by the
4371 * generator. This is required because, on gen4-5, the generator may
4372 * generate two write messages with different message lengths in order
4373 * to handle AA data properly.
4374 *
4375 * Also, since the pixel mask goes in the g0 portion of the message and
4376 * since render target writes are the last thing in the shader, we write
4377 * the pixel mask directly into g0 and it will get copied as part of the
4378 * implied write.
4379 */
4380 if (prog_data->uses_kill) {
4381 bld.exec_all().group(1, 0)
4382 .MOV(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW),
4383 sample_mask_reg(bld));
4384 }
4385
4386 assert(length == 0);
4387 length = 2;
4388 } else if ((devinfo->gen <= 7 && !devinfo->is_haswell &&
4389 prog_data->uses_kill) ||
4390 (devinfo->gen < 11 &&
4391 (color1.file != BAD_FILE || key->nr_color_regions > 1))) {
4392 /* From the Sandy Bridge PRM, volume 4, page 198:
4393 *
4394 * "Dispatched Pixel Enables. One bit per pixel indicating
4395 * which pixels were originally enabled when the thread was
4396 * dispatched. This field is only required for the end-of-
4397 * thread message and on all dual-source messages."
4398 */
4399 const fs_builder ubld = bld.exec_all().group(8, 0);
4400
4401 fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4402 if (bld.group() < 16) {
4403 /* The header starts off as g0 and g1 for the first half */
4404 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4405 BRW_REGISTER_TYPE_UD));
4406 } else {
4407 /* The header starts off as g0 and g2 for the second half */
4408 assert(bld.group() < 32);
4409 const fs_reg header_sources[2] = {
4410 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4411 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD),
4412 };
4413 ubld.LOAD_PAYLOAD(header, header_sources, 2, 0);
4414
4415 /* Gen12 will require additional fix-ups if we ever hit this path. */
4416 assert(devinfo->gen < 12);
4417 }
4418
4419 uint32_t g00_bits = 0;
4420
4421 /* Set "Source0 Alpha Present to RenderTarget" bit in message
4422 * header.
4423 */
4424 if (src0_alpha.file != BAD_FILE)
4425 g00_bits |= 1 << 11;
4426
4427 /* Set computes stencil to render target */
4428 if (prog_data->computed_stencil)
4429 g00_bits |= 1 << 14;
4430
4431 if (g00_bits) {
4432 /* OR extra bits into g0.0 */
4433 ubld.group(1, 0).OR(component(header, 0),
4434 retype(brw_vec1_grf(0, 0),
4435 BRW_REGISTER_TYPE_UD),
4436 brw_imm_ud(g00_bits));
4437 }
4438
4439 /* Set the render target index for choosing BLEND_STATE. */
4440 if (inst->target > 0) {
4441 ubld.group(1, 0).MOV(component(header, 2), brw_imm_ud(inst->target));
4442 }
4443
4444 if (prog_data->uses_kill) {
4445 ubld.group(1, 0).MOV(retype(component(header, 15),
4446 BRW_REGISTER_TYPE_UW),
4447 sample_mask_reg(bld));
4448 }
4449
4450 assert(length == 0);
4451 sources[0] = header;
4452 sources[1] = horiz_offset(header, 8);
4453 length = 2;
4454 }
4455 assert(length == 0 || length == 2);
4456 header_size = length;
4457
4458 if (payload.aa_dest_stencil_reg[0]) {
4459 assert(inst->group < 16);
4460 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
4461 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
4462 .MOV(sources[length],
4463 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg[0], 0)));
4464 length++;
4465 }
4466
4467 if (src0_alpha.file != BAD_FILE) {
4468 for (unsigned i = 0; i < bld.dispatch_width() / 8; i++) {
4469 const fs_builder &ubld = bld.exec_all().group(8, i)
4470 .annotate("FB write src0 alpha");
4471 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_F);
4472 ubld.MOV(tmp, horiz_offset(src0_alpha, i * 8));
4473 setup_color_payload(ubld, key, &sources[length], tmp, 1);
4474 length++;
4475 }
4476 }
4477
4478 if (sample_mask.file != BAD_FILE) {
4479 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
4480 BRW_REGISTER_TYPE_UD);
4481
4482 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
4483 * relevant. Since it's unsigned single words one vgrf is always
4484 * 16-wide, but only the lower or higher 8 channels will be used by the
4485 * hardware when doing a SIMD8 write depending on whether we have
4486 * selected the subspans for the first or second half respectively.
4487 */
4488 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
4489 sample_mask.type = BRW_REGISTER_TYPE_UW;
4490 sample_mask.stride *= 2;
4491
4492 bld.exec_all().annotate("FB write oMask")
4493 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
4494 inst->group % 16),
4495 sample_mask);
4496 length++;
4497 }
4498
4499 payload_header_size = length;
4500
4501 setup_color_payload(bld, key, &sources[length], color0, components);
4502 length += 4;
4503
4504 if (color1.file != BAD_FILE) {
4505 setup_color_payload(bld, key, &sources[length], color1, components);
4506 length += 4;
4507 }
4508
4509 if (src_depth.file != BAD_FILE) {
4510 sources[length] = src_depth;
4511 length++;
4512 }
4513
4514 if (dst_depth.file != BAD_FILE) {
4515 sources[length] = dst_depth;
4516 length++;
4517 }
4518
4519 if (src_stencil.file != BAD_FILE) {
4520 assert(devinfo->gen >= 9);
4521 assert(bld.dispatch_width() == 8);
4522
4523 /* XXX: src_stencil is only available on gen9+. dst_depth is never
4524 * available on gen9+. As such it's impossible to have both enabled at the
4525 * same time and therefore length cannot overrun the array.
4526 */
4527 assert(length < 15);
4528
4529 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4530 bld.exec_all().annotate("FB write OS")
4531 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
4532 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
4533 length++;
4534 }
4535
4536 fs_inst *load;
4537 if (devinfo->gen >= 7) {
4538 /* Send from the GRF */
4539 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
4540 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
4541 payload.nr = bld.shader->alloc.allocate(regs_written(load));
4542 load->dst = payload;
4543
4544 uint32_t msg_ctl = brw_fb_write_msg_control(inst, prog_data);
4545 uint32_t ex_desc = 0;
4546
4547 inst->desc =
4548 (inst->group / 16) << 11 | /* rt slot group */
4549 brw_dp_write_desc(devinfo, inst->target, msg_ctl,
4550 GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE,
4551 inst->last_rt, false);
4552
4553 if (devinfo->gen >= 11) {
4554 /* Set the "Render Target Index" and "Src0 Alpha Present" fields
4555 * in the extended message descriptor, in lieu of using a header.
4556 */
4557 ex_desc = inst->target << 12 | (src0_alpha.file != BAD_FILE) << 15;
4558
4559 if (key->nr_color_regions == 0)
4560 ex_desc |= 1 << 20; /* Null Render Target */
4561 }
4562
4563 inst->opcode = SHADER_OPCODE_SEND;
4564 inst->resize_sources(3);
4565 inst->sfid = GEN6_SFID_DATAPORT_RENDER_CACHE;
4566 inst->src[0] = brw_imm_ud(inst->desc);
4567 inst->src[1] = brw_imm_ud(ex_desc);
4568 inst->src[2] = payload;
4569 inst->mlen = regs_written(load);
4570 inst->ex_mlen = 0;
4571 inst->header_size = header_size;
4572 inst->check_tdr = true;
4573 inst->send_has_side_effects = true;
4574 } else {
4575 /* Send from the MRF */
4576 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
4577 sources, length, payload_header_size);
4578
4579 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
4580 * will do this for us if we just give it a COMPR4 destination.
4581 */
4582 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
4583 load->dst.nr |= BRW_MRF_COMPR4;
4584
4585 if (devinfo->gen < 6) {
4586 /* Set up src[0] for the implied MOV from grf0-1 */
4587 inst->resize_sources(1);
4588 inst->src[0] = brw_vec8_grf(0, 0);
4589 } else {
4590 inst->resize_sources(0);
4591 }
4592 inst->base_mrf = 1;
4593 inst->opcode = FS_OPCODE_FB_WRITE;
4594 inst->mlen = regs_written(load);
4595 inst->header_size = header_size;
4596 }
4597 }
4598
4599 static void
4600 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
4601 {
4602 const gen_device_info *devinfo = bld.shader->devinfo;
4603 const fs_builder &ubld = bld.exec_all().group(8, 0);
4604 const unsigned length = 2;
4605 const fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, length);
4606
4607 if (bld.group() < 16) {
4608 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4609 BRW_REGISTER_TYPE_UD));
4610 } else {
4611 assert(bld.group() < 32);
4612 const fs_reg header_sources[] = {
4613 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4614 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD)
4615 };
4616 ubld.LOAD_PAYLOAD(header, header_sources, ARRAY_SIZE(header_sources), 0);
4617
4618 if (devinfo->gen >= 12) {
4619 /* On Gen12 the Viewport and Render Target Array Index fields (AKA
4620 * Poly 0 Info) are provided in r1.1 instead of r0.0, and the render
4621 * target message header format was updated accordingly -- However
4622 * the updated format only works for the lower 16 channels in a
4623 * SIMD32 thread, since the higher 16 channels want the subspan data
4624 * from r2 instead of r1, so we need to copy over the contents of
4625 * r1.1 in order to fix things up.
4626 */
4627 ubld.group(1, 0).MOV(component(header, 9),
4628 retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_UD));
4629 }
4630 }
4631
4632 inst->resize_sources(1);
4633 inst->src[0] = header;
4634 inst->opcode = FS_OPCODE_FB_READ;
4635 inst->mlen = length;
4636 inst->header_size = length;
4637 }
4638
4639 static void
4640 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
4641 const fs_reg &coordinate,
4642 const fs_reg &shadow_c,
4643 const fs_reg &lod, const fs_reg &lod2,
4644 const fs_reg &surface,
4645 const fs_reg &sampler,
4646 unsigned coord_components,
4647 unsigned grad_components)
4648 {
4649 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
4650 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
4651 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
4652 fs_reg msg_end = msg_begin;
4653
4654 /* g0 header. */
4655 msg_end = offset(msg_end, bld.group(8, 0), 1);
4656
4657 for (unsigned i = 0; i < coord_components; i++)
4658 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
4659 offset(coordinate, bld, i));
4660
4661 msg_end = offset(msg_end, bld, coord_components);
4662
4663 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
4664 * require all three components to be present and zero if they are unused.
4665 */
4666 if (coord_components > 0 &&
4667 (has_lod || shadow_c.file != BAD_FILE ||
4668 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
4669 assert(coord_components <= 3);
4670 for (unsigned i = 0; i < 3 - coord_components; i++)
4671 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
4672
4673 msg_end = offset(msg_end, bld, 3 - coord_components);
4674 }
4675
4676 if (op == SHADER_OPCODE_TXD) {
4677 /* TXD unsupported in SIMD16 mode. */
4678 assert(bld.dispatch_width() == 8);
4679
4680 /* the slots for u and v are always present, but r is optional */
4681 if (coord_components < 2)
4682 msg_end = offset(msg_end, bld, 2 - coord_components);
4683
4684 /* P = u, v, r
4685 * dPdx = dudx, dvdx, drdx
4686 * dPdy = dudy, dvdy, drdy
4687 *
4688 * 1-arg: Does not exist.
4689 *
4690 * 2-arg: dudx dvdx dudy dvdy
4691 * dPdx.x dPdx.y dPdy.x dPdy.y
4692 * m4 m5 m6 m7
4693 *
4694 * 3-arg: dudx dvdx drdx dudy dvdy drdy
4695 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
4696 * m5 m6 m7 m8 m9 m10
4697 */
4698 for (unsigned i = 0; i < grad_components; i++)
4699 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
4700
4701 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4702
4703 for (unsigned i = 0; i < grad_components; i++)
4704 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
4705
4706 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4707 }
4708
4709 if (has_lod) {
4710 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
4711 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
4712 */
4713 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
4714 bld.dispatch_width() == 16);
4715
4716 const brw_reg_type type =
4717 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
4718 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
4719 bld.MOV(retype(msg_end, type), lod);
4720 msg_end = offset(msg_end, bld, 1);
4721 }
4722
4723 if (shadow_c.file != BAD_FILE) {
4724 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
4725 /* There's no plain shadow compare message, so we use shadow
4726 * compare with a bias of 0.0.
4727 */
4728 bld.MOV(msg_end, brw_imm_f(0.0f));
4729 msg_end = offset(msg_end, bld, 1);
4730 }
4731
4732 bld.MOV(msg_end, shadow_c);
4733 msg_end = offset(msg_end, bld, 1);
4734 }
4735
4736 inst->opcode = op;
4737 inst->src[0] = reg_undef;
4738 inst->src[1] = surface;
4739 inst->src[2] = sampler;
4740 inst->resize_sources(3);
4741 inst->base_mrf = msg_begin.nr;
4742 inst->mlen = msg_end.nr - msg_begin.nr;
4743 inst->header_size = 1;
4744 }
4745
4746 static void
4747 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
4748 const fs_reg &coordinate,
4749 const fs_reg &shadow_c,
4750 const fs_reg &lod, const fs_reg &lod2,
4751 const fs_reg &sample_index,
4752 const fs_reg &surface,
4753 const fs_reg &sampler,
4754 unsigned coord_components,
4755 unsigned grad_components)
4756 {
4757 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
4758 fs_reg msg_coords = message;
4759 unsigned header_size = 0;
4760
4761 if (inst->offset != 0) {
4762 /* The offsets set up by the visitor are in the m1 header, so we can't
4763 * go headerless.
4764 */
4765 header_size = 1;
4766 message.nr--;
4767 }
4768
4769 for (unsigned i = 0; i < coord_components; i++)
4770 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
4771 offset(coordinate, bld, i));
4772
4773 fs_reg msg_end = offset(msg_coords, bld, coord_components);
4774 fs_reg msg_lod = offset(msg_coords, bld, 4);
4775
4776 if (shadow_c.file != BAD_FILE) {
4777 fs_reg msg_shadow = msg_lod;
4778 bld.MOV(msg_shadow, shadow_c);
4779 msg_lod = offset(msg_shadow, bld, 1);
4780 msg_end = msg_lod;
4781 }
4782
4783 switch (op) {
4784 case SHADER_OPCODE_TXL:
4785 case FS_OPCODE_TXB:
4786 bld.MOV(msg_lod, lod);
4787 msg_end = offset(msg_lod, bld, 1);
4788 break;
4789 case SHADER_OPCODE_TXD:
4790 /**
4791 * P = u, v, r
4792 * dPdx = dudx, dvdx, drdx
4793 * dPdy = dudy, dvdy, drdy
4794 *
4795 * Load up these values:
4796 * - dudx dudy dvdx dvdy drdx drdy
4797 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4798 */
4799 msg_end = msg_lod;
4800 for (unsigned i = 0; i < grad_components; i++) {
4801 bld.MOV(msg_end, offset(lod, bld, i));
4802 msg_end = offset(msg_end, bld, 1);
4803
4804 bld.MOV(msg_end, offset(lod2, bld, i));
4805 msg_end = offset(msg_end, bld, 1);
4806 }
4807 break;
4808 case SHADER_OPCODE_TXS:
4809 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4810 bld.MOV(msg_lod, lod);
4811 msg_end = offset(msg_lod, bld, 1);
4812 break;
4813 case SHADER_OPCODE_TXF:
4814 msg_lod = offset(msg_coords, bld, 3);
4815 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4816 msg_end = offset(msg_lod, bld, 1);
4817 break;
4818 case SHADER_OPCODE_TXF_CMS:
4819 msg_lod = offset(msg_coords, bld, 3);
4820 /* lod */
4821 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4822 /* sample index */
4823 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4824 msg_end = offset(msg_lod, bld, 2);
4825 break;
4826 default:
4827 break;
4828 }
4829
4830 inst->opcode = op;
4831 inst->src[0] = reg_undef;
4832 inst->src[1] = surface;
4833 inst->src[2] = sampler;
4834 inst->resize_sources(3);
4835 inst->base_mrf = message.nr;
4836 inst->mlen = msg_end.nr - message.nr;
4837 inst->header_size = header_size;
4838
4839 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4840 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4841 }
4842
4843 static bool
4844 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4845 {
4846 if (devinfo->gen < 8 && !devinfo->is_haswell)
4847 return false;
4848
4849 return sampler.file != IMM || sampler.ud >= 16;
4850 }
4851
4852 static unsigned
4853 sampler_msg_type(const gen_device_info *devinfo,
4854 opcode opcode, bool shadow_compare)
4855 {
4856 assert(devinfo->gen >= 5);
4857 switch (opcode) {
4858 case SHADER_OPCODE_TEX:
4859 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE :
4860 GEN5_SAMPLER_MESSAGE_SAMPLE;
4861 case FS_OPCODE_TXB:
4862 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE :
4863 GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
4864 case SHADER_OPCODE_TXL:
4865 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE :
4866 GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
4867 case SHADER_OPCODE_TXL_LZ:
4868 return shadow_compare ? GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ :
4869 GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
4870 case SHADER_OPCODE_TXS:
4871 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
4872 return GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
4873 case SHADER_OPCODE_TXD:
4874 assert(!shadow_compare || devinfo->gen >= 8 || devinfo->is_haswell);
4875 return shadow_compare ? HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE :
4876 GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
4877 case SHADER_OPCODE_TXF:
4878 return GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4879 case SHADER_OPCODE_TXF_LZ:
4880 assert(devinfo->gen >= 9);
4881 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
4882 case SHADER_OPCODE_TXF_CMS_W:
4883 assert(devinfo->gen >= 9);
4884 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
4885 case SHADER_OPCODE_TXF_CMS:
4886 return devinfo->gen >= 7 ? GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS :
4887 GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4888 case SHADER_OPCODE_TXF_UMS:
4889 assert(devinfo->gen >= 7);
4890 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
4891 case SHADER_OPCODE_TXF_MCS:
4892 assert(devinfo->gen >= 7);
4893 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
4894 case SHADER_OPCODE_LOD:
4895 return GEN5_SAMPLER_MESSAGE_LOD;
4896 case SHADER_OPCODE_TG4:
4897 assert(devinfo->gen >= 7);
4898 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C :
4899 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
4900 break;
4901 case SHADER_OPCODE_TG4_OFFSET:
4902 assert(devinfo->gen >= 7);
4903 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C :
4904 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
4905 case SHADER_OPCODE_SAMPLEINFO:
4906 return GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
4907 default:
4908 unreachable("not reached");
4909 }
4910 }
4911
4912 static void
4913 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4914 const fs_reg &coordinate,
4915 const fs_reg &shadow_c,
4916 fs_reg lod, const fs_reg &lod2,
4917 const fs_reg &min_lod,
4918 const fs_reg &sample_index,
4919 const fs_reg &mcs,
4920 const fs_reg &surface,
4921 const fs_reg &sampler,
4922 const fs_reg &surface_handle,
4923 const fs_reg &sampler_handle,
4924 const fs_reg &tg4_offset,
4925 unsigned coord_components,
4926 unsigned grad_components)
4927 {
4928 const gen_device_info *devinfo = bld.shader->devinfo;
4929 const brw_stage_prog_data *prog_data = bld.shader->stage_prog_data;
4930 unsigned reg_width = bld.dispatch_width() / 8;
4931 unsigned header_size = 0, length = 0;
4932 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4933 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4934 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4935
4936 /* We must have exactly one of surface/sampler and surface/sampler_handle */
4937 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
4938 assert((sampler.file == BAD_FILE) != (sampler_handle.file == BAD_FILE));
4939
4940 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4941 inst->offset != 0 || inst->eot ||
4942 op == SHADER_OPCODE_SAMPLEINFO ||
4943 sampler_handle.file != BAD_FILE ||
4944 is_high_sampler(devinfo, sampler)) {
4945 /* For general texture offsets (no txf workaround), we need a header to
4946 * put them in.
4947 *
4948 * TG4 needs to place its channel select in the header, for interaction
4949 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4950 * larger sampler numbers we need to offset the Sampler State Pointer in
4951 * the header.
4952 */
4953 fs_reg header = retype(sources[0], BRW_REGISTER_TYPE_UD);
4954 header_size = 1;
4955 length++;
4956
4957 /* If we're requesting fewer than four channels worth of response,
4958 * and we have an explicit header, we need to set up the sampler
4959 * writemask. It's reversed from normal: 1 means "don't write".
4960 */
4961 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4962 assert(regs_written(inst) % reg_width == 0);
4963 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4964 inst->offset |= mask << 12;
4965 }
4966
4967 /* Build the actual header */
4968 const fs_builder ubld = bld.exec_all().group(8, 0);
4969 const fs_builder ubld1 = ubld.group(1, 0);
4970 ubld.MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
4971 if (inst->offset) {
4972 ubld1.MOV(component(header, 2), brw_imm_ud(inst->offset));
4973 } else if (bld.shader->stage != MESA_SHADER_VERTEX &&
4974 bld.shader->stage != MESA_SHADER_FRAGMENT) {
4975 /* The vertex and fragment stages have g0.2 set to 0, so
4976 * header0.2 is 0 when g0 is copied. Other stages may not, so we
4977 * must set it to 0 to avoid setting undesirable bits in the
4978 * message.
4979 */
4980 ubld1.MOV(component(header, 2), brw_imm_ud(0));
4981 }
4982
4983 if (sampler_handle.file != BAD_FILE) {
4984 /* Bindless sampler handles aren't relative to the sampler state
4985 * pointer passed into the shader through SAMPLER_STATE_POINTERS_*.
4986 * Instead, it's an absolute pointer relative to dynamic state base
4987 * address.
4988 *
4989 * Sampler states are 16 bytes each and the pointer we give here has
4990 * to be 32-byte aligned. In order to avoid more indirect messages
4991 * than required, we assume that all bindless sampler states are
4992 * 32-byte aligned. This sacrifices a bit of general state base
4993 * address space but means we can do something more efficient in the
4994 * shader.
4995 */
4996 ubld1.MOV(component(header, 3), sampler_handle);
4997 } else if (is_high_sampler(devinfo, sampler)) {
4998 if (sampler.file == BRW_IMMEDIATE_VALUE) {
4999 assert(sampler.ud >= 16);
5000 const int sampler_state_size = 16; /* 16 bytes */
5001
5002 ubld1.ADD(component(header, 3),
5003 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
5004 brw_imm_ud(16 * (sampler.ud / 16) * sampler_state_size));
5005 } else {
5006 fs_reg tmp = ubld1.vgrf(BRW_REGISTER_TYPE_UD);
5007 ubld1.AND(tmp, sampler, brw_imm_ud(0x0f0));
5008 ubld1.SHL(tmp, tmp, brw_imm_ud(4));
5009 ubld1.ADD(component(header, 3),
5010 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
5011 tmp);
5012 }
5013 }
5014 }
5015
5016 if (shadow_c.file != BAD_FILE) {
5017 bld.MOV(sources[length], shadow_c);
5018 length++;
5019 }
5020
5021 bool coordinate_done = false;
5022
5023 /* Set up the LOD info */
5024 switch (op) {
5025 case FS_OPCODE_TXB:
5026 case SHADER_OPCODE_TXL:
5027 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
5028 op = SHADER_OPCODE_TXL_LZ;
5029 break;
5030 }
5031 bld.MOV(sources[length], lod);
5032 length++;
5033 break;
5034 case SHADER_OPCODE_TXD:
5035 /* TXD should have been lowered in SIMD16 mode. */
5036 assert(bld.dispatch_width() == 8);
5037
5038 /* Load dPdx and the coordinate together:
5039 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
5040 */
5041 for (unsigned i = 0; i < coord_components; i++) {
5042 bld.MOV(sources[length++], offset(coordinate, bld, i));
5043
5044 /* For cube map array, the coordinate is (u,v,r,ai) but there are
5045 * only derivatives for (u, v, r).
5046 */
5047 if (i < grad_components) {
5048 bld.MOV(sources[length++], offset(lod, bld, i));
5049 bld.MOV(sources[length++], offset(lod2, bld, i));
5050 }
5051 }
5052
5053 coordinate_done = true;
5054 break;
5055 case SHADER_OPCODE_TXS:
5056 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
5057 length++;
5058 break;
5059 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5060 /* We need an LOD; just use 0 */
5061 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), brw_imm_ud(0));
5062 length++;
5063 break;
5064 case SHADER_OPCODE_TXF:
5065 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
5066 * On Gen9 they are u, v, lod, r
5067 */
5068 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
5069
5070 if (devinfo->gen >= 9) {
5071 if (coord_components >= 2) {
5072 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
5073 offset(coordinate, bld, 1));
5074 } else {
5075 sources[length] = brw_imm_d(0);
5076 }
5077 length++;
5078 }
5079
5080 if (devinfo->gen >= 9 && lod.is_zero()) {
5081 op = SHADER_OPCODE_TXF_LZ;
5082 } else {
5083 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
5084 length++;
5085 }
5086
5087 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
5088 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5089 offset(coordinate, bld, i));
5090
5091 coordinate_done = true;
5092 break;
5093
5094 case SHADER_OPCODE_TXF_CMS:
5095 case SHADER_OPCODE_TXF_CMS_W:
5096 case SHADER_OPCODE_TXF_UMS:
5097 case SHADER_OPCODE_TXF_MCS:
5098 if (op == SHADER_OPCODE_TXF_UMS ||
5099 op == SHADER_OPCODE_TXF_CMS ||
5100 op == SHADER_OPCODE_TXF_CMS_W) {
5101 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
5102 length++;
5103 }
5104
5105 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
5106 /* Data from the multisample control surface. */
5107 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
5108 length++;
5109
5110 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
5111 * the MCS data.
5112 */
5113 if (op == SHADER_OPCODE_TXF_CMS_W) {
5114 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
5115 mcs.file == IMM ?
5116 mcs :
5117 offset(mcs, bld, 1));
5118 length++;
5119 }
5120 }
5121
5122 /* There is no offsetting for this message; just copy in the integer
5123 * texture coordinates.
5124 */
5125 for (unsigned i = 0; i < coord_components; i++)
5126 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5127 offset(coordinate, bld, i));
5128
5129 coordinate_done = true;
5130 break;
5131 case SHADER_OPCODE_TG4_OFFSET:
5132 /* More crazy intermixing */
5133 for (unsigned i = 0; i < 2; i++) /* u, v */
5134 bld.MOV(sources[length++], offset(coordinate, bld, i));
5135
5136 for (unsigned i = 0; i < 2; i++) /* offu, offv */
5137 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5138 offset(tg4_offset, bld, i));
5139
5140 if (coord_components == 3) /* r if present */
5141 bld.MOV(sources[length++], offset(coordinate, bld, 2));
5142
5143 coordinate_done = true;
5144 break;
5145 default:
5146 break;
5147 }
5148
5149 /* Set up the coordinate (except for cases where it was done above) */
5150 if (!coordinate_done) {
5151 for (unsigned i = 0; i < coord_components; i++)
5152 bld.MOV(sources[length++], offset(coordinate, bld, i));
5153 }
5154
5155 if (min_lod.file != BAD_FILE) {
5156 /* Account for all of the missing coordinate sources */
5157 length += 4 - coord_components;
5158 if (op == SHADER_OPCODE_TXD)
5159 length += (3 - grad_components) * 2;
5160
5161 bld.MOV(sources[length++], min_lod);
5162 }
5163
5164 unsigned mlen;
5165 if (reg_width == 2)
5166 mlen = length * reg_width - header_size;
5167 else
5168 mlen = length * reg_width;
5169
5170 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
5171 BRW_REGISTER_TYPE_F);
5172 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
5173
5174 /* Generate the SEND. */
5175 inst->opcode = SHADER_OPCODE_SEND;
5176 inst->mlen = mlen;
5177 inst->header_size = header_size;
5178
5179 const unsigned msg_type =
5180 sampler_msg_type(devinfo, op, inst->shadow_compare);
5181 const unsigned simd_mode =
5182 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5183 BRW_SAMPLER_SIMD_MODE_SIMD16;
5184
5185 uint32_t base_binding_table_index;
5186 switch (op) {
5187 case SHADER_OPCODE_TG4:
5188 case SHADER_OPCODE_TG4_OFFSET:
5189 base_binding_table_index = prog_data->binding_table.gather_texture_start;
5190 break;
5191 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5192 base_binding_table_index = prog_data->binding_table.image_start;
5193 break;
5194 default:
5195 base_binding_table_index = prog_data->binding_table.texture_start;
5196 break;
5197 }
5198
5199 inst->sfid = BRW_SFID_SAMPLER;
5200 if (surface.file == IMM &&
5201 (sampler.file == IMM || sampler_handle.file != BAD_FILE)) {
5202 inst->desc = brw_sampler_desc(devinfo,
5203 surface.ud + base_binding_table_index,
5204 sampler.file == IMM ? sampler.ud % 16 : 0,
5205 msg_type,
5206 simd_mode,
5207 0 /* return_format unused on gen7+ */);
5208 inst->src[0] = brw_imm_ud(0);
5209 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5210 } else if (surface_handle.file != BAD_FILE) {
5211 /* Bindless surface */
5212 assert(devinfo->gen >= 9);
5213 inst->desc = brw_sampler_desc(devinfo,
5214 GEN9_BTI_BINDLESS,
5215 sampler.file == IMM ? sampler.ud % 16 : 0,
5216 msg_type,
5217 simd_mode,
5218 0 /* return_format unused on gen7+ */);
5219
5220 /* For bindless samplers, the entire address is included in the message
5221 * header so we can leave the portion in the message descriptor 0.
5222 */
5223 if (sampler_handle.file != BAD_FILE || sampler.file == IMM) {
5224 inst->src[0] = brw_imm_ud(0);
5225 } else {
5226 const fs_builder ubld = bld.group(1, 0).exec_all();
5227 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5228 ubld.SHL(desc, sampler, brw_imm_ud(8));
5229 inst->src[0] = desc;
5230 }
5231
5232 /* We assume that the driver provided the handle in the top 20 bits so
5233 * we can use the surface handle directly as the extended descriptor.
5234 */
5235 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5236 } else {
5237 /* Immediate portion of the descriptor */
5238 inst->desc = brw_sampler_desc(devinfo,
5239 0, /* surface */
5240 0, /* sampler */
5241 msg_type,
5242 simd_mode,
5243 0 /* return_format unused on gen7+ */);
5244 const fs_builder ubld = bld.group(1, 0).exec_all();
5245 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5246 if (surface.equals(sampler)) {
5247 /* This case is common in GL */
5248 ubld.MUL(desc, surface, brw_imm_ud(0x101));
5249 } else {
5250 if (sampler_handle.file != BAD_FILE) {
5251 ubld.MOV(desc, surface);
5252 } else if (sampler.file == IMM) {
5253 ubld.OR(desc, surface, brw_imm_ud(sampler.ud << 8));
5254 } else {
5255 ubld.SHL(desc, sampler, brw_imm_ud(8));
5256 ubld.OR(desc, desc, surface);
5257 }
5258 }
5259 if (base_binding_table_index)
5260 ubld.ADD(desc, desc, brw_imm_ud(base_binding_table_index));
5261 ubld.AND(desc, desc, brw_imm_ud(0xfff));
5262
5263 inst->src[0] = component(desc, 0);
5264 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5265 }
5266
5267 inst->src[2] = src_payload;
5268 inst->resize_sources(3);
5269
5270 if (inst->eot) {
5271 /* EOT sampler messages don't make sense to split because it would
5272 * involve ending half of the thread early.
5273 */
5274 assert(inst->group == 0);
5275 /* We need to use SENDC for EOT sampler messages */
5276 inst->check_tdr = true;
5277 inst->send_has_side_effects = true;
5278 }
5279
5280 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
5281 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
5282 }
5283
5284 static void
5285 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
5286 {
5287 const gen_device_info *devinfo = bld.shader->devinfo;
5288 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
5289 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
5290 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
5291 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
5292 const fs_reg &min_lod = inst->src[TEX_LOGICAL_SRC_MIN_LOD];
5293 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
5294 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
5295 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
5296 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
5297 const fs_reg &surface_handle = inst->src[TEX_LOGICAL_SRC_SURFACE_HANDLE];
5298 const fs_reg &sampler_handle = inst->src[TEX_LOGICAL_SRC_SAMPLER_HANDLE];
5299 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
5300 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
5301 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
5302 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
5303 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
5304
5305 if (devinfo->gen >= 7) {
5306 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
5307 shadow_c, lod, lod2, min_lod,
5308 sample_index,
5309 mcs, surface, sampler,
5310 surface_handle, sampler_handle,
5311 tg4_offset,
5312 coord_components, grad_components);
5313 } else if (devinfo->gen >= 5) {
5314 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
5315 shadow_c, lod, lod2, sample_index,
5316 surface, sampler,
5317 coord_components, grad_components);
5318 } else {
5319 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
5320 shadow_c, lod, lod2,
5321 surface, sampler,
5322 coord_components, grad_components);
5323 }
5324 }
5325
5326 /**
5327 * Predicate the specified instruction on the sample mask.
5328 */
5329 static void
5330 emit_predicate_on_sample_mask(const fs_builder &bld, fs_inst *inst)
5331 {
5332 assert(bld.shader->stage == MESA_SHADER_FRAGMENT &&
5333 bld.group() == inst->group &&
5334 bld.dispatch_width() == inst->exec_size);
5335
5336 const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
5337 const fs_reg sample_mask = sample_mask_reg(bld);
5338 const unsigned subreg = sample_mask_flag_subreg(v);
5339
5340 if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
5341 assert(sample_mask.file == ARF &&
5342 sample_mask.nr == brw_flag_subreg(subreg).nr &&
5343 sample_mask.subnr == brw_flag_subreg(
5344 subreg + inst->group / 16).subnr);
5345 } else {
5346 bld.group(1, 0).exec_all()
5347 .MOV(brw_flag_subreg(subreg + inst->group / 16), sample_mask);
5348 }
5349
5350 if (inst->predicate) {
5351 assert(inst->predicate == BRW_PREDICATE_NORMAL);
5352 assert(!inst->predicate_inverse);
5353 assert(inst->flag_subreg == 0);
5354 /* Combine the sample mask with the existing predicate by using a
5355 * vertical predication mode.
5356 */
5357 inst->predicate = BRW_PREDICATE_ALIGN1_ALLV;
5358 } else {
5359 inst->flag_subreg = subreg;
5360 inst->predicate = BRW_PREDICATE_NORMAL;
5361 inst->predicate_inverse = false;
5362 }
5363 }
5364
5365 static void
5366 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst)
5367 {
5368 const gen_device_info *devinfo = bld.shader->devinfo;
5369
5370 /* Get the logical send arguments. */
5371 const fs_reg &addr = inst->src[SURFACE_LOGICAL_SRC_ADDRESS];
5372 const fs_reg &src = inst->src[SURFACE_LOGICAL_SRC_DATA];
5373 const fs_reg &surface = inst->src[SURFACE_LOGICAL_SRC_SURFACE];
5374 const fs_reg &surface_handle = inst->src[SURFACE_LOGICAL_SRC_SURFACE_HANDLE];
5375 const UNUSED fs_reg &dims = inst->src[SURFACE_LOGICAL_SRC_IMM_DIMS];
5376 const fs_reg &arg = inst->src[SURFACE_LOGICAL_SRC_IMM_ARG];
5377 assert(arg.file == IMM);
5378
5379 /* We must have exactly one of surface and surface_handle */
5380 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
5381
5382 /* Calculate the total number of components of the payload. */
5383 const unsigned addr_sz = inst->components_read(SURFACE_LOGICAL_SRC_ADDRESS);
5384 const unsigned src_sz = inst->components_read(SURFACE_LOGICAL_SRC_DATA);
5385
5386 const bool is_typed_access =
5387 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL ||
5388 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL ||
5389 inst->opcode == SHADER_OPCODE_TYPED_ATOMIC_LOGICAL;
5390
5391 const bool is_surface_access = is_typed_access ||
5392 inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL ||
5393 inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL ||
5394 inst->opcode == SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL;
5395
5396 const bool is_stateless =
5397 surface.file == IMM && (surface.ud == BRW_BTI_STATELESS ||
5398 surface.ud == GEN8_BTI_STATELESS_NON_COHERENT);
5399
5400 const bool has_side_effects = inst->has_side_effects();
5401 fs_reg sample_mask = has_side_effects ? sample_mask_reg(bld) :
5402 fs_reg(brw_imm_d(0xffff));
5403
5404 /* From the BDW PRM Volume 7, page 147:
5405 *
5406 * "For the Data Cache Data Port*, the header must be present for the
5407 * following message types: [...] Typed read/write/atomics"
5408 *
5409 * Earlier generations have a similar wording. Because of this restriction
5410 * we don't attempt to implement sample masks via predication for such
5411 * messages prior to Gen9, since we have to provide a header anyway. On
5412 * Gen11+ the header has been removed so we can only use predication.
5413 *
5414 * For all stateless A32 messages, we also need a header
5415 */
5416 fs_reg header;
5417 if ((devinfo->gen < 9 && is_typed_access) || is_stateless) {
5418 fs_builder ubld = bld.exec_all().group(8, 0);
5419 header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5420 ubld.MOV(header, brw_imm_d(0));
5421 if (is_stateless) {
5422 /* Both the typed and scattered byte/dword A32 messages take a buffer
5423 * base address in R0.5:[31:0] (See MH1_A32_PSM for typed messages or
5424 * MH_A32_GO for byte/dword scattered messages in the SKL PRM Vol. 2d
5425 * for more details.) This is conveniently where the HW places the
5426 * scratch surface base address.
5427 *
5428 * From the SKL PRM Vol. 7 "Per-Thread Scratch Space":
5429 *
5430 * "When a thread becomes 'active' it is allocated a portion of
5431 * scratch space, sized according to PerThreadScratchSpace. The
5432 * starting location of each thread’s scratch space allocation,
5433 * ScratchSpaceOffset, is passed in the thread payload in
5434 * R0.5[31:10] and is specified as a 1KB-granular offset from the
5435 * GeneralStateBaseAddress. The computation of ScratchSpaceOffset
5436 * includes the starting address of the stage’s scratch space
5437 * allocation, as programmed by ScratchSpaceBasePointer."
5438 *
5439 * The base address is passed in bits R0.5[31:10] and the bottom 10
5440 * bits of R0.5 are used for other things. Therefore, we have to
5441 * mask off the bottom 10 bits so that we don't get a garbage base
5442 * address.
5443 */
5444 ubld.group(1, 0).AND(component(header, 5),
5445 retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
5446 brw_imm_ud(0xfffffc00));
5447 }
5448 if (is_surface_access)
5449 ubld.group(1, 0).MOV(component(header, 7), sample_mask);
5450 }
5451 const unsigned header_sz = header.file != BAD_FILE ? 1 : 0;
5452
5453 fs_reg payload, payload2;
5454 unsigned mlen, ex_mlen = 0;
5455 if (devinfo->gen >= 9 &&
5456 (src.file == BAD_FILE || header.file == BAD_FILE)) {
5457 /* We have split sends on gen9 and above */
5458 if (header.file == BAD_FILE) {
5459 payload = bld.move_to_vgrf(addr, addr_sz);
5460 payload2 = bld.move_to_vgrf(src, src_sz);
5461 mlen = addr_sz * (inst->exec_size / 8);
5462 ex_mlen = src_sz * (inst->exec_size / 8);
5463 } else {
5464 assert(src.file == BAD_FILE);
5465 payload = header;
5466 payload2 = bld.move_to_vgrf(addr, addr_sz);
5467 mlen = header_sz;
5468 ex_mlen = addr_sz * (inst->exec_size / 8);
5469 }
5470 } else {
5471 /* Allocate space for the payload. */
5472 const unsigned sz = header_sz + addr_sz + src_sz;
5473 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
5474 fs_reg *const components = new fs_reg[sz];
5475 unsigned n = 0;
5476
5477 /* Construct the payload. */
5478 if (header.file != BAD_FILE)
5479 components[n++] = header;
5480
5481 for (unsigned i = 0; i < addr_sz; i++)
5482 components[n++] = offset(addr, bld, i);
5483
5484 for (unsigned i = 0; i < src_sz; i++)
5485 components[n++] = offset(src, bld, i);
5486
5487 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
5488 mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
5489
5490 delete[] components;
5491 }
5492
5493 /* Predicate the instruction on the sample mask if no header is
5494 * provided.
5495 */
5496 if ((header.file == BAD_FILE || !is_surface_access) &&
5497 sample_mask.file != BAD_FILE && sample_mask.file != IMM)
5498 emit_predicate_on_sample_mask(bld, inst);
5499
5500 uint32_t sfid;
5501 switch (inst->opcode) {
5502 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5503 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5504 /* Byte scattered opcodes go through the normal data cache */
5505 sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
5506 break;
5507
5508 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5509 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5510 sfid = devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
5511 devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
5512 BRW_DATAPORT_READ_TARGET_RENDER_CACHE;
5513 break;
5514
5515 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5516 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5517 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5518 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5519 /* Untyped Surface messages go through the data cache but the SFID value
5520 * changed on Haswell.
5521 */
5522 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5523 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5524 GEN7_SFID_DATAPORT_DATA_CACHE);
5525 break;
5526
5527 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5528 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5529 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5530 /* Typed surface messages go through the render cache on IVB and the
5531 * data cache on HSW+.
5532 */
5533 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5534 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5535 GEN6_SFID_DATAPORT_RENDER_CACHE);
5536 break;
5537
5538 default:
5539 unreachable("Unsupported surface opcode");
5540 }
5541
5542 uint32_t desc;
5543 switch (inst->opcode) {
5544 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5545 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5546 arg.ud, /* num_channels */
5547 false /* write */);
5548 break;
5549
5550 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5551 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5552 arg.ud, /* num_channels */
5553 true /* write */);
5554 break;
5555
5556 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5557 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5558 arg.ud, /* bit_size */
5559 false /* write */);
5560 break;
5561
5562 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5563 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5564 arg.ud, /* bit_size */
5565 true /* write */);
5566 break;
5567
5568 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5569 assert(arg.ud == 32); /* bit_size */
5570 desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5571 false /* write */);
5572 break;
5573
5574 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5575 assert(arg.ud == 32); /* bit_size */
5576 desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5577 true /* write */);
5578 break;
5579
5580 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5581 desc = brw_dp_untyped_atomic_desc(devinfo, inst->exec_size,
5582 arg.ud, /* atomic_op */
5583 !inst->dst.is_null());
5584 break;
5585
5586 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5587 desc = brw_dp_untyped_atomic_float_desc(devinfo, inst->exec_size,
5588 arg.ud, /* atomic_op */
5589 !inst->dst.is_null());
5590 break;
5591
5592 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5593 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5594 arg.ud, /* num_channels */
5595 false /* write */);
5596 break;
5597
5598 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5599 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5600 arg.ud, /* num_channels */
5601 true /* write */);
5602 break;
5603
5604 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5605 desc = brw_dp_typed_atomic_desc(devinfo, inst->exec_size, inst->group,
5606 arg.ud, /* atomic_op */
5607 !inst->dst.is_null());
5608 break;
5609
5610 default:
5611 unreachable("Unknown surface logical instruction");
5612 }
5613
5614 /* Update the original instruction. */
5615 inst->opcode = SHADER_OPCODE_SEND;
5616 inst->mlen = mlen;
5617 inst->ex_mlen = ex_mlen;
5618 inst->header_size = header_sz;
5619 inst->send_has_side_effects = has_side_effects;
5620 inst->send_is_volatile = !has_side_effects;
5621
5622 /* Set up SFID and descriptors */
5623 inst->sfid = sfid;
5624 inst->desc = desc;
5625 if (surface.file == IMM) {
5626 inst->desc |= surface.ud & 0xff;
5627 inst->src[0] = brw_imm_ud(0);
5628 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5629 } else if (surface_handle.file != BAD_FILE) {
5630 /* Bindless surface */
5631 assert(devinfo->gen >= 9);
5632 inst->desc |= GEN9_BTI_BINDLESS;
5633 inst->src[0] = brw_imm_ud(0);
5634
5635 /* We assume that the driver provided the handle in the top 20 bits so
5636 * we can use the surface handle directly as the extended descriptor.
5637 */
5638 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5639 } else {
5640 const fs_builder ubld = bld.exec_all().group(1, 0);
5641 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5642 ubld.AND(tmp, surface, brw_imm_ud(0xff));
5643 inst->src[0] = component(tmp, 0);
5644 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5645 }
5646
5647 /* Finally, the payload */
5648 inst->src[2] = payload;
5649 inst->src[3] = payload2;
5650
5651 inst->resize_sources(4);
5652 }
5653
5654 static void
5655 lower_a64_logical_send(const fs_builder &bld, fs_inst *inst)
5656 {
5657 const gen_device_info *devinfo = bld.shader->devinfo;
5658
5659 const fs_reg &addr = inst->src[0];
5660 const fs_reg &src = inst->src[1];
5661 const unsigned src_comps = inst->components_read(1);
5662 assert(inst->src[2].file == IMM);
5663 const unsigned arg = inst->src[2].ud;
5664 const bool has_side_effects = inst->has_side_effects();
5665
5666 /* If the surface message has side effects and we're a fragment shader, we
5667 * have to predicate with the sample mask to avoid helper invocations.
5668 */
5669 if (has_side_effects && bld.shader->stage == MESA_SHADER_FRAGMENT)
5670 emit_predicate_on_sample_mask(bld, inst);
5671
5672 fs_reg payload, payload2;
5673 unsigned mlen, ex_mlen = 0;
5674 if (devinfo->gen >= 9) {
5675 /* On Skylake and above, we have SENDS */
5676 mlen = 2 * (inst->exec_size / 8);
5677 ex_mlen = src_comps * type_sz(src.type) * inst->exec_size / REG_SIZE;
5678 payload = retype(bld.move_to_vgrf(addr, 1), BRW_REGISTER_TYPE_UD);
5679 payload2 = retype(bld.move_to_vgrf(src, src_comps),
5680 BRW_REGISTER_TYPE_UD);
5681 } else {
5682 /* Add two because the address is 64-bit */
5683 const unsigned dwords = 2 + src_comps;
5684 mlen = dwords * (inst->exec_size / 8);
5685
5686 fs_reg sources[5];
5687
5688 sources[0] = addr;
5689
5690 for (unsigned i = 0; i < src_comps; i++)
5691 sources[1 + i] = offset(src, bld, i);
5692
5693 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, dwords);
5694 bld.LOAD_PAYLOAD(payload, sources, 1 + src_comps, 0);
5695 }
5696
5697 uint32_t desc;
5698 switch (inst->opcode) {
5699 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5700 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5701 arg, /* num_channels */
5702 false /* write */);
5703 break;
5704
5705 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5706 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5707 arg, /* num_channels */
5708 true /* write */);
5709 break;
5710
5711 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5712 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5713 arg, /* bit_size */
5714 false /* write */);
5715 break;
5716
5717 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5718 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5719 arg, /* bit_size */
5720 true /* write */);
5721 break;
5722
5723 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5724 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 32,
5725 arg, /* atomic_op */
5726 !inst->dst.is_null());
5727 break;
5728
5729 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5730 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 64,
5731 arg, /* atomic_op */
5732 !inst->dst.is_null());
5733 break;
5734
5735
5736 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5737 desc = brw_dp_a64_untyped_atomic_float_desc(devinfo, inst->exec_size,
5738 arg, /* atomic_op */
5739 !inst->dst.is_null());
5740 break;
5741
5742 default:
5743 unreachable("Unknown A64 logical instruction");
5744 }
5745
5746 /* Update the original instruction. */
5747 inst->opcode = SHADER_OPCODE_SEND;
5748 inst->mlen = mlen;
5749 inst->ex_mlen = ex_mlen;
5750 inst->header_size = 0;
5751 inst->send_has_side_effects = has_side_effects;
5752 inst->send_is_volatile = !has_side_effects;
5753
5754 /* Set up SFID and descriptors */
5755 inst->sfid = HSW_SFID_DATAPORT_DATA_CACHE_1;
5756 inst->desc = desc;
5757 inst->resize_sources(4);
5758 inst->src[0] = brw_imm_ud(0); /* desc */
5759 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5760 inst->src[2] = payload;
5761 inst->src[3] = payload2;
5762 }
5763
5764 static void
5765 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
5766 {
5767 const gen_device_info *devinfo = bld.shader->devinfo;
5768
5769 if (devinfo->gen >= 7) {
5770 fs_reg index = inst->src[0];
5771 /* We are switching the instruction from an ALU-like instruction to a
5772 * send-from-grf instruction. Since sends can't handle strides or
5773 * source modifiers, we have to make a copy of the offset source.
5774 */
5775 fs_reg offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
5776 bld.MOV(offset, inst->src[1]);
5777
5778 const unsigned simd_mode =
5779 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5780 BRW_SAMPLER_SIMD_MODE_SIMD16;
5781
5782 inst->opcode = SHADER_OPCODE_SEND;
5783 inst->mlen = inst->exec_size / 8;
5784 inst->resize_sources(3);
5785
5786 inst->sfid = BRW_SFID_SAMPLER;
5787 inst->desc = brw_sampler_desc(devinfo, 0, 0,
5788 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
5789 simd_mode, 0);
5790 if (index.file == IMM) {
5791 inst->desc |= index.ud & 0xff;
5792 inst->src[0] = brw_imm_ud(0);
5793 } else {
5794 const fs_builder ubld = bld.exec_all().group(1, 0);
5795 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5796 ubld.AND(tmp, index, brw_imm_ud(0xff));
5797 inst->src[0] = component(tmp, 0);
5798 }
5799 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5800 inst->src[2] = offset; /* payload */
5801 } else {
5802 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
5803 BRW_REGISTER_TYPE_UD);
5804
5805 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
5806
5807 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
5808 inst->resize_sources(1);
5809 inst->base_mrf = payload.nr;
5810 inst->header_size = 1;
5811 inst->mlen = 1 + inst->exec_size / 8;
5812 }
5813 }
5814
5815 static void
5816 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
5817 {
5818 assert(bld.shader->devinfo->gen < 6);
5819
5820 inst->base_mrf = 2;
5821 inst->mlen = inst->sources * inst->exec_size / 8;
5822
5823 if (inst->sources > 1) {
5824 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
5825 * "Message Payload":
5826 *
5827 * "Operand0[7]. For the INT DIV functions, this operand is the
5828 * denominator."
5829 * ...
5830 * "Operand1[7]. For the INT DIV functions, this operand is the
5831 * numerator."
5832 */
5833 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
5834 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
5835 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
5836
5837 inst->resize_sources(1);
5838 inst->src[0] = src0;
5839
5840 assert(inst->exec_size == 8);
5841 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
5842 }
5843 }
5844
5845 bool
5846 fs_visitor::lower_logical_sends()
5847 {
5848 bool progress = false;
5849
5850 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5851 const fs_builder ibld(this, block, inst);
5852
5853 switch (inst->opcode) {
5854 case FS_OPCODE_FB_WRITE_LOGICAL:
5855 assert(stage == MESA_SHADER_FRAGMENT);
5856 lower_fb_write_logical_send(ibld, inst,
5857 brw_wm_prog_data(prog_data),
5858 (const brw_wm_prog_key *)key,
5859 payload);
5860 break;
5861
5862 case FS_OPCODE_FB_READ_LOGICAL:
5863 lower_fb_read_logical_send(ibld, inst);
5864 break;
5865
5866 case SHADER_OPCODE_TEX_LOGICAL:
5867 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
5868 break;
5869
5870 case SHADER_OPCODE_TXD_LOGICAL:
5871 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
5872 break;
5873
5874 case SHADER_OPCODE_TXF_LOGICAL:
5875 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
5876 break;
5877
5878 case SHADER_OPCODE_TXL_LOGICAL:
5879 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
5880 break;
5881
5882 case SHADER_OPCODE_TXS_LOGICAL:
5883 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
5884 break;
5885
5886 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5887 lower_sampler_logical_send(ibld, inst,
5888 SHADER_OPCODE_IMAGE_SIZE_LOGICAL);
5889 break;
5890
5891 case FS_OPCODE_TXB_LOGICAL:
5892 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
5893 break;
5894
5895 case SHADER_OPCODE_TXF_CMS_LOGICAL:
5896 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
5897 break;
5898
5899 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
5900 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
5901 break;
5902
5903 case SHADER_OPCODE_TXF_UMS_LOGICAL:
5904 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
5905 break;
5906
5907 case SHADER_OPCODE_TXF_MCS_LOGICAL:
5908 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
5909 break;
5910
5911 case SHADER_OPCODE_LOD_LOGICAL:
5912 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
5913 break;
5914
5915 case SHADER_OPCODE_TG4_LOGICAL:
5916 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
5917 break;
5918
5919 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
5920 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
5921 break;
5922
5923 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
5924 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
5925 break;
5926
5927 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5928 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5929 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5930 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5931 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5932 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5933 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5934 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5935 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5936 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5937 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5938 lower_surface_logical_send(ibld, inst);
5939 break;
5940
5941 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5942 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5943 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5944 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5945 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5946 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5947 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5948 lower_a64_logical_send(ibld, inst);
5949 break;
5950
5951 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
5952 lower_varying_pull_constant_logical_send(ibld, inst);
5953 break;
5954
5955 case SHADER_OPCODE_RCP:
5956 case SHADER_OPCODE_RSQ:
5957 case SHADER_OPCODE_SQRT:
5958 case SHADER_OPCODE_EXP2:
5959 case SHADER_OPCODE_LOG2:
5960 case SHADER_OPCODE_SIN:
5961 case SHADER_OPCODE_COS:
5962 case SHADER_OPCODE_POW:
5963 case SHADER_OPCODE_INT_QUOTIENT:
5964 case SHADER_OPCODE_INT_REMAINDER:
5965 /* The math opcodes are overloaded for the send-like and
5966 * expression-like instructions which seems kind of icky. Gen6+ has
5967 * a native (but rather quirky) MATH instruction so we don't need to
5968 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
5969 * logical instructions (which we can easily recognize because they
5970 * have mlen = 0) into send-like virtual instructions.
5971 */
5972 if (devinfo->gen < 6 && inst->mlen == 0) {
5973 lower_math_logical_send(ibld, inst);
5974 break;
5975
5976 } else {
5977 continue;
5978 }
5979
5980 default:
5981 continue;
5982 }
5983
5984 progress = true;
5985 }
5986
5987 if (progress)
5988 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
5989
5990 return progress;
5991 }
5992
5993 static bool
5994 is_mixed_float_with_fp32_dst(const fs_inst *inst)
5995 {
5996 /* This opcode sometimes uses :W type on the source even if the operand is
5997 * a :HF, because in gen7 there is no support for :HF, and thus it uses :W.
5998 */
5999 if (inst->opcode == BRW_OPCODE_F16TO32)
6000 return true;
6001
6002 if (inst->dst.type != BRW_REGISTER_TYPE_F)
6003 return false;
6004
6005 for (int i = 0; i < inst->sources; i++) {
6006 if (inst->src[i].type == BRW_REGISTER_TYPE_HF)
6007 return true;
6008 }
6009
6010 return false;
6011 }
6012
6013 static bool
6014 is_mixed_float_with_packed_fp16_dst(const fs_inst *inst)
6015 {
6016 /* This opcode sometimes uses :W type on the destination even if the
6017 * destination is a :HF, because in gen7 there is no support for :HF, and
6018 * thus it uses :W.
6019 */
6020 if (inst->opcode == BRW_OPCODE_F32TO16 &&
6021 inst->dst.stride == 1)
6022 return true;
6023
6024 if (inst->dst.type != BRW_REGISTER_TYPE_HF ||
6025 inst->dst.stride != 1)
6026 return false;
6027
6028 for (int i = 0; i < inst->sources; i++) {
6029 if (inst->src[i].type == BRW_REGISTER_TYPE_F)
6030 return true;
6031 }
6032
6033 return false;
6034 }
6035
6036 /**
6037 * Get the closest allowed SIMD width for instruction \p inst accounting for
6038 * some common regioning and execution control restrictions that apply to FPU
6039 * instructions. These restrictions don't necessarily have any relevance to
6040 * instructions not executed by the FPU pipeline like extended math, control
6041 * flow or send message instructions.
6042 *
6043 * For virtual opcodes it's really up to the instruction -- In some cases
6044 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
6045 * instructions) it may simplify virtual instruction lowering if we can
6046 * enforce FPU-like regioning restrictions already on the virtual instruction,
6047 * in other cases (e.g. virtual send-like instructions) this may be
6048 * excessively restrictive.
6049 */
6050 static unsigned
6051 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
6052 const fs_inst *inst)
6053 {
6054 /* Maximum execution size representable in the instruction controls. */
6055 unsigned max_width = MIN2(32, inst->exec_size);
6056
6057 /* According to the PRMs:
6058 * "A. In Direct Addressing mode, a source cannot span more than 2
6059 * adjacent GRF registers.
6060 * B. A destination cannot span more than 2 adjacent GRF registers."
6061 *
6062 * Look for the source or destination with the largest register region
6063 * which is the one that is going to limit the overall execution size of
6064 * the instruction due to this rule.
6065 */
6066 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
6067
6068 for (unsigned i = 0; i < inst->sources; i++)
6069 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
6070
6071 /* Calculate the maximum execution size of the instruction based on the
6072 * factor by which it goes over the hardware limit of 2 GRFs.
6073 */
6074 if (reg_count > 2)
6075 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
6076
6077 /* According to the IVB PRMs:
6078 * "When destination spans two registers, the source MUST span two
6079 * registers. The exception to the above rule:
6080 *
6081 * - When source is scalar, the source registers are not incremented.
6082 * - When source is packed integer Word and destination is packed
6083 * integer DWord, the source register is not incremented but the
6084 * source sub register is incremented."
6085 *
6086 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
6087 * restrictions. The code below intentionally doesn't check whether the
6088 * destination type is integer because empirically the hardware doesn't
6089 * seem to care what the actual type is as long as it's dword-aligned.
6090 */
6091 if (devinfo->gen < 8) {
6092 for (unsigned i = 0; i < inst->sources; i++) {
6093 /* IVB implements DF scalars as <0;2,1> regions. */
6094 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
6095 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
6096 const bool is_packed_word_exception =
6097 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
6098 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
6099
6100 /* We check size_read(i) against size_written instead of REG_SIZE
6101 * because we want to properly handle SIMD32. In SIMD32, you can end
6102 * up with writes to 4 registers and a source that reads 2 registers
6103 * and we may still need to lower all the way to SIMD8 in that case.
6104 */
6105 if (inst->size_written > REG_SIZE &&
6106 inst->size_read(i) != 0 &&
6107 inst->size_read(i) < inst->size_written &&
6108 !is_scalar_exception && !is_packed_word_exception) {
6109 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
6110 max_width = MIN2(max_width, inst->exec_size / reg_count);
6111 }
6112 }
6113 }
6114
6115 if (devinfo->gen < 6) {
6116 /* From the G45 PRM, Volume 4 Page 361:
6117 *
6118 * "Operand Alignment Rule: With the exceptions listed below, a
6119 * source/destination operand in general should be aligned to even
6120 * 256-bit physical register with a region size equal to two 256-bit
6121 * physical registers."
6122 *
6123 * Normally we enforce this by allocating virtual registers to the
6124 * even-aligned class. But we need to handle payload registers.
6125 */
6126 for (unsigned i = 0; i < inst->sources; i++) {
6127 if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) &&
6128 inst->size_read(i) > REG_SIZE) {
6129 max_width = MIN2(max_width, 8);
6130 }
6131 }
6132 }
6133
6134 /* From the IVB PRMs:
6135 * "When an instruction is SIMD32, the low 16 bits of the execution mask
6136 * are applied for both halves of the SIMD32 instruction. If different
6137 * execution mask channels are required, split the instruction into two
6138 * SIMD16 instructions."
6139 *
6140 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
6141 * 32-wide control flow support in hardware and will behave similarly.
6142 */
6143 if (devinfo->gen < 8 && !inst->force_writemask_all)
6144 max_width = MIN2(max_width, 16);
6145
6146 /* From the IVB PRMs (applies to HSW too):
6147 * "Instructions with condition modifiers must not use SIMD32."
6148 *
6149 * From the BDW PRMs (applies to later hardware too):
6150 * "Ternary instruction with condition modifiers must not use SIMD32."
6151 */
6152 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
6153 max_width = MIN2(max_width, 16);
6154
6155 /* From the IVB PRMs (applies to other devices that don't have the
6156 * gen_device_info::supports_simd16_3src flag set):
6157 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
6158 * SIMD8 is not allowed for DF operations."
6159 */
6160 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
6161 max_width = MIN2(max_width, inst->exec_size / reg_count);
6162
6163 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
6164 * the 8-bit quarter of the execution mask signals specified in the
6165 * instruction control fields) for the second compressed half of any
6166 * single-precision instruction (for double-precision instructions
6167 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
6168 * the EU will apply the wrong execution controls for the second
6169 * sequential GRF write if the number of channels per GRF is not exactly
6170 * eight in single-precision mode (or four in double-float mode).
6171 *
6172 * In this situation we calculate the maximum size of the split
6173 * instructions so they only ever write to a single register.
6174 */
6175 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
6176 !inst->force_writemask_all) {
6177 const unsigned channels_per_grf = inst->exec_size /
6178 DIV_ROUND_UP(inst->size_written, REG_SIZE);
6179 const unsigned exec_type_size = get_exec_type_size(inst);
6180 assert(exec_type_size);
6181
6182 /* The hardware shifts exactly 8 channels per compressed half of the
6183 * instruction in single-precision mode and exactly 4 in double-precision.
6184 */
6185 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
6186 max_width = MIN2(max_width, channels_per_grf);
6187
6188 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
6189 * because HW applies the same channel enable signals to both halves of
6190 * the compressed instruction which will be just wrong under
6191 * non-uniform control flow.
6192 */
6193 if (devinfo->gen == 7 && !devinfo->is_haswell &&
6194 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
6195 max_width = MIN2(max_width, 4);
6196 }
6197
6198 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6199 * Float Operations:
6200 *
6201 * "No SIMD16 in mixed mode when destination is f32. Instruction
6202 * execution size must be no more than 8."
6203 *
6204 * FIXME: the simulator doesn't seem to complain if we don't do this and
6205 * empirical testing with existing CTS tests show that they pass just fine
6206 * without implementing this, however, since our interpretation of the PRM
6207 * is that conversion MOVs between HF and F are still mixed-float
6208 * instructions (and therefore subject to this restriction) we decided to
6209 * split them to be safe. Might be useful to do additional investigation to
6210 * lift the restriction if we can ensure that it is safe though, since these
6211 * conversions are common when half-float types are involved since many
6212 * instructions do not support HF types and conversions from/to F are
6213 * required.
6214 */
6215 if (is_mixed_float_with_fp32_dst(inst))
6216 max_width = MIN2(max_width, 8);
6217
6218 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6219 * Float Operations:
6220 *
6221 * "No SIMD16 in mixed mode when destination is packed f16 for both
6222 * Align1 and Align16."
6223 */
6224 if (is_mixed_float_with_packed_fp16_dst(inst))
6225 max_width = MIN2(max_width, 8);
6226
6227 /* Only power-of-two execution sizes are representable in the instruction
6228 * control fields.
6229 */
6230 return 1 << util_logbase2(max_width);
6231 }
6232
6233 /**
6234 * Get the maximum allowed SIMD width for instruction \p inst accounting for
6235 * various payload size restrictions that apply to sampler message
6236 * instructions.
6237 *
6238 * This is only intended to provide a maximum theoretical bound for the
6239 * execution size of the message based on the number of argument components
6240 * alone, which in most cases will determine whether the SIMD8 or SIMD16
6241 * variant of the message can be used, though some messages may have
6242 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
6243 * the message length to determine the exact SIMD width and argument count,
6244 * which makes a number of sampler message combinations impossible to
6245 * represent).
6246 */
6247 static unsigned
6248 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
6249 const fs_inst *inst)
6250 {
6251 /* If we have a min_lod parameter on anything other than a simple sample
6252 * message, it will push it over 5 arguments and we have to fall back to
6253 * SIMD8.
6254 */
6255 if (inst->opcode != SHADER_OPCODE_TEX &&
6256 inst->components_read(TEX_LOGICAL_SRC_MIN_LOD))
6257 return 8;
6258
6259 /* Calculate the number of coordinate components that have to be present
6260 * assuming that additional arguments follow the texel coordinates in the
6261 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
6262 * need to pad to four or three components depending on the message,
6263 * pre-ILK we need to pad to at most three components.
6264 */
6265 const unsigned req_coord_components =
6266 (devinfo->gen >= 7 ||
6267 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
6268 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
6269 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
6270 3;
6271
6272 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
6273 * variant of the TXL or TXF message.
6274 */
6275 const bool implicit_lod = devinfo->gen >= 9 &&
6276 (inst->opcode == SHADER_OPCODE_TXL ||
6277 inst->opcode == SHADER_OPCODE_TXF) &&
6278 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
6279
6280 /* Calculate the total number of argument components that need to be passed
6281 * to the sampler unit.
6282 */
6283 const unsigned num_payload_components =
6284 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
6285 req_coord_components) +
6286 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
6287 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
6288 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
6289 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
6290 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
6291 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
6292 inst->components_read(TEX_LOGICAL_SRC_MCS);
6293
6294 /* SIMD16 messages with more than five arguments exceed the maximum message
6295 * size supported by the sampler, regardless of whether a header is
6296 * provided or not.
6297 */
6298 return MIN2(inst->exec_size,
6299 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
6300 }
6301
6302 /**
6303 * Get the closest native SIMD width supported by the hardware for instruction
6304 * \p inst. The instruction will be left untouched by
6305 * fs_visitor::lower_simd_width() if the returned value is equal to the
6306 * original execution size.
6307 */
6308 static unsigned
6309 get_lowered_simd_width(const struct gen_device_info *devinfo,
6310 const fs_inst *inst)
6311 {
6312 switch (inst->opcode) {
6313 case BRW_OPCODE_MOV:
6314 case BRW_OPCODE_SEL:
6315 case BRW_OPCODE_NOT:
6316 case BRW_OPCODE_AND:
6317 case BRW_OPCODE_OR:
6318 case BRW_OPCODE_XOR:
6319 case BRW_OPCODE_SHR:
6320 case BRW_OPCODE_SHL:
6321 case BRW_OPCODE_ASR:
6322 case BRW_OPCODE_ROR:
6323 case BRW_OPCODE_ROL:
6324 case BRW_OPCODE_CMPN:
6325 case BRW_OPCODE_CSEL:
6326 case BRW_OPCODE_F32TO16:
6327 case BRW_OPCODE_F16TO32:
6328 case BRW_OPCODE_BFREV:
6329 case BRW_OPCODE_BFE:
6330 case BRW_OPCODE_ADD:
6331 case BRW_OPCODE_MUL:
6332 case BRW_OPCODE_AVG:
6333 case BRW_OPCODE_FRC:
6334 case BRW_OPCODE_RNDU:
6335 case BRW_OPCODE_RNDD:
6336 case BRW_OPCODE_RNDE:
6337 case BRW_OPCODE_RNDZ:
6338 case BRW_OPCODE_LZD:
6339 case BRW_OPCODE_FBH:
6340 case BRW_OPCODE_FBL:
6341 case BRW_OPCODE_CBIT:
6342 case BRW_OPCODE_SAD2:
6343 case BRW_OPCODE_MAD:
6344 case BRW_OPCODE_LRP:
6345 case FS_OPCODE_PACK:
6346 case SHADER_OPCODE_SEL_EXEC:
6347 case SHADER_OPCODE_CLUSTER_BROADCAST:
6348 return get_fpu_lowered_simd_width(devinfo, inst);
6349
6350 case BRW_OPCODE_CMP: {
6351 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
6352 * when the destination is a GRF the dependency-clear bit on the flag
6353 * register is cleared early.
6354 *
6355 * Suggested workarounds are to disable coissuing CMP instructions
6356 * or to split CMP(16) instructions into two CMP(8) instructions.
6357 *
6358 * We choose to split into CMP(8) instructions since disabling
6359 * coissuing would affect CMP instructions not otherwise affected by
6360 * the errata.
6361 */
6362 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
6363 !inst->dst.is_null() ? 8 : ~0);
6364 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
6365 }
6366 case BRW_OPCODE_BFI1:
6367 case BRW_OPCODE_BFI2:
6368 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
6369 * should
6370 * "Force BFI instructions to be executed always in SIMD8."
6371 */
6372 return MIN2(devinfo->is_haswell ? 8 : ~0u,
6373 get_fpu_lowered_simd_width(devinfo, inst));
6374
6375 case BRW_OPCODE_IF:
6376 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
6377 return inst->exec_size;
6378
6379 case SHADER_OPCODE_RCP:
6380 case SHADER_OPCODE_RSQ:
6381 case SHADER_OPCODE_SQRT:
6382 case SHADER_OPCODE_EXP2:
6383 case SHADER_OPCODE_LOG2:
6384 case SHADER_OPCODE_SIN:
6385 case SHADER_OPCODE_COS: {
6386 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
6387 * Gen6. Extended Math Function is limited to SIMD8 with half-float.
6388 */
6389 if (devinfo->gen == 6 || (devinfo->gen == 4 && !devinfo->is_g4x))
6390 return MIN2(8, inst->exec_size);
6391 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6392 return MIN2(8, inst->exec_size);
6393 return MIN2(16, inst->exec_size);
6394 }
6395
6396 case SHADER_OPCODE_POW: {
6397 /* SIMD16 is only allowed on Gen7+. Extended Math Function is limited
6398 * to SIMD8 with half-float
6399 */
6400 if (devinfo->gen < 7)
6401 return MIN2(8, inst->exec_size);
6402 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6403 return MIN2(8, inst->exec_size);
6404 return MIN2(16, inst->exec_size);
6405 }
6406
6407 case SHADER_OPCODE_USUB_SAT:
6408 case SHADER_OPCODE_ISUB_SAT:
6409 return get_fpu_lowered_simd_width(devinfo, inst);
6410
6411 case SHADER_OPCODE_INT_QUOTIENT:
6412 case SHADER_OPCODE_INT_REMAINDER:
6413 /* Integer division is limited to SIMD8 on all generations. */
6414 return MIN2(8, inst->exec_size);
6415
6416 case FS_OPCODE_LINTERP:
6417 case SHADER_OPCODE_GET_BUFFER_SIZE:
6418 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
6419 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
6420 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
6421 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
6422 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
6423 return MIN2(16, inst->exec_size);
6424
6425 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
6426 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
6427 * message used to implement varying pull constant loads, so expand it
6428 * to SIMD16. An alternative with longer message payload length but
6429 * shorter return payload would be to use the SIMD8 sampler message that
6430 * takes (header, u, v, r) as parameters instead of (header, u).
6431 */
6432 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
6433
6434 case FS_OPCODE_DDX_COARSE:
6435 case FS_OPCODE_DDX_FINE:
6436 case FS_OPCODE_DDY_COARSE:
6437 case FS_OPCODE_DDY_FINE:
6438 /* The implementation of this virtual opcode may require emitting
6439 * compressed Align16 instructions, which are severely limited on some
6440 * generations.
6441 *
6442 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
6443 * Region Restrictions):
6444 *
6445 * "In Align16 access mode, SIMD16 is not allowed for DW operations
6446 * and SIMD8 is not allowed for DF operations."
6447 *
6448 * In this context, "DW operations" means "operations acting on 32-bit
6449 * values", so it includes operations on floats.
6450 *
6451 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
6452 * (Instruction Compression -> Rules and Restrictions):
6453 *
6454 * "A compressed instruction must be in Align1 access mode. Align16
6455 * mode instructions cannot be compressed."
6456 *
6457 * Similar text exists in the g45 PRM.
6458 *
6459 * Empirically, compressed align16 instructions using odd register
6460 * numbers don't appear to work on Sandybridge either.
6461 */
6462 return (devinfo->gen == 4 || devinfo->gen == 6 ||
6463 (devinfo->gen == 7 && !devinfo->is_haswell) ?
6464 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
6465
6466 case SHADER_OPCODE_MULH:
6467 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
6468 * is 8-wide on Gen7+.
6469 */
6470 return (devinfo->gen >= 7 ? 8 :
6471 get_fpu_lowered_simd_width(devinfo, inst));
6472
6473 case FS_OPCODE_FB_WRITE_LOGICAL:
6474 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
6475 * here.
6476 */
6477 assert(devinfo->gen != 6 ||
6478 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
6479 inst->exec_size == 8);
6480 /* Dual-source FB writes are unsupported in SIMD16 mode. */
6481 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
6482 8 : MIN2(16, inst->exec_size));
6483
6484 case FS_OPCODE_FB_READ_LOGICAL:
6485 return MIN2(16, inst->exec_size);
6486
6487 case SHADER_OPCODE_TEX_LOGICAL:
6488 case SHADER_OPCODE_TXF_CMS_LOGICAL:
6489 case SHADER_OPCODE_TXF_UMS_LOGICAL:
6490 case SHADER_OPCODE_TXF_MCS_LOGICAL:
6491 case SHADER_OPCODE_LOD_LOGICAL:
6492 case SHADER_OPCODE_TG4_LOGICAL:
6493 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
6494 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
6495 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
6496 return get_sampler_lowered_simd_width(devinfo, inst);
6497
6498 case SHADER_OPCODE_TXD_LOGICAL:
6499 /* TXD is unsupported in SIMD16 mode. */
6500 return 8;
6501
6502 case SHADER_OPCODE_TXL_LOGICAL:
6503 case FS_OPCODE_TXB_LOGICAL:
6504 /* Only one execution size is representable pre-ILK depending on whether
6505 * the shadow reference argument is present.
6506 */
6507 if (devinfo->gen == 4)
6508 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
6509 else
6510 return get_sampler_lowered_simd_width(devinfo, inst);
6511
6512 case SHADER_OPCODE_TXF_LOGICAL:
6513 case SHADER_OPCODE_TXS_LOGICAL:
6514 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
6515 * messages. Use SIMD16 instead.
6516 */
6517 if (devinfo->gen == 4)
6518 return 16;
6519 else
6520 return get_sampler_lowered_simd_width(devinfo, inst);
6521
6522 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
6523 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
6524 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
6525 return 8;
6526
6527 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
6528 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6529 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
6530 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
6531 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
6532 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
6533 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
6534 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
6535 return MIN2(16, inst->exec_size);
6536
6537 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
6538 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
6539 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
6540 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
6541 return devinfo->gen <= 8 ? 8 : MIN2(16, inst->exec_size);
6542
6543 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
6544 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
6545 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6546 return 8;
6547
6548 case SHADER_OPCODE_URB_READ_SIMD8:
6549 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
6550 case SHADER_OPCODE_URB_WRITE_SIMD8:
6551 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
6552 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
6553 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
6554 return MIN2(8, inst->exec_size);
6555
6556 case SHADER_OPCODE_QUAD_SWIZZLE: {
6557 const unsigned swiz = inst->src[1].ud;
6558 return (is_uniform(inst->src[0]) ?
6559 get_fpu_lowered_simd_width(devinfo, inst) :
6560 devinfo->gen < 11 && type_sz(inst->src[0].type) == 4 ? 8 :
6561 swiz == BRW_SWIZZLE_XYXY || swiz == BRW_SWIZZLE_ZWZW ? 4 :
6562 get_fpu_lowered_simd_width(devinfo, inst));
6563 }
6564 case SHADER_OPCODE_MOV_INDIRECT: {
6565 /* From IVB and HSW PRMs:
6566 *
6567 * "2.When the destination requires two registers and the sources are
6568 * indirect, the sources must use 1x1 regioning mode.
6569 *
6570 * In case of DF instructions in HSW/IVB, the exec_size is limited by
6571 * the EU decompression logic not handling VxH indirect addressing
6572 * correctly.
6573 */
6574 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
6575 /* Prior to Broadwell, we only have 8 address subregisters. */
6576 return MIN3(devinfo->gen >= 8 ? 16 : 8,
6577 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
6578 inst->exec_size);
6579 }
6580
6581 case SHADER_OPCODE_LOAD_PAYLOAD: {
6582 const unsigned reg_count =
6583 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
6584
6585 if (reg_count > 2) {
6586 /* Only LOAD_PAYLOAD instructions with per-channel destination region
6587 * can be easily lowered (which excludes headers and heterogeneous
6588 * types).
6589 */
6590 assert(!inst->header_size);
6591 for (unsigned i = 0; i < inst->sources; i++)
6592 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
6593 inst->src[i].file == BAD_FILE);
6594
6595 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
6596 } else {
6597 return inst->exec_size;
6598 }
6599 }
6600 default:
6601 return inst->exec_size;
6602 }
6603 }
6604
6605 /**
6606 * Return true if splitting out the group of channels of instruction \p inst
6607 * given by lbld.group() requires allocating a temporary for the i-th source
6608 * of the lowered instruction.
6609 */
6610 static inline bool
6611 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
6612 {
6613 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
6614 (inst->components_read(i) == 1 &&
6615 lbld.dispatch_width() <= inst->exec_size)) ||
6616 (inst->flags_written() &
6617 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
6618 }
6619
6620 /**
6621 * Extract the data that would be consumed by the channel group given by
6622 * lbld.group() from the i-th source region of instruction \p inst and return
6623 * it as result in packed form.
6624 */
6625 static fs_reg
6626 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
6627 {
6628 assert(lbld.group() >= inst->group);
6629
6630 /* Specified channel group from the source region. */
6631 const fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group);
6632
6633 if (needs_src_copy(lbld, inst, i)) {
6634 /* Builder of the right width to perform the copy avoiding uninitialized
6635 * data if the lowered execution size is greater than the original
6636 * execution size of the instruction.
6637 */
6638 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
6639 inst->exec_size), 0);
6640 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
6641
6642 for (unsigned k = 0; k < inst->components_read(i); ++k)
6643 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
6644
6645 return tmp;
6646
6647 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
6648 /* The source is invariant for all dispatch_width-wide groups of the
6649 * original region.
6650 */
6651 return inst->src[i];
6652
6653 } else {
6654 /* We can just point the lowered instruction at the right channel group
6655 * from the original region.
6656 */
6657 return src;
6658 }
6659 }
6660
6661 /**
6662 * Return true if splitting out the group of channels of instruction \p inst
6663 * given by lbld.group() requires allocating a temporary for the destination
6664 * of the lowered instruction and copying the data back to the original
6665 * destination region.
6666 */
6667 static inline bool
6668 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
6669 {
6670 /* If the instruction writes more than one component we'll have to shuffle
6671 * the results of multiple lowered instructions in order to make sure that
6672 * they end up arranged correctly in the original destination region.
6673 */
6674 if (inst->size_written > inst->dst.component_size(inst->exec_size))
6675 return true;
6676
6677 /* If the lowered execution size is larger than the original the result of
6678 * the instruction won't fit in the original destination, so we'll have to
6679 * allocate a temporary in any case.
6680 */
6681 if (lbld.dispatch_width() > inst->exec_size)
6682 return true;
6683
6684 for (unsigned i = 0; i < inst->sources; i++) {
6685 /* If we already made a copy of the source for other reasons there won't
6686 * be any overlap with the destination.
6687 */
6688 if (needs_src_copy(lbld, inst, i))
6689 continue;
6690
6691 /* In order to keep the logic simple we emit a copy whenever the
6692 * destination region doesn't exactly match an overlapping source, which
6693 * may point at the source and destination not being aligned group by
6694 * group which could cause one of the lowered instructions to overwrite
6695 * the data read from the same source by other lowered instructions.
6696 */
6697 if (regions_overlap(inst->dst, inst->size_written,
6698 inst->src[i], inst->size_read(i)) &&
6699 !inst->dst.equals(inst->src[i]))
6700 return true;
6701 }
6702
6703 return false;
6704 }
6705
6706 /**
6707 * Insert data from a packed temporary into the channel group given by
6708 * lbld.group() of the destination region of instruction \p inst and return
6709 * the temporary as result. Any copy instructions that are required for
6710 * unzipping the previous value (in the case of partial writes) will be
6711 * inserted using \p lbld_before and any copy instructions required for
6712 * zipping up the destination of \p inst will be inserted using \p lbld_after.
6713 */
6714 static fs_reg
6715 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
6716 fs_inst *inst)
6717 {
6718 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
6719 assert(lbld_before.group() == lbld_after.group());
6720 assert(lbld_after.group() >= inst->group);
6721
6722 /* Specified channel group from the destination region. */
6723 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group);
6724 const unsigned dst_size = inst->size_written /
6725 inst->dst.component_size(inst->exec_size);
6726
6727 if (needs_dst_copy(lbld_after, inst)) {
6728 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
6729
6730 if (inst->predicate) {
6731 /* Handle predication by copying the original contents of
6732 * the destination into the temporary before emitting the
6733 * lowered instruction.
6734 */
6735 const fs_builder gbld_before =
6736 lbld_before.group(MIN2(lbld_before.dispatch_width(),
6737 inst->exec_size), 0);
6738 for (unsigned k = 0; k < dst_size; ++k) {
6739 gbld_before.MOV(offset(tmp, lbld_before, k),
6740 offset(dst, inst->exec_size, k));
6741 }
6742 }
6743
6744 const fs_builder gbld_after =
6745 lbld_after.group(MIN2(lbld_after.dispatch_width(),
6746 inst->exec_size), 0);
6747 for (unsigned k = 0; k < dst_size; ++k) {
6748 /* Use a builder of the right width to perform the copy avoiding
6749 * uninitialized data if the lowered execution size is greater than
6750 * the original execution size of the instruction.
6751 */
6752 gbld_after.MOV(offset(dst, inst->exec_size, k),
6753 offset(tmp, lbld_after, k));
6754 }
6755
6756 return tmp;
6757
6758 } else {
6759 /* No need to allocate a temporary for the lowered instruction, just
6760 * take the right group of channels from the original region.
6761 */
6762 return dst;
6763 }
6764 }
6765
6766 bool
6767 fs_visitor::lower_simd_width()
6768 {
6769 bool progress = false;
6770
6771 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6772 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
6773
6774 if (lower_width != inst->exec_size) {
6775 /* Builder matching the original instruction. We may also need to
6776 * emit an instruction of width larger than the original, set the
6777 * execution size of the builder to the highest of both for now so
6778 * we're sure that both cases can be handled.
6779 */
6780 const unsigned max_width = MAX2(inst->exec_size, lower_width);
6781 const fs_builder ibld = bld.at(block, inst)
6782 .exec_all(inst->force_writemask_all)
6783 .group(max_width, inst->group / max_width);
6784
6785 /* Split the copies in chunks of the execution width of either the
6786 * original or the lowered instruction, whichever is lower.
6787 */
6788 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
6789 const unsigned dst_size = inst->size_written /
6790 inst->dst.component_size(inst->exec_size);
6791
6792 assert(!inst->writes_accumulator && !inst->mlen);
6793
6794 /* Inserting the zip, unzip, and duplicated instructions in all of
6795 * the right spots is somewhat tricky. All of the unzip and any
6796 * instructions from the zip which unzip the destination prior to
6797 * writing need to happen before all of the per-group instructions
6798 * and the zip instructions need to happen after. In order to sort
6799 * this all out, we insert the unzip instructions before \p inst,
6800 * insert the per-group instructions after \p inst (i.e. before
6801 * inst->next), and insert the zip instructions before the
6802 * instruction after \p inst. Since we are inserting instructions
6803 * after \p inst, inst->next is a moving target and we need to save
6804 * it off here so that we insert the zip instructions in the right
6805 * place.
6806 *
6807 * Since we're inserting split instructions after after_inst, the
6808 * instructions will end up in the reverse order that we insert them.
6809 * However, certain render target writes require that the low group
6810 * instructions come before the high group. From the Ivy Bridge PRM
6811 * Vol. 4, Pt. 1, Section 3.9.11:
6812 *
6813 * "If multiple SIMD8 Dual Source messages are delivered by the
6814 * pixel shader thread, each SIMD8_DUALSRC_LO message must be
6815 * issued before the SIMD8_DUALSRC_HI message with the same Slot
6816 * Group Select setting."
6817 *
6818 * And, from Section 3.9.11.1 of the same PRM:
6819 *
6820 * "When SIMD32 or SIMD16 PS threads send render target writes
6821 * with multiple SIMD8 and SIMD16 messages, the following must
6822 * hold:
6823 *
6824 * All the slots (as described above) must have a corresponding
6825 * render target write irrespective of the slot's validity. A slot
6826 * is considered valid when at least one sample is enabled. For
6827 * example, a SIMD16 PS thread must send two SIMD8 render target
6828 * writes to cover all the slots.
6829 *
6830 * PS thread must send SIMD render target write messages with
6831 * increasing slot numbers. For example, SIMD16 thread has
6832 * Slot[15:0] and if two SIMD8 render target writes are used, the
6833 * first SIMD8 render target write must send Slot[7:0] and the
6834 * next one must send Slot[15:8]."
6835 *
6836 * In order to make low group instructions come before high group
6837 * instructions (this is required for some render target writes), we
6838 * split from the highest group to lowest.
6839 */
6840 exec_node *const after_inst = inst->next;
6841 for (int i = n - 1; i >= 0; i--) {
6842 /* Emit a copy of the original instruction with the lowered width.
6843 * If the EOT flag was set throw it away except for the last
6844 * instruction to avoid killing the thread prematurely.
6845 */
6846 fs_inst split_inst = *inst;
6847 split_inst.exec_size = lower_width;
6848 split_inst.eot = inst->eot && i == int(n - 1);
6849
6850 /* Select the correct channel enables for the i-th group, then
6851 * transform the sources and destination and emit the lowered
6852 * instruction.
6853 */
6854 const fs_builder lbld = ibld.group(lower_width, i);
6855
6856 for (unsigned j = 0; j < inst->sources; j++)
6857 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
6858
6859 split_inst.dst = emit_zip(lbld.at(block, inst),
6860 lbld.at(block, after_inst), inst);
6861 split_inst.size_written =
6862 split_inst.dst.component_size(lower_width) * dst_size;
6863
6864 lbld.at(block, inst->next).emit(split_inst);
6865 }
6866
6867 inst->remove(block);
6868 progress = true;
6869 }
6870 }
6871
6872 if (progress)
6873 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6874
6875 return progress;
6876 }
6877
6878 /**
6879 * Transform barycentric vectors into the interleaved form expected by the PLN
6880 * instruction and returned by the Gen7+ PI shared function.
6881 *
6882 * For channels 0-15 in SIMD16 mode they are expected to be laid out as
6883 * follows in the register file:
6884 *
6885 * rN+0: X[0-7]
6886 * rN+1: Y[0-7]
6887 * rN+2: X[8-15]
6888 * rN+3: Y[8-15]
6889 *
6890 * There is no need to handle SIMD32 here -- This is expected to be run after
6891 * SIMD lowering, since SIMD lowering relies on vectors having the standard
6892 * component layout.
6893 */
6894 bool
6895 fs_visitor::lower_barycentrics()
6896 {
6897 const bool has_interleaved_layout = devinfo->has_pln || devinfo->gen >= 7;
6898 bool progress = false;
6899
6900 if (stage != MESA_SHADER_FRAGMENT || !has_interleaved_layout)
6901 return false;
6902
6903 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6904 if (inst->exec_size < 16)
6905 continue;
6906
6907 const fs_builder ibld(this, block, inst);
6908 const fs_builder ubld = ibld.exec_all().group(8, 0);
6909
6910 switch (inst->opcode) {
6911 case FS_OPCODE_LINTERP : {
6912 assert(inst->exec_size == 16);
6913 const fs_reg tmp = ibld.vgrf(inst->src[0].type, 2);
6914 fs_reg srcs[4];
6915
6916 for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++)
6917 srcs[i] = horiz_offset(offset(inst->src[0], ibld, i % 2),
6918 8 * (i / 2));
6919
6920 ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs));
6921
6922 inst->src[0] = tmp;
6923 progress = true;
6924 break;
6925 }
6926 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
6927 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
6928 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: {
6929 assert(inst->exec_size == 16);
6930 const fs_reg tmp = ibld.vgrf(inst->dst.type, 2);
6931
6932 for (unsigned i = 0; i < 2; i++) {
6933 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
6934 fs_inst *mov = ibld.at(block, inst->next).group(8, g)
6935 .MOV(horiz_offset(offset(inst->dst, ibld, i),
6936 8 * g),
6937 offset(tmp, ubld, 2 * g + i));
6938 mov->predicate = inst->predicate;
6939 mov->predicate_inverse = inst->predicate_inverse;
6940 mov->flag_subreg = inst->flag_subreg;
6941 }
6942 }
6943
6944 inst->dst = tmp;
6945 progress = true;
6946 break;
6947 }
6948 default:
6949 break;
6950 }
6951 }
6952
6953 if (progress)
6954 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6955
6956 return progress;
6957 }
6958
6959 void
6960 fs_visitor::dump_instructions() const
6961 {
6962 dump_instructions(NULL);
6963 }
6964
6965 void
6966 fs_visitor::dump_instructions(const char *name) const
6967 {
6968 FILE *file = stderr;
6969 if (name && geteuid() != 0) {
6970 file = fopen(name, "w");
6971 if (!file)
6972 file = stderr;
6973 }
6974
6975 if (cfg) {
6976 const register_pressure &rp = regpressure_analysis.require();
6977 unsigned ip = 0, max_pressure = 0;
6978 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
6979 max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]);
6980 fprintf(file, "{%3d} %4d: ", rp.regs_live_at_ip[ip], ip);
6981 dump_instruction(inst, file);
6982 ip++;
6983 }
6984 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
6985 } else {
6986 int ip = 0;
6987 foreach_in_list(backend_instruction, inst, &instructions) {
6988 fprintf(file, "%4d: ", ip++);
6989 dump_instruction(inst, file);
6990 }
6991 }
6992
6993 if (file != stderr) {
6994 fclose(file);
6995 }
6996 }
6997
6998 void
6999 fs_visitor::dump_instruction(const backend_instruction *be_inst) const
7000 {
7001 dump_instruction(be_inst, stderr);
7002 }
7003
7004 void
7005 fs_visitor::dump_instruction(const backend_instruction *be_inst, FILE *file) const
7006 {
7007 const fs_inst *inst = (const fs_inst *)be_inst;
7008
7009 if (inst->predicate) {
7010 fprintf(file, "(%cf%d.%d) ",
7011 inst->predicate_inverse ? '-' : '+',
7012 inst->flag_subreg / 2,
7013 inst->flag_subreg % 2);
7014 }
7015
7016 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
7017 if (inst->saturate)
7018 fprintf(file, ".sat");
7019 if (inst->conditional_mod) {
7020 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
7021 if (!inst->predicate &&
7022 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
7023 inst->opcode != BRW_OPCODE_CSEL &&
7024 inst->opcode != BRW_OPCODE_IF &&
7025 inst->opcode != BRW_OPCODE_WHILE))) {
7026 fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
7027 inst->flag_subreg % 2);
7028 }
7029 }
7030 fprintf(file, "(%d) ", inst->exec_size);
7031
7032 if (inst->mlen) {
7033 fprintf(file, "(mlen: %d) ", inst->mlen);
7034 }
7035
7036 if (inst->ex_mlen) {
7037 fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen);
7038 }
7039
7040 if (inst->eot) {
7041 fprintf(file, "(EOT) ");
7042 }
7043
7044 switch (inst->dst.file) {
7045 case VGRF:
7046 fprintf(file, "vgrf%d", inst->dst.nr);
7047 break;
7048 case FIXED_GRF:
7049 fprintf(file, "g%d", inst->dst.nr);
7050 break;
7051 case MRF:
7052 fprintf(file, "m%d", inst->dst.nr);
7053 break;
7054 case BAD_FILE:
7055 fprintf(file, "(null)");
7056 break;
7057 case UNIFORM:
7058 fprintf(file, "***u%d***", inst->dst.nr);
7059 break;
7060 case ATTR:
7061 fprintf(file, "***attr%d***", inst->dst.nr);
7062 break;
7063 case ARF:
7064 switch (inst->dst.nr) {
7065 case BRW_ARF_NULL:
7066 fprintf(file, "null");
7067 break;
7068 case BRW_ARF_ADDRESS:
7069 fprintf(file, "a0.%d", inst->dst.subnr);
7070 break;
7071 case BRW_ARF_ACCUMULATOR:
7072 fprintf(file, "acc%d", inst->dst.subnr);
7073 break;
7074 case BRW_ARF_FLAG:
7075 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
7076 break;
7077 default:
7078 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
7079 break;
7080 }
7081 break;
7082 case IMM:
7083 unreachable("not reached");
7084 }
7085
7086 if (inst->dst.offset ||
7087 (inst->dst.file == VGRF &&
7088 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
7089 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
7090 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
7091 inst->dst.offset % reg_size);
7092 }
7093
7094 if (inst->dst.stride != 1)
7095 fprintf(file, "<%u>", inst->dst.stride);
7096 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
7097
7098 for (int i = 0; i < inst->sources; i++) {
7099 if (inst->src[i].negate)
7100 fprintf(file, "-");
7101 if (inst->src[i].abs)
7102 fprintf(file, "|");
7103 switch (inst->src[i].file) {
7104 case VGRF:
7105 fprintf(file, "vgrf%d", inst->src[i].nr);
7106 break;
7107 case FIXED_GRF:
7108 fprintf(file, "g%d", inst->src[i].nr);
7109 break;
7110 case MRF:
7111 fprintf(file, "***m%d***", inst->src[i].nr);
7112 break;
7113 case ATTR:
7114 fprintf(file, "attr%d", inst->src[i].nr);
7115 break;
7116 case UNIFORM:
7117 fprintf(file, "u%d", inst->src[i].nr);
7118 break;
7119 case BAD_FILE:
7120 fprintf(file, "(null)");
7121 break;
7122 case IMM:
7123 switch (inst->src[i].type) {
7124 case BRW_REGISTER_TYPE_F:
7125 fprintf(file, "%-gf", inst->src[i].f);
7126 break;
7127 case BRW_REGISTER_TYPE_DF:
7128 fprintf(file, "%fdf", inst->src[i].df);
7129 break;
7130 case BRW_REGISTER_TYPE_W:
7131 case BRW_REGISTER_TYPE_D:
7132 fprintf(file, "%dd", inst->src[i].d);
7133 break;
7134 case BRW_REGISTER_TYPE_UW:
7135 case BRW_REGISTER_TYPE_UD:
7136 fprintf(file, "%uu", inst->src[i].ud);
7137 break;
7138 case BRW_REGISTER_TYPE_Q:
7139 fprintf(file, "%" PRId64 "q", inst->src[i].d64);
7140 break;
7141 case BRW_REGISTER_TYPE_UQ:
7142 fprintf(file, "%" PRIu64 "uq", inst->src[i].u64);
7143 break;
7144 case BRW_REGISTER_TYPE_VF:
7145 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
7146 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
7147 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
7148 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
7149 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
7150 break;
7151 case BRW_REGISTER_TYPE_V:
7152 case BRW_REGISTER_TYPE_UV:
7153 fprintf(file, "%08x%s", inst->src[i].ud,
7154 inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV");
7155 break;
7156 default:
7157 fprintf(file, "???");
7158 break;
7159 }
7160 break;
7161 case ARF:
7162 switch (inst->src[i].nr) {
7163 case BRW_ARF_NULL:
7164 fprintf(file, "null");
7165 break;
7166 case BRW_ARF_ADDRESS:
7167 fprintf(file, "a0.%d", inst->src[i].subnr);
7168 break;
7169 case BRW_ARF_ACCUMULATOR:
7170 fprintf(file, "acc%d", inst->src[i].subnr);
7171 break;
7172 case BRW_ARF_FLAG:
7173 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
7174 break;
7175 default:
7176 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
7177 break;
7178 }
7179 break;
7180 }
7181
7182 if (inst->src[i].offset ||
7183 (inst->src[i].file == VGRF &&
7184 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
7185 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
7186 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
7187 inst->src[i].offset % reg_size);
7188 }
7189
7190 if (inst->src[i].abs)
7191 fprintf(file, "|");
7192
7193 if (inst->src[i].file != IMM) {
7194 unsigned stride;
7195 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
7196 unsigned hstride = inst->src[i].hstride;
7197 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
7198 } else {
7199 stride = inst->src[i].stride;
7200 }
7201 if (stride != 1)
7202 fprintf(file, "<%u>", stride);
7203
7204 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
7205 }
7206
7207 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
7208 fprintf(file, ", ");
7209 }
7210
7211 fprintf(file, " ");
7212
7213 if (inst->force_writemask_all)
7214 fprintf(file, "NoMask ");
7215
7216 if (inst->exec_size != dispatch_width)
7217 fprintf(file, "group%d ", inst->group);
7218
7219 fprintf(file, "\n");
7220 }
7221
7222 void
7223 fs_visitor::setup_fs_payload_gen6()
7224 {
7225 assert(stage == MESA_SHADER_FRAGMENT);
7226 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
7227 const unsigned payload_width = MIN2(16, dispatch_width);
7228 assert(dispatch_width % payload_width == 0);
7229 assert(devinfo->gen >= 6);
7230
7231 prog_data->uses_src_depth = prog_data->uses_src_w =
7232 (nir->info.system_values_read & (1ull << SYSTEM_VALUE_FRAG_COORD)) != 0;
7233
7234 prog_data->uses_sample_mask =
7235 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
7236
7237 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
7238 *
7239 * "MSDISPMODE_PERSAMPLE is required in order to select
7240 * POSOFFSET_SAMPLE"
7241 *
7242 * So we can only really get sample positions if we are doing real
7243 * per-sample dispatch. If we need gl_SamplePosition and we don't have
7244 * persample dispatch, we hard-code it to 0.5.
7245 */
7246 prog_data->uses_pos_offset = prog_data->persample_dispatch &&
7247 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS);
7248
7249 /* R0: PS thread payload header. */
7250 payload.num_regs++;
7251
7252 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7253 /* R1: masks, pixel X/Y coordinates. */
7254 payload.subspan_coord_reg[j] = payload.num_regs++;
7255 }
7256
7257 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7258 /* R3-26: barycentric interpolation coordinates. These appear in the
7259 * same order that they appear in the brw_barycentric_mode enum. Each
7260 * set of coordinates occupies 2 registers if dispatch width == 8 and 4
7261 * registers if dispatch width == 16. Coordinates only appear if they
7262 * were enabled using the "Barycentric Interpolation Mode" bits in
7263 * WM_STATE.
7264 */
7265 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
7266 if (prog_data->barycentric_interp_modes & (1 << i)) {
7267 payload.barycentric_coord_reg[i][j] = payload.num_regs;
7268 payload.num_regs += payload_width / 4;
7269 }
7270 }
7271
7272 /* R27-28: interpolated depth if uses source depth */
7273 if (prog_data->uses_src_depth) {
7274 payload.source_depth_reg[j] = payload.num_regs;
7275 payload.num_regs += payload_width / 8;
7276 }
7277
7278 /* R29-30: interpolated W set if GEN6_WM_USES_SOURCE_W. */
7279 if (prog_data->uses_src_w) {
7280 payload.source_w_reg[j] = payload.num_regs;
7281 payload.num_regs += payload_width / 8;
7282 }
7283
7284 /* R31: MSAA position offsets. */
7285 if (prog_data->uses_pos_offset) {
7286 payload.sample_pos_reg[j] = payload.num_regs;
7287 payload.num_regs++;
7288 }
7289
7290 /* R32-33: MSAA input coverage mask */
7291 if (prog_data->uses_sample_mask) {
7292 assert(devinfo->gen >= 7);
7293 payload.sample_mask_in_reg[j] = payload.num_regs;
7294 payload.num_regs += payload_width / 8;
7295 }
7296 }
7297
7298 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
7299 source_depth_to_render_target = true;
7300 }
7301 }
7302
7303 void
7304 fs_visitor::setup_vs_payload()
7305 {
7306 /* R0: thread header, R1: urb handles */
7307 payload.num_regs = 2;
7308 }
7309
7310 void
7311 fs_visitor::setup_gs_payload()
7312 {
7313 assert(stage == MESA_SHADER_GEOMETRY);
7314
7315 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
7316 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
7317
7318 /* R0: thread header, R1: output URB handles */
7319 payload.num_regs = 2;
7320
7321 if (gs_prog_data->include_primitive_id) {
7322 /* R2: Primitive ID 0..7 */
7323 payload.num_regs++;
7324 }
7325
7326 /* Always enable VUE handles so we can safely use pull model if needed.
7327 *
7328 * The push model for a GS uses a ton of register space even for trivial
7329 * scenarios with just a few inputs, so just make things easier and a bit
7330 * safer by always having pull model available.
7331 */
7332 gs_prog_data->base.include_vue_handles = true;
7333
7334 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
7335 payload.num_regs += nir->info.gs.vertices_in;
7336
7337 /* Use a maximum of 24 registers for push-model inputs. */
7338 const unsigned max_push_components = 24;
7339
7340 /* If pushing our inputs would take too many registers, reduce the URB read
7341 * length (which is in HWords, or 8 registers), and resort to pulling.
7342 *
7343 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
7344 * have to multiply by VerticesIn to obtain the total storage requirement.
7345 */
7346 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
7347 max_push_components) {
7348 vue_prog_data->urb_read_length =
7349 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
7350 }
7351 }
7352
7353 void
7354 fs_visitor::setup_cs_payload()
7355 {
7356 assert(devinfo->gen >= 7);
7357 payload.num_regs = 1;
7358 }
7359
7360 brw::register_pressure::register_pressure(const fs_visitor *v)
7361 {
7362 const fs_live_variables &live = v->live_analysis.require();
7363 const unsigned num_instructions = v->cfg->num_blocks ?
7364 v->cfg->blocks[v->cfg->num_blocks - 1]->end_ip + 1 : 0;
7365
7366 regs_live_at_ip = new unsigned[num_instructions]();
7367
7368 for (unsigned reg = 0; reg < v->alloc.count; reg++) {
7369 for (int ip = live.vgrf_start[reg]; ip <= live.vgrf_end[reg]; ip++)
7370 regs_live_at_ip[ip] += v->alloc.sizes[reg];
7371 }
7372 }
7373
7374 brw::register_pressure::~register_pressure()
7375 {
7376 delete[] regs_live_at_ip;
7377 }
7378
7379 void
7380 fs_visitor::invalidate_analysis(brw::analysis_dependency_class c)
7381 {
7382 backend_shader::invalidate_analysis(c);
7383 live_analysis.invalidate(c);
7384 regpressure_analysis.invalidate(c);
7385 }
7386
7387 void
7388 fs_visitor::optimize()
7389 {
7390 /* Start by validating the shader we currently have. */
7391 validate();
7392
7393 /* bld is the common builder object pointing at the end of the program we
7394 * used to translate it into i965 IR. For the optimization and lowering
7395 * passes coming next, any code added after the end of the program without
7396 * having explicitly called fs_builder::at() clearly points at a mistake.
7397 * Ideally optimization passes wouldn't be part of the visitor so they
7398 * wouldn't have access to bld at all, but they do, so just in case some
7399 * pass forgets to ask for a location explicitly set it to NULL here to
7400 * make it trip. The dispatch width is initialized to a bogus value to
7401 * make sure that optimizations set the execution controls explicitly to
7402 * match the code they are manipulating instead of relying on the defaults.
7403 */
7404 bld = fs_builder(this, 64);
7405
7406 assign_constant_locations();
7407 lower_constant_loads();
7408
7409 validate();
7410
7411 split_virtual_grfs();
7412 validate();
7413
7414 #define OPT(pass, args...) ({ \
7415 pass_num++; \
7416 bool this_progress = pass(args); \
7417 \
7418 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
7419 char filename[64]; \
7420 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
7421 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
7422 \
7423 backend_shader::dump_instructions(filename); \
7424 } \
7425 \
7426 validate(); \
7427 \
7428 progress = progress || this_progress; \
7429 this_progress; \
7430 })
7431
7432 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
7433 char filename[64];
7434 snprintf(filename, 64, "%s%d-%s-00-00-start",
7435 stage_abbrev, dispatch_width, nir->info.name);
7436
7437 backend_shader::dump_instructions(filename);
7438 }
7439
7440 bool progress = false;
7441 int iteration = 0;
7442 int pass_num = 0;
7443
7444 /* Before anything else, eliminate dead code. The results of some NIR
7445 * instructions may effectively be calculated twice. Once when the
7446 * instruction is encountered, and again when the user of that result is
7447 * encountered. Wipe those away before algebraic optimizations and
7448 * especially copy propagation can mix things up.
7449 */
7450 OPT(dead_code_eliminate);
7451
7452 OPT(remove_extra_rounding_modes);
7453
7454 do {
7455 progress = false;
7456 pass_num = 0;
7457 iteration++;
7458
7459 OPT(remove_duplicate_mrf_writes);
7460
7461 OPT(opt_algebraic);
7462 OPT(opt_cse);
7463 OPT(opt_copy_propagation);
7464 OPT(opt_predicated_break, this);
7465 OPT(opt_cmod_propagation);
7466 OPT(dead_code_eliminate);
7467 OPT(opt_peephole_sel);
7468 OPT(dead_control_flow_eliminate, this);
7469 OPT(opt_register_renaming);
7470 OPT(opt_saturate_propagation);
7471 OPT(register_coalesce);
7472 OPT(compute_to_mrf);
7473 OPT(eliminate_find_live_channel);
7474
7475 OPT(compact_virtual_grfs);
7476 } while (progress);
7477
7478 progress = false;
7479 pass_num = 0;
7480
7481 if (OPT(lower_pack)) {
7482 OPT(register_coalesce);
7483 OPT(dead_code_eliminate);
7484 }
7485
7486 OPT(lower_simd_width);
7487 OPT(lower_barycentrics);
7488 OPT(lower_logical_sends);
7489
7490 /* After logical SEND lowering. */
7491 OPT(fixup_nomask_control_flow);
7492
7493 if (progress) {
7494 OPT(opt_copy_propagation);
7495 /* Only run after logical send lowering because it's easier to implement
7496 * in terms of physical sends.
7497 */
7498 if (OPT(opt_zero_samples))
7499 OPT(opt_copy_propagation);
7500 /* Run after logical send lowering to give it a chance to CSE the
7501 * LOAD_PAYLOAD instructions created to construct the payloads of
7502 * e.g. texturing messages in cases where it wasn't possible to CSE the
7503 * whole logical instruction.
7504 */
7505 OPT(opt_cse);
7506 OPT(register_coalesce);
7507 OPT(compute_to_mrf);
7508 OPT(dead_code_eliminate);
7509 OPT(remove_duplicate_mrf_writes);
7510 OPT(opt_peephole_sel);
7511 }
7512
7513 OPT(opt_redundant_discard_jumps);
7514
7515 if (OPT(lower_load_payload)) {
7516 split_virtual_grfs();
7517
7518 /* Lower 64 bit MOVs generated by payload lowering. */
7519 if (!devinfo->has_64bit_float && !devinfo->has_64bit_int)
7520 OPT(opt_algebraic);
7521
7522 OPT(register_coalesce);
7523 OPT(lower_simd_width);
7524 OPT(compute_to_mrf);
7525 OPT(dead_code_eliminate);
7526 }
7527
7528 OPT(opt_combine_constants);
7529 OPT(lower_integer_multiplication);
7530 OPT(lower_sub_sat);
7531
7532 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
7533 OPT(opt_cmod_propagation);
7534 OPT(opt_cse);
7535 OPT(opt_copy_propagation);
7536 OPT(dead_code_eliminate);
7537 }
7538
7539 if (OPT(lower_regioning)) {
7540 OPT(opt_copy_propagation);
7541 OPT(dead_code_eliminate);
7542 OPT(lower_simd_width);
7543 }
7544
7545 OPT(fixup_sends_duplicate_payload);
7546
7547 lower_uniform_pull_constant_loads();
7548
7549 validate();
7550 }
7551
7552 /**
7553 * From the Skylake PRM Vol. 2a docs for sends:
7554 *
7555 * "It is required that the second block of GRFs does not overlap with the
7556 * first block."
7557 *
7558 * There are plenty of cases where we may accidentally violate this due to
7559 * having, for instance, both sources be the constant 0. This little pass
7560 * just adds a new vgrf for the second payload and copies it over.
7561 */
7562 bool
7563 fs_visitor::fixup_sends_duplicate_payload()
7564 {
7565 bool progress = false;
7566
7567 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7568 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
7569 regions_overlap(inst->src[2], inst->mlen * REG_SIZE,
7570 inst->src[3], inst->ex_mlen * REG_SIZE)) {
7571 fs_reg tmp = fs_reg(VGRF, alloc.allocate(inst->ex_mlen),
7572 BRW_REGISTER_TYPE_UD);
7573 /* Sadly, we've lost all notion of channels and bit sizes at this
7574 * point. Just WE_all it.
7575 */
7576 const fs_builder ibld = bld.at(block, inst).exec_all().group(16, 0);
7577 fs_reg copy_src = retype(inst->src[3], BRW_REGISTER_TYPE_UD);
7578 fs_reg copy_dst = tmp;
7579 for (unsigned i = 0; i < inst->ex_mlen; i += 2) {
7580 if (inst->ex_mlen == i + 1) {
7581 /* Only one register left; do SIMD8 */
7582 ibld.group(8, 0).MOV(copy_dst, copy_src);
7583 } else {
7584 ibld.MOV(copy_dst, copy_src);
7585 }
7586 copy_src = offset(copy_src, ibld, 1);
7587 copy_dst = offset(copy_dst, ibld, 1);
7588 }
7589 inst->src[3] = tmp;
7590 progress = true;
7591 }
7592 }
7593
7594 if (progress)
7595 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7596
7597 return progress;
7598 }
7599
7600 /**
7601 * Three source instruction must have a GRF/MRF destination register.
7602 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
7603 */
7604 void
7605 fs_visitor::fixup_3src_null_dest()
7606 {
7607 bool progress = false;
7608
7609 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7610 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
7611 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
7612 inst->dst.type);
7613 progress = true;
7614 }
7615 }
7616
7617 if (progress)
7618 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
7619 DEPENDENCY_VARIABLES);
7620 }
7621
7622 /**
7623 * Find the first instruction in the program that might start a region of
7624 * divergent control flow due to a HALT jump. There is no
7625 * find_halt_control_flow_region_end(), the region of divergence extends until
7626 * the only FS_OPCODE_PLACEHOLDER_HALT in the program.
7627 */
7628 static const fs_inst *
7629 find_halt_control_flow_region_start(const fs_visitor *v)
7630 {
7631 if (brw_wm_prog_data(v->prog_data)->uses_kill) {
7632 foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
7633 if (inst->opcode == FS_OPCODE_DISCARD_JUMP ||
7634 inst->opcode == FS_OPCODE_PLACEHOLDER_HALT)
7635 return inst;
7636 }
7637 }
7638
7639 return NULL;
7640 }
7641
7642 /**
7643 * Work around the Gen12 hardware bug filed as GEN:BUG:1407528679. EU fusion
7644 * can cause a BB to be executed with all channels disabled, which will lead
7645 * to the execution of any NoMask instructions in it, even though any
7646 * execution-masked instructions will be correctly shot down. This may break
7647 * assumptions of some NoMask SEND messages whose descriptor depends on data
7648 * generated by live invocations of the shader.
7649 *
7650 * This avoids the problem by predicating certain instructions on an ANY
7651 * horizontal predicate that makes sure that their execution is omitted when
7652 * all channels of the program are disabled.
7653 */
7654 bool
7655 fs_visitor::fixup_nomask_control_flow()
7656 {
7657 if (devinfo->gen != 12)
7658 return false;
7659
7660 const brw_predicate pred = dispatch_width > 16 ? BRW_PREDICATE_ALIGN1_ANY32H :
7661 dispatch_width > 8 ? BRW_PREDICATE_ALIGN1_ANY16H :
7662 BRW_PREDICATE_ALIGN1_ANY8H;
7663 const fs_inst *halt_start = find_halt_control_flow_region_start(this);
7664 unsigned depth = 0;
7665 bool progress = false;
7666
7667 const fs_live_variables &live_vars = live_analysis.require();
7668
7669 /* Scan the program backwards in order to be able to easily determine
7670 * whether the flag register is live at any point.
7671 */
7672 foreach_block_reverse_safe(block, cfg) {
7673 BITSET_WORD flag_liveout = live_vars.block_data[block->num]
7674 .flag_liveout[0];
7675 STATIC_ASSERT(ARRAY_SIZE(live_vars.block_data[0].flag_liveout) == 1);
7676
7677 foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
7678 if (!inst->predicate && inst->exec_size >= 8)
7679 flag_liveout &= ~inst->flags_written();
7680
7681 switch (inst->opcode) {
7682 case BRW_OPCODE_DO:
7683 case BRW_OPCODE_IF:
7684 /* Note that this doesn't handle FS_OPCODE_DISCARD_JUMP since only
7685 * the first one in the program closes the region of divergent
7686 * control flow due to any HALT instructions -- Instead this is
7687 * handled with the halt_start check below.
7688 */
7689 depth--;
7690 break;
7691
7692 case BRW_OPCODE_WHILE:
7693 case BRW_OPCODE_ENDIF:
7694 case FS_OPCODE_PLACEHOLDER_HALT:
7695 depth++;
7696 break;
7697
7698 default:
7699 /* Note that the vast majority of NoMask SEND instructions in the
7700 * program are harmless while executed in a block with all
7701 * channels disabled, since any instructions with side effects we
7702 * could hit here should be execution-masked.
7703 *
7704 * The main concern is NoMask SEND instructions where the message
7705 * descriptor or header depends on data generated by live
7706 * invocations of the shader (RESINFO and
7707 * FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD with a dynamically
7708 * computed surface index seem to be the only examples right now
7709 * where this could easily lead to GPU hangs). Unfortunately we
7710 * have no straightforward way to detect that currently, so just
7711 * predicate any NoMask SEND instructions we find under control
7712 * flow.
7713 *
7714 * If this proves to have a measurable performance impact it can
7715 * be easily extended with a whitelist of messages we know we can
7716 * safely omit the predication for.
7717 */
7718 if (depth && inst->force_writemask_all &&
7719 is_send(inst) && !inst->predicate) {
7720 /* We need to load the execution mask into the flag register by
7721 * using a builder with channel group matching the whole shader
7722 * (rather than the default which is derived from the original
7723 * instruction), in order to avoid getting a right-shifted
7724 * value.
7725 */
7726 const fs_builder ubld = fs_builder(this, block, inst)
7727 .exec_all().group(dispatch_width, 0);
7728 const fs_reg flag = retype(brw_flag_reg(0, 0),
7729 BRW_REGISTER_TYPE_UD);
7730
7731 /* Due to the lack of flag register allocation we need to save
7732 * and restore the flag register if it's live.
7733 */
7734 const bool save_flag = flag_liveout &
7735 flag_mask(flag, dispatch_width / 8);
7736 const fs_reg tmp = ubld.group(1, 0).vgrf(flag.type);
7737
7738 if (save_flag)
7739 ubld.group(1, 0).MOV(tmp, flag);
7740
7741 ubld.emit(FS_OPCODE_LOAD_LIVE_CHANNELS);
7742
7743 set_predicate(pred, inst);
7744 inst->flag_subreg = 0;
7745
7746 if (save_flag)
7747 ubld.group(1, 0).at(block, inst->next).MOV(flag, tmp);
7748
7749 progress = true;
7750 }
7751 break;
7752 }
7753
7754 if (inst == halt_start)
7755 depth--;
7756
7757 flag_liveout |= inst->flags_read(devinfo);
7758 }
7759 }
7760
7761 if (progress)
7762 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7763
7764 return progress;
7765 }
7766
7767 void
7768 fs_visitor::allocate_registers(bool allow_spilling)
7769 {
7770 bool allocated;
7771
7772 static const enum instruction_scheduler_mode pre_modes[] = {
7773 SCHEDULE_PRE,
7774 SCHEDULE_PRE_NON_LIFO,
7775 SCHEDULE_PRE_LIFO,
7776 };
7777
7778 static const char *scheduler_mode_name[] = {
7779 "top-down",
7780 "non-lifo",
7781 "lifo"
7782 };
7783
7784 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
7785
7786 /* Try each scheduling heuristic to see if it can successfully register
7787 * allocate without spilling. They should be ordered by decreasing
7788 * performance but increasing likelihood of allocating.
7789 */
7790 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
7791 schedule_instructions(pre_modes[i]);
7792 this->shader_stats.scheduler_mode = scheduler_mode_name[i];
7793
7794 if (0) {
7795 assign_regs_trivial();
7796 allocated = true;
7797 break;
7798 }
7799
7800 /* Scheduling may create additional opportunities for CMOD propagation,
7801 * so let's do it again. If CMOD propagation made any progress,
7802 * elminate dead code one more time.
7803 */
7804 bool progress = false;
7805 const int iteration = 99;
7806 int pass_num = 0;
7807
7808 if (OPT(opt_cmod_propagation)) {
7809 /* dead_code_eliminate "undoes" the fixing done by
7810 * fixup_3src_null_dest, so we have to do it again if
7811 * dead_code_eliminiate makes any progress.
7812 */
7813 if (OPT(dead_code_eliminate))
7814 fixup_3src_null_dest();
7815 }
7816
7817 bool can_spill = allow_spilling &&
7818 (i == ARRAY_SIZE(pre_modes) - 1);
7819
7820 /* We should only spill registers on the last scheduling. */
7821 assert(!spilled_any_registers);
7822
7823 allocated = assign_regs(can_spill, spill_all);
7824 if (allocated)
7825 break;
7826 }
7827
7828 if (!allocated) {
7829 fail("Failure to register allocate. Reduce number of "
7830 "live scalar values to avoid this.");
7831 } else if (spilled_any_registers) {
7832 compiler->shader_perf_log(log_data,
7833 "%s shader triggered register spilling. "
7834 "Try reducing the number of live scalar "
7835 "values to improve performance.\n",
7836 stage_name);
7837 }
7838
7839 /* This must come after all optimization and register allocation, since
7840 * it inserts dead code that happens to have side effects, and it does
7841 * so based on the actual physical registers in use.
7842 */
7843 insert_gen4_send_dependency_workarounds();
7844
7845 if (failed)
7846 return;
7847
7848 opt_bank_conflicts();
7849
7850 schedule_instructions(SCHEDULE_POST);
7851
7852 if (last_scratch > 0) {
7853 ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024;
7854
7855 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
7856
7857 if (stage == MESA_SHADER_COMPUTE) {
7858 if (devinfo->is_haswell) {
7859 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7860 * field documentation, Haswell supports a minimum of 2kB of
7861 * scratch space for compute shaders, unlike every other stage
7862 * and platform.
7863 */
7864 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
7865 } else if (devinfo->gen <= 7) {
7866 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7867 * field documentation, platforms prior to Haswell measure scratch
7868 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
7869 */
7870 prog_data->total_scratch = ALIGN(last_scratch, 1024);
7871 max_scratch_size = 12 * 1024;
7872 }
7873 }
7874
7875 /* We currently only support up to 2MB of scratch space. If we
7876 * need to support more eventually, the documentation suggests
7877 * that we could allocate a larger buffer, and partition it out
7878 * ourselves. We'd just have to undo the hardware's address
7879 * calculation by subtracting (FFTID * Per Thread Scratch Space)
7880 * and then add FFTID * (Larger Per Thread Scratch Space).
7881 *
7882 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
7883 * Thread Group Tracking > Local Memory/Scratch Space.
7884 */
7885 assert(prog_data->total_scratch < max_scratch_size);
7886 }
7887
7888 lower_scoreboard();
7889 }
7890
7891 bool
7892 fs_visitor::run_vs()
7893 {
7894 assert(stage == MESA_SHADER_VERTEX);
7895
7896 setup_vs_payload();
7897
7898 if (shader_time_index >= 0)
7899 emit_shader_time_begin();
7900
7901 emit_nir_code();
7902
7903 if (failed)
7904 return false;
7905
7906 emit_urb_writes();
7907
7908 if (shader_time_index >= 0)
7909 emit_shader_time_end();
7910
7911 calculate_cfg();
7912
7913 optimize();
7914
7915 assign_curb_setup();
7916 assign_vs_urb_setup();
7917
7918 fixup_3src_null_dest();
7919 allocate_registers(true /* allow_spilling */);
7920
7921 return !failed;
7922 }
7923
7924 void
7925 fs_visitor::set_tcs_invocation_id()
7926 {
7927 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
7928 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
7929
7930 const unsigned instance_id_mask =
7931 devinfo->gen >= 11 ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
7932 const unsigned instance_id_shift =
7933 devinfo->gen >= 11 ? 16 : 17;
7934
7935 /* Get instance number from g0.2 bits 22:16 or 23:17 */
7936 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
7937 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
7938 brw_imm_ud(instance_id_mask));
7939
7940 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
7941
7942 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH) {
7943 /* gl_InvocationID is just the thread number */
7944 bld.SHR(invocation_id, t, brw_imm_ud(instance_id_shift));
7945 return;
7946 }
7947
7948 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH);
7949
7950 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
7951 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
7952 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
7953 bld.MOV(channels_ud, channels_uw);
7954
7955 if (tcs_prog_data->instances == 1) {
7956 invocation_id = channels_ud;
7957 } else {
7958 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
7959 bld.SHR(instance_times_8, t, brw_imm_ud(instance_id_shift - 3));
7960 bld.ADD(invocation_id, instance_times_8, channels_ud);
7961 }
7962 }
7963
7964 bool
7965 fs_visitor::run_tcs()
7966 {
7967 assert(stage == MESA_SHADER_TESS_CTRL);
7968
7969 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
7970 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
7971 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
7972
7973 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH ||
7974 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
7975
7976 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
7977 /* r1-r4 contain the ICP handles. */
7978 payload.num_regs = 5;
7979 } else {
7980 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
7981 assert(tcs_key->input_vertices > 0);
7982 /* r1 contains output handles, r2 may contain primitive ID, then the
7983 * ICP handles occupy the next 1-32 registers.
7984 */
7985 payload.num_regs = 2 + tcs_prog_data->include_primitive_id +
7986 tcs_key->input_vertices;
7987 }
7988
7989 if (shader_time_index >= 0)
7990 emit_shader_time_begin();
7991
7992 /* Initialize gl_InvocationID */
7993 set_tcs_invocation_id();
7994
7995 const bool fix_dispatch_mask =
7996 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH &&
7997 (nir->info.tess.tcs_vertices_out % 8) != 0;
7998
7999 /* Fix the disptach mask */
8000 if (fix_dispatch_mask) {
8001 bld.CMP(bld.null_reg_ud(), invocation_id,
8002 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
8003 bld.IF(BRW_PREDICATE_NORMAL);
8004 }
8005
8006 emit_nir_code();
8007
8008 if (fix_dispatch_mask) {
8009 bld.emit(BRW_OPCODE_ENDIF);
8010 }
8011
8012 /* Emit EOT write; set TR DS Cache bit */
8013 fs_reg srcs[3] = {
8014 fs_reg(get_tcs_output_urb_handle()),
8015 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
8016 fs_reg(brw_imm_ud(0)),
8017 };
8018 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
8019 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
8020
8021 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
8022 bld.null_reg_ud(), payload);
8023 inst->mlen = 3;
8024 inst->eot = true;
8025
8026 if (shader_time_index >= 0)
8027 emit_shader_time_end();
8028
8029 if (failed)
8030 return false;
8031
8032 calculate_cfg();
8033
8034 optimize();
8035
8036 assign_curb_setup();
8037 assign_tcs_urb_setup();
8038
8039 fixup_3src_null_dest();
8040 allocate_registers(true /* allow_spilling */);
8041
8042 return !failed;
8043 }
8044
8045 bool
8046 fs_visitor::run_tes()
8047 {
8048 assert(stage == MESA_SHADER_TESS_EVAL);
8049
8050 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
8051 payload.num_regs = 5;
8052
8053 if (shader_time_index >= 0)
8054 emit_shader_time_begin();
8055
8056 emit_nir_code();
8057
8058 if (failed)
8059 return false;
8060
8061 emit_urb_writes();
8062
8063 if (shader_time_index >= 0)
8064 emit_shader_time_end();
8065
8066 calculate_cfg();
8067
8068 optimize();
8069
8070 assign_curb_setup();
8071 assign_tes_urb_setup();
8072
8073 fixup_3src_null_dest();
8074 allocate_registers(true /* allow_spilling */);
8075
8076 return !failed;
8077 }
8078
8079 bool
8080 fs_visitor::run_gs()
8081 {
8082 assert(stage == MESA_SHADER_GEOMETRY);
8083
8084 setup_gs_payload();
8085
8086 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
8087
8088 if (gs_compile->control_data_header_size_bits > 0) {
8089 /* Create a VGRF to store accumulated control data bits. */
8090 this->control_data_bits = vgrf(glsl_type::uint_type);
8091
8092 /* If we're outputting more than 32 control data bits, then EmitVertex()
8093 * will set control_data_bits to 0 after emitting the first vertex.
8094 * Otherwise, we need to initialize it to 0 here.
8095 */
8096 if (gs_compile->control_data_header_size_bits <= 32) {
8097 const fs_builder abld = bld.annotate("initialize control data bits");
8098 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
8099 }
8100 }
8101
8102 if (shader_time_index >= 0)
8103 emit_shader_time_begin();
8104
8105 emit_nir_code();
8106
8107 emit_gs_thread_end();
8108
8109 if (shader_time_index >= 0)
8110 emit_shader_time_end();
8111
8112 if (failed)
8113 return false;
8114
8115 calculate_cfg();
8116
8117 optimize();
8118
8119 assign_curb_setup();
8120 assign_gs_urb_setup();
8121
8122 fixup_3src_null_dest();
8123 allocate_registers(true /* allow_spilling */);
8124
8125 return !failed;
8126 }
8127
8128 /* From the SKL PRM, Volume 16, Workarounds:
8129 *
8130 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
8131 * only header phases (R0-R2)
8132 *
8133 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
8134 * have been header only.
8135 *
8136 * Instead of enabling push constants one can alternatively enable one of the
8137 * inputs. Here one simply chooses "layer" which shouldn't impose much
8138 * overhead.
8139 */
8140 static void
8141 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
8142 {
8143 if (wm_prog_data->num_varying_inputs)
8144 return;
8145
8146 if (wm_prog_data->base.curb_read_length)
8147 return;
8148
8149 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
8150 wm_prog_data->num_varying_inputs = 1;
8151
8152 brw_compute_urb_setup_index(wm_prog_data);
8153 }
8154
8155 bool
8156 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
8157 {
8158 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
8159 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
8160
8161 assert(stage == MESA_SHADER_FRAGMENT);
8162
8163 if (devinfo->gen >= 6)
8164 setup_fs_payload_gen6();
8165 else
8166 setup_fs_payload_gen4();
8167
8168 if (0) {
8169 emit_dummy_fs();
8170 } else if (do_rep_send) {
8171 assert(dispatch_width == 16);
8172 emit_repclear_shader();
8173 } else {
8174 if (shader_time_index >= 0)
8175 emit_shader_time_begin();
8176
8177 if (nir->info.inputs_read > 0 ||
8178 (nir->info.system_values_read & (1ull << SYSTEM_VALUE_FRAG_COORD)) ||
8179 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
8180 if (devinfo->gen < 6)
8181 emit_interpolation_setup_gen4();
8182 else
8183 emit_interpolation_setup_gen6();
8184 }
8185
8186 /* We handle discards by keeping track of the still-live pixels in f0.1.
8187 * Initialize it with the dispatched pixels.
8188 */
8189 if (wm_prog_data->uses_kill) {
8190 const unsigned lower_width = MIN2(dispatch_width, 16);
8191 for (unsigned i = 0; i < dispatch_width / lower_width; i++) {
8192 const fs_reg dispatch_mask =
8193 devinfo->gen >= 6 ? brw_vec1_grf((i ? 2 : 1), 7) :
8194 brw_vec1_grf(0, 0);
8195 bld.exec_all().group(1, 0)
8196 .MOV(sample_mask_reg(bld.group(lower_width, i)),
8197 retype(dispatch_mask, BRW_REGISTER_TYPE_UW));
8198 }
8199 }
8200
8201 if (nir->info.writes_memory)
8202 wm_prog_data->has_side_effects = true;
8203
8204 emit_nir_code();
8205
8206 if (failed)
8207 return false;
8208
8209 if (wm_prog_data->uses_kill)
8210 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
8211
8212 if (wm_key->alpha_test_func)
8213 emit_alpha_test();
8214
8215 emit_fb_writes();
8216
8217 if (shader_time_index >= 0)
8218 emit_shader_time_end();
8219
8220 calculate_cfg();
8221
8222 optimize();
8223
8224 assign_curb_setup();
8225
8226 if (devinfo->gen >= 9)
8227 gen9_ps_header_only_workaround(wm_prog_data);
8228
8229 assign_urb_setup();
8230
8231 fixup_3src_null_dest();
8232
8233 allocate_registers(allow_spilling);
8234
8235 if (failed)
8236 return false;
8237 }
8238
8239 return !failed;
8240 }
8241
8242 bool
8243 fs_visitor::run_cs(bool allow_spilling)
8244 {
8245 assert(stage == MESA_SHADER_COMPUTE);
8246
8247 setup_cs_payload();
8248
8249 if (shader_time_index >= 0)
8250 emit_shader_time_begin();
8251
8252 if (devinfo->is_haswell && prog_data->total_shared > 0) {
8253 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
8254 const fs_builder abld = bld.exec_all().group(1, 0);
8255 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
8256 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
8257 }
8258
8259 emit_nir_code();
8260
8261 if (failed)
8262 return false;
8263
8264 emit_cs_terminate();
8265
8266 if (shader_time_index >= 0)
8267 emit_shader_time_end();
8268
8269 calculate_cfg();
8270
8271 optimize();
8272
8273 assign_curb_setup();
8274
8275 fixup_3src_null_dest();
8276 allocate_registers(allow_spilling);
8277
8278 if (failed)
8279 return false;
8280
8281 return !failed;
8282 }
8283
8284 static bool
8285 is_used_in_not_interp_frag_coord(nir_ssa_def *def)
8286 {
8287 nir_foreach_use(src, def) {
8288 if (src->parent_instr->type != nir_instr_type_intrinsic)
8289 return true;
8290
8291 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr);
8292 if (intrin->intrinsic != nir_intrinsic_load_frag_coord)
8293 return true;
8294 }
8295
8296 nir_foreach_if_use(src, def)
8297 return true;
8298
8299 return false;
8300 }
8301
8302 /**
8303 * Return a bitfield where bit n is set if barycentric interpolation mode n
8304 * (see enum brw_barycentric_mode) is needed by the fragment shader.
8305 *
8306 * We examine the load_barycentric intrinsics rather than looking at input
8307 * variables so that we catch interpolateAtCentroid() messages too, which
8308 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
8309 */
8310 static unsigned
8311 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
8312 const nir_shader *shader)
8313 {
8314 unsigned barycentric_interp_modes = 0;
8315
8316 nir_foreach_function(f, shader) {
8317 if (!f->impl)
8318 continue;
8319
8320 nir_foreach_block(block, f->impl) {
8321 nir_foreach_instr(instr, block) {
8322 if (instr->type != nir_instr_type_intrinsic)
8323 continue;
8324
8325 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8326 switch (intrin->intrinsic) {
8327 case nir_intrinsic_load_barycentric_pixel:
8328 case nir_intrinsic_load_barycentric_centroid:
8329 case nir_intrinsic_load_barycentric_sample:
8330 break;
8331 default:
8332 continue;
8333 }
8334
8335 /* Ignore WPOS; it doesn't require interpolation. */
8336 assert(intrin->dest.is_ssa);
8337 if (!is_used_in_not_interp_frag_coord(&intrin->dest.ssa))
8338 continue;
8339
8340 enum glsl_interp_mode interp = (enum glsl_interp_mode)
8341 nir_intrinsic_interp_mode(intrin);
8342 nir_intrinsic_op bary_op = intrin->intrinsic;
8343 enum brw_barycentric_mode bary =
8344 brw_barycentric_mode(interp, bary_op);
8345
8346 barycentric_interp_modes |= 1 << bary;
8347
8348 if (devinfo->needs_unlit_centroid_workaround &&
8349 bary_op == nir_intrinsic_load_barycentric_centroid)
8350 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
8351 }
8352 }
8353 }
8354
8355 return barycentric_interp_modes;
8356 }
8357
8358 static void
8359 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
8360 const nir_shader *shader)
8361 {
8362 prog_data->flat_inputs = 0;
8363
8364 nir_foreach_variable(var, &shader->inputs) {
8365 unsigned slots = glsl_count_attribute_slots(var->type, false);
8366 for (unsigned s = 0; s < slots; s++) {
8367 int input_index = prog_data->urb_setup[var->data.location + s];
8368
8369 if (input_index < 0)
8370 continue;
8371
8372 /* flat shading */
8373 if (var->data.interpolation == INTERP_MODE_FLAT)
8374 prog_data->flat_inputs |= 1 << input_index;
8375 }
8376 }
8377 }
8378
8379 static uint8_t
8380 computed_depth_mode(const nir_shader *shader)
8381 {
8382 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
8383 switch (shader->info.fs.depth_layout) {
8384 case FRAG_DEPTH_LAYOUT_NONE:
8385 case FRAG_DEPTH_LAYOUT_ANY:
8386 return BRW_PSCDEPTH_ON;
8387 case FRAG_DEPTH_LAYOUT_GREATER:
8388 return BRW_PSCDEPTH_ON_GE;
8389 case FRAG_DEPTH_LAYOUT_LESS:
8390 return BRW_PSCDEPTH_ON_LE;
8391 case FRAG_DEPTH_LAYOUT_UNCHANGED:
8392 return BRW_PSCDEPTH_OFF;
8393 }
8394 }
8395 return BRW_PSCDEPTH_OFF;
8396 }
8397
8398 /**
8399 * Move load_interpolated_input with simple (payload-based) barycentric modes
8400 * to the top of the program so we don't emit multiple PLNs for the same input.
8401 *
8402 * This works around CSE not being able to handle non-dominating cases
8403 * such as:
8404 *
8405 * if (...) {
8406 * interpolate input
8407 * } else {
8408 * interpolate the same exact input
8409 * }
8410 *
8411 * This should be replaced by global value numbering someday.
8412 */
8413 static bool
8414 move_interpolation_to_top(nir_shader *nir)
8415 {
8416 bool progress = false;
8417
8418 nir_foreach_function(f, nir) {
8419 if (!f->impl)
8420 continue;
8421
8422 nir_block *top = nir_start_block(f->impl);
8423 exec_node *cursor_node = NULL;
8424
8425 nir_foreach_block(block, f->impl) {
8426 if (block == top)
8427 continue;
8428
8429 nir_foreach_instr_safe(instr, block) {
8430 if (instr->type != nir_instr_type_intrinsic)
8431 continue;
8432
8433 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8434 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
8435 continue;
8436 nir_intrinsic_instr *bary_intrinsic =
8437 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
8438 nir_intrinsic_op op = bary_intrinsic->intrinsic;
8439
8440 /* Leave interpolateAtSample/Offset() where they are. */
8441 if (op == nir_intrinsic_load_barycentric_at_sample ||
8442 op == nir_intrinsic_load_barycentric_at_offset)
8443 continue;
8444
8445 nir_instr *move[3] = {
8446 &bary_intrinsic->instr,
8447 intrin->src[1].ssa->parent_instr,
8448 instr
8449 };
8450
8451 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
8452 if (move[i]->block != top) {
8453 move[i]->block = top;
8454 exec_node_remove(&move[i]->node);
8455 if (cursor_node) {
8456 exec_node_insert_after(cursor_node, &move[i]->node);
8457 } else {
8458 exec_list_push_head(&top->instr_list, &move[i]->node);
8459 }
8460 cursor_node = &move[i]->node;
8461 progress = true;
8462 }
8463 }
8464 }
8465 }
8466 nir_metadata_preserve(f->impl, (nir_metadata)
8467 ((unsigned) nir_metadata_block_index |
8468 (unsigned) nir_metadata_dominance));
8469 }
8470
8471 return progress;
8472 }
8473
8474 /**
8475 * Demote per-sample barycentric intrinsics to centroid.
8476 *
8477 * Useful when rendering to a non-multisampled buffer.
8478 */
8479 static bool
8480 demote_sample_qualifiers(nir_shader *nir)
8481 {
8482 bool progress = true;
8483
8484 nir_foreach_function(f, nir) {
8485 if (!f->impl)
8486 continue;
8487
8488 nir_builder b;
8489 nir_builder_init(&b, f->impl);
8490
8491 nir_foreach_block(block, f->impl) {
8492 nir_foreach_instr_safe(instr, block) {
8493 if (instr->type != nir_instr_type_intrinsic)
8494 continue;
8495
8496 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8497 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
8498 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
8499 continue;
8500
8501 b.cursor = nir_before_instr(instr);
8502 nir_ssa_def *centroid =
8503 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
8504 nir_intrinsic_interp_mode(intrin));
8505 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
8506 nir_src_for_ssa(centroid));
8507 nir_instr_remove(instr);
8508 progress = true;
8509 }
8510 }
8511
8512 nir_metadata_preserve(f->impl, (nir_metadata)
8513 ((unsigned) nir_metadata_block_index |
8514 (unsigned) nir_metadata_dominance));
8515 }
8516
8517 return progress;
8518 }
8519
8520 /**
8521 * Pre-gen6, the register file of the EUs was shared between threads,
8522 * and each thread used some subset allocated on a 16-register block
8523 * granularity. The unit states wanted these block counts.
8524 */
8525 static inline int
8526 brw_register_blocks(int reg_count)
8527 {
8528 return ALIGN(reg_count, 16) / 16 - 1;
8529 }
8530
8531 const unsigned *
8532 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
8533 void *mem_ctx,
8534 const struct brw_wm_prog_key *key,
8535 struct brw_wm_prog_data *prog_data,
8536 nir_shader *shader,
8537 int shader_time_index8, int shader_time_index16,
8538 int shader_time_index32, bool allow_spilling,
8539 bool use_rep_send, struct brw_vue_map *vue_map,
8540 struct brw_compile_stats *stats,
8541 char **error_str)
8542 {
8543 const struct gen_device_info *devinfo = compiler->devinfo;
8544 const unsigned max_subgroup_size = compiler->devinfo->gen >= 6 ? 32 : 16;
8545
8546 brw_nir_apply_key(shader, compiler, &key->base, max_subgroup_size, true);
8547 brw_nir_lower_fs_inputs(shader, devinfo, key);
8548 brw_nir_lower_fs_outputs(shader);
8549
8550 if (devinfo->gen < 6)
8551 brw_setup_vue_interpolation(vue_map, shader, prog_data);
8552
8553 /* From the SKL PRM, Volume 7, "Alpha Coverage":
8554 * "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in
8555 * hardware, regardless of the state setting for this feature."
8556 */
8557 if (devinfo->gen > 6 && key->alpha_to_coverage) {
8558 /* Run constant fold optimization in order to get the correct source
8559 * offset to determine render target 0 store instruction in
8560 * emit_alpha_to_coverage pass.
8561 */
8562 NIR_PASS_V(shader, nir_opt_constant_folding);
8563 NIR_PASS_V(shader, brw_nir_lower_alpha_to_coverage);
8564 }
8565
8566 if (!key->multisample_fbo)
8567 NIR_PASS_V(shader, demote_sample_qualifiers);
8568 NIR_PASS_V(shader, move_interpolation_to_top);
8569 brw_postprocess_nir(shader, compiler, true);
8570
8571 /* key->alpha_test_func means simulating alpha testing via discards,
8572 * so the shader definitely kills pixels.
8573 */
8574 prog_data->uses_kill = shader->info.fs.uses_discard ||
8575 key->alpha_test_func;
8576 prog_data->uses_omask = key->multisample_fbo &&
8577 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
8578 prog_data->computed_depth_mode = computed_depth_mode(shader);
8579 prog_data->computed_stencil =
8580 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
8581
8582 prog_data->persample_dispatch =
8583 key->multisample_fbo &&
8584 (key->persample_interp ||
8585 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
8586 SYSTEM_BIT_SAMPLE_POS)) ||
8587 shader->info.fs.uses_sample_qualifier ||
8588 shader->info.outputs_read);
8589
8590 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
8591
8592 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
8593 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
8594 prog_data->inner_coverage = shader->info.fs.inner_coverage;
8595
8596 prog_data->barycentric_interp_modes =
8597 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
8598
8599 calculate_urb_setup(devinfo, key, prog_data, shader);
8600 brw_compute_flat_inputs(prog_data, shader);
8601
8602 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
8603 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL;
8604 float throughput = 0;
8605 bool has_spilled = false;
8606
8607 v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8608 &prog_data->base, shader, 8, shader_time_index8);
8609 if (!v8->run_fs(allow_spilling, false /* do_rep_send */)) {
8610 if (error_str)
8611 *error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
8612
8613 delete v8;
8614 return NULL;
8615 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
8616 simd8_cfg = v8->cfg;
8617 prog_data->base.dispatch_grf_start_reg = v8->payload.num_regs;
8618 prog_data->reg_blocks_8 = brw_register_blocks(v8->grf_used);
8619 const performance &perf = v8->performance_analysis.require();
8620 throughput = MAX2(throughput, perf.throughput);
8621 has_spilled = v8->spilled_any_registers;
8622 allow_spilling = false;
8623 }
8624
8625 /* Limit dispatch width to simd8 with dual source blending on gen8.
8626 * See: https://gitlab.freedesktop.org/mesa/mesa/-/issues/1917
8627 */
8628 if (devinfo->gen == 8 && prog_data->dual_src_blend &&
8629 !(INTEL_DEBUG & DEBUG_NO8)) {
8630 assert(!use_rep_send);
8631 v8->limit_dispatch_width(8, "gen8 workaround: "
8632 "using SIMD8 when dual src blending.\n");
8633 }
8634
8635 if (!has_spilled &&
8636 v8->max_dispatch_width >= 16 &&
8637 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
8638 /* Try a SIMD16 compile */
8639 v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8640 &prog_data->base, shader, 16, shader_time_index16);
8641 v16->import_uniforms(v8);
8642 if (!v16->run_fs(allow_spilling, use_rep_send)) {
8643 compiler->shader_perf_log(log_data,
8644 "SIMD16 shader failed to compile: %s",
8645 v16->fail_msg);
8646 } else {
8647 simd16_cfg = v16->cfg;
8648 prog_data->dispatch_grf_start_reg_16 = v16->payload.num_regs;
8649 prog_data->reg_blocks_16 = brw_register_blocks(v16->grf_used);
8650 const performance &perf = v16->performance_analysis.require();
8651 throughput = MAX2(throughput, perf.throughput);
8652 has_spilled = v16->spilled_any_registers;
8653 allow_spilling = false;
8654 }
8655 }
8656
8657 /* Currently, the compiler only supports SIMD32 on SNB+ */
8658 if (!has_spilled &&
8659 v8->max_dispatch_width >= 32 && !use_rep_send &&
8660 devinfo->gen >= 6 && simd16_cfg &&
8661 !(INTEL_DEBUG & DEBUG_NO32)) {
8662 /* Try a SIMD32 compile */
8663 v32 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8664 &prog_data->base, shader, 32, shader_time_index32);
8665 v32->import_uniforms(v8);
8666 if (!v32->run_fs(allow_spilling, false)) {
8667 compiler->shader_perf_log(log_data,
8668 "SIMD32 shader failed to compile: %s",
8669 v32->fail_msg);
8670 } else {
8671 const performance &perf = v32->performance_analysis.require();
8672
8673 if (!(INTEL_DEBUG & DEBUG_DO32) && throughput >= perf.throughput) {
8674 compiler->shader_perf_log(log_data, "SIMD32 shader inefficient\n");
8675 } else {
8676 simd32_cfg = v32->cfg;
8677 prog_data->dispatch_grf_start_reg_32 = v32->payload.num_regs;
8678 prog_data->reg_blocks_32 = brw_register_blocks(v32->grf_used);
8679 throughput = MAX2(throughput, perf.throughput);
8680 }
8681 }
8682 }
8683
8684 /* When the caller requests a repclear shader, they want SIMD16-only */
8685 if (use_rep_send)
8686 simd8_cfg = NULL;
8687
8688 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
8689 * at the top to select the shader. We've never implemented that.
8690 * Instead, we just give them exactly one shader and we pick the widest one
8691 * available.
8692 */
8693 if (compiler->devinfo->gen < 5) {
8694 if (simd32_cfg || simd16_cfg)
8695 simd8_cfg = NULL;
8696 if (simd32_cfg)
8697 simd16_cfg = NULL;
8698 }
8699
8700 /* If computed depth is enabled SNB only allows SIMD8. */
8701 if (compiler->devinfo->gen == 6 &&
8702 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF)
8703 assert(simd16_cfg == NULL && simd32_cfg == NULL);
8704
8705 if (compiler->devinfo->gen <= 5 && !simd8_cfg) {
8706 /* Iron lake and earlier only have one Dispatch GRF start field. Make
8707 * the data available in the base prog data struct for convenience.
8708 */
8709 if (simd16_cfg) {
8710 prog_data->base.dispatch_grf_start_reg =
8711 prog_data->dispatch_grf_start_reg_16;
8712 } else if (simd32_cfg) {
8713 prog_data->base.dispatch_grf_start_reg =
8714 prog_data->dispatch_grf_start_reg_32;
8715 }
8716 }
8717
8718 if (prog_data->persample_dispatch) {
8719 /* Starting with SandyBridge (where we first get MSAA), the different
8720 * pixel dispatch combinations are grouped into classifications A
8721 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On most hardware
8722 * generations, the only configurations supporting persample dispatch
8723 * are those in which only one dispatch width is enabled.
8724 *
8725 * The Gen12 hardware spec has a similar dispatch grouping table, but
8726 * the following conflicting restriction applies (from the page on
8727 * "Structure_3DSTATE_PS_BODY"), so we need to keep the SIMD16 shader:
8728 *
8729 * "SIMD32 may only be enabled if SIMD16 or (dual)SIMD8 is also
8730 * enabled."
8731 */
8732 if (simd32_cfg || simd16_cfg)
8733 simd8_cfg = NULL;
8734 if (simd32_cfg && devinfo->gen < 12)
8735 simd16_cfg = NULL;
8736 }
8737
8738 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
8739 v8->runtime_check_aads_emit, MESA_SHADER_FRAGMENT);
8740
8741 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
8742 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
8743 shader->info.label ?
8744 shader->info.label : "unnamed",
8745 shader->info.name));
8746 }
8747
8748 if (simd8_cfg) {
8749 prog_data->dispatch_8 = true;
8750 g.generate_code(simd8_cfg, 8, v8->shader_stats,
8751 v8->performance_analysis.require(), stats);
8752 stats = stats ? stats + 1 : NULL;
8753 }
8754
8755 if (simd16_cfg) {
8756 prog_data->dispatch_16 = true;
8757 prog_data->prog_offset_16 = g.generate_code(
8758 simd16_cfg, 16, v16->shader_stats,
8759 v16->performance_analysis.require(), stats);
8760 stats = stats ? stats + 1 : NULL;
8761 }
8762
8763 if (simd32_cfg) {
8764 prog_data->dispatch_32 = true;
8765 prog_data->prog_offset_32 = g.generate_code(
8766 simd32_cfg, 32, v32->shader_stats,
8767 v32->performance_analysis.require(), stats);
8768 stats = stats ? stats + 1 : NULL;
8769 }
8770
8771 delete v8;
8772 delete v16;
8773 delete v32;
8774
8775 return g.get_assembly();
8776 }
8777
8778 fs_reg *
8779 fs_visitor::emit_cs_work_group_id_setup()
8780 {
8781 assert(stage == MESA_SHADER_COMPUTE);
8782
8783 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
8784
8785 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
8786 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
8787 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
8788
8789 bld.MOV(*reg, r0_1);
8790 bld.MOV(offset(*reg, bld, 1), r0_6);
8791 bld.MOV(offset(*reg, bld, 2), r0_7);
8792
8793 return reg;
8794 }
8795
8796 unsigned
8797 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
8798 unsigned threads)
8799 {
8800 assert(cs_prog_data->push.per_thread.size % REG_SIZE == 0);
8801 assert(cs_prog_data->push.cross_thread.size % REG_SIZE == 0);
8802 return cs_prog_data->push.per_thread.size * threads +
8803 cs_prog_data->push.cross_thread.size;
8804 }
8805
8806 static void
8807 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
8808 {
8809 block->dwords = dwords;
8810 block->regs = DIV_ROUND_UP(dwords, 8);
8811 block->size = block->regs * 32;
8812 }
8813
8814 static void
8815 cs_fill_push_const_info(const struct gen_device_info *devinfo,
8816 struct brw_cs_prog_data *cs_prog_data)
8817 {
8818 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
8819 int subgroup_id_index = get_subgroup_id_param_index(prog_data);
8820 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
8821
8822 /* The thread ID should be stored in the last param dword */
8823 assert(subgroup_id_index == -1 ||
8824 subgroup_id_index == (int)prog_data->nr_params - 1);
8825
8826 unsigned cross_thread_dwords, per_thread_dwords;
8827 if (!cross_thread_supported) {
8828 cross_thread_dwords = 0u;
8829 per_thread_dwords = prog_data->nr_params;
8830 } else if (subgroup_id_index >= 0) {
8831 /* Fill all but the last register with cross-thread payload */
8832 cross_thread_dwords = 8 * (subgroup_id_index / 8);
8833 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
8834 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
8835 } else {
8836 /* Fill all data using cross-thread payload */
8837 cross_thread_dwords = prog_data->nr_params;
8838 per_thread_dwords = 0u;
8839 }
8840
8841 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
8842 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
8843
8844 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
8845 cs_prog_data->push.per_thread.size == 0);
8846 assert(cs_prog_data->push.cross_thread.dwords +
8847 cs_prog_data->push.per_thread.dwords ==
8848 prog_data->nr_params);
8849 }
8850
8851 static bool
8852 filter_simd(const nir_instr *instr, const void *_options)
8853 {
8854 if (instr->type != nir_instr_type_intrinsic)
8855 return false;
8856
8857 switch (nir_instr_as_intrinsic(instr)->intrinsic) {
8858 case nir_intrinsic_load_simd_width_intel:
8859 case nir_intrinsic_load_subgroup_id:
8860 return true;
8861
8862 default:
8863 return false;
8864 }
8865 }
8866
8867 static nir_ssa_def *
8868 lower_simd(nir_builder *b, nir_instr *instr, void *options)
8869 {
8870 uintptr_t simd_width = (uintptr_t)options;
8871
8872 switch (nir_instr_as_intrinsic(instr)->intrinsic) {
8873 case nir_intrinsic_load_simd_width_intel:
8874 return nir_imm_int(b, simd_width);
8875
8876 case nir_intrinsic_load_subgroup_id:
8877 /* If the whole workgroup fits in one thread, we can lower subgroup_id
8878 * to a constant zero.
8879 */
8880 if (!b->shader->info.cs.local_size_variable) {
8881 unsigned local_workgroup_size = b->shader->info.cs.local_size[0] *
8882 b->shader->info.cs.local_size[1] *
8883 b->shader->info.cs.local_size[2];
8884 if (local_workgroup_size <= simd_width)
8885 return nir_imm_int(b, 0);
8886 }
8887 return NULL;
8888
8889 default:
8890 return NULL;
8891 }
8892 }
8893
8894 static void
8895 brw_nir_lower_simd(nir_shader *nir, unsigned dispatch_width)
8896 {
8897 nir_shader_lower_instructions(nir, filter_simd, lower_simd,
8898 (void *)(uintptr_t)dispatch_width);
8899 }
8900
8901 static nir_shader *
8902 compile_cs_to_nir(const struct brw_compiler *compiler,
8903 void *mem_ctx,
8904 const struct brw_cs_prog_key *key,
8905 const nir_shader *src_shader,
8906 unsigned dispatch_width)
8907 {
8908 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
8909 brw_nir_apply_key(shader, compiler, &key->base, dispatch_width, true);
8910
8911 NIR_PASS_V(shader, brw_nir_lower_simd, dispatch_width);
8912
8913 /* Clean up after the local index and ID calculations. */
8914 NIR_PASS_V(shader, nir_opt_constant_folding);
8915 NIR_PASS_V(shader, nir_opt_dce);
8916
8917 brw_postprocess_nir(shader, compiler, true);
8918
8919 return shader;
8920 }
8921
8922 const unsigned *
8923 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
8924 void *mem_ctx,
8925 const struct brw_cs_prog_key *key,
8926 struct brw_cs_prog_data *prog_data,
8927 const nir_shader *src_shader,
8928 int shader_time_index,
8929 struct brw_compile_stats *stats,
8930 char **error_str)
8931 {
8932 prog_data->base.total_shared = src_shader->info.cs.shared_size;
8933 prog_data->slm_size = src_shader->num_shared;
8934
8935 /* Generate code for all the possible SIMD variants. */
8936 bool generate_all;
8937
8938 unsigned min_dispatch_width;
8939 unsigned max_dispatch_width;
8940
8941 if (src_shader->info.cs.local_size_variable) {
8942 generate_all = true;
8943 min_dispatch_width = 8;
8944 max_dispatch_width = 32;
8945 } else {
8946 generate_all = false;
8947 prog_data->local_size[0] = src_shader->info.cs.local_size[0];
8948 prog_data->local_size[1] = src_shader->info.cs.local_size[1];
8949 prog_data->local_size[2] = src_shader->info.cs.local_size[2];
8950 unsigned local_workgroup_size = prog_data->local_size[0] *
8951 prog_data->local_size[1] *
8952 prog_data->local_size[2];
8953
8954 /* Limit max_threads to 64 for the GPGPU_WALKER command */
8955 const uint32_t max_threads = MIN2(64, compiler->devinfo->max_cs_threads);
8956 min_dispatch_width = util_next_power_of_two(
8957 MAX2(8, DIV_ROUND_UP(local_workgroup_size, max_threads)));
8958 assert(min_dispatch_width <= 32);
8959 max_dispatch_width = 32;
8960 }
8961
8962 if ((int)key->base.subgroup_size_type >= (int)BRW_SUBGROUP_SIZE_REQUIRE_8) {
8963 /* These enum values are expressly chosen to be equal to the subgroup
8964 * size that they require.
8965 */
8966 const unsigned required_dispatch_width =
8967 (unsigned)key->base.subgroup_size_type;
8968 assert(required_dispatch_width == 8 ||
8969 required_dispatch_width == 16 ||
8970 required_dispatch_width == 32);
8971 if (required_dispatch_width < min_dispatch_width ||
8972 required_dispatch_width > max_dispatch_width) {
8973 if (error_str) {
8974 *error_str = ralloc_strdup(mem_ctx,
8975 "Cannot satisfy explicit subgroup size");
8976 }
8977 return NULL;
8978 }
8979 min_dispatch_width = max_dispatch_width = required_dispatch_width;
8980 }
8981
8982 assert(min_dispatch_width <= max_dispatch_width);
8983
8984 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
8985 fs_visitor *v = NULL;
8986
8987 if (likely(!(INTEL_DEBUG & DEBUG_NO8)) &&
8988 min_dispatch_width <= 8 && max_dispatch_width >= 8) {
8989 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
8990 src_shader, 8);
8991 v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8992 &prog_data->base,
8993 nir8, 8, shader_time_index);
8994 if (!v8->run_cs(true /* allow_spilling */)) {
8995 if (error_str)
8996 *error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
8997 delete v8;
8998 return NULL;
8999 }
9000
9001 /* We should always be able to do SIMD32 for compute shaders */
9002 assert(v8->max_dispatch_width >= 32);
9003
9004 v = v8;
9005 prog_data->prog_mask |= 1 << 0;
9006 if (v8->spilled_any_registers)
9007 prog_data->prog_spilled |= 1 << 0;
9008 cs_fill_push_const_info(compiler->devinfo, prog_data);
9009 }
9010
9011 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
9012 (generate_all || !prog_data->prog_spilled) &&
9013 min_dispatch_width <= 16 && max_dispatch_width >= 16) {
9014 /* Try a SIMD16 compile */
9015 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
9016 src_shader, 16);
9017 v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
9018 &prog_data->base,
9019 nir16, 16, shader_time_index);
9020 if (v8)
9021 v16->import_uniforms(v8);
9022
9023 const bool allow_spilling = generate_all || v == NULL;
9024 if (!v16->run_cs(allow_spilling)) {
9025 compiler->shader_perf_log(log_data,
9026 "SIMD16 shader failed to compile: %s",
9027 v16->fail_msg);
9028 if (!v) {
9029 assert(v8 == NULL);
9030 if (error_str) {
9031 *error_str = ralloc_asprintf(
9032 mem_ctx, "Not enough threads for SIMD8 and "
9033 "couldn't generate SIMD16: %s", v16->fail_msg);
9034 }
9035 delete v16;
9036 return NULL;
9037 }
9038 } else {
9039 /* We should always be able to do SIMD32 for compute shaders */
9040 assert(v16->max_dispatch_width >= 32);
9041
9042 v = v16;
9043 prog_data->prog_mask |= 1 << 1;
9044 if (v16->spilled_any_registers)
9045 prog_data->prog_spilled |= 1 << 1;
9046 cs_fill_push_const_info(compiler->devinfo, prog_data);
9047 }
9048 }
9049
9050 /* The SIMD32 is only enabled for cases it is needed unless forced.
9051 *
9052 * TODO: Use performance_analysis and drop this boolean.
9053 */
9054 const bool needs_32 = min_dispatch_width > 16 ||
9055 (INTEL_DEBUG & DEBUG_DO32) ||
9056 generate_all;
9057
9058 if (likely(!(INTEL_DEBUG & DEBUG_NO32)) &&
9059 (generate_all || !prog_data->prog_spilled) &&
9060 needs_32 &&
9061 min_dispatch_width <= 32 && max_dispatch_width >= 32) {
9062 /* Try a SIMD32 compile */
9063 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
9064 src_shader, 32);
9065 v32 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
9066 &prog_data->base,
9067 nir32, 32, shader_time_index);
9068 if (v8)
9069 v32->import_uniforms(v8);
9070 else if (v16)
9071 v32->import_uniforms(v16);
9072
9073 const bool allow_spilling = generate_all || v == NULL;
9074 if (!v32->run_cs(allow_spilling)) {
9075 compiler->shader_perf_log(log_data,
9076 "SIMD32 shader failed to compile: %s",
9077 v32->fail_msg);
9078 if (!v) {
9079 assert(v8 == NULL);
9080 assert(v16 == NULL);
9081 if (error_str) {
9082 *error_str = ralloc_asprintf(
9083 mem_ctx, "Not enough threads for SIMD16 and "
9084 "couldn't generate SIMD32: %s", v32->fail_msg);
9085 }
9086 delete v32;
9087 return NULL;
9088 }
9089 } else {
9090 v = v32;
9091 prog_data->prog_mask |= 1 << 2;
9092 if (v32->spilled_any_registers)
9093 prog_data->prog_spilled |= 1 << 2;
9094 cs_fill_push_const_info(compiler->devinfo, prog_data);
9095 }
9096 }
9097
9098 if (unlikely(!v && (INTEL_DEBUG & (DEBUG_NO8 | DEBUG_NO16 | DEBUG_NO32)))) {
9099 if (error_str) {
9100 *error_str =
9101 ralloc_strdup(mem_ctx,
9102 "Cannot satisfy INTEL_DEBUG flags SIMD restrictions");
9103 }
9104 return NULL;
9105 }
9106
9107 assert(v);
9108
9109 const unsigned *ret = NULL;
9110
9111 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
9112 v->runtime_check_aads_emit, MESA_SHADER_COMPUTE);
9113 if (INTEL_DEBUG & DEBUG_CS) {
9114 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
9115 src_shader->info.label ?
9116 src_shader->info.label : "unnamed",
9117 src_shader->info.name);
9118 g.enable_debug(name);
9119 }
9120
9121 if (generate_all) {
9122 if (prog_data->prog_mask & (1 << 0)) {
9123 assert(v8);
9124 prog_data->prog_offset[0] =
9125 g.generate_code(v8->cfg, 8, v8->shader_stats,
9126 v8->performance_analysis.require(), stats);
9127 stats = stats ? stats + 1 : NULL;
9128 }
9129
9130 if (prog_data->prog_mask & (1 << 1)) {
9131 assert(v16);
9132 prog_data->prog_offset[1] =
9133 g.generate_code(v16->cfg, 16, v16->shader_stats,
9134 v16->performance_analysis.require(), stats);
9135 stats = stats ? stats + 1 : NULL;
9136 }
9137
9138 if (prog_data->prog_mask & (1 << 2)) {
9139 assert(v32);
9140 prog_data->prog_offset[2] =
9141 g.generate_code(v32->cfg, 32, v32->shader_stats,
9142 v32->performance_analysis.require(), stats);
9143 stats = stats ? stats + 1 : NULL;
9144 }
9145 } else {
9146 /* Only one dispatch width will be valid, and will be at offset 0,
9147 * which is already the default value of prog_offset_* fields.
9148 */
9149 prog_data->prog_mask = 1 << (v->dispatch_width / 16);
9150 g.generate_code(v->cfg, v->dispatch_width, v->shader_stats,
9151 v->performance_analysis.require(), stats);
9152 }
9153
9154 ret = g.get_assembly();
9155
9156 delete v8;
9157 delete v16;
9158 delete v32;
9159
9160 return ret;
9161 }
9162
9163 unsigned
9164 brw_cs_simd_size_for_group_size(const struct gen_device_info *devinfo,
9165 const struct brw_cs_prog_data *cs_prog_data,
9166 unsigned group_size)
9167 {
9168 const unsigned mask = cs_prog_data->prog_mask;
9169 assert(mask != 0);
9170
9171 static const unsigned simd8 = 1 << 0;
9172 static const unsigned simd16 = 1 << 1;
9173 static const unsigned simd32 = 1 << 2;
9174
9175 if (unlikely(INTEL_DEBUG & DEBUG_DO32) && (mask & simd32))
9176 return 32;
9177
9178 /* Limit max_threads to 64 for the GPGPU_WALKER command */
9179 const uint32_t max_threads = MIN2(64, devinfo->max_cs_threads);
9180
9181 if ((mask & simd8) && group_size <= 8 * max_threads) {
9182 /* Prefer SIMD16 if can do without spilling. Matches logic in
9183 * brw_compile_cs.
9184 */
9185 if ((mask & simd16) && (~cs_prog_data->prog_spilled & simd16))
9186 return 16;
9187 return 8;
9188 }
9189
9190 if ((mask & simd16) && group_size <= 16 * max_threads)
9191 return 16;
9192
9193 assert(mask & simd32);
9194 assert(group_size <= 32 * max_threads);
9195 return 32;
9196 }
9197
9198 /**
9199 * Test the dispatch mask packing assumptions of
9200 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
9201 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
9202 * executed with an unexpected dispatch mask.
9203 */
9204 static UNUSED void
9205 brw_fs_test_dispatch_packing(const fs_builder &bld)
9206 {
9207 const gl_shader_stage stage = bld.shader->stage;
9208
9209 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
9210 bld.shader->stage_prog_data)) {
9211 const fs_builder ubld = bld.exec_all().group(1, 0);
9212 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
9213 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
9214 brw_dmask_reg());
9215
9216 ubld.ADD(tmp, mask, brw_imm_ud(1));
9217 ubld.AND(tmp, mask, tmp);
9218
9219 /* This will loop forever if the dispatch mask doesn't have the expected
9220 * form '2^n-1', in which case tmp will be non-zero.
9221 */
9222 bld.emit(BRW_OPCODE_DO);
9223 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
9224 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
9225 }
9226 }
9227
9228 unsigned
9229 fs_visitor::workgroup_size() const
9230 {
9231 assert(stage == MESA_SHADER_COMPUTE);
9232 const struct brw_cs_prog_data *cs = brw_cs_prog_data(prog_data);
9233 return cs->local_size[0] * cs->local_size[1] * cs->local_size[2];
9234 }