intel/fs: Pass builders instead of blocks into emit_[un]zip
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "common/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42
43 using namespace brw;
44
45 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
46 const fs_inst *inst);
47
48 void
49 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
50 const fs_reg *src, unsigned sources)
51 {
52 memset(this, 0, sizeof(*this));
53
54 this->src = new fs_reg[MAX2(sources, 3)];
55 for (unsigned i = 0; i < sources; i++)
56 this->src[i] = src[i];
57
58 this->opcode = opcode;
59 this->dst = dst;
60 this->sources = sources;
61 this->exec_size = exec_size;
62 this->base_mrf = -1;
63
64 assert(dst.file != IMM && dst.file != UNIFORM);
65
66 assert(this->exec_size != 0);
67
68 this->conditional_mod = BRW_CONDITIONAL_NONE;
69
70 /* This will be the case for almost all instructions. */
71 switch (dst.file) {
72 case VGRF:
73 case ARF:
74 case FIXED_GRF:
75 case MRF:
76 case ATTR:
77 this->size_written = dst.component_size(exec_size);
78 break;
79 case BAD_FILE:
80 this->size_written = 0;
81 break;
82 case IMM:
83 case UNIFORM:
84 unreachable("Invalid destination register file");
85 }
86
87 this->writes_accumulator = false;
88 }
89
90 fs_inst::fs_inst()
91 {
92 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
93 }
94
95 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
96 {
97 init(opcode, exec_size, reg_undef, NULL, 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
101 {
102 init(opcode, exec_size, dst, NULL, 0);
103 }
104
105 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
106 const fs_reg &src0)
107 {
108 const fs_reg src[1] = { src0 };
109 init(opcode, exec_size, dst, src, 1);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0, const fs_reg &src1)
114 {
115 const fs_reg src[2] = { src0, src1 };
116 init(opcode, exec_size, dst, src, 2);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
121 {
122 const fs_reg src[3] = { src0, src1, src2 };
123 init(opcode, exec_size, dst, src, 3);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
127 const fs_reg src[], unsigned sources)
128 {
129 init(opcode, exec_width, dst, src, sources);
130 }
131
132 fs_inst::fs_inst(const fs_inst &that)
133 {
134 memcpy(this, &that, sizeof(that));
135
136 this->src = new fs_reg[MAX2(that.sources, 3)];
137
138 for (unsigned i = 0; i < that.sources; i++)
139 this->src[i] = that.src[i];
140 }
141
142 fs_inst::~fs_inst()
143 {
144 delete[] this->src;
145 }
146
147 void
148 fs_inst::resize_sources(uint8_t num_sources)
149 {
150 if (this->sources != num_sources) {
151 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
152
153 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
154 src[i] = this->src[i];
155
156 delete[] this->src;
157 this->src = src;
158 this->sources = num_sources;
159 }
160 }
161
162 void
163 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
164 const fs_reg &dst,
165 const fs_reg &surf_index,
166 const fs_reg &varying_offset,
167 uint32_t const_offset)
168 {
169 /* We have our constant surface use a pitch of 4 bytes, so our index can
170 * be any component of a vector, and then we load 4 contiguous
171 * components starting from that.
172 *
173 * We break down the const_offset to a portion added to the variable offset
174 * and a portion done using fs_reg::offset, which means that if you have
175 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
176 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
177 * later notice that those loads are all the same and eliminate the
178 * redundant ones.
179 */
180 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
181 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
182
183 /* The pull load message will load a vec4 (16 bytes). If we are loading
184 * a double this means we are only loading 2 elements worth of data.
185 * We also want to use a 32-bit data type for the dst of the load operation
186 * so other parts of the driver don't get confused about the size of the
187 * result.
188 */
189 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
190 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
191 vec4_result, surf_index, vec4_offset);
192 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
193
194 if (type_sz(dst.type) == 8) {
195 shuffle_32bit_load_result_to_64bit_data(
196 bld, retype(vec4_result, dst.type), vec4_result, 2);
197 }
198
199 vec4_result.type = dst.type;
200 bld.MOV(dst, offset(vec4_result, bld,
201 (const_offset & 0xf) / type_sz(vec4_result.type)));
202 }
203
204 /**
205 * A helper for MOV generation for fixing up broken hardware SEND dependency
206 * handling.
207 */
208 void
209 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
210 {
211 /* The caller always wants uncompressed to emit the minimal extra
212 * dependencies, and to avoid having to deal with aligning its regs to 2.
213 */
214 const fs_builder ubld = bld.annotate("send dependency resolve")
215 .half(0);
216
217 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
218 }
219
220 bool
221 fs_inst::equals(fs_inst *inst) const
222 {
223 return (opcode == inst->opcode &&
224 dst.equals(inst->dst) &&
225 src[0].equals(inst->src[0]) &&
226 src[1].equals(inst->src[1]) &&
227 src[2].equals(inst->src[2]) &&
228 saturate == inst->saturate &&
229 predicate == inst->predicate &&
230 conditional_mod == inst->conditional_mod &&
231 mlen == inst->mlen &&
232 base_mrf == inst->base_mrf &&
233 target == inst->target &&
234 eot == inst->eot &&
235 header_size == inst->header_size &&
236 shadow_compare == inst->shadow_compare &&
237 exec_size == inst->exec_size &&
238 offset == inst->offset);
239 }
240
241 bool
242 fs_inst::is_send_from_grf() const
243 {
244 switch (opcode) {
245 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
246 case SHADER_OPCODE_SHADER_TIME_ADD:
247 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
248 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
249 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
250 case SHADER_OPCODE_UNTYPED_ATOMIC:
251 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
252 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
253 case SHADER_OPCODE_TYPED_ATOMIC:
254 case SHADER_OPCODE_TYPED_SURFACE_READ:
255 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
256 case SHADER_OPCODE_URB_WRITE_SIMD8:
257 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
258 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
260 case SHADER_OPCODE_URB_READ_SIMD8:
261 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
262 return true;
263 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
264 return src[1].file == VGRF;
265 case FS_OPCODE_FB_WRITE:
266 case FS_OPCODE_FB_READ:
267 return src[0].file == VGRF;
268 default:
269 if (is_tex())
270 return src[0].file == VGRF;
271
272 return false;
273 }
274 }
275
276 /**
277 * Returns true if this instruction's sources and destinations cannot
278 * safely be the same register.
279 *
280 * In most cases, a register can be written over safely by the same
281 * instruction that is its last use. For a single instruction, the
282 * sources are dereferenced before writing of the destination starts
283 * (naturally).
284 *
285 * However, there are a few cases where this can be problematic:
286 *
287 * - Virtual opcodes that translate to multiple instructions in the
288 * code generator: if src == dst and one instruction writes the
289 * destination before a later instruction reads the source, then
290 * src will have been clobbered.
291 *
292 * - SIMD16 compressed instructions with certain regioning (see below).
293 *
294 * The register allocator uses this information to set up conflicts between
295 * GRF sources and the destination.
296 */
297 bool
298 fs_inst::has_source_and_destination_hazard() const
299 {
300 switch (opcode) {
301 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
302 /* Multiple partial writes to the destination */
303 return true;
304 default:
305 /* The SIMD16 compressed instruction
306 *
307 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
308 *
309 * is actually decoded in hardware as:
310 *
311 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
312 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
313 *
314 * Which is safe. However, if we have uniform accesses
315 * happening, we get into trouble:
316 *
317 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
318 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
319 *
320 * Now our destination for the first instruction overwrote the
321 * second instruction's src0, and we get garbage for those 8
322 * pixels. There's a similar issue for the pre-gen6
323 * pixel_x/pixel_y, which are registers of 16-bit values and thus
324 * would get stomped by the first decode as well.
325 */
326 if (exec_size == 16) {
327 for (int i = 0; i < sources; i++) {
328 if (src[i].file == VGRF && (src[i].stride == 0 ||
329 src[i].type == BRW_REGISTER_TYPE_UW ||
330 src[i].type == BRW_REGISTER_TYPE_W ||
331 src[i].type == BRW_REGISTER_TYPE_UB ||
332 src[i].type == BRW_REGISTER_TYPE_B)) {
333 return true;
334 }
335 }
336 }
337 return false;
338 }
339 }
340
341 bool
342 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
343 {
344 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
345 return false;
346
347 fs_reg reg = this->src[0];
348 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
349 return false;
350
351 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
352 return false;
353
354 for (int i = 0; i < this->sources; i++) {
355 reg.type = this->src[i].type;
356 if (!this->src[i].equals(reg))
357 return false;
358
359 if (i < this->header_size) {
360 reg.offset += REG_SIZE;
361 } else {
362 reg = horiz_offset(reg, this->exec_size);
363 }
364 }
365
366 return true;
367 }
368
369 bool
370 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
371 {
372 if (devinfo->gen == 6 && is_math())
373 return false;
374
375 if (is_send_from_grf())
376 return false;
377
378 if (!backend_instruction::can_do_source_mods())
379 return false;
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_change_types() const
386 {
387 return dst.type == src[0].type &&
388 !src[0].abs && !src[0].negate && !saturate &&
389 (opcode == BRW_OPCODE_MOV ||
390 (opcode == BRW_OPCODE_SEL &&
391 dst.type == src[1].type &&
392 predicate != BRW_PREDICATE_NONE &&
393 !src[1].abs && !src[1].negate));
394 }
395
396 void
397 fs_reg::init()
398 {
399 memset(this, 0, sizeof(*this));
400 type = BRW_REGISTER_TYPE_UD;
401 stride = 1;
402 }
403
404 /** Generic unset register constructor. */
405 fs_reg::fs_reg()
406 {
407 init();
408 this->file = BAD_FILE;
409 }
410
411 fs_reg::fs_reg(struct ::brw_reg reg) :
412 backend_reg(reg)
413 {
414 this->offset = 0;
415 this->stride = 1;
416 if (this->file == IMM &&
417 (this->type != BRW_REGISTER_TYPE_V &&
418 this->type != BRW_REGISTER_TYPE_UV &&
419 this->type != BRW_REGISTER_TYPE_VF)) {
420 this->stride = 0;
421 }
422 }
423
424 bool
425 fs_reg::equals(const fs_reg &r) const
426 {
427 return (this->backend_reg::equals(r) &&
428 stride == r.stride);
429 }
430
431 bool
432 fs_reg::is_contiguous() const
433 {
434 return stride == 1;
435 }
436
437 unsigned
438 fs_reg::component_size(unsigned width) const
439 {
440 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
441 hstride == 0 ? 0 :
442 1 << (hstride - 1));
443 return MAX2(width * stride, 1) * type_sz(type);
444 }
445
446 extern "C" int
447 type_size_scalar(const struct glsl_type *type)
448 {
449 unsigned int size, i;
450
451 switch (type->base_type) {
452 case GLSL_TYPE_UINT:
453 case GLSL_TYPE_INT:
454 case GLSL_TYPE_FLOAT:
455 case GLSL_TYPE_BOOL:
456 return type->components();
457 case GLSL_TYPE_DOUBLE:
458 case GLSL_TYPE_UINT64:
459 case GLSL_TYPE_INT64:
460 return type->components() * 2;
461 case GLSL_TYPE_ARRAY:
462 return type_size_scalar(type->fields.array) * type->length;
463 case GLSL_TYPE_STRUCT:
464 size = 0;
465 for (i = 0; i < type->length; i++) {
466 size += type_size_scalar(type->fields.structure[i].type);
467 }
468 return size;
469 case GLSL_TYPE_SAMPLER:
470 /* Samplers take up no register space, since they're baked in at
471 * link time.
472 */
473 return 0;
474 case GLSL_TYPE_ATOMIC_UINT:
475 return 0;
476 case GLSL_TYPE_SUBROUTINE:
477 return 1;
478 case GLSL_TYPE_IMAGE:
479 return BRW_IMAGE_PARAM_SIZE;
480 case GLSL_TYPE_VOID:
481 case GLSL_TYPE_ERROR:
482 case GLSL_TYPE_INTERFACE:
483 case GLSL_TYPE_FUNCTION:
484 unreachable("not reached");
485 }
486
487 return 0;
488 }
489
490 /**
491 * Create a MOV to read the timestamp register.
492 *
493 * The caller is responsible for emitting the MOV. The return value is
494 * the destination of the MOV, with extra parameters set.
495 */
496 fs_reg
497 fs_visitor::get_timestamp(const fs_builder &bld)
498 {
499 assert(devinfo->gen >= 7);
500
501 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
502 BRW_ARF_TIMESTAMP,
503 0),
504 BRW_REGISTER_TYPE_UD));
505
506 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
507
508 /* We want to read the 3 fields we care about even if it's not enabled in
509 * the dispatch.
510 */
511 bld.group(4, 0).exec_all().MOV(dst, ts);
512
513 return dst;
514 }
515
516 void
517 fs_visitor::emit_shader_time_begin()
518 {
519 /* We want only the low 32 bits of the timestamp. Since it's running
520 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
521 * which is plenty of time for our purposes. It is identical across the
522 * EUs, but since it's tracking GPU core speed it will increment at a
523 * varying rate as render P-states change.
524 */
525 shader_start_time = component(
526 get_timestamp(bld.annotate("shader time start")), 0);
527 }
528
529 void
530 fs_visitor::emit_shader_time_end()
531 {
532 /* Insert our code just before the final SEND with EOT. */
533 exec_node *end = this->instructions.get_tail();
534 assert(end && ((fs_inst *) end)->eot);
535 const fs_builder ibld = bld.annotate("shader time end")
536 .exec_all().at(NULL, end);
537 const fs_reg timestamp = get_timestamp(ibld);
538
539 /* We only use the low 32 bits of the timestamp - see
540 * emit_shader_time_begin()).
541 *
542 * We could also check if render P-states have changed (or anything
543 * else that might disrupt timing) by setting smear to 2 and checking if
544 * that field is != 0.
545 */
546 const fs_reg shader_end_time = component(timestamp, 0);
547
548 /* Check that there weren't any timestamp reset events (assuming these
549 * were the only two timestamp reads that happened).
550 */
551 const fs_reg reset = component(timestamp, 2);
552 set_condmod(BRW_CONDITIONAL_Z,
553 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
554 ibld.IF(BRW_PREDICATE_NORMAL);
555
556 fs_reg start = shader_start_time;
557 start.negate = true;
558 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
559 BRW_REGISTER_TYPE_UD),
560 0);
561 const fs_builder cbld = ibld.group(1, 0);
562 cbld.group(1, 0).ADD(diff, start, shader_end_time);
563
564 /* If there were no instructions between the two timestamp gets, the diff
565 * is 2 cycles. Remove that overhead, so I can forget about that when
566 * trying to determine the time taken for single instructions.
567 */
568 cbld.ADD(diff, diff, brw_imm_ud(-2u));
569 SHADER_TIME_ADD(cbld, 0, diff);
570 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
571 ibld.emit(BRW_OPCODE_ELSE);
572 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
573 ibld.emit(BRW_OPCODE_ENDIF);
574 }
575
576 void
577 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
578 int shader_time_subindex,
579 fs_reg value)
580 {
581 int index = shader_time_index * 3 + shader_time_subindex;
582 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
583
584 fs_reg payload;
585 if (dispatch_width == 8)
586 payload = vgrf(glsl_type::uvec2_type);
587 else
588 payload = vgrf(glsl_type::uint_type);
589
590 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
591 }
592
593 void
594 fs_visitor::vfail(const char *format, va_list va)
595 {
596 char *msg;
597
598 if (failed)
599 return;
600
601 failed = true;
602
603 msg = ralloc_vasprintf(mem_ctx, format, va);
604 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
605
606 this->fail_msg = msg;
607
608 if (debug_enabled) {
609 fprintf(stderr, "%s", msg);
610 }
611 }
612
613 void
614 fs_visitor::fail(const char *format, ...)
615 {
616 va_list va;
617
618 va_start(va, format);
619 vfail(format, va);
620 va_end(va);
621 }
622
623 /**
624 * Mark this program as impossible to compile with dispatch width greater
625 * than n.
626 *
627 * During the SIMD8 compile (which happens first), we can detect and flag
628 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
629 * SIMD16+ compile altogether.
630 *
631 * During a compile of dispatch width greater than n (if one happens anyway),
632 * this just calls fail().
633 */
634 void
635 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
636 {
637 if (dispatch_width > n) {
638 fail("%s", msg);
639 } else {
640 max_dispatch_width = n;
641 compiler->shader_perf_log(log_data,
642 "Shader dispatch width limited to SIMD%d: %s",
643 n, msg);
644 }
645 }
646
647 /**
648 * Returns true if the instruction has a flag that means it won't
649 * update an entire destination register.
650 *
651 * For example, dead code elimination and live variable analysis want to know
652 * when a write to a variable screens off any preceding values that were in
653 * it.
654 */
655 bool
656 fs_inst::is_partial_write() const
657 {
658 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
659 (this->exec_size * type_sz(this->dst.type)) < 32 ||
660 !this->dst.is_contiguous() ||
661 this->dst.offset % REG_SIZE != 0);
662 }
663
664 unsigned
665 fs_inst::components_read(unsigned i) const
666 {
667 /* Return zero if the source is not present. */
668 if (src[i].file == BAD_FILE)
669 return 0;
670
671 switch (opcode) {
672 case FS_OPCODE_LINTERP:
673 if (i == 0)
674 return 2;
675 else
676 return 1;
677
678 case FS_OPCODE_PIXEL_X:
679 case FS_OPCODE_PIXEL_Y:
680 assert(i == 0);
681 return 2;
682
683 case FS_OPCODE_FB_WRITE_LOGICAL:
684 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
685 /* First/second FB write color. */
686 if (i < 2)
687 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
688 else
689 return 1;
690
691 case SHADER_OPCODE_TEX_LOGICAL:
692 case SHADER_OPCODE_TXD_LOGICAL:
693 case SHADER_OPCODE_TXF_LOGICAL:
694 case SHADER_OPCODE_TXL_LOGICAL:
695 case SHADER_OPCODE_TXS_LOGICAL:
696 case FS_OPCODE_TXB_LOGICAL:
697 case SHADER_OPCODE_TXF_CMS_LOGICAL:
698 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
699 case SHADER_OPCODE_TXF_UMS_LOGICAL:
700 case SHADER_OPCODE_TXF_MCS_LOGICAL:
701 case SHADER_OPCODE_LOD_LOGICAL:
702 case SHADER_OPCODE_TG4_LOGICAL:
703 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
704 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
705 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
706 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
707 /* Texture coordinates. */
708 if (i == TEX_LOGICAL_SRC_COORDINATE)
709 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
710 /* Texture derivatives. */
711 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
712 opcode == SHADER_OPCODE_TXD_LOGICAL)
713 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
714 /* Texture offset. */
715 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
716 return 2;
717 /* MCS */
718 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
719 return 2;
720 else
721 return 1;
722
723 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
724 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
725 assert(src[3].file == IMM);
726 /* Surface coordinates. */
727 if (i == 0)
728 return src[3].ud;
729 /* Surface operation source (ignored for reads). */
730 else if (i == 1)
731 return 0;
732 else
733 return 1;
734
735 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
736 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
737 assert(src[3].file == IMM &&
738 src[4].file == IMM);
739 /* Surface coordinates. */
740 if (i == 0)
741 return src[3].ud;
742 /* Surface operation source. */
743 else if (i == 1)
744 return src[4].ud;
745 else
746 return 1;
747
748 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
749 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
750 assert(src[3].file == IMM &&
751 src[4].file == IMM);
752 const unsigned op = src[4].ud;
753 /* Surface coordinates. */
754 if (i == 0)
755 return src[3].ud;
756 /* Surface operation source. */
757 else if (i == 1 && op == BRW_AOP_CMPWR)
758 return 2;
759 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
760 op == BRW_AOP_PREDEC))
761 return 0;
762 else
763 return 1;
764 }
765
766 default:
767 return 1;
768 }
769 }
770
771 unsigned
772 fs_inst::size_read(int arg) const
773 {
774 switch (opcode) {
775 case FS_OPCODE_FB_WRITE:
776 case FS_OPCODE_FB_READ:
777 case SHADER_OPCODE_URB_WRITE_SIMD8:
778 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
779 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
780 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
781 case SHADER_OPCODE_URB_READ_SIMD8:
782 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
783 case SHADER_OPCODE_UNTYPED_ATOMIC:
784 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
785 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
786 case SHADER_OPCODE_TYPED_ATOMIC:
787 case SHADER_OPCODE_TYPED_SURFACE_READ:
788 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
789 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
790 if (arg == 0)
791 return mlen * REG_SIZE;
792 break;
793
794 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
795 /* The payload is actually stored in src1 */
796 if (arg == 1)
797 return mlen * REG_SIZE;
798 break;
799
800 case FS_OPCODE_LINTERP:
801 if (arg == 1)
802 return 16;
803 break;
804
805 case SHADER_OPCODE_LOAD_PAYLOAD:
806 if (arg < this->header_size)
807 return REG_SIZE;
808 break;
809
810 case CS_OPCODE_CS_TERMINATE:
811 case SHADER_OPCODE_BARRIER:
812 return REG_SIZE;
813
814 case SHADER_OPCODE_MOV_INDIRECT:
815 if (arg == 0) {
816 assert(src[2].file == IMM);
817 return src[2].ud;
818 }
819 break;
820
821 default:
822 if (is_tex() && arg == 0 && src[0].file == VGRF)
823 return mlen * REG_SIZE;
824 break;
825 }
826
827 switch (src[arg].file) {
828 case UNIFORM:
829 case IMM:
830 return components_read(arg) * type_sz(src[arg].type);
831 case BAD_FILE:
832 case ARF:
833 case FIXED_GRF:
834 case VGRF:
835 case ATTR:
836 return components_read(arg) * src[arg].component_size(exec_size);
837 case MRF:
838 unreachable("MRF registers are not allowed as sources");
839 }
840 return 0;
841 }
842
843 namespace {
844 /* Return the subset of flag registers that an instruction could
845 * potentially read or write based on the execution controls and flag
846 * subregister number of the instruction.
847 */
848 unsigned
849 flag_mask(const fs_inst *inst)
850 {
851 const unsigned start = inst->flag_subreg * 16 + inst->group;
852 const unsigned end = start + inst->exec_size;
853 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
854 }
855
856 unsigned
857 bit_mask(unsigned n)
858 {
859 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
860 }
861
862 unsigned
863 flag_mask(const fs_reg &r, unsigned sz)
864 {
865 if (r.file == ARF) {
866 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
867 const unsigned end = start + sz;
868 return bit_mask(end) & ~bit_mask(start);
869 } else {
870 return 0;
871 }
872 }
873 }
874
875 unsigned
876 fs_inst::flags_read(const gen_device_info *devinfo) const
877 {
878 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
879 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
880 /* The vertical predication modes combine corresponding bits from
881 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
882 */
883 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
884 return flag_mask(this) << shift | flag_mask(this);
885 } else if (predicate) {
886 return flag_mask(this);
887 } else {
888 unsigned mask = 0;
889 for (int i = 0; i < sources; i++) {
890 mask |= flag_mask(src[i], size_read(i));
891 }
892 return mask;
893 }
894 }
895
896 unsigned
897 fs_inst::flags_written() const
898 {
899 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
900 opcode != BRW_OPCODE_IF &&
901 opcode != BRW_OPCODE_WHILE)) ||
902 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
903 return flag_mask(this);
904 } else {
905 return flag_mask(dst, size_written);
906 }
907 }
908
909 /**
910 * Returns how many MRFs an FS opcode will write over.
911 *
912 * Note that this is not the 0 or 1 implied writes in an actual gen
913 * instruction -- the FS opcodes often generate MOVs in addition.
914 */
915 int
916 fs_visitor::implied_mrf_writes(fs_inst *inst)
917 {
918 if (inst->mlen == 0)
919 return 0;
920
921 if (inst->base_mrf == -1)
922 return 0;
923
924 switch (inst->opcode) {
925 case SHADER_OPCODE_RCP:
926 case SHADER_OPCODE_RSQ:
927 case SHADER_OPCODE_SQRT:
928 case SHADER_OPCODE_EXP2:
929 case SHADER_OPCODE_LOG2:
930 case SHADER_OPCODE_SIN:
931 case SHADER_OPCODE_COS:
932 return 1 * dispatch_width / 8;
933 case SHADER_OPCODE_POW:
934 case SHADER_OPCODE_INT_QUOTIENT:
935 case SHADER_OPCODE_INT_REMAINDER:
936 return 2 * dispatch_width / 8;
937 case SHADER_OPCODE_TEX:
938 case FS_OPCODE_TXB:
939 case SHADER_OPCODE_TXD:
940 case SHADER_OPCODE_TXF:
941 case SHADER_OPCODE_TXF_CMS:
942 case SHADER_OPCODE_TXF_MCS:
943 case SHADER_OPCODE_TG4:
944 case SHADER_OPCODE_TG4_OFFSET:
945 case SHADER_OPCODE_TXL:
946 case SHADER_OPCODE_TXS:
947 case SHADER_OPCODE_LOD:
948 case SHADER_OPCODE_SAMPLEINFO:
949 return 1;
950 case FS_OPCODE_FB_WRITE:
951 return 2;
952 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
953 case SHADER_OPCODE_GEN4_SCRATCH_READ:
954 return 1;
955 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
956 return inst->mlen;
957 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
958 return inst->mlen;
959 default:
960 unreachable("not reached");
961 }
962 }
963
964 fs_reg
965 fs_visitor::vgrf(const glsl_type *const type)
966 {
967 int reg_width = dispatch_width / 8;
968 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
969 brw_type_for_base_type(type));
970 }
971
972 fs_reg::fs_reg(enum brw_reg_file file, int nr)
973 {
974 init();
975 this->file = file;
976 this->nr = nr;
977 this->type = BRW_REGISTER_TYPE_F;
978 this->stride = (file == UNIFORM ? 0 : 1);
979 }
980
981 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
982 {
983 init();
984 this->file = file;
985 this->nr = nr;
986 this->type = type;
987 this->stride = (file == UNIFORM ? 0 : 1);
988 }
989
990 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
991 * This brings in those uniform definitions
992 */
993 void
994 fs_visitor::import_uniforms(fs_visitor *v)
995 {
996 this->push_constant_loc = v->push_constant_loc;
997 this->pull_constant_loc = v->pull_constant_loc;
998 this->uniforms = v->uniforms;
999 }
1000
1001 void
1002 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1003 {
1004 assert(stage == MESA_SHADER_FRAGMENT);
1005
1006 /* gl_FragCoord.x */
1007 bld.MOV(wpos, this->pixel_x);
1008 wpos = offset(wpos, bld, 1);
1009
1010 /* gl_FragCoord.y */
1011 bld.MOV(wpos, this->pixel_y);
1012 wpos = offset(wpos, bld, 1);
1013
1014 /* gl_FragCoord.z */
1015 if (devinfo->gen >= 6) {
1016 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1017 } else {
1018 bld.emit(FS_OPCODE_LINTERP, wpos,
1019 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1020 interp_reg(VARYING_SLOT_POS, 2));
1021 }
1022 wpos = offset(wpos, bld, 1);
1023
1024 /* gl_FragCoord.w: Already set up in emit_interpolation */
1025 bld.MOV(wpos, this->wpos_w);
1026 }
1027
1028 enum brw_barycentric_mode
1029 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1030 {
1031 /* Barycentric modes don't make sense for flat inputs. */
1032 assert(mode != INTERP_MODE_FLAT);
1033
1034 unsigned bary;
1035 switch (op) {
1036 case nir_intrinsic_load_barycentric_pixel:
1037 case nir_intrinsic_load_barycentric_at_offset:
1038 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1039 break;
1040 case nir_intrinsic_load_barycentric_centroid:
1041 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1042 break;
1043 case nir_intrinsic_load_barycentric_sample:
1044 case nir_intrinsic_load_barycentric_at_sample:
1045 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1046 break;
1047 default:
1048 unreachable("invalid intrinsic");
1049 }
1050
1051 if (mode == INTERP_MODE_NOPERSPECTIVE)
1052 bary += 3;
1053
1054 return (enum brw_barycentric_mode) bary;
1055 }
1056
1057 /**
1058 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1059 */
1060 static enum brw_barycentric_mode
1061 centroid_to_pixel(enum brw_barycentric_mode bary)
1062 {
1063 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1064 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1065 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1066 }
1067
1068 fs_reg *
1069 fs_visitor::emit_frontfacing_interpolation()
1070 {
1071 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1072
1073 if (devinfo->gen >= 6) {
1074 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1075 * a boolean result from this (~0/true or 0/false).
1076 *
1077 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1078 * this task in only one instruction:
1079 * - a negation source modifier will flip the bit; and
1080 * - a W -> D type conversion will sign extend the bit into the high
1081 * word of the destination.
1082 *
1083 * An ASR 15 fills the low word of the destination.
1084 */
1085 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1086 g0.negate = true;
1087
1088 bld.ASR(*reg, g0, brw_imm_d(15));
1089 } else {
1090 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1091 * a boolean result from this (1/true or 0/false).
1092 *
1093 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1094 * the negation source modifier to flip it. Unfortunately the SHR
1095 * instruction only operates on UD (or D with an abs source modifier)
1096 * sources without negation.
1097 *
1098 * Instead, use ASR (which will give ~0/true or 0/false).
1099 */
1100 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1101 g1_6.negate = true;
1102
1103 bld.ASR(*reg, g1_6, brw_imm_d(31));
1104 }
1105
1106 return reg;
1107 }
1108
1109 void
1110 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1111 {
1112 assert(stage == MESA_SHADER_FRAGMENT);
1113 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1114 assert(dst.type == BRW_REGISTER_TYPE_F);
1115
1116 if (wm_prog_data->persample_dispatch) {
1117 /* Convert int_sample_pos to floating point */
1118 bld.MOV(dst, int_sample_pos);
1119 /* Scale to the range [0, 1] */
1120 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1121 }
1122 else {
1123 /* From ARB_sample_shading specification:
1124 * "When rendering to a non-multisample buffer, or if multisample
1125 * rasterization is disabled, gl_SamplePosition will always be
1126 * (0.5, 0.5).
1127 */
1128 bld.MOV(dst, brw_imm_f(0.5f));
1129 }
1130 }
1131
1132 fs_reg *
1133 fs_visitor::emit_samplepos_setup()
1134 {
1135 assert(devinfo->gen >= 6);
1136
1137 const fs_builder abld = bld.annotate("compute sample position");
1138 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1139 fs_reg pos = *reg;
1140 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1141 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1142
1143 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1144 * mode will be enabled.
1145 *
1146 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1147 * R31.1:0 Position Offset X/Y for Slot[3:0]
1148 * R31.3:2 Position Offset X/Y for Slot[7:4]
1149 * .....
1150 *
1151 * The X, Y sample positions come in as bytes in thread payload. So, read
1152 * the positions using vstride=16, width=8, hstride=2.
1153 */
1154 struct brw_reg sample_pos_reg =
1155 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1156 BRW_REGISTER_TYPE_B), 16, 8, 2);
1157
1158 if (dispatch_width == 8) {
1159 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1160 } else {
1161 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1162 abld.half(1).MOV(half(int_sample_x, 1),
1163 fs_reg(suboffset(sample_pos_reg, 16)));
1164 }
1165 /* Compute gl_SamplePosition.x */
1166 compute_sample_position(pos, int_sample_x);
1167 pos = offset(pos, abld, 1);
1168 if (dispatch_width == 8) {
1169 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1170 } else {
1171 abld.half(0).MOV(half(int_sample_y, 0),
1172 fs_reg(suboffset(sample_pos_reg, 1)));
1173 abld.half(1).MOV(half(int_sample_y, 1),
1174 fs_reg(suboffset(sample_pos_reg, 17)));
1175 }
1176 /* Compute gl_SamplePosition.y */
1177 compute_sample_position(pos, int_sample_y);
1178 return reg;
1179 }
1180
1181 fs_reg *
1182 fs_visitor::emit_sampleid_setup()
1183 {
1184 assert(stage == MESA_SHADER_FRAGMENT);
1185 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1186 assert(devinfo->gen >= 6);
1187
1188 const fs_builder abld = bld.annotate("compute sample id");
1189 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1190
1191 if (!key->multisample_fbo) {
1192 /* As per GL_ARB_sample_shading specification:
1193 * "When rendering to a non-multisample buffer, or if multisample
1194 * rasterization is disabled, gl_SampleID will always be zero."
1195 */
1196 abld.MOV(*reg, brw_imm_d(0));
1197 } else if (devinfo->gen >= 8) {
1198 /* Sample ID comes in as 4-bit numbers in g1.0:
1199 *
1200 * 15:12 Slot 3 SampleID (only used in SIMD16)
1201 * 11:8 Slot 2 SampleID (only used in SIMD16)
1202 * 7:4 Slot 1 SampleID
1203 * 3:0 Slot 0 SampleID
1204 *
1205 * Each slot corresponds to four channels, so we want to replicate each
1206 * half-byte value to 4 channels in a row:
1207 *
1208 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1209 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1210 *
1211 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1212 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1213 *
1214 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1215 * channels to read the first byte (7:0), and the second group of 8
1216 * channels to read the second byte (15:8). Then, we shift right by
1217 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1218 * values into place. Finally, we AND with 0xf to keep the low nibble.
1219 *
1220 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1221 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1222 *
1223 * TODO: These payload bits exist on Gen7 too, but they appear to always
1224 * be zero, so this code fails to work. We should find out why.
1225 */
1226 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1227
1228 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1229 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1230 brw_imm_v(0x44440000));
1231 abld.AND(*reg, tmp, brw_imm_w(0xf));
1232 } else {
1233 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1234 BRW_REGISTER_TYPE_D), 0);
1235 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1236
1237 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1238 * 8x multisampling, subspan 0 will represent sample N (where N
1239 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1240 * 7. We can find the value of N by looking at R0.0 bits 7:6
1241 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1242 * (since samples are always delivered in pairs). That is, we
1243 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1244 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1245 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1246 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1247 * populating a temporary variable with the sequence (0, 1, 2, 3),
1248 * and then reading from it using vstride=1, width=4, hstride=0.
1249 * These computations hold good for 4x multisampling as well.
1250 *
1251 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1252 * the first four slots are sample 0 of subspan 0; the next four
1253 * are sample 1 of subspan 0; the third group is sample 0 of
1254 * subspan 1, and finally sample 1 of subspan 1.
1255 */
1256
1257 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1258 * accomodate 16x MSAA.
1259 */
1260 abld.exec_all().group(1, 0)
1261 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1262 brw_imm_ud(0xc0));
1263 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1264
1265 /* This works for both SIMD8 and SIMD16 */
1266 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1267
1268 /* This special instruction takes care of setting vstride=1,
1269 * width=4, hstride=0 of t2 during an ADD instruction.
1270 */
1271 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1272 }
1273
1274 return reg;
1275 }
1276
1277 fs_reg *
1278 fs_visitor::emit_samplemaskin_setup()
1279 {
1280 assert(stage == MESA_SHADER_FRAGMENT);
1281 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1282 assert(devinfo->gen >= 6);
1283
1284 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1285
1286 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1287 BRW_REGISTER_TYPE_D));
1288
1289 if (wm_prog_data->persample_dispatch) {
1290 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1291 * and a mask representing which sample is being processed by the
1292 * current shader invocation.
1293 *
1294 * From the OES_sample_variables specification:
1295 * "When per-sample shading is active due to the use of a fragment input
1296 * qualified by "sample" or due to the use of the gl_SampleID or
1297 * gl_SamplePosition variables, only the bit for the current sample is
1298 * set in gl_SampleMaskIn."
1299 */
1300 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1301
1302 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1303 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1304
1305 fs_reg one = vgrf(glsl_type::int_type);
1306 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1307 abld.MOV(one, brw_imm_d(1));
1308 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1309 abld.AND(*reg, enabled_mask, coverage_mask);
1310 } else {
1311 /* In per-pixel mode, the coverage mask is sufficient. */
1312 *reg = coverage_mask;
1313 }
1314 return reg;
1315 }
1316
1317 fs_reg
1318 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1319 {
1320 if (!src.abs && !src.negate)
1321 return src;
1322
1323 fs_reg temp = bld.vgrf(src.type);
1324 bld.MOV(temp, src);
1325
1326 return temp;
1327 }
1328
1329 void
1330 fs_visitor::emit_discard_jump()
1331 {
1332 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1333
1334 /* For performance, after a discard, jump to the end of the
1335 * shader if all relevant channels have been discarded.
1336 */
1337 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1338 discard_jump->flag_subreg = 1;
1339
1340 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1341 discard_jump->predicate_inverse = true;
1342 }
1343
1344 void
1345 fs_visitor::emit_gs_thread_end()
1346 {
1347 assert(stage == MESA_SHADER_GEOMETRY);
1348
1349 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1350
1351 if (gs_compile->control_data_header_size_bits > 0) {
1352 emit_gs_control_data_bits(this->final_gs_vertex_count);
1353 }
1354
1355 const fs_builder abld = bld.annotate("thread end");
1356 fs_inst *inst;
1357
1358 if (gs_prog_data->static_vertex_count != -1) {
1359 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1360 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1361 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1362 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1363 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1364 prev->eot = true;
1365
1366 /* Delete now dead instructions. */
1367 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1368 if (dead == prev)
1369 break;
1370 dead->remove();
1371 }
1372 return;
1373 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1374 break;
1375 }
1376 }
1377 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1378 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1379 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1380 inst->mlen = 1;
1381 } else {
1382 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1383 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1384 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1385 sources[1] = this->final_gs_vertex_count;
1386 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1387 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1388 inst->mlen = 2;
1389 }
1390 inst->eot = true;
1391 inst->offset = 0;
1392 }
1393
1394 void
1395 fs_visitor::assign_curb_setup()
1396 {
1397 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1398
1399 unsigned ubo_push_length = 0;
1400 unsigned ubo_push_start[4];
1401 for (int i = 0; i < 4; i++) {
1402 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1403 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1404 }
1405
1406 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1407
1408 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1409 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1410 for (unsigned int i = 0; i < inst->sources; i++) {
1411 if (inst->src[i].file == UNIFORM) {
1412 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1413 int constant_nr;
1414 if (inst->src[i].nr >= UBO_START) {
1415 /* constant_nr is in 32-bit units, the rest are in bytes */
1416 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1417 inst->src[i].offset / 4;
1418 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1419 constant_nr = push_constant_loc[uniform_nr];
1420 } else {
1421 /* Section 5.11 of the OpenGL 4.1 spec says:
1422 * "Out-of-bounds reads return undefined values, which include
1423 * values from other variables of the active program or zero."
1424 * Just return the first push constant.
1425 */
1426 constant_nr = 0;
1427 }
1428
1429 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1430 constant_nr / 8,
1431 constant_nr % 8);
1432 brw_reg.abs = inst->src[i].abs;
1433 brw_reg.negate = inst->src[i].negate;
1434
1435 assert(inst->src[i].stride == 0);
1436 inst->src[i] = byte_offset(
1437 retype(brw_reg, inst->src[i].type),
1438 inst->src[i].offset % 4);
1439 }
1440 }
1441 }
1442
1443 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1444 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1445 }
1446
1447 void
1448 fs_visitor::calculate_urb_setup()
1449 {
1450 assert(stage == MESA_SHADER_FRAGMENT);
1451 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1452 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1453
1454 memset(prog_data->urb_setup, -1,
1455 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1456
1457 int urb_next = 0;
1458 /* Figure out where each of the incoming setup attributes lands. */
1459 if (devinfo->gen >= 6) {
1460 if (_mesa_bitcount_64(nir->info.inputs_read &
1461 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1462 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1463 * first 16 varying inputs, so we can put them wherever we want.
1464 * Just put them in order.
1465 *
1466 * This is useful because it means that (a) inputs not used by the
1467 * fragment shader won't take up valuable register space, and (b) we
1468 * won't have to recompile the fragment shader if it gets paired with
1469 * a different vertex (or geometry) shader.
1470 */
1471 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1472 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1473 BITFIELD64_BIT(i)) {
1474 prog_data->urb_setup[i] = urb_next++;
1475 }
1476 }
1477 } else {
1478 /* We have enough input varyings that the SF/SBE pipeline stage can't
1479 * arbitrarily rearrange them to suit our whim; we have to put them
1480 * in an order that matches the output of the previous pipeline stage
1481 * (geometry or vertex shader).
1482 */
1483 struct brw_vue_map prev_stage_vue_map;
1484 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1485 key->input_slots_valid,
1486 nir->info.separate_shader);
1487
1488 int first_slot =
1489 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1490 &prev_stage_vue_map);
1491
1492 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1493 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1494 slot++) {
1495 int varying = prev_stage_vue_map.slot_to_varying[slot];
1496 if (varying != BRW_VARYING_SLOT_PAD &&
1497 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1498 BITFIELD64_BIT(varying))) {
1499 prog_data->urb_setup[varying] = slot - first_slot;
1500 }
1501 }
1502 urb_next = prev_stage_vue_map.num_slots - first_slot;
1503 }
1504 } else {
1505 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1506 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1507 /* Point size is packed into the header, not as a general attribute */
1508 if (i == VARYING_SLOT_PSIZ)
1509 continue;
1510
1511 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1512 /* The back color slot is skipped when the front color is
1513 * also written to. In addition, some slots can be
1514 * written in the vertex shader and not read in the
1515 * fragment shader. So the register number must always be
1516 * incremented, mapped or not.
1517 */
1518 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1519 prog_data->urb_setup[i] = urb_next;
1520 urb_next++;
1521 }
1522 }
1523
1524 /*
1525 * It's a FS only attribute, and we did interpolation for this attribute
1526 * in SF thread. So, count it here, too.
1527 *
1528 * See compile_sf_prog() for more info.
1529 */
1530 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1531 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1532 }
1533
1534 prog_data->num_varying_inputs = urb_next;
1535 }
1536
1537 void
1538 fs_visitor::assign_urb_setup()
1539 {
1540 assert(stage == MESA_SHADER_FRAGMENT);
1541 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1542
1543 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1544
1545 /* Offset all the urb_setup[] index by the actual position of the
1546 * setup regs, now that the location of the constants has been chosen.
1547 */
1548 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1549 if (inst->opcode == FS_OPCODE_LINTERP) {
1550 assert(inst->src[1].file == FIXED_GRF);
1551 inst->src[1].nr += urb_start;
1552 }
1553
1554 if (inst->opcode == FS_OPCODE_CINTERP) {
1555 assert(inst->src[0].file == FIXED_GRF);
1556 inst->src[0].nr += urb_start;
1557 }
1558 }
1559
1560 /* Each attribute is 4 setup channels, each of which is half a reg. */
1561 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1562 }
1563
1564 void
1565 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1566 {
1567 for (int i = 0; i < inst->sources; i++) {
1568 if (inst->src[i].file == ATTR) {
1569 int grf = payload.num_regs +
1570 prog_data->curb_read_length +
1571 inst->src[i].nr +
1572 inst->src[i].offset / REG_SIZE;
1573
1574 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1575 *
1576 * VertStride must be used to cross GRF register boundaries. This
1577 * rule implies that elements within a 'Width' cannot cross GRF
1578 * boundaries.
1579 *
1580 * So, for registers that are large enough, we have to split the exec
1581 * size in two and trust the compression state to sort it out.
1582 */
1583 unsigned total_size = inst->exec_size *
1584 inst->src[i].stride *
1585 type_sz(inst->src[i].type);
1586
1587 assert(total_size <= 2 * REG_SIZE);
1588 const unsigned exec_size =
1589 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1590
1591 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1592 struct brw_reg reg =
1593 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1594 inst->src[i].offset % REG_SIZE),
1595 exec_size * inst->src[i].stride,
1596 width, inst->src[i].stride);
1597 reg.abs = inst->src[i].abs;
1598 reg.negate = inst->src[i].negate;
1599
1600 inst->src[i] = reg;
1601 }
1602 }
1603 }
1604
1605 void
1606 fs_visitor::assign_vs_urb_setup()
1607 {
1608 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1609
1610 assert(stage == MESA_SHADER_VERTEX);
1611
1612 /* Each attribute is 4 regs. */
1613 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1614
1615 assert(vs_prog_data->base.urb_read_length <= 15);
1616
1617 /* Rewrite all ATTR file references to the hw grf that they land in. */
1618 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1619 convert_attr_sources_to_hw_regs(inst);
1620 }
1621 }
1622
1623 void
1624 fs_visitor::assign_tcs_single_patch_urb_setup()
1625 {
1626 assert(stage == MESA_SHADER_TESS_CTRL);
1627
1628 /* Rewrite all ATTR file references to HW_REGs. */
1629 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1630 convert_attr_sources_to_hw_regs(inst);
1631 }
1632 }
1633
1634 void
1635 fs_visitor::assign_tes_urb_setup()
1636 {
1637 assert(stage == MESA_SHADER_TESS_EVAL);
1638
1639 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1640
1641 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1642
1643 /* Rewrite all ATTR file references to HW_REGs. */
1644 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1645 convert_attr_sources_to_hw_regs(inst);
1646 }
1647 }
1648
1649 void
1650 fs_visitor::assign_gs_urb_setup()
1651 {
1652 assert(stage == MESA_SHADER_GEOMETRY);
1653
1654 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1655
1656 first_non_payload_grf +=
1657 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1658
1659 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1660 /* Rewrite all ATTR file references to GRFs. */
1661 convert_attr_sources_to_hw_regs(inst);
1662 }
1663 }
1664
1665
1666 /**
1667 * Split large virtual GRFs into separate components if we can.
1668 *
1669 * This is mostly duplicated with what brw_fs_vector_splitting does,
1670 * but that's really conservative because it's afraid of doing
1671 * splitting that doesn't result in real progress after the rest of
1672 * the optimization phases, which would cause infinite looping in
1673 * optimization. We can do it once here, safely. This also has the
1674 * opportunity to split interpolated values, or maybe even uniforms,
1675 * which we don't have at the IR level.
1676 *
1677 * We want to split, because virtual GRFs are what we register
1678 * allocate and spill (due to contiguousness requirements for some
1679 * instructions), and they're what we naturally generate in the
1680 * codegen process, but most virtual GRFs don't actually need to be
1681 * contiguous sets of GRFs. If we split, we'll end up with reduced
1682 * live intervals and better dead code elimination and coalescing.
1683 */
1684 void
1685 fs_visitor::split_virtual_grfs()
1686 {
1687 /* Compact the register file so we eliminate dead vgrfs. This
1688 * only defines split points for live registers, so if we have
1689 * too large dead registers they will hit assertions later.
1690 */
1691 compact_virtual_grfs();
1692
1693 int num_vars = this->alloc.count;
1694
1695 /* Count the total number of registers */
1696 int reg_count = 0;
1697 int vgrf_to_reg[num_vars];
1698 for (int i = 0; i < num_vars; i++) {
1699 vgrf_to_reg[i] = reg_count;
1700 reg_count += alloc.sizes[i];
1701 }
1702
1703 /* An array of "split points". For each register slot, this indicates
1704 * if this slot can be separated from the previous slot. Every time an
1705 * instruction uses multiple elements of a register (as a source or
1706 * destination), we mark the used slots as inseparable. Then we go
1707 * through and split the registers into the smallest pieces we can.
1708 */
1709 bool split_points[reg_count];
1710 memset(split_points, 0, sizeof(split_points));
1711
1712 /* Mark all used registers as fully splittable */
1713 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1714 if (inst->dst.file == VGRF) {
1715 int reg = vgrf_to_reg[inst->dst.nr];
1716 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1717 split_points[reg + j] = true;
1718 }
1719
1720 for (int i = 0; i < inst->sources; i++) {
1721 if (inst->src[i].file == VGRF) {
1722 int reg = vgrf_to_reg[inst->src[i].nr];
1723 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1724 split_points[reg + j] = true;
1725 }
1726 }
1727 }
1728
1729 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1730 if (inst->dst.file == VGRF) {
1731 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1732 for (unsigned j = 1; j < regs_written(inst); j++)
1733 split_points[reg + j] = false;
1734 }
1735 for (int i = 0; i < inst->sources; i++) {
1736 if (inst->src[i].file == VGRF) {
1737 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1738 for (unsigned j = 1; j < regs_read(inst, i); j++)
1739 split_points[reg + j] = false;
1740 }
1741 }
1742 }
1743
1744 int new_virtual_grf[reg_count];
1745 int new_reg_offset[reg_count];
1746
1747 int reg = 0;
1748 for (int i = 0; i < num_vars; i++) {
1749 /* The first one should always be 0 as a quick sanity check. */
1750 assert(split_points[reg] == false);
1751
1752 /* j = 0 case */
1753 new_reg_offset[reg] = 0;
1754 reg++;
1755 int offset = 1;
1756
1757 /* j > 0 case */
1758 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1759 /* If this is a split point, reset the offset to 0 and allocate a
1760 * new virtual GRF for the previous offset many registers
1761 */
1762 if (split_points[reg]) {
1763 assert(offset <= MAX_VGRF_SIZE);
1764 int grf = alloc.allocate(offset);
1765 for (int k = reg - offset; k < reg; k++)
1766 new_virtual_grf[k] = grf;
1767 offset = 0;
1768 }
1769 new_reg_offset[reg] = offset;
1770 offset++;
1771 reg++;
1772 }
1773
1774 /* The last one gets the original register number */
1775 assert(offset <= MAX_VGRF_SIZE);
1776 alloc.sizes[i] = offset;
1777 for (int k = reg - offset; k < reg; k++)
1778 new_virtual_grf[k] = i;
1779 }
1780 assert(reg == reg_count);
1781
1782 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1783 if (inst->dst.file == VGRF) {
1784 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1785 inst->dst.nr = new_virtual_grf[reg];
1786 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1787 inst->dst.offset % REG_SIZE;
1788 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1789 }
1790 for (int i = 0; i < inst->sources; i++) {
1791 if (inst->src[i].file == VGRF) {
1792 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1793 inst->src[i].nr = new_virtual_grf[reg];
1794 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1795 inst->src[i].offset % REG_SIZE;
1796 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1797 }
1798 }
1799 }
1800 invalidate_live_intervals();
1801 }
1802
1803 /**
1804 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1805 *
1806 * During code generation, we create tons of temporary variables, many of
1807 * which get immediately killed and are never used again. Yet, in later
1808 * optimization and analysis passes, such as compute_live_intervals, we need
1809 * to loop over all the virtual GRFs. Compacting them can save a lot of
1810 * overhead.
1811 */
1812 bool
1813 fs_visitor::compact_virtual_grfs()
1814 {
1815 bool progress = false;
1816 int remap_table[this->alloc.count];
1817 memset(remap_table, -1, sizeof(remap_table));
1818
1819 /* Mark which virtual GRFs are used. */
1820 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1821 if (inst->dst.file == VGRF)
1822 remap_table[inst->dst.nr] = 0;
1823
1824 for (int i = 0; i < inst->sources; i++) {
1825 if (inst->src[i].file == VGRF)
1826 remap_table[inst->src[i].nr] = 0;
1827 }
1828 }
1829
1830 /* Compact the GRF arrays. */
1831 int new_index = 0;
1832 for (unsigned i = 0; i < this->alloc.count; i++) {
1833 if (remap_table[i] == -1) {
1834 /* We just found an unused register. This means that we are
1835 * actually going to compact something.
1836 */
1837 progress = true;
1838 } else {
1839 remap_table[i] = new_index;
1840 alloc.sizes[new_index] = alloc.sizes[i];
1841 invalidate_live_intervals();
1842 ++new_index;
1843 }
1844 }
1845
1846 this->alloc.count = new_index;
1847
1848 /* Patch all the instructions to use the newly renumbered registers */
1849 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1850 if (inst->dst.file == VGRF)
1851 inst->dst.nr = remap_table[inst->dst.nr];
1852
1853 for (int i = 0; i < inst->sources; i++) {
1854 if (inst->src[i].file == VGRF)
1855 inst->src[i].nr = remap_table[inst->src[i].nr];
1856 }
1857 }
1858
1859 /* Patch all the references to delta_xy, since they're used in register
1860 * allocation. If they're unused, switch them to BAD_FILE so we don't
1861 * think some random VGRF is delta_xy.
1862 */
1863 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1864 if (delta_xy[i].file == VGRF) {
1865 if (remap_table[delta_xy[i].nr] != -1) {
1866 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1867 } else {
1868 delta_xy[i].file = BAD_FILE;
1869 }
1870 }
1871 }
1872
1873 return progress;
1874 }
1875
1876 static void
1877 set_push_pull_constant_loc(unsigned uniform, int *chunk_start,
1878 unsigned *max_chunk_bitsize,
1879 bool contiguous, unsigned bitsize,
1880 const unsigned target_bitsize,
1881 int *push_constant_loc, int *pull_constant_loc,
1882 unsigned *num_push_constants,
1883 unsigned *num_pull_constants,
1884 const unsigned max_push_components,
1885 const unsigned max_chunk_size,
1886 bool allow_pull_constants,
1887 struct brw_stage_prog_data *stage_prog_data)
1888 {
1889 /* This is the first live uniform in the chunk */
1890 if (*chunk_start < 0)
1891 *chunk_start = uniform;
1892
1893 /* Keep track of the maximum bit size access in contiguous uniforms */
1894 *max_chunk_bitsize = MAX2(*max_chunk_bitsize, bitsize);
1895
1896 /* If this element does not need to be contiguous with the next, we
1897 * split at this point and everything between chunk_start and u forms a
1898 * single chunk.
1899 */
1900 if (!contiguous) {
1901 /* If bitsize doesn't match the target one, skip it */
1902 if (*max_chunk_bitsize != target_bitsize) {
1903 /* FIXME: right now we only support 32 and 64-bit accesses */
1904 assert(*max_chunk_bitsize == 4 || *max_chunk_bitsize == 8);
1905 *max_chunk_bitsize = 0;
1906 *chunk_start = -1;
1907 return;
1908 }
1909
1910 unsigned chunk_size = uniform - *chunk_start + 1;
1911
1912 /* Decide whether we should push or pull this parameter. In the
1913 * Vulkan driver, push constants are explicitly exposed via the API
1914 * so we push everything. In GL, we only push small arrays.
1915 */
1916 if (!allow_pull_constants ||
1917 (*num_push_constants + chunk_size <= max_push_components &&
1918 chunk_size <= max_chunk_size)) {
1919 assert(*num_push_constants + chunk_size <= max_push_components);
1920 for (unsigned j = *chunk_start; j <= uniform; j++)
1921 push_constant_loc[j] = (*num_push_constants)++;
1922 } else {
1923 for (unsigned j = *chunk_start; j <= uniform; j++)
1924 pull_constant_loc[j] = (*num_pull_constants)++;
1925 }
1926
1927 *max_chunk_bitsize = 0;
1928 *chunk_start = -1;
1929 }
1930 }
1931
1932 static int
1933 get_thread_local_id_param_index(const brw_stage_prog_data *prog_data)
1934 {
1935 if (prog_data->nr_params == 0)
1936 return -1;
1937
1938 /* The local thread id is always the last parameter in the list */
1939 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
1940 if (last_param == BRW_PARAM_BUILTIN_THREAD_LOCAL_ID)
1941 return prog_data->nr_params - 1;
1942
1943 return -1;
1944 }
1945
1946 /**
1947 * Assign UNIFORM file registers to either push constants or pull constants.
1948 *
1949 * We allow a fragment shader to have more than the specified minimum
1950 * maximum number of fragment shader uniform components (64). If
1951 * there are too many of these, they'd fill up all of register space.
1952 * So, this will push some of them out to the pull constant buffer and
1953 * update the program to load them.
1954 */
1955 void
1956 fs_visitor::assign_constant_locations()
1957 {
1958 /* Only the first compile gets to decide on locations. */
1959 if (dispatch_width != min_dispatch_width)
1960 return;
1961
1962 bool is_live[uniforms];
1963 memset(is_live, 0, sizeof(is_live));
1964 unsigned bitsize_access[uniforms];
1965 memset(bitsize_access, 0, sizeof(bitsize_access));
1966
1967 /* For each uniform slot, a value of true indicates that the given slot and
1968 * the next slot must remain contiguous. This is used to keep us from
1969 * splitting arrays apart.
1970 */
1971 bool contiguous[uniforms];
1972 memset(contiguous, 0, sizeof(contiguous));
1973
1974 /* First, we walk through the instructions and do two things:
1975 *
1976 * 1) Figure out which uniforms are live.
1977 *
1978 * 2) Mark any indirectly used ranges of registers as contiguous.
1979 *
1980 * Note that we don't move constant-indexed accesses to arrays. No
1981 * testing has been done of the performance impact of this choice.
1982 */
1983 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1984 for (int i = 0 ; i < inst->sources; i++) {
1985 if (inst->src[i].file != UNIFORM)
1986 continue;
1987
1988 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1989
1990 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1991 assert(inst->src[2].ud % 4 == 0);
1992 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1993 assert(last < uniforms);
1994
1995 for (unsigned j = constant_nr; j < last; j++) {
1996 is_live[j] = true;
1997 contiguous[j] = true;
1998 bitsize_access[j] = MAX2(bitsize_access[j], type_sz(inst->src[i].type));
1999 }
2000 is_live[last] = true;
2001 bitsize_access[last] = MAX2(bitsize_access[last], type_sz(inst->src[i].type));
2002 } else {
2003 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
2004 int regs_read = inst->components_read(i) *
2005 type_sz(inst->src[i].type) / 4;
2006 for (int j = 0; j < regs_read; j++) {
2007 is_live[constant_nr + j] = true;
2008 bitsize_access[constant_nr + j] =
2009 MAX2(bitsize_access[constant_nr + j], type_sz(inst->src[i].type));
2010 }
2011 }
2012 }
2013 }
2014 }
2015
2016 int thread_local_id_index = get_thread_local_id_param_index(stage_prog_data);
2017
2018 /* Only allow 16 registers (128 uniform components) as push constants.
2019 *
2020 * Just demote the end of the list. We could probably do better
2021 * here, demoting things that are rarely used in the program first.
2022 *
2023 * If changing this value, note the limitation about total_regs in
2024 * brw_curbe.c.
2025 */
2026 unsigned int max_push_components = 16 * 8;
2027 if (thread_local_id_index >= 0)
2028 max_push_components--; /* Save a slot for the thread ID */
2029
2030 /* We push small arrays, but no bigger than 16 floats. This is big enough
2031 * for a vec4 but hopefully not large enough to push out other stuff. We
2032 * should probably use a better heuristic at some point.
2033 */
2034 const unsigned int max_chunk_size = 16;
2035
2036 unsigned int num_push_constants = 0;
2037 unsigned int num_pull_constants = 0;
2038
2039 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2040 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2041
2042 /* Default to -1 meaning no location */
2043 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2044 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2045
2046 int chunk_start = -1;
2047 unsigned max_chunk_bitsize = 0;
2048
2049 /* First push 64-bit uniforms to ensure they are properly aligned */
2050 const unsigned uniform_64_bit_size = type_sz(BRW_REGISTER_TYPE_DF);
2051 for (unsigned u = 0; u < uniforms; u++) {
2052 if (!is_live[u])
2053 continue;
2054
2055 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2056 contiguous[u], bitsize_access[u],
2057 uniform_64_bit_size,
2058 push_constant_loc, pull_constant_loc,
2059 &num_push_constants, &num_pull_constants,
2060 max_push_components, max_chunk_size,
2061 compiler->supports_pull_constants,
2062 stage_prog_data);
2063
2064 }
2065
2066 /* Then push the rest of uniforms */
2067 const unsigned uniform_32_bit_size = type_sz(BRW_REGISTER_TYPE_F);
2068 for (unsigned u = 0; u < uniforms; u++) {
2069 if (!is_live[u])
2070 continue;
2071
2072 /* Skip thread_local_id_index to put it in the last push register. */
2073 if (thread_local_id_index == (int)u)
2074 continue;
2075
2076 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2077 contiguous[u], bitsize_access[u],
2078 uniform_32_bit_size,
2079 push_constant_loc, pull_constant_loc,
2080 &num_push_constants, &num_pull_constants,
2081 max_push_components, max_chunk_size,
2082 compiler->supports_pull_constants,
2083 stage_prog_data);
2084 }
2085
2086 /* Add the CS local thread ID uniform at the end of the push constants */
2087 if (thread_local_id_index >= 0)
2088 push_constant_loc[thread_local_id_index] = num_push_constants++;
2089
2090 /* As the uniforms are going to be reordered, stash the old array and
2091 * create two new arrays for push/pull params.
2092 */
2093 uint32_t *param = stage_prog_data->param;
2094 stage_prog_data->nr_params = num_push_constants;
2095 if (num_push_constants) {
2096 stage_prog_data->param = ralloc_array(mem_ctx, uint32_t,
2097 num_push_constants);
2098 } else {
2099 stage_prog_data->param = NULL;
2100 }
2101 assert(stage_prog_data->nr_pull_params == 0);
2102 assert(stage_prog_data->pull_param == NULL);
2103 if (num_pull_constants > 0) {
2104 stage_prog_data->nr_pull_params = num_pull_constants;
2105 stage_prog_data->pull_param = ralloc_array(mem_ctx, uint32_t,
2106 num_pull_constants);
2107 }
2108
2109 /* Now that we know how many regular uniforms we'll push, reduce the
2110 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2111 */
2112 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2113 for (int i = 0; i < 4; i++) {
2114 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2115
2116 if (push_length + range->length > 64)
2117 range->length = 64 - push_length;
2118
2119 push_length += range->length;
2120 }
2121 assert(push_length <= 64);
2122
2123 /* Up until now, the param[] array has been indexed by reg + offset
2124 * of UNIFORM registers. Move pull constants into pull_param[] and
2125 * condense param[] to only contain the uniforms we chose to push.
2126 *
2127 * NOTE: Because we are condensing the params[] array, we know that
2128 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2129 * having to make a copy.
2130 */
2131 for (unsigned int i = 0; i < uniforms; i++) {
2132 uint32_t value = param[i];
2133 if (pull_constant_loc[i] != -1) {
2134 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2135 } else if (push_constant_loc[i] != -1) {
2136 stage_prog_data->param[push_constant_loc[i]] = value;
2137 }
2138 }
2139 ralloc_free(param);
2140 }
2141
2142 bool
2143 fs_visitor::get_pull_locs(const fs_reg &src,
2144 unsigned *out_surf_index,
2145 unsigned *out_pull_index)
2146 {
2147 assert(src.file == UNIFORM);
2148
2149 if (src.nr >= UBO_START) {
2150 const struct brw_ubo_range *range =
2151 &prog_data->ubo_ranges[src.nr - UBO_START];
2152
2153 /* If this access is in our (reduced) range, use the push data. */
2154 if (src.offset / 32 < range->length)
2155 return false;
2156
2157 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2158 *out_pull_index = (32 * range->start + src.offset) / 4;
2159 return true;
2160 }
2161
2162 const unsigned location = src.nr + src.offset / 4;
2163
2164 if (location < uniforms && pull_constant_loc[location] != -1) {
2165 /* A regular uniform push constant */
2166 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2167 *out_pull_index = pull_constant_loc[location];
2168 return true;
2169 }
2170
2171 return false;
2172 }
2173
2174 /**
2175 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2176 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2177 */
2178 void
2179 fs_visitor::lower_constant_loads()
2180 {
2181 unsigned index, pull_index;
2182
2183 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2184 /* Set up the annotation tracking for new generated instructions. */
2185 const fs_builder ibld(this, block, inst);
2186
2187 for (int i = 0; i < inst->sources; i++) {
2188 if (inst->src[i].file != UNIFORM)
2189 continue;
2190
2191 /* We'll handle this case later */
2192 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2193 continue;
2194
2195 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2196 continue;
2197
2198 assert(inst->src[i].stride == 0);
2199
2200 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2201 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2202 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2203 const unsigned base = pull_index * 4;
2204
2205 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2206 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2207
2208 /* Rewrite the instruction to use the temporary VGRF. */
2209 inst->src[i].file = VGRF;
2210 inst->src[i].nr = dst.nr;
2211 inst->src[i].offset = (base & (block_sz - 1)) +
2212 inst->src[i].offset % 4;
2213
2214 brw_mark_surface_used(prog_data, index);
2215 }
2216
2217 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2218 inst->src[0].file == UNIFORM) {
2219
2220 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2221 continue;
2222
2223 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2224 brw_imm_ud(index),
2225 inst->src[1],
2226 pull_index * 4);
2227 inst->remove(block);
2228
2229 brw_mark_surface_used(prog_data, index);
2230 }
2231 }
2232 invalidate_live_intervals();
2233 }
2234
2235 bool
2236 fs_visitor::opt_algebraic()
2237 {
2238 bool progress = false;
2239
2240 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2241 switch (inst->opcode) {
2242 case BRW_OPCODE_MOV:
2243 if (inst->src[0].file != IMM)
2244 break;
2245
2246 if (inst->saturate) {
2247 if (inst->dst.type != inst->src[0].type)
2248 assert(!"unimplemented: saturate mixed types");
2249
2250 if (brw_saturate_immediate(inst->dst.type,
2251 &inst->src[0].as_brw_reg())) {
2252 inst->saturate = false;
2253 progress = true;
2254 }
2255 }
2256 break;
2257
2258 case BRW_OPCODE_MUL:
2259 if (inst->src[1].file != IMM)
2260 continue;
2261
2262 /* a * 1.0 = a */
2263 if (inst->src[1].is_one()) {
2264 inst->opcode = BRW_OPCODE_MOV;
2265 inst->src[1] = reg_undef;
2266 progress = true;
2267 break;
2268 }
2269
2270 /* a * -1.0 = -a */
2271 if (inst->src[1].is_negative_one()) {
2272 inst->opcode = BRW_OPCODE_MOV;
2273 inst->src[0].negate = !inst->src[0].negate;
2274 inst->src[1] = reg_undef;
2275 progress = true;
2276 break;
2277 }
2278
2279 /* a * 0.0 = 0.0 */
2280 if (inst->src[1].is_zero()) {
2281 inst->opcode = BRW_OPCODE_MOV;
2282 inst->src[0] = inst->src[1];
2283 inst->src[1] = reg_undef;
2284 progress = true;
2285 break;
2286 }
2287
2288 if (inst->src[0].file == IMM) {
2289 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2290 inst->opcode = BRW_OPCODE_MOV;
2291 inst->src[0].f *= inst->src[1].f;
2292 inst->src[1] = reg_undef;
2293 progress = true;
2294 break;
2295 }
2296 break;
2297 case BRW_OPCODE_ADD:
2298 if (inst->src[1].file != IMM)
2299 continue;
2300
2301 /* a + 0.0 = a */
2302 if (inst->src[1].is_zero()) {
2303 inst->opcode = BRW_OPCODE_MOV;
2304 inst->src[1] = reg_undef;
2305 progress = true;
2306 break;
2307 }
2308
2309 if (inst->src[0].file == IMM) {
2310 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2311 inst->opcode = BRW_OPCODE_MOV;
2312 inst->src[0].f += inst->src[1].f;
2313 inst->src[1] = reg_undef;
2314 progress = true;
2315 break;
2316 }
2317 break;
2318 case BRW_OPCODE_OR:
2319 if (inst->src[0].equals(inst->src[1])) {
2320 inst->opcode = BRW_OPCODE_MOV;
2321 inst->src[1] = reg_undef;
2322 progress = true;
2323 break;
2324 }
2325 break;
2326 case BRW_OPCODE_LRP:
2327 if (inst->src[1].equals(inst->src[2])) {
2328 inst->opcode = BRW_OPCODE_MOV;
2329 inst->src[0] = inst->src[1];
2330 inst->src[1] = reg_undef;
2331 inst->src[2] = reg_undef;
2332 progress = true;
2333 break;
2334 }
2335 break;
2336 case BRW_OPCODE_CMP:
2337 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2338 inst->src[0].abs &&
2339 inst->src[0].negate &&
2340 inst->src[1].is_zero()) {
2341 inst->src[0].abs = false;
2342 inst->src[0].negate = false;
2343 inst->conditional_mod = BRW_CONDITIONAL_Z;
2344 progress = true;
2345 break;
2346 }
2347 break;
2348 case BRW_OPCODE_SEL:
2349 if (inst->src[0].equals(inst->src[1])) {
2350 inst->opcode = BRW_OPCODE_MOV;
2351 inst->src[1] = reg_undef;
2352 inst->predicate = BRW_PREDICATE_NONE;
2353 inst->predicate_inverse = false;
2354 progress = true;
2355 } else if (inst->saturate && inst->src[1].file == IMM) {
2356 switch (inst->conditional_mod) {
2357 case BRW_CONDITIONAL_LE:
2358 case BRW_CONDITIONAL_L:
2359 switch (inst->src[1].type) {
2360 case BRW_REGISTER_TYPE_F:
2361 if (inst->src[1].f >= 1.0f) {
2362 inst->opcode = BRW_OPCODE_MOV;
2363 inst->src[1] = reg_undef;
2364 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2365 progress = true;
2366 }
2367 break;
2368 default:
2369 break;
2370 }
2371 break;
2372 case BRW_CONDITIONAL_GE:
2373 case BRW_CONDITIONAL_G:
2374 switch (inst->src[1].type) {
2375 case BRW_REGISTER_TYPE_F:
2376 if (inst->src[1].f <= 0.0f) {
2377 inst->opcode = BRW_OPCODE_MOV;
2378 inst->src[1] = reg_undef;
2379 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2380 progress = true;
2381 }
2382 break;
2383 default:
2384 break;
2385 }
2386 default:
2387 break;
2388 }
2389 }
2390 break;
2391 case BRW_OPCODE_MAD:
2392 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2393 inst->opcode = BRW_OPCODE_MOV;
2394 inst->src[1] = reg_undef;
2395 inst->src[2] = reg_undef;
2396 progress = true;
2397 } else if (inst->src[0].is_zero()) {
2398 inst->opcode = BRW_OPCODE_MUL;
2399 inst->src[0] = inst->src[2];
2400 inst->src[2] = reg_undef;
2401 progress = true;
2402 } else if (inst->src[1].is_one()) {
2403 inst->opcode = BRW_OPCODE_ADD;
2404 inst->src[1] = inst->src[2];
2405 inst->src[2] = reg_undef;
2406 progress = true;
2407 } else if (inst->src[2].is_one()) {
2408 inst->opcode = BRW_OPCODE_ADD;
2409 inst->src[2] = reg_undef;
2410 progress = true;
2411 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2412 inst->opcode = BRW_OPCODE_ADD;
2413 inst->src[1].f *= inst->src[2].f;
2414 inst->src[2] = reg_undef;
2415 progress = true;
2416 }
2417 break;
2418 case SHADER_OPCODE_BROADCAST:
2419 if (is_uniform(inst->src[0])) {
2420 inst->opcode = BRW_OPCODE_MOV;
2421 inst->sources = 1;
2422 inst->force_writemask_all = true;
2423 progress = true;
2424 } else if (inst->src[1].file == IMM) {
2425 inst->opcode = BRW_OPCODE_MOV;
2426 inst->src[0] = component(inst->src[0],
2427 inst->src[1].ud);
2428 inst->sources = 1;
2429 inst->force_writemask_all = true;
2430 progress = true;
2431 }
2432 break;
2433
2434 default:
2435 break;
2436 }
2437
2438 /* Swap if src[0] is immediate. */
2439 if (progress && inst->is_commutative()) {
2440 if (inst->src[0].file == IMM) {
2441 fs_reg tmp = inst->src[1];
2442 inst->src[1] = inst->src[0];
2443 inst->src[0] = tmp;
2444 }
2445 }
2446 }
2447 return progress;
2448 }
2449
2450 /**
2451 * Optimize sample messages that have constant zero values for the trailing
2452 * texture coordinates. We can just reduce the message length for these
2453 * instructions instead of reserving a register for it. Trailing parameters
2454 * that aren't sent default to zero anyway. This will cause the dead code
2455 * eliminator to remove the MOV instruction that would otherwise be emitted to
2456 * set up the zero value.
2457 */
2458 bool
2459 fs_visitor::opt_zero_samples()
2460 {
2461 /* Gen4 infers the texturing opcode based on the message length so we can't
2462 * change it.
2463 */
2464 if (devinfo->gen < 5)
2465 return false;
2466
2467 bool progress = false;
2468
2469 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2470 if (!inst->is_tex())
2471 continue;
2472
2473 fs_inst *load_payload = (fs_inst *) inst->prev;
2474
2475 if (load_payload->is_head_sentinel() ||
2476 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2477 continue;
2478
2479 /* We don't want to remove the message header or the first parameter.
2480 * Removing the first parameter is not allowed, see the Haswell PRM
2481 * volume 7, page 149:
2482 *
2483 * "Parameter 0 is required except for the sampleinfo message, which
2484 * has no parameter 0"
2485 */
2486 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2487 load_payload->src[(inst->mlen - inst->header_size) /
2488 (inst->exec_size / 8) +
2489 inst->header_size - 1].is_zero()) {
2490 inst->mlen -= inst->exec_size / 8;
2491 progress = true;
2492 }
2493 }
2494
2495 if (progress)
2496 invalidate_live_intervals();
2497
2498 return progress;
2499 }
2500
2501 /**
2502 * Optimize sample messages which are followed by the final RT write.
2503 *
2504 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2505 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2506 * final texturing results copied to the framebuffer write payload and modify
2507 * them to write to the framebuffer directly.
2508 */
2509 bool
2510 fs_visitor::opt_sampler_eot()
2511 {
2512 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2513
2514 if (stage != MESA_SHADER_FRAGMENT)
2515 return false;
2516
2517 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2518 return false;
2519
2520 /* FINISHME: It should be possible to implement this optimization when there
2521 * are multiple drawbuffers.
2522 */
2523 if (key->nr_color_regions != 1)
2524 return false;
2525
2526 /* Requires emitting a bunch of saturating MOV instructions during logical
2527 * send lowering to clamp the color payload, which the sampler unit isn't
2528 * going to do for us.
2529 */
2530 if (key->clamp_fragment_color)
2531 return false;
2532
2533 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2534 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2535 fs_inst *fb_write = (fs_inst *)block->end();
2536 assert(fb_write->eot);
2537 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2538
2539 /* There wasn't one; nothing to do. */
2540 if (unlikely(fb_write->prev->is_head_sentinel()))
2541 return false;
2542
2543 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2544
2545 /* 3D Sampler » Messages » Message Format
2546 *
2547 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2548 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2549 */
2550 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2551 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2552 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2553 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2554 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2555 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2556 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2557 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2558 return false;
2559
2560 /* XXX - This shouldn't be necessary. */
2561 if (tex_inst->prev->is_head_sentinel())
2562 return false;
2563
2564 /* Check that the FB write sources are fully initialized by the single
2565 * texturing instruction.
2566 */
2567 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2568 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2569 if (!fb_write->src[i].equals(tex_inst->dst) ||
2570 fb_write->size_read(i) != tex_inst->size_written)
2571 return false;
2572 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2573 if (fb_write->src[i].file != BAD_FILE)
2574 return false;
2575 }
2576 }
2577
2578 assert(!tex_inst->eot); /* We can't get here twice */
2579 assert((tex_inst->offset & (0xff << 24)) == 0);
2580
2581 const fs_builder ibld(this, block, tex_inst);
2582
2583 tex_inst->offset |= fb_write->target << 24;
2584 tex_inst->eot = true;
2585 tex_inst->dst = ibld.null_reg_ud();
2586 tex_inst->size_written = 0;
2587 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2588
2589 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2590 * flag and submit a header together with the sampler message as required
2591 * by the hardware.
2592 */
2593 invalidate_live_intervals();
2594 return true;
2595 }
2596
2597 bool
2598 fs_visitor::opt_register_renaming()
2599 {
2600 bool progress = false;
2601 int depth = 0;
2602
2603 int remap[alloc.count];
2604 memset(remap, -1, sizeof(int) * alloc.count);
2605
2606 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2607 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2608 depth++;
2609 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2610 inst->opcode == BRW_OPCODE_WHILE) {
2611 depth--;
2612 }
2613
2614 /* Rewrite instruction sources. */
2615 for (int i = 0; i < inst->sources; i++) {
2616 if (inst->src[i].file == VGRF &&
2617 remap[inst->src[i].nr] != -1 &&
2618 remap[inst->src[i].nr] != inst->src[i].nr) {
2619 inst->src[i].nr = remap[inst->src[i].nr];
2620 progress = true;
2621 }
2622 }
2623
2624 const int dst = inst->dst.nr;
2625
2626 if (depth == 0 &&
2627 inst->dst.file == VGRF &&
2628 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2629 !inst->is_partial_write()) {
2630 if (remap[dst] == -1) {
2631 remap[dst] = dst;
2632 } else {
2633 remap[dst] = alloc.allocate(regs_written(inst));
2634 inst->dst.nr = remap[dst];
2635 progress = true;
2636 }
2637 } else if (inst->dst.file == VGRF &&
2638 remap[dst] != -1 &&
2639 remap[dst] != dst) {
2640 inst->dst.nr = remap[dst];
2641 progress = true;
2642 }
2643 }
2644
2645 if (progress) {
2646 invalidate_live_intervals();
2647
2648 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2649 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2650 delta_xy[i].nr = remap[delta_xy[i].nr];
2651 }
2652 }
2653 }
2654
2655 return progress;
2656 }
2657
2658 /**
2659 * Remove redundant or useless discard jumps.
2660 *
2661 * For example, we can eliminate jumps in the following sequence:
2662 *
2663 * discard-jump (redundant with the next jump)
2664 * discard-jump (useless; jumps to the next instruction)
2665 * placeholder-halt
2666 */
2667 bool
2668 fs_visitor::opt_redundant_discard_jumps()
2669 {
2670 bool progress = false;
2671
2672 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2673
2674 fs_inst *placeholder_halt = NULL;
2675 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2676 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2677 placeholder_halt = inst;
2678 break;
2679 }
2680 }
2681
2682 if (!placeholder_halt)
2683 return false;
2684
2685 /* Delete any HALTs immediately before the placeholder halt. */
2686 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2687 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2688 prev = (fs_inst *) placeholder_halt->prev) {
2689 prev->remove(last_bblock);
2690 progress = true;
2691 }
2692
2693 if (progress)
2694 invalidate_live_intervals();
2695
2696 return progress;
2697 }
2698
2699 /**
2700 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2701 * from \p r.offset which overlaps the region starting at \p s.offset and
2702 * spanning \p ds bytes.
2703 */
2704 static inline unsigned
2705 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2706 {
2707 const int rel_offset = reg_offset(s) - reg_offset(r);
2708 const int shift = rel_offset / REG_SIZE;
2709 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2710 assert(reg_space(r) == reg_space(s) &&
2711 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2712 return ((1 << n) - 1) << shift;
2713 }
2714
2715 bool
2716 fs_visitor::compute_to_mrf()
2717 {
2718 bool progress = false;
2719 int next_ip = 0;
2720
2721 /* No MRFs on Gen >= 7. */
2722 if (devinfo->gen >= 7)
2723 return false;
2724
2725 calculate_live_intervals();
2726
2727 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2728 int ip = next_ip;
2729 next_ip++;
2730
2731 if (inst->opcode != BRW_OPCODE_MOV ||
2732 inst->is_partial_write() ||
2733 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2734 inst->dst.type != inst->src[0].type ||
2735 inst->src[0].abs || inst->src[0].negate ||
2736 !inst->src[0].is_contiguous() ||
2737 inst->src[0].offset % REG_SIZE != 0)
2738 continue;
2739
2740 /* Can't compute-to-MRF this GRF if someone else was going to
2741 * read it later.
2742 */
2743 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2744 continue;
2745
2746 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2747 * things that computed the value of all GRFs of the source region. The
2748 * regs_left bitset keeps track of the registers we haven't yet found a
2749 * generating instruction for.
2750 */
2751 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2752
2753 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2754 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2755 inst->src[0], inst->size_read(0))) {
2756 /* Found the last thing to write our reg we want to turn
2757 * into a compute-to-MRF.
2758 */
2759
2760 /* If this one instruction didn't populate all the
2761 * channels, bail. We might be able to rewrite everything
2762 * that writes that reg, but it would require smarter
2763 * tracking.
2764 */
2765 if (scan_inst->is_partial_write())
2766 break;
2767
2768 /* Handling things not fully contained in the source of the copy
2769 * would need us to understand coalescing out more than one MOV at
2770 * a time.
2771 */
2772 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2773 inst->src[0], inst->size_read(0)))
2774 break;
2775
2776 /* SEND instructions can't have MRF as a destination. */
2777 if (scan_inst->mlen)
2778 break;
2779
2780 if (devinfo->gen == 6) {
2781 /* gen6 math instructions must have the destination be
2782 * GRF, so no compute-to-MRF for them.
2783 */
2784 if (scan_inst->is_math()) {
2785 break;
2786 }
2787 }
2788
2789 /* Clear the bits for any registers this instruction overwrites. */
2790 regs_left &= ~mask_relative_to(
2791 inst->src[0], scan_inst->dst, scan_inst->size_written);
2792 if (!regs_left)
2793 break;
2794 }
2795
2796 /* We don't handle control flow here. Most computation of
2797 * values that end up in MRFs are shortly before the MRF
2798 * write anyway.
2799 */
2800 if (block->start() == scan_inst)
2801 break;
2802
2803 /* You can't read from an MRF, so if someone else reads our
2804 * MRF's source GRF that we wanted to rewrite, that stops us.
2805 */
2806 bool interfered = false;
2807 for (int i = 0; i < scan_inst->sources; i++) {
2808 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2809 inst->src[0], inst->size_read(0))) {
2810 interfered = true;
2811 }
2812 }
2813 if (interfered)
2814 break;
2815
2816 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2817 inst->dst, inst->size_written)) {
2818 /* If somebody else writes our MRF here, we can't
2819 * compute-to-MRF before that.
2820 */
2821 break;
2822 }
2823
2824 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2825 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2826 inst->dst, inst->size_written)) {
2827 /* Found a SEND instruction, which means that there are
2828 * live values in MRFs from base_mrf to base_mrf +
2829 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2830 * above it.
2831 */
2832 break;
2833 }
2834 }
2835
2836 if (regs_left)
2837 continue;
2838
2839 /* Found all generating instructions of our MRF's source value, so it
2840 * should be safe to rewrite them to point to the MRF directly.
2841 */
2842 regs_left = (1 << regs_read(inst, 0)) - 1;
2843
2844 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2845 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2846 inst->src[0], inst->size_read(0))) {
2847 /* Clear the bits for any registers this instruction overwrites. */
2848 regs_left &= ~mask_relative_to(
2849 inst->src[0], scan_inst->dst, scan_inst->size_written);
2850
2851 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2852 reg_offset(inst->src[0]);
2853
2854 if (inst->dst.nr & BRW_MRF_COMPR4) {
2855 /* Apply the same address transformation done by the hardware
2856 * for COMPR4 MRF writes.
2857 */
2858 assert(rel_offset < 2 * REG_SIZE);
2859 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2860
2861 /* Clear the COMPR4 bit if the generating instruction is not
2862 * compressed.
2863 */
2864 if (scan_inst->size_written < 2 * REG_SIZE)
2865 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2866
2867 } else {
2868 /* Calculate the MRF number the result of this instruction is
2869 * ultimately written to.
2870 */
2871 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2872 }
2873
2874 scan_inst->dst.file = MRF;
2875 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2876 scan_inst->saturate |= inst->saturate;
2877 if (!regs_left)
2878 break;
2879 }
2880 }
2881
2882 assert(!regs_left);
2883 inst->remove(block);
2884 progress = true;
2885 }
2886
2887 if (progress)
2888 invalidate_live_intervals();
2889
2890 return progress;
2891 }
2892
2893 /**
2894 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2895 * flow. We could probably do better here with some form of divergence
2896 * analysis.
2897 */
2898 bool
2899 fs_visitor::eliminate_find_live_channel()
2900 {
2901 bool progress = false;
2902 unsigned depth = 0;
2903
2904 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2905 /* The optimization below assumes that channel zero is live on thread
2906 * dispatch, which may not be the case if the fixed function dispatches
2907 * threads sparsely.
2908 */
2909 return false;
2910 }
2911
2912 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2913 switch (inst->opcode) {
2914 case BRW_OPCODE_IF:
2915 case BRW_OPCODE_DO:
2916 depth++;
2917 break;
2918
2919 case BRW_OPCODE_ENDIF:
2920 case BRW_OPCODE_WHILE:
2921 depth--;
2922 break;
2923
2924 case FS_OPCODE_DISCARD_JUMP:
2925 /* This can potentially make control flow non-uniform until the end
2926 * of the program.
2927 */
2928 return progress;
2929
2930 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2931 if (depth == 0) {
2932 inst->opcode = BRW_OPCODE_MOV;
2933 inst->src[0] = brw_imm_ud(0u);
2934 inst->sources = 1;
2935 inst->force_writemask_all = true;
2936 progress = true;
2937 }
2938 break;
2939
2940 default:
2941 break;
2942 }
2943 }
2944
2945 return progress;
2946 }
2947
2948 /**
2949 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2950 * instructions to FS_OPCODE_REP_FB_WRITE.
2951 */
2952 void
2953 fs_visitor::emit_repclear_shader()
2954 {
2955 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2956 int base_mrf = 0;
2957 int color_mrf = base_mrf + 2;
2958 fs_inst *mov;
2959
2960 if (uniforms > 0) {
2961 mov = bld.exec_all().group(4, 0)
2962 .MOV(brw_message_reg(color_mrf),
2963 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2964 } else {
2965 struct brw_reg reg =
2966 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2967 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2968 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2969
2970 mov = bld.exec_all().group(4, 0)
2971 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2972 }
2973
2974 fs_inst *write;
2975 if (key->nr_color_regions == 1) {
2976 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2977 write->saturate = key->clamp_fragment_color;
2978 write->base_mrf = color_mrf;
2979 write->target = 0;
2980 write->header_size = 0;
2981 write->mlen = 1;
2982 } else {
2983 assume(key->nr_color_regions > 0);
2984 for (int i = 0; i < key->nr_color_regions; ++i) {
2985 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2986 write->saturate = key->clamp_fragment_color;
2987 write->base_mrf = base_mrf;
2988 write->target = i;
2989 write->header_size = 2;
2990 write->mlen = 3;
2991 }
2992 }
2993 write->eot = true;
2994
2995 calculate_cfg();
2996
2997 assign_constant_locations();
2998 assign_curb_setup();
2999
3000 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3001 if (uniforms > 0) {
3002 assert(mov->src[0].file == FIXED_GRF);
3003 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3004 }
3005 }
3006
3007 /**
3008 * Walks through basic blocks, looking for repeated MRF writes and
3009 * removing the later ones.
3010 */
3011 bool
3012 fs_visitor::remove_duplicate_mrf_writes()
3013 {
3014 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3015 bool progress = false;
3016
3017 /* Need to update the MRF tracking for compressed instructions. */
3018 if (dispatch_width >= 16)
3019 return false;
3020
3021 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3022
3023 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3024 if (inst->is_control_flow()) {
3025 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3026 }
3027
3028 if (inst->opcode == BRW_OPCODE_MOV &&
3029 inst->dst.file == MRF) {
3030 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3031 if (prev_inst && inst->equals(prev_inst)) {
3032 inst->remove(block);
3033 progress = true;
3034 continue;
3035 }
3036 }
3037
3038 /* Clear out the last-write records for MRFs that were overwritten. */
3039 if (inst->dst.file == MRF) {
3040 last_mrf_move[inst->dst.nr] = NULL;
3041 }
3042
3043 if (inst->mlen > 0 && inst->base_mrf != -1) {
3044 /* Found a SEND instruction, which will include two or fewer
3045 * implied MRF writes. We could do better here.
3046 */
3047 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3048 last_mrf_move[inst->base_mrf + i] = NULL;
3049 }
3050 }
3051
3052 /* Clear out any MRF move records whose sources got overwritten. */
3053 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3054 if (last_mrf_move[i] &&
3055 regions_overlap(inst->dst, inst->size_written,
3056 last_mrf_move[i]->src[0],
3057 last_mrf_move[i]->size_read(0))) {
3058 last_mrf_move[i] = NULL;
3059 }
3060 }
3061
3062 if (inst->opcode == BRW_OPCODE_MOV &&
3063 inst->dst.file == MRF &&
3064 inst->src[0].file != ARF &&
3065 !inst->is_partial_write()) {
3066 last_mrf_move[inst->dst.nr] = inst;
3067 }
3068 }
3069
3070 if (progress)
3071 invalidate_live_intervals();
3072
3073 return progress;
3074 }
3075
3076 static void
3077 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3078 {
3079 /* Clear the flag for registers that actually got read (as expected). */
3080 for (int i = 0; i < inst->sources; i++) {
3081 int grf;
3082 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3083 grf = inst->src[i].nr;
3084 } else {
3085 continue;
3086 }
3087
3088 if (grf >= first_grf &&
3089 grf < first_grf + grf_len) {
3090 deps[grf - first_grf] = false;
3091 if (inst->exec_size == 16)
3092 deps[grf - first_grf + 1] = false;
3093 }
3094 }
3095 }
3096
3097 /**
3098 * Implements this workaround for the original 965:
3099 *
3100 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3101 * check for post destination dependencies on this instruction, software
3102 * must ensure that there is no destination hazard for the case of ‘write
3103 * followed by a posted write’ shown in the following example.
3104 *
3105 * 1. mov r3 0
3106 * 2. send r3.xy <rest of send instruction>
3107 * 3. mov r2 r3
3108 *
3109 * Due to no post-destination dependency check on the ‘send’, the above
3110 * code sequence could have two instructions (1 and 2) in flight at the
3111 * same time that both consider ‘r3’ as the target of their final writes.
3112 */
3113 void
3114 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3115 fs_inst *inst)
3116 {
3117 int write_len = regs_written(inst);
3118 int first_write_grf = inst->dst.nr;
3119 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3120 assert(write_len < (int)sizeof(needs_dep) - 1);
3121
3122 memset(needs_dep, false, sizeof(needs_dep));
3123 memset(needs_dep, true, write_len);
3124
3125 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3126
3127 /* Walk backwards looking for writes to registers we're writing which
3128 * aren't read since being written. If we hit the start of the program,
3129 * we assume that there are no outstanding dependencies on entry to the
3130 * program.
3131 */
3132 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3133 /* If we hit control flow, assume that there *are* outstanding
3134 * dependencies, and force their cleanup before our instruction.
3135 */
3136 if (block->start() == scan_inst && block->num != 0) {
3137 for (int i = 0; i < write_len; i++) {
3138 if (needs_dep[i])
3139 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3140 first_write_grf + i);
3141 }
3142 return;
3143 }
3144
3145 /* We insert our reads as late as possible on the assumption that any
3146 * instruction but a MOV that might have left us an outstanding
3147 * dependency has more latency than a MOV.
3148 */
3149 if (scan_inst->dst.file == VGRF) {
3150 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3151 int reg = scan_inst->dst.nr + i;
3152
3153 if (reg >= first_write_grf &&
3154 reg < first_write_grf + write_len &&
3155 needs_dep[reg - first_write_grf]) {
3156 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3157 needs_dep[reg - first_write_grf] = false;
3158 if (scan_inst->exec_size == 16)
3159 needs_dep[reg - first_write_grf + 1] = false;
3160 }
3161 }
3162 }
3163
3164 /* Clear the flag for registers that actually got read (as expected). */
3165 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3166
3167 /* Continue the loop only if we haven't resolved all the dependencies */
3168 int i;
3169 for (i = 0; i < write_len; i++) {
3170 if (needs_dep[i])
3171 break;
3172 }
3173 if (i == write_len)
3174 return;
3175 }
3176 }
3177
3178 /**
3179 * Implements this workaround for the original 965:
3180 *
3181 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3182 * used as a destination register until after it has been sourced by an
3183 * instruction with a different destination register.
3184 */
3185 void
3186 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3187 {
3188 int write_len = regs_written(inst);
3189 int first_write_grf = inst->dst.nr;
3190 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3191 assert(write_len < (int)sizeof(needs_dep) - 1);
3192
3193 memset(needs_dep, false, sizeof(needs_dep));
3194 memset(needs_dep, true, write_len);
3195 /* Walk forwards looking for writes to registers we're writing which aren't
3196 * read before being written.
3197 */
3198 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3199 /* If we hit control flow, force resolve all remaining dependencies. */
3200 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3201 for (int i = 0; i < write_len; i++) {
3202 if (needs_dep[i])
3203 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3204 first_write_grf + i);
3205 }
3206 return;
3207 }
3208
3209 /* Clear the flag for registers that actually got read (as expected). */
3210 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3211
3212 /* We insert our reads as late as possible since they're reading the
3213 * result of a SEND, which has massive latency.
3214 */
3215 if (scan_inst->dst.file == VGRF &&
3216 scan_inst->dst.nr >= first_write_grf &&
3217 scan_inst->dst.nr < first_write_grf + write_len &&
3218 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3219 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3220 scan_inst->dst.nr);
3221 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3222 }
3223
3224 /* Continue the loop only if we haven't resolved all the dependencies */
3225 int i;
3226 for (i = 0; i < write_len; i++) {
3227 if (needs_dep[i])
3228 break;
3229 }
3230 if (i == write_len)
3231 return;
3232 }
3233 }
3234
3235 void
3236 fs_visitor::insert_gen4_send_dependency_workarounds()
3237 {
3238 if (devinfo->gen != 4 || devinfo->is_g4x)
3239 return;
3240
3241 bool progress = false;
3242
3243 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3244 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3245 insert_gen4_pre_send_dependency_workarounds(block, inst);
3246 insert_gen4_post_send_dependency_workarounds(block, inst);
3247 progress = true;
3248 }
3249 }
3250
3251 if (progress)
3252 invalidate_live_intervals();
3253 }
3254
3255 /**
3256 * Turns the generic expression-style uniform pull constant load instruction
3257 * into a hardware-specific series of instructions for loading a pull
3258 * constant.
3259 *
3260 * The expression style allows the CSE pass before this to optimize out
3261 * repeated loads from the same offset, and gives the pre-register-allocation
3262 * scheduling full flexibility, while the conversion to native instructions
3263 * allows the post-register-allocation scheduler the best information
3264 * possible.
3265 *
3266 * Note that execution masking for setting up pull constant loads is special:
3267 * the channels that need to be written are unrelated to the current execution
3268 * mask, since a later instruction will use one of the result channels as a
3269 * source operand for all 8 or 16 of its channels.
3270 */
3271 void
3272 fs_visitor::lower_uniform_pull_constant_loads()
3273 {
3274 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3275 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3276 continue;
3277
3278 if (devinfo->gen >= 7) {
3279 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3280 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3281
3282 ubld.group(8, 0).MOV(payload,
3283 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3284 ubld.group(1, 0).MOV(component(payload, 2),
3285 brw_imm_ud(inst->src[1].ud / 16));
3286
3287 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3288 inst->src[1] = payload;
3289 inst->header_size = 1;
3290 inst->mlen = 1;
3291
3292 invalidate_live_intervals();
3293 } else {
3294 /* Before register allocation, we didn't tell the scheduler about the
3295 * MRF we use. We know it's safe to use this MRF because nothing
3296 * else does except for register spill/unspill, which generates and
3297 * uses its MRF within a single IR instruction.
3298 */
3299 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3300 inst->mlen = 1;
3301 }
3302 }
3303 }
3304
3305 bool
3306 fs_visitor::lower_load_payload()
3307 {
3308 bool progress = false;
3309
3310 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3311 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3312 continue;
3313
3314 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3315 assert(inst->saturate == false);
3316 fs_reg dst = inst->dst;
3317
3318 /* Get rid of COMPR4. We'll add it back in if we need it */
3319 if (dst.file == MRF)
3320 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3321
3322 const fs_builder ibld(this, block, inst);
3323 const fs_builder hbld = ibld.exec_all().group(8, 0);
3324
3325 for (uint8_t i = 0; i < inst->header_size; i++) {
3326 if (inst->src[i].file != BAD_FILE) {
3327 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3328 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3329 hbld.MOV(mov_dst, mov_src);
3330 }
3331 dst = offset(dst, hbld, 1);
3332 }
3333
3334 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3335 inst->exec_size > 8) {
3336 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3337 * a straightforward copy. Instead, the result of the
3338 * LOAD_PAYLOAD is treated as interleaved and the first four
3339 * non-header sources are unpacked as:
3340 *
3341 * m + 0: r0
3342 * m + 1: g0
3343 * m + 2: b0
3344 * m + 3: a0
3345 * m + 4: r1
3346 * m + 5: g1
3347 * m + 6: b1
3348 * m + 7: a1
3349 *
3350 * This is used for gen <= 5 fb writes.
3351 */
3352 assert(inst->exec_size == 16);
3353 assert(inst->header_size + 4 <= inst->sources);
3354 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3355 if (inst->src[i].file != BAD_FILE) {
3356 if (devinfo->has_compr4) {
3357 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3358 compr4_dst.nr |= BRW_MRF_COMPR4;
3359 ibld.MOV(compr4_dst, inst->src[i]);
3360 } else {
3361 /* Platform doesn't have COMPR4. We have to fake it */
3362 fs_reg mov_dst = retype(dst, inst->src[i].type);
3363 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3364 mov_dst.nr += 4;
3365 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3366 }
3367 }
3368
3369 dst.nr++;
3370 }
3371
3372 /* The loop above only ever incremented us through the first set
3373 * of 4 registers. However, thanks to the magic of COMPR4, we
3374 * actually wrote to the first 8 registers, so we need to take
3375 * that into account now.
3376 */
3377 dst.nr += 4;
3378
3379 /* The COMPR4 code took care of the first 4 sources. We'll let
3380 * the regular path handle any remaining sources. Yes, we are
3381 * modifying the instruction but we're about to delete it so
3382 * this really doesn't hurt anything.
3383 */
3384 inst->header_size += 4;
3385 }
3386
3387 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3388 if (inst->src[i].file != BAD_FILE)
3389 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3390 dst = offset(dst, ibld, 1);
3391 }
3392
3393 inst->remove(block);
3394 progress = true;
3395 }
3396
3397 if (progress)
3398 invalidate_live_intervals();
3399
3400 return progress;
3401 }
3402
3403 bool
3404 fs_visitor::lower_integer_multiplication()
3405 {
3406 bool progress = false;
3407
3408 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3409 const fs_builder ibld(this, block, inst);
3410
3411 if (inst->opcode == BRW_OPCODE_MUL) {
3412 if (inst->dst.is_accumulator() ||
3413 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3414 inst->dst.type != BRW_REGISTER_TYPE_UD))
3415 continue;
3416
3417 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3418 * operation directly, but CHV/BXT cannot.
3419 */
3420 if (devinfo->gen >= 8 &&
3421 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo))
3422 continue;
3423
3424 if (inst->src[1].file == IMM &&
3425 inst->src[1].ud < (1 << 16)) {
3426 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3427 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3428 * src1 are used.
3429 *
3430 * If multiplying by an immediate value that fits in 16-bits, do a
3431 * single MUL instruction with that value in the proper location.
3432 */
3433 if (devinfo->gen < 7) {
3434 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3435 inst->dst.type);
3436 ibld.MOV(imm, inst->src[1]);
3437 ibld.MUL(inst->dst, imm, inst->src[0]);
3438 } else {
3439 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3440 ibld.MUL(inst->dst, inst->src[0],
3441 ud ? brw_imm_uw(inst->src[1].ud)
3442 : brw_imm_w(inst->src[1].d));
3443 }
3444 } else {
3445 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3446 * do 32-bit integer multiplication in one instruction, but instead
3447 * must do a sequence (which actually calculates a 64-bit result):
3448 *
3449 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3450 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3451 * mov(8) g2<1>D acc0<8,8,1>D
3452 *
3453 * But on Gen > 6, the ability to use second accumulator register
3454 * (acc1) for non-float data types was removed, preventing a simple
3455 * implementation in SIMD16. A 16-channel result can be calculated by
3456 * executing the three instructions twice in SIMD8, once with quarter
3457 * control of 1Q for the first eight channels and again with 2Q for
3458 * the second eight channels.
3459 *
3460 * Which accumulator register is implicitly accessed (by AccWrEnable
3461 * for instance) is determined by the quarter control. Unfortunately
3462 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3463 * implicit accumulator access by an instruction with 2Q will access
3464 * acc1 regardless of whether the data type is usable in acc1.
3465 *
3466 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3467 * integer data types.
3468 *
3469 * Since we only want the low 32-bits of the result, we can do two
3470 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3471 * adjust the high result and add them (like the mach is doing):
3472 *
3473 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3474 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3475 * shl(8) g9<1>D g8<8,8,1>D 16D
3476 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3477 *
3478 * We avoid the shl instruction by realizing that we only want to add
3479 * the low 16-bits of the "high" result to the high 16-bits of the
3480 * "low" result and using proper regioning on the add:
3481 *
3482 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3483 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3484 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3485 *
3486 * Since it does not use the (single) accumulator register, we can
3487 * schedule multi-component multiplications much better.
3488 */
3489
3490 fs_reg orig_dst = inst->dst;
3491 if (orig_dst.is_null() || orig_dst.file == MRF) {
3492 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3493 inst->dst.type);
3494 }
3495 fs_reg low = inst->dst;
3496 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3497 inst->dst.type);
3498
3499 if (devinfo->gen >= 7) {
3500 if (inst->src[1].file == IMM) {
3501 ibld.MUL(low, inst->src[0],
3502 brw_imm_uw(inst->src[1].ud & 0xffff));
3503 ibld.MUL(high, inst->src[0],
3504 brw_imm_uw(inst->src[1].ud >> 16));
3505 } else {
3506 ibld.MUL(low, inst->src[0],
3507 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3508 ibld.MUL(high, inst->src[0],
3509 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3510 }
3511 } else {
3512 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3513 inst->src[1]);
3514 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3515 inst->src[1]);
3516 }
3517
3518 ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3519 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3520 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3521
3522 if (inst->conditional_mod || orig_dst.file == MRF) {
3523 set_condmod(inst->conditional_mod,
3524 ibld.MOV(orig_dst, inst->dst));
3525 }
3526 }
3527
3528 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3529 /* Should have been lowered to 8-wide. */
3530 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3531 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3532 inst->dst.type);
3533 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3534 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3535
3536 if (devinfo->gen >= 8) {
3537 /* Until Gen8, integer multiplies read 32-bits from one source,
3538 * and 16-bits from the other, and relying on the MACH instruction
3539 * to generate the high bits of the result.
3540 *
3541 * On Gen8, the multiply instruction does a full 32x32-bit
3542 * multiply, but in order to do a 64-bit multiply we can simulate
3543 * the previous behavior and then use a MACH instruction.
3544 *
3545 * FINISHME: Don't use source modifiers on src1.
3546 */
3547 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3548 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3549 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3550 mul->src[1].stride *= 2;
3551
3552 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3553 inst->group > 0) {
3554 /* Among other things the quarter control bits influence which
3555 * accumulator register is used by the hardware for instructions
3556 * that access the accumulator implicitly (e.g. MACH). A
3557 * second-half instruction would normally map to acc1, which
3558 * doesn't exist on Gen7 and up (the hardware does emulate it for
3559 * floating-point instructions *only* by taking advantage of the
3560 * extra precision of acc0 not normally used for floating point
3561 * arithmetic).
3562 *
3563 * HSW and up are careful enough not to try to access an
3564 * accumulator register that doesn't exist, but on earlier Gen7
3565 * hardware we need to make sure that the quarter control bits are
3566 * zero to avoid non-deterministic behaviour and emit an extra MOV
3567 * to get the result masked correctly according to the current
3568 * channel enables.
3569 */
3570 mach->group = 0;
3571 mach->force_writemask_all = true;
3572 mach->dst = ibld.vgrf(inst->dst.type);
3573 ibld.MOV(inst->dst, mach->dst);
3574 }
3575 } else {
3576 continue;
3577 }
3578
3579 inst->remove(block);
3580 progress = true;
3581 }
3582
3583 if (progress)
3584 invalidate_live_intervals();
3585
3586 return progress;
3587 }
3588
3589 bool
3590 fs_visitor::lower_minmax()
3591 {
3592 assert(devinfo->gen < 6);
3593
3594 bool progress = false;
3595
3596 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3597 const fs_builder ibld(this, block, inst);
3598
3599 if (inst->opcode == BRW_OPCODE_SEL &&
3600 inst->predicate == BRW_PREDICATE_NONE) {
3601 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3602 * the original SEL.L/GE instruction
3603 */
3604 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3605 inst->conditional_mod);
3606 inst->predicate = BRW_PREDICATE_NORMAL;
3607 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3608
3609 progress = true;
3610 }
3611 }
3612
3613 if (progress)
3614 invalidate_live_intervals();
3615
3616 return progress;
3617 }
3618
3619 static void
3620 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3621 fs_reg *dst, fs_reg color, unsigned components)
3622 {
3623 if (key->clamp_fragment_color) {
3624 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3625 assert(color.type == BRW_REGISTER_TYPE_F);
3626
3627 for (unsigned i = 0; i < components; i++)
3628 set_saturate(true,
3629 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3630
3631 color = tmp;
3632 }
3633
3634 for (unsigned i = 0; i < components; i++)
3635 dst[i] = offset(color, bld, i);
3636 }
3637
3638 static void
3639 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3640 const struct brw_wm_prog_data *prog_data,
3641 const brw_wm_prog_key *key,
3642 const fs_visitor::thread_payload &payload)
3643 {
3644 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3645 const gen_device_info *devinfo = bld.shader->devinfo;
3646 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3647 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3648 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3649 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3650 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3651 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3652 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3653 const unsigned components =
3654 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3655
3656 /* We can potentially have a message length of up to 15, so we have to set
3657 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3658 */
3659 fs_reg sources[15];
3660 int header_size = 2, payload_header_size;
3661 unsigned length = 0;
3662
3663 /* From the Sandy Bridge PRM, volume 4, page 198:
3664 *
3665 * "Dispatched Pixel Enables. One bit per pixel indicating
3666 * which pixels were originally enabled when the thread was
3667 * dispatched. This field is only required for the end-of-
3668 * thread message and on all dual-source messages."
3669 */
3670 if (devinfo->gen >= 6 &&
3671 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3672 color1.file == BAD_FILE &&
3673 key->nr_color_regions == 1) {
3674 header_size = 0;
3675 }
3676
3677 if (header_size != 0) {
3678 assert(header_size == 2);
3679 /* Allocate 2 registers for a header */
3680 length += 2;
3681 }
3682
3683 if (payload.aa_dest_stencil_reg) {
3684 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3685 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3686 .MOV(sources[length],
3687 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3688 length++;
3689 }
3690
3691 if (sample_mask.file != BAD_FILE) {
3692 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3693 BRW_REGISTER_TYPE_UD);
3694
3695 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3696 * relevant. Since it's unsigned single words one vgrf is always
3697 * 16-wide, but only the lower or higher 8 channels will be used by the
3698 * hardware when doing a SIMD8 write depending on whether we have
3699 * selected the subspans for the first or second half respectively.
3700 */
3701 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3702 sample_mask.type = BRW_REGISTER_TYPE_UW;
3703 sample_mask.stride *= 2;
3704
3705 bld.exec_all().annotate("FB write oMask")
3706 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3707 inst->group),
3708 sample_mask);
3709 length++;
3710 }
3711
3712 payload_header_size = length;
3713
3714 if (src0_alpha.file != BAD_FILE) {
3715 /* FIXME: This is being passed at the wrong location in the payload and
3716 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3717 * It's supposed to be immediately before oMask but there seems to be no
3718 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3719 * requires header sources to form a contiguous segment at the beginning
3720 * of the message and src0_alpha has per-channel semantics.
3721 */
3722 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3723 length++;
3724 } else if (key->replicate_alpha && inst->target != 0) {
3725 /* Handle the case when fragment shader doesn't write to draw buffer
3726 * zero. No need to call setup_color_payload() for src0_alpha because
3727 * alpha value will be undefined.
3728 */
3729 length++;
3730 }
3731
3732 setup_color_payload(bld, key, &sources[length], color0, components);
3733 length += 4;
3734
3735 if (color1.file != BAD_FILE) {
3736 setup_color_payload(bld, key, &sources[length], color1, components);
3737 length += 4;
3738 }
3739
3740 if (src_depth.file != BAD_FILE) {
3741 sources[length] = src_depth;
3742 length++;
3743 }
3744
3745 if (dst_depth.file != BAD_FILE) {
3746 sources[length] = dst_depth;
3747 length++;
3748 }
3749
3750 if (src_stencil.file != BAD_FILE) {
3751 assert(devinfo->gen >= 9);
3752 assert(bld.dispatch_width() != 16);
3753
3754 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3755 * available on gen9+. As such it's impossible to have both enabled at the
3756 * same time and therefore length cannot overrun the array.
3757 */
3758 assert(length < 15);
3759
3760 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3761 bld.exec_all().annotate("FB write OS")
3762 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3763 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3764 length++;
3765 }
3766
3767 fs_inst *load;
3768 if (devinfo->gen >= 7) {
3769 /* Send from the GRF */
3770 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3771 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3772 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3773 load->dst = payload;
3774
3775 inst->src[0] = payload;
3776 inst->resize_sources(1);
3777 } else {
3778 /* Send from the MRF */
3779 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3780 sources, length, payload_header_size);
3781
3782 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3783 * will do this for us if we just give it a COMPR4 destination.
3784 */
3785 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3786 load->dst.nr |= BRW_MRF_COMPR4;
3787
3788 inst->resize_sources(0);
3789 inst->base_mrf = 1;
3790 }
3791
3792 inst->opcode = FS_OPCODE_FB_WRITE;
3793 inst->mlen = regs_written(load);
3794 inst->header_size = header_size;
3795 }
3796
3797 static void
3798 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3799 {
3800 const fs_builder &ubld = bld.exec_all();
3801 const unsigned length = 2;
3802 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3803
3804 ubld.group(16, 0)
3805 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3806
3807 inst->resize_sources(1);
3808 inst->src[0] = header;
3809 inst->opcode = FS_OPCODE_FB_READ;
3810 inst->mlen = length;
3811 inst->header_size = length;
3812 }
3813
3814 static void
3815 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3816 const fs_reg &coordinate,
3817 const fs_reg &shadow_c,
3818 const fs_reg &lod, const fs_reg &lod2,
3819 const fs_reg &surface,
3820 const fs_reg &sampler,
3821 unsigned coord_components,
3822 unsigned grad_components)
3823 {
3824 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3825 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3826 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3827 fs_reg msg_end = msg_begin;
3828
3829 /* g0 header. */
3830 msg_end = offset(msg_end, bld.group(8, 0), 1);
3831
3832 for (unsigned i = 0; i < coord_components; i++)
3833 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3834 offset(coordinate, bld, i));
3835
3836 msg_end = offset(msg_end, bld, coord_components);
3837
3838 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3839 * require all three components to be present and zero if they are unused.
3840 */
3841 if (coord_components > 0 &&
3842 (has_lod || shadow_c.file != BAD_FILE ||
3843 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3844 for (unsigned i = coord_components; i < 3; i++)
3845 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3846
3847 msg_end = offset(msg_end, bld, 3 - coord_components);
3848 }
3849
3850 if (op == SHADER_OPCODE_TXD) {
3851 /* TXD unsupported in SIMD16 mode. */
3852 assert(bld.dispatch_width() == 8);
3853
3854 /* the slots for u and v are always present, but r is optional */
3855 if (coord_components < 2)
3856 msg_end = offset(msg_end, bld, 2 - coord_components);
3857
3858 /* P = u, v, r
3859 * dPdx = dudx, dvdx, drdx
3860 * dPdy = dudy, dvdy, drdy
3861 *
3862 * 1-arg: Does not exist.
3863 *
3864 * 2-arg: dudx dvdx dudy dvdy
3865 * dPdx.x dPdx.y dPdy.x dPdy.y
3866 * m4 m5 m6 m7
3867 *
3868 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3869 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3870 * m5 m6 m7 m8 m9 m10
3871 */
3872 for (unsigned i = 0; i < grad_components; i++)
3873 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3874
3875 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3876
3877 for (unsigned i = 0; i < grad_components; i++)
3878 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3879
3880 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3881 }
3882
3883 if (has_lod) {
3884 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
3885 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
3886 */
3887 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3888 bld.dispatch_width() == 16);
3889
3890 const brw_reg_type type =
3891 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3892 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3893 bld.MOV(retype(msg_end, type), lod);
3894 msg_end = offset(msg_end, bld, 1);
3895 }
3896
3897 if (shadow_c.file != BAD_FILE) {
3898 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3899 /* There's no plain shadow compare message, so we use shadow
3900 * compare with a bias of 0.0.
3901 */
3902 bld.MOV(msg_end, brw_imm_f(0.0f));
3903 msg_end = offset(msg_end, bld, 1);
3904 }
3905
3906 bld.MOV(msg_end, shadow_c);
3907 msg_end = offset(msg_end, bld, 1);
3908 }
3909
3910 inst->opcode = op;
3911 inst->src[0] = reg_undef;
3912 inst->src[1] = surface;
3913 inst->src[2] = sampler;
3914 inst->resize_sources(3);
3915 inst->base_mrf = msg_begin.nr;
3916 inst->mlen = msg_end.nr - msg_begin.nr;
3917 inst->header_size = 1;
3918 }
3919
3920 static void
3921 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3922 const fs_reg &coordinate,
3923 const fs_reg &shadow_c,
3924 const fs_reg &lod, const fs_reg &lod2,
3925 const fs_reg &sample_index,
3926 const fs_reg &surface,
3927 const fs_reg &sampler,
3928 unsigned coord_components,
3929 unsigned grad_components)
3930 {
3931 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3932 fs_reg msg_coords = message;
3933 unsigned header_size = 0;
3934
3935 if (inst->offset != 0) {
3936 /* The offsets set up by the visitor are in the m1 header, so we can't
3937 * go headerless.
3938 */
3939 header_size = 1;
3940 message.nr--;
3941 }
3942
3943 for (unsigned i = 0; i < coord_components; i++)
3944 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3945 offset(coordinate, bld, i));
3946
3947 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3948 fs_reg msg_lod = offset(msg_coords, bld, 4);
3949
3950 if (shadow_c.file != BAD_FILE) {
3951 fs_reg msg_shadow = msg_lod;
3952 bld.MOV(msg_shadow, shadow_c);
3953 msg_lod = offset(msg_shadow, bld, 1);
3954 msg_end = msg_lod;
3955 }
3956
3957 switch (op) {
3958 case SHADER_OPCODE_TXL:
3959 case FS_OPCODE_TXB:
3960 bld.MOV(msg_lod, lod);
3961 msg_end = offset(msg_lod, bld, 1);
3962 break;
3963 case SHADER_OPCODE_TXD:
3964 /**
3965 * P = u, v, r
3966 * dPdx = dudx, dvdx, drdx
3967 * dPdy = dudy, dvdy, drdy
3968 *
3969 * Load up these values:
3970 * - dudx dudy dvdx dvdy drdx drdy
3971 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3972 */
3973 msg_end = msg_lod;
3974 for (unsigned i = 0; i < grad_components; i++) {
3975 bld.MOV(msg_end, offset(lod, bld, i));
3976 msg_end = offset(msg_end, bld, 1);
3977
3978 bld.MOV(msg_end, offset(lod2, bld, i));
3979 msg_end = offset(msg_end, bld, 1);
3980 }
3981 break;
3982 case SHADER_OPCODE_TXS:
3983 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3984 bld.MOV(msg_lod, lod);
3985 msg_end = offset(msg_lod, bld, 1);
3986 break;
3987 case SHADER_OPCODE_TXF:
3988 msg_lod = offset(msg_coords, bld, 3);
3989 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3990 msg_end = offset(msg_lod, bld, 1);
3991 break;
3992 case SHADER_OPCODE_TXF_CMS:
3993 msg_lod = offset(msg_coords, bld, 3);
3994 /* lod */
3995 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3996 /* sample index */
3997 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3998 msg_end = offset(msg_lod, bld, 2);
3999 break;
4000 default:
4001 break;
4002 }
4003
4004 inst->opcode = op;
4005 inst->src[0] = reg_undef;
4006 inst->src[1] = surface;
4007 inst->src[2] = sampler;
4008 inst->resize_sources(3);
4009 inst->base_mrf = message.nr;
4010 inst->mlen = msg_end.nr - message.nr;
4011 inst->header_size = header_size;
4012
4013 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4014 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4015 }
4016
4017 static bool
4018 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4019 {
4020 if (devinfo->gen < 8 && !devinfo->is_haswell)
4021 return false;
4022
4023 return sampler.file != IMM || sampler.ud >= 16;
4024 }
4025
4026 static void
4027 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4028 const fs_reg &coordinate,
4029 const fs_reg &shadow_c,
4030 fs_reg lod, const fs_reg &lod2,
4031 const fs_reg &sample_index,
4032 const fs_reg &mcs,
4033 const fs_reg &surface,
4034 const fs_reg &sampler,
4035 const fs_reg &tg4_offset,
4036 unsigned coord_components,
4037 unsigned grad_components)
4038 {
4039 const gen_device_info *devinfo = bld.shader->devinfo;
4040 unsigned reg_width = bld.dispatch_width() / 8;
4041 unsigned header_size = 0, length = 0;
4042 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4043 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4044 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4045
4046 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4047 inst->offset != 0 || inst->eot ||
4048 op == SHADER_OPCODE_SAMPLEINFO ||
4049 is_high_sampler(devinfo, sampler)) {
4050 /* For general texture offsets (no txf workaround), we need a header to
4051 * put them in. Note that we're only reserving space for it in the
4052 * message payload as it will be initialized implicitly by the
4053 * generator.
4054 *
4055 * TG4 needs to place its channel select in the header, for interaction
4056 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4057 * larger sampler numbers we need to offset the Sampler State Pointer in
4058 * the header.
4059 */
4060 header_size = 1;
4061 sources[0] = fs_reg();
4062 length++;
4063
4064 /* If we're requesting fewer than four channels worth of response,
4065 * and we have an explicit header, we need to set up the sampler
4066 * writemask. It's reversed from normal: 1 means "don't write".
4067 */
4068 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4069 assert(regs_written(inst) % reg_width == 0);
4070 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4071 inst->offset |= mask << 12;
4072 }
4073 }
4074
4075 if (shadow_c.file != BAD_FILE) {
4076 bld.MOV(sources[length], shadow_c);
4077 length++;
4078 }
4079
4080 bool coordinate_done = false;
4081
4082 /* Set up the LOD info */
4083 switch (op) {
4084 case FS_OPCODE_TXB:
4085 case SHADER_OPCODE_TXL:
4086 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4087 op = SHADER_OPCODE_TXL_LZ;
4088 break;
4089 }
4090 bld.MOV(sources[length], lod);
4091 length++;
4092 break;
4093 case SHADER_OPCODE_TXD:
4094 /* TXD should have been lowered in SIMD16 mode. */
4095 assert(bld.dispatch_width() == 8);
4096
4097 /* Load dPdx and the coordinate together:
4098 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4099 */
4100 for (unsigned i = 0; i < coord_components; i++) {
4101 bld.MOV(sources[length++], offset(coordinate, bld, i));
4102
4103 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4104 * only derivatives for (u, v, r).
4105 */
4106 if (i < grad_components) {
4107 bld.MOV(sources[length++], offset(lod, bld, i));
4108 bld.MOV(sources[length++], offset(lod2, bld, i));
4109 }
4110 }
4111
4112 coordinate_done = true;
4113 break;
4114 case SHADER_OPCODE_TXS:
4115 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4116 length++;
4117 break;
4118 case SHADER_OPCODE_TXF:
4119 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4120 * On Gen9 they are u, v, lod, r
4121 */
4122 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4123
4124 if (devinfo->gen >= 9) {
4125 if (coord_components >= 2) {
4126 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4127 offset(coordinate, bld, 1));
4128 } else {
4129 sources[length] = brw_imm_d(0);
4130 }
4131 length++;
4132 }
4133
4134 if (devinfo->gen >= 9 && lod.is_zero()) {
4135 op = SHADER_OPCODE_TXF_LZ;
4136 } else {
4137 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4138 length++;
4139 }
4140
4141 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4142 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4143 offset(coordinate, bld, i));
4144
4145 coordinate_done = true;
4146 break;
4147
4148 case SHADER_OPCODE_TXF_CMS:
4149 case SHADER_OPCODE_TXF_CMS_W:
4150 case SHADER_OPCODE_TXF_UMS:
4151 case SHADER_OPCODE_TXF_MCS:
4152 if (op == SHADER_OPCODE_TXF_UMS ||
4153 op == SHADER_OPCODE_TXF_CMS ||
4154 op == SHADER_OPCODE_TXF_CMS_W) {
4155 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4156 length++;
4157 }
4158
4159 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4160 /* Data from the multisample control surface. */
4161 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4162 length++;
4163
4164 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4165 * the MCS data.
4166 */
4167 if (op == SHADER_OPCODE_TXF_CMS_W) {
4168 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4169 mcs.file == IMM ?
4170 mcs :
4171 offset(mcs, bld, 1));
4172 length++;
4173 }
4174 }
4175
4176 /* There is no offsetting for this message; just copy in the integer
4177 * texture coordinates.
4178 */
4179 for (unsigned i = 0; i < coord_components; i++)
4180 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4181 offset(coordinate, bld, i));
4182
4183 coordinate_done = true;
4184 break;
4185 case SHADER_OPCODE_TG4_OFFSET:
4186 /* More crazy intermixing */
4187 for (unsigned i = 0; i < 2; i++) /* u, v */
4188 bld.MOV(sources[length++], offset(coordinate, bld, i));
4189
4190 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4191 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4192 offset(tg4_offset, bld, i));
4193
4194 if (coord_components == 3) /* r if present */
4195 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4196
4197 coordinate_done = true;
4198 break;
4199 default:
4200 break;
4201 }
4202
4203 /* Set up the coordinate (except for cases where it was done above) */
4204 if (!coordinate_done) {
4205 for (unsigned i = 0; i < coord_components; i++)
4206 bld.MOV(sources[length++], offset(coordinate, bld, i));
4207 }
4208
4209 int mlen;
4210 if (reg_width == 2)
4211 mlen = length * reg_width - header_size;
4212 else
4213 mlen = length * reg_width;
4214
4215 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4216 BRW_REGISTER_TYPE_F);
4217 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4218
4219 /* Generate the SEND. */
4220 inst->opcode = op;
4221 inst->src[0] = src_payload;
4222 inst->src[1] = surface;
4223 inst->src[2] = sampler;
4224 inst->resize_sources(3);
4225 inst->mlen = mlen;
4226 inst->header_size = header_size;
4227
4228 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4229 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4230 }
4231
4232 static void
4233 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4234 {
4235 const gen_device_info *devinfo = bld.shader->devinfo;
4236 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4237 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4238 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4239 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4240 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4241 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4242 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4243 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4244 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4245 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4246 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4247 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4248 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4249
4250 if (devinfo->gen >= 7) {
4251 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4252 shadow_c, lod, lod2, sample_index,
4253 mcs, surface, sampler, tg4_offset,
4254 coord_components, grad_components);
4255 } else if (devinfo->gen >= 5) {
4256 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4257 shadow_c, lod, lod2, sample_index,
4258 surface, sampler,
4259 coord_components, grad_components);
4260 } else {
4261 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4262 shadow_c, lod, lod2,
4263 surface, sampler,
4264 coord_components, grad_components);
4265 }
4266 }
4267
4268 /**
4269 * Initialize the header present in some typed and untyped surface
4270 * messages.
4271 */
4272 static fs_reg
4273 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4274 {
4275 fs_builder ubld = bld.exec_all().group(8, 0);
4276 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4277 ubld.MOV(dst, brw_imm_d(0));
4278 ubld.MOV(component(dst, 7), sample_mask);
4279 return dst;
4280 }
4281
4282 static void
4283 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4284 const fs_reg &sample_mask)
4285 {
4286 /* Get the logical send arguments. */
4287 const fs_reg &addr = inst->src[0];
4288 const fs_reg &src = inst->src[1];
4289 const fs_reg &surface = inst->src[2];
4290 const UNUSED fs_reg &dims = inst->src[3];
4291 const fs_reg &arg = inst->src[4];
4292
4293 /* Calculate the total number of components of the payload. */
4294 const unsigned addr_sz = inst->components_read(0);
4295 const unsigned src_sz = inst->components_read(1);
4296 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4297 const unsigned sz = header_sz + addr_sz + src_sz;
4298
4299 /* Allocate space for the payload. */
4300 fs_reg *const components = new fs_reg[sz];
4301 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4302 unsigned n = 0;
4303
4304 /* Construct the payload. */
4305 if (header_sz)
4306 components[n++] = emit_surface_header(bld, sample_mask);
4307
4308 for (unsigned i = 0; i < addr_sz; i++)
4309 components[n++] = offset(addr, bld, i);
4310
4311 for (unsigned i = 0; i < src_sz; i++)
4312 components[n++] = offset(src, bld, i);
4313
4314 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4315
4316 /* Update the original instruction. */
4317 inst->opcode = op;
4318 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4319 inst->header_size = header_sz;
4320
4321 inst->src[0] = payload;
4322 inst->src[1] = surface;
4323 inst->src[2] = arg;
4324 inst->resize_sources(3);
4325
4326 delete[] components;
4327 }
4328
4329 static void
4330 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4331 {
4332 const gen_device_info *devinfo = bld.shader->devinfo;
4333
4334 if (devinfo->gen >= 7) {
4335 /* We are switching the instruction from an ALU-like instruction to a
4336 * send-from-grf instruction. Since sends can't handle strides or
4337 * source modifiers, we have to make a copy of the offset source.
4338 */
4339 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4340 bld.MOV(tmp, inst->src[1]);
4341 inst->src[1] = tmp;
4342
4343 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4344
4345 } else {
4346 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4347 BRW_REGISTER_TYPE_UD);
4348
4349 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4350
4351 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4352 inst->resize_sources(1);
4353 inst->base_mrf = payload.nr;
4354 inst->header_size = 1;
4355 inst->mlen = 1 + inst->exec_size / 8;
4356 }
4357 }
4358
4359 static void
4360 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4361 {
4362 assert(bld.shader->devinfo->gen < 6);
4363
4364 inst->base_mrf = 2;
4365 inst->mlen = inst->sources * inst->exec_size / 8;
4366
4367 if (inst->sources > 1) {
4368 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4369 * "Message Payload":
4370 *
4371 * "Operand0[7]. For the INT DIV functions, this operand is the
4372 * denominator."
4373 * ...
4374 * "Operand1[7]. For the INT DIV functions, this operand is the
4375 * numerator."
4376 */
4377 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4378 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4379 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4380
4381 inst->resize_sources(1);
4382 inst->src[0] = src0;
4383
4384 assert(inst->exec_size == 8);
4385 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4386 }
4387 }
4388
4389 bool
4390 fs_visitor::lower_logical_sends()
4391 {
4392 bool progress = false;
4393
4394 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4395 const fs_builder ibld(this, block, inst);
4396
4397 switch (inst->opcode) {
4398 case FS_OPCODE_FB_WRITE_LOGICAL:
4399 assert(stage == MESA_SHADER_FRAGMENT);
4400 lower_fb_write_logical_send(ibld, inst,
4401 brw_wm_prog_data(prog_data),
4402 (const brw_wm_prog_key *)key,
4403 payload);
4404 break;
4405
4406 case FS_OPCODE_FB_READ_LOGICAL:
4407 lower_fb_read_logical_send(ibld, inst);
4408 break;
4409
4410 case SHADER_OPCODE_TEX_LOGICAL:
4411 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4412 break;
4413
4414 case SHADER_OPCODE_TXD_LOGICAL:
4415 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4416 break;
4417
4418 case SHADER_OPCODE_TXF_LOGICAL:
4419 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4420 break;
4421
4422 case SHADER_OPCODE_TXL_LOGICAL:
4423 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4424 break;
4425
4426 case SHADER_OPCODE_TXS_LOGICAL:
4427 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4428 break;
4429
4430 case FS_OPCODE_TXB_LOGICAL:
4431 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4432 break;
4433
4434 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4435 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4436 break;
4437
4438 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4439 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4440 break;
4441
4442 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4443 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4444 break;
4445
4446 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4447 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4448 break;
4449
4450 case SHADER_OPCODE_LOD_LOGICAL:
4451 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4452 break;
4453
4454 case SHADER_OPCODE_TG4_LOGICAL:
4455 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4456 break;
4457
4458 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4459 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4460 break;
4461
4462 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4463 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4464 break;
4465
4466 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4467 lower_surface_logical_send(ibld, inst,
4468 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4469 fs_reg());
4470 break;
4471
4472 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4473 lower_surface_logical_send(ibld, inst,
4474 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4475 ibld.sample_mask_reg());
4476 break;
4477
4478 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4479 lower_surface_logical_send(ibld, inst,
4480 SHADER_OPCODE_UNTYPED_ATOMIC,
4481 ibld.sample_mask_reg());
4482 break;
4483
4484 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4485 lower_surface_logical_send(ibld, inst,
4486 SHADER_OPCODE_TYPED_SURFACE_READ,
4487 brw_imm_d(0xffff));
4488 break;
4489
4490 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4491 lower_surface_logical_send(ibld, inst,
4492 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4493 ibld.sample_mask_reg());
4494 break;
4495
4496 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4497 lower_surface_logical_send(ibld, inst,
4498 SHADER_OPCODE_TYPED_ATOMIC,
4499 ibld.sample_mask_reg());
4500 break;
4501
4502 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4503 lower_varying_pull_constant_logical_send(ibld, inst);
4504 break;
4505
4506 case SHADER_OPCODE_RCP:
4507 case SHADER_OPCODE_RSQ:
4508 case SHADER_OPCODE_SQRT:
4509 case SHADER_OPCODE_EXP2:
4510 case SHADER_OPCODE_LOG2:
4511 case SHADER_OPCODE_SIN:
4512 case SHADER_OPCODE_COS:
4513 case SHADER_OPCODE_POW:
4514 case SHADER_OPCODE_INT_QUOTIENT:
4515 case SHADER_OPCODE_INT_REMAINDER:
4516 /* The math opcodes are overloaded for the send-like and
4517 * expression-like instructions which seems kind of icky. Gen6+ has
4518 * a native (but rather quirky) MATH instruction so we don't need to
4519 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4520 * logical instructions (which we can easily recognize because they
4521 * have mlen = 0) into send-like virtual instructions.
4522 */
4523 if (devinfo->gen < 6 && inst->mlen == 0) {
4524 lower_math_logical_send(ibld, inst);
4525 break;
4526
4527 } else {
4528 continue;
4529 }
4530
4531 default:
4532 continue;
4533 }
4534
4535 progress = true;
4536 }
4537
4538 if (progress)
4539 invalidate_live_intervals();
4540
4541 return progress;
4542 }
4543
4544 /**
4545 * Get the closest allowed SIMD width for instruction \p inst accounting for
4546 * some common regioning and execution control restrictions that apply to FPU
4547 * instructions. These restrictions don't necessarily have any relevance to
4548 * instructions not executed by the FPU pipeline like extended math, control
4549 * flow or send message instructions.
4550 *
4551 * For virtual opcodes it's really up to the instruction -- In some cases
4552 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4553 * instructions) it may simplify virtual instruction lowering if we can
4554 * enforce FPU-like regioning restrictions already on the virtual instruction,
4555 * in other cases (e.g. virtual send-like instructions) this may be
4556 * excessively restrictive.
4557 */
4558 static unsigned
4559 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4560 const fs_inst *inst)
4561 {
4562 /* Maximum execution size representable in the instruction controls. */
4563 unsigned max_width = MIN2(32, inst->exec_size);
4564
4565 /* According to the PRMs:
4566 * "A. In Direct Addressing mode, a source cannot span more than 2
4567 * adjacent GRF registers.
4568 * B. A destination cannot span more than 2 adjacent GRF registers."
4569 *
4570 * Look for the source or destination with the largest register region
4571 * which is the one that is going to limit the overall execution size of
4572 * the instruction due to this rule.
4573 */
4574 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4575
4576 for (unsigned i = 0; i < inst->sources; i++)
4577 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4578
4579 /* Calculate the maximum execution size of the instruction based on the
4580 * factor by which it goes over the hardware limit of 2 GRFs.
4581 */
4582 if (reg_count > 2)
4583 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4584
4585 /* According to the IVB PRMs:
4586 * "When destination spans two registers, the source MUST span two
4587 * registers. The exception to the above rule:
4588 *
4589 * - When source is scalar, the source registers are not incremented.
4590 * - When source is packed integer Word and destination is packed
4591 * integer DWord, the source register is not incremented but the
4592 * source sub register is incremented."
4593 *
4594 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4595 * restrictions. The code below intentionally doesn't check whether the
4596 * destination type is integer because empirically the hardware doesn't
4597 * seem to care what the actual type is as long as it's dword-aligned.
4598 */
4599 if (devinfo->gen < 8) {
4600 for (unsigned i = 0; i < inst->sources; i++) {
4601 /* IVB implements DF scalars as <0;2,1> regions. */
4602 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4603 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
4604 const bool is_packed_word_exception =
4605 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4606 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4607
4608 if (inst->size_written > REG_SIZE &&
4609 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4610 !is_scalar_exception && !is_packed_word_exception) {
4611 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4612 max_width = MIN2(max_width, inst->exec_size / reg_count);
4613 }
4614 }
4615 }
4616
4617 /* From the IVB PRMs:
4618 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4619 * are applied for both halves of the SIMD32 instruction. If different
4620 * execution mask channels are required, split the instruction into two
4621 * SIMD16 instructions."
4622 *
4623 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4624 * 32-wide control flow support in hardware and will behave similarly.
4625 */
4626 if (devinfo->gen < 8 && !inst->force_writemask_all)
4627 max_width = MIN2(max_width, 16);
4628
4629 /* From the IVB PRMs (applies to HSW too):
4630 * "Instructions with condition modifiers must not use SIMD32."
4631 *
4632 * From the BDW PRMs (applies to later hardware too):
4633 * "Ternary instruction with condition modifiers must not use SIMD32."
4634 */
4635 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4636 max_width = MIN2(max_width, 16);
4637
4638 /* From the IVB PRMs (applies to other devices that don't have the
4639 * gen_device_info::supports_simd16_3src flag set):
4640 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4641 * SIMD8 is not allowed for DF operations."
4642 */
4643 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4644 max_width = MIN2(max_width, inst->exec_size / reg_count);
4645
4646 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4647 * the 8-bit quarter of the execution mask signals specified in the
4648 * instruction control fields) for the second compressed half of any
4649 * single-precision instruction (for double-precision instructions
4650 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4651 * the EU will apply the wrong execution controls for the second
4652 * sequential GRF write if the number of channels per GRF is not exactly
4653 * eight in single-precision mode (or four in double-float mode).
4654 *
4655 * In this situation we calculate the maximum size of the split
4656 * instructions so they only ever write to a single register.
4657 */
4658 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4659 !inst->force_writemask_all) {
4660 const unsigned channels_per_grf = inst->exec_size /
4661 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4662 const unsigned exec_type_size = get_exec_type_size(inst);
4663 assert(exec_type_size);
4664
4665 /* The hardware shifts exactly 8 channels per compressed half of the
4666 * instruction in single-precision mode and exactly 4 in double-precision.
4667 */
4668 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4669 max_width = MIN2(max_width, channels_per_grf);
4670
4671 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4672 * because HW applies the same channel enable signals to both halves of
4673 * the compressed instruction which will be just wrong under
4674 * non-uniform control flow.
4675 */
4676 if (devinfo->gen == 7 && !devinfo->is_haswell &&
4677 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4678 max_width = MIN2(max_width, 4);
4679 }
4680
4681 /* Only power-of-two execution sizes are representable in the instruction
4682 * control fields.
4683 */
4684 return 1 << _mesa_logbase2(max_width);
4685 }
4686
4687 /**
4688 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4689 * various payload size restrictions that apply to sampler message
4690 * instructions.
4691 *
4692 * This is only intended to provide a maximum theoretical bound for the
4693 * execution size of the message based on the number of argument components
4694 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4695 * variant of the message can be used, though some messages may have
4696 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4697 * the message length to determine the exact SIMD width and argument count,
4698 * which makes a number of sampler message combinations impossible to
4699 * represent).
4700 */
4701 static unsigned
4702 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4703 const fs_inst *inst)
4704 {
4705 /* Calculate the number of coordinate components that have to be present
4706 * assuming that additional arguments follow the texel coordinates in the
4707 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4708 * need to pad to four or three components depending on the message,
4709 * pre-ILK we need to pad to at most three components.
4710 */
4711 const unsigned req_coord_components =
4712 (devinfo->gen >= 7 ||
4713 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4714 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4715 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4716 3;
4717
4718 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4719 * variant of the TXL or TXF message.
4720 */
4721 const bool implicit_lod = devinfo->gen >= 9 &&
4722 (inst->opcode == SHADER_OPCODE_TXL ||
4723 inst->opcode == SHADER_OPCODE_TXF) &&
4724 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4725
4726 /* Calculate the total number of argument components that need to be passed
4727 * to the sampler unit.
4728 */
4729 const unsigned num_payload_components =
4730 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4731 req_coord_components) +
4732 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4733 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4734 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4735 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4736 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4737 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4738 inst->components_read(TEX_LOGICAL_SRC_MCS);
4739
4740 /* SIMD16 messages with more than five arguments exceed the maximum message
4741 * size supported by the sampler, regardless of whether a header is
4742 * provided or not.
4743 */
4744 return MIN2(inst->exec_size,
4745 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4746 }
4747
4748 /**
4749 * Get the closest native SIMD width supported by the hardware for instruction
4750 * \p inst. The instruction will be left untouched by
4751 * fs_visitor::lower_simd_width() if the returned value is equal to the
4752 * original execution size.
4753 */
4754 static unsigned
4755 get_lowered_simd_width(const struct gen_device_info *devinfo,
4756 const fs_inst *inst)
4757 {
4758 switch (inst->opcode) {
4759 case BRW_OPCODE_MOV:
4760 case BRW_OPCODE_SEL:
4761 case BRW_OPCODE_NOT:
4762 case BRW_OPCODE_AND:
4763 case BRW_OPCODE_OR:
4764 case BRW_OPCODE_XOR:
4765 case BRW_OPCODE_SHR:
4766 case BRW_OPCODE_SHL:
4767 case BRW_OPCODE_ASR:
4768 case BRW_OPCODE_CMPN:
4769 case BRW_OPCODE_CSEL:
4770 case BRW_OPCODE_F32TO16:
4771 case BRW_OPCODE_F16TO32:
4772 case BRW_OPCODE_BFREV:
4773 case BRW_OPCODE_BFE:
4774 case BRW_OPCODE_ADD:
4775 case BRW_OPCODE_MUL:
4776 case BRW_OPCODE_AVG:
4777 case BRW_OPCODE_FRC:
4778 case BRW_OPCODE_RNDU:
4779 case BRW_OPCODE_RNDD:
4780 case BRW_OPCODE_RNDE:
4781 case BRW_OPCODE_RNDZ:
4782 case BRW_OPCODE_LZD:
4783 case BRW_OPCODE_FBH:
4784 case BRW_OPCODE_FBL:
4785 case BRW_OPCODE_CBIT:
4786 case BRW_OPCODE_SAD2:
4787 case BRW_OPCODE_MAD:
4788 case BRW_OPCODE_LRP:
4789 case FS_OPCODE_PACK:
4790 return get_fpu_lowered_simd_width(devinfo, inst);
4791
4792 case BRW_OPCODE_CMP: {
4793 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4794 * when the destination is a GRF the dependency-clear bit on the flag
4795 * register is cleared early.
4796 *
4797 * Suggested workarounds are to disable coissuing CMP instructions
4798 * or to split CMP(16) instructions into two CMP(8) instructions.
4799 *
4800 * We choose to split into CMP(8) instructions since disabling
4801 * coissuing would affect CMP instructions not otherwise affected by
4802 * the errata.
4803 */
4804 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4805 !inst->dst.is_null() ? 8 : ~0);
4806 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4807 }
4808 case BRW_OPCODE_BFI1:
4809 case BRW_OPCODE_BFI2:
4810 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4811 * should
4812 * "Force BFI instructions to be executed always in SIMD8."
4813 */
4814 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4815 get_fpu_lowered_simd_width(devinfo, inst));
4816
4817 case BRW_OPCODE_IF:
4818 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4819 return inst->exec_size;
4820
4821 case SHADER_OPCODE_RCP:
4822 case SHADER_OPCODE_RSQ:
4823 case SHADER_OPCODE_SQRT:
4824 case SHADER_OPCODE_EXP2:
4825 case SHADER_OPCODE_LOG2:
4826 case SHADER_OPCODE_SIN:
4827 case SHADER_OPCODE_COS:
4828 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4829 * Gen6.
4830 */
4831 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4832 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4833 MIN2(8, inst->exec_size));
4834
4835 case SHADER_OPCODE_POW:
4836 /* SIMD16 is only allowed on Gen7+. */
4837 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4838 MIN2(8, inst->exec_size));
4839
4840 case SHADER_OPCODE_INT_QUOTIENT:
4841 case SHADER_OPCODE_INT_REMAINDER:
4842 /* Integer division is limited to SIMD8 on all generations. */
4843 return MIN2(8, inst->exec_size);
4844
4845 case FS_OPCODE_LINTERP:
4846 case FS_OPCODE_GET_BUFFER_SIZE:
4847 case FS_OPCODE_DDX_COARSE:
4848 case FS_OPCODE_DDX_FINE:
4849 case FS_OPCODE_DDY_COARSE:
4850 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4851 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4852 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4853 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4854 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4855 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4856 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4857 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4858 return MIN2(16, inst->exec_size);
4859
4860 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4861 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4862 * message used to implement varying pull constant loads, so expand it
4863 * to SIMD16. An alternative with longer message payload length but
4864 * shorter return payload would be to use the SIMD8 sampler message that
4865 * takes (header, u, v, r) as parameters instead of (header, u).
4866 */
4867 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4868
4869 case FS_OPCODE_DDY_FINE:
4870 /* The implementation of this virtual opcode may require emitting
4871 * compressed Align16 instructions, which are severely limited on some
4872 * generations.
4873 *
4874 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4875 * Region Restrictions):
4876 *
4877 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4878 * and SIMD8 is not allowed for DF operations."
4879 *
4880 * In this context, "DW operations" means "operations acting on 32-bit
4881 * values", so it includes operations on floats.
4882 *
4883 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4884 * (Instruction Compression -> Rules and Restrictions):
4885 *
4886 * "A compressed instruction must be in Align1 access mode. Align16
4887 * mode instructions cannot be compressed."
4888 *
4889 * Similar text exists in the g45 PRM.
4890 *
4891 * Empirically, compressed align16 instructions using odd register
4892 * numbers don't appear to work on Sandybridge either.
4893 */
4894 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4895 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4896 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4897
4898 case SHADER_OPCODE_MULH:
4899 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4900 * is 8-wide on Gen7+.
4901 */
4902 return (devinfo->gen >= 7 ? 8 :
4903 get_fpu_lowered_simd_width(devinfo, inst));
4904
4905 case FS_OPCODE_FB_WRITE_LOGICAL:
4906 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4907 * here.
4908 */
4909 assert(devinfo->gen != 6 ||
4910 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4911 inst->exec_size == 8);
4912 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4913 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4914 8 : MIN2(16, inst->exec_size));
4915
4916 case FS_OPCODE_FB_READ_LOGICAL:
4917 return MIN2(16, inst->exec_size);
4918
4919 case SHADER_OPCODE_TEX_LOGICAL:
4920 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4921 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4922 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4923 case SHADER_OPCODE_LOD_LOGICAL:
4924 case SHADER_OPCODE_TG4_LOGICAL:
4925 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4926 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4927 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4928 return get_sampler_lowered_simd_width(devinfo, inst);
4929
4930 case SHADER_OPCODE_TXD_LOGICAL:
4931 /* TXD is unsupported in SIMD16 mode. */
4932 return 8;
4933
4934 case SHADER_OPCODE_TXL_LOGICAL:
4935 case FS_OPCODE_TXB_LOGICAL:
4936 /* Only one execution size is representable pre-ILK depending on whether
4937 * the shadow reference argument is present.
4938 */
4939 if (devinfo->gen == 4)
4940 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4941 else
4942 return get_sampler_lowered_simd_width(devinfo, inst);
4943
4944 case SHADER_OPCODE_TXF_LOGICAL:
4945 case SHADER_OPCODE_TXS_LOGICAL:
4946 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4947 * messages. Use SIMD16 instead.
4948 */
4949 if (devinfo->gen == 4)
4950 return 16;
4951 else
4952 return get_sampler_lowered_simd_width(devinfo, inst);
4953
4954 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4955 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4956 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4957 return 8;
4958
4959 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4960 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4961 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4962 return MIN2(16, inst->exec_size);
4963
4964 case SHADER_OPCODE_URB_READ_SIMD8:
4965 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4966 case SHADER_OPCODE_URB_WRITE_SIMD8:
4967 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4968 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4969 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4970 return MIN2(8, inst->exec_size);
4971
4972 case SHADER_OPCODE_MOV_INDIRECT: {
4973 /* From IVB and HSW PRMs:
4974 *
4975 * "2.When the destination requires two registers and the sources are
4976 * indirect, the sources must use 1x1 regioning mode.
4977 *
4978 * In case of DF instructions in HSW/IVB, the exec_size is limited by
4979 * the EU decompression logic not handling VxH indirect addressing
4980 * correctly.
4981 */
4982 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
4983 /* Prior to Broadwell, we only have 8 address subregisters. */
4984 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4985 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
4986 inst->exec_size);
4987 }
4988
4989 case SHADER_OPCODE_LOAD_PAYLOAD: {
4990 const unsigned reg_count =
4991 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4992
4993 if (reg_count > 2) {
4994 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4995 * can be easily lowered (which excludes headers and heterogeneous
4996 * types).
4997 */
4998 assert(!inst->header_size);
4999 for (unsigned i = 0; i < inst->sources; i++)
5000 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
5001 inst->src[i].file == BAD_FILE);
5002
5003 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
5004 } else {
5005 return inst->exec_size;
5006 }
5007 }
5008 default:
5009 return inst->exec_size;
5010 }
5011 }
5012
5013 /**
5014 * Return true if splitting out the group of channels of instruction \p inst
5015 * given by lbld.group() requires allocating a temporary for the i-th source
5016 * of the lowered instruction.
5017 */
5018 static inline bool
5019 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5020 {
5021 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5022 (inst->components_read(i) == 1 &&
5023 lbld.dispatch_width() <= inst->exec_size)) ||
5024 (inst->flags_written() &
5025 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
5026 }
5027
5028 /**
5029 * Extract the data that would be consumed by the channel group given by
5030 * lbld.group() from the i-th source region of instruction \p inst and return
5031 * it as result in packed form.
5032 */
5033 static fs_reg
5034 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
5035 {
5036 /* Specified channel group from the source region. */
5037 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5038
5039 if (needs_src_copy(lbld, inst, i)) {
5040 /* Builder of the right width to perform the copy avoiding uninitialized
5041 * data if the lowered execution size is greater than the original
5042 * execution size of the instruction.
5043 */
5044 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5045 inst->exec_size), 0);
5046 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5047
5048 for (unsigned k = 0; k < inst->components_read(i); ++k)
5049 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5050
5051 return tmp;
5052
5053 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5054 /* The source is invariant for all dispatch_width-wide groups of the
5055 * original region.
5056 */
5057 return inst->src[i];
5058
5059 } else {
5060 /* We can just point the lowered instruction at the right channel group
5061 * from the original region.
5062 */
5063 return src;
5064 }
5065 }
5066
5067 /**
5068 * Return true if splitting out the group of channels of instruction \p inst
5069 * given by lbld.group() requires allocating a temporary for the destination
5070 * of the lowered instruction and copying the data back to the original
5071 * destination region.
5072 */
5073 static inline bool
5074 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5075 {
5076 /* If the instruction writes more than one component we'll have to shuffle
5077 * the results of multiple lowered instructions in order to make sure that
5078 * they end up arranged correctly in the original destination region.
5079 */
5080 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5081 return true;
5082
5083 /* If the lowered execution size is larger than the original the result of
5084 * the instruction won't fit in the original destination, so we'll have to
5085 * allocate a temporary in any case.
5086 */
5087 if (lbld.dispatch_width() > inst->exec_size)
5088 return true;
5089
5090 for (unsigned i = 0; i < inst->sources; i++) {
5091 /* If we already made a copy of the source for other reasons there won't
5092 * be any overlap with the destination.
5093 */
5094 if (needs_src_copy(lbld, inst, i))
5095 continue;
5096
5097 /* In order to keep the logic simple we emit a copy whenever the
5098 * destination region doesn't exactly match an overlapping source, which
5099 * may point at the source and destination not being aligned group by
5100 * group which could cause one of the lowered instructions to overwrite
5101 * the data read from the same source by other lowered instructions.
5102 */
5103 if (regions_overlap(inst->dst, inst->size_written,
5104 inst->src[i], inst->size_read(i)) &&
5105 !inst->dst.equals(inst->src[i]))
5106 return true;
5107 }
5108
5109 return false;
5110 }
5111
5112 /**
5113 * Insert data from a packed temporary into the channel group given by
5114 * lbld.group() of the destination region of instruction \p inst and return
5115 * the temporary as result. Any copy instructions that are required for
5116 * unzipping the previous value (in the case of partial writes) will be
5117 * inserted using \p lbld_before and any copy instructions required for
5118 * zipping up the destination of \p inst will be inserted using \p lbld_after.
5119 */
5120 static fs_reg
5121 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
5122 fs_inst *inst)
5123 {
5124 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
5125 assert(lbld_before.group() == lbld_after.group());
5126
5127 /* Specified channel group from the destination region. */
5128 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group());
5129 const unsigned dst_size = inst->size_written /
5130 inst->dst.component_size(inst->exec_size);
5131
5132 if (needs_dst_copy(lbld_after, inst)) {
5133 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
5134
5135 if (inst->predicate) {
5136 /* Handle predication by copying the original contents of
5137 * the destination into the temporary before emitting the
5138 * lowered instruction.
5139 */
5140 const fs_builder gbld_before =
5141 lbld_before.group(MIN2(lbld_before.dispatch_width(),
5142 inst->exec_size), 0);
5143 for (unsigned k = 0; k < dst_size; ++k) {
5144 gbld_before.MOV(offset(tmp, lbld_before, k),
5145 offset(dst, inst->exec_size, k));
5146 }
5147 }
5148
5149 const fs_builder gbld_after =
5150 lbld_after.group(MIN2(lbld_after.dispatch_width(),
5151 inst->exec_size), 0);
5152 for (unsigned k = 0; k < dst_size; ++k) {
5153 /* Use a builder of the right width to perform the copy avoiding
5154 * uninitialized data if the lowered execution size is greater than
5155 * the original execution size of the instruction.
5156 */
5157 gbld_after.MOV(offset(dst, inst->exec_size, k),
5158 offset(tmp, lbld_after, k));
5159 }
5160
5161 return tmp;
5162
5163 } else {
5164 /* No need to allocate a temporary for the lowered instruction, just
5165 * take the right group of channels from the original region.
5166 */
5167 return dst;
5168 }
5169 }
5170
5171 bool
5172 fs_visitor::lower_simd_width()
5173 {
5174 bool progress = false;
5175
5176 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5177 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5178
5179 if (lower_width != inst->exec_size) {
5180 /* Builder matching the original instruction. We may also need to
5181 * emit an instruction of width larger than the original, set the
5182 * execution size of the builder to the highest of both for now so
5183 * we're sure that both cases can be handled.
5184 */
5185 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5186 const fs_builder ibld = bld.at(block, inst)
5187 .exec_all(inst->force_writemask_all)
5188 .group(max_width, inst->group / max_width);
5189
5190 /* Split the copies in chunks of the execution width of either the
5191 * original or the lowered instruction, whichever is lower.
5192 */
5193 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5194 const unsigned dst_size = inst->size_written /
5195 inst->dst.component_size(inst->exec_size);
5196
5197 assert(!inst->writes_accumulator && !inst->mlen);
5198
5199 for (unsigned i = 0; i < n; i++) {
5200 /* Emit a copy of the original instruction with the lowered width.
5201 * If the EOT flag was set throw it away except for the last
5202 * instruction to avoid killing the thread prematurely.
5203 */
5204 fs_inst split_inst = *inst;
5205 split_inst.exec_size = lower_width;
5206 split_inst.eot = inst->eot && i == n - 1;
5207
5208 /* Select the correct channel enables for the i-th group, then
5209 * transform the sources and destination and emit the lowered
5210 * instruction.
5211 */
5212 const fs_builder lbld = ibld.group(lower_width, i);
5213
5214 for (unsigned j = 0; j < inst->sources; j++)
5215 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
5216
5217 split_inst.dst = emit_zip(lbld.at(block, inst),
5218 lbld.at(block, inst->next), inst);
5219 split_inst.size_written =
5220 split_inst.dst.component_size(lower_width) * dst_size;
5221
5222 lbld.emit(split_inst);
5223 }
5224
5225 inst->remove(block);
5226 progress = true;
5227 }
5228 }
5229
5230 if (progress)
5231 invalidate_live_intervals();
5232
5233 return progress;
5234 }
5235
5236 void
5237 fs_visitor::dump_instructions()
5238 {
5239 dump_instructions(NULL);
5240 }
5241
5242 void
5243 fs_visitor::dump_instructions(const char *name)
5244 {
5245 FILE *file = stderr;
5246 if (name && geteuid() != 0) {
5247 file = fopen(name, "w");
5248 if (!file)
5249 file = stderr;
5250 }
5251
5252 if (cfg) {
5253 calculate_register_pressure();
5254 int ip = 0, max_pressure = 0;
5255 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5256 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5257 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5258 dump_instruction(inst, file);
5259 ip++;
5260 }
5261 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5262 } else {
5263 int ip = 0;
5264 foreach_in_list(backend_instruction, inst, &instructions) {
5265 fprintf(file, "%4d: ", ip++);
5266 dump_instruction(inst, file);
5267 }
5268 }
5269
5270 if (file != stderr) {
5271 fclose(file);
5272 }
5273 }
5274
5275 void
5276 fs_visitor::dump_instruction(backend_instruction *be_inst)
5277 {
5278 dump_instruction(be_inst, stderr);
5279 }
5280
5281 void
5282 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5283 {
5284 fs_inst *inst = (fs_inst *)be_inst;
5285
5286 if (inst->predicate) {
5287 fprintf(file, "(%cf0.%d) ",
5288 inst->predicate_inverse ? '-' : '+',
5289 inst->flag_subreg);
5290 }
5291
5292 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5293 if (inst->saturate)
5294 fprintf(file, ".sat");
5295 if (inst->conditional_mod) {
5296 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5297 if (!inst->predicate &&
5298 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5299 inst->opcode != BRW_OPCODE_IF &&
5300 inst->opcode != BRW_OPCODE_WHILE))) {
5301 fprintf(file, ".f0.%d", inst->flag_subreg);
5302 }
5303 }
5304 fprintf(file, "(%d) ", inst->exec_size);
5305
5306 if (inst->mlen) {
5307 fprintf(file, "(mlen: %d) ", inst->mlen);
5308 }
5309
5310 if (inst->eot) {
5311 fprintf(file, "(EOT) ");
5312 }
5313
5314 switch (inst->dst.file) {
5315 case VGRF:
5316 fprintf(file, "vgrf%d", inst->dst.nr);
5317 break;
5318 case FIXED_GRF:
5319 fprintf(file, "g%d", inst->dst.nr);
5320 break;
5321 case MRF:
5322 fprintf(file, "m%d", inst->dst.nr);
5323 break;
5324 case BAD_FILE:
5325 fprintf(file, "(null)");
5326 break;
5327 case UNIFORM:
5328 fprintf(file, "***u%d***", inst->dst.nr);
5329 break;
5330 case ATTR:
5331 fprintf(file, "***attr%d***", inst->dst.nr);
5332 break;
5333 case ARF:
5334 switch (inst->dst.nr) {
5335 case BRW_ARF_NULL:
5336 fprintf(file, "null");
5337 break;
5338 case BRW_ARF_ADDRESS:
5339 fprintf(file, "a0.%d", inst->dst.subnr);
5340 break;
5341 case BRW_ARF_ACCUMULATOR:
5342 fprintf(file, "acc%d", inst->dst.subnr);
5343 break;
5344 case BRW_ARF_FLAG:
5345 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5346 break;
5347 default:
5348 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5349 break;
5350 }
5351 break;
5352 case IMM:
5353 unreachable("not reached");
5354 }
5355
5356 if (inst->dst.offset ||
5357 (inst->dst.file == VGRF &&
5358 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5359 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5360 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5361 inst->dst.offset % reg_size);
5362 }
5363
5364 if (inst->dst.stride != 1)
5365 fprintf(file, "<%u>", inst->dst.stride);
5366 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
5367
5368 for (int i = 0; i < inst->sources; i++) {
5369 if (inst->src[i].negate)
5370 fprintf(file, "-");
5371 if (inst->src[i].abs)
5372 fprintf(file, "|");
5373 switch (inst->src[i].file) {
5374 case VGRF:
5375 fprintf(file, "vgrf%d", inst->src[i].nr);
5376 break;
5377 case FIXED_GRF:
5378 fprintf(file, "g%d", inst->src[i].nr);
5379 break;
5380 case MRF:
5381 fprintf(file, "***m%d***", inst->src[i].nr);
5382 break;
5383 case ATTR:
5384 fprintf(file, "attr%d", inst->src[i].nr);
5385 break;
5386 case UNIFORM:
5387 fprintf(file, "u%d", inst->src[i].nr);
5388 break;
5389 case BAD_FILE:
5390 fprintf(file, "(null)");
5391 break;
5392 case IMM:
5393 switch (inst->src[i].type) {
5394 case BRW_REGISTER_TYPE_F:
5395 fprintf(file, "%-gf", inst->src[i].f);
5396 break;
5397 case BRW_REGISTER_TYPE_DF:
5398 fprintf(file, "%fdf", inst->src[i].df);
5399 break;
5400 case BRW_REGISTER_TYPE_W:
5401 case BRW_REGISTER_TYPE_D:
5402 fprintf(file, "%dd", inst->src[i].d);
5403 break;
5404 case BRW_REGISTER_TYPE_UW:
5405 case BRW_REGISTER_TYPE_UD:
5406 fprintf(file, "%uu", inst->src[i].ud);
5407 break;
5408 case BRW_REGISTER_TYPE_VF:
5409 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5410 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5411 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5412 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5413 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5414 break;
5415 default:
5416 fprintf(file, "???");
5417 break;
5418 }
5419 break;
5420 case ARF:
5421 switch (inst->src[i].nr) {
5422 case BRW_ARF_NULL:
5423 fprintf(file, "null");
5424 break;
5425 case BRW_ARF_ADDRESS:
5426 fprintf(file, "a0.%d", inst->src[i].subnr);
5427 break;
5428 case BRW_ARF_ACCUMULATOR:
5429 fprintf(file, "acc%d", inst->src[i].subnr);
5430 break;
5431 case BRW_ARF_FLAG:
5432 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5433 break;
5434 default:
5435 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5436 break;
5437 }
5438 break;
5439 }
5440
5441 if (inst->src[i].offset ||
5442 (inst->src[i].file == VGRF &&
5443 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5444 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5445 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5446 inst->src[i].offset % reg_size);
5447 }
5448
5449 if (inst->src[i].abs)
5450 fprintf(file, "|");
5451
5452 if (inst->src[i].file != IMM) {
5453 unsigned stride;
5454 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5455 unsigned hstride = inst->src[i].hstride;
5456 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5457 } else {
5458 stride = inst->src[i].stride;
5459 }
5460 if (stride != 1)
5461 fprintf(file, "<%u>", stride);
5462
5463 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
5464 }
5465
5466 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5467 fprintf(file, ", ");
5468 }
5469
5470 fprintf(file, " ");
5471
5472 if (inst->force_writemask_all)
5473 fprintf(file, "NoMask ");
5474
5475 if (inst->exec_size != dispatch_width)
5476 fprintf(file, "group%d ", inst->group);
5477
5478 fprintf(file, "\n");
5479 }
5480
5481 /**
5482 * Possibly returns an instruction that set up @param reg.
5483 *
5484 * Sometimes we want to take the result of some expression/variable
5485 * dereference tree and rewrite the instruction generating the result
5486 * of the tree. When processing the tree, we know that the
5487 * instructions generated are all writing temporaries that are dead
5488 * outside of this tree. So, if we have some instructions that write
5489 * a temporary, we're free to point that temp write somewhere else.
5490 *
5491 * Note that this doesn't guarantee that the instruction generated
5492 * only reg -- it might be the size=4 destination of a texture instruction.
5493 */
5494 fs_inst *
5495 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5496 fs_inst *end,
5497 const fs_reg &reg)
5498 {
5499 if (end == start ||
5500 end->is_partial_write() ||
5501 !reg.equals(end->dst)) {
5502 return NULL;
5503 } else {
5504 return end;
5505 }
5506 }
5507
5508 void
5509 fs_visitor::setup_fs_payload_gen6()
5510 {
5511 assert(stage == MESA_SHADER_FRAGMENT);
5512 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5513
5514 assert(devinfo->gen >= 6);
5515
5516 /* R0-1: masks, pixel X/Y coordinates. */
5517 payload.num_regs = 2;
5518 /* R2: only for 32-pixel dispatch.*/
5519
5520 /* R3-26: barycentric interpolation coordinates. These appear in the
5521 * same order that they appear in the brw_barycentric_mode
5522 * enum. Each set of coordinates occupies 2 registers if dispatch width
5523 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5524 * appear if they were enabled using the "Barycentric Interpolation
5525 * Mode" bits in WM_STATE.
5526 */
5527 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5528 if (prog_data->barycentric_interp_modes & (1 << i)) {
5529 payload.barycentric_coord_reg[i] = payload.num_regs;
5530 payload.num_regs += 2;
5531 if (dispatch_width == 16) {
5532 payload.num_regs += 2;
5533 }
5534 }
5535 }
5536
5537 /* R27: interpolated depth if uses source depth */
5538 prog_data->uses_src_depth =
5539 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5540 if (prog_data->uses_src_depth) {
5541 payload.source_depth_reg = payload.num_regs;
5542 payload.num_regs++;
5543 if (dispatch_width == 16) {
5544 /* R28: interpolated depth if not SIMD8. */
5545 payload.num_regs++;
5546 }
5547 }
5548
5549 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5550 prog_data->uses_src_w =
5551 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5552 if (prog_data->uses_src_w) {
5553 payload.source_w_reg = payload.num_regs;
5554 payload.num_regs++;
5555 if (dispatch_width == 16) {
5556 /* R30: interpolated W if not SIMD8. */
5557 payload.num_regs++;
5558 }
5559 }
5560
5561 /* R31: MSAA position offsets. */
5562 if (prog_data->persample_dispatch &&
5563 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5564 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5565 *
5566 * "MSDISPMODE_PERSAMPLE is required in order to select
5567 * POSOFFSET_SAMPLE"
5568 *
5569 * So we can only really get sample positions if we are doing real
5570 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5571 * persample dispatch, we hard-code it to 0.5.
5572 */
5573 prog_data->uses_pos_offset = true;
5574 payload.sample_pos_reg = payload.num_regs;
5575 payload.num_regs++;
5576 }
5577
5578 /* R32: MSAA input coverage mask */
5579 prog_data->uses_sample_mask =
5580 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5581 if (prog_data->uses_sample_mask) {
5582 assert(devinfo->gen >= 7);
5583 payload.sample_mask_in_reg = payload.num_regs;
5584 payload.num_regs++;
5585 if (dispatch_width == 16) {
5586 /* R33: input coverage mask if not SIMD8. */
5587 payload.num_regs++;
5588 }
5589 }
5590
5591 /* R34-: bary for 32-pixel. */
5592 /* R58-59: interp W for 32-pixel. */
5593
5594 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5595 source_depth_to_render_target = true;
5596 }
5597 }
5598
5599 void
5600 fs_visitor::setup_vs_payload()
5601 {
5602 /* R0: thread header, R1: urb handles */
5603 payload.num_regs = 2;
5604 }
5605
5606 void
5607 fs_visitor::setup_gs_payload()
5608 {
5609 assert(stage == MESA_SHADER_GEOMETRY);
5610
5611 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5612 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5613
5614 /* R0: thread header, R1: output URB handles */
5615 payload.num_regs = 2;
5616
5617 if (gs_prog_data->include_primitive_id) {
5618 /* R2: Primitive ID 0..7 */
5619 payload.num_regs++;
5620 }
5621
5622 /* Always enable VUE handles so we can safely use pull model if needed.
5623 *
5624 * The push model for a GS uses a ton of register space even for trivial
5625 * scenarios with just a few inputs, so just make things easier and a bit
5626 * safer by always having pull model available.
5627 */
5628 gs_prog_data->base.include_vue_handles = true;
5629
5630 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5631 payload.num_regs += nir->info.gs.vertices_in;
5632
5633 /* Use a maximum of 24 registers for push-model inputs. */
5634 const unsigned max_push_components = 24;
5635
5636 /* If pushing our inputs would take too many registers, reduce the URB read
5637 * length (which is in HWords, or 8 registers), and resort to pulling.
5638 *
5639 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5640 * have to multiply by VerticesIn to obtain the total storage requirement.
5641 */
5642 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5643 max_push_components) {
5644 vue_prog_data->urb_read_length =
5645 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5646 }
5647 }
5648
5649 void
5650 fs_visitor::setup_cs_payload()
5651 {
5652 assert(devinfo->gen >= 7);
5653 payload.num_regs = 1;
5654 }
5655
5656 void
5657 fs_visitor::calculate_register_pressure()
5658 {
5659 invalidate_live_intervals();
5660 calculate_live_intervals();
5661
5662 unsigned num_instructions = 0;
5663 foreach_block(block, cfg)
5664 num_instructions += block->instructions.length();
5665
5666 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5667
5668 for (unsigned reg = 0; reg < alloc.count; reg++) {
5669 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5670 regs_live_at_ip[ip] += alloc.sizes[reg];
5671 }
5672 }
5673
5674 /**
5675 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5676 *
5677 * The needs_unlit_centroid_workaround ends up producing one of these per
5678 * channel of centroid input, so it's good to clean them up.
5679 *
5680 * An assumption here is that nothing ever modifies the dispatched pixels
5681 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5682 * dictates that anyway.
5683 */
5684 bool
5685 fs_visitor::opt_drop_redundant_mov_to_flags()
5686 {
5687 bool flag_mov_found[2] = {false};
5688 bool progress = false;
5689
5690 /* Instructions removed by this pass can only be added if this were true */
5691 if (!devinfo->needs_unlit_centroid_workaround)
5692 return false;
5693
5694 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5695 if (inst->is_control_flow()) {
5696 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5697 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5698 if (!flag_mov_found[inst->flag_subreg]) {
5699 flag_mov_found[inst->flag_subreg] = true;
5700 } else {
5701 inst->remove(block);
5702 progress = true;
5703 }
5704 } else if (inst->flags_written()) {
5705 flag_mov_found[inst->flag_subreg] = false;
5706 }
5707 }
5708
5709 return progress;
5710 }
5711
5712 void
5713 fs_visitor::optimize()
5714 {
5715 /* Start by validating the shader we currently have. */
5716 validate();
5717
5718 /* bld is the common builder object pointing at the end of the program we
5719 * used to translate it into i965 IR. For the optimization and lowering
5720 * passes coming next, any code added after the end of the program without
5721 * having explicitly called fs_builder::at() clearly points at a mistake.
5722 * Ideally optimization passes wouldn't be part of the visitor so they
5723 * wouldn't have access to bld at all, but they do, so just in case some
5724 * pass forgets to ask for a location explicitly set it to NULL here to
5725 * make it trip. The dispatch width is initialized to a bogus value to
5726 * make sure that optimizations set the execution controls explicitly to
5727 * match the code they are manipulating instead of relying on the defaults.
5728 */
5729 bld = fs_builder(this, 64);
5730
5731 assign_constant_locations();
5732 lower_constant_loads();
5733
5734 validate();
5735
5736 split_virtual_grfs();
5737 validate();
5738
5739 #define OPT(pass, args...) ({ \
5740 pass_num++; \
5741 bool this_progress = pass(args); \
5742 \
5743 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5744 char filename[64]; \
5745 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5746 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5747 \
5748 backend_shader::dump_instructions(filename); \
5749 } \
5750 \
5751 validate(); \
5752 \
5753 progress = progress || this_progress; \
5754 this_progress; \
5755 })
5756
5757 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5758 char filename[64];
5759 snprintf(filename, 64, "%s%d-%s-00-00-start",
5760 stage_abbrev, dispatch_width, nir->info.name);
5761
5762 backend_shader::dump_instructions(filename);
5763 }
5764
5765 bool progress = false;
5766 int iteration = 0;
5767 int pass_num = 0;
5768
5769 OPT(opt_drop_redundant_mov_to_flags);
5770
5771 do {
5772 progress = false;
5773 pass_num = 0;
5774 iteration++;
5775
5776 OPT(remove_duplicate_mrf_writes);
5777
5778 OPT(opt_algebraic);
5779 OPT(opt_cse);
5780 OPT(opt_copy_propagation);
5781 OPT(opt_predicated_break, this);
5782 OPT(opt_cmod_propagation);
5783 OPT(dead_code_eliminate);
5784 OPT(opt_peephole_sel);
5785 OPT(dead_control_flow_eliminate, this);
5786 OPT(opt_register_renaming);
5787 OPT(opt_saturate_propagation);
5788 OPT(register_coalesce);
5789 OPT(compute_to_mrf);
5790 OPT(eliminate_find_live_channel);
5791
5792 OPT(compact_virtual_grfs);
5793 } while (progress);
5794
5795 progress = false;
5796 pass_num = 0;
5797
5798 if (OPT(lower_pack)) {
5799 OPT(register_coalesce);
5800 OPT(dead_code_eliminate);
5801 }
5802
5803 OPT(lower_simd_width);
5804
5805 /* After SIMD lowering just in case we had to unroll the EOT send. */
5806 OPT(opt_sampler_eot);
5807
5808 OPT(lower_logical_sends);
5809
5810 if (progress) {
5811 OPT(opt_copy_propagation);
5812 /* Only run after logical send lowering because it's easier to implement
5813 * in terms of physical sends.
5814 */
5815 if (OPT(opt_zero_samples))
5816 OPT(opt_copy_propagation);
5817 /* Run after logical send lowering to give it a chance to CSE the
5818 * LOAD_PAYLOAD instructions created to construct the payloads of
5819 * e.g. texturing messages in cases where it wasn't possible to CSE the
5820 * whole logical instruction.
5821 */
5822 OPT(opt_cse);
5823 OPT(register_coalesce);
5824 OPT(compute_to_mrf);
5825 OPT(dead_code_eliminate);
5826 OPT(remove_duplicate_mrf_writes);
5827 OPT(opt_peephole_sel);
5828 }
5829
5830 OPT(opt_redundant_discard_jumps);
5831
5832 if (OPT(lower_load_payload)) {
5833 split_virtual_grfs();
5834 OPT(register_coalesce);
5835 OPT(compute_to_mrf);
5836 OPT(dead_code_eliminate);
5837 }
5838
5839 OPT(opt_combine_constants);
5840 OPT(lower_integer_multiplication);
5841
5842 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5843 OPT(opt_cmod_propagation);
5844 OPT(opt_cse);
5845 OPT(opt_copy_propagation);
5846 OPT(dead_code_eliminate);
5847 }
5848
5849 if (OPT(lower_conversions)) {
5850 OPT(opt_copy_propagation);
5851 OPT(dead_code_eliminate);
5852 OPT(lower_simd_width);
5853 }
5854
5855 lower_uniform_pull_constant_loads();
5856
5857 validate();
5858 }
5859
5860 /**
5861 * Three source instruction must have a GRF/MRF destination register.
5862 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5863 */
5864 void
5865 fs_visitor::fixup_3src_null_dest()
5866 {
5867 bool progress = false;
5868
5869 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5870 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5871 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5872 inst->dst.type);
5873 progress = true;
5874 }
5875 }
5876
5877 if (progress)
5878 invalidate_live_intervals();
5879 }
5880
5881 void
5882 fs_visitor::allocate_registers(bool allow_spilling)
5883 {
5884 bool allocated_without_spills;
5885
5886 static const enum instruction_scheduler_mode pre_modes[] = {
5887 SCHEDULE_PRE,
5888 SCHEDULE_PRE_NON_LIFO,
5889 SCHEDULE_PRE_LIFO,
5890 };
5891
5892 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5893
5894 /* Try each scheduling heuristic to see if it can successfully register
5895 * allocate without spilling. They should be ordered by decreasing
5896 * performance but increasing likelihood of allocating.
5897 */
5898 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5899 schedule_instructions(pre_modes[i]);
5900
5901 if (0) {
5902 assign_regs_trivial();
5903 allocated_without_spills = true;
5904 } else {
5905 allocated_without_spills = assign_regs(false, spill_all);
5906 }
5907 if (allocated_without_spills)
5908 break;
5909 }
5910
5911 if (!allocated_without_spills) {
5912 if (!allow_spilling)
5913 fail("Failure to register allocate and spilling is not allowed.");
5914
5915 /* We assume that any spilling is worse than just dropping back to
5916 * SIMD8. There's probably actually some intermediate point where
5917 * SIMD16 with a couple of spills is still better.
5918 */
5919 if (dispatch_width > min_dispatch_width) {
5920 fail("Failure to register allocate. Reduce number of "
5921 "live scalar values to avoid this.");
5922 } else {
5923 compiler->shader_perf_log(log_data,
5924 "%s shader triggered register spilling. "
5925 "Try reducing the number of live scalar "
5926 "values to improve performance.\n",
5927 stage_name);
5928 }
5929
5930 /* Since we're out of heuristics, just go spill registers until we
5931 * get an allocation.
5932 */
5933 while (!assign_regs(true, spill_all)) {
5934 if (failed)
5935 break;
5936 }
5937 }
5938
5939 /* This must come after all optimization and register allocation, since
5940 * it inserts dead code that happens to have side effects, and it does
5941 * so based on the actual physical registers in use.
5942 */
5943 insert_gen4_send_dependency_workarounds();
5944
5945 if (failed)
5946 return;
5947
5948 schedule_instructions(SCHEDULE_POST);
5949
5950 if (last_scratch > 0) {
5951 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5952
5953 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5954
5955 if (stage == MESA_SHADER_COMPUTE) {
5956 if (devinfo->is_haswell) {
5957 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5958 * field documentation, Haswell supports a minimum of 2kB of
5959 * scratch space for compute shaders, unlike every other stage
5960 * and platform.
5961 */
5962 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5963 } else if (devinfo->gen <= 7) {
5964 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5965 * field documentation, platforms prior to Haswell measure scratch
5966 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5967 */
5968 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5969 max_scratch_size = 12 * 1024;
5970 }
5971 }
5972
5973 /* We currently only support up to 2MB of scratch space. If we
5974 * need to support more eventually, the documentation suggests
5975 * that we could allocate a larger buffer, and partition it out
5976 * ourselves. We'd just have to undo the hardware's address
5977 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5978 * and then add FFTID * (Larger Per Thread Scratch Space).
5979 *
5980 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5981 * Thread Group Tracking > Local Memory/Scratch Space.
5982 */
5983 assert(prog_data->total_scratch < max_scratch_size);
5984 }
5985 }
5986
5987 bool
5988 fs_visitor::run_vs()
5989 {
5990 assert(stage == MESA_SHADER_VERTEX);
5991
5992 setup_vs_payload();
5993
5994 if (shader_time_index >= 0)
5995 emit_shader_time_begin();
5996
5997 emit_nir_code();
5998
5999 if (failed)
6000 return false;
6001
6002 compute_clip_distance();
6003
6004 emit_urb_writes();
6005
6006 if (shader_time_index >= 0)
6007 emit_shader_time_end();
6008
6009 calculate_cfg();
6010
6011 optimize();
6012
6013 assign_curb_setup();
6014 assign_vs_urb_setup();
6015
6016 fixup_3src_null_dest();
6017 allocate_registers(true);
6018
6019 return !failed;
6020 }
6021
6022 bool
6023 fs_visitor::run_tcs_single_patch()
6024 {
6025 assert(stage == MESA_SHADER_TESS_CTRL);
6026
6027 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6028
6029 /* r1-r4 contain the ICP handles. */
6030 payload.num_regs = 5;
6031
6032 if (shader_time_index >= 0)
6033 emit_shader_time_begin();
6034
6035 /* Initialize gl_InvocationID */
6036 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6037 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6038 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6039 bld.MOV(channels_ud, channels_uw);
6040
6041 if (tcs_prog_data->instances == 1) {
6042 invocation_id = channels_ud;
6043 } else {
6044 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6045
6046 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6047 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6048 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6049 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6050 brw_imm_ud(INTEL_MASK(23, 17)));
6051 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6052
6053 bld.ADD(invocation_id, instance_times_8, channels_ud);
6054 }
6055
6056 /* Fix the disptach mask */
6057 if (nir->info.tess.tcs_vertices_out % 8) {
6058 bld.CMP(bld.null_reg_ud(), invocation_id,
6059 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
6060 bld.IF(BRW_PREDICATE_NORMAL);
6061 }
6062
6063 emit_nir_code();
6064
6065 if (nir->info.tess.tcs_vertices_out % 8) {
6066 bld.emit(BRW_OPCODE_ENDIF);
6067 }
6068
6069 /* Emit EOT write; set TR DS Cache bit */
6070 fs_reg srcs[3] = {
6071 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6072 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6073 fs_reg(brw_imm_ud(0)),
6074 };
6075 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6076 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6077
6078 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6079 bld.null_reg_ud(), payload);
6080 inst->mlen = 3;
6081 inst->eot = true;
6082
6083 if (shader_time_index >= 0)
6084 emit_shader_time_end();
6085
6086 if (failed)
6087 return false;
6088
6089 calculate_cfg();
6090
6091 optimize();
6092
6093 assign_curb_setup();
6094 assign_tcs_single_patch_urb_setup();
6095
6096 fixup_3src_null_dest();
6097 allocate_registers(true);
6098
6099 return !failed;
6100 }
6101
6102 bool
6103 fs_visitor::run_tes()
6104 {
6105 assert(stage == MESA_SHADER_TESS_EVAL);
6106
6107 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6108 payload.num_regs = 5;
6109
6110 if (shader_time_index >= 0)
6111 emit_shader_time_begin();
6112
6113 emit_nir_code();
6114
6115 if (failed)
6116 return false;
6117
6118 emit_urb_writes();
6119
6120 if (shader_time_index >= 0)
6121 emit_shader_time_end();
6122
6123 calculate_cfg();
6124
6125 optimize();
6126
6127 assign_curb_setup();
6128 assign_tes_urb_setup();
6129
6130 fixup_3src_null_dest();
6131 allocate_registers(true);
6132
6133 return !failed;
6134 }
6135
6136 bool
6137 fs_visitor::run_gs()
6138 {
6139 assert(stage == MESA_SHADER_GEOMETRY);
6140
6141 setup_gs_payload();
6142
6143 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6144
6145 if (gs_compile->control_data_header_size_bits > 0) {
6146 /* Create a VGRF to store accumulated control data bits. */
6147 this->control_data_bits = vgrf(glsl_type::uint_type);
6148
6149 /* If we're outputting more than 32 control data bits, then EmitVertex()
6150 * will set control_data_bits to 0 after emitting the first vertex.
6151 * Otherwise, we need to initialize it to 0 here.
6152 */
6153 if (gs_compile->control_data_header_size_bits <= 32) {
6154 const fs_builder abld = bld.annotate("initialize control data bits");
6155 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6156 }
6157 }
6158
6159 if (shader_time_index >= 0)
6160 emit_shader_time_begin();
6161
6162 emit_nir_code();
6163
6164 emit_gs_thread_end();
6165
6166 if (shader_time_index >= 0)
6167 emit_shader_time_end();
6168
6169 if (failed)
6170 return false;
6171
6172 calculate_cfg();
6173
6174 optimize();
6175
6176 assign_curb_setup();
6177 assign_gs_urb_setup();
6178
6179 fixup_3src_null_dest();
6180 allocate_registers(true);
6181
6182 return !failed;
6183 }
6184
6185 /* From the SKL PRM, Volume 16, Workarounds:
6186 *
6187 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
6188 * only header phases (R0-R2)
6189 *
6190 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
6191 * have been header only.
6192 *
6193 * Instead of enabling push constants one can alternatively enable one of the
6194 * inputs. Here one simply chooses "layer" which shouldn't impose much
6195 * overhead.
6196 */
6197 static void
6198 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
6199 {
6200 if (wm_prog_data->num_varying_inputs)
6201 return;
6202
6203 if (wm_prog_data->base.curb_read_length)
6204 return;
6205
6206 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
6207 wm_prog_data->num_varying_inputs = 1;
6208 }
6209
6210 bool
6211 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6212 {
6213 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6214 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6215
6216 assert(stage == MESA_SHADER_FRAGMENT);
6217
6218 if (devinfo->gen >= 6)
6219 setup_fs_payload_gen6();
6220 else
6221 setup_fs_payload_gen4();
6222
6223 if (0) {
6224 emit_dummy_fs();
6225 } else if (do_rep_send) {
6226 assert(dispatch_width == 16);
6227 emit_repclear_shader();
6228 } else {
6229 if (shader_time_index >= 0)
6230 emit_shader_time_begin();
6231
6232 calculate_urb_setup();
6233 if (nir->info.inputs_read > 0 ||
6234 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6235 if (devinfo->gen < 6)
6236 emit_interpolation_setup_gen4();
6237 else
6238 emit_interpolation_setup_gen6();
6239 }
6240
6241 /* We handle discards by keeping track of the still-live pixels in f0.1.
6242 * Initialize it with the dispatched pixels.
6243 */
6244 if (wm_prog_data->uses_kill) {
6245 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6246 discard_init->flag_subreg = 1;
6247 }
6248
6249 /* Generate FS IR for main(). (the visitor only descends into
6250 * functions called "main").
6251 */
6252 emit_nir_code();
6253
6254 if (failed)
6255 return false;
6256
6257 if (wm_prog_data->uses_kill)
6258 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6259
6260 if (wm_key->alpha_test_func)
6261 emit_alpha_test();
6262
6263 emit_fb_writes();
6264
6265 if (shader_time_index >= 0)
6266 emit_shader_time_end();
6267
6268 calculate_cfg();
6269
6270 optimize();
6271
6272 assign_curb_setup();
6273
6274 if (devinfo->gen >= 9)
6275 gen9_ps_header_only_workaround(wm_prog_data);
6276
6277 assign_urb_setup();
6278
6279 fixup_3src_null_dest();
6280 allocate_registers(allow_spilling);
6281
6282 if (failed)
6283 return false;
6284 }
6285
6286 return !failed;
6287 }
6288
6289 bool
6290 fs_visitor::run_cs()
6291 {
6292 assert(stage == MESA_SHADER_COMPUTE);
6293
6294 setup_cs_payload();
6295
6296 if (shader_time_index >= 0)
6297 emit_shader_time_begin();
6298
6299 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6300 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6301 const fs_builder abld = bld.exec_all().group(1, 0);
6302 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6303 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6304 }
6305
6306 emit_nir_code();
6307
6308 if (failed)
6309 return false;
6310
6311 emit_cs_terminate();
6312
6313 if (shader_time_index >= 0)
6314 emit_shader_time_end();
6315
6316 calculate_cfg();
6317
6318 optimize();
6319
6320 assign_curb_setup();
6321
6322 fixup_3src_null_dest();
6323 allocate_registers(true);
6324
6325 if (failed)
6326 return false;
6327
6328 return !failed;
6329 }
6330
6331 /**
6332 * Return a bitfield where bit n is set if barycentric interpolation mode n
6333 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6334 *
6335 * We examine the load_barycentric intrinsics rather than looking at input
6336 * variables so that we catch interpolateAtCentroid() messages too, which
6337 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6338 */
6339 static unsigned
6340 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6341 const nir_shader *shader)
6342 {
6343 unsigned barycentric_interp_modes = 0;
6344
6345 nir_foreach_function(f, shader) {
6346 if (!f->impl)
6347 continue;
6348
6349 nir_foreach_block(block, f->impl) {
6350 nir_foreach_instr(instr, block) {
6351 if (instr->type != nir_instr_type_intrinsic)
6352 continue;
6353
6354 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6355 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6356 continue;
6357
6358 /* Ignore WPOS; it doesn't require interpolation. */
6359 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6360 continue;
6361
6362 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6363 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6364 nir_intrinsic_interp_mode(intrin);
6365 nir_intrinsic_op bary_op = intrin->intrinsic;
6366 enum brw_barycentric_mode bary =
6367 brw_barycentric_mode(interp, bary_op);
6368
6369 barycentric_interp_modes |= 1 << bary;
6370
6371 if (devinfo->needs_unlit_centroid_workaround &&
6372 bary_op == nir_intrinsic_load_barycentric_centroid)
6373 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6374 }
6375 }
6376 }
6377
6378 return barycentric_interp_modes;
6379 }
6380
6381 static void
6382 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6383 const nir_shader *shader)
6384 {
6385 prog_data->flat_inputs = 0;
6386
6387 nir_foreach_variable(var, &shader->inputs) {
6388 int input_index = prog_data->urb_setup[var->data.location];
6389
6390 if (input_index < 0)
6391 continue;
6392
6393 /* flat shading */
6394 if (var->data.interpolation == INTERP_MODE_FLAT)
6395 prog_data->flat_inputs |= (1 << input_index);
6396 }
6397 }
6398
6399 static uint8_t
6400 computed_depth_mode(const nir_shader *shader)
6401 {
6402 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6403 switch (shader->info.fs.depth_layout) {
6404 case FRAG_DEPTH_LAYOUT_NONE:
6405 case FRAG_DEPTH_LAYOUT_ANY:
6406 return BRW_PSCDEPTH_ON;
6407 case FRAG_DEPTH_LAYOUT_GREATER:
6408 return BRW_PSCDEPTH_ON_GE;
6409 case FRAG_DEPTH_LAYOUT_LESS:
6410 return BRW_PSCDEPTH_ON_LE;
6411 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6412 return BRW_PSCDEPTH_OFF;
6413 }
6414 }
6415 return BRW_PSCDEPTH_OFF;
6416 }
6417
6418 /**
6419 * Move load_interpolated_input with simple (payload-based) barycentric modes
6420 * to the top of the program so we don't emit multiple PLNs for the same input.
6421 *
6422 * This works around CSE not being able to handle non-dominating cases
6423 * such as:
6424 *
6425 * if (...) {
6426 * interpolate input
6427 * } else {
6428 * interpolate the same exact input
6429 * }
6430 *
6431 * This should be replaced by global value numbering someday.
6432 */
6433 static bool
6434 move_interpolation_to_top(nir_shader *nir)
6435 {
6436 bool progress = false;
6437
6438 nir_foreach_function(f, nir) {
6439 if (!f->impl)
6440 continue;
6441
6442 nir_block *top = nir_start_block(f->impl);
6443 exec_node *cursor_node = NULL;
6444
6445 nir_foreach_block(block, f->impl) {
6446 if (block == top)
6447 continue;
6448
6449 nir_foreach_instr_safe(instr, block) {
6450 if (instr->type != nir_instr_type_intrinsic)
6451 continue;
6452
6453 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6454 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6455 continue;
6456 nir_intrinsic_instr *bary_intrinsic =
6457 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6458 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6459
6460 /* Leave interpolateAtSample/Offset() where they are. */
6461 if (op == nir_intrinsic_load_barycentric_at_sample ||
6462 op == nir_intrinsic_load_barycentric_at_offset)
6463 continue;
6464
6465 nir_instr *move[3] = {
6466 &bary_intrinsic->instr,
6467 intrin->src[1].ssa->parent_instr,
6468 instr
6469 };
6470
6471 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6472 if (move[i]->block != top) {
6473 move[i]->block = top;
6474 exec_node_remove(&move[i]->node);
6475 if (cursor_node) {
6476 exec_node_insert_after(cursor_node, &move[i]->node);
6477 } else {
6478 exec_list_push_head(&top->instr_list, &move[i]->node);
6479 }
6480 cursor_node = &move[i]->node;
6481 progress = true;
6482 }
6483 }
6484 }
6485 }
6486 nir_metadata_preserve(f->impl, (nir_metadata)
6487 ((unsigned) nir_metadata_block_index |
6488 (unsigned) nir_metadata_dominance));
6489 }
6490
6491 return progress;
6492 }
6493
6494 /**
6495 * Demote per-sample barycentric intrinsics to centroid.
6496 *
6497 * Useful when rendering to a non-multisampled buffer.
6498 */
6499 static bool
6500 demote_sample_qualifiers(nir_shader *nir)
6501 {
6502 bool progress = true;
6503
6504 nir_foreach_function(f, nir) {
6505 if (!f->impl)
6506 continue;
6507
6508 nir_builder b;
6509 nir_builder_init(&b, f->impl);
6510
6511 nir_foreach_block(block, f->impl) {
6512 nir_foreach_instr_safe(instr, block) {
6513 if (instr->type != nir_instr_type_intrinsic)
6514 continue;
6515
6516 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6517 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6518 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6519 continue;
6520
6521 b.cursor = nir_before_instr(instr);
6522 nir_ssa_def *centroid =
6523 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6524 nir_intrinsic_interp_mode(intrin));
6525 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6526 nir_src_for_ssa(centroid));
6527 nir_instr_remove(instr);
6528 progress = true;
6529 }
6530 }
6531
6532 nir_metadata_preserve(f->impl, (nir_metadata)
6533 ((unsigned) nir_metadata_block_index |
6534 (unsigned) nir_metadata_dominance));
6535 }
6536
6537 return progress;
6538 }
6539
6540 /**
6541 * Pre-gen6, the register file of the EUs was shared between threads,
6542 * and each thread used some subset allocated on a 16-register block
6543 * granularity. The unit states wanted these block counts.
6544 */
6545 static inline int
6546 brw_register_blocks(int reg_count)
6547 {
6548 return ALIGN(reg_count, 16) / 16 - 1;
6549 }
6550
6551 const unsigned *
6552 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6553 void *mem_ctx,
6554 const struct brw_wm_prog_key *key,
6555 struct brw_wm_prog_data *prog_data,
6556 const nir_shader *src_shader,
6557 struct gl_program *prog,
6558 int shader_time_index8, int shader_time_index16,
6559 bool allow_spilling,
6560 bool use_rep_send, struct brw_vue_map *vue_map,
6561 char **error_str)
6562 {
6563 const struct gen_device_info *devinfo = compiler->devinfo;
6564
6565 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6566 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6567 brw_nir_lower_fs_inputs(shader, devinfo, key);
6568 brw_nir_lower_fs_outputs(shader);
6569
6570 if (devinfo->gen < 6) {
6571 brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6572 }
6573
6574 if (!key->multisample_fbo)
6575 NIR_PASS_V(shader, demote_sample_qualifiers);
6576 NIR_PASS_V(shader, move_interpolation_to_top);
6577 shader = brw_postprocess_nir(shader, compiler, true);
6578
6579 /* key->alpha_test_func means simulating alpha testing via discards,
6580 * so the shader definitely kills pixels.
6581 */
6582 prog_data->uses_kill = shader->info.fs.uses_discard ||
6583 key->alpha_test_func;
6584 prog_data->uses_omask = key->multisample_fbo &&
6585 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6586 prog_data->computed_depth_mode = computed_depth_mode(shader);
6587 prog_data->computed_stencil =
6588 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6589
6590 prog_data->persample_dispatch =
6591 key->multisample_fbo &&
6592 (key->persample_interp ||
6593 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6594 SYSTEM_BIT_SAMPLE_POS)) ||
6595 shader->info.fs.uses_sample_qualifier ||
6596 shader->info.outputs_read);
6597
6598 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
6599
6600 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6601 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
6602 prog_data->inner_coverage = shader->info.fs.inner_coverage;
6603
6604 prog_data->barycentric_interp_modes =
6605 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6606
6607 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6608 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6609 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6610
6611 fs_visitor v8(compiler, log_data, mem_ctx, key,
6612 &prog_data->base, prog, shader, 8,
6613 shader_time_index8);
6614 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6615 if (error_str)
6616 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6617
6618 return NULL;
6619 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6620 simd8_cfg = v8.cfg;
6621 simd8_grf_start = v8.payload.num_regs;
6622 simd8_grf_used = v8.grf_used;
6623 }
6624
6625 if (v8.max_dispatch_width >= 16 &&
6626 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6627 /* Try a SIMD16 compile */
6628 fs_visitor v16(compiler, log_data, mem_ctx, key,
6629 &prog_data->base, prog, shader, 16,
6630 shader_time_index16);
6631 v16.import_uniforms(&v8);
6632 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6633 compiler->shader_perf_log(log_data,
6634 "SIMD16 shader failed to compile: %s",
6635 v16.fail_msg);
6636 } else {
6637 simd16_cfg = v16.cfg;
6638 simd16_grf_start = v16.payload.num_regs;
6639 simd16_grf_used = v16.grf_used;
6640 }
6641 }
6642
6643 /* When the caller requests a repclear shader, they want SIMD16-only */
6644 if (use_rep_send)
6645 simd8_cfg = NULL;
6646
6647 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6648 * at the top to select the shader. We've never implemented that.
6649 * Instead, we just give them exactly one shader and we pick the widest one
6650 * available.
6651 */
6652 if (compiler->devinfo->gen < 5 && simd16_cfg)
6653 simd8_cfg = NULL;
6654
6655 if (prog_data->persample_dispatch) {
6656 /* Starting with SandyBridge (where we first get MSAA), the different
6657 * pixel dispatch combinations are grouped into classifications A
6658 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6659 * generations, the only configurations supporting persample dispatch
6660 * are are this in which only one dispatch width is enabled.
6661 *
6662 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6663 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6664 */
6665 if (compiler->devinfo->gen == 6 &&
6666 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6667 simd16_cfg = NULL;
6668 } else if (simd16_cfg) {
6669 simd8_cfg = NULL;
6670 }
6671 }
6672
6673 /* We have to compute the flat inputs after the visitor is finished running
6674 * because it relies on prog_data->urb_setup which is computed in
6675 * fs_visitor::calculate_urb_setup().
6676 */
6677 brw_compute_flat_inputs(prog_data, shader);
6678
6679 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6680 v8.promoted_constants, v8.runtime_check_aads_emit,
6681 MESA_SHADER_FRAGMENT);
6682
6683 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6684 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6685 shader->info.label ?
6686 shader->info.label : "unnamed",
6687 shader->info.name));
6688 }
6689
6690 if (simd8_cfg) {
6691 prog_data->dispatch_8 = true;
6692 g.generate_code(simd8_cfg, 8);
6693 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6694 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6695
6696 if (simd16_cfg) {
6697 prog_data->dispatch_16 = true;
6698 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6699 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6700 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6701 }
6702 } else if (simd16_cfg) {
6703 prog_data->dispatch_16 = true;
6704 g.generate_code(simd16_cfg, 16);
6705 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6706 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6707 }
6708
6709 return g.get_assembly(&prog_data->base.program_size);
6710 }
6711
6712 fs_reg *
6713 fs_visitor::emit_cs_work_group_id_setup()
6714 {
6715 assert(stage == MESA_SHADER_COMPUTE);
6716
6717 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6718
6719 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6720 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6721 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6722
6723 bld.MOV(*reg, r0_1);
6724 bld.MOV(offset(*reg, bld, 1), r0_6);
6725 bld.MOV(offset(*reg, bld, 2), r0_7);
6726
6727 return reg;
6728 }
6729
6730 static void
6731 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6732 {
6733 block->dwords = dwords;
6734 block->regs = DIV_ROUND_UP(dwords, 8);
6735 block->size = block->regs * 32;
6736 }
6737
6738 static void
6739 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6740 struct brw_cs_prog_data *cs_prog_data)
6741 {
6742 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6743 int thread_local_id_index = get_thread_local_id_param_index(prog_data);
6744 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6745
6746 /* The thread ID should be stored in the last param dword */
6747 assert(thread_local_id_index == -1 ||
6748 thread_local_id_index == (int)prog_data->nr_params - 1);
6749
6750 unsigned cross_thread_dwords, per_thread_dwords;
6751 if (!cross_thread_supported) {
6752 cross_thread_dwords = 0u;
6753 per_thread_dwords = prog_data->nr_params;
6754 } else if (thread_local_id_index >= 0) {
6755 /* Fill all but the last register with cross-thread payload */
6756 cross_thread_dwords = 8 * (thread_local_id_index / 8);
6757 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6758 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6759 } else {
6760 /* Fill all data using cross-thread payload */
6761 cross_thread_dwords = prog_data->nr_params;
6762 per_thread_dwords = 0u;
6763 }
6764
6765 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6766 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6767
6768 unsigned total_dwords =
6769 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6770 cs_prog_data->push.cross_thread.size) / 4;
6771 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6772
6773 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6774 cs_prog_data->push.per_thread.size == 0);
6775 assert(cs_prog_data->push.cross_thread.dwords +
6776 cs_prog_data->push.per_thread.dwords ==
6777 prog_data->nr_params);
6778 }
6779
6780 static void
6781 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6782 {
6783 cs_prog_data->simd_size = size;
6784 unsigned group_size = cs_prog_data->local_size[0] *
6785 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6786 cs_prog_data->threads = (group_size + size - 1) / size;
6787 }
6788
6789 const unsigned *
6790 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6791 void *mem_ctx,
6792 const struct brw_cs_prog_key *key,
6793 struct brw_cs_prog_data *prog_data,
6794 const nir_shader *src_shader,
6795 int shader_time_index,
6796 char **error_str)
6797 {
6798 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6799 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6800
6801 brw_nir_lower_cs_intrinsics(shader, prog_data);
6802 shader = brw_postprocess_nir(shader, compiler, true);
6803
6804 prog_data->local_size[0] = shader->info.cs.local_size[0];
6805 prog_data->local_size[1] = shader->info.cs.local_size[1];
6806 prog_data->local_size[2] = shader->info.cs.local_size[2];
6807 unsigned local_workgroup_size =
6808 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
6809 shader->info.cs.local_size[2];
6810
6811 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6812 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6813
6814 cfg_t *cfg = NULL;
6815 const char *fail_msg = NULL;
6816
6817 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6818 */
6819 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6820 NULL, /* Never used in core profile */
6821 shader, 8, shader_time_index);
6822 if (simd_required <= 8) {
6823 if (!v8.run_cs()) {
6824 fail_msg = v8.fail_msg;
6825 } else {
6826 cfg = v8.cfg;
6827 cs_set_simd_size(prog_data, 8);
6828 cs_fill_push_const_info(compiler->devinfo, prog_data);
6829 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6830 }
6831 }
6832
6833 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6834 NULL, /* Never used in core profile */
6835 shader, 16, shader_time_index);
6836 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6837 !fail_msg && v8.max_dispatch_width >= 16 &&
6838 simd_required <= 16) {
6839 /* Try a SIMD16 compile */
6840 if (simd_required <= 8)
6841 v16.import_uniforms(&v8);
6842 if (!v16.run_cs()) {
6843 compiler->shader_perf_log(log_data,
6844 "SIMD16 shader failed to compile: %s",
6845 v16.fail_msg);
6846 if (!cfg) {
6847 fail_msg =
6848 "Couldn't generate SIMD16 program and not "
6849 "enough threads for SIMD8";
6850 }
6851 } else {
6852 cfg = v16.cfg;
6853 cs_set_simd_size(prog_data, 16);
6854 cs_fill_push_const_info(compiler->devinfo, prog_data);
6855 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6856 }
6857 }
6858
6859 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6860 NULL, /* Never used in core profile */
6861 shader, 32, shader_time_index);
6862 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6863 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6864 /* Try a SIMD32 compile */
6865 if (simd_required <= 8)
6866 v32.import_uniforms(&v8);
6867 else if (simd_required <= 16)
6868 v32.import_uniforms(&v16);
6869
6870 if (!v32.run_cs()) {
6871 compiler->shader_perf_log(log_data,
6872 "SIMD32 shader failed to compile: %s",
6873 v16.fail_msg);
6874 if (!cfg) {
6875 fail_msg =
6876 "Couldn't generate SIMD32 program and not "
6877 "enough threads for SIMD16";
6878 }
6879 } else {
6880 cfg = v32.cfg;
6881 cs_set_simd_size(prog_data, 32);
6882 cs_fill_push_const_info(compiler->devinfo, prog_data);
6883 }
6884 }
6885
6886 if (unlikely(cfg == NULL)) {
6887 assert(fail_msg);
6888 if (error_str)
6889 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6890
6891 return NULL;
6892 }
6893
6894 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6895 v8.promoted_constants, v8.runtime_check_aads_emit,
6896 MESA_SHADER_COMPUTE);
6897 if (INTEL_DEBUG & DEBUG_CS) {
6898 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6899 shader->info.label ? shader->info.label :
6900 "unnamed",
6901 shader->info.name);
6902 g.enable_debug(name);
6903 }
6904
6905 g.generate_code(cfg, prog_data->simd_size);
6906
6907 return g.get_assembly(&prog_data->base.program_size);
6908 }
6909
6910 /**
6911 * Test the dispatch mask packing assumptions of
6912 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
6913 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6914 * executed with an unexpected dispatch mask.
6915 */
6916 static UNUSED void
6917 brw_fs_test_dispatch_packing(const fs_builder &bld)
6918 {
6919 const gl_shader_stage stage = bld.shader->stage;
6920
6921 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6922 bld.shader->stage_prog_data)) {
6923 const fs_builder ubld = bld.exec_all().group(1, 0);
6924 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6925 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6926 brw_dmask_reg());
6927
6928 ubld.ADD(tmp, mask, brw_imm_ud(1));
6929 ubld.AND(tmp, mask, tmp);
6930
6931 /* This will loop forever if the dispatch mask doesn't have the expected
6932 * form '2^n-1', in which case tmp will be non-zero.
6933 */
6934 bld.emit(BRW_OPCODE_DO);
6935 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6936 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6937 }
6938 }