i965/fs: Handle !supports_pull_constants and push UBOs properly
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "common/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42
43 using namespace brw;
44
45 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
46 const fs_inst *inst);
47
48 void
49 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
50 const fs_reg *src, unsigned sources)
51 {
52 memset(this, 0, sizeof(*this));
53
54 this->src = new fs_reg[MAX2(sources, 3)];
55 for (unsigned i = 0; i < sources; i++)
56 this->src[i] = src[i];
57
58 this->opcode = opcode;
59 this->dst = dst;
60 this->sources = sources;
61 this->exec_size = exec_size;
62 this->base_mrf = -1;
63
64 assert(dst.file != IMM && dst.file != UNIFORM);
65
66 assert(this->exec_size != 0);
67
68 this->conditional_mod = BRW_CONDITIONAL_NONE;
69
70 /* This will be the case for almost all instructions. */
71 switch (dst.file) {
72 case VGRF:
73 case ARF:
74 case FIXED_GRF:
75 case MRF:
76 case ATTR:
77 this->size_written = dst.component_size(exec_size);
78 break;
79 case BAD_FILE:
80 this->size_written = 0;
81 break;
82 case IMM:
83 case UNIFORM:
84 unreachable("Invalid destination register file");
85 }
86
87 this->writes_accumulator = false;
88 }
89
90 fs_inst::fs_inst()
91 {
92 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
93 }
94
95 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
96 {
97 init(opcode, exec_size, reg_undef, NULL, 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
101 {
102 init(opcode, exec_size, dst, NULL, 0);
103 }
104
105 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
106 const fs_reg &src0)
107 {
108 const fs_reg src[1] = { src0 };
109 init(opcode, exec_size, dst, src, 1);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0, const fs_reg &src1)
114 {
115 const fs_reg src[2] = { src0, src1 };
116 init(opcode, exec_size, dst, src, 2);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
121 {
122 const fs_reg src[3] = { src0, src1, src2 };
123 init(opcode, exec_size, dst, src, 3);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
127 const fs_reg src[], unsigned sources)
128 {
129 init(opcode, exec_width, dst, src, sources);
130 }
131
132 fs_inst::fs_inst(const fs_inst &that)
133 {
134 memcpy(this, &that, sizeof(that));
135
136 this->src = new fs_reg[MAX2(that.sources, 3)];
137
138 for (unsigned i = 0; i < that.sources; i++)
139 this->src[i] = that.src[i];
140 }
141
142 fs_inst::~fs_inst()
143 {
144 delete[] this->src;
145 }
146
147 void
148 fs_inst::resize_sources(uint8_t num_sources)
149 {
150 if (this->sources != num_sources) {
151 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
152
153 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
154 src[i] = this->src[i];
155
156 delete[] this->src;
157 this->src = src;
158 this->sources = num_sources;
159 }
160 }
161
162 void
163 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
164 const fs_reg &dst,
165 const fs_reg &surf_index,
166 const fs_reg &varying_offset,
167 uint32_t const_offset)
168 {
169 /* We have our constant surface use a pitch of 4 bytes, so our index can
170 * be any component of a vector, and then we load 4 contiguous
171 * components starting from that.
172 *
173 * We break down the const_offset to a portion added to the variable offset
174 * and a portion done using fs_reg::offset, which means that if you have
175 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
176 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
177 * later notice that those loads are all the same and eliminate the
178 * redundant ones.
179 */
180 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
181 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
182
183 /* The pull load message will load a vec4 (16 bytes). If we are loading
184 * a double this means we are only loading 2 elements worth of data.
185 * We also want to use a 32-bit data type for the dst of the load operation
186 * so other parts of the driver don't get confused about the size of the
187 * result.
188 */
189 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
190 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
191 vec4_result, surf_index, vec4_offset);
192 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
193
194 fs_reg dw = offset(vec4_result, bld, (const_offset & 0xf) / 4);
195 switch (type_sz(dst.type)) {
196 case 2:
197 shuffle_32bit_load_result_to_16bit_data(bld, dst, dw, 1);
198 bld.MOV(dst, subscript(dw, dst.type, (const_offset / 2) & 1));
199 break;
200 case 4:
201 bld.MOV(dst, retype(dw, dst.type));
202 break;
203 case 8:
204 shuffle_32bit_load_result_to_64bit_data(bld, dst, dw, 1);
205 break;
206 default:
207 unreachable("Unsupported bit_size");
208 }
209 }
210
211 /**
212 * A helper for MOV generation for fixing up broken hardware SEND dependency
213 * handling.
214 */
215 void
216 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
217 {
218 /* The caller always wants uncompressed to emit the minimal extra
219 * dependencies, and to avoid having to deal with aligning its regs to 2.
220 */
221 const fs_builder ubld = bld.annotate("send dependency resolve")
222 .half(0);
223
224 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
225 }
226
227 bool
228 fs_inst::equals(fs_inst *inst) const
229 {
230 return (opcode == inst->opcode &&
231 dst.equals(inst->dst) &&
232 src[0].equals(inst->src[0]) &&
233 src[1].equals(inst->src[1]) &&
234 src[2].equals(inst->src[2]) &&
235 saturate == inst->saturate &&
236 predicate == inst->predicate &&
237 conditional_mod == inst->conditional_mod &&
238 mlen == inst->mlen &&
239 base_mrf == inst->base_mrf &&
240 target == inst->target &&
241 eot == inst->eot &&
242 header_size == inst->header_size &&
243 shadow_compare == inst->shadow_compare &&
244 exec_size == inst->exec_size &&
245 offset == inst->offset);
246 }
247
248 bool
249 fs_inst::is_send_from_grf() const
250 {
251 switch (opcode) {
252 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
253 case SHADER_OPCODE_SHADER_TIME_ADD:
254 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
255 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
256 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
257 case SHADER_OPCODE_UNTYPED_ATOMIC:
258 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
259 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
260 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
261 case SHADER_OPCODE_BYTE_SCATTERED_READ:
262 case SHADER_OPCODE_TYPED_ATOMIC:
263 case SHADER_OPCODE_TYPED_SURFACE_READ:
264 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
265 case SHADER_OPCODE_URB_WRITE_SIMD8:
266 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
267 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
268 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
269 case SHADER_OPCODE_URB_READ_SIMD8:
270 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
271 return true;
272 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
273 return src[1].file == VGRF;
274 case FS_OPCODE_FB_WRITE:
275 case FS_OPCODE_FB_READ:
276 return src[0].file == VGRF;
277 default:
278 if (is_tex())
279 return src[0].file == VGRF;
280
281 return false;
282 }
283 }
284
285 /**
286 * Returns true if this instruction's sources and destinations cannot
287 * safely be the same register.
288 *
289 * In most cases, a register can be written over safely by the same
290 * instruction that is its last use. For a single instruction, the
291 * sources are dereferenced before writing of the destination starts
292 * (naturally).
293 *
294 * However, there are a few cases where this can be problematic:
295 *
296 * - Virtual opcodes that translate to multiple instructions in the
297 * code generator: if src == dst and one instruction writes the
298 * destination before a later instruction reads the source, then
299 * src will have been clobbered.
300 *
301 * - SIMD16 compressed instructions with certain regioning (see below).
302 *
303 * The register allocator uses this information to set up conflicts between
304 * GRF sources and the destination.
305 */
306 bool
307 fs_inst::has_source_and_destination_hazard() const
308 {
309 switch (opcode) {
310 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
311 /* Multiple partial writes to the destination */
312 return true;
313 default:
314 /* The SIMD16 compressed instruction
315 *
316 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
317 *
318 * is actually decoded in hardware as:
319 *
320 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
321 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
322 *
323 * Which is safe. However, if we have uniform accesses
324 * happening, we get into trouble:
325 *
326 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
327 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
328 *
329 * Now our destination for the first instruction overwrote the
330 * second instruction's src0, and we get garbage for those 8
331 * pixels. There's a similar issue for the pre-gen6
332 * pixel_x/pixel_y, which are registers of 16-bit values and thus
333 * would get stomped by the first decode as well.
334 */
335 if (exec_size == 16) {
336 for (int i = 0; i < sources; i++) {
337 if (src[i].file == VGRF && (src[i].stride == 0 ||
338 src[i].type == BRW_REGISTER_TYPE_UW ||
339 src[i].type == BRW_REGISTER_TYPE_W ||
340 src[i].type == BRW_REGISTER_TYPE_UB ||
341 src[i].type == BRW_REGISTER_TYPE_B)) {
342 return true;
343 }
344 }
345 }
346 return false;
347 }
348 }
349
350 bool
351 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
352 {
353 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
354 return false;
355
356 fs_reg reg = this->src[0];
357 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
358 return false;
359
360 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
361 return false;
362
363 for (int i = 0; i < this->sources; i++) {
364 reg.type = this->src[i].type;
365 if (!this->src[i].equals(reg))
366 return false;
367
368 if (i < this->header_size) {
369 reg.offset += REG_SIZE;
370 } else {
371 reg = horiz_offset(reg, this->exec_size);
372 }
373 }
374
375 return true;
376 }
377
378 bool
379 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
380 {
381 if (devinfo->gen == 6 && is_math())
382 return false;
383
384 if (is_send_from_grf())
385 return false;
386
387 if (!backend_instruction::can_do_source_mods())
388 return false;
389
390 return true;
391 }
392
393 bool
394 fs_inst::can_change_types() const
395 {
396 return dst.type == src[0].type &&
397 !src[0].abs && !src[0].negate && !saturate &&
398 (opcode == BRW_OPCODE_MOV ||
399 (opcode == BRW_OPCODE_SEL &&
400 dst.type == src[1].type &&
401 predicate != BRW_PREDICATE_NONE &&
402 !src[1].abs && !src[1].negate));
403 }
404
405 void
406 fs_reg::init()
407 {
408 memset(this, 0, sizeof(*this));
409 type = BRW_REGISTER_TYPE_UD;
410 stride = 1;
411 }
412
413 /** Generic unset register constructor. */
414 fs_reg::fs_reg()
415 {
416 init();
417 this->file = BAD_FILE;
418 }
419
420 fs_reg::fs_reg(struct ::brw_reg reg) :
421 backend_reg(reg)
422 {
423 this->offset = 0;
424 this->stride = 1;
425 if (this->file == IMM &&
426 (this->type != BRW_REGISTER_TYPE_V &&
427 this->type != BRW_REGISTER_TYPE_UV &&
428 this->type != BRW_REGISTER_TYPE_VF)) {
429 this->stride = 0;
430 }
431 }
432
433 bool
434 fs_reg::equals(const fs_reg &r) const
435 {
436 return (this->backend_reg::equals(r) &&
437 stride == r.stride);
438 }
439
440 bool
441 fs_reg::is_contiguous() const
442 {
443 return stride == 1;
444 }
445
446 unsigned
447 fs_reg::component_size(unsigned width) const
448 {
449 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
450 hstride == 0 ? 0 :
451 1 << (hstride - 1));
452 return MAX2(width * stride, 1) * type_sz(type);
453 }
454
455 extern "C" int
456 type_size_scalar(const struct glsl_type *type)
457 {
458 unsigned int size, i;
459
460 switch (type->base_type) {
461 case GLSL_TYPE_UINT:
462 case GLSL_TYPE_INT:
463 case GLSL_TYPE_FLOAT:
464 case GLSL_TYPE_BOOL:
465 return type->components();
466 case GLSL_TYPE_UINT16:
467 case GLSL_TYPE_INT16:
468 case GLSL_TYPE_FLOAT16:
469 return DIV_ROUND_UP(type->components(), 2);
470 case GLSL_TYPE_DOUBLE:
471 case GLSL_TYPE_UINT64:
472 case GLSL_TYPE_INT64:
473 return type->components() * 2;
474 case GLSL_TYPE_ARRAY:
475 return type_size_scalar(type->fields.array) * type->length;
476 case GLSL_TYPE_STRUCT:
477 size = 0;
478 for (i = 0; i < type->length; i++) {
479 size += type_size_scalar(type->fields.structure[i].type);
480 }
481 return size;
482 case GLSL_TYPE_SAMPLER:
483 /* Samplers take up no register space, since they're baked in at
484 * link time.
485 */
486 return 0;
487 case GLSL_TYPE_ATOMIC_UINT:
488 return 0;
489 case GLSL_TYPE_SUBROUTINE:
490 return 1;
491 case GLSL_TYPE_IMAGE:
492 return BRW_IMAGE_PARAM_SIZE;
493 case GLSL_TYPE_VOID:
494 case GLSL_TYPE_ERROR:
495 case GLSL_TYPE_INTERFACE:
496 case GLSL_TYPE_FUNCTION:
497 unreachable("not reached");
498 }
499
500 return 0;
501 }
502
503 /**
504 * Create a MOV to read the timestamp register.
505 *
506 * The caller is responsible for emitting the MOV. The return value is
507 * the destination of the MOV, with extra parameters set.
508 */
509 fs_reg
510 fs_visitor::get_timestamp(const fs_builder &bld)
511 {
512 assert(devinfo->gen >= 7);
513
514 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
515 BRW_ARF_TIMESTAMP,
516 0),
517 BRW_REGISTER_TYPE_UD));
518
519 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
520
521 /* We want to read the 3 fields we care about even if it's not enabled in
522 * the dispatch.
523 */
524 bld.group(4, 0).exec_all().MOV(dst, ts);
525
526 return dst;
527 }
528
529 void
530 fs_visitor::emit_shader_time_begin()
531 {
532 /* We want only the low 32 bits of the timestamp. Since it's running
533 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
534 * which is plenty of time for our purposes. It is identical across the
535 * EUs, but since it's tracking GPU core speed it will increment at a
536 * varying rate as render P-states change.
537 */
538 shader_start_time = component(
539 get_timestamp(bld.annotate("shader time start")), 0);
540 }
541
542 void
543 fs_visitor::emit_shader_time_end()
544 {
545 /* Insert our code just before the final SEND with EOT. */
546 exec_node *end = this->instructions.get_tail();
547 assert(end && ((fs_inst *) end)->eot);
548 const fs_builder ibld = bld.annotate("shader time end")
549 .exec_all().at(NULL, end);
550 const fs_reg timestamp = get_timestamp(ibld);
551
552 /* We only use the low 32 bits of the timestamp - see
553 * emit_shader_time_begin()).
554 *
555 * We could also check if render P-states have changed (or anything
556 * else that might disrupt timing) by setting smear to 2 and checking if
557 * that field is != 0.
558 */
559 const fs_reg shader_end_time = component(timestamp, 0);
560
561 /* Check that there weren't any timestamp reset events (assuming these
562 * were the only two timestamp reads that happened).
563 */
564 const fs_reg reset = component(timestamp, 2);
565 set_condmod(BRW_CONDITIONAL_Z,
566 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
567 ibld.IF(BRW_PREDICATE_NORMAL);
568
569 fs_reg start = shader_start_time;
570 start.negate = true;
571 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
572 BRW_REGISTER_TYPE_UD),
573 0);
574 const fs_builder cbld = ibld.group(1, 0);
575 cbld.group(1, 0).ADD(diff, start, shader_end_time);
576
577 /* If there were no instructions between the two timestamp gets, the diff
578 * is 2 cycles. Remove that overhead, so I can forget about that when
579 * trying to determine the time taken for single instructions.
580 */
581 cbld.ADD(diff, diff, brw_imm_ud(-2u));
582 SHADER_TIME_ADD(cbld, 0, diff);
583 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
584 ibld.emit(BRW_OPCODE_ELSE);
585 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
586 ibld.emit(BRW_OPCODE_ENDIF);
587 }
588
589 void
590 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
591 int shader_time_subindex,
592 fs_reg value)
593 {
594 int index = shader_time_index * 3 + shader_time_subindex;
595 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
596
597 fs_reg payload;
598 if (dispatch_width == 8)
599 payload = vgrf(glsl_type::uvec2_type);
600 else
601 payload = vgrf(glsl_type::uint_type);
602
603 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
604 }
605
606 void
607 fs_visitor::vfail(const char *format, va_list va)
608 {
609 char *msg;
610
611 if (failed)
612 return;
613
614 failed = true;
615
616 msg = ralloc_vasprintf(mem_ctx, format, va);
617 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
618
619 this->fail_msg = msg;
620
621 if (debug_enabled) {
622 fprintf(stderr, "%s", msg);
623 }
624 }
625
626 void
627 fs_visitor::fail(const char *format, ...)
628 {
629 va_list va;
630
631 va_start(va, format);
632 vfail(format, va);
633 va_end(va);
634 }
635
636 /**
637 * Mark this program as impossible to compile with dispatch width greater
638 * than n.
639 *
640 * During the SIMD8 compile (which happens first), we can detect and flag
641 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
642 * SIMD16+ compile altogether.
643 *
644 * During a compile of dispatch width greater than n (if one happens anyway),
645 * this just calls fail().
646 */
647 void
648 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
649 {
650 if (dispatch_width > n) {
651 fail("%s", msg);
652 } else {
653 max_dispatch_width = n;
654 compiler->shader_perf_log(log_data,
655 "Shader dispatch width limited to SIMD%d: %s",
656 n, msg);
657 }
658 }
659
660 /**
661 * Returns true if the instruction has a flag that means it won't
662 * update an entire destination register.
663 *
664 * For example, dead code elimination and live variable analysis want to know
665 * when a write to a variable screens off any preceding values that were in
666 * it.
667 */
668 bool
669 fs_inst::is_partial_write() const
670 {
671 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
672 (this->exec_size * type_sz(this->dst.type)) < 32 ||
673 !this->dst.is_contiguous() ||
674 this->dst.offset % REG_SIZE != 0);
675 }
676
677 unsigned
678 fs_inst::components_read(unsigned i) const
679 {
680 /* Return zero if the source is not present. */
681 if (src[i].file == BAD_FILE)
682 return 0;
683
684 switch (opcode) {
685 case FS_OPCODE_LINTERP:
686 if (i == 0)
687 return 2;
688 else
689 return 1;
690
691 case FS_OPCODE_PIXEL_X:
692 case FS_OPCODE_PIXEL_Y:
693 assert(i == 0);
694 return 2;
695
696 case FS_OPCODE_FB_WRITE_LOGICAL:
697 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
698 /* First/second FB write color. */
699 if (i < 2)
700 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
701 else
702 return 1;
703
704 case SHADER_OPCODE_TEX_LOGICAL:
705 case SHADER_OPCODE_TXD_LOGICAL:
706 case SHADER_OPCODE_TXF_LOGICAL:
707 case SHADER_OPCODE_TXL_LOGICAL:
708 case SHADER_OPCODE_TXS_LOGICAL:
709 case FS_OPCODE_TXB_LOGICAL:
710 case SHADER_OPCODE_TXF_CMS_LOGICAL:
711 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
712 case SHADER_OPCODE_TXF_UMS_LOGICAL:
713 case SHADER_OPCODE_TXF_MCS_LOGICAL:
714 case SHADER_OPCODE_LOD_LOGICAL:
715 case SHADER_OPCODE_TG4_LOGICAL:
716 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
717 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
718 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
719 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
720 /* Texture coordinates. */
721 if (i == TEX_LOGICAL_SRC_COORDINATE)
722 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
723 /* Texture derivatives. */
724 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
725 opcode == SHADER_OPCODE_TXD_LOGICAL)
726 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
727 /* Texture offset. */
728 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
729 return 2;
730 /* MCS */
731 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
732 return 2;
733 else
734 return 1;
735
736 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
737 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
738 assert(src[3].file == IMM);
739 /* Surface coordinates. */
740 if (i == 0)
741 return src[3].ud;
742 /* Surface operation source (ignored for reads). */
743 else if (i == 1)
744 return 0;
745 else
746 return 1;
747
748 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
749 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
750 assert(src[3].file == IMM &&
751 src[4].file == IMM);
752 /* Surface coordinates. */
753 if (i == 0)
754 return src[3].ud;
755 /* Surface operation source. */
756 else if (i == 1)
757 return src[4].ud;
758 else
759 return 1;
760
761 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
762 /* Scattered logical opcodes use the following params:
763 * src[0] Surface coordinates
764 * src[1] Surface operation source (ignored for reads)
765 * src[2] Surface
766 * src[3] IMM with always 1 dimension.
767 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
768 */
769 assert(src[3].file == IMM &&
770 src[4].file == IMM);
771 return i == 1 ? 0 : 1;
772
773 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
774 assert(src[3].file == IMM &&
775 src[4].file == IMM);
776 return 1;
777
778 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
779 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
780 assert(src[3].file == IMM &&
781 src[4].file == IMM);
782 const unsigned op = src[4].ud;
783 /* Surface coordinates. */
784 if (i == 0)
785 return src[3].ud;
786 /* Surface operation source. */
787 else if (i == 1 && op == BRW_AOP_CMPWR)
788 return 2;
789 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
790 op == BRW_AOP_PREDEC))
791 return 0;
792 else
793 return 1;
794 }
795
796 default:
797 return 1;
798 }
799 }
800
801 unsigned
802 fs_inst::size_read(int arg) const
803 {
804 switch (opcode) {
805 case FS_OPCODE_FB_WRITE:
806 case FS_OPCODE_FB_READ:
807 case SHADER_OPCODE_URB_WRITE_SIMD8:
808 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
809 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
810 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
811 case SHADER_OPCODE_URB_READ_SIMD8:
812 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
813 case SHADER_OPCODE_UNTYPED_ATOMIC:
814 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
815 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
816 case SHADER_OPCODE_TYPED_ATOMIC:
817 case SHADER_OPCODE_TYPED_SURFACE_READ:
818 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
819 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
820 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
821 case SHADER_OPCODE_BYTE_SCATTERED_READ:
822 if (arg == 0)
823 return mlen * REG_SIZE;
824 break;
825
826 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
827 /* The payload is actually stored in src1 */
828 if (arg == 1)
829 return mlen * REG_SIZE;
830 break;
831
832 case FS_OPCODE_LINTERP:
833 if (arg == 1)
834 return 16;
835 break;
836
837 case SHADER_OPCODE_LOAD_PAYLOAD:
838 if (arg < this->header_size)
839 return REG_SIZE;
840 break;
841
842 case CS_OPCODE_CS_TERMINATE:
843 case SHADER_OPCODE_BARRIER:
844 return REG_SIZE;
845
846 case SHADER_OPCODE_MOV_INDIRECT:
847 if (arg == 0) {
848 assert(src[2].file == IMM);
849 return src[2].ud;
850 }
851 break;
852
853 default:
854 if (is_tex() && arg == 0 && src[0].file == VGRF)
855 return mlen * REG_SIZE;
856 break;
857 }
858
859 switch (src[arg].file) {
860 case UNIFORM:
861 case IMM:
862 return components_read(arg) * type_sz(src[arg].type);
863 case BAD_FILE:
864 case ARF:
865 case FIXED_GRF:
866 case VGRF:
867 case ATTR:
868 return components_read(arg) * src[arg].component_size(exec_size);
869 case MRF:
870 unreachable("MRF registers are not allowed as sources");
871 }
872 return 0;
873 }
874
875 namespace {
876 /* Return the subset of flag registers that an instruction could
877 * potentially read or write based on the execution controls and flag
878 * subregister number of the instruction.
879 */
880 unsigned
881 flag_mask(const fs_inst *inst)
882 {
883 const unsigned start = inst->flag_subreg * 16 + inst->group;
884 const unsigned end = start + inst->exec_size;
885 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
886 }
887
888 unsigned
889 bit_mask(unsigned n)
890 {
891 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
892 }
893
894 unsigned
895 flag_mask(const fs_reg &r, unsigned sz)
896 {
897 if (r.file == ARF) {
898 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
899 const unsigned end = start + sz;
900 return bit_mask(end) & ~bit_mask(start);
901 } else {
902 return 0;
903 }
904 }
905 }
906
907 unsigned
908 fs_inst::flags_read(const gen_device_info *devinfo) const
909 {
910 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
911 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
912 /* The vertical predication modes combine corresponding bits from
913 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
914 */
915 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
916 return flag_mask(this) << shift | flag_mask(this);
917 } else if (predicate) {
918 return flag_mask(this);
919 } else {
920 unsigned mask = 0;
921 for (int i = 0; i < sources; i++) {
922 mask |= flag_mask(src[i], size_read(i));
923 }
924 return mask;
925 }
926 }
927
928 unsigned
929 fs_inst::flags_written() const
930 {
931 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
932 opcode != BRW_OPCODE_IF &&
933 opcode != BRW_OPCODE_WHILE)) ||
934 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
935 return flag_mask(this);
936 } else {
937 return flag_mask(dst, size_written);
938 }
939 }
940
941 /**
942 * Returns how many MRFs an FS opcode will write over.
943 *
944 * Note that this is not the 0 or 1 implied writes in an actual gen
945 * instruction -- the FS opcodes often generate MOVs in addition.
946 */
947 int
948 fs_visitor::implied_mrf_writes(fs_inst *inst)
949 {
950 if (inst->mlen == 0)
951 return 0;
952
953 if (inst->base_mrf == -1)
954 return 0;
955
956 switch (inst->opcode) {
957 case SHADER_OPCODE_RCP:
958 case SHADER_OPCODE_RSQ:
959 case SHADER_OPCODE_SQRT:
960 case SHADER_OPCODE_EXP2:
961 case SHADER_OPCODE_LOG2:
962 case SHADER_OPCODE_SIN:
963 case SHADER_OPCODE_COS:
964 return 1 * dispatch_width / 8;
965 case SHADER_OPCODE_POW:
966 case SHADER_OPCODE_INT_QUOTIENT:
967 case SHADER_OPCODE_INT_REMAINDER:
968 return 2 * dispatch_width / 8;
969 case SHADER_OPCODE_TEX:
970 case FS_OPCODE_TXB:
971 case SHADER_OPCODE_TXD:
972 case SHADER_OPCODE_TXF:
973 case SHADER_OPCODE_TXF_CMS:
974 case SHADER_OPCODE_TXF_MCS:
975 case SHADER_OPCODE_TG4:
976 case SHADER_OPCODE_TG4_OFFSET:
977 case SHADER_OPCODE_TXL:
978 case SHADER_OPCODE_TXS:
979 case SHADER_OPCODE_LOD:
980 case SHADER_OPCODE_SAMPLEINFO:
981 return 1;
982 case FS_OPCODE_FB_WRITE:
983 return 2;
984 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
985 case SHADER_OPCODE_GEN4_SCRATCH_READ:
986 return 1;
987 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
988 return inst->mlen;
989 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
990 return inst->mlen;
991 default:
992 unreachable("not reached");
993 }
994 }
995
996 fs_reg
997 fs_visitor::vgrf(const glsl_type *const type)
998 {
999 int reg_width = dispatch_width / 8;
1000 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
1001 brw_type_for_base_type(type));
1002 }
1003
1004 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1005 {
1006 init();
1007 this->file = file;
1008 this->nr = nr;
1009 this->type = BRW_REGISTER_TYPE_F;
1010 this->stride = (file == UNIFORM ? 0 : 1);
1011 }
1012
1013 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1014 {
1015 init();
1016 this->file = file;
1017 this->nr = nr;
1018 this->type = type;
1019 this->stride = (file == UNIFORM ? 0 : 1);
1020 }
1021
1022 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1023 * This brings in those uniform definitions
1024 */
1025 void
1026 fs_visitor::import_uniforms(fs_visitor *v)
1027 {
1028 this->push_constant_loc = v->push_constant_loc;
1029 this->pull_constant_loc = v->pull_constant_loc;
1030 this->uniforms = v->uniforms;
1031 this->subgroup_id = v->subgroup_id;
1032 }
1033
1034 void
1035 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1036 {
1037 assert(stage == MESA_SHADER_FRAGMENT);
1038
1039 /* gl_FragCoord.x */
1040 bld.MOV(wpos, this->pixel_x);
1041 wpos = offset(wpos, bld, 1);
1042
1043 /* gl_FragCoord.y */
1044 bld.MOV(wpos, this->pixel_y);
1045 wpos = offset(wpos, bld, 1);
1046
1047 /* gl_FragCoord.z */
1048 if (devinfo->gen >= 6) {
1049 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1050 } else {
1051 bld.emit(FS_OPCODE_LINTERP, wpos,
1052 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1053 interp_reg(VARYING_SLOT_POS, 2));
1054 }
1055 wpos = offset(wpos, bld, 1);
1056
1057 /* gl_FragCoord.w: Already set up in emit_interpolation */
1058 bld.MOV(wpos, this->wpos_w);
1059 }
1060
1061 enum brw_barycentric_mode
1062 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1063 {
1064 /* Barycentric modes don't make sense for flat inputs. */
1065 assert(mode != INTERP_MODE_FLAT);
1066
1067 unsigned bary;
1068 switch (op) {
1069 case nir_intrinsic_load_barycentric_pixel:
1070 case nir_intrinsic_load_barycentric_at_offset:
1071 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1072 break;
1073 case nir_intrinsic_load_barycentric_centroid:
1074 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1075 break;
1076 case nir_intrinsic_load_barycentric_sample:
1077 case nir_intrinsic_load_barycentric_at_sample:
1078 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1079 break;
1080 default:
1081 unreachable("invalid intrinsic");
1082 }
1083
1084 if (mode == INTERP_MODE_NOPERSPECTIVE)
1085 bary += 3;
1086
1087 return (enum brw_barycentric_mode) bary;
1088 }
1089
1090 /**
1091 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1092 */
1093 static enum brw_barycentric_mode
1094 centroid_to_pixel(enum brw_barycentric_mode bary)
1095 {
1096 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1097 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1098 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1099 }
1100
1101 fs_reg *
1102 fs_visitor::emit_frontfacing_interpolation()
1103 {
1104 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1105
1106 if (devinfo->gen >= 6) {
1107 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1108 * a boolean result from this (~0/true or 0/false).
1109 *
1110 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1111 * this task in only one instruction:
1112 * - a negation source modifier will flip the bit; and
1113 * - a W -> D type conversion will sign extend the bit into the high
1114 * word of the destination.
1115 *
1116 * An ASR 15 fills the low word of the destination.
1117 */
1118 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1119 g0.negate = true;
1120
1121 bld.ASR(*reg, g0, brw_imm_d(15));
1122 } else {
1123 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1124 * a boolean result from this (1/true or 0/false).
1125 *
1126 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1127 * the negation source modifier to flip it. Unfortunately the SHR
1128 * instruction only operates on UD (or D with an abs source modifier)
1129 * sources without negation.
1130 *
1131 * Instead, use ASR (which will give ~0/true or 0/false).
1132 */
1133 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1134 g1_6.negate = true;
1135
1136 bld.ASR(*reg, g1_6, brw_imm_d(31));
1137 }
1138
1139 return reg;
1140 }
1141
1142 void
1143 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1144 {
1145 assert(stage == MESA_SHADER_FRAGMENT);
1146 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1147 assert(dst.type == BRW_REGISTER_TYPE_F);
1148
1149 if (wm_prog_data->persample_dispatch) {
1150 /* Convert int_sample_pos to floating point */
1151 bld.MOV(dst, int_sample_pos);
1152 /* Scale to the range [0, 1] */
1153 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1154 }
1155 else {
1156 /* From ARB_sample_shading specification:
1157 * "When rendering to a non-multisample buffer, or if multisample
1158 * rasterization is disabled, gl_SamplePosition will always be
1159 * (0.5, 0.5).
1160 */
1161 bld.MOV(dst, brw_imm_f(0.5f));
1162 }
1163 }
1164
1165 fs_reg *
1166 fs_visitor::emit_samplepos_setup()
1167 {
1168 assert(devinfo->gen >= 6);
1169
1170 const fs_builder abld = bld.annotate("compute sample position");
1171 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1172 fs_reg pos = *reg;
1173 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1174 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1175
1176 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1177 * mode will be enabled.
1178 *
1179 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1180 * R31.1:0 Position Offset X/Y for Slot[3:0]
1181 * R31.3:2 Position Offset X/Y for Slot[7:4]
1182 * .....
1183 *
1184 * The X, Y sample positions come in as bytes in thread payload. So, read
1185 * the positions using vstride=16, width=8, hstride=2.
1186 */
1187 struct brw_reg sample_pos_reg =
1188 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1189 BRW_REGISTER_TYPE_B), 16, 8, 2);
1190
1191 if (dispatch_width == 8) {
1192 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1193 } else {
1194 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1195 abld.half(1).MOV(half(int_sample_x, 1),
1196 fs_reg(suboffset(sample_pos_reg, 16)));
1197 }
1198 /* Compute gl_SamplePosition.x */
1199 compute_sample_position(pos, int_sample_x);
1200 pos = offset(pos, abld, 1);
1201 if (dispatch_width == 8) {
1202 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1203 } else {
1204 abld.half(0).MOV(half(int_sample_y, 0),
1205 fs_reg(suboffset(sample_pos_reg, 1)));
1206 abld.half(1).MOV(half(int_sample_y, 1),
1207 fs_reg(suboffset(sample_pos_reg, 17)));
1208 }
1209 /* Compute gl_SamplePosition.y */
1210 compute_sample_position(pos, int_sample_y);
1211 return reg;
1212 }
1213
1214 fs_reg *
1215 fs_visitor::emit_sampleid_setup()
1216 {
1217 assert(stage == MESA_SHADER_FRAGMENT);
1218 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1219 assert(devinfo->gen >= 6);
1220
1221 const fs_builder abld = bld.annotate("compute sample id");
1222 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1223
1224 if (!key->multisample_fbo) {
1225 /* As per GL_ARB_sample_shading specification:
1226 * "When rendering to a non-multisample buffer, or if multisample
1227 * rasterization is disabled, gl_SampleID will always be zero."
1228 */
1229 abld.MOV(*reg, brw_imm_d(0));
1230 } else if (devinfo->gen >= 8) {
1231 /* Sample ID comes in as 4-bit numbers in g1.0:
1232 *
1233 * 15:12 Slot 3 SampleID (only used in SIMD16)
1234 * 11:8 Slot 2 SampleID (only used in SIMD16)
1235 * 7:4 Slot 1 SampleID
1236 * 3:0 Slot 0 SampleID
1237 *
1238 * Each slot corresponds to four channels, so we want to replicate each
1239 * half-byte value to 4 channels in a row:
1240 *
1241 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1242 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1243 *
1244 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1245 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1246 *
1247 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1248 * channels to read the first byte (7:0), and the second group of 8
1249 * channels to read the second byte (15:8). Then, we shift right by
1250 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1251 * values into place. Finally, we AND with 0xf to keep the low nibble.
1252 *
1253 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1254 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1255 *
1256 * TODO: These payload bits exist on Gen7 too, but they appear to always
1257 * be zero, so this code fails to work. We should find out why.
1258 */
1259 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1260
1261 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1262 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1263 brw_imm_v(0x44440000));
1264 abld.AND(*reg, tmp, brw_imm_w(0xf));
1265 } else {
1266 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1267 BRW_REGISTER_TYPE_D), 0);
1268 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1269
1270 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1271 * 8x multisampling, subspan 0 will represent sample N (where N
1272 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1273 * 7. We can find the value of N by looking at R0.0 bits 7:6
1274 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1275 * (since samples are always delivered in pairs). That is, we
1276 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1277 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1278 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1279 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1280 * populating a temporary variable with the sequence (0, 1, 2, 3),
1281 * and then reading from it using vstride=1, width=4, hstride=0.
1282 * These computations hold good for 4x multisampling as well.
1283 *
1284 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1285 * the first four slots are sample 0 of subspan 0; the next four
1286 * are sample 1 of subspan 0; the third group is sample 0 of
1287 * subspan 1, and finally sample 1 of subspan 1.
1288 */
1289
1290 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1291 * accomodate 16x MSAA.
1292 */
1293 abld.exec_all().group(1, 0)
1294 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1295 brw_imm_ud(0xc0));
1296 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1297
1298 /* This works for both SIMD8 and SIMD16 */
1299 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1300
1301 /* This special instruction takes care of setting vstride=1,
1302 * width=4, hstride=0 of t2 during an ADD instruction.
1303 */
1304 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1305 }
1306
1307 return reg;
1308 }
1309
1310 fs_reg *
1311 fs_visitor::emit_samplemaskin_setup()
1312 {
1313 assert(stage == MESA_SHADER_FRAGMENT);
1314 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1315 assert(devinfo->gen >= 6);
1316
1317 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1318
1319 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1320 BRW_REGISTER_TYPE_D));
1321
1322 if (wm_prog_data->persample_dispatch) {
1323 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1324 * and a mask representing which sample is being processed by the
1325 * current shader invocation.
1326 *
1327 * From the OES_sample_variables specification:
1328 * "When per-sample shading is active due to the use of a fragment input
1329 * qualified by "sample" or due to the use of the gl_SampleID or
1330 * gl_SamplePosition variables, only the bit for the current sample is
1331 * set in gl_SampleMaskIn."
1332 */
1333 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1334
1335 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1336 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1337
1338 fs_reg one = vgrf(glsl_type::int_type);
1339 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1340 abld.MOV(one, brw_imm_d(1));
1341 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1342 abld.AND(*reg, enabled_mask, coverage_mask);
1343 } else {
1344 /* In per-pixel mode, the coverage mask is sufficient. */
1345 *reg = coverage_mask;
1346 }
1347 return reg;
1348 }
1349
1350 fs_reg
1351 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1352 {
1353 if (!src.abs && !src.negate)
1354 return src;
1355
1356 fs_reg temp = bld.vgrf(src.type);
1357 bld.MOV(temp, src);
1358
1359 return temp;
1360 }
1361
1362 void
1363 fs_visitor::emit_discard_jump()
1364 {
1365 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1366
1367 /* For performance, after a discard, jump to the end of the
1368 * shader if all relevant channels have been discarded.
1369 */
1370 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1371 discard_jump->flag_subreg = 1;
1372
1373 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1374 discard_jump->predicate_inverse = true;
1375 }
1376
1377 void
1378 fs_visitor::emit_gs_thread_end()
1379 {
1380 assert(stage == MESA_SHADER_GEOMETRY);
1381
1382 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1383
1384 if (gs_compile->control_data_header_size_bits > 0) {
1385 emit_gs_control_data_bits(this->final_gs_vertex_count);
1386 }
1387
1388 const fs_builder abld = bld.annotate("thread end");
1389 fs_inst *inst;
1390
1391 if (gs_prog_data->static_vertex_count != -1) {
1392 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1393 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1394 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1395 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1396 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1397 prev->eot = true;
1398
1399 /* Delete now dead instructions. */
1400 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1401 if (dead == prev)
1402 break;
1403 dead->remove();
1404 }
1405 return;
1406 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1407 break;
1408 }
1409 }
1410 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1411 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1412 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1413 inst->mlen = 1;
1414 } else {
1415 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1416 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1417 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1418 sources[1] = this->final_gs_vertex_count;
1419 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1420 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1421 inst->mlen = 2;
1422 }
1423 inst->eot = true;
1424 inst->offset = 0;
1425 }
1426
1427 void
1428 fs_visitor::assign_curb_setup()
1429 {
1430 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1431
1432 unsigned ubo_push_length = 0;
1433 unsigned ubo_push_start[4];
1434 for (int i = 0; i < 4; i++) {
1435 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1436 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1437 }
1438
1439 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1440
1441 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1442 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1443 for (unsigned int i = 0; i < inst->sources; i++) {
1444 if (inst->src[i].file == UNIFORM) {
1445 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1446 int constant_nr;
1447 if (inst->src[i].nr >= UBO_START) {
1448 /* constant_nr is in 32-bit units, the rest are in bytes */
1449 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1450 inst->src[i].offset / 4;
1451 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1452 constant_nr = push_constant_loc[uniform_nr];
1453 } else {
1454 /* Section 5.11 of the OpenGL 4.1 spec says:
1455 * "Out-of-bounds reads return undefined values, which include
1456 * values from other variables of the active program or zero."
1457 * Just return the first push constant.
1458 */
1459 constant_nr = 0;
1460 }
1461
1462 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1463 constant_nr / 8,
1464 constant_nr % 8);
1465 brw_reg.abs = inst->src[i].abs;
1466 brw_reg.negate = inst->src[i].negate;
1467
1468 assert(inst->src[i].stride == 0);
1469 inst->src[i] = byte_offset(
1470 retype(brw_reg, inst->src[i].type),
1471 inst->src[i].offset % 4);
1472 }
1473 }
1474 }
1475
1476 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1477 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1478 }
1479
1480 void
1481 fs_visitor::calculate_urb_setup()
1482 {
1483 assert(stage == MESA_SHADER_FRAGMENT);
1484 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1485 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1486
1487 memset(prog_data->urb_setup, -1,
1488 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1489
1490 int urb_next = 0;
1491 /* Figure out where each of the incoming setup attributes lands. */
1492 if (devinfo->gen >= 6) {
1493 if (_mesa_bitcount_64(nir->info.inputs_read &
1494 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1495 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1496 * first 16 varying inputs, so we can put them wherever we want.
1497 * Just put them in order.
1498 *
1499 * This is useful because it means that (a) inputs not used by the
1500 * fragment shader won't take up valuable register space, and (b) we
1501 * won't have to recompile the fragment shader if it gets paired with
1502 * a different vertex (or geometry) shader.
1503 */
1504 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1505 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1506 BITFIELD64_BIT(i)) {
1507 prog_data->urb_setup[i] = urb_next++;
1508 }
1509 }
1510 } else {
1511 /* We have enough input varyings that the SF/SBE pipeline stage can't
1512 * arbitrarily rearrange them to suit our whim; we have to put them
1513 * in an order that matches the output of the previous pipeline stage
1514 * (geometry or vertex shader).
1515 */
1516 struct brw_vue_map prev_stage_vue_map;
1517 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1518 key->input_slots_valid,
1519 nir->info.separate_shader);
1520
1521 int first_slot =
1522 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1523 &prev_stage_vue_map);
1524
1525 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1526 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1527 slot++) {
1528 int varying = prev_stage_vue_map.slot_to_varying[slot];
1529 if (varying != BRW_VARYING_SLOT_PAD &&
1530 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1531 BITFIELD64_BIT(varying))) {
1532 prog_data->urb_setup[varying] = slot - first_slot;
1533 }
1534 }
1535 urb_next = prev_stage_vue_map.num_slots - first_slot;
1536 }
1537 } else {
1538 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1539 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1540 /* Point size is packed into the header, not as a general attribute */
1541 if (i == VARYING_SLOT_PSIZ)
1542 continue;
1543
1544 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1545 /* The back color slot is skipped when the front color is
1546 * also written to. In addition, some slots can be
1547 * written in the vertex shader and not read in the
1548 * fragment shader. So the register number must always be
1549 * incremented, mapped or not.
1550 */
1551 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1552 prog_data->urb_setup[i] = urb_next;
1553 urb_next++;
1554 }
1555 }
1556
1557 /*
1558 * It's a FS only attribute, and we did interpolation for this attribute
1559 * in SF thread. So, count it here, too.
1560 *
1561 * See compile_sf_prog() for more info.
1562 */
1563 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1564 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1565 }
1566
1567 prog_data->num_varying_inputs = urb_next;
1568 }
1569
1570 void
1571 fs_visitor::assign_urb_setup()
1572 {
1573 assert(stage == MESA_SHADER_FRAGMENT);
1574 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1575
1576 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1577
1578 /* Offset all the urb_setup[] index by the actual position of the
1579 * setup regs, now that the location of the constants has been chosen.
1580 */
1581 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1582 if (inst->opcode == FS_OPCODE_LINTERP) {
1583 assert(inst->src[1].file == FIXED_GRF);
1584 inst->src[1].nr += urb_start;
1585 }
1586
1587 if (inst->opcode == FS_OPCODE_CINTERP) {
1588 assert(inst->src[0].file == FIXED_GRF);
1589 inst->src[0].nr += urb_start;
1590 }
1591 }
1592
1593 /* Each attribute is 4 setup channels, each of which is half a reg. */
1594 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1595 }
1596
1597 void
1598 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1599 {
1600 for (int i = 0; i < inst->sources; i++) {
1601 if (inst->src[i].file == ATTR) {
1602 int grf = payload.num_regs +
1603 prog_data->curb_read_length +
1604 inst->src[i].nr +
1605 inst->src[i].offset / REG_SIZE;
1606
1607 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1608 *
1609 * VertStride must be used to cross GRF register boundaries. This
1610 * rule implies that elements within a 'Width' cannot cross GRF
1611 * boundaries.
1612 *
1613 * So, for registers that are large enough, we have to split the exec
1614 * size in two and trust the compression state to sort it out.
1615 */
1616 unsigned total_size = inst->exec_size *
1617 inst->src[i].stride *
1618 type_sz(inst->src[i].type);
1619
1620 assert(total_size <= 2 * REG_SIZE);
1621 const unsigned exec_size =
1622 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1623
1624 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1625 struct brw_reg reg =
1626 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1627 inst->src[i].offset % REG_SIZE),
1628 exec_size * inst->src[i].stride,
1629 width, inst->src[i].stride);
1630 reg.abs = inst->src[i].abs;
1631 reg.negate = inst->src[i].negate;
1632
1633 inst->src[i] = reg;
1634 }
1635 }
1636 }
1637
1638 void
1639 fs_visitor::assign_vs_urb_setup()
1640 {
1641 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1642
1643 assert(stage == MESA_SHADER_VERTEX);
1644
1645 /* Each attribute is 4 regs. */
1646 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1647
1648 assert(vs_prog_data->base.urb_read_length <= 15);
1649
1650 /* Rewrite all ATTR file references to the hw grf that they land in. */
1651 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1652 convert_attr_sources_to_hw_regs(inst);
1653 }
1654 }
1655
1656 void
1657 fs_visitor::assign_tcs_single_patch_urb_setup()
1658 {
1659 assert(stage == MESA_SHADER_TESS_CTRL);
1660
1661 /* Rewrite all ATTR file references to HW_REGs. */
1662 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1663 convert_attr_sources_to_hw_regs(inst);
1664 }
1665 }
1666
1667 void
1668 fs_visitor::assign_tes_urb_setup()
1669 {
1670 assert(stage == MESA_SHADER_TESS_EVAL);
1671
1672 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1673
1674 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1675
1676 /* Rewrite all ATTR file references to HW_REGs. */
1677 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1678 convert_attr_sources_to_hw_regs(inst);
1679 }
1680 }
1681
1682 void
1683 fs_visitor::assign_gs_urb_setup()
1684 {
1685 assert(stage == MESA_SHADER_GEOMETRY);
1686
1687 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1688
1689 first_non_payload_grf +=
1690 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1691
1692 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1693 /* Rewrite all ATTR file references to GRFs. */
1694 convert_attr_sources_to_hw_regs(inst);
1695 }
1696 }
1697
1698
1699 /**
1700 * Split large virtual GRFs into separate components if we can.
1701 *
1702 * This is mostly duplicated with what brw_fs_vector_splitting does,
1703 * but that's really conservative because it's afraid of doing
1704 * splitting that doesn't result in real progress after the rest of
1705 * the optimization phases, which would cause infinite looping in
1706 * optimization. We can do it once here, safely. This also has the
1707 * opportunity to split interpolated values, or maybe even uniforms,
1708 * which we don't have at the IR level.
1709 *
1710 * We want to split, because virtual GRFs are what we register
1711 * allocate and spill (due to contiguousness requirements for some
1712 * instructions), and they're what we naturally generate in the
1713 * codegen process, but most virtual GRFs don't actually need to be
1714 * contiguous sets of GRFs. If we split, we'll end up with reduced
1715 * live intervals and better dead code elimination and coalescing.
1716 */
1717 void
1718 fs_visitor::split_virtual_grfs()
1719 {
1720 /* Compact the register file so we eliminate dead vgrfs. This
1721 * only defines split points for live registers, so if we have
1722 * too large dead registers they will hit assertions later.
1723 */
1724 compact_virtual_grfs();
1725
1726 int num_vars = this->alloc.count;
1727
1728 /* Count the total number of registers */
1729 int reg_count = 0;
1730 int vgrf_to_reg[num_vars];
1731 for (int i = 0; i < num_vars; i++) {
1732 vgrf_to_reg[i] = reg_count;
1733 reg_count += alloc.sizes[i];
1734 }
1735
1736 /* An array of "split points". For each register slot, this indicates
1737 * if this slot can be separated from the previous slot. Every time an
1738 * instruction uses multiple elements of a register (as a source or
1739 * destination), we mark the used slots as inseparable. Then we go
1740 * through and split the registers into the smallest pieces we can.
1741 */
1742 bool split_points[reg_count];
1743 memset(split_points, 0, sizeof(split_points));
1744
1745 /* Mark all used registers as fully splittable */
1746 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1747 if (inst->dst.file == VGRF) {
1748 int reg = vgrf_to_reg[inst->dst.nr];
1749 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1750 split_points[reg + j] = true;
1751 }
1752
1753 for (int i = 0; i < inst->sources; i++) {
1754 if (inst->src[i].file == VGRF) {
1755 int reg = vgrf_to_reg[inst->src[i].nr];
1756 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1757 split_points[reg + j] = true;
1758 }
1759 }
1760 }
1761
1762 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1763 if (inst->dst.file == VGRF) {
1764 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1765 for (unsigned j = 1; j < regs_written(inst); j++)
1766 split_points[reg + j] = false;
1767 }
1768 for (int i = 0; i < inst->sources; i++) {
1769 if (inst->src[i].file == VGRF) {
1770 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1771 for (unsigned j = 1; j < regs_read(inst, i); j++)
1772 split_points[reg + j] = false;
1773 }
1774 }
1775 }
1776
1777 int new_virtual_grf[reg_count];
1778 int new_reg_offset[reg_count];
1779
1780 int reg = 0;
1781 for (int i = 0; i < num_vars; i++) {
1782 /* The first one should always be 0 as a quick sanity check. */
1783 assert(split_points[reg] == false);
1784
1785 /* j = 0 case */
1786 new_reg_offset[reg] = 0;
1787 reg++;
1788 int offset = 1;
1789
1790 /* j > 0 case */
1791 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1792 /* If this is a split point, reset the offset to 0 and allocate a
1793 * new virtual GRF for the previous offset many registers
1794 */
1795 if (split_points[reg]) {
1796 assert(offset <= MAX_VGRF_SIZE);
1797 int grf = alloc.allocate(offset);
1798 for (int k = reg - offset; k < reg; k++)
1799 new_virtual_grf[k] = grf;
1800 offset = 0;
1801 }
1802 new_reg_offset[reg] = offset;
1803 offset++;
1804 reg++;
1805 }
1806
1807 /* The last one gets the original register number */
1808 assert(offset <= MAX_VGRF_SIZE);
1809 alloc.sizes[i] = offset;
1810 for (int k = reg - offset; k < reg; k++)
1811 new_virtual_grf[k] = i;
1812 }
1813 assert(reg == reg_count);
1814
1815 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1816 if (inst->dst.file == VGRF) {
1817 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1818 inst->dst.nr = new_virtual_grf[reg];
1819 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1820 inst->dst.offset % REG_SIZE;
1821 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1822 }
1823 for (int i = 0; i < inst->sources; i++) {
1824 if (inst->src[i].file == VGRF) {
1825 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1826 inst->src[i].nr = new_virtual_grf[reg];
1827 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1828 inst->src[i].offset % REG_SIZE;
1829 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1830 }
1831 }
1832 }
1833 invalidate_live_intervals();
1834 }
1835
1836 /**
1837 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1838 *
1839 * During code generation, we create tons of temporary variables, many of
1840 * which get immediately killed and are never used again. Yet, in later
1841 * optimization and analysis passes, such as compute_live_intervals, we need
1842 * to loop over all the virtual GRFs. Compacting them can save a lot of
1843 * overhead.
1844 */
1845 bool
1846 fs_visitor::compact_virtual_grfs()
1847 {
1848 bool progress = false;
1849 int remap_table[this->alloc.count];
1850 memset(remap_table, -1, sizeof(remap_table));
1851
1852 /* Mark which virtual GRFs are used. */
1853 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1854 if (inst->dst.file == VGRF)
1855 remap_table[inst->dst.nr] = 0;
1856
1857 for (int i = 0; i < inst->sources; i++) {
1858 if (inst->src[i].file == VGRF)
1859 remap_table[inst->src[i].nr] = 0;
1860 }
1861 }
1862
1863 /* Compact the GRF arrays. */
1864 int new_index = 0;
1865 for (unsigned i = 0; i < this->alloc.count; i++) {
1866 if (remap_table[i] == -1) {
1867 /* We just found an unused register. This means that we are
1868 * actually going to compact something.
1869 */
1870 progress = true;
1871 } else {
1872 remap_table[i] = new_index;
1873 alloc.sizes[new_index] = alloc.sizes[i];
1874 invalidate_live_intervals();
1875 ++new_index;
1876 }
1877 }
1878
1879 this->alloc.count = new_index;
1880
1881 /* Patch all the instructions to use the newly renumbered registers */
1882 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1883 if (inst->dst.file == VGRF)
1884 inst->dst.nr = remap_table[inst->dst.nr];
1885
1886 for (int i = 0; i < inst->sources; i++) {
1887 if (inst->src[i].file == VGRF)
1888 inst->src[i].nr = remap_table[inst->src[i].nr];
1889 }
1890 }
1891
1892 /* Patch all the references to delta_xy, since they're used in register
1893 * allocation. If they're unused, switch them to BAD_FILE so we don't
1894 * think some random VGRF is delta_xy.
1895 */
1896 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1897 if (delta_xy[i].file == VGRF) {
1898 if (remap_table[delta_xy[i].nr] != -1) {
1899 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1900 } else {
1901 delta_xy[i].file = BAD_FILE;
1902 }
1903 }
1904 }
1905
1906 return progress;
1907 }
1908
1909 static int
1910 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
1911 {
1912 if (prog_data->nr_params == 0)
1913 return -1;
1914
1915 /* The local thread id is always the last parameter in the list */
1916 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
1917 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
1918 return prog_data->nr_params - 1;
1919
1920 return -1;
1921 }
1922
1923 /**
1924 * Struct for handling complex alignments.
1925 *
1926 * A complex alignment is stored as multiplier and an offset. A value is
1927 * considered to be aligned if it is {offset} larger than a multiple of {mul}.
1928 * For instance, with an alignment of {8, 2}, cplx_align_apply would do the
1929 * following:
1930 *
1931 * N | cplx_align_apply({8, 2}, N)
1932 * ----+-----------------------------
1933 * 4 | 6
1934 * 6 | 6
1935 * 8 | 14
1936 * 10 | 14
1937 * 12 | 14
1938 * 14 | 14
1939 * 16 | 22
1940 */
1941 struct cplx_align {
1942 unsigned mul:4;
1943 unsigned offset:4;
1944 };
1945
1946 #define CPLX_ALIGN_MAX_MUL 8
1947
1948 static void
1949 cplx_align_assert_sane(struct cplx_align a)
1950 {
1951 assert(a.mul > 0 && util_is_power_of_two(a.mul));
1952 assert(a.offset < a.mul);
1953 }
1954
1955 /**
1956 * Combines two alignments to produce a least multiple of sorts.
1957 *
1958 * The returned alignment is the smallest (in terms of multiplier) such that
1959 * anything aligned to both a and b will be aligned to the new alignment.
1960 * This function will assert-fail if a and b are not compatible, i.e. if the
1961 * offset parameters are such that no common alignment is possible.
1962 */
1963 static struct cplx_align
1964 cplx_align_combine(struct cplx_align a, struct cplx_align b)
1965 {
1966 cplx_align_assert_sane(a);
1967 cplx_align_assert_sane(b);
1968
1969 /* Assert that the alignments agree. */
1970 assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1)));
1971
1972 return a.mul > b.mul ? a : b;
1973 }
1974
1975 /**
1976 * Apply a complex alignment
1977 *
1978 * This function will return the smallest number greater than or equal to
1979 * offset that is aligned to align.
1980 */
1981 static unsigned
1982 cplx_align_apply(struct cplx_align align, unsigned offset)
1983 {
1984 return ALIGN(offset - align.offset, align.mul) + align.offset;
1985 }
1986
1987 #define UNIFORM_SLOT_SIZE 4
1988
1989 struct uniform_slot_info {
1990 /** True if the given uniform slot is live */
1991 unsigned is_live:1;
1992
1993 /** True if this slot and the next slot must remain contiguous */
1994 unsigned contiguous:1;
1995
1996 struct cplx_align align;
1997 };
1998
1999 static void
2000 mark_uniform_slots_read(struct uniform_slot_info *slots,
2001 unsigned num_slots, unsigned alignment)
2002 {
2003 assert(alignment > 0 && util_is_power_of_two(alignment));
2004 assert(alignment <= CPLX_ALIGN_MAX_MUL);
2005
2006 /* We can't align a slot to anything less than the slot size */
2007 alignment = MAX2(alignment, UNIFORM_SLOT_SIZE);
2008
2009 struct cplx_align align = {alignment, 0};
2010 cplx_align_assert_sane(align);
2011
2012 for (unsigned i = 0; i < num_slots; i++) {
2013 slots[i].is_live = true;
2014 if (i < num_slots - 1)
2015 slots[i].contiguous = true;
2016
2017 align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1);
2018 if (slots[i].align.mul == 0) {
2019 slots[i].align = align;
2020 } else {
2021 slots[i].align = cplx_align_combine(slots[i].align, align);
2022 }
2023 }
2024 }
2025
2026 /**
2027 * Assign UNIFORM file registers to either push constants or pull constants.
2028 *
2029 * We allow a fragment shader to have more than the specified minimum
2030 * maximum number of fragment shader uniform components (64). If
2031 * there are too many of these, they'd fill up all of register space.
2032 * So, this will push some of them out to the pull constant buffer and
2033 * update the program to load them.
2034 */
2035 void
2036 fs_visitor::assign_constant_locations()
2037 {
2038 /* Only the first compile gets to decide on locations. */
2039 if (push_constant_loc) {
2040 assert(pull_constant_loc);
2041 return;
2042 }
2043
2044 struct uniform_slot_info slots[uniforms];
2045 memset(slots, 0, sizeof(slots));
2046
2047 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2048 for (int i = 0 ; i < inst->sources; i++) {
2049 if (inst->src[i].file != UNIFORM)
2050 continue;
2051
2052 /* NIR tightly packs things so the uniform number might not be
2053 * aligned (if we have a double right after a float, for instance).
2054 * This is fine because the process of re-arranging them will ensure
2055 * that things are properly aligned. The offset into that uniform,
2056 * however, must be aligned.
2057 *
2058 * In Vulkan, we have explicit offsets but everything is crammed
2059 * into a single "variable" so inst->src[i].nr will always be 0.
2060 * Everything will be properly aligned relative to that one base.
2061 */
2062 assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0);
2063
2064 unsigned u = inst->src[i].nr +
2065 inst->src[i].offset / UNIFORM_SLOT_SIZE;
2066
2067 if (u >= uniforms)
2068 continue;
2069
2070 unsigned slots_read;
2071 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2072 slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE);
2073 } else {
2074 unsigned bytes_read = inst->components_read(i) *
2075 type_sz(inst->src[i].type);
2076 slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE);
2077 }
2078
2079 assert(u + slots_read <= uniforms);
2080 mark_uniform_slots_read(&slots[u], slots_read,
2081 type_sz(inst->src[i].type));
2082 }
2083 }
2084
2085 int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2086
2087 /* Only allow 16 registers (128 uniform components) as push constants.
2088 *
2089 * Just demote the end of the list. We could probably do better
2090 * here, demoting things that are rarely used in the program first.
2091 *
2092 * If changing this value, note the limitation about total_regs in
2093 * brw_curbe.c.
2094 */
2095 unsigned int max_push_components = 16 * 8;
2096 if (subgroup_id_index >= 0)
2097 max_push_components--; /* Save a slot for the thread ID */
2098
2099 /* We push small arrays, but no bigger than 16 floats. This is big enough
2100 * for a vec4 but hopefully not large enough to push out other stuff. We
2101 * should probably use a better heuristic at some point.
2102 */
2103 const unsigned int max_chunk_size = 16;
2104
2105 unsigned int num_push_constants = 0;
2106 unsigned int num_pull_constants = 0;
2107
2108 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2109 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2110
2111 /* Default to -1 meaning no location */
2112 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2113 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2114
2115 int chunk_start = -1;
2116 struct cplx_align align;
2117 for (unsigned u = 0; u < uniforms; u++) {
2118 if (!slots[u].is_live) {
2119 assert(chunk_start == -1);
2120 continue;
2121 }
2122
2123 /* Skip subgroup_id_index to put it in the last push register. */
2124 if (subgroup_id_index == (int)u)
2125 continue;
2126
2127 if (chunk_start == -1) {
2128 chunk_start = u;
2129 align = slots[u].align;
2130 } else {
2131 /* Offset into the chunk */
2132 unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE;
2133
2134 /* Shift the slot alignment down by the chunk offset so it is
2135 * comparable with the base chunk alignment.
2136 */
2137 struct cplx_align slot_align = slots[u].align;
2138 slot_align.offset =
2139 (slot_align.offset - chunk_offset) & (align.mul - 1);
2140
2141 align = cplx_align_combine(align, slot_align);
2142 }
2143
2144 /* Sanity check the alignment */
2145 cplx_align_assert_sane(align);
2146
2147 if (slots[u].contiguous)
2148 continue;
2149
2150 /* Adjust the alignment to be in terms of slots, not bytes */
2151 assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0);
2152 assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0);
2153 align.mul /= UNIFORM_SLOT_SIZE;
2154 align.offset /= UNIFORM_SLOT_SIZE;
2155
2156 unsigned push_start_align = cplx_align_apply(align, num_push_constants);
2157 unsigned chunk_size = u - chunk_start + 1;
2158 if ((!compiler->supports_pull_constants && u < UBO_START) ||
2159 (chunk_size < max_chunk_size &&
2160 push_start_align + chunk_size <= max_push_components)) {
2161 /* Align up the number of push constants */
2162 num_push_constants = push_start_align;
2163 for (unsigned i = 0; i < chunk_size; i++)
2164 push_constant_loc[chunk_start + i] = num_push_constants++;
2165 } else {
2166 /* We need to pull this one */
2167 num_pull_constants = cplx_align_apply(align, num_pull_constants);
2168 for (unsigned i = 0; i < chunk_size; i++)
2169 pull_constant_loc[chunk_start + i] = num_pull_constants++;
2170 }
2171
2172 /* Reset the chunk and start again */
2173 chunk_start = -1;
2174 }
2175
2176 /* Add the CS local thread ID uniform at the end of the push constants */
2177 if (subgroup_id_index >= 0)
2178 push_constant_loc[subgroup_id_index] = num_push_constants++;
2179
2180 /* As the uniforms are going to be reordered, stash the old array and
2181 * create two new arrays for push/pull params.
2182 */
2183 uint32_t *param = stage_prog_data->param;
2184 stage_prog_data->nr_params = num_push_constants;
2185 if (num_push_constants) {
2186 stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t,
2187 num_push_constants);
2188 } else {
2189 stage_prog_data->param = NULL;
2190 }
2191 assert(stage_prog_data->nr_pull_params == 0);
2192 assert(stage_prog_data->pull_param == NULL);
2193 if (num_pull_constants > 0) {
2194 stage_prog_data->nr_pull_params = num_pull_constants;
2195 stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t,
2196 num_pull_constants);
2197 }
2198
2199 /* Now that we know how many regular uniforms we'll push, reduce the
2200 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2201 */
2202 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2203 for (int i = 0; i < 4; i++) {
2204 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2205
2206 if (push_length + range->length > 64)
2207 range->length = 64 - push_length;
2208
2209 push_length += range->length;
2210 }
2211 assert(push_length <= 64);
2212
2213 /* Up until now, the param[] array has been indexed by reg + offset
2214 * of UNIFORM registers. Move pull constants into pull_param[] and
2215 * condense param[] to only contain the uniforms we chose to push.
2216 *
2217 * NOTE: Because we are condensing the params[] array, we know that
2218 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2219 * having to make a copy.
2220 */
2221 for (unsigned int i = 0; i < uniforms; i++) {
2222 uint32_t value = param[i];
2223 if (pull_constant_loc[i] != -1) {
2224 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2225 } else if (push_constant_loc[i] != -1) {
2226 stage_prog_data->param[push_constant_loc[i]] = value;
2227 }
2228 }
2229 ralloc_free(param);
2230 }
2231
2232 bool
2233 fs_visitor::get_pull_locs(const fs_reg &src,
2234 unsigned *out_surf_index,
2235 unsigned *out_pull_index)
2236 {
2237 assert(src.file == UNIFORM);
2238
2239 if (src.nr >= UBO_START) {
2240 const struct brw_ubo_range *range =
2241 &prog_data->ubo_ranges[src.nr - UBO_START];
2242
2243 /* If this access is in our (reduced) range, use the push data. */
2244 if (src.offset / 32 < range->length)
2245 return false;
2246
2247 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2248 *out_pull_index = (32 * range->start + src.offset) / 4;
2249 return true;
2250 }
2251
2252 const unsigned location = src.nr + src.offset / 4;
2253
2254 if (location < uniforms && pull_constant_loc[location] != -1) {
2255 /* A regular uniform push constant */
2256 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2257 *out_pull_index = pull_constant_loc[location];
2258 return true;
2259 }
2260
2261 return false;
2262 }
2263
2264 /**
2265 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2266 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2267 */
2268 void
2269 fs_visitor::lower_constant_loads()
2270 {
2271 unsigned index, pull_index;
2272
2273 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2274 /* Set up the annotation tracking for new generated instructions. */
2275 const fs_builder ibld(this, block, inst);
2276
2277 for (int i = 0; i < inst->sources; i++) {
2278 if (inst->src[i].file != UNIFORM)
2279 continue;
2280
2281 /* We'll handle this case later */
2282 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2283 continue;
2284
2285 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2286 continue;
2287
2288 assert(inst->src[i].stride == 0);
2289
2290 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2291 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2292 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2293 const unsigned base = pull_index * 4;
2294
2295 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2296 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2297
2298 /* Rewrite the instruction to use the temporary VGRF. */
2299 inst->src[i].file = VGRF;
2300 inst->src[i].nr = dst.nr;
2301 inst->src[i].offset = (base & (block_sz - 1)) +
2302 inst->src[i].offset % 4;
2303
2304 brw_mark_surface_used(prog_data, index);
2305 }
2306
2307 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2308 inst->src[0].file == UNIFORM) {
2309
2310 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2311 continue;
2312
2313 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2314 brw_imm_ud(index),
2315 inst->src[1],
2316 pull_index * 4);
2317 inst->remove(block);
2318
2319 brw_mark_surface_used(prog_data, index);
2320 }
2321 }
2322 invalidate_live_intervals();
2323 }
2324
2325 bool
2326 fs_visitor::opt_algebraic()
2327 {
2328 bool progress = false;
2329
2330 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2331 switch (inst->opcode) {
2332 case BRW_OPCODE_MOV:
2333 if (inst->src[0].file != IMM)
2334 break;
2335
2336 if (inst->saturate) {
2337 if (inst->dst.type != inst->src[0].type)
2338 assert(!"unimplemented: saturate mixed types");
2339
2340 if (brw_saturate_immediate(inst->dst.type,
2341 &inst->src[0].as_brw_reg())) {
2342 inst->saturate = false;
2343 progress = true;
2344 }
2345 }
2346 break;
2347
2348 case BRW_OPCODE_MUL:
2349 if (inst->src[1].file != IMM)
2350 continue;
2351
2352 /* a * 1.0 = a */
2353 if (inst->src[1].is_one()) {
2354 inst->opcode = BRW_OPCODE_MOV;
2355 inst->src[1] = reg_undef;
2356 progress = true;
2357 break;
2358 }
2359
2360 /* a * -1.0 = -a */
2361 if (inst->src[1].is_negative_one()) {
2362 inst->opcode = BRW_OPCODE_MOV;
2363 inst->src[0].negate = !inst->src[0].negate;
2364 inst->src[1] = reg_undef;
2365 progress = true;
2366 break;
2367 }
2368
2369 /* a * 0.0 = 0.0 */
2370 if (inst->src[1].is_zero()) {
2371 inst->opcode = BRW_OPCODE_MOV;
2372 inst->src[0] = inst->src[1];
2373 inst->src[1] = reg_undef;
2374 progress = true;
2375 break;
2376 }
2377
2378 if (inst->src[0].file == IMM) {
2379 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2380 inst->opcode = BRW_OPCODE_MOV;
2381 inst->src[0].f *= inst->src[1].f;
2382 inst->src[1] = reg_undef;
2383 progress = true;
2384 break;
2385 }
2386 break;
2387 case BRW_OPCODE_ADD:
2388 if (inst->src[1].file != IMM)
2389 continue;
2390
2391 /* a + 0.0 = a */
2392 if (inst->src[1].is_zero()) {
2393 inst->opcode = BRW_OPCODE_MOV;
2394 inst->src[1] = reg_undef;
2395 progress = true;
2396 break;
2397 }
2398
2399 if (inst->src[0].file == IMM) {
2400 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2401 inst->opcode = BRW_OPCODE_MOV;
2402 inst->src[0].f += inst->src[1].f;
2403 inst->src[1] = reg_undef;
2404 progress = true;
2405 break;
2406 }
2407 break;
2408 case BRW_OPCODE_OR:
2409 if (inst->src[0].equals(inst->src[1])) {
2410 inst->opcode = BRW_OPCODE_MOV;
2411 inst->src[1] = reg_undef;
2412 progress = true;
2413 break;
2414 }
2415 break;
2416 case BRW_OPCODE_LRP:
2417 if (inst->src[1].equals(inst->src[2])) {
2418 inst->opcode = BRW_OPCODE_MOV;
2419 inst->src[0] = inst->src[1];
2420 inst->src[1] = reg_undef;
2421 inst->src[2] = reg_undef;
2422 progress = true;
2423 break;
2424 }
2425 break;
2426 case BRW_OPCODE_CMP:
2427 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2428 inst->src[0].abs &&
2429 inst->src[0].negate &&
2430 inst->src[1].is_zero()) {
2431 inst->src[0].abs = false;
2432 inst->src[0].negate = false;
2433 inst->conditional_mod = BRW_CONDITIONAL_Z;
2434 progress = true;
2435 break;
2436 }
2437 break;
2438 case BRW_OPCODE_SEL:
2439 if (inst->src[0].equals(inst->src[1])) {
2440 inst->opcode = BRW_OPCODE_MOV;
2441 inst->src[1] = reg_undef;
2442 inst->predicate = BRW_PREDICATE_NONE;
2443 inst->predicate_inverse = false;
2444 progress = true;
2445 } else if (inst->saturate && inst->src[1].file == IMM) {
2446 switch (inst->conditional_mod) {
2447 case BRW_CONDITIONAL_LE:
2448 case BRW_CONDITIONAL_L:
2449 switch (inst->src[1].type) {
2450 case BRW_REGISTER_TYPE_F:
2451 if (inst->src[1].f >= 1.0f) {
2452 inst->opcode = BRW_OPCODE_MOV;
2453 inst->src[1] = reg_undef;
2454 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2455 progress = true;
2456 }
2457 break;
2458 default:
2459 break;
2460 }
2461 break;
2462 case BRW_CONDITIONAL_GE:
2463 case BRW_CONDITIONAL_G:
2464 switch (inst->src[1].type) {
2465 case BRW_REGISTER_TYPE_F:
2466 if (inst->src[1].f <= 0.0f) {
2467 inst->opcode = BRW_OPCODE_MOV;
2468 inst->src[1] = reg_undef;
2469 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2470 progress = true;
2471 }
2472 break;
2473 default:
2474 break;
2475 }
2476 default:
2477 break;
2478 }
2479 }
2480 break;
2481 case BRW_OPCODE_MAD:
2482 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2483 inst->opcode = BRW_OPCODE_MOV;
2484 inst->src[1] = reg_undef;
2485 inst->src[2] = reg_undef;
2486 progress = true;
2487 } else if (inst->src[0].is_zero()) {
2488 inst->opcode = BRW_OPCODE_MUL;
2489 inst->src[0] = inst->src[2];
2490 inst->src[2] = reg_undef;
2491 progress = true;
2492 } else if (inst->src[1].is_one()) {
2493 inst->opcode = BRW_OPCODE_ADD;
2494 inst->src[1] = inst->src[2];
2495 inst->src[2] = reg_undef;
2496 progress = true;
2497 } else if (inst->src[2].is_one()) {
2498 inst->opcode = BRW_OPCODE_ADD;
2499 inst->src[2] = reg_undef;
2500 progress = true;
2501 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2502 inst->opcode = BRW_OPCODE_ADD;
2503 inst->src[1].f *= inst->src[2].f;
2504 inst->src[2] = reg_undef;
2505 progress = true;
2506 }
2507 break;
2508 case SHADER_OPCODE_BROADCAST:
2509 if (is_uniform(inst->src[0])) {
2510 inst->opcode = BRW_OPCODE_MOV;
2511 inst->sources = 1;
2512 inst->force_writemask_all = true;
2513 progress = true;
2514 } else if (inst->src[1].file == IMM) {
2515 inst->opcode = BRW_OPCODE_MOV;
2516 /* It's possible that the selected component will be too large and
2517 * overflow the register. This can happen if someone does a
2518 * readInvocation() from GLSL or SPIR-V and provides an OOB
2519 * invocationIndex. If this happens and we some how manage
2520 * to constant fold it in and get here, then component() may cause
2521 * us to start reading outside of the VGRF which will lead to an
2522 * assert later. Instead, just let it wrap around if it goes over
2523 * exec_size.
2524 */
2525 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2526 inst->src[0] = component(inst->src[0], comp);
2527 inst->sources = 1;
2528 inst->force_writemask_all = true;
2529 progress = true;
2530 }
2531 break;
2532
2533 default:
2534 break;
2535 }
2536
2537 /* Swap if src[0] is immediate. */
2538 if (progress && inst->is_commutative()) {
2539 if (inst->src[0].file == IMM) {
2540 fs_reg tmp = inst->src[1];
2541 inst->src[1] = inst->src[0];
2542 inst->src[0] = tmp;
2543 }
2544 }
2545 }
2546 return progress;
2547 }
2548
2549 /**
2550 * Optimize sample messages that have constant zero values for the trailing
2551 * texture coordinates. We can just reduce the message length for these
2552 * instructions instead of reserving a register for it. Trailing parameters
2553 * that aren't sent default to zero anyway. This will cause the dead code
2554 * eliminator to remove the MOV instruction that would otherwise be emitted to
2555 * set up the zero value.
2556 */
2557 bool
2558 fs_visitor::opt_zero_samples()
2559 {
2560 /* Gen4 infers the texturing opcode based on the message length so we can't
2561 * change it.
2562 */
2563 if (devinfo->gen < 5)
2564 return false;
2565
2566 bool progress = false;
2567
2568 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2569 if (!inst->is_tex())
2570 continue;
2571
2572 fs_inst *load_payload = (fs_inst *) inst->prev;
2573
2574 if (load_payload->is_head_sentinel() ||
2575 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2576 continue;
2577
2578 /* We don't want to remove the message header or the first parameter.
2579 * Removing the first parameter is not allowed, see the Haswell PRM
2580 * volume 7, page 149:
2581 *
2582 * "Parameter 0 is required except for the sampleinfo message, which
2583 * has no parameter 0"
2584 */
2585 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2586 load_payload->src[(inst->mlen - inst->header_size) /
2587 (inst->exec_size / 8) +
2588 inst->header_size - 1].is_zero()) {
2589 inst->mlen -= inst->exec_size / 8;
2590 progress = true;
2591 }
2592 }
2593
2594 if (progress)
2595 invalidate_live_intervals();
2596
2597 return progress;
2598 }
2599
2600 /**
2601 * Optimize sample messages which are followed by the final RT write.
2602 *
2603 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2604 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2605 * final texturing results copied to the framebuffer write payload and modify
2606 * them to write to the framebuffer directly.
2607 */
2608 bool
2609 fs_visitor::opt_sampler_eot()
2610 {
2611 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2612
2613 if (stage != MESA_SHADER_FRAGMENT)
2614 return false;
2615
2616 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2617 return false;
2618
2619 /* FINISHME: It should be possible to implement this optimization when there
2620 * are multiple drawbuffers.
2621 */
2622 if (key->nr_color_regions != 1)
2623 return false;
2624
2625 /* Requires emitting a bunch of saturating MOV instructions during logical
2626 * send lowering to clamp the color payload, which the sampler unit isn't
2627 * going to do for us.
2628 */
2629 if (key->clamp_fragment_color)
2630 return false;
2631
2632 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2633 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2634 fs_inst *fb_write = (fs_inst *)block->end();
2635 assert(fb_write->eot);
2636 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2637
2638 /* There wasn't one; nothing to do. */
2639 if (unlikely(fb_write->prev->is_head_sentinel()))
2640 return false;
2641
2642 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2643
2644 /* 3D Sampler » Messages » Message Format
2645 *
2646 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2647 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2648 */
2649 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2650 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2651 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2652 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2653 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2654 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2655 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2656 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2657 return false;
2658
2659 /* XXX - This shouldn't be necessary. */
2660 if (tex_inst->prev->is_head_sentinel())
2661 return false;
2662
2663 /* Check that the FB write sources are fully initialized by the single
2664 * texturing instruction.
2665 */
2666 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2667 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2668 if (!fb_write->src[i].equals(tex_inst->dst) ||
2669 fb_write->size_read(i) != tex_inst->size_written)
2670 return false;
2671 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2672 if (fb_write->src[i].file != BAD_FILE)
2673 return false;
2674 }
2675 }
2676
2677 assert(!tex_inst->eot); /* We can't get here twice */
2678 assert((tex_inst->offset & (0xff << 24)) == 0);
2679
2680 const fs_builder ibld(this, block, tex_inst);
2681
2682 tex_inst->offset |= fb_write->target << 24;
2683 tex_inst->eot = true;
2684 tex_inst->dst = ibld.null_reg_ud();
2685 tex_inst->size_written = 0;
2686 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2687
2688 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2689 * flag and submit a header together with the sampler message as required
2690 * by the hardware.
2691 */
2692 invalidate_live_intervals();
2693 return true;
2694 }
2695
2696 bool
2697 fs_visitor::opt_register_renaming()
2698 {
2699 bool progress = false;
2700 int depth = 0;
2701
2702 int remap[alloc.count];
2703 memset(remap, -1, sizeof(int) * alloc.count);
2704
2705 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2706 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2707 depth++;
2708 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2709 inst->opcode == BRW_OPCODE_WHILE) {
2710 depth--;
2711 }
2712
2713 /* Rewrite instruction sources. */
2714 for (int i = 0; i < inst->sources; i++) {
2715 if (inst->src[i].file == VGRF &&
2716 remap[inst->src[i].nr] != -1 &&
2717 remap[inst->src[i].nr] != inst->src[i].nr) {
2718 inst->src[i].nr = remap[inst->src[i].nr];
2719 progress = true;
2720 }
2721 }
2722
2723 const int dst = inst->dst.nr;
2724
2725 if (depth == 0 &&
2726 inst->dst.file == VGRF &&
2727 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2728 !inst->is_partial_write()) {
2729 if (remap[dst] == -1) {
2730 remap[dst] = dst;
2731 } else {
2732 remap[dst] = alloc.allocate(regs_written(inst));
2733 inst->dst.nr = remap[dst];
2734 progress = true;
2735 }
2736 } else if (inst->dst.file == VGRF &&
2737 remap[dst] != -1 &&
2738 remap[dst] != dst) {
2739 inst->dst.nr = remap[dst];
2740 progress = true;
2741 }
2742 }
2743
2744 if (progress) {
2745 invalidate_live_intervals();
2746
2747 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2748 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2749 delta_xy[i].nr = remap[delta_xy[i].nr];
2750 }
2751 }
2752 }
2753
2754 return progress;
2755 }
2756
2757 /**
2758 * Remove redundant or useless discard jumps.
2759 *
2760 * For example, we can eliminate jumps in the following sequence:
2761 *
2762 * discard-jump (redundant with the next jump)
2763 * discard-jump (useless; jumps to the next instruction)
2764 * placeholder-halt
2765 */
2766 bool
2767 fs_visitor::opt_redundant_discard_jumps()
2768 {
2769 bool progress = false;
2770
2771 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2772
2773 fs_inst *placeholder_halt = NULL;
2774 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2775 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2776 placeholder_halt = inst;
2777 break;
2778 }
2779 }
2780
2781 if (!placeholder_halt)
2782 return false;
2783
2784 /* Delete any HALTs immediately before the placeholder halt. */
2785 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2786 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2787 prev = (fs_inst *) placeholder_halt->prev) {
2788 prev->remove(last_bblock);
2789 progress = true;
2790 }
2791
2792 if (progress)
2793 invalidate_live_intervals();
2794
2795 return progress;
2796 }
2797
2798 /**
2799 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2800 * from \p r.offset which overlaps the region starting at \p s.offset and
2801 * spanning \p ds bytes.
2802 */
2803 static inline unsigned
2804 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2805 {
2806 const int rel_offset = reg_offset(s) - reg_offset(r);
2807 const int shift = rel_offset / REG_SIZE;
2808 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2809 assert(reg_space(r) == reg_space(s) &&
2810 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2811 return ((1 << n) - 1) << shift;
2812 }
2813
2814 bool
2815 fs_visitor::compute_to_mrf()
2816 {
2817 bool progress = false;
2818 int next_ip = 0;
2819
2820 /* No MRFs on Gen >= 7. */
2821 if (devinfo->gen >= 7)
2822 return false;
2823
2824 calculate_live_intervals();
2825
2826 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2827 int ip = next_ip;
2828 next_ip++;
2829
2830 if (inst->opcode != BRW_OPCODE_MOV ||
2831 inst->is_partial_write() ||
2832 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2833 inst->dst.type != inst->src[0].type ||
2834 inst->src[0].abs || inst->src[0].negate ||
2835 !inst->src[0].is_contiguous() ||
2836 inst->src[0].offset % REG_SIZE != 0)
2837 continue;
2838
2839 /* Can't compute-to-MRF this GRF if someone else was going to
2840 * read it later.
2841 */
2842 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2843 continue;
2844
2845 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2846 * things that computed the value of all GRFs of the source region. The
2847 * regs_left bitset keeps track of the registers we haven't yet found a
2848 * generating instruction for.
2849 */
2850 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2851
2852 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2853 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2854 inst->src[0], inst->size_read(0))) {
2855 /* Found the last thing to write our reg we want to turn
2856 * into a compute-to-MRF.
2857 */
2858
2859 /* If this one instruction didn't populate all the
2860 * channels, bail. We might be able to rewrite everything
2861 * that writes that reg, but it would require smarter
2862 * tracking.
2863 */
2864 if (scan_inst->is_partial_write())
2865 break;
2866
2867 /* Handling things not fully contained in the source of the copy
2868 * would need us to understand coalescing out more than one MOV at
2869 * a time.
2870 */
2871 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2872 inst->src[0], inst->size_read(0)))
2873 break;
2874
2875 /* SEND instructions can't have MRF as a destination. */
2876 if (scan_inst->mlen)
2877 break;
2878
2879 if (devinfo->gen == 6) {
2880 /* gen6 math instructions must have the destination be
2881 * GRF, so no compute-to-MRF for them.
2882 */
2883 if (scan_inst->is_math()) {
2884 break;
2885 }
2886 }
2887
2888 /* Clear the bits for any registers this instruction overwrites. */
2889 regs_left &= ~mask_relative_to(
2890 inst->src[0], scan_inst->dst, scan_inst->size_written);
2891 if (!regs_left)
2892 break;
2893 }
2894
2895 /* We don't handle control flow here. Most computation of
2896 * values that end up in MRFs are shortly before the MRF
2897 * write anyway.
2898 */
2899 if (block->start() == scan_inst)
2900 break;
2901
2902 /* You can't read from an MRF, so if someone else reads our
2903 * MRF's source GRF that we wanted to rewrite, that stops us.
2904 */
2905 bool interfered = false;
2906 for (int i = 0; i < scan_inst->sources; i++) {
2907 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2908 inst->src[0], inst->size_read(0))) {
2909 interfered = true;
2910 }
2911 }
2912 if (interfered)
2913 break;
2914
2915 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2916 inst->dst, inst->size_written)) {
2917 /* If somebody else writes our MRF here, we can't
2918 * compute-to-MRF before that.
2919 */
2920 break;
2921 }
2922
2923 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2924 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2925 inst->dst, inst->size_written)) {
2926 /* Found a SEND instruction, which means that there are
2927 * live values in MRFs from base_mrf to base_mrf +
2928 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2929 * above it.
2930 */
2931 break;
2932 }
2933 }
2934
2935 if (regs_left)
2936 continue;
2937
2938 /* Found all generating instructions of our MRF's source value, so it
2939 * should be safe to rewrite them to point to the MRF directly.
2940 */
2941 regs_left = (1 << regs_read(inst, 0)) - 1;
2942
2943 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2944 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2945 inst->src[0], inst->size_read(0))) {
2946 /* Clear the bits for any registers this instruction overwrites. */
2947 regs_left &= ~mask_relative_to(
2948 inst->src[0], scan_inst->dst, scan_inst->size_written);
2949
2950 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2951 reg_offset(inst->src[0]);
2952
2953 if (inst->dst.nr & BRW_MRF_COMPR4) {
2954 /* Apply the same address transformation done by the hardware
2955 * for COMPR4 MRF writes.
2956 */
2957 assert(rel_offset < 2 * REG_SIZE);
2958 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2959
2960 /* Clear the COMPR4 bit if the generating instruction is not
2961 * compressed.
2962 */
2963 if (scan_inst->size_written < 2 * REG_SIZE)
2964 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2965
2966 } else {
2967 /* Calculate the MRF number the result of this instruction is
2968 * ultimately written to.
2969 */
2970 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2971 }
2972
2973 scan_inst->dst.file = MRF;
2974 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2975 scan_inst->saturate |= inst->saturate;
2976 if (!regs_left)
2977 break;
2978 }
2979 }
2980
2981 assert(!regs_left);
2982 inst->remove(block);
2983 progress = true;
2984 }
2985
2986 if (progress)
2987 invalidate_live_intervals();
2988
2989 return progress;
2990 }
2991
2992 /**
2993 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2994 * flow. We could probably do better here with some form of divergence
2995 * analysis.
2996 */
2997 bool
2998 fs_visitor::eliminate_find_live_channel()
2999 {
3000 bool progress = false;
3001 unsigned depth = 0;
3002
3003 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3004 /* The optimization below assumes that channel zero is live on thread
3005 * dispatch, which may not be the case if the fixed function dispatches
3006 * threads sparsely.
3007 */
3008 return false;
3009 }
3010
3011 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3012 switch (inst->opcode) {
3013 case BRW_OPCODE_IF:
3014 case BRW_OPCODE_DO:
3015 depth++;
3016 break;
3017
3018 case BRW_OPCODE_ENDIF:
3019 case BRW_OPCODE_WHILE:
3020 depth--;
3021 break;
3022
3023 case FS_OPCODE_DISCARD_JUMP:
3024 /* This can potentially make control flow non-uniform until the end
3025 * of the program.
3026 */
3027 return progress;
3028
3029 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3030 if (depth == 0) {
3031 inst->opcode = BRW_OPCODE_MOV;
3032 inst->src[0] = brw_imm_ud(0u);
3033 inst->sources = 1;
3034 inst->force_writemask_all = true;
3035 progress = true;
3036 }
3037 break;
3038
3039 default:
3040 break;
3041 }
3042 }
3043
3044 return progress;
3045 }
3046
3047 /**
3048 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3049 * instructions to FS_OPCODE_REP_FB_WRITE.
3050 */
3051 void
3052 fs_visitor::emit_repclear_shader()
3053 {
3054 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3055 int base_mrf = 0;
3056 int color_mrf = base_mrf + 2;
3057 fs_inst *mov;
3058
3059 if (uniforms > 0) {
3060 mov = bld.exec_all().group(4, 0)
3061 .MOV(brw_message_reg(color_mrf),
3062 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3063 } else {
3064 struct brw_reg reg =
3065 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
3066 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3067 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3068
3069 mov = bld.exec_all().group(4, 0)
3070 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
3071 }
3072
3073 fs_inst *write;
3074 if (key->nr_color_regions == 1) {
3075 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3076 write->saturate = key->clamp_fragment_color;
3077 write->base_mrf = color_mrf;
3078 write->target = 0;
3079 write->header_size = 0;
3080 write->mlen = 1;
3081 } else {
3082 assume(key->nr_color_regions > 0);
3083 for (int i = 0; i < key->nr_color_regions; ++i) {
3084 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3085 write->saturate = key->clamp_fragment_color;
3086 write->base_mrf = base_mrf;
3087 write->target = i;
3088 write->header_size = 2;
3089 write->mlen = 3;
3090 }
3091 }
3092 write->eot = true;
3093
3094 calculate_cfg();
3095
3096 assign_constant_locations();
3097 assign_curb_setup();
3098
3099 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3100 if (uniforms > 0) {
3101 assert(mov->src[0].file == FIXED_GRF);
3102 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3103 }
3104 }
3105
3106 /**
3107 * Walks through basic blocks, looking for repeated MRF writes and
3108 * removing the later ones.
3109 */
3110 bool
3111 fs_visitor::remove_duplicate_mrf_writes()
3112 {
3113 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3114 bool progress = false;
3115
3116 /* Need to update the MRF tracking for compressed instructions. */
3117 if (dispatch_width >= 16)
3118 return false;
3119
3120 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3121
3122 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3123 if (inst->is_control_flow()) {
3124 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3125 }
3126
3127 if (inst->opcode == BRW_OPCODE_MOV &&
3128 inst->dst.file == MRF) {
3129 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3130 if (prev_inst && inst->equals(prev_inst)) {
3131 inst->remove(block);
3132 progress = true;
3133 continue;
3134 }
3135 }
3136
3137 /* Clear out the last-write records for MRFs that were overwritten. */
3138 if (inst->dst.file == MRF) {
3139 last_mrf_move[inst->dst.nr] = NULL;
3140 }
3141
3142 if (inst->mlen > 0 && inst->base_mrf != -1) {
3143 /* Found a SEND instruction, which will include two or fewer
3144 * implied MRF writes. We could do better here.
3145 */
3146 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3147 last_mrf_move[inst->base_mrf + i] = NULL;
3148 }
3149 }
3150
3151 /* Clear out any MRF move records whose sources got overwritten. */
3152 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3153 if (last_mrf_move[i] &&
3154 regions_overlap(inst->dst, inst->size_written,
3155 last_mrf_move[i]->src[0],
3156 last_mrf_move[i]->size_read(0))) {
3157 last_mrf_move[i] = NULL;
3158 }
3159 }
3160
3161 if (inst->opcode == BRW_OPCODE_MOV &&
3162 inst->dst.file == MRF &&
3163 inst->src[0].file != ARF &&
3164 !inst->is_partial_write()) {
3165 last_mrf_move[inst->dst.nr] = inst;
3166 }
3167 }
3168
3169 if (progress)
3170 invalidate_live_intervals();
3171
3172 return progress;
3173 }
3174
3175 /**
3176 * Rounding modes for conversion instructions are included for each
3177 * conversion, but right now it is a state. So once it is set,
3178 * we don't need to call it again for subsequent calls.
3179 *
3180 * This is useful for vector/matrices conversions, as setting the
3181 * mode once is enough for the full vector/matrix
3182 */
3183 bool
3184 fs_visitor::remove_extra_rounding_modes()
3185 {
3186 bool progress = false;
3187
3188 foreach_block (block, cfg) {
3189 brw_rnd_mode prev_mode = BRW_RND_MODE_UNSPECIFIED;
3190
3191 foreach_inst_in_block_safe (fs_inst, inst, block) {
3192 if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3193 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3194 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3195 if (mode == prev_mode) {
3196 inst->remove(block);
3197 progress = true;
3198 } else {
3199 prev_mode = mode;
3200 }
3201 }
3202 }
3203 }
3204
3205 if (progress)
3206 invalidate_live_intervals();
3207
3208 return progress;
3209 }
3210
3211 static void
3212 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3213 {
3214 /* Clear the flag for registers that actually got read (as expected). */
3215 for (int i = 0; i < inst->sources; i++) {
3216 int grf;
3217 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3218 grf = inst->src[i].nr;
3219 } else {
3220 continue;
3221 }
3222
3223 if (grf >= first_grf &&
3224 grf < first_grf + grf_len) {
3225 deps[grf - first_grf] = false;
3226 if (inst->exec_size == 16)
3227 deps[grf - first_grf + 1] = false;
3228 }
3229 }
3230 }
3231
3232 /**
3233 * Implements this workaround for the original 965:
3234 *
3235 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3236 * check for post destination dependencies on this instruction, software
3237 * must ensure that there is no destination hazard for the case of ‘write
3238 * followed by a posted write’ shown in the following example.
3239 *
3240 * 1. mov r3 0
3241 * 2. send r3.xy <rest of send instruction>
3242 * 3. mov r2 r3
3243 *
3244 * Due to no post-destination dependency check on the ‘send’, the above
3245 * code sequence could have two instructions (1 and 2) in flight at the
3246 * same time that both consider ‘r3’ as the target of their final writes.
3247 */
3248 void
3249 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3250 fs_inst *inst)
3251 {
3252 int write_len = regs_written(inst);
3253 int first_write_grf = inst->dst.nr;
3254 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3255 assert(write_len < (int)sizeof(needs_dep) - 1);
3256
3257 memset(needs_dep, false, sizeof(needs_dep));
3258 memset(needs_dep, true, write_len);
3259
3260 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3261
3262 /* Walk backwards looking for writes to registers we're writing which
3263 * aren't read since being written. If we hit the start of the program,
3264 * we assume that there are no outstanding dependencies on entry to the
3265 * program.
3266 */
3267 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3268 /* If we hit control flow, assume that there *are* outstanding
3269 * dependencies, and force their cleanup before our instruction.
3270 */
3271 if (block->start() == scan_inst && block->num != 0) {
3272 for (int i = 0; i < write_len; i++) {
3273 if (needs_dep[i])
3274 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3275 first_write_grf + i);
3276 }
3277 return;
3278 }
3279
3280 /* We insert our reads as late as possible on the assumption that any
3281 * instruction but a MOV that might have left us an outstanding
3282 * dependency has more latency than a MOV.
3283 */
3284 if (scan_inst->dst.file == VGRF) {
3285 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3286 int reg = scan_inst->dst.nr + i;
3287
3288 if (reg >= first_write_grf &&
3289 reg < first_write_grf + write_len &&
3290 needs_dep[reg - first_write_grf]) {
3291 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3292 needs_dep[reg - first_write_grf] = false;
3293 if (scan_inst->exec_size == 16)
3294 needs_dep[reg - first_write_grf + 1] = false;
3295 }
3296 }
3297 }
3298
3299 /* Clear the flag for registers that actually got read (as expected). */
3300 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3301
3302 /* Continue the loop only if we haven't resolved all the dependencies */
3303 int i;
3304 for (i = 0; i < write_len; i++) {
3305 if (needs_dep[i])
3306 break;
3307 }
3308 if (i == write_len)
3309 return;
3310 }
3311 }
3312
3313 /**
3314 * Implements this workaround for the original 965:
3315 *
3316 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3317 * used as a destination register until after it has been sourced by an
3318 * instruction with a different destination register.
3319 */
3320 void
3321 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3322 {
3323 int write_len = regs_written(inst);
3324 int first_write_grf = inst->dst.nr;
3325 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3326 assert(write_len < (int)sizeof(needs_dep) - 1);
3327
3328 memset(needs_dep, false, sizeof(needs_dep));
3329 memset(needs_dep, true, write_len);
3330 /* Walk forwards looking for writes to registers we're writing which aren't
3331 * read before being written.
3332 */
3333 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3334 /* If we hit control flow, force resolve all remaining dependencies. */
3335 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3336 for (int i = 0; i < write_len; i++) {
3337 if (needs_dep[i])
3338 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3339 first_write_grf + i);
3340 }
3341 return;
3342 }
3343
3344 /* Clear the flag for registers that actually got read (as expected). */
3345 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3346
3347 /* We insert our reads as late as possible since they're reading the
3348 * result of a SEND, which has massive latency.
3349 */
3350 if (scan_inst->dst.file == VGRF &&
3351 scan_inst->dst.nr >= first_write_grf &&
3352 scan_inst->dst.nr < first_write_grf + write_len &&
3353 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3354 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3355 scan_inst->dst.nr);
3356 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3357 }
3358
3359 /* Continue the loop only if we haven't resolved all the dependencies */
3360 int i;
3361 for (i = 0; i < write_len; i++) {
3362 if (needs_dep[i])
3363 break;
3364 }
3365 if (i == write_len)
3366 return;
3367 }
3368 }
3369
3370 void
3371 fs_visitor::insert_gen4_send_dependency_workarounds()
3372 {
3373 if (devinfo->gen != 4 || devinfo->is_g4x)
3374 return;
3375
3376 bool progress = false;
3377
3378 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3379 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3380 insert_gen4_pre_send_dependency_workarounds(block, inst);
3381 insert_gen4_post_send_dependency_workarounds(block, inst);
3382 progress = true;
3383 }
3384 }
3385
3386 if (progress)
3387 invalidate_live_intervals();
3388 }
3389
3390 /**
3391 * Turns the generic expression-style uniform pull constant load instruction
3392 * into a hardware-specific series of instructions for loading a pull
3393 * constant.
3394 *
3395 * The expression style allows the CSE pass before this to optimize out
3396 * repeated loads from the same offset, and gives the pre-register-allocation
3397 * scheduling full flexibility, while the conversion to native instructions
3398 * allows the post-register-allocation scheduler the best information
3399 * possible.
3400 *
3401 * Note that execution masking for setting up pull constant loads is special:
3402 * the channels that need to be written are unrelated to the current execution
3403 * mask, since a later instruction will use one of the result channels as a
3404 * source operand for all 8 or 16 of its channels.
3405 */
3406 void
3407 fs_visitor::lower_uniform_pull_constant_loads()
3408 {
3409 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3410 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3411 continue;
3412
3413 if (devinfo->gen >= 7) {
3414 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3415 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3416
3417 ubld.group(8, 0).MOV(payload,
3418 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3419 ubld.group(1, 0).MOV(component(payload, 2),
3420 brw_imm_ud(inst->src[1].ud / 16));
3421
3422 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3423 inst->src[1] = payload;
3424 inst->header_size = 1;
3425 inst->mlen = 1;
3426
3427 invalidate_live_intervals();
3428 } else {
3429 /* Before register allocation, we didn't tell the scheduler about the
3430 * MRF we use. We know it's safe to use this MRF because nothing
3431 * else does except for register spill/unspill, which generates and
3432 * uses its MRF within a single IR instruction.
3433 */
3434 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3435 inst->mlen = 1;
3436 }
3437 }
3438 }
3439
3440 bool
3441 fs_visitor::lower_load_payload()
3442 {
3443 bool progress = false;
3444
3445 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3446 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3447 continue;
3448
3449 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3450 assert(inst->saturate == false);
3451 fs_reg dst = inst->dst;
3452
3453 /* Get rid of COMPR4. We'll add it back in if we need it */
3454 if (dst.file == MRF)
3455 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3456
3457 const fs_builder ibld(this, block, inst);
3458 const fs_builder hbld = ibld.exec_all().group(8, 0);
3459
3460 for (uint8_t i = 0; i < inst->header_size; i++) {
3461 if (inst->src[i].file != BAD_FILE) {
3462 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3463 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3464 hbld.MOV(mov_dst, mov_src);
3465 }
3466 dst = offset(dst, hbld, 1);
3467 }
3468
3469 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3470 inst->exec_size > 8) {
3471 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3472 * a straightforward copy. Instead, the result of the
3473 * LOAD_PAYLOAD is treated as interleaved and the first four
3474 * non-header sources are unpacked as:
3475 *
3476 * m + 0: r0
3477 * m + 1: g0
3478 * m + 2: b0
3479 * m + 3: a0
3480 * m + 4: r1
3481 * m + 5: g1
3482 * m + 6: b1
3483 * m + 7: a1
3484 *
3485 * This is used for gen <= 5 fb writes.
3486 */
3487 assert(inst->exec_size == 16);
3488 assert(inst->header_size + 4 <= inst->sources);
3489 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3490 if (inst->src[i].file != BAD_FILE) {
3491 if (devinfo->has_compr4) {
3492 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3493 compr4_dst.nr |= BRW_MRF_COMPR4;
3494 ibld.MOV(compr4_dst, inst->src[i]);
3495 } else {
3496 /* Platform doesn't have COMPR4. We have to fake it */
3497 fs_reg mov_dst = retype(dst, inst->src[i].type);
3498 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3499 mov_dst.nr += 4;
3500 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3501 }
3502 }
3503
3504 dst.nr++;
3505 }
3506
3507 /* The loop above only ever incremented us through the first set
3508 * of 4 registers. However, thanks to the magic of COMPR4, we
3509 * actually wrote to the first 8 registers, so we need to take
3510 * that into account now.
3511 */
3512 dst.nr += 4;
3513
3514 /* The COMPR4 code took care of the first 4 sources. We'll let
3515 * the regular path handle any remaining sources. Yes, we are
3516 * modifying the instruction but we're about to delete it so
3517 * this really doesn't hurt anything.
3518 */
3519 inst->header_size += 4;
3520 }
3521
3522 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3523 if (inst->src[i].file != BAD_FILE)
3524 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3525 dst = offset(dst, ibld, 1);
3526 }
3527
3528 inst->remove(block);
3529 progress = true;
3530 }
3531
3532 if (progress)
3533 invalidate_live_intervals();
3534
3535 return progress;
3536 }
3537
3538 bool
3539 fs_visitor::lower_integer_multiplication()
3540 {
3541 bool progress = false;
3542
3543 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3544 const fs_builder ibld(this, block, inst);
3545
3546 if (inst->opcode == BRW_OPCODE_MUL) {
3547 if (inst->dst.is_accumulator() ||
3548 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3549 inst->dst.type != BRW_REGISTER_TYPE_UD))
3550 continue;
3551
3552 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3553 * operation directly, but CHV/BXT cannot.
3554 */
3555 if (devinfo->gen >= 8 &&
3556 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo))
3557 continue;
3558
3559 if (inst->src[1].file == IMM &&
3560 inst->src[1].ud < (1 << 16)) {
3561 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3562 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3563 * src1 are used.
3564 *
3565 * If multiplying by an immediate value that fits in 16-bits, do a
3566 * single MUL instruction with that value in the proper location.
3567 */
3568 if (devinfo->gen < 7) {
3569 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3570 inst->dst.type);
3571 ibld.MOV(imm, inst->src[1]);
3572 ibld.MUL(inst->dst, imm, inst->src[0]);
3573 } else {
3574 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3575 ibld.MUL(inst->dst, inst->src[0],
3576 ud ? brw_imm_uw(inst->src[1].ud)
3577 : brw_imm_w(inst->src[1].d));
3578 }
3579 } else {
3580 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3581 * do 32-bit integer multiplication in one instruction, but instead
3582 * must do a sequence (which actually calculates a 64-bit result):
3583 *
3584 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3585 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3586 * mov(8) g2<1>D acc0<8,8,1>D
3587 *
3588 * But on Gen > 6, the ability to use second accumulator register
3589 * (acc1) for non-float data types was removed, preventing a simple
3590 * implementation in SIMD16. A 16-channel result can be calculated by
3591 * executing the three instructions twice in SIMD8, once with quarter
3592 * control of 1Q for the first eight channels and again with 2Q for
3593 * the second eight channels.
3594 *
3595 * Which accumulator register is implicitly accessed (by AccWrEnable
3596 * for instance) is determined by the quarter control. Unfortunately
3597 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3598 * implicit accumulator access by an instruction with 2Q will access
3599 * acc1 regardless of whether the data type is usable in acc1.
3600 *
3601 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3602 * integer data types.
3603 *
3604 * Since we only want the low 32-bits of the result, we can do two
3605 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3606 * adjust the high result and add them (like the mach is doing):
3607 *
3608 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3609 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3610 * shl(8) g9<1>D g8<8,8,1>D 16D
3611 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3612 *
3613 * We avoid the shl instruction by realizing that we only want to add
3614 * the low 16-bits of the "high" result to the high 16-bits of the
3615 * "low" result and using proper regioning on the add:
3616 *
3617 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3618 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3619 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3620 *
3621 * Since it does not use the (single) accumulator register, we can
3622 * schedule multi-component multiplications much better.
3623 */
3624
3625 bool needs_mov = false;
3626 fs_reg orig_dst = inst->dst;
3627 fs_reg low = inst->dst;
3628 if (orig_dst.is_null() || orig_dst.file == MRF ||
3629 regions_overlap(inst->dst, inst->size_written,
3630 inst->src[0], inst->size_read(0)) ||
3631 regions_overlap(inst->dst, inst->size_written,
3632 inst->src[1], inst->size_read(1))) {
3633 needs_mov = true;
3634 low.nr = alloc.allocate(regs_written(inst));
3635 low.offset = low.offset % REG_SIZE;
3636 }
3637
3638 fs_reg high = inst->dst;
3639 high.nr = alloc.allocate(regs_written(inst));
3640 high.offset = high.offset % REG_SIZE;
3641
3642 if (devinfo->gen >= 7) {
3643 if (inst->src[1].file == IMM) {
3644 ibld.MUL(low, inst->src[0],
3645 brw_imm_uw(inst->src[1].ud & 0xffff));
3646 ibld.MUL(high, inst->src[0],
3647 brw_imm_uw(inst->src[1].ud >> 16));
3648 } else {
3649 ibld.MUL(low, inst->src[0],
3650 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3651 ibld.MUL(high, inst->src[0],
3652 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3653 }
3654 } else {
3655 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3656 inst->src[1]);
3657 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3658 inst->src[1]);
3659 }
3660
3661 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
3662 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3663 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3664
3665 if (needs_mov || inst->conditional_mod) {
3666 set_condmod(inst->conditional_mod,
3667 ibld.MOV(orig_dst, low));
3668 }
3669 }
3670
3671 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3672 /* Should have been lowered to 8-wide. */
3673 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3674 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3675 inst->dst.type);
3676 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3677 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3678
3679 if (devinfo->gen >= 8) {
3680 /* Until Gen8, integer multiplies read 32-bits from one source,
3681 * and 16-bits from the other, and relying on the MACH instruction
3682 * to generate the high bits of the result.
3683 *
3684 * On Gen8, the multiply instruction does a full 32x32-bit
3685 * multiply, but in order to do a 64-bit multiply we can simulate
3686 * the previous behavior and then use a MACH instruction.
3687 *
3688 * FINISHME: Don't use source modifiers on src1.
3689 */
3690 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3691 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3692 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3693 mul->src[1].stride *= 2;
3694
3695 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3696 inst->group > 0) {
3697 /* Among other things the quarter control bits influence which
3698 * accumulator register is used by the hardware for instructions
3699 * that access the accumulator implicitly (e.g. MACH). A
3700 * second-half instruction would normally map to acc1, which
3701 * doesn't exist on Gen7 and up (the hardware does emulate it for
3702 * floating-point instructions *only* by taking advantage of the
3703 * extra precision of acc0 not normally used for floating point
3704 * arithmetic).
3705 *
3706 * HSW and up are careful enough not to try to access an
3707 * accumulator register that doesn't exist, but on earlier Gen7
3708 * hardware we need to make sure that the quarter control bits are
3709 * zero to avoid non-deterministic behaviour and emit an extra MOV
3710 * to get the result masked correctly according to the current
3711 * channel enables.
3712 */
3713 mach->group = 0;
3714 mach->force_writemask_all = true;
3715 mach->dst = ibld.vgrf(inst->dst.type);
3716 ibld.MOV(inst->dst, mach->dst);
3717 }
3718 } else {
3719 continue;
3720 }
3721
3722 inst->remove(block);
3723 progress = true;
3724 }
3725
3726 if (progress)
3727 invalidate_live_intervals();
3728
3729 return progress;
3730 }
3731
3732 bool
3733 fs_visitor::lower_minmax()
3734 {
3735 assert(devinfo->gen < 6);
3736
3737 bool progress = false;
3738
3739 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3740 const fs_builder ibld(this, block, inst);
3741
3742 if (inst->opcode == BRW_OPCODE_SEL &&
3743 inst->predicate == BRW_PREDICATE_NONE) {
3744 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3745 * the original SEL.L/GE instruction
3746 */
3747 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3748 inst->conditional_mod);
3749 inst->predicate = BRW_PREDICATE_NORMAL;
3750 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3751
3752 progress = true;
3753 }
3754 }
3755
3756 if (progress)
3757 invalidate_live_intervals();
3758
3759 return progress;
3760 }
3761
3762 static void
3763 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3764 fs_reg *dst, fs_reg color, unsigned components)
3765 {
3766 if (key->clamp_fragment_color) {
3767 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3768 assert(color.type == BRW_REGISTER_TYPE_F);
3769
3770 for (unsigned i = 0; i < components; i++)
3771 set_saturate(true,
3772 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3773
3774 color = tmp;
3775 }
3776
3777 for (unsigned i = 0; i < components; i++)
3778 dst[i] = offset(color, bld, i);
3779 }
3780
3781 static void
3782 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3783 const struct brw_wm_prog_data *prog_data,
3784 const brw_wm_prog_key *key,
3785 const fs_visitor::thread_payload &payload)
3786 {
3787 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3788 const gen_device_info *devinfo = bld.shader->devinfo;
3789 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3790 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3791 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3792 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3793 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3794 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3795 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3796 const unsigned components =
3797 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3798
3799 /* We can potentially have a message length of up to 15, so we have to set
3800 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3801 */
3802 fs_reg sources[15];
3803 int header_size = 2, payload_header_size;
3804 unsigned length = 0;
3805
3806 /* From the Sandy Bridge PRM, volume 4, page 198:
3807 *
3808 * "Dispatched Pixel Enables. One bit per pixel indicating
3809 * which pixels were originally enabled when the thread was
3810 * dispatched. This field is only required for the end-of-
3811 * thread message and on all dual-source messages."
3812 */
3813 if (devinfo->gen >= 6 &&
3814 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3815 color1.file == BAD_FILE &&
3816 key->nr_color_regions == 1) {
3817 header_size = 0;
3818 }
3819
3820 if (header_size != 0) {
3821 assert(header_size == 2);
3822 /* Allocate 2 registers for a header */
3823 length += 2;
3824 }
3825
3826 if (payload.aa_dest_stencil_reg) {
3827 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3828 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3829 .MOV(sources[length],
3830 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3831 length++;
3832 }
3833
3834 if (sample_mask.file != BAD_FILE) {
3835 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3836 BRW_REGISTER_TYPE_UD);
3837
3838 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3839 * relevant. Since it's unsigned single words one vgrf is always
3840 * 16-wide, but only the lower or higher 8 channels will be used by the
3841 * hardware when doing a SIMD8 write depending on whether we have
3842 * selected the subspans for the first or second half respectively.
3843 */
3844 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3845 sample_mask.type = BRW_REGISTER_TYPE_UW;
3846 sample_mask.stride *= 2;
3847
3848 bld.exec_all().annotate("FB write oMask")
3849 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3850 inst->group),
3851 sample_mask);
3852 length++;
3853 }
3854
3855 payload_header_size = length;
3856
3857 if (src0_alpha.file != BAD_FILE) {
3858 /* FIXME: This is being passed at the wrong location in the payload and
3859 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3860 * It's supposed to be immediately before oMask but there seems to be no
3861 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3862 * requires header sources to form a contiguous segment at the beginning
3863 * of the message and src0_alpha has per-channel semantics.
3864 */
3865 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3866 length++;
3867 } else if (key->replicate_alpha && inst->target != 0) {
3868 /* Handle the case when fragment shader doesn't write to draw buffer
3869 * zero. No need to call setup_color_payload() for src0_alpha because
3870 * alpha value will be undefined.
3871 */
3872 length++;
3873 }
3874
3875 setup_color_payload(bld, key, &sources[length], color0, components);
3876 length += 4;
3877
3878 if (color1.file != BAD_FILE) {
3879 setup_color_payload(bld, key, &sources[length], color1, components);
3880 length += 4;
3881 }
3882
3883 if (src_depth.file != BAD_FILE) {
3884 sources[length] = src_depth;
3885 length++;
3886 }
3887
3888 if (dst_depth.file != BAD_FILE) {
3889 sources[length] = dst_depth;
3890 length++;
3891 }
3892
3893 if (src_stencil.file != BAD_FILE) {
3894 assert(devinfo->gen >= 9);
3895 assert(bld.dispatch_width() != 16);
3896
3897 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3898 * available on gen9+. As such it's impossible to have both enabled at the
3899 * same time and therefore length cannot overrun the array.
3900 */
3901 assert(length < 15);
3902
3903 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3904 bld.exec_all().annotate("FB write OS")
3905 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3906 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3907 length++;
3908 }
3909
3910 fs_inst *load;
3911 if (devinfo->gen >= 7) {
3912 /* Send from the GRF */
3913 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3914 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3915 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3916 load->dst = payload;
3917
3918 inst->src[0] = payload;
3919 inst->resize_sources(1);
3920 } else {
3921 /* Send from the MRF */
3922 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3923 sources, length, payload_header_size);
3924
3925 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3926 * will do this for us if we just give it a COMPR4 destination.
3927 */
3928 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3929 load->dst.nr |= BRW_MRF_COMPR4;
3930
3931 inst->resize_sources(0);
3932 inst->base_mrf = 1;
3933 }
3934
3935 inst->opcode = FS_OPCODE_FB_WRITE;
3936 inst->mlen = regs_written(load);
3937 inst->header_size = header_size;
3938 }
3939
3940 static void
3941 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3942 {
3943 const fs_builder &ubld = bld.exec_all();
3944 const unsigned length = 2;
3945 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3946
3947 ubld.group(16, 0)
3948 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3949
3950 inst->resize_sources(1);
3951 inst->src[0] = header;
3952 inst->opcode = FS_OPCODE_FB_READ;
3953 inst->mlen = length;
3954 inst->header_size = length;
3955 }
3956
3957 static void
3958 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3959 const fs_reg &coordinate,
3960 const fs_reg &shadow_c,
3961 const fs_reg &lod, const fs_reg &lod2,
3962 const fs_reg &surface,
3963 const fs_reg &sampler,
3964 unsigned coord_components,
3965 unsigned grad_components)
3966 {
3967 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3968 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3969 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3970 fs_reg msg_end = msg_begin;
3971
3972 /* g0 header. */
3973 msg_end = offset(msg_end, bld.group(8, 0), 1);
3974
3975 for (unsigned i = 0; i < coord_components; i++)
3976 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3977 offset(coordinate, bld, i));
3978
3979 msg_end = offset(msg_end, bld, coord_components);
3980
3981 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3982 * require all three components to be present and zero if they are unused.
3983 */
3984 if (coord_components > 0 &&
3985 (has_lod || shadow_c.file != BAD_FILE ||
3986 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3987 for (unsigned i = coord_components; i < 3; i++)
3988 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3989
3990 msg_end = offset(msg_end, bld, 3 - coord_components);
3991 }
3992
3993 if (op == SHADER_OPCODE_TXD) {
3994 /* TXD unsupported in SIMD16 mode. */
3995 assert(bld.dispatch_width() == 8);
3996
3997 /* the slots for u and v are always present, but r is optional */
3998 if (coord_components < 2)
3999 msg_end = offset(msg_end, bld, 2 - coord_components);
4000
4001 /* P = u, v, r
4002 * dPdx = dudx, dvdx, drdx
4003 * dPdy = dudy, dvdy, drdy
4004 *
4005 * 1-arg: Does not exist.
4006 *
4007 * 2-arg: dudx dvdx dudy dvdy
4008 * dPdx.x dPdx.y dPdy.x dPdy.y
4009 * m4 m5 m6 m7
4010 *
4011 * 3-arg: dudx dvdx drdx dudy dvdy drdy
4012 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
4013 * m5 m6 m7 m8 m9 m10
4014 */
4015 for (unsigned i = 0; i < grad_components; i++)
4016 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
4017
4018 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4019
4020 for (unsigned i = 0; i < grad_components; i++)
4021 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
4022
4023 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4024 }
4025
4026 if (has_lod) {
4027 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
4028 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
4029 */
4030 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
4031 bld.dispatch_width() == 16);
4032
4033 const brw_reg_type type =
4034 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
4035 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
4036 bld.MOV(retype(msg_end, type), lod);
4037 msg_end = offset(msg_end, bld, 1);
4038 }
4039
4040 if (shadow_c.file != BAD_FILE) {
4041 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
4042 /* There's no plain shadow compare message, so we use shadow
4043 * compare with a bias of 0.0.
4044 */
4045 bld.MOV(msg_end, brw_imm_f(0.0f));
4046 msg_end = offset(msg_end, bld, 1);
4047 }
4048
4049 bld.MOV(msg_end, shadow_c);
4050 msg_end = offset(msg_end, bld, 1);
4051 }
4052
4053 inst->opcode = op;
4054 inst->src[0] = reg_undef;
4055 inst->src[1] = surface;
4056 inst->src[2] = sampler;
4057 inst->resize_sources(3);
4058 inst->base_mrf = msg_begin.nr;
4059 inst->mlen = msg_end.nr - msg_begin.nr;
4060 inst->header_size = 1;
4061 }
4062
4063 static void
4064 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
4065 const fs_reg &coordinate,
4066 const fs_reg &shadow_c,
4067 const fs_reg &lod, const fs_reg &lod2,
4068 const fs_reg &sample_index,
4069 const fs_reg &surface,
4070 const fs_reg &sampler,
4071 unsigned coord_components,
4072 unsigned grad_components)
4073 {
4074 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
4075 fs_reg msg_coords = message;
4076 unsigned header_size = 0;
4077
4078 if (inst->offset != 0) {
4079 /* The offsets set up by the visitor are in the m1 header, so we can't
4080 * go headerless.
4081 */
4082 header_size = 1;
4083 message.nr--;
4084 }
4085
4086 for (unsigned i = 0; i < coord_components; i++)
4087 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
4088 offset(coordinate, bld, i));
4089
4090 fs_reg msg_end = offset(msg_coords, bld, coord_components);
4091 fs_reg msg_lod = offset(msg_coords, bld, 4);
4092
4093 if (shadow_c.file != BAD_FILE) {
4094 fs_reg msg_shadow = msg_lod;
4095 bld.MOV(msg_shadow, shadow_c);
4096 msg_lod = offset(msg_shadow, bld, 1);
4097 msg_end = msg_lod;
4098 }
4099
4100 switch (op) {
4101 case SHADER_OPCODE_TXL:
4102 case FS_OPCODE_TXB:
4103 bld.MOV(msg_lod, lod);
4104 msg_end = offset(msg_lod, bld, 1);
4105 break;
4106 case SHADER_OPCODE_TXD:
4107 /**
4108 * P = u, v, r
4109 * dPdx = dudx, dvdx, drdx
4110 * dPdy = dudy, dvdy, drdy
4111 *
4112 * Load up these values:
4113 * - dudx dudy dvdx dvdy drdx drdy
4114 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4115 */
4116 msg_end = msg_lod;
4117 for (unsigned i = 0; i < grad_components; i++) {
4118 bld.MOV(msg_end, offset(lod, bld, i));
4119 msg_end = offset(msg_end, bld, 1);
4120
4121 bld.MOV(msg_end, offset(lod2, bld, i));
4122 msg_end = offset(msg_end, bld, 1);
4123 }
4124 break;
4125 case SHADER_OPCODE_TXS:
4126 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4127 bld.MOV(msg_lod, lod);
4128 msg_end = offset(msg_lod, bld, 1);
4129 break;
4130 case SHADER_OPCODE_TXF:
4131 msg_lod = offset(msg_coords, bld, 3);
4132 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4133 msg_end = offset(msg_lod, bld, 1);
4134 break;
4135 case SHADER_OPCODE_TXF_CMS:
4136 msg_lod = offset(msg_coords, bld, 3);
4137 /* lod */
4138 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4139 /* sample index */
4140 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4141 msg_end = offset(msg_lod, bld, 2);
4142 break;
4143 default:
4144 break;
4145 }
4146
4147 inst->opcode = op;
4148 inst->src[0] = reg_undef;
4149 inst->src[1] = surface;
4150 inst->src[2] = sampler;
4151 inst->resize_sources(3);
4152 inst->base_mrf = message.nr;
4153 inst->mlen = msg_end.nr - message.nr;
4154 inst->header_size = header_size;
4155
4156 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4157 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4158 }
4159
4160 static bool
4161 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4162 {
4163 if (devinfo->gen < 8 && !devinfo->is_haswell)
4164 return false;
4165
4166 return sampler.file != IMM || sampler.ud >= 16;
4167 }
4168
4169 static void
4170 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4171 const fs_reg &coordinate,
4172 const fs_reg &shadow_c,
4173 fs_reg lod, const fs_reg &lod2,
4174 const fs_reg &sample_index,
4175 const fs_reg &mcs,
4176 const fs_reg &surface,
4177 const fs_reg &sampler,
4178 const fs_reg &tg4_offset,
4179 unsigned coord_components,
4180 unsigned grad_components)
4181 {
4182 const gen_device_info *devinfo = bld.shader->devinfo;
4183 unsigned reg_width = bld.dispatch_width() / 8;
4184 unsigned header_size = 0, length = 0;
4185 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4186 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4187 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4188
4189 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4190 inst->offset != 0 || inst->eot ||
4191 op == SHADER_OPCODE_SAMPLEINFO ||
4192 is_high_sampler(devinfo, sampler)) {
4193 /* For general texture offsets (no txf workaround), we need a header to
4194 * put them in. Note that we're only reserving space for it in the
4195 * message payload as it will be initialized implicitly by the
4196 * generator.
4197 *
4198 * TG4 needs to place its channel select in the header, for interaction
4199 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4200 * larger sampler numbers we need to offset the Sampler State Pointer in
4201 * the header.
4202 */
4203 header_size = 1;
4204 sources[0] = fs_reg();
4205 length++;
4206
4207 /* If we're requesting fewer than four channels worth of response,
4208 * and we have an explicit header, we need to set up the sampler
4209 * writemask. It's reversed from normal: 1 means "don't write".
4210 */
4211 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4212 assert(regs_written(inst) % reg_width == 0);
4213 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4214 inst->offset |= mask << 12;
4215 }
4216 }
4217
4218 if (shadow_c.file != BAD_FILE) {
4219 bld.MOV(sources[length], shadow_c);
4220 length++;
4221 }
4222
4223 bool coordinate_done = false;
4224
4225 /* Set up the LOD info */
4226 switch (op) {
4227 case FS_OPCODE_TXB:
4228 case SHADER_OPCODE_TXL:
4229 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4230 op = SHADER_OPCODE_TXL_LZ;
4231 break;
4232 }
4233 bld.MOV(sources[length], lod);
4234 length++;
4235 break;
4236 case SHADER_OPCODE_TXD:
4237 /* TXD should have been lowered in SIMD16 mode. */
4238 assert(bld.dispatch_width() == 8);
4239
4240 /* Load dPdx and the coordinate together:
4241 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4242 */
4243 for (unsigned i = 0; i < coord_components; i++) {
4244 bld.MOV(sources[length++], offset(coordinate, bld, i));
4245
4246 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4247 * only derivatives for (u, v, r).
4248 */
4249 if (i < grad_components) {
4250 bld.MOV(sources[length++], offset(lod, bld, i));
4251 bld.MOV(sources[length++], offset(lod2, bld, i));
4252 }
4253 }
4254
4255 coordinate_done = true;
4256 break;
4257 case SHADER_OPCODE_TXS:
4258 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4259 length++;
4260 break;
4261 case SHADER_OPCODE_TXF:
4262 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4263 * On Gen9 they are u, v, lod, r
4264 */
4265 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4266
4267 if (devinfo->gen >= 9) {
4268 if (coord_components >= 2) {
4269 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4270 offset(coordinate, bld, 1));
4271 } else {
4272 sources[length] = brw_imm_d(0);
4273 }
4274 length++;
4275 }
4276
4277 if (devinfo->gen >= 9 && lod.is_zero()) {
4278 op = SHADER_OPCODE_TXF_LZ;
4279 } else {
4280 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4281 length++;
4282 }
4283
4284 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4285 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4286 offset(coordinate, bld, i));
4287
4288 coordinate_done = true;
4289 break;
4290
4291 case SHADER_OPCODE_TXF_CMS:
4292 case SHADER_OPCODE_TXF_CMS_W:
4293 case SHADER_OPCODE_TXF_UMS:
4294 case SHADER_OPCODE_TXF_MCS:
4295 if (op == SHADER_OPCODE_TXF_UMS ||
4296 op == SHADER_OPCODE_TXF_CMS ||
4297 op == SHADER_OPCODE_TXF_CMS_W) {
4298 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4299 length++;
4300 }
4301
4302 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4303 /* Data from the multisample control surface. */
4304 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4305 length++;
4306
4307 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4308 * the MCS data.
4309 */
4310 if (op == SHADER_OPCODE_TXF_CMS_W) {
4311 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4312 mcs.file == IMM ?
4313 mcs :
4314 offset(mcs, bld, 1));
4315 length++;
4316 }
4317 }
4318
4319 /* There is no offsetting for this message; just copy in the integer
4320 * texture coordinates.
4321 */
4322 for (unsigned i = 0; i < coord_components; i++)
4323 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4324 offset(coordinate, bld, i));
4325
4326 coordinate_done = true;
4327 break;
4328 case SHADER_OPCODE_TG4_OFFSET:
4329 /* More crazy intermixing */
4330 for (unsigned i = 0; i < 2; i++) /* u, v */
4331 bld.MOV(sources[length++], offset(coordinate, bld, i));
4332
4333 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4334 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4335 offset(tg4_offset, bld, i));
4336
4337 if (coord_components == 3) /* r if present */
4338 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4339
4340 coordinate_done = true;
4341 break;
4342 default:
4343 break;
4344 }
4345
4346 /* Set up the coordinate (except for cases where it was done above) */
4347 if (!coordinate_done) {
4348 for (unsigned i = 0; i < coord_components; i++)
4349 bld.MOV(sources[length++], offset(coordinate, bld, i));
4350 }
4351
4352 int mlen;
4353 if (reg_width == 2)
4354 mlen = length * reg_width - header_size;
4355 else
4356 mlen = length * reg_width;
4357
4358 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4359 BRW_REGISTER_TYPE_F);
4360 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4361
4362 /* Generate the SEND. */
4363 inst->opcode = op;
4364 inst->src[0] = src_payload;
4365 inst->src[1] = surface;
4366 inst->src[2] = sampler;
4367 inst->resize_sources(3);
4368 inst->mlen = mlen;
4369 inst->header_size = header_size;
4370
4371 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4372 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4373 }
4374
4375 static void
4376 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4377 {
4378 const gen_device_info *devinfo = bld.shader->devinfo;
4379 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4380 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4381 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4382 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4383 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4384 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4385 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4386 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4387 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4388 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4389 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4390 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4391 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4392
4393 if (devinfo->gen >= 7) {
4394 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4395 shadow_c, lod, lod2, sample_index,
4396 mcs, surface, sampler, tg4_offset,
4397 coord_components, grad_components);
4398 } else if (devinfo->gen >= 5) {
4399 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4400 shadow_c, lod, lod2, sample_index,
4401 surface, sampler,
4402 coord_components, grad_components);
4403 } else {
4404 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4405 shadow_c, lod, lod2,
4406 surface, sampler,
4407 coord_components, grad_components);
4408 }
4409 }
4410
4411 /**
4412 * Initialize the header present in some typed and untyped surface
4413 * messages.
4414 */
4415 static fs_reg
4416 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4417 {
4418 fs_builder ubld = bld.exec_all().group(8, 0);
4419 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4420 ubld.MOV(dst, brw_imm_d(0));
4421 ubld.group(1, 0).MOV(component(dst, 7), sample_mask);
4422 return dst;
4423 }
4424
4425 static void
4426 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4427 const fs_reg &sample_mask)
4428 {
4429 /* Get the logical send arguments. */
4430 const fs_reg &addr = inst->src[0];
4431 const fs_reg &src = inst->src[1];
4432 const fs_reg &surface = inst->src[2];
4433 const UNUSED fs_reg &dims = inst->src[3];
4434 const fs_reg &arg = inst->src[4];
4435
4436 /* Calculate the total number of components of the payload. */
4437 const unsigned addr_sz = inst->components_read(0);
4438 const unsigned src_sz = inst->components_read(1);
4439 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4440 const unsigned sz = header_sz + addr_sz + src_sz;
4441
4442 /* Allocate space for the payload. */
4443 fs_reg *const components = new fs_reg[sz];
4444 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4445 unsigned n = 0;
4446
4447 /* Construct the payload. */
4448 if (header_sz)
4449 components[n++] = emit_surface_header(bld, sample_mask);
4450
4451 for (unsigned i = 0; i < addr_sz; i++)
4452 components[n++] = offset(addr, bld, i);
4453
4454 for (unsigned i = 0; i < src_sz; i++)
4455 components[n++] = offset(src, bld, i);
4456
4457 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4458
4459 /* Update the original instruction. */
4460 inst->opcode = op;
4461 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4462 inst->header_size = header_sz;
4463
4464 inst->src[0] = payload;
4465 inst->src[1] = surface;
4466 inst->src[2] = arg;
4467 inst->resize_sources(3);
4468
4469 delete[] components;
4470 }
4471
4472 static void
4473 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4474 {
4475 const gen_device_info *devinfo = bld.shader->devinfo;
4476
4477 if (devinfo->gen >= 7) {
4478 /* We are switching the instruction from an ALU-like instruction to a
4479 * send-from-grf instruction. Since sends can't handle strides or
4480 * source modifiers, we have to make a copy of the offset source.
4481 */
4482 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4483 bld.MOV(tmp, inst->src[1]);
4484 inst->src[1] = tmp;
4485
4486 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4487
4488 } else {
4489 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4490 BRW_REGISTER_TYPE_UD);
4491
4492 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4493
4494 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4495 inst->resize_sources(1);
4496 inst->base_mrf = payload.nr;
4497 inst->header_size = 1;
4498 inst->mlen = 1 + inst->exec_size / 8;
4499 }
4500 }
4501
4502 static void
4503 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4504 {
4505 assert(bld.shader->devinfo->gen < 6);
4506
4507 inst->base_mrf = 2;
4508 inst->mlen = inst->sources * inst->exec_size / 8;
4509
4510 if (inst->sources > 1) {
4511 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4512 * "Message Payload":
4513 *
4514 * "Operand0[7]. For the INT DIV functions, this operand is the
4515 * denominator."
4516 * ...
4517 * "Operand1[7]. For the INT DIV functions, this operand is the
4518 * numerator."
4519 */
4520 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4521 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4522 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4523
4524 inst->resize_sources(1);
4525 inst->src[0] = src0;
4526
4527 assert(inst->exec_size == 8);
4528 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4529 }
4530 }
4531
4532 bool
4533 fs_visitor::lower_logical_sends()
4534 {
4535 bool progress = false;
4536
4537 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4538 const fs_builder ibld(this, block, inst);
4539
4540 switch (inst->opcode) {
4541 case FS_OPCODE_FB_WRITE_LOGICAL:
4542 assert(stage == MESA_SHADER_FRAGMENT);
4543 lower_fb_write_logical_send(ibld, inst,
4544 brw_wm_prog_data(prog_data),
4545 (const brw_wm_prog_key *)key,
4546 payload);
4547 break;
4548
4549 case FS_OPCODE_FB_READ_LOGICAL:
4550 lower_fb_read_logical_send(ibld, inst);
4551 break;
4552
4553 case SHADER_OPCODE_TEX_LOGICAL:
4554 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4555 break;
4556
4557 case SHADER_OPCODE_TXD_LOGICAL:
4558 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4559 break;
4560
4561 case SHADER_OPCODE_TXF_LOGICAL:
4562 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4563 break;
4564
4565 case SHADER_OPCODE_TXL_LOGICAL:
4566 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4567 break;
4568
4569 case SHADER_OPCODE_TXS_LOGICAL:
4570 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4571 break;
4572
4573 case FS_OPCODE_TXB_LOGICAL:
4574 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4575 break;
4576
4577 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4578 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4579 break;
4580
4581 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4582 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4583 break;
4584
4585 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4586 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4587 break;
4588
4589 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4590 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4591 break;
4592
4593 case SHADER_OPCODE_LOD_LOGICAL:
4594 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4595 break;
4596
4597 case SHADER_OPCODE_TG4_LOGICAL:
4598 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4599 break;
4600
4601 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4602 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4603 break;
4604
4605 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4606 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4607 break;
4608
4609 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4610 lower_surface_logical_send(ibld, inst,
4611 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4612 fs_reg());
4613 break;
4614
4615 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4616 lower_surface_logical_send(ibld, inst,
4617 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4618 ibld.sample_mask_reg());
4619 break;
4620
4621 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
4622 lower_surface_logical_send(ibld, inst,
4623 SHADER_OPCODE_BYTE_SCATTERED_READ,
4624 fs_reg());
4625 break;
4626
4627 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
4628 lower_surface_logical_send(ibld, inst,
4629 SHADER_OPCODE_BYTE_SCATTERED_WRITE,
4630 ibld.sample_mask_reg());
4631 break;
4632
4633 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4634 lower_surface_logical_send(ibld, inst,
4635 SHADER_OPCODE_UNTYPED_ATOMIC,
4636 ibld.sample_mask_reg());
4637 break;
4638
4639 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4640 lower_surface_logical_send(ibld, inst,
4641 SHADER_OPCODE_TYPED_SURFACE_READ,
4642 brw_imm_d(0xffff));
4643 break;
4644
4645 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4646 lower_surface_logical_send(ibld, inst,
4647 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4648 ibld.sample_mask_reg());
4649 break;
4650
4651 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4652 lower_surface_logical_send(ibld, inst,
4653 SHADER_OPCODE_TYPED_ATOMIC,
4654 ibld.sample_mask_reg());
4655 break;
4656
4657 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4658 lower_varying_pull_constant_logical_send(ibld, inst);
4659 break;
4660
4661 case SHADER_OPCODE_RCP:
4662 case SHADER_OPCODE_RSQ:
4663 case SHADER_OPCODE_SQRT:
4664 case SHADER_OPCODE_EXP2:
4665 case SHADER_OPCODE_LOG2:
4666 case SHADER_OPCODE_SIN:
4667 case SHADER_OPCODE_COS:
4668 case SHADER_OPCODE_POW:
4669 case SHADER_OPCODE_INT_QUOTIENT:
4670 case SHADER_OPCODE_INT_REMAINDER:
4671 /* The math opcodes are overloaded for the send-like and
4672 * expression-like instructions which seems kind of icky. Gen6+ has
4673 * a native (but rather quirky) MATH instruction so we don't need to
4674 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4675 * logical instructions (which we can easily recognize because they
4676 * have mlen = 0) into send-like virtual instructions.
4677 */
4678 if (devinfo->gen < 6 && inst->mlen == 0) {
4679 lower_math_logical_send(ibld, inst);
4680 break;
4681
4682 } else {
4683 continue;
4684 }
4685
4686 default:
4687 continue;
4688 }
4689
4690 progress = true;
4691 }
4692
4693 if (progress)
4694 invalidate_live_intervals();
4695
4696 return progress;
4697 }
4698
4699 /**
4700 * Get the closest allowed SIMD width for instruction \p inst accounting for
4701 * some common regioning and execution control restrictions that apply to FPU
4702 * instructions. These restrictions don't necessarily have any relevance to
4703 * instructions not executed by the FPU pipeline like extended math, control
4704 * flow or send message instructions.
4705 *
4706 * For virtual opcodes it's really up to the instruction -- In some cases
4707 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4708 * instructions) it may simplify virtual instruction lowering if we can
4709 * enforce FPU-like regioning restrictions already on the virtual instruction,
4710 * in other cases (e.g. virtual send-like instructions) this may be
4711 * excessively restrictive.
4712 */
4713 static unsigned
4714 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4715 const fs_inst *inst)
4716 {
4717 /* Maximum execution size representable in the instruction controls. */
4718 unsigned max_width = MIN2(32, inst->exec_size);
4719
4720 /* According to the PRMs:
4721 * "A. In Direct Addressing mode, a source cannot span more than 2
4722 * adjacent GRF registers.
4723 * B. A destination cannot span more than 2 adjacent GRF registers."
4724 *
4725 * Look for the source or destination with the largest register region
4726 * which is the one that is going to limit the overall execution size of
4727 * the instruction due to this rule.
4728 */
4729 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4730
4731 for (unsigned i = 0; i < inst->sources; i++)
4732 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4733
4734 /* Calculate the maximum execution size of the instruction based on the
4735 * factor by which it goes over the hardware limit of 2 GRFs.
4736 */
4737 if (reg_count > 2)
4738 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4739
4740 /* According to the IVB PRMs:
4741 * "When destination spans two registers, the source MUST span two
4742 * registers. The exception to the above rule:
4743 *
4744 * - When source is scalar, the source registers are not incremented.
4745 * - When source is packed integer Word and destination is packed
4746 * integer DWord, the source register is not incremented but the
4747 * source sub register is incremented."
4748 *
4749 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4750 * restrictions. The code below intentionally doesn't check whether the
4751 * destination type is integer because empirically the hardware doesn't
4752 * seem to care what the actual type is as long as it's dword-aligned.
4753 */
4754 if (devinfo->gen < 8) {
4755 for (unsigned i = 0; i < inst->sources; i++) {
4756 /* IVB implements DF scalars as <0;2,1> regions. */
4757 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4758 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
4759 const bool is_packed_word_exception =
4760 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4761 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4762
4763 if (inst->size_written > REG_SIZE &&
4764 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4765 !is_scalar_exception && !is_packed_word_exception) {
4766 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4767 max_width = MIN2(max_width, inst->exec_size / reg_count);
4768 }
4769 }
4770 }
4771
4772 /* From the IVB PRMs:
4773 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4774 * are applied for both halves of the SIMD32 instruction. If different
4775 * execution mask channels are required, split the instruction into two
4776 * SIMD16 instructions."
4777 *
4778 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4779 * 32-wide control flow support in hardware and will behave similarly.
4780 */
4781 if (devinfo->gen < 8 && !inst->force_writemask_all)
4782 max_width = MIN2(max_width, 16);
4783
4784 /* From the IVB PRMs (applies to HSW too):
4785 * "Instructions with condition modifiers must not use SIMD32."
4786 *
4787 * From the BDW PRMs (applies to later hardware too):
4788 * "Ternary instruction with condition modifiers must not use SIMD32."
4789 */
4790 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4791 max_width = MIN2(max_width, 16);
4792
4793 /* From the IVB PRMs (applies to other devices that don't have the
4794 * gen_device_info::supports_simd16_3src flag set):
4795 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4796 * SIMD8 is not allowed for DF operations."
4797 */
4798 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4799 max_width = MIN2(max_width, inst->exec_size / reg_count);
4800
4801 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4802 * the 8-bit quarter of the execution mask signals specified in the
4803 * instruction control fields) for the second compressed half of any
4804 * single-precision instruction (for double-precision instructions
4805 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4806 * the EU will apply the wrong execution controls for the second
4807 * sequential GRF write if the number of channels per GRF is not exactly
4808 * eight in single-precision mode (or four in double-float mode).
4809 *
4810 * In this situation we calculate the maximum size of the split
4811 * instructions so they only ever write to a single register.
4812 */
4813 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4814 !inst->force_writemask_all) {
4815 const unsigned channels_per_grf = inst->exec_size /
4816 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4817 const unsigned exec_type_size = get_exec_type_size(inst);
4818 assert(exec_type_size);
4819
4820 /* The hardware shifts exactly 8 channels per compressed half of the
4821 * instruction in single-precision mode and exactly 4 in double-precision.
4822 */
4823 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4824 max_width = MIN2(max_width, channels_per_grf);
4825
4826 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4827 * because HW applies the same channel enable signals to both halves of
4828 * the compressed instruction which will be just wrong under
4829 * non-uniform control flow.
4830 */
4831 if (devinfo->gen == 7 && !devinfo->is_haswell &&
4832 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4833 max_width = MIN2(max_width, 4);
4834 }
4835
4836 /* Only power-of-two execution sizes are representable in the instruction
4837 * control fields.
4838 */
4839 return 1 << _mesa_logbase2(max_width);
4840 }
4841
4842 /**
4843 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4844 * various payload size restrictions that apply to sampler message
4845 * instructions.
4846 *
4847 * This is only intended to provide a maximum theoretical bound for the
4848 * execution size of the message based on the number of argument components
4849 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4850 * variant of the message can be used, though some messages may have
4851 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4852 * the message length to determine the exact SIMD width and argument count,
4853 * which makes a number of sampler message combinations impossible to
4854 * represent).
4855 */
4856 static unsigned
4857 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4858 const fs_inst *inst)
4859 {
4860 /* Calculate the number of coordinate components that have to be present
4861 * assuming that additional arguments follow the texel coordinates in the
4862 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4863 * need to pad to four or three components depending on the message,
4864 * pre-ILK we need to pad to at most three components.
4865 */
4866 const unsigned req_coord_components =
4867 (devinfo->gen >= 7 ||
4868 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4869 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4870 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4871 3;
4872
4873 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4874 * variant of the TXL or TXF message.
4875 */
4876 const bool implicit_lod = devinfo->gen >= 9 &&
4877 (inst->opcode == SHADER_OPCODE_TXL ||
4878 inst->opcode == SHADER_OPCODE_TXF) &&
4879 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4880
4881 /* Calculate the total number of argument components that need to be passed
4882 * to the sampler unit.
4883 */
4884 const unsigned num_payload_components =
4885 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4886 req_coord_components) +
4887 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4888 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4889 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4890 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4891 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4892 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4893 inst->components_read(TEX_LOGICAL_SRC_MCS);
4894
4895 /* SIMD16 messages with more than five arguments exceed the maximum message
4896 * size supported by the sampler, regardless of whether a header is
4897 * provided or not.
4898 */
4899 return MIN2(inst->exec_size,
4900 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4901 }
4902
4903 /**
4904 * Get the closest native SIMD width supported by the hardware for instruction
4905 * \p inst. The instruction will be left untouched by
4906 * fs_visitor::lower_simd_width() if the returned value is equal to the
4907 * original execution size.
4908 */
4909 static unsigned
4910 get_lowered_simd_width(const struct gen_device_info *devinfo,
4911 const fs_inst *inst)
4912 {
4913 switch (inst->opcode) {
4914 case BRW_OPCODE_MOV:
4915 case BRW_OPCODE_SEL:
4916 case BRW_OPCODE_NOT:
4917 case BRW_OPCODE_AND:
4918 case BRW_OPCODE_OR:
4919 case BRW_OPCODE_XOR:
4920 case BRW_OPCODE_SHR:
4921 case BRW_OPCODE_SHL:
4922 case BRW_OPCODE_ASR:
4923 case BRW_OPCODE_CMPN:
4924 case BRW_OPCODE_CSEL:
4925 case BRW_OPCODE_F32TO16:
4926 case BRW_OPCODE_F16TO32:
4927 case BRW_OPCODE_BFREV:
4928 case BRW_OPCODE_BFE:
4929 case BRW_OPCODE_ADD:
4930 case BRW_OPCODE_MUL:
4931 case BRW_OPCODE_AVG:
4932 case BRW_OPCODE_FRC:
4933 case BRW_OPCODE_RNDU:
4934 case BRW_OPCODE_RNDD:
4935 case BRW_OPCODE_RNDE:
4936 case BRW_OPCODE_RNDZ:
4937 case BRW_OPCODE_LZD:
4938 case BRW_OPCODE_FBH:
4939 case BRW_OPCODE_FBL:
4940 case BRW_OPCODE_CBIT:
4941 case BRW_OPCODE_SAD2:
4942 case BRW_OPCODE_MAD:
4943 case BRW_OPCODE_LRP:
4944 case FS_OPCODE_PACK:
4945 return get_fpu_lowered_simd_width(devinfo, inst);
4946
4947 case BRW_OPCODE_CMP: {
4948 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4949 * when the destination is a GRF the dependency-clear bit on the flag
4950 * register is cleared early.
4951 *
4952 * Suggested workarounds are to disable coissuing CMP instructions
4953 * or to split CMP(16) instructions into two CMP(8) instructions.
4954 *
4955 * We choose to split into CMP(8) instructions since disabling
4956 * coissuing would affect CMP instructions not otherwise affected by
4957 * the errata.
4958 */
4959 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4960 !inst->dst.is_null() ? 8 : ~0);
4961 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4962 }
4963 case BRW_OPCODE_BFI1:
4964 case BRW_OPCODE_BFI2:
4965 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4966 * should
4967 * "Force BFI instructions to be executed always in SIMD8."
4968 */
4969 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4970 get_fpu_lowered_simd_width(devinfo, inst));
4971
4972 case BRW_OPCODE_IF:
4973 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4974 return inst->exec_size;
4975
4976 case SHADER_OPCODE_RCP:
4977 case SHADER_OPCODE_RSQ:
4978 case SHADER_OPCODE_SQRT:
4979 case SHADER_OPCODE_EXP2:
4980 case SHADER_OPCODE_LOG2:
4981 case SHADER_OPCODE_SIN:
4982 case SHADER_OPCODE_COS:
4983 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4984 * Gen6.
4985 */
4986 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4987 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4988 MIN2(8, inst->exec_size));
4989
4990 case SHADER_OPCODE_POW:
4991 /* SIMD16 is only allowed on Gen7+. */
4992 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4993 MIN2(8, inst->exec_size));
4994
4995 case SHADER_OPCODE_INT_QUOTIENT:
4996 case SHADER_OPCODE_INT_REMAINDER:
4997 /* Integer division is limited to SIMD8 on all generations. */
4998 return MIN2(8, inst->exec_size);
4999
5000 case FS_OPCODE_LINTERP:
5001 case FS_OPCODE_GET_BUFFER_SIZE:
5002 case FS_OPCODE_DDX_COARSE:
5003 case FS_OPCODE_DDX_FINE:
5004 case FS_OPCODE_DDY_COARSE:
5005 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
5006 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
5007 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
5008 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
5009 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
5010 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
5011 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
5012 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
5013 return MIN2(16, inst->exec_size);
5014
5015 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
5016 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
5017 * message used to implement varying pull constant loads, so expand it
5018 * to SIMD16. An alternative with longer message payload length but
5019 * shorter return payload would be to use the SIMD8 sampler message that
5020 * takes (header, u, v, r) as parameters instead of (header, u).
5021 */
5022 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
5023
5024 case FS_OPCODE_DDY_FINE:
5025 /* The implementation of this virtual opcode may require emitting
5026 * compressed Align16 instructions, which are severely limited on some
5027 * generations.
5028 *
5029 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
5030 * Region Restrictions):
5031 *
5032 * "In Align16 access mode, SIMD16 is not allowed for DW operations
5033 * and SIMD8 is not allowed for DF operations."
5034 *
5035 * In this context, "DW operations" means "operations acting on 32-bit
5036 * values", so it includes operations on floats.
5037 *
5038 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
5039 * (Instruction Compression -> Rules and Restrictions):
5040 *
5041 * "A compressed instruction must be in Align1 access mode. Align16
5042 * mode instructions cannot be compressed."
5043 *
5044 * Similar text exists in the g45 PRM.
5045 *
5046 * Empirically, compressed align16 instructions using odd register
5047 * numbers don't appear to work on Sandybridge either.
5048 */
5049 return (devinfo->gen == 4 || devinfo->gen == 6 ||
5050 (devinfo->gen == 7 && !devinfo->is_haswell) ?
5051 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
5052
5053 case SHADER_OPCODE_MULH:
5054 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
5055 * is 8-wide on Gen7+.
5056 */
5057 return (devinfo->gen >= 7 ? 8 :
5058 get_fpu_lowered_simd_width(devinfo, inst));
5059
5060 case FS_OPCODE_FB_WRITE_LOGICAL:
5061 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
5062 * here.
5063 */
5064 assert(devinfo->gen != 6 ||
5065 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
5066 inst->exec_size == 8);
5067 /* Dual-source FB writes are unsupported in SIMD16 mode. */
5068 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
5069 8 : MIN2(16, inst->exec_size));
5070
5071 case FS_OPCODE_FB_READ_LOGICAL:
5072 return MIN2(16, inst->exec_size);
5073
5074 case SHADER_OPCODE_TEX_LOGICAL:
5075 case SHADER_OPCODE_TXF_CMS_LOGICAL:
5076 case SHADER_OPCODE_TXF_UMS_LOGICAL:
5077 case SHADER_OPCODE_TXF_MCS_LOGICAL:
5078 case SHADER_OPCODE_LOD_LOGICAL:
5079 case SHADER_OPCODE_TG4_LOGICAL:
5080 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
5081 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
5082 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
5083 return get_sampler_lowered_simd_width(devinfo, inst);
5084
5085 case SHADER_OPCODE_TXD_LOGICAL:
5086 /* TXD is unsupported in SIMD16 mode. */
5087 return 8;
5088
5089 case SHADER_OPCODE_TXL_LOGICAL:
5090 case FS_OPCODE_TXB_LOGICAL:
5091 /* Only one execution size is representable pre-ILK depending on whether
5092 * the shadow reference argument is present.
5093 */
5094 if (devinfo->gen == 4)
5095 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
5096 else
5097 return get_sampler_lowered_simd_width(devinfo, inst);
5098
5099 case SHADER_OPCODE_TXF_LOGICAL:
5100 case SHADER_OPCODE_TXS_LOGICAL:
5101 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
5102 * messages. Use SIMD16 instead.
5103 */
5104 if (devinfo->gen == 4)
5105 return 16;
5106 else
5107 return get_sampler_lowered_simd_width(devinfo, inst);
5108
5109 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5110 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5111 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5112 return 8;
5113
5114 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5115 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5116 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5117 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5118 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5119 return MIN2(16, inst->exec_size);
5120
5121 case SHADER_OPCODE_URB_READ_SIMD8:
5122 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
5123 case SHADER_OPCODE_URB_WRITE_SIMD8:
5124 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
5125 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
5126 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
5127 return MIN2(8, inst->exec_size);
5128
5129 case SHADER_OPCODE_MOV_INDIRECT: {
5130 /* From IVB and HSW PRMs:
5131 *
5132 * "2.When the destination requires two registers and the sources are
5133 * indirect, the sources must use 1x1 regioning mode.
5134 *
5135 * In case of DF instructions in HSW/IVB, the exec_size is limited by
5136 * the EU decompression logic not handling VxH indirect addressing
5137 * correctly.
5138 */
5139 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
5140 /* Prior to Broadwell, we only have 8 address subregisters. */
5141 return MIN3(devinfo->gen >= 8 ? 16 : 8,
5142 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
5143 inst->exec_size);
5144 }
5145
5146 case SHADER_OPCODE_LOAD_PAYLOAD: {
5147 const unsigned reg_count =
5148 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
5149
5150 if (reg_count > 2) {
5151 /* Only LOAD_PAYLOAD instructions with per-channel destination region
5152 * can be easily lowered (which excludes headers and heterogeneous
5153 * types).
5154 */
5155 assert(!inst->header_size);
5156 for (unsigned i = 0; i < inst->sources; i++)
5157 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
5158 inst->src[i].file == BAD_FILE);
5159
5160 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
5161 } else {
5162 return inst->exec_size;
5163 }
5164 }
5165 default:
5166 return inst->exec_size;
5167 }
5168 }
5169
5170 /**
5171 * Return true if splitting out the group of channels of instruction \p inst
5172 * given by lbld.group() requires allocating a temporary for the i-th source
5173 * of the lowered instruction.
5174 */
5175 static inline bool
5176 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5177 {
5178 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5179 (inst->components_read(i) == 1 &&
5180 lbld.dispatch_width() <= inst->exec_size)) ||
5181 (inst->flags_written() &
5182 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
5183 }
5184
5185 /**
5186 * Extract the data that would be consumed by the channel group given by
5187 * lbld.group() from the i-th source region of instruction \p inst and return
5188 * it as result in packed form.
5189 */
5190 static fs_reg
5191 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
5192 {
5193 /* Specified channel group from the source region. */
5194 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5195
5196 if (needs_src_copy(lbld, inst, i)) {
5197 /* Builder of the right width to perform the copy avoiding uninitialized
5198 * data if the lowered execution size is greater than the original
5199 * execution size of the instruction.
5200 */
5201 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5202 inst->exec_size), 0);
5203 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5204
5205 for (unsigned k = 0; k < inst->components_read(i); ++k)
5206 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5207
5208 return tmp;
5209
5210 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5211 /* The source is invariant for all dispatch_width-wide groups of the
5212 * original region.
5213 */
5214 return inst->src[i];
5215
5216 } else {
5217 /* We can just point the lowered instruction at the right channel group
5218 * from the original region.
5219 */
5220 return src;
5221 }
5222 }
5223
5224 /**
5225 * Return true if splitting out the group of channels of instruction \p inst
5226 * given by lbld.group() requires allocating a temporary for the destination
5227 * of the lowered instruction and copying the data back to the original
5228 * destination region.
5229 */
5230 static inline bool
5231 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5232 {
5233 /* If the instruction writes more than one component we'll have to shuffle
5234 * the results of multiple lowered instructions in order to make sure that
5235 * they end up arranged correctly in the original destination region.
5236 */
5237 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5238 return true;
5239
5240 /* If the lowered execution size is larger than the original the result of
5241 * the instruction won't fit in the original destination, so we'll have to
5242 * allocate a temporary in any case.
5243 */
5244 if (lbld.dispatch_width() > inst->exec_size)
5245 return true;
5246
5247 for (unsigned i = 0; i < inst->sources; i++) {
5248 /* If we already made a copy of the source for other reasons there won't
5249 * be any overlap with the destination.
5250 */
5251 if (needs_src_copy(lbld, inst, i))
5252 continue;
5253
5254 /* In order to keep the logic simple we emit a copy whenever the
5255 * destination region doesn't exactly match an overlapping source, which
5256 * may point at the source and destination not being aligned group by
5257 * group which could cause one of the lowered instructions to overwrite
5258 * the data read from the same source by other lowered instructions.
5259 */
5260 if (regions_overlap(inst->dst, inst->size_written,
5261 inst->src[i], inst->size_read(i)) &&
5262 !inst->dst.equals(inst->src[i]))
5263 return true;
5264 }
5265
5266 return false;
5267 }
5268
5269 /**
5270 * Insert data from a packed temporary into the channel group given by
5271 * lbld.group() of the destination region of instruction \p inst and return
5272 * the temporary as result. Any copy instructions that are required for
5273 * unzipping the previous value (in the case of partial writes) will be
5274 * inserted using \p lbld_before and any copy instructions required for
5275 * zipping up the destination of \p inst will be inserted using \p lbld_after.
5276 */
5277 static fs_reg
5278 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
5279 fs_inst *inst)
5280 {
5281 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
5282 assert(lbld_before.group() == lbld_after.group());
5283
5284 /* Specified channel group from the destination region. */
5285 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group());
5286 const unsigned dst_size = inst->size_written /
5287 inst->dst.component_size(inst->exec_size);
5288
5289 if (needs_dst_copy(lbld_after, inst)) {
5290 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
5291
5292 if (inst->predicate) {
5293 /* Handle predication by copying the original contents of
5294 * the destination into the temporary before emitting the
5295 * lowered instruction.
5296 */
5297 const fs_builder gbld_before =
5298 lbld_before.group(MIN2(lbld_before.dispatch_width(),
5299 inst->exec_size), 0);
5300 for (unsigned k = 0; k < dst_size; ++k) {
5301 gbld_before.MOV(offset(tmp, lbld_before, k),
5302 offset(dst, inst->exec_size, k));
5303 }
5304 }
5305
5306 const fs_builder gbld_after =
5307 lbld_after.group(MIN2(lbld_after.dispatch_width(),
5308 inst->exec_size), 0);
5309 for (unsigned k = 0; k < dst_size; ++k) {
5310 /* Use a builder of the right width to perform the copy avoiding
5311 * uninitialized data if the lowered execution size is greater than
5312 * the original execution size of the instruction.
5313 */
5314 gbld_after.MOV(offset(dst, inst->exec_size, k),
5315 offset(tmp, lbld_after, k));
5316 }
5317
5318 return tmp;
5319
5320 } else {
5321 /* No need to allocate a temporary for the lowered instruction, just
5322 * take the right group of channels from the original region.
5323 */
5324 return dst;
5325 }
5326 }
5327
5328 bool
5329 fs_visitor::lower_simd_width()
5330 {
5331 bool progress = false;
5332
5333 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5334 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5335
5336 if (lower_width != inst->exec_size) {
5337 /* Builder matching the original instruction. We may also need to
5338 * emit an instruction of width larger than the original, set the
5339 * execution size of the builder to the highest of both for now so
5340 * we're sure that both cases can be handled.
5341 */
5342 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5343 const fs_builder ibld = bld.at(block, inst)
5344 .exec_all(inst->force_writemask_all)
5345 .group(max_width, inst->group / max_width);
5346
5347 /* Split the copies in chunks of the execution width of either the
5348 * original or the lowered instruction, whichever is lower.
5349 */
5350 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5351 const unsigned dst_size = inst->size_written /
5352 inst->dst.component_size(inst->exec_size);
5353
5354 assert(!inst->writes_accumulator && !inst->mlen);
5355
5356 /* Inserting the zip, unzip, and duplicated instructions in all of
5357 * the right spots is somewhat tricky. All of the unzip and any
5358 * instructions from the zip which unzip the destination prior to
5359 * writing need to happen before all of the per-group instructions
5360 * and the zip instructions need to happen after. In order to sort
5361 * this all out, we insert the unzip instructions before \p inst,
5362 * insert the per-group instructions after \p inst (i.e. before
5363 * inst->next), and insert the zip instructions before the
5364 * instruction after \p inst. Since we are inserting instructions
5365 * after \p inst, inst->next is a moving target and we need to save
5366 * it off here so that we insert the zip instructions in the right
5367 * place.
5368 */
5369 exec_node *const after_inst = inst->next;
5370 for (unsigned i = 0; i < n; i++) {
5371 /* Emit a copy of the original instruction with the lowered width.
5372 * If the EOT flag was set throw it away except for the last
5373 * instruction to avoid killing the thread prematurely.
5374 */
5375 fs_inst split_inst = *inst;
5376 split_inst.exec_size = lower_width;
5377 split_inst.eot = inst->eot && i == 0;
5378
5379 /* Select the correct channel enables for the i-th group, then
5380 * transform the sources and destination and emit the lowered
5381 * instruction.
5382 */
5383 const fs_builder lbld = ibld.group(lower_width, i);
5384
5385 for (unsigned j = 0; j < inst->sources; j++)
5386 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
5387
5388 split_inst.dst = emit_zip(lbld.at(block, inst),
5389 lbld.at(block, after_inst), inst);
5390 split_inst.size_written =
5391 split_inst.dst.component_size(lower_width) * dst_size;
5392
5393 lbld.at(block, inst->next).emit(split_inst);
5394 }
5395
5396 inst->remove(block);
5397 progress = true;
5398 }
5399 }
5400
5401 if (progress)
5402 invalidate_live_intervals();
5403
5404 return progress;
5405 }
5406
5407 void
5408 fs_visitor::dump_instructions()
5409 {
5410 dump_instructions(NULL);
5411 }
5412
5413 void
5414 fs_visitor::dump_instructions(const char *name)
5415 {
5416 FILE *file = stderr;
5417 if (name && geteuid() != 0) {
5418 file = fopen(name, "w");
5419 if (!file)
5420 file = stderr;
5421 }
5422
5423 if (cfg) {
5424 calculate_register_pressure();
5425 int ip = 0, max_pressure = 0;
5426 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5427 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5428 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5429 dump_instruction(inst, file);
5430 ip++;
5431 }
5432 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5433 } else {
5434 int ip = 0;
5435 foreach_in_list(backend_instruction, inst, &instructions) {
5436 fprintf(file, "%4d: ", ip++);
5437 dump_instruction(inst, file);
5438 }
5439 }
5440
5441 if (file != stderr) {
5442 fclose(file);
5443 }
5444 }
5445
5446 void
5447 fs_visitor::dump_instruction(backend_instruction *be_inst)
5448 {
5449 dump_instruction(be_inst, stderr);
5450 }
5451
5452 void
5453 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5454 {
5455 fs_inst *inst = (fs_inst *)be_inst;
5456
5457 if (inst->predicate) {
5458 fprintf(file, "(%cf0.%d) ",
5459 inst->predicate_inverse ? '-' : '+',
5460 inst->flag_subreg);
5461 }
5462
5463 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5464 if (inst->saturate)
5465 fprintf(file, ".sat");
5466 if (inst->conditional_mod) {
5467 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5468 if (!inst->predicate &&
5469 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5470 inst->opcode != BRW_OPCODE_IF &&
5471 inst->opcode != BRW_OPCODE_WHILE))) {
5472 fprintf(file, ".f0.%d", inst->flag_subreg);
5473 }
5474 }
5475 fprintf(file, "(%d) ", inst->exec_size);
5476
5477 if (inst->mlen) {
5478 fprintf(file, "(mlen: %d) ", inst->mlen);
5479 }
5480
5481 if (inst->eot) {
5482 fprintf(file, "(EOT) ");
5483 }
5484
5485 switch (inst->dst.file) {
5486 case VGRF:
5487 fprintf(file, "vgrf%d", inst->dst.nr);
5488 break;
5489 case FIXED_GRF:
5490 fprintf(file, "g%d", inst->dst.nr);
5491 break;
5492 case MRF:
5493 fprintf(file, "m%d", inst->dst.nr);
5494 break;
5495 case BAD_FILE:
5496 fprintf(file, "(null)");
5497 break;
5498 case UNIFORM:
5499 fprintf(file, "***u%d***", inst->dst.nr);
5500 break;
5501 case ATTR:
5502 fprintf(file, "***attr%d***", inst->dst.nr);
5503 break;
5504 case ARF:
5505 switch (inst->dst.nr) {
5506 case BRW_ARF_NULL:
5507 fprintf(file, "null");
5508 break;
5509 case BRW_ARF_ADDRESS:
5510 fprintf(file, "a0.%d", inst->dst.subnr);
5511 break;
5512 case BRW_ARF_ACCUMULATOR:
5513 fprintf(file, "acc%d", inst->dst.subnr);
5514 break;
5515 case BRW_ARF_FLAG:
5516 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5517 break;
5518 default:
5519 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5520 break;
5521 }
5522 break;
5523 case IMM:
5524 unreachable("not reached");
5525 }
5526
5527 if (inst->dst.offset ||
5528 (inst->dst.file == VGRF &&
5529 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5530 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5531 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5532 inst->dst.offset % reg_size);
5533 }
5534
5535 if (inst->dst.stride != 1)
5536 fprintf(file, "<%u>", inst->dst.stride);
5537 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
5538
5539 for (int i = 0; i < inst->sources; i++) {
5540 if (inst->src[i].negate)
5541 fprintf(file, "-");
5542 if (inst->src[i].abs)
5543 fprintf(file, "|");
5544 switch (inst->src[i].file) {
5545 case VGRF:
5546 fprintf(file, "vgrf%d", inst->src[i].nr);
5547 break;
5548 case FIXED_GRF:
5549 fprintf(file, "g%d", inst->src[i].nr);
5550 break;
5551 case MRF:
5552 fprintf(file, "***m%d***", inst->src[i].nr);
5553 break;
5554 case ATTR:
5555 fprintf(file, "attr%d", inst->src[i].nr);
5556 break;
5557 case UNIFORM:
5558 fprintf(file, "u%d", inst->src[i].nr);
5559 break;
5560 case BAD_FILE:
5561 fprintf(file, "(null)");
5562 break;
5563 case IMM:
5564 switch (inst->src[i].type) {
5565 case BRW_REGISTER_TYPE_F:
5566 fprintf(file, "%-gf", inst->src[i].f);
5567 break;
5568 case BRW_REGISTER_TYPE_DF:
5569 fprintf(file, "%fdf", inst->src[i].df);
5570 break;
5571 case BRW_REGISTER_TYPE_W:
5572 case BRW_REGISTER_TYPE_D:
5573 fprintf(file, "%dd", inst->src[i].d);
5574 break;
5575 case BRW_REGISTER_TYPE_UW:
5576 case BRW_REGISTER_TYPE_UD:
5577 fprintf(file, "%uu", inst->src[i].ud);
5578 break;
5579 case BRW_REGISTER_TYPE_VF:
5580 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5581 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5582 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5583 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5584 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5585 break;
5586 default:
5587 fprintf(file, "???");
5588 break;
5589 }
5590 break;
5591 case ARF:
5592 switch (inst->src[i].nr) {
5593 case BRW_ARF_NULL:
5594 fprintf(file, "null");
5595 break;
5596 case BRW_ARF_ADDRESS:
5597 fprintf(file, "a0.%d", inst->src[i].subnr);
5598 break;
5599 case BRW_ARF_ACCUMULATOR:
5600 fprintf(file, "acc%d", inst->src[i].subnr);
5601 break;
5602 case BRW_ARF_FLAG:
5603 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5604 break;
5605 default:
5606 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5607 break;
5608 }
5609 break;
5610 }
5611
5612 if (inst->src[i].offset ||
5613 (inst->src[i].file == VGRF &&
5614 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5615 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5616 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5617 inst->src[i].offset % reg_size);
5618 }
5619
5620 if (inst->src[i].abs)
5621 fprintf(file, "|");
5622
5623 if (inst->src[i].file != IMM) {
5624 unsigned stride;
5625 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5626 unsigned hstride = inst->src[i].hstride;
5627 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5628 } else {
5629 stride = inst->src[i].stride;
5630 }
5631 if (stride != 1)
5632 fprintf(file, "<%u>", stride);
5633
5634 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
5635 }
5636
5637 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5638 fprintf(file, ", ");
5639 }
5640
5641 fprintf(file, " ");
5642
5643 if (inst->force_writemask_all)
5644 fprintf(file, "NoMask ");
5645
5646 if (inst->exec_size != dispatch_width)
5647 fprintf(file, "group%d ", inst->group);
5648
5649 fprintf(file, "\n");
5650 }
5651
5652 /**
5653 * Possibly returns an instruction that set up @param reg.
5654 *
5655 * Sometimes we want to take the result of some expression/variable
5656 * dereference tree and rewrite the instruction generating the result
5657 * of the tree. When processing the tree, we know that the
5658 * instructions generated are all writing temporaries that are dead
5659 * outside of this tree. So, if we have some instructions that write
5660 * a temporary, we're free to point that temp write somewhere else.
5661 *
5662 * Note that this doesn't guarantee that the instruction generated
5663 * only reg -- it might be the size=4 destination of a texture instruction.
5664 */
5665 fs_inst *
5666 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5667 fs_inst *end,
5668 const fs_reg &reg)
5669 {
5670 if (end == start ||
5671 end->is_partial_write() ||
5672 !reg.equals(end->dst)) {
5673 return NULL;
5674 } else {
5675 return end;
5676 }
5677 }
5678
5679 void
5680 fs_visitor::setup_fs_payload_gen6()
5681 {
5682 assert(stage == MESA_SHADER_FRAGMENT);
5683 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5684
5685 assert(devinfo->gen >= 6);
5686
5687 /* R0-1: masks, pixel X/Y coordinates. */
5688 payload.num_regs = 2;
5689 /* R2: only for 32-pixel dispatch.*/
5690
5691 /* R3-26: barycentric interpolation coordinates. These appear in the
5692 * same order that they appear in the brw_barycentric_mode
5693 * enum. Each set of coordinates occupies 2 registers if dispatch width
5694 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5695 * appear if they were enabled using the "Barycentric Interpolation
5696 * Mode" bits in WM_STATE.
5697 */
5698 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5699 if (prog_data->barycentric_interp_modes & (1 << i)) {
5700 payload.barycentric_coord_reg[i] = payload.num_regs;
5701 payload.num_regs += 2;
5702 if (dispatch_width == 16) {
5703 payload.num_regs += 2;
5704 }
5705 }
5706 }
5707
5708 /* R27: interpolated depth if uses source depth */
5709 prog_data->uses_src_depth =
5710 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5711 if (prog_data->uses_src_depth) {
5712 payload.source_depth_reg = payload.num_regs;
5713 payload.num_regs++;
5714 if (dispatch_width == 16) {
5715 /* R28: interpolated depth if not SIMD8. */
5716 payload.num_regs++;
5717 }
5718 }
5719
5720 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5721 prog_data->uses_src_w =
5722 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5723 if (prog_data->uses_src_w) {
5724 payload.source_w_reg = payload.num_regs;
5725 payload.num_regs++;
5726 if (dispatch_width == 16) {
5727 /* R30: interpolated W if not SIMD8. */
5728 payload.num_regs++;
5729 }
5730 }
5731
5732 /* R31: MSAA position offsets. */
5733 if (prog_data->persample_dispatch &&
5734 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5735 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5736 *
5737 * "MSDISPMODE_PERSAMPLE is required in order to select
5738 * POSOFFSET_SAMPLE"
5739 *
5740 * So we can only really get sample positions if we are doing real
5741 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5742 * persample dispatch, we hard-code it to 0.5.
5743 */
5744 prog_data->uses_pos_offset = true;
5745 payload.sample_pos_reg = payload.num_regs;
5746 payload.num_regs++;
5747 }
5748
5749 /* R32: MSAA input coverage mask */
5750 prog_data->uses_sample_mask =
5751 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5752 if (prog_data->uses_sample_mask) {
5753 assert(devinfo->gen >= 7);
5754 payload.sample_mask_in_reg = payload.num_regs;
5755 payload.num_regs++;
5756 if (dispatch_width == 16) {
5757 /* R33: input coverage mask if not SIMD8. */
5758 payload.num_regs++;
5759 }
5760 }
5761
5762 /* R34-: bary for 32-pixel. */
5763 /* R58-59: interp W for 32-pixel. */
5764
5765 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5766 source_depth_to_render_target = true;
5767 }
5768 }
5769
5770 void
5771 fs_visitor::setup_vs_payload()
5772 {
5773 /* R0: thread header, R1: urb handles */
5774 payload.num_regs = 2;
5775 }
5776
5777 void
5778 fs_visitor::setup_gs_payload()
5779 {
5780 assert(stage == MESA_SHADER_GEOMETRY);
5781
5782 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5783 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5784
5785 /* R0: thread header, R1: output URB handles */
5786 payload.num_regs = 2;
5787
5788 if (gs_prog_data->include_primitive_id) {
5789 /* R2: Primitive ID 0..7 */
5790 payload.num_regs++;
5791 }
5792
5793 /* Always enable VUE handles so we can safely use pull model if needed.
5794 *
5795 * The push model for a GS uses a ton of register space even for trivial
5796 * scenarios with just a few inputs, so just make things easier and a bit
5797 * safer by always having pull model available.
5798 */
5799 gs_prog_data->base.include_vue_handles = true;
5800
5801 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5802 payload.num_regs += nir->info.gs.vertices_in;
5803
5804 /* Use a maximum of 24 registers for push-model inputs. */
5805 const unsigned max_push_components = 24;
5806
5807 /* If pushing our inputs would take too many registers, reduce the URB read
5808 * length (which is in HWords, or 8 registers), and resort to pulling.
5809 *
5810 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5811 * have to multiply by VerticesIn to obtain the total storage requirement.
5812 */
5813 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5814 max_push_components) {
5815 vue_prog_data->urb_read_length =
5816 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5817 }
5818 }
5819
5820 void
5821 fs_visitor::setup_cs_payload()
5822 {
5823 assert(devinfo->gen >= 7);
5824 payload.num_regs = 1;
5825 }
5826
5827 void
5828 fs_visitor::calculate_register_pressure()
5829 {
5830 invalidate_live_intervals();
5831 calculate_live_intervals();
5832
5833 unsigned num_instructions = 0;
5834 foreach_block(block, cfg)
5835 num_instructions += block->instructions.length();
5836
5837 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5838
5839 for (unsigned reg = 0; reg < alloc.count; reg++) {
5840 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5841 regs_live_at_ip[ip] += alloc.sizes[reg];
5842 }
5843 }
5844
5845 /**
5846 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5847 *
5848 * The needs_unlit_centroid_workaround ends up producing one of these per
5849 * channel of centroid input, so it's good to clean them up.
5850 *
5851 * An assumption here is that nothing ever modifies the dispatched pixels
5852 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5853 * dictates that anyway.
5854 */
5855 bool
5856 fs_visitor::opt_drop_redundant_mov_to_flags()
5857 {
5858 bool flag_mov_found[2] = {false};
5859 bool progress = false;
5860
5861 /* Instructions removed by this pass can only be added if this were true */
5862 if (!devinfo->needs_unlit_centroid_workaround)
5863 return false;
5864
5865 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5866 if (inst->is_control_flow()) {
5867 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5868 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5869 if (!flag_mov_found[inst->flag_subreg]) {
5870 flag_mov_found[inst->flag_subreg] = true;
5871 } else {
5872 inst->remove(block);
5873 progress = true;
5874 }
5875 } else if (inst->flags_written()) {
5876 flag_mov_found[inst->flag_subreg] = false;
5877 }
5878 }
5879
5880 return progress;
5881 }
5882
5883 void
5884 fs_visitor::optimize()
5885 {
5886 /* Start by validating the shader we currently have. */
5887 validate();
5888
5889 /* bld is the common builder object pointing at the end of the program we
5890 * used to translate it into i965 IR. For the optimization and lowering
5891 * passes coming next, any code added after the end of the program without
5892 * having explicitly called fs_builder::at() clearly points at a mistake.
5893 * Ideally optimization passes wouldn't be part of the visitor so they
5894 * wouldn't have access to bld at all, but they do, so just in case some
5895 * pass forgets to ask for a location explicitly set it to NULL here to
5896 * make it trip. The dispatch width is initialized to a bogus value to
5897 * make sure that optimizations set the execution controls explicitly to
5898 * match the code they are manipulating instead of relying on the defaults.
5899 */
5900 bld = fs_builder(this, 64);
5901
5902 assign_constant_locations();
5903 lower_constant_loads();
5904
5905 validate();
5906
5907 split_virtual_grfs();
5908 validate();
5909
5910 #define OPT(pass, args...) ({ \
5911 pass_num++; \
5912 bool this_progress = pass(args); \
5913 \
5914 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5915 char filename[64]; \
5916 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5917 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5918 \
5919 backend_shader::dump_instructions(filename); \
5920 } \
5921 \
5922 validate(); \
5923 \
5924 progress = progress || this_progress; \
5925 this_progress; \
5926 })
5927
5928 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5929 char filename[64];
5930 snprintf(filename, 64, "%s%d-%s-00-00-start",
5931 stage_abbrev, dispatch_width, nir->info.name);
5932
5933 backend_shader::dump_instructions(filename);
5934 }
5935
5936 bool progress = false;
5937 int iteration = 0;
5938 int pass_num = 0;
5939
5940 OPT(opt_drop_redundant_mov_to_flags);
5941 OPT(remove_extra_rounding_modes);
5942
5943 do {
5944 progress = false;
5945 pass_num = 0;
5946 iteration++;
5947
5948 OPT(remove_duplicate_mrf_writes);
5949
5950 OPT(opt_algebraic);
5951 OPT(opt_cse);
5952 OPT(opt_copy_propagation);
5953 OPT(opt_predicated_break, this);
5954 OPT(opt_cmod_propagation);
5955 OPT(dead_code_eliminate);
5956 OPT(opt_peephole_sel);
5957 OPT(dead_control_flow_eliminate, this);
5958 OPT(opt_register_renaming);
5959 OPT(opt_saturate_propagation);
5960 OPT(register_coalesce);
5961 OPT(compute_to_mrf);
5962 OPT(eliminate_find_live_channel);
5963
5964 OPT(compact_virtual_grfs);
5965 } while (progress);
5966
5967 progress = false;
5968 pass_num = 0;
5969
5970 if (OPT(lower_pack)) {
5971 OPT(register_coalesce);
5972 OPT(dead_code_eliminate);
5973 }
5974
5975 OPT(lower_simd_width);
5976
5977 /* After SIMD lowering just in case we had to unroll the EOT send. */
5978 OPT(opt_sampler_eot);
5979
5980 OPT(lower_logical_sends);
5981
5982 if (progress) {
5983 OPT(opt_copy_propagation);
5984 /* Only run after logical send lowering because it's easier to implement
5985 * in terms of physical sends.
5986 */
5987 if (OPT(opt_zero_samples))
5988 OPT(opt_copy_propagation);
5989 /* Run after logical send lowering to give it a chance to CSE the
5990 * LOAD_PAYLOAD instructions created to construct the payloads of
5991 * e.g. texturing messages in cases where it wasn't possible to CSE the
5992 * whole logical instruction.
5993 */
5994 OPT(opt_cse);
5995 OPT(register_coalesce);
5996 OPT(compute_to_mrf);
5997 OPT(dead_code_eliminate);
5998 OPT(remove_duplicate_mrf_writes);
5999 OPT(opt_peephole_sel);
6000 }
6001
6002 OPT(opt_redundant_discard_jumps);
6003
6004 if (OPT(lower_load_payload)) {
6005 split_virtual_grfs();
6006 OPT(register_coalesce);
6007 OPT(compute_to_mrf);
6008 OPT(dead_code_eliminate);
6009 }
6010
6011 OPT(opt_combine_constants);
6012 OPT(lower_integer_multiplication);
6013
6014 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
6015 OPT(opt_cmod_propagation);
6016 OPT(opt_cse);
6017 OPT(opt_copy_propagation);
6018 OPT(dead_code_eliminate);
6019 }
6020
6021 if (OPT(lower_conversions)) {
6022 OPT(opt_copy_propagation);
6023 OPT(dead_code_eliminate);
6024 OPT(lower_simd_width);
6025 }
6026
6027 lower_uniform_pull_constant_loads();
6028
6029 validate();
6030 }
6031
6032 /**
6033 * Three source instruction must have a GRF/MRF destination register.
6034 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
6035 */
6036 void
6037 fs_visitor::fixup_3src_null_dest()
6038 {
6039 bool progress = false;
6040
6041 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
6042 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
6043 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
6044 inst->dst.type);
6045 progress = true;
6046 }
6047 }
6048
6049 if (progress)
6050 invalidate_live_intervals();
6051 }
6052
6053 void
6054 fs_visitor::allocate_registers(unsigned min_dispatch_width, bool allow_spilling)
6055 {
6056 bool allocated_without_spills;
6057
6058 static const enum instruction_scheduler_mode pre_modes[] = {
6059 SCHEDULE_PRE,
6060 SCHEDULE_PRE_NON_LIFO,
6061 SCHEDULE_PRE_LIFO,
6062 };
6063
6064 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
6065
6066 /* Try each scheduling heuristic to see if it can successfully register
6067 * allocate without spilling. They should be ordered by decreasing
6068 * performance but increasing likelihood of allocating.
6069 */
6070 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
6071 schedule_instructions(pre_modes[i]);
6072
6073 if (0) {
6074 assign_regs_trivial();
6075 allocated_without_spills = true;
6076 } else {
6077 allocated_without_spills = assign_regs(false, spill_all);
6078 }
6079 if (allocated_without_spills)
6080 break;
6081 }
6082
6083 if (!allocated_without_spills) {
6084 if (!allow_spilling)
6085 fail("Failure to register allocate and spilling is not allowed.");
6086
6087 /* We assume that any spilling is worse than just dropping back to
6088 * SIMD8. There's probably actually some intermediate point where
6089 * SIMD16 with a couple of spills is still better.
6090 */
6091 if (dispatch_width > min_dispatch_width) {
6092 fail("Failure to register allocate. Reduce number of "
6093 "live scalar values to avoid this.");
6094 } else {
6095 compiler->shader_perf_log(log_data,
6096 "%s shader triggered register spilling. "
6097 "Try reducing the number of live scalar "
6098 "values to improve performance.\n",
6099 stage_name);
6100 }
6101
6102 /* Since we're out of heuristics, just go spill registers until we
6103 * get an allocation.
6104 */
6105 while (!assign_regs(true, spill_all)) {
6106 if (failed)
6107 break;
6108 }
6109 }
6110
6111 /* This must come after all optimization and register allocation, since
6112 * it inserts dead code that happens to have side effects, and it does
6113 * so based on the actual physical registers in use.
6114 */
6115 insert_gen4_send_dependency_workarounds();
6116
6117 if (failed)
6118 return;
6119
6120 opt_bank_conflicts();
6121
6122 schedule_instructions(SCHEDULE_POST);
6123
6124 if (last_scratch > 0) {
6125 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
6126
6127 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
6128
6129 if (stage == MESA_SHADER_COMPUTE) {
6130 if (devinfo->is_haswell) {
6131 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6132 * field documentation, Haswell supports a minimum of 2kB of
6133 * scratch space for compute shaders, unlike every other stage
6134 * and platform.
6135 */
6136 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
6137 } else if (devinfo->gen <= 7) {
6138 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6139 * field documentation, platforms prior to Haswell measure scratch
6140 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
6141 */
6142 prog_data->total_scratch = ALIGN(last_scratch, 1024);
6143 max_scratch_size = 12 * 1024;
6144 }
6145 }
6146
6147 /* We currently only support up to 2MB of scratch space. If we
6148 * need to support more eventually, the documentation suggests
6149 * that we could allocate a larger buffer, and partition it out
6150 * ourselves. We'd just have to undo the hardware's address
6151 * calculation by subtracting (FFTID * Per Thread Scratch Space)
6152 * and then add FFTID * (Larger Per Thread Scratch Space).
6153 *
6154 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
6155 * Thread Group Tracking > Local Memory/Scratch Space.
6156 */
6157 assert(prog_data->total_scratch < max_scratch_size);
6158 }
6159 }
6160
6161 bool
6162 fs_visitor::run_vs()
6163 {
6164 assert(stage == MESA_SHADER_VERTEX);
6165
6166 setup_vs_payload();
6167
6168 if (shader_time_index >= 0)
6169 emit_shader_time_begin();
6170
6171 emit_nir_code();
6172
6173 if (failed)
6174 return false;
6175
6176 compute_clip_distance();
6177
6178 emit_urb_writes();
6179
6180 if (shader_time_index >= 0)
6181 emit_shader_time_end();
6182
6183 calculate_cfg();
6184
6185 optimize();
6186
6187 assign_curb_setup();
6188 assign_vs_urb_setup();
6189
6190 fixup_3src_null_dest();
6191 allocate_registers(8, true);
6192
6193 return !failed;
6194 }
6195
6196 bool
6197 fs_visitor::run_tcs_single_patch()
6198 {
6199 assert(stage == MESA_SHADER_TESS_CTRL);
6200
6201 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6202
6203 /* r1-r4 contain the ICP handles. */
6204 payload.num_regs = 5;
6205
6206 if (shader_time_index >= 0)
6207 emit_shader_time_begin();
6208
6209 /* Initialize gl_InvocationID */
6210 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6211 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6212 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6213 bld.MOV(channels_ud, channels_uw);
6214
6215 if (tcs_prog_data->instances == 1) {
6216 invocation_id = channels_ud;
6217 } else {
6218 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6219
6220 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6221 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6222 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6223 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6224 brw_imm_ud(INTEL_MASK(23, 17)));
6225 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6226
6227 bld.ADD(invocation_id, instance_times_8, channels_ud);
6228 }
6229
6230 /* Fix the disptach mask */
6231 if (nir->info.tess.tcs_vertices_out % 8) {
6232 bld.CMP(bld.null_reg_ud(), invocation_id,
6233 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
6234 bld.IF(BRW_PREDICATE_NORMAL);
6235 }
6236
6237 emit_nir_code();
6238
6239 if (nir->info.tess.tcs_vertices_out % 8) {
6240 bld.emit(BRW_OPCODE_ENDIF);
6241 }
6242
6243 /* Emit EOT write; set TR DS Cache bit */
6244 fs_reg srcs[3] = {
6245 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6246 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6247 fs_reg(brw_imm_ud(0)),
6248 };
6249 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6250 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6251
6252 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6253 bld.null_reg_ud(), payload);
6254 inst->mlen = 3;
6255 inst->eot = true;
6256
6257 if (shader_time_index >= 0)
6258 emit_shader_time_end();
6259
6260 if (failed)
6261 return false;
6262
6263 calculate_cfg();
6264
6265 optimize();
6266
6267 assign_curb_setup();
6268 assign_tcs_single_patch_urb_setup();
6269
6270 fixup_3src_null_dest();
6271 allocate_registers(8, true);
6272
6273 return !failed;
6274 }
6275
6276 bool
6277 fs_visitor::run_tes()
6278 {
6279 assert(stage == MESA_SHADER_TESS_EVAL);
6280
6281 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6282 payload.num_regs = 5;
6283
6284 if (shader_time_index >= 0)
6285 emit_shader_time_begin();
6286
6287 emit_nir_code();
6288
6289 if (failed)
6290 return false;
6291
6292 emit_urb_writes();
6293
6294 if (shader_time_index >= 0)
6295 emit_shader_time_end();
6296
6297 calculate_cfg();
6298
6299 optimize();
6300
6301 assign_curb_setup();
6302 assign_tes_urb_setup();
6303
6304 fixup_3src_null_dest();
6305 allocate_registers(8, true);
6306
6307 return !failed;
6308 }
6309
6310 bool
6311 fs_visitor::run_gs()
6312 {
6313 assert(stage == MESA_SHADER_GEOMETRY);
6314
6315 setup_gs_payload();
6316
6317 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6318
6319 if (gs_compile->control_data_header_size_bits > 0) {
6320 /* Create a VGRF to store accumulated control data bits. */
6321 this->control_data_bits = vgrf(glsl_type::uint_type);
6322
6323 /* If we're outputting more than 32 control data bits, then EmitVertex()
6324 * will set control_data_bits to 0 after emitting the first vertex.
6325 * Otherwise, we need to initialize it to 0 here.
6326 */
6327 if (gs_compile->control_data_header_size_bits <= 32) {
6328 const fs_builder abld = bld.annotate("initialize control data bits");
6329 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6330 }
6331 }
6332
6333 if (shader_time_index >= 0)
6334 emit_shader_time_begin();
6335
6336 emit_nir_code();
6337
6338 emit_gs_thread_end();
6339
6340 if (shader_time_index >= 0)
6341 emit_shader_time_end();
6342
6343 if (failed)
6344 return false;
6345
6346 calculate_cfg();
6347
6348 optimize();
6349
6350 assign_curb_setup();
6351 assign_gs_urb_setup();
6352
6353 fixup_3src_null_dest();
6354 allocate_registers(8, true);
6355
6356 return !failed;
6357 }
6358
6359 /* From the SKL PRM, Volume 16, Workarounds:
6360 *
6361 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
6362 * only header phases (R0-R2)
6363 *
6364 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
6365 * have been header only.
6366 *
6367 * Instead of enabling push constants one can alternatively enable one of the
6368 * inputs. Here one simply chooses "layer" which shouldn't impose much
6369 * overhead.
6370 */
6371 static void
6372 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
6373 {
6374 if (wm_prog_data->num_varying_inputs)
6375 return;
6376
6377 if (wm_prog_data->base.curb_read_length)
6378 return;
6379
6380 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
6381 wm_prog_data->num_varying_inputs = 1;
6382 }
6383
6384 bool
6385 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6386 {
6387 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6388 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6389
6390 assert(stage == MESA_SHADER_FRAGMENT);
6391
6392 if (devinfo->gen >= 6)
6393 setup_fs_payload_gen6();
6394 else
6395 setup_fs_payload_gen4();
6396
6397 if (0) {
6398 emit_dummy_fs();
6399 } else if (do_rep_send) {
6400 assert(dispatch_width == 16);
6401 emit_repclear_shader();
6402 } else {
6403 if (shader_time_index >= 0)
6404 emit_shader_time_begin();
6405
6406 calculate_urb_setup();
6407 if (nir->info.inputs_read > 0 ||
6408 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6409 if (devinfo->gen < 6)
6410 emit_interpolation_setup_gen4();
6411 else
6412 emit_interpolation_setup_gen6();
6413 }
6414
6415 /* We handle discards by keeping track of the still-live pixels in f0.1.
6416 * Initialize it with the dispatched pixels.
6417 */
6418 if (wm_prog_data->uses_kill) {
6419 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6420 discard_init->flag_subreg = 1;
6421 }
6422
6423 /* Generate FS IR for main(). (the visitor only descends into
6424 * functions called "main").
6425 */
6426 emit_nir_code();
6427
6428 if (failed)
6429 return false;
6430
6431 if (wm_prog_data->uses_kill)
6432 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6433
6434 if (wm_key->alpha_test_func)
6435 emit_alpha_test();
6436
6437 emit_fb_writes();
6438
6439 if (shader_time_index >= 0)
6440 emit_shader_time_end();
6441
6442 calculate_cfg();
6443
6444 optimize();
6445
6446 assign_curb_setup();
6447
6448 if (devinfo->gen >= 9)
6449 gen9_ps_header_only_workaround(wm_prog_data);
6450
6451 assign_urb_setup();
6452
6453 fixup_3src_null_dest();
6454 allocate_registers(8, allow_spilling);
6455
6456 if (failed)
6457 return false;
6458 }
6459
6460 return !failed;
6461 }
6462
6463 bool
6464 fs_visitor::run_cs(unsigned min_dispatch_width)
6465 {
6466 assert(stage == MESA_SHADER_COMPUTE);
6467 assert(dispatch_width >= min_dispatch_width);
6468
6469 setup_cs_payload();
6470
6471 if (shader_time_index >= 0)
6472 emit_shader_time_begin();
6473
6474 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6475 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6476 const fs_builder abld = bld.exec_all().group(1, 0);
6477 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6478 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6479 }
6480
6481 emit_nir_code();
6482
6483 if (failed)
6484 return false;
6485
6486 emit_cs_terminate();
6487
6488 if (shader_time_index >= 0)
6489 emit_shader_time_end();
6490
6491 calculate_cfg();
6492
6493 optimize();
6494
6495 assign_curb_setup();
6496
6497 fixup_3src_null_dest();
6498 allocate_registers(min_dispatch_width, true);
6499
6500 if (failed)
6501 return false;
6502
6503 return !failed;
6504 }
6505
6506 /**
6507 * Return a bitfield where bit n is set if barycentric interpolation mode n
6508 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6509 *
6510 * We examine the load_barycentric intrinsics rather than looking at input
6511 * variables so that we catch interpolateAtCentroid() messages too, which
6512 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6513 */
6514 static unsigned
6515 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6516 const nir_shader *shader)
6517 {
6518 unsigned barycentric_interp_modes = 0;
6519
6520 nir_foreach_function(f, shader) {
6521 if (!f->impl)
6522 continue;
6523
6524 nir_foreach_block(block, f->impl) {
6525 nir_foreach_instr(instr, block) {
6526 if (instr->type != nir_instr_type_intrinsic)
6527 continue;
6528
6529 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6530 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6531 continue;
6532
6533 /* Ignore WPOS; it doesn't require interpolation. */
6534 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6535 continue;
6536
6537 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6538 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6539 nir_intrinsic_interp_mode(intrin);
6540 nir_intrinsic_op bary_op = intrin->intrinsic;
6541 enum brw_barycentric_mode bary =
6542 brw_barycentric_mode(interp, bary_op);
6543
6544 barycentric_interp_modes |= 1 << bary;
6545
6546 if (devinfo->needs_unlit_centroid_workaround &&
6547 bary_op == nir_intrinsic_load_barycentric_centroid)
6548 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6549 }
6550 }
6551 }
6552
6553 return barycentric_interp_modes;
6554 }
6555
6556 static void
6557 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6558 const nir_shader *shader)
6559 {
6560 prog_data->flat_inputs = 0;
6561
6562 nir_foreach_variable(var, &shader->inputs) {
6563 int input_index = prog_data->urb_setup[var->data.location];
6564
6565 if (input_index < 0)
6566 continue;
6567
6568 /* flat shading */
6569 if (var->data.interpolation == INTERP_MODE_FLAT)
6570 prog_data->flat_inputs |= (1 << input_index);
6571 }
6572 }
6573
6574 static uint8_t
6575 computed_depth_mode(const nir_shader *shader)
6576 {
6577 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6578 switch (shader->info.fs.depth_layout) {
6579 case FRAG_DEPTH_LAYOUT_NONE:
6580 case FRAG_DEPTH_LAYOUT_ANY:
6581 return BRW_PSCDEPTH_ON;
6582 case FRAG_DEPTH_LAYOUT_GREATER:
6583 return BRW_PSCDEPTH_ON_GE;
6584 case FRAG_DEPTH_LAYOUT_LESS:
6585 return BRW_PSCDEPTH_ON_LE;
6586 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6587 return BRW_PSCDEPTH_OFF;
6588 }
6589 }
6590 return BRW_PSCDEPTH_OFF;
6591 }
6592
6593 /**
6594 * Move load_interpolated_input with simple (payload-based) barycentric modes
6595 * to the top of the program so we don't emit multiple PLNs for the same input.
6596 *
6597 * This works around CSE not being able to handle non-dominating cases
6598 * such as:
6599 *
6600 * if (...) {
6601 * interpolate input
6602 * } else {
6603 * interpolate the same exact input
6604 * }
6605 *
6606 * This should be replaced by global value numbering someday.
6607 */
6608 static bool
6609 move_interpolation_to_top(nir_shader *nir)
6610 {
6611 bool progress = false;
6612
6613 nir_foreach_function(f, nir) {
6614 if (!f->impl)
6615 continue;
6616
6617 nir_block *top = nir_start_block(f->impl);
6618 exec_node *cursor_node = NULL;
6619
6620 nir_foreach_block(block, f->impl) {
6621 if (block == top)
6622 continue;
6623
6624 nir_foreach_instr_safe(instr, block) {
6625 if (instr->type != nir_instr_type_intrinsic)
6626 continue;
6627
6628 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6629 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6630 continue;
6631 nir_intrinsic_instr *bary_intrinsic =
6632 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6633 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6634
6635 /* Leave interpolateAtSample/Offset() where they are. */
6636 if (op == nir_intrinsic_load_barycentric_at_sample ||
6637 op == nir_intrinsic_load_barycentric_at_offset)
6638 continue;
6639
6640 nir_instr *move[3] = {
6641 &bary_intrinsic->instr,
6642 intrin->src[1].ssa->parent_instr,
6643 instr
6644 };
6645
6646 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6647 if (move[i]->block != top) {
6648 move[i]->block = top;
6649 exec_node_remove(&move[i]->node);
6650 if (cursor_node) {
6651 exec_node_insert_after(cursor_node, &move[i]->node);
6652 } else {
6653 exec_list_push_head(&top->instr_list, &move[i]->node);
6654 }
6655 cursor_node = &move[i]->node;
6656 progress = true;
6657 }
6658 }
6659 }
6660 }
6661 nir_metadata_preserve(f->impl, (nir_metadata)
6662 ((unsigned) nir_metadata_block_index |
6663 (unsigned) nir_metadata_dominance));
6664 }
6665
6666 return progress;
6667 }
6668
6669 /**
6670 * Demote per-sample barycentric intrinsics to centroid.
6671 *
6672 * Useful when rendering to a non-multisampled buffer.
6673 */
6674 static bool
6675 demote_sample_qualifiers(nir_shader *nir)
6676 {
6677 bool progress = true;
6678
6679 nir_foreach_function(f, nir) {
6680 if (!f->impl)
6681 continue;
6682
6683 nir_builder b;
6684 nir_builder_init(&b, f->impl);
6685
6686 nir_foreach_block(block, f->impl) {
6687 nir_foreach_instr_safe(instr, block) {
6688 if (instr->type != nir_instr_type_intrinsic)
6689 continue;
6690
6691 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6692 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6693 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6694 continue;
6695
6696 b.cursor = nir_before_instr(instr);
6697 nir_ssa_def *centroid =
6698 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6699 nir_intrinsic_interp_mode(intrin));
6700 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6701 nir_src_for_ssa(centroid));
6702 nir_instr_remove(instr);
6703 progress = true;
6704 }
6705 }
6706
6707 nir_metadata_preserve(f->impl, (nir_metadata)
6708 ((unsigned) nir_metadata_block_index |
6709 (unsigned) nir_metadata_dominance));
6710 }
6711
6712 return progress;
6713 }
6714
6715 /**
6716 * Pre-gen6, the register file of the EUs was shared between threads,
6717 * and each thread used some subset allocated on a 16-register block
6718 * granularity. The unit states wanted these block counts.
6719 */
6720 static inline int
6721 brw_register_blocks(int reg_count)
6722 {
6723 return ALIGN(reg_count, 16) / 16 - 1;
6724 }
6725
6726 const unsigned *
6727 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6728 void *mem_ctx,
6729 const struct brw_wm_prog_key *key,
6730 struct brw_wm_prog_data *prog_data,
6731 const nir_shader *src_shader,
6732 struct gl_program *prog,
6733 int shader_time_index8, int shader_time_index16,
6734 bool allow_spilling,
6735 bool use_rep_send, struct brw_vue_map *vue_map,
6736 char **error_str)
6737 {
6738 const struct gen_device_info *devinfo = compiler->devinfo;
6739
6740 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6741 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6742 brw_nir_lower_fs_inputs(shader, devinfo, key);
6743 brw_nir_lower_fs_outputs(shader);
6744
6745 if (devinfo->gen < 6) {
6746 brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6747 }
6748
6749 if (!key->multisample_fbo)
6750 NIR_PASS_V(shader, demote_sample_qualifiers);
6751 NIR_PASS_V(shader, move_interpolation_to_top);
6752 shader = brw_postprocess_nir(shader, compiler, true);
6753
6754 /* key->alpha_test_func means simulating alpha testing via discards,
6755 * so the shader definitely kills pixels.
6756 */
6757 prog_data->uses_kill = shader->info.fs.uses_discard ||
6758 key->alpha_test_func;
6759 prog_data->uses_omask = key->multisample_fbo &&
6760 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6761 prog_data->computed_depth_mode = computed_depth_mode(shader);
6762 prog_data->computed_stencil =
6763 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6764
6765 prog_data->persample_dispatch =
6766 key->multisample_fbo &&
6767 (key->persample_interp ||
6768 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6769 SYSTEM_BIT_SAMPLE_POS)) ||
6770 shader->info.fs.uses_sample_qualifier ||
6771 shader->info.outputs_read);
6772
6773 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
6774
6775 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6776 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
6777 prog_data->inner_coverage = shader->info.fs.inner_coverage;
6778
6779 prog_data->barycentric_interp_modes =
6780 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6781
6782 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6783 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6784 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6785
6786 fs_visitor v8(compiler, log_data, mem_ctx, key,
6787 &prog_data->base, prog, shader, 8,
6788 shader_time_index8);
6789 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6790 if (error_str)
6791 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6792
6793 return NULL;
6794 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6795 simd8_cfg = v8.cfg;
6796 simd8_grf_start = v8.payload.num_regs;
6797 simd8_grf_used = v8.grf_used;
6798 }
6799
6800 if (v8.max_dispatch_width >= 16 &&
6801 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6802 /* Try a SIMD16 compile */
6803 fs_visitor v16(compiler, log_data, mem_ctx, key,
6804 &prog_data->base, prog, shader, 16,
6805 shader_time_index16);
6806 v16.import_uniforms(&v8);
6807 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6808 compiler->shader_perf_log(log_data,
6809 "SIMD16 shader failed to compile: %s",
6810 v16.fail_msg);
6811 } else {
6812 simd16_cfg = v16.cfg;
6813 simd16_grf_start = v16.payload.num_regs;
6814 simd16_grf_used = v16.grf_used;
6815 }
6816 }
6817
6818 /* When the caller requests a repclear shader, they want SIMD16-only */
6819 if (use_rep_send)
6820 simd8_cfg = NULL;
6821
6822 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6823 * at the top to select the shader. We've never implemented that.
6824 * Instead, we just give them exactly one shader and we pick the widest one
6825 * available.
6826 */
6827 if (compiler->devinfo->gen < 5 && simd16_cfg)
6828 simd8_cfg = NULL;
6829
6830 if (prog_data->persample_dispatch) {
6831 /* Starting with SandyBridge (where we first get MSAA), the different
6832 * pixel dispatch combinations are grouped into classifications A
6833 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6834 * generations, the only configurations supporting persample dispatch
6835 * are are this in which only one dispatch width is enabled.
6836 *
6837 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6838 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6839 */
6840 if (compiler->devinfo->gen == 6 &&
6841 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6842 simd16_cfg = NULL;
6843 } else if (simd16_cfg) {
6844 simd8_cfg = NULL;
6845 }
6846 }
6847
6848 /* We have to compute the flat inputs after the visitor is finished running
6849 * because it relies on prog_data->urb_setup which is computed in
6850 * fs_visitor::calculate_urb_setup().
6851 */
6852 brw_compute_flat_inputs(prog_data, shader);
6853
6854 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6855 v8.promoted_constants, v8.runtime_check_aads_emit,
6856 MESA_SHADER_FRAGMENT);
6857
6858 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6859 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6860 shader->info.label ?
6861 shader->info.label : "unnamed",
6862 shader->info.name));
6863 }
6864
6865 if (simd8_cfg) {
6866 prog_data->dispatch_8 = true;
6867 g.generate_code(simd8_cfg, 8);
6868 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6869 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6870
6871 if (simd16_cfg) {
6872 prog_data->dispatch_16 = true;
6873 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6874 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6875 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6876 }
6877 } else if (simd16_cfg) {
6878 prog_data->dispatch_16 = true;
6879 g.generate_code(simd16_cfg, 16);
6880 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6881 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6882 }
6883
6884 return g.get_assembly(&prog_data->base.program_size);
6885 }
6886
6887 fs_reg *
6888 fs_visitor::emit_cs_work_group_id_setup()
6889 {
6890 assert(stage == MESA_SHADER_COMPUTE);
6891
6892 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6893
6894 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6895 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6896 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6897
6898 bld.MOV(*reg, r0_1);
6899 bld.MOV(offset(*reg, bld, 1), r0_6);
6900 bld.MOV(offset(*reg, bld, 2), r0_7);
6901
6902 return reg;
6903 }
6904
6905 static void
6906 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6907 {
6908 block->dwords = dwords;
6909 block->regs = DIV_ROUND_UP(dwords, 8);
6910 block->size = block->regs * 32;
6911 }
6912
6913 static void
6914 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6915 struct brw_cs_prog_data *cs_prog_data)
6916 {
6917 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6918 int subgroup_id_index = get_subgroup_id_param_index(prog_data);
6919 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6920
6921 /* The thread ID should be stored in the last param dword */
6922 assert(subgroup_id_index == -1 ||
6923 subgroup_id_index == (int)prog_data->nr_params - 1);
6924
6925 unsigned cross_thread_dwords, per_thread_dwords;
6926 if (!cross_thread_supported) {
6927 cross_thread_dwords = 0u;
6928 per_thread_dwords = prog_data->nr_params;
6929 } else if (subgroup_id_index >= 0) {
6930 /* Fill all but the last register with cross-thread payload */
6931 cross_thread_dwords = 8 * (subgroup_id_index / 8);
6932 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6933 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6934 } else {
6935 /* Fill all data using cross-thread payload */
6936 cross_thread_dwords = prog_data->nr_params;
6937 per_thread_dwords = 0u;
6938 }
6939
6940 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6941 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6942
6943 unsigned total_dwords =
6944 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6945 cs_prog_data->push.cross_thread.size) / 4;
6946 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6947
6948 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6949 cs_prog_data->push.per_thread.size == 0);
6950 assert(cs_prog_data->push.cross_thread.dwords +
6951 cs_prog_data->push.per_thread.dwords ==
6952 prog_data->nr_params);
6953 }
6954
6955 static void
6956 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6957 {
6958 cs_prog_data->simd_size = size;
6959 unsigned group_size = cs_prog_data->local_size[0] *
6960 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6961 cs_prog_data->threads = (group_size + size - 1) / size;
6962 }
6963
6964 static nir_shader *
6965 compile_cs_to_nir(const struct brw_compiler *compiler,
6966 void *mem_ctx,
6967 const struct brw_cs_prog_key *key,
6968 struct brw_cs_prog_data *prog_data,
6969 const nir_shader *src_shader,
6970 unsigned dispatch_width)
6971 {
6972 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6973 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6974 brw_nir_lower_cs_intrinsics(shader, dispatch_width);
6975 return brw_postprocess_nir(shader, compiler, true);
6976 }
6977
6978 const unsigned *
6979 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6980 void *mem_ctx,
6981 const struct brw_cs_prog_key *key,
6982 struct brw_cs_prog_data *prog_data,
6983 const nir_shader *src_shader,
6984 int shader_time_index,
6985 char **error_str)
6986 {
6987 prog_data->local_size[0] = src_shader->info.cs.local_size[0];
6988 prog_data->local_size[1] = src_shader->info.cs.local_size[1];
6989 prog_data->local_size[2] = src_shader->info.cs.local_size[2];
6990 unsigned local_workgroup_size =
6991 src_shader->info.cs.local_size[0] * src_shader->info.cs.local_size[1] *
6992 src_shader->info.cs.local_size[2];
6993
6994 unsigned min_dispatch_width =
6995 DIV_ROUND_UP(local_workgroup_size, compiler->devinfo->max_cs_threads);
6996 min_dispatch_width = MAX2(8, min_dispatch_width);
6997 min_dispatch_width = util_next_power_of_two(min_dispatch_width);
6998 assert(min_dispatch_width <= 32);
6999
7000 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
7001 cfg_t *cfg = NULL;
7002 const char *fail_msg = NULL;
7003 unsigned promoted_constants;
7004
7005 /* Now the main event: Visit the shader IR and generate our CS IR for it.
7006 */
7007 if (min_dispatch_width <= 8) {
7008 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
7009 prog_data, src_shader, 8);
7010 v8 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
7011 NULL, /* Never used in core profile */
7012 nir8, 8, shader_time_index);
7013 if (!v8->run_cs(min_dispatch_width)) {
7014 fail_msg = v8->fail_msg;
7015 } else {
7016 /* We should always be able to do SIMD32 for compute shaders */
7017 assert(v8->max_dispatch_width >= 32);
7018
7019 cfg = v8->cfg;
7020 cs_set_simd_size(prog_data, 8);
7021 cs_fill_push_const_info(compiler->devinfo, prog_data);
7022 promoted_constants = v8->promoted_constants;
7023 }
7024 }
7025
7026 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
7027 !fail_msg && min_dispatch_width <= 16) {
7028 /* Try a SIMD16 compile */
7029 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
7030 prog_data, src_shader, 16);
7031 v16 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
7032 NULL, /* Never used in core profile */
7033 nir16, 16, shader_time_index);
7034 if (v8)
7035 v16->import_uniforms(v8);
7036
7037 if (!v16->run_cs(min_dispatch_width)) {
7038 compiler->shader_perf_log(log_data,
7039 "SIMD16 shader failed to compile: %s",
7040 v16->fail_msg);
7041 if (!cfg) {
7042 fail_msg =
7043 "Couldn't generate SIMD16 program and not "
7044 "enough threads for SIMD8";
7045 }
7046 } else {
7047 /* We should always be able to do SIMD32 for compute shaders */
7048 assert(v16->max_dispatch_width >= 32);
7049
7050 cfg = v16->cfg;
7051 cs_set_simd_size(prog_data, 16);
7052 cs_fill_push_const_info(compiler->devinfo, prog_data);
7053 promoted_constants = v16->promoted_constants;
7054 }
7055 }
7056
7057 /* We should always be able to do SIMD32 for compute shaders */
7058 assert(!v16 || v16->max_dispatch_width >= 32);
7059
7060 if (!fail_msg && (min_dispatch_width > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
7061 /* Try a SIMD32 compile */
7062 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
7063 prog_data, src_shader, 32);
7064 v32 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
7065 NULL, /* Never used in core profile */
7066 nir32, 32, shader_time_index);
7067 if (v8)
7068 v32->import_uniforms(v8);
7069 else if (v16)
7070 v32->import_uniforms(v16);
7071
7072 if (!v32->run_cs(min_dispatch_width)) {
7073 compiler->shader_perf_log(log_data,
7074 "SIMD32 shader failed to compile: %s",
7075 v16->fail_msg);
7076 if (!cfg) {
7077 fail_msg =
7078 "Couldn't generate SIMD32 program and not "
7079 "enough threads for SIMD16";
7080 }
7081 } else {
7082 cfg = v32->cfg;
7083 cs_set_simd_size(prog_data, 32);
7084 cs_fill_push_const_info(compiler->devinfo, prog_data);
7085 promoted_constants = v32->promoted_constants;
7086 }
7087 }
7088
7089 const unsigned *ret = NULL;
7090 if (unlikely(cfg == NULL)) {
7091 assert(fail_msg);
7092 if (error_str)
7093 *error_str = ralloc_strdup(mem_ctx, fail_msg);
7094 } else {
7095 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
7096 promoted_constants, false, MESA_SHADER_COMPUTE);
7097 if (INTEL_DEBUG & DEBUG_CS) {
7098 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
7099 src_shader->info.label ?
7100 src_shader->info.label : "unnamed",
7101 src_shader->info.name);
7102 g.enable_debug(name);
7103 }
7104
7105 g.generate_code(cfg, prog_data->simd_size);
7106
7107 ret = g.get_assembly(&prog_data->base.program_size);
7108 }
7109
7110 delete v8;
7111 delete v16;
7112 delete v32;
7113
7114 return ret;
7115 }
7116
7117 /**
7118 * Test the dispatch mask packing assumptions of
7119 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
7120 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
7121 * executed with an unexpected dispatch mask.
7122 */
7123 static UNUSED void
7124 brw_fs_test_dispatch_packing(const fs_builder &bld)
7125 {
7126 const gl_shader_stage stage = bld.shader->stage;
7127
7128 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
7129 bld.shader->stage_prog_data)) {
7130 const fs_builder ubld = bld.exec_all().group(1, 0);
7131 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
7132 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
7133 brw_dmask_reg());
7134
7135 ubld.ADD(tmp, mask, brw_imm_ud(1));
7136 ubld.AND(tmp, mask, tmp);
7137
7138 /* This will loop forever if the dispatch mask doesn't have the expected
7139 * form '2^n-1', in which case tmp will be non-zero.
7140 */
7141 bld.emit(BRW_OPCODE_DO);
7142 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
7143 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
7144 }
7145 }