i965/fs: Propagate conditional modifiers from compares to adds
[mesa.git] / src / intel / compiler / brw_fs_cmod_propagation.cpp
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_fs.h"
25 #include "brw_cfg.h"
26 #include "brw_eu.h"
27
28 /** @file brw_fs_cmod_propagation.cpp
29 *
30 * Implements a pass that propagates the conditional modifier from a CMP x 0.0
31 * instruction into the instruction that generated x. For instance, in this
32 * sequence
33 *
34 * add(8) g70<1>F g69<8,8,1>F 4096F
35 * cmp.ge.f0(8) null g70<8,8,1>F 0F
36 *
37 * we can do the comparison as part of the ADD instruction directly:
38 *
39 * add.ge.f0(8) g70<1>F g69<8,8,1>F 4096F
40 *
41 * If there had been a use of the flag register and another CMP using g70
42 *
43 * add.ge.f0(8) g70<1>F g69<8,8,1>F 4096F
44 * (+f0) sel(8) g71<F> g72<8,8,1>F g73<8,8,1>F
45 * cmp.ge.f0(8) null g70<8,8,1>F 0F
46 *
47 * we can recognize that the CMP is generating the flag value that already
48 * exists and therefore remove the instruction.
49 */
50
51 static bool
52 opt_cmod_propagation_local(const gen_device_info *devinfo, bblock_t *block)
53 {
54 bool progress = false;
55 int ip = block->end_ip + 1;
56
57 foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
58 ip--;
59
60 if ((inst->opcode != BRW_OPCODE_AND &&
61 inst->opcode != BRW_OPCODE_CMP &&
62 inst->opcode != BRW_OPCODE_MOV) ||
63 inst->predicate != BRW_PREDICATE_NONE ||
64 !inst->dst.is_null() ||
65 (inst->src[0].file != VGRF && inst->src[0].file != ATTR &&
66 inst->src[0].file != UNIFORM))
67 continue;
68
69 /* An ABS source modifier can only be handled when processing a compare
70 * with a value other than zero.
71 */
72 if (inst->src[0].abs &&
73 (inst->opcode != BRW_OPCODE_CMP || inst->src[1].is_zero()))
74 continue;
75
76 /* Only an AND.NZ can be propagated. Many AND.Z instructions are
77 * generated (for ir_unop_not in fs_visitor::emit_bool_to_cond_code).
78 * Propagating those would require inverting the condition on the CMP.
79 * This changes both the flag value and the register destination of the
80 * CMP. That result may be used elsewhere, so we can't change its value
81 * on a whim.
82 */
83 if (inst->opcode == BRW_OPCODE_AND &&
84 !(inst->src[1].is_one() &&
85 inst->conditional_mod == BRW_CONDITIONAL_NZ &&
86 !inst->src[0].negate))
87 continue;
88
89 if (inst->opcode == BRW_OPCODE_MOV &&
90 inst->conditional_mod != BRW_CONDITIONAL_NZ)
91 continue;
92
93 bool read_flag = false;
94 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
95 /* A CMP with a second source of zero can match with anything. A CMP
96 * with a second source that is not zero can only match with an ADD
97 * instruction.
98 */
99 if (inst->opcode == BRW_OPCODE_CMP && !inst->src[1].is_zero()) {
100 bool negate;
101
102 if (scan_inst->opcode != BRW_OPCODE_ADD)
103 goto not_match;
104
105 /* A CMP is basically a subtraction. The result of the
106 * subtraction must be the same as the result of the addition.
107 * This means that one of the operands must be negated. So (a +
108 * b) vs (a == -b) or (a + -b) vs (a == b).
109 */
110 if ((inst->src[0].equals(scan_inst->src[0]) &&
111 inst->src[1].negative_equals(scan_inst->src[1])) ||
112 (inst->src[0].equals(scan_inst->src[1]) &&
113 inst->src[1].negative_equals(scan_inst->src[0]))) {
114 negate = false;
115 } else if ((inst->src[0].negative_equals(scan_inst->src[0]) &&
116 inst->src[1].equals(scan_inst->src[1])) ||
117 (inst->src[0].negative_equals(scan_inst->src[1]) &&
118 inst->src[1].equals(scan_inst->src[0]))) {
119 negate = true;
120 } else {
121 goto not_match;
122 }
123
124 if (scan_inst->is_partial_write() ||
125 scan_inst->exec_size != inst->exec_size)
126 goto not_match;
127
128 /* From the Sky Lake PRM Vol. 7 "Assigning Conditional Mods":
129 *
130 * * Note that the [post condition signal] bits generated at
131 * the output of a compute are before the .sat.
132 *
133 * So we don't have to bail if scan_inst has saturate.
134 */
135
136 /* Otherwise, try propagating the conditional. */
137 const enum brw_conditional_mod cond =
138 negate ? brw_swap_cmod(inst->conditional_mod)
139 : inst->conditional_mod;
140
141 if (scan_inst->can_do_cmod() &&
142 ((!read_flag && scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) ||
143 scan_inst->conditional_mod == cond)) {
144 scan_inst->conditional_mod = cond;
145 inst->remove(block);
146 progress = true;
147 }
148 break;
149 }
150
151 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
152 inst->src[0], inst->size_read(0))) {
153 if (scan_inst->is_partial_write() ||
154 scan_inst->dst.offset != inst->src[0].offset ||
155 scan_inst->exec_size != inst->exec_size)
156 break;
157
158 /* CMP's result is the same regardless of dest type. */
159 if (inst->conditional_mod == BRW_CONDITIONAL_NZ &&
160 scan_inst->opcode == BRW_OPCODE_CMP &&
161 (inst->dst.type == BRW_REGISTER_TYPE_D ||
162 inst->dst.type == BRW_REGISTER_TYPE_UD)) {
163 inst->remove(block);
164 progress = true;
165 break;
166 }
167
168 /* If the AND wasn't handled by the previous case, it isn't safe
169 * to remove it.
170 */
171 if (inst->opcode == BRW_OPCODE_AND)
172 break;
173
174 /* Comparisons operate differently for ints and floats */
175 if (scan_inst->dst.type != inst->dst.type &&
176 (scan_inst->dst.type == BRW_REGISTER_TYPE_F ||
177 inst->dst.type == BRW_REGISTER_TYPE_F))
178 break;
179
180 /* If the instruction generating inst's source also wrote the
181 * flag, and inst is doing a simple .nz comparison, then inst
182 * is redundant - the appropriate value is already in the flag
183 * register. Delete inst.
184 */
185 if (inst->conditional_mod == BRW_CONDITIONAL_NZ &&
186 !inst->src[0].negate &&
187 scan_inst->flags_written()) {
188 inst->remove(block);
189 progress = true;
190 break;
191 }
192
193 /* The conditional mod of the CMP/CMPN instructions behaves
194 * specially because the flag output is not calculated from the
195 * result of the instruction, but the other way around, which
196 * means that even if the condmod to propagate and the condmod
197 * from the CMP instruction are the same they will in general give
198 * different results because they are evaluated based on different
199 * inputs.
200 */
201 if (scan_inst->opcode == BRW_OPCODE_CMP ||
202 scan_inst->opcode == BRW_OPCODE_CMPN)
203 break;
204
205 /* From the Sky Lake PRM Vol. 7 "Assigning Conditional Mods":
206 *
207 * * Note that the [post condition signal] bits generated at
208 * the output of a compute are before the .sat.
209 */
210 if (scan_inst->saturate)
211 break;
212
213 /* From the Sky Lake PRM, Vol 2a, "Multiply":
214 *
215 * "When multiplying integer data types, if one of the sources
216 * is a DW, the resulting full precision data is stored in
217 * the accumulator. However, if the destination data type is
218 * either W or DW, the low bits of the result are written to
219 * the destination register and the remaining high bits are
220 * discarded. This results in undefined Overflow and Sign
221 * flags. Therefore, conditional modifiers and saturation
222 * (.sat) cannot be used in this case."
223 *
224 * We just disallow cmod propagation on all integer multiplies.
225 */
226 if (!brw_reg_type_is_floating_point(scan_inst->dst.type) &&
227 scan_inst->opcode == BRW_OPCODE_MUL)
228 break;
229
230 /* Otherwise, try propagating the conditional. */
231 enum brw_conditional_mod cond =
232 inst->src[0].negate ? brw_swap_cmod(inst->conditional_mod)
233 : inst->conditional_mod;
234
235 if (scan_inst->can_do_cmod() &&
236 ((!read_flag && scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) ||
237 scan_inst->conditional_mod == cond)) {
238 scan_inst->conditional_mod = cond;
239 inst->remove(block);
240 progress = true;
241 }
242 break;
243 }
244
245 not_match:
246 if (scan_inst->flags_written())
247 break;
248
249 read_flag = read_flag || scan_inst->flags_read(devinfo);
250 }
251 }
252
253 return progress;
254 }
255
256 bool
257 fs_visitor::opt_cmod_propagation()
258 {
259 bool progress = false;
260
261 foreach_block_reverse(block, cfg) {
262 progress = opt_cmod_propagation_local(devinfo, block) || progress;
263 }
264
265 if (progress)
266 invalidate_live_intervals();
267
268 return progress;
269 }