intel/fs: Optimize and simplify the copy propagation dataflow logic.
[mesa.git] / src / intel / compiler / brw_fs_copy_propagation.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_copy_propagation.cpp
25 *
26 * Support for global copy propagation in two passes: A local pass that does
27 * intra-block copy (and constant) propagation, and a global pass that uses
28 * dataflow analysis on the copies available at the end of each block to re-do
29 * local copy propagation with more copies available.
30 *
31 * See Muchnick's Advanced Compiler Design and Implementation, section
32 * 12.5 (p356).
33 */
34
35 #define ACP_HASH_SIZE 16
36
37 #include "util/bitset.h"
38 #include "brw_fs.h"
39 #include "brw_fs_live_variables.h"
40 #include "brw_cfg.h"
41 #include "brw_eu.h"
42
43 using namespace brw;
44
45 namespace { /* avoid conflict with opt_copy_propagation_elements */
46 struct acp_entry : public exec_node {
47 fs_reg dst;
48 fs_reg src;
49 uint8_t size_written;
50 uint8_t size_read;
51 enum opcode opcode;
52 bool saturate;
53 };
54
55 struct block_data {
56 /**
57 * Which entries in the fs_copy_prop_dataflow acp table are live at the
58 * start of this block. This is the useful output of the analysis, since
59 * it lets us plug those into the local copy propagation on the second
60 * pass.
61 */
62 BITSET_WORD *livein;
63
64 /**
65 * Which entries in the fs_copy_prop_dataflow acp table are live at the end
66 * of this block. This is done in initial setup from the per-block acps
67 * returned by the first local copy prop pass.
68 */
69 BITSET_WORD *liveout;
70
71 /**
72 * Which entries in the fs_copy_prop_dataflow acp table are generated by
73 * instructions in this block which reach the end of the block without
74 * being killed.
75 */
76 BITSET_WORD *copy;
77
78 /**
79 * Which entries in the fs_copy_prop_dataflow acp table are killed over the
80 * course of this block.
81 */
82 BITSET_WORD *kill;
83
84 /**
85 * Which entries in the fs_copy_prop_dataflow acp table are guaranteed to
86 * have a fully uninitialized destination at the end of this block.
87 */
88 BITSET_WORD *undef;
89 };
90
91 class fs_copy_prop_dataflow
92 {
93 public:
94 fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
95 const fs_live_variables *live,
96 exec_list *out_acp[ACP_HASH_SIZE]);
97
98 void setup_initial_values();
99 void run();
100
101 void dump_block_data() const UNUSED;
102
103 void *mem_ctx;
104 cfg_t *cfg;
105 const fs_live_variables *live;
106
107 acp_entry **acp;
108 int num_acp;
109 int bitset_words;
110
111 struct block_data *bd;
112 };
113 } /* anonymous namespace */
114
115 fs_copy_prop_dataflow::fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
116 const fs_live_variables *live,
117 exec_list *out_acp[ACP_HASH_SIZE])
118 : mem_ctx(mem_ctx), cfg(cfg), live(live)
119 {
120 bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
121
122 num_acp = 0;
123 foreach_block (block, cfg) {
124 for (int i = 0; i < ACP_HASH_SIZE; i++) {
125 num_acp += out_acp[block->num][i].length();
126 }
127 }
128
129 acp = rzalloc_array(mem_ctx, struct acp_entry *, num_acp);
130
131 bitset_words = BITSET_WORDS(num_acp);
132
133 int next_acp = 0;
134 foreach_block (block, cfg) {
135 bd[block->num].livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
136 bd[block->num].liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
137 bd[block->num].copy = rzalloc_array(bd, BITSET_WORD, bitset_words);
138 bd[block->num].kill = rzalloc_array(bd, BITSET_WORD, bitset_words);
139 bd[block->num].undef = rzalloc_array(bd, BITSET_WORD, bitset_words);
140
141 for (int i = 0; i < ACP_HASH_SIZE; i++) {
142 foreach_in_list(acp_entry, entry, &out_acp[block->num][i]) {
143 acp[next_acp] = entry;
144
145 /* opt_copy_propagation_local populates out_acp with copies created
146 * in a block which are still live at the end of the block. This
147 * is exactly what we want in the COPY set.
148 */
149 BITSET_SET(bd[block->num].copy, next_acp);
150
151 next_acp++;
152 }
153 }
154 }
155
156 assert(next_acp == num_acp);
157
158 setup_initial_values();
159 run();
160 }
161
162 /**
163 * Set up initial values for each of the data flow sets, prior to running
164 * the fixed-point algorithm.
165 */
166 void
167 fs_copy_prop_dataflow::setup_initial_values()
168 {
169 /* Initialize the COPY and KILL sets. */
170 foreach_block (block, cfg) {
171 foreach_inst_in_block(fs_inst, inst, block) {
172 if (inst->dst.file != VGRF)
173 continue;
174
175 /* Mark ACP entries which are killed by this instruction. */
176 for (int i = 0; i < num_acp; i++) {
177 if (regions_overlap(inst->dst, inst->size_written,
178 acp[i]->dst, acp[i]->size_written) ||
179 regions_overlap(inst->dst, inst->size_written,
180 acp[i]->src, acp[i]->size_read)) {
181 BITSET_SET(bd[block->num].kill, i);
182 }
183 }
184 }
185 }
186
187 /* Populate the initial values for the livein and liveout sets. For the
188 * block at the start of the program, livein = 0 and liveout = copy.
189 * For the others, set liveout and livein to ~0 (the universal set).
190 */
191 foreach_block (block, cfg) {
192 if (block->parents.is_empty()) {
193 for (int i = 0; i < bitset_words; i++) {
194 bd[block->num].livein[i] = 0u;
195 bd[block->num].liveout[i] = bd[block->num].copy[i];
196 }
197 } else {
198 for (int i = 0; i < bitset_words; i++) {
199 bd[block->num].liveout[i] = ~0u;
200 bd[block->num].livein[i] = ~0u;
201 }
202 }
203 }
204
205 /* Initialize the undef set. */
206 foreach_block (block, cfg) {
207 for (int i = 0; i < num_acp; i++) {
208 BITSET_SET(bd[block->num].undef, i);
209 for (unsigned off = 0; off < acp[i]->size_written; off += REG_SIZE) {
210 if (BITSET_TEST(live->block_data[block->num].defout,
211 live->var_from_reg(byte_offset(acp[i]->dst, off))))
212 BITSET_CLEAR(bd[block->num].undef, i);
213 }
214 }
215 }
216 }
217
218 /**
219 * Walk the set of instructions in the block, marking which entries in the acp
220 * are killed by the block.
221 */
222 void
223 fs_copy_prop_dataflow::run()
224 {
225 bool progress;
226
227 do {
228 progress = false;
229
230 foreach_block (block, cfg) {
231 if (block->parents.is_empty())
232 continue;
233
234 for (int i = 0; i < bitset_words; i++) {
235 const BITSET_WORD old_liveout = bd[block->num].liveout[i];
236 BITSET_WORD livein_from_any_block = 0;
237
238 /* Update livein for this block. If a copy is live out of all
239 * parent blocks, it's live coming in to this block.
240 */
241 bd[block->num].livein[i] = ~0u;
242 foreach_list_typed(bblock_link, parent_link, link, &block->parents) {
243 bblock_t *parent = parent_link->block;
244 /* Consider ACP entries with a known-undefined destination to
245 * be available from the parent. This is valid because we're
246 * free to set the undefined variable equal to the source of
247 * the ACP entry without breaking the application's
248 * expectations, since the variable is undefined.
249 */
250 bd[block->num].livein[i] &= (bd[parent->num].liveout[i] |
251 bd[parent->num].undef[i]);
252 livein_from_any_block |= bd[parent->num].liveout[i];
253 }
254
255 /* Limit to the set of ACP entries that can possibly be available
256 * at the start of the block, since propagating from a variable
257 * which is guaranteed to be undefined (rather than potentially
258 * undefined for some dynamic control-flow paths) doesn't seem
259 * particularly useful.
260 */
261 bd[block->num].livein[i] &= livein_from_any_block;
262
263 /* Update liveout for this block. */
264 bd[block->num].liveout[i] =
265 bd[block->num].copy[i] | (bd[block->num].livein[i] &
266 ~bd[block->num].kill[i]);
267
268 if (old_liveout != bd[block->num].liveout[i])
269 progress = true;
270 }
271 }
272 } while (progress);
273 }
274
275 void
276 fs_copy_prop_dataflow::dump_block_data() const
277 {
278 foreach_block (block, cfg) {
279 fprintf(stderr, "Block %d [%d, %d] (parents ", block->num,
280 block->start_ip, block->end_ip);
281 foreach_list_typed(bblock_link, link, link, &block->parents) {
282 bblock_t *parent = link->block;
283 fprintf(stderr, "%d ", parent->num);
284 }
285 fprintf(stderr, "):\n");
286 fprintf(stderr, " livein = 0x");
287 for (int i = 0; i < bitset_words; i++)
288 fprintf(stderr, "%08x", bd[block->num].livein[i]);
289 fprintf(stderr, ", liveout = 0x");
290 for (int i = 0; i < bitset_words; i++)
291 fprintf(stderr, "%08x", bd[block->num].liveout[i]);
292 fprintf(stderr, ",\n copy = 0x");
293 for (int i = 0; i < bitset_words; i++)
294 fprintf(stderr, "%08x", bd[block->num].copy[i]);
295 fprintf(stderr, ", kill = 0x");
296 for (int i = 0; i < bitset_words; i++)
297 fprintf(stderr, "%08x", bd[block->num].kill[i]);
298 fprintf(stderr, "\n");
299 }
300 }
301
302 static bool
303 is_logic_op(enum opcode opcode)
304 {
305 return (opcode == BRW_OPCODE_AND ||
306 opcode == BRW_OPCODE_OR ||
307 opcode == BRW_OPCODE_XOR ||
308 opcode == BRW_OPCODE_NOT);
309 }
310
311 static bool
312 can_take_stride(fs_inst *inst, unsigned arg, unsigned stride,
313 const gen_device_info *devinfo)
314 {
315 if (stride > 4)
316 return false;
317
318 /* 3-source instructions can only be Align16, which restricts what strides
319 * they can take. They can only take a stride of 1 (the usual case), or 0
320 * with a special "repctrl" bit. But the repctrl bit doesn't work for
321 * 64-bit datatypes, so if the source type is 64-bit then only a stride of
322 * 1 is allowed. From the Broadwell PRM, Volume 7 "3D Media GPGPU", page
323 * 944:
324 *
325 * This is applicable to 32b datatypes and 16b datatype. 64b datatypes
326 * cannot use the replicate control.
327 */
328 if (inst->is_3src(devinfo)) {
329 if (type_sz(inst->src[arg].type) > 4)
330 return stride == 1;
331 else
332 return stride == 1 || stride == 0;
333 }
334
335 /* From the Broadwell PRM, Volume 2a "Command Reference - Instructions",
336 * page 391 ("Extended Math Function"):
337 *
338 * The following restrictions apply for align1 mode: Scalar source is
339 * supported. Source and destination horizontal stride must be the
340 * same.
341 *
342 * From the Haswell PRM Volume 2b "Command Reference - Instructions", page
343 * 134 ("Extended Math Function"):
344 *
345 * Scalar source is supported. Source and destination horizontal stride
346 * must be 1.
347 *
348 * and similar language exists for IVB and SNB. Pre-SNB, math instructions
349 * are sends, so the sources are moved to MRF's and there are no
350 * restrictions.
351 */
352 if (inst->is_math()) {
353 if (devinfo->gen == 6 || devinfo->gen == 7) {
354 assert(inst->dst.stride == 1);
355 return stride == 1 || stride == 0;
356 } else if (devinfo->gen >= 8) {
357 return stride == inst->dst.stride || stride == 0;
358 }
359 }
360
361 return true;
362 }
363
364 bool
365 fs_visitor::try_copy_propagate(fs_inst *inst, int arg, acp_entry *entry)
366 {
367 if (inst->src[arg].file != VGRF)
368 return false;
369
370 if (entry->src.file == IMM)
371 return false;
372 assert(entry->src.file == VGRF || entry->src.file == UNIFORM ||
373 entry->src.file == ATTR);
374
375 if (entry->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
376 inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD)
377 return false;
378
379 assert(entry->dst.file == VGRF);
380 if (inst->src[arg].nr != entry->dst.nr)
381 return false;
382
383 /* Bail if inst is reading a range that isn't contained in the range
384 * that entry is writing.
385 */
386 if (!region_contained_in(inst->src[arg], inst->size_read(arg),
387 entry->dst, entry->size_written))
388 return false;
389
390 /* we can't generally copy-propagate UD negations because we
391 * can end up accessing the resulting values as signed integers
392 * instead. See also resolve_ud_negate() and comment in
393 * fs_generator::generate_code.
394 */
395 if (entry->src.type == BRW_REGISTER_TYPE_UD &&
396 entry->src.negate)
397 return false;
398
399 bool has_source_modifiers = entry->src.abs || entry->src.negate;
400
401 if ((has_source_modifiers || entry->src.file == UNIFORM ||
402 !entry->src.is_contiguous()) &&
403 !inst->can_do_source_mods(devinfo))
404 return false;
405
406 if (has_source_modifiers &&
407 inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE)
408 return false;
409
410 /* Bail if the result of composing both strides would exceed the
411 * hardware limit.
412 */
413 if (!can_take_stride(inst, arg, entry->src.stride * inst->src[arg].stride,
414 devinfo))
415 return false;
416
417 /* Bail if the instruction type is larger than the execution type of the
418 * copy, what implies that each channel is reading multiple channels of the
419 * destination of the copy, and simply replacing the sources would give a
420 * program with different semantics.
421 */
422 if (type_sz(entry->dst.type) < type_sz(inst->src[arg].type))
423 return false;
424
425 /* Bail if the result of composing both strides cannot be expressed
426 * as another stride. This avoids, for example, trying to transform
427 * this:
428 *
429 * MOV (8) rX<1>UD rY<0;1,0>UD
430 * FOO (8) ... rX<8;8,1>UW
431 *
432 * into this:
433 *
434 * FOO (8) ... rY<0;1,0>UW
435 *
436 * Which would have different semantics.
437 */
438 if (entry->src.stride != 1 &&
439 (inst->src[arg].stride *
440 type_sz(inst->src[arg].type)) % type_sz(entry->src.type) != 0)
441 return false;
442
443 /* Since semantics of source modifiers are type-dependent we need to
444 * ensure that the meaning of the instruction remains the same if we
445 * change the type. If the sizes of the types are different the new
446 * instruction will read a different amount of data than the original
447 * and the semantics will always be different.
448 */
449 if (has_source_modifiers &&
450 entry->dst.type != inst->src[arg].type &&
451 (!inst->can_change_types() ||
452 type_sz(entry->dst.type) != type_sz(inst->src[arg].type)))
453 return false;
454
455 if (devinfo->gen >= 8 && (entry->src.negate || entry->src.abs) &&
456 is_logic_op(inst->opcode)) {
457 return false;
458 }
459
460 if (entry->saturate) {
461 switch(inst->opcode) {
462 case BRW_OPCODE_SEL:
463 if ((inst->conditional_mod != BRW_CONDITIONAL_GE &&
464 inst->conditional_mod != BRW_CONDITIONAL_L) ||
465 inst->src[1].file != IMM ||
466 inst->src[1].f < 0.0 ||
467 inst->src[1].f > 1.0) {
468 return false;
469 }
470 break;
471 default:
472 return false;
473 }
474 }
475
476 inst->src[arg].file = entry->src.file;
477 inst->src[arg].nr = entry->src.nr;
478 inst->src[arg].stride *= entry->src.stride;
479 inst->saturate = inst->saturate || entry->saturate;
480
481 /* Compute the offset of inst->src[arg] relative to entry->dst */
482 const unsigned rel_offset = inst->src[arg].offset - entry->dst.offset;
483
484 /* Compute the first component of the copy that the instruction is
485 * reading, and the base byte offset within that component.
486 */
487 assert(entry->dst.offset % REG_SIZE == 0 && entry->dst.stride == 1);
488 const unsigned component = rel_offset / type_sz(entry->dst.type);
489 const unsigned suboffset = rel_offset % type_sz(entry->dst.type);
490
491 /* Calculate the byte offset at the origin of the copy of the given
492 * component and suboffset.
493 */
494 inst->src[arg].offset = suboffset +
495 component * entry->src.stride * type_sz(entry->src.type) +
496 entry->src.offset;
497
498 if (has_source_modifiers) {
499 if (entry->dst.type != inst->src[arg].type) {
500 /* We are propagating source modifiers from a MOV with a different
501 * type. If we got here, then we can just change the source and
502 * destination types of the instruction and keep going.
503 */
504 assert(inst->can_change_types());
505 for (int i = 0; i < inst->sources; i++) {
506 inst->src[i].type = entry->dst.type;
507 }
508 inst->dst.type = entry->dst.type;
509 }
510
511 if (!inst->src[arg].abs) {
512 inst->src[arg].abs = entry->src.abs;
513 inst->src[arg].negate ^= entry->src.negate;
514 }
515 }
516
517 return true;
518 }
519
520
521 bool
522 fs_visitor::try_constant_propagate(fs_inst *inst, acp_entry *entry)
523 {
524 bool progress = false;
525
526 if (entry->src.file != IMM)
527 return false;
528 if (type_sz(entry->src.type) > 4)
529 return false;
530 if (entry->saturate)
531 return false;
532
533 for (int i = inst->sources - 1; i >= 0; i--) {
534 if (inst->src[i].file != VGRF)
535 continue;
536
537 assert(entry->dst.file == VGRF);
538 if (inst->src[i].nr != entry->dst.nr)
539 continue;
540
541 /* Bail if inst is reading a range that isn't contained in the range
542 * that entry is writing.
543 */
544 if (!region_contained_in(inst->src[i], inst->size_read(i),
545 entry->dst, entry->size_written))
546 continue;
547
548 /* If the type sizes don't match each channel of the instruction is
549 * either extracting a portion of the constant (which could be handled
550 * with some effort but the code below doesn't) or reading multiple
551 * channels of the source at once.
552 */
553 if (type_sz(inst->src[i].type) != type_sz(entry->dst.type))
554 continue;
555
556 fs_reg val = entry->src;
557 val.type = inst->src[i].type;
558
559 if (inst->src[i].abs) {
560 if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) ||
561 !brw_abs_immediate(val.type, &val.as_brw_reg())) {
562 continue;
563 }
564 }
565
566 if (inst->src[i].negate) {
567 if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) ||
568 !brw_negate_immediate(val.type, &val.as_brw_reg())) {
569 continue;
570 }
571 }
572
573 switch (inst->opcode) {
574 case BRW_OPCODE_MOV:
575 case SHADER_OPCODE_LOAD_PAYLOAD:
576 case FS_OPCODE_PACK:
577 inst->src[i] = val;
578 progress = true;
579 break;
580
581 case SHADER_OPCODE_INT_QUOTIENT:
582 case SHADER_OPCODE_INT_REMAINDER:
583 /* FINISHME: Promote non-float constants and remove this. */
584 if (devinfo->gen < 8)
585 break;
586 /* fallthrough */
587 case SHADER_OPCODE_POW:
588 /* Allow constant propagation into src1 (except on Gen 6 which
589 * doesn't support scalar source math), and let constant combining
590 * promote the constant on Gen < 8.
591 */
592 if (devinfo->gen == 6)
593 break;
594 /* fallthrough */
595 case BRW_OPCODE_BFI1:
596 case BRW_OPCODE_ASR:
597 case BRW_OPCODE_SHL:
598 case BRW_OPCODE_SHR:
599 case BRW_OPCODE_SUBB:
600 if (i == 1) {
601 inst->src[i] = val;
602 progress = true;
603 }
604 break;
605
606 case BRW_OPCODE_MACH:
607 case BRW_OPCODE_MUL:
608 case SHADER_OPCODE_MULH:
609 case BRW_OPCODE_ADD:
610 case BRW_OPCODE_OR:
611 case BRW_OPCODE_AND:
612 case BRW_OPCODE_XOR:
613 case BRW_OPCODE_ADDC:
614 if (i == 1) {
615 inst->src[i] = val;
616 progress = true;
617 } else if (i == 0 && inst->src[1].file != IMM) {
618 /* Fit this constant in by commuting the operands.
619 * Exception: we can't do this for 32-bit integer MUL/MACH
620 * because it's asymmetric.
621 *
622 * The BSpec says for Broadwell that
623 *
624 * "When multiplying DW x DW, the dst cannot be accumulator."
625 *
626 * Integer MUL with a non-accumulator destination will be lowered
627 * by lower_integer_multiplication(), so don't restrict it.
628 */
629 if (((inst->opcode == BRW_OPCODE_MUL &&
630 inst->dst.is_accumulator()) ||
631 inst->opcode == BRW_OPCODE_MACH) &&
632 (inst->src[1].type == BRW_REGISTER_TYPE_D ||
633 inst->src[1].type == BRW_REGISTER_TYPE_UD))
634 break;
635 inst->src[0] = inst->src[1];
636 inst->src[1] = val;
637 progress = true;
638 }
639 break;
640
641 case BRW_OPCODE_CMP:
642 case BRW_OPCODE_IF:
643 if (i == 1) {
644 inst->src[i] = val;
645 progress = true;
646 } else if (i == 0 && inst->src[1].file != IMM) {
647 enum brw_conditional_mod new_cmod;
648
649 new_cmod = brw_swap_cmod(inst->conditional_mod);
650 if (new_cmod != BRW_CONDITIONAL_NONE) {
651 /* Fit this constant in by swapping the operands and
652 * flipping the test
653 */
654 inst->src[0] = inst->src[1];
655 inst->src[1] = val;
656 inst->conditional_mod = new_cmod;
657 progress = true;
658 }
659 }
660 break;
661
662 case BRW_OPCODE_SEL:
663 if (i == 1) {
664 inst->src[i] = val;
665 progress = true;
666 } else if (i == 0 && inst->src[1].file != IMM) {
667 inst->src[0] = inst->src[1];
668 inst->src[1] = val;
669
670 /* If this was predicated, flipping operands means
671 * we also need to flip the predicate.
672 */
673 if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
674 inst->predicate_inverse =
675 !inst->predicate_inverse;
676 }
677 progress = true;
678 }
679 break;
680
681 case SHADER_OPCODE_UNTYPED_ATOMIC:
682 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
683 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
684 case SHADER_OPCODE_TYPED_ATOMIC:
685 case SHADER_OPCODE_TYPED_SURFACE_READ:
686 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
687 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
688 case SHADER_OPCODE_BYTE_SCATTERED_READ:
689 /* We only propagate into the surface argument of the
690 * instruction. Everything else goes through LOAD_PAYLOAD.
691 */
692 if (i == 1) {
693 inst->src[i] = val;
694 progress = true;
695 }
696 break;
697
698 case FS_OPCODE_FB_WRITE_LOGICAL:
699 /* The stencil and omask sources of FS_OPCODE_FB_WRITE_LOGICAL are
700 * bit-cast using a strided region so they cannot be immediates.
701 */
702 if (i != FB_WRITE_LOGICAL_SRC_SRC_STENCIL &&
703 i != FB_WRITE_LOGICAL_SRC_OMASK) {
704 inst->src[i] = val;
705 progress = true;
706 }
707 break;
708
709 case SHADER_OPCODE_TEX_LOGICAL:
710 case SHADER_OPCODE_TXD_LOGICAL:
711 case SHADER_OPCODE_TXF_LOGICAL:
712 case SHADER_OPCODE_TXL_LOGICAL:
713 case SHADER_OPCODE_TXS_LOGICAL:
714 case FS_OPCODE_TXB_LOGICAL:
715 case SHADER_OPCODE_TXF_CMS_LOGICAL:
716 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
717 case SHADER_OPCODE_TXF_UMS_LOGICAL:
718 case SHADER_OPCODE_TXF_MCS_LOGICAL:
719 case SHADER_OPCODE_LOD_LOGICAL:
720 case SHADER_OPCODE_TG4_LOGICAL:
721 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
722 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
723 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
724 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
725 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
726 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
727 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
728 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
729 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
730 inst->src[i] = val;
731 progress = true;
732 break;
733
734 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
735 case SHADER_OPCODE_BROADCAST:
736 inst->src[i] = val;
737 progress = true;
738 break;
739
740 case BRW_OPCODE_MAD:
741 case BRW_OPCODE_LRP:
742 inst->src[i] = val;
743 progress = true;
744 break;
745
746 default:
747 break;
748 }
749 }
750
751 return progress;
752 }
753
754 static bool
755 can_propagate_from(fs_inst *inst)
756 {
757 return (inst->opcode == BRW_OPCODE_MOV &&
758 inst->dst.file == VGRF &&
759 ((inst->src[0].file == VGRF &&
760 !regions_overlap(inst->dst, inst->size_written,
761 inst->src[0], inst->size_read(0))) ||
762 inst->src[0].file == ATTR ||
763 inst->src[0].file == UNIFORM ||
764 inst->src[0].file == IMM) &&
765 inst->src[0].type == inst->dst.type &&
766 !inst->is_partial_write());
767 }
768
769 /* Walks a basic block and does copy propagation on it using the acp
770 * list.
771 */
772 bool
773 fs_visitor::opt_copy_propagation_local(void *copy_prop_ctx, bblock_t *block,
774 exec_list *acp)
775 {
776 bool progress = false;
777
778 foreach_inst_in_block(fs_inst, inst, block) {
779 /* Try propagating into this instruction. */
780 for (int i = 0; i < inst->sources; i++) {
781 if (inst->src[i].file != VGRF)
782 continue;
783
784 foreach_in_list(acp_entry, entry, &acp[inst->src[i].nr % ACP_HASH_SIZE]) {
785 if (try_constant_propagate(inst, entry))
786 progress = true;
787 else if (try_copy_propagate(inst, i, entry))
788 progress = true;
789 }
790 }
791
792 /* kill the destination from the ACP */
793 if (inst->dst.file == VGRF) {
794 foreach_in_list_safe(acp_entry, entry, &acp[inst->dst.nr % ACP_HASH_SIZE]) {
795 if (regions_overlap(entry->dst, entry->size_written,
796 inst->dst, inst->size_written))
797 entry->remove();
798 }
799
800 /* Oops, we only have the chaining hash based on the destination, not
801 * the source, so walk across the entire table.
802 */
803 for (int i = 0; i < ACP_HASH_SIZE; i++) {
804 foreach_in_list_safe(acp_entry, entry, &acp[i]) {
805 /* Make sure we kill the entry if this instruction overwrites
806 * _any_ of the registers that it reads
807 */
808 if (regions_overlap(entry->src, entry->size_read,
809 inst->dst, inst->size_written))
810 entry->remove();
811 }
812 }
813 }
814
815 /* If this instruction's source could potentially be folded into the
816 * operand of another instruction, add it to the ACP.
817 */
818 if (can_propagate_from(inst)) {
819 acp_entry *entry = ralloc(copy_prop_ctx, acp_entry);
820 entry->dst = inst->dst;
821 entry->src = inst->src[0];
822 entry->size_written = inst->size_written;
823 entry->size_read = inst->size_read(0);
824 entry->opcode = inst->opcode;
825 entry->saturate = inst->saturate;
826 acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
827 } else if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
828 inst->dst.file == VGRF) {
829 int offset = 0;
830 for (int i = 0; i < inst->sources; i++) {
831 int effective_width = i < inst->header_size ? 8 : inst->exec_size;
832 assert(effective_width * type_sz(inst->src[i].type) % REG_SIZE == 0);
833 const unsigned size_written = effective_width *
834 type_sz(inst->src[i].type);
835 if (inst->src[i].file == VGRF) {
836 acp_entry *entry = rzalloc(copy_prop_ctx, acp_entry);
837 entry->dst = byte_offset(inst->dst, offset);
838 entry->src = inst->src[i];
839 entry->size_written = size_written;
840 entry->size_read = inst->size_read(i);
841 entry->opcode = inst->opcode;
842 if (!entry->dst.equals(inst->src[i])) {
843 acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
844 } else {
845 ralloc_free(entry);
846 }
847 }
848 offset += size_written;
849 }
850 }
851 }
852
853 return progress;
854 }
855
856 bool
857 fs_visitor::opt_copy_propagation()
858 {
859 bool progress = false;
860 void *copy_prop_ctx = ralloc_context(NULL);
861 exec_list *out_acp[cfg->num_blocks];
862
863 for (int i = 0; i < cfg->num_blocks; i++)
864 out_acp[i] = new exec_list [ACP_HASH_SIZE];
865
866 calculate_live_intervals();
867
868 /* First, walk through each block doing local copy propagation and getting
869 * the set of copies available at the end of the block.
870 */
871 foreach_block (block, cfg) {
872 progress = opt_copy_propagation_local(copy_prop_ctx, block,
873 out_acp[block->num]) || progress;
874 }
875
876 /* Do dataflow analysis for those available copies. */
877 fs_copy_prop_dataflow dataflow(copy_prop_ctx, cfg, live_intervals, out_acp);
878
879 /* Next, re-run local copy propagation, this time with the set of copies
880 * provided by the dataflow analysis available at the start of a block.
881 */
882 foreach_block (block, cfg) {
883 exec_list in_acp[ACP_HASH_SIZE];
884
885 for (int i = 0; i < dataflow.num_acp; i++) {
886 if (BITSET_TEST(dataflow.bd[block->num].livein, i)) {
887 struct acp_entry *entry = dataflow.acp[i];
888 in_acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
889 }
890 }
891
892 progress = opt_copy_propagation_local(copy_prop_ctx, block, in_acp) ||
893 progress;
894 }
895
896 for (int i = 0; i < cfg->num_blocks; i++)
897 delete [] out_acp[i];
898 ralloc_free(copy_prop_ctx);
899
900 if (progress)
901 invalidate_live_intervals();
902
903 return progress;
904 }