intel/compiler: Split 64-bit MOV-indirects if needed
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33
34 static enum brw_reg_file
35 brw_file_from_reg(fs_reg *reg)
36 {
37 switch (reg->file) {
38 case ARF:
39 return BRW_ARCHITECTURE_REGISTER_FILE;
40 case FIXED_GRF:
41 case VGRF:
42 return BRW_GENERAL_REGISTER_FILE;
43 case MRF:
44 return BRW_MESSAGE_REGISTER_FILE;
45 case IMM:
46 return BRW_IMMEDIATE_VALUE;
47 case BAD_FILE:
48 case ATTR:
49 case UNIFORM:
50 unreachable("not reached");
51 }
52 return BRW_ARCHITECTURE_REGISTER_FILE;
53 }
54
55 static struct brw_reg
56 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
57 fs_reg *reg, bool compressed)
58 {
59 struct brw_reg brw_reg;
60
61 switch (reg->file) {
62 case MRF:
63 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
64 /* Fallthrough */
65 case VGRF:
66 if (reg->stride == 0) {
67 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
68 } else {
69 /* From the Haswell PRM:
70 *
71 * "VertStride must be used to cross GRF register boundaries. This
72 * rule implies that elements within a 'Width' cannot cross GRF
73 * boundaries."
74 *
75 * The maximum width value that could satisfy this restriction is:
76 */
77 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
78
79 /* Because the hardware can only split source regions at a whole
80 * multiple of width during decompression (i.e. vertically), clamp
81 * the value obtained above to the physical execution size of a
82 * single decompressed chunk of the instruction:
83 */
84 const unsigned phys_width = compressed ? inst->exec_size / 2 :
85 inst->exec_size;
86
87 /* XXX - The equation above is strictly speaking not correct on
88 * hardware that supports unbalanced GRF writes -- On Gen9+
89 * each decompressed chunk of the instruction may have a
90 * different execution size when the number of components
91 * written to each destination GRF is not the same.
92 */
93 const unsigned width = MIN2(reg_width, phys_width);
94 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
95 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
96
97 if (devinfo->gen == 7 && !devinfo->is_haswell) {
98 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
99 * "Each DF (Double Float) operand uses an element size of 4 rather
100 * than 8 and all regioning parameters are twice what the values
101 * would be based on the true element size: ExecSize, Width,
102 * HorzStride, and VertStride. Each DF operand uses a pair of
103 * channels and all masking and swizzing should be adjusted
104 * appropriately."
105 *
106 * From the IvyBridge PRM (Special Requirements for Handling Double
107 * Precision Data Types, page 71):
108 * "In Align1 mode, all regioning parameters like stride, execution
109 * size, and width must use the syntax of a pair of packed
110 * floats. The offsets for these data types must be 64-bit
111 * aligned. The execution size and regioning parameters are in terms
112 * of floats."
113 *
114 * Summarized: when handling DF-typed arguments, ExecSize,
115 * VertStride, and Width must be doubled.
116 *
117 * It applies to BayTrail too.
118 */
119 if (type_sz(reg->type) == 8) {
120 brw_reg.width++;
121 if (brw_reg.vstride > 0)
122 brw_reg.vstride++;
123 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
124 }
125
126 /* When converting from DF->F, we set the destination stride to 2
127 * because each d2f conversion implicitly writes 2 floats, being
128 * the first one the converted value. IVB/BYT actually writes two
129 * F components per SIMD channel, and every other component is
130 * filled with garbage.
131 */
132 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
133 type_sz(inst->dst.type) < 8) {
134 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
135 brw_reg.hstride--;
136 }
137 }
138 }
139
140 brw_reg = retype(brw_reg, reg->type);
141 brw_reg = byte_offset(brw_reg, reg->offset);
142 brw_reg.abs = reg->abs;
143 brw_reg.negate = reg->negate;
144 break;
145 case ARF:
146 case FIXED_GRF:
147 case IMM:
148 assert(reg->offset == 0);
149 brw_reg = reg->as_brw_reg();
150 break;
151 case BAD_FILE:
152 /* Probably unused. */
153 brw_reg = brw_null_reg();
154 break;
155 case ATTR:
156 case UNIFORM:
157 unreachable("not reached");
158 }
159
160 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
161 * region, but on IVB and BYT DF regions must be programmed in terms of
162 * floats. A <0,2,1> region accomplishes this.
163 */
164 if (devinfo->gen == 7 && !devinfo->is_haswell &&
165 type_sz(reg->type) == 8 &&
166 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
167 brw_reg.width == BRW_WIDTH_1 &&
168 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
169 brw_reg.width = BRW_WIDTH_2;
170 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
171 }
172
173 return brw_reg;
174 }
175
176 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
177 void *mem_ctx,
178 struct brw_stage_prog_data *prog_data,
179 unsigned promoted_constants,
180 bool runtime_check_aads_emit,
181 gl_shader_stage stage)
182
183 : compiler(compiler), log_data(log_data),
184 devinfo(compiler->devinfo),
185 prog_data(prog_data),
186 promoted_constants(promoted_constants),
187 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
188 stage(stage), mem_ctx(mem_ctx)
189 {
190 p = rzalloc(mem_ctx, struct brw_codegen);
191 brw_init_codegen(devinfo, p, mem_ctx);
192
193 /* In the FS code generator, we are very careful to ensure that we always
194 * set the right execution size so we don't need the EU code to "help" us
195 * by trying to infer it. Sometimes, it infers the wrong thing.
196 */
197 p->automatic_exec_sizes = false;
198 }
199
200 fs_generator::~fs_generator()
201 {
202 }
203
204 class ip_record : public exec_node {
205 public:
206 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
207
208 ip_record(int ip)
209 {
210 this->ip = ip;
211 }
212
213 int ip;
214 };
215
216 bool
217 fs_generator::patch_discard_jumps_to_fb_writes()
218 {
219 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
220 return false;
221
222 int scale = brw_jump_scale(p->devinfo);
223
224 /* There is a somewhat strange undocumented requirement of using
225 * HALT, according to the simulator. If some channel has HALTed to
226 * a particular UIP, then by the end of the program, every channel
227 * must have HALTed to that UIP. Furthermore, the tracking is a
228 * stack, so you can't do the final halt of a UIP after starting
229 * halting to a new UIP.
230 *
231 * Symptoms of not emitting this instruction on actual hardware
232 * included GPU hangs and sparkly rendering on the piglit discard
233 * tests.
234 */
235 brw_inst *last_halt = gen6_HALT(p);
236 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
237 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
238
239 int ip = p->nr_insn;
240
241 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
242 brw_inst *patch = &p->store[patch_ip->ip];
243
244 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
245 /* HALT takes a half-instruction distance from the pre-incremented IP. */
246 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
247 }
248
249 this->discard_halt_patches.make_empty();
250 return true;
251 }
252
253 void
254 fs_generator::fire_fb_write(fs_inst *inst,
255 struct brw_reg payload,
256 struct brw_reg implied_header,
257 GLuint nr)
258 {
259 uint32_t msg_control;
260
261 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
262
263 if (devinfo->gen < 6) {
264 brw_push_insn_state(p);
265 brw_set_default_exec_size(p, BRW_EXECUTE_8);
266 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
267 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
268 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
269 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
270 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
271 brw_pop_insn_state(p);
272 }
273
274 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
275 assert(inst->group == 0 && inst->exec_size == 16);
276 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
277
278 } else if (prog_data->dual_src_blend) {
279 assert(inst->exec_size == 8);
280
281 if (inst->group % 16 == 0)
282 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
283 else if (inst->group % 16 == 8)
284 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
285 else
286 unreachable("Invalid dual-source FB write instruction group");
287
288 } else {
289 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
290
291 if (inst->exec_size == 16)
292 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
293 else if (inst->exec_size == 8)
294 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
295 else
296 unreachable("Invalid FB write execution size");
297 }
298
299 /* We assume render targets start at 0, because headerless FB write
300 * messages set "Render Target Index" to 0. Using a different binding
301 * table index would make it impossible to use headerless messages.
302 */
303 const uint32_t surf_index = inst->target;
304
305 brw_inst *insn = brw_fb_WRITE(p,
306 payload,
307 retype(implied_header, BRW_REGISTER_TYPE_UW),
308 msg_control,
309 surf_index,
310 nr,
311 0,
312 inst->eot,
313 inst->last_rt,
314 inst->header_size != 0);
315
316 if (devinfo->gen >= 6)
317 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
318
319 brw_mark_surface_used(&prog_data->base, surf_index);
320 }
321
322 void
323 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
324 {
325 if (devinfo->gen < 8 && !devinfo->is_haswell) {
326 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
327 }
328
329 const struct brw_reg implied_header =
330 devinfo->gen < 6 ? payload : brw_null_reg();
331
332 if (inst->base_mrf >= 0)
333 payload = brw_message_reg(inst->base_mrf);
334
335 if (!runtime_check_aads_emit) {
336 fire_fb_write(inst, payload, implied_header, inst->mlen);
337 } else {
338 /* This can only happen in gen < 6 */
339 assert(devinfo->gen < 6);
340
341 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
342
343 /* Check runtime bit to detect if we have to send AA data or not */
344 brw_push_insn_state(p);
345 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
346 brw_set_default_exec_size(p, BRW_EXECUTE_1);
347 brw_AND(p,
348 v1_null_ud,
349 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
350 brw_imm_ud(1<<26));
351 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
352
353 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
354 brw_pop_insn_state(p);
355 {
356 /* Don't send AA data */
357 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
358 }
359 brw_land_fwd_jump(p, jmp);
360 fire_fb_write(inst, payload, implied_header, inst->mlen);
361 }
362 }
363
364 void
365 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
366 struct brw_reg payload)
367 {
368 assert(inst->size_written % REG_SIZE == 0);
369 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
370 /* We assume that render targets start at binding table index 0. */
371 const unsigned surf_index = inst->target;
372
373 gen9_fb_READ(p, dst, payload, surf_index,
374 inst->header_size, inst->size_written / REG_SIZE,
375 prog_data->persample_dispatch);
376
377 brw_mark_surface_used(&prog_data->base, surf_index);
378 }
379
380 void
381 fs_generator::generate_mov_indirect(fs_inst *inst,
382 struct brw_reg dst,
383 struct brw_reg reg,
384 struct brw_reg indirect_byte_offset)
385 {
386 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
387 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
388 assert(!reg.abs && !reg.negate);
389 assert(reg.type == dst.type);
390
391 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
392
393 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
394 imm_byte_offset += indirect_byte_offset.ud;
395
396 reg.nr = imm_byte_offset / REG_SIZE;
397 reg.subnr = imm_byte_offset % REG_SIZE;
398 brw_MOV(p, dst, reg);
399 } else {
400 /* Prior to Broadwell, there are only 8 address registers. */
401 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
402
403 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
404 struct brw_reg addr = vec8(brw_address_reg(0));
405
406 /* The destination stride of an instruction (in bytes) must be greater
407 * than or equal to the size of the rest of the instruction. Since the
408 * address register is of type UW, we can't use a D-type instruction.
409 * In order to get around this, re retype to UW and use a stride.
410 */
411 indirect_byte_offset =
412 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
413
414 /* There are a number of reasons why we don't use the base offset here.
415 * One reason is that the field is only 9 bits which means we can only
416 * use it to access the first 16 GRFs. Also, from the Haswell PRM
417 * section "Register Region Restrictions":
418 *
419 * "The lower bits of the AddressImmediate must not overflow to
420 * change the register address. The lower 5 bits of Address
421 * Immediate when added to lower 5 bits of address register gives
422 * the sub-register offset. The upper bits of Address Immediate
423 * when added to upper bits of address register gives the register
424 * address. Any overflow from sub-register offset is dropped."
425 *
426 * Since the indirect may cause us to cross a register boundary, this
427 * makes the base offset almost useless. We could try and do something
428 * clever where we use a actual base offset if base_offset % 32 == 0 but
429 * that would mean we were generating different code depending on the
430 * base offset. Instead, for the sake of consistency, we'll just do the
431 * add ourselves. This restriction is only listed in the Haswell PRM
432 * but empirical testing indicates that it applies on all older
433 * generations and is lifted on Broadwell.
434 *
435 * In the end, while base_offset is nice to look at in the generated
436 * code, using it saves us 0 instructions and would require quite a bit
437 * of case-by-case work. It's just not worth it.
438 */
439 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
440
441 if (type_sz(reg.type) > 4 &&
442 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
443 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
444 !devinfo->has_64bit_types)) {
445 /* IVB has an issue (which we found empirically) where it reads two
446 * address register components per channel for indirectly addressed
447 * 64-bit sources.
448 *
449 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
450 *
451 * "When source or destination datatype is 64b or operation is
452 * integer DWord multiply, indirect addressing must not be used."
453 *
454 * To work around both of these, we do two integer MOVs insead of one
455 * 64-bit MOV. Because no double value should ever cross a register
456 * boundary, it's safe to use the immediate offset in the indirect
457 * here to handle adding 4 bytes to the offset and avoid the extra
458 * ADD to the register file.
459 */
460 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
461 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
462 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
463 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
464 } else {
465 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
466
467 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
468
469 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
470 !inst->get_next()->is_tail_sentinel() &&
471 ((fs_inst *)inst->get_next())->mlen > 0) {
472 /* From the Sandybridge PRM:
473 *
474 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
475 * instruction that “indexed/indirect” source AND is followed
476 * by a send, the instruction requires a “Switch”. This is to
477 * avoid race condition where send may dispatch before MRF is
478 * updated."
479 */
480 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
481 }
482 }
483 }
484 }
485
486 void
487 fs_generator::generate_shuffle(fs_inst *inst,
488 struct brw_reg dst,
489 struct brw_reg src,
490 struct brw_reg idx)
491 {
492 /* Ivy bridge has some strange behavior that makes this a real pain to
493 * implement for 64-bit values so we just don't bother.
494 */
495 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
496
497 /* Because we're using the address register, we're limited to 8-wide
498 * execution on gen7. On gen8, we're limited to 16-wide by the address
499 * register file and 8-wide for 64-bit types. We could try and make this
500 * instruction splittable higher up in the compiler but that gets weird
501 * because it reads all of the channels regardless of execution size. It's
502 * easier just to split it here.
503 */
504 const unsigned lower_width =
505 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
506 8 : MIN2(16, inst->exec_size);
507
508 brw_set_default_exec_size(p, cvt(lower_width) - 1);
509 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
510 brw_set_default_group(p, group);
511
512 if ((src.vstride == 0 && src.hstride == 0) ||
513 idx.file == BRW_IMMEDIATE_VALUE) {
514 /* Trivial, the source is already uniform or the index is a constant.
515 * We will typically not get here if the optimizer is doing its job,
516 * but asserting would be mean.
517 */
518 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
519 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
520 } else {
521 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
522 struct brw_reg addr = vec8(brw_address_reg(0));
523
524 struct brw_reg group_idx = suboffset(idx, group);
525
526 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
527 /* Things get grumpy if the register is too wide. */
528 group_idx.width--;
529 group_idx.vstride--;
530 }
531
532 assert(type_sz(group_idx.type) <= 4);
533 if (type_sz(group_idx.type) == 4) {
534 /* The destination stride of an instruction (in bytes) must be
535 * greater than or equal to the size of the rest of the
536 * instruction. Since the address register is of type UW, we
537 * can't use a D-type instruction. In order to get around this,
538 * re retype to UW and use a stride.
539 */
540 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
541 }
542
543 /* Take into account the component size and horizontal stride. */
544 assert(src.vstride == src.hstride + src.width);
545 brw_SHL(p, addr, group_idx,
546 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
547 src.hstride - 1));
548
549 /* Add on the register start offset */
550 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
551
552 if (type_sz(src.type) > 4 &&
553 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
554 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
555 /* IVB has an issue (which we found empirically) where it reads
556 * two address register components per channel for indirectly
557 * addressed 64-bit sources.
558 *
559 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
560 *
561 * "When source or destination datatype is 64b or operation is
562 * integer DWord multiply, indirect addressing must not be
563 * used."
564 *
565 * To work around both of these, we do two integer MOVs insead of
566 * one 64-bit MOV. Because no double value should ever cross a
567 * register boundary, it's safe to use the immediate offset in the
568 * indirect here to handle adding 4 bytes to the offset and avoid
569 * the extra ADD to the register file.
570 */
571 struct brw_reg gdst = suboffset(dst, group);
572 struct brw_reg dst_d = retype(spread(gdst, 2),
573 BRW_REGISTER_TYPE_D);
574 brw_MOV(p, dst_d,
575 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
576 brw_MOV(p, byte_offset(dst_d, 4),
577 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
578 } else {
579 brw_MOV(p, suboffset(dst, group),
580 retype(brw_VxH_indirect(0, 0), src.type));
581 }
582 }
583 }
584 }
585
586 void
587 fs_generator::generate_quad_swizzle(const fs_inst *inst,
588 struct brw_reg dst, struct brw_reg src,
589 unsigned swiz)
590 {
591 /* Requires a quad. */
592 assert(inst->exec_size >= 4);
593
594 if (src.file == BRW_IMMEDIATE_VALUE ||
595 has_scalar_region(src)) {
596 /* The value is uniform across all channels */
597 brw_MOV(p, dst, src);
598
599 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
600 /* This only works on 8-wide 32-bit values */
601 assert(inst->exec_size == 8);
602 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
603 assert(src.vstride == src.width + 1);
604 brw_set_default_access_mode(p, BRW_ALIGN_16);
605 struct brw_reg swiz_src = stride(src, 4, 4, 1);
606 swiz_src.swizzle = swiz;
607 brw_MOV(p, dst, swiz_src);
608
609 } else {
610 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
611 assert(src.vstride == src.width + 1);
612 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
613
614 switch (swiz) {
615 case BRW_SWIZZLE_XXXX:
616 case BRW_SWIZZLE_YYYY:
617 case BRW_SWIZZLE_ZZZZ:
618 case BRW_SWIZZLE_WWWW:
619 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
620 break;
621
622 case BRW_SWIZZLE_XXZZ:
623 case BRW_SWIZZLE_YYWW:
624 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
625 break;
626
627 case BRW_SWIZZLE_XYXY:
628 case BRW_SWIZZLE_ZWZW:
629 assert(inst->exec_size == 4);
630 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
631 break;
632
633 default:
634 assert(inst->force_writemask_all);
635 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
636
637 for (unsigned c = 0; c < 4; c++) {
638 brw_inst *insn = brw_MOV(
639 p, stride(suboffset(dst, c),
640 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
641 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
642
643 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
644 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
645 }
646
647 break;
648 }
649 }
650 }
651
652 void
653 fs_generator::generate_urb_read(fs_inst *inst,
654 struct brw_reg dst,
655 struct brw_reg header)
656 {
657 assert(inst->size_written % REG_SIZE == 0);
658 assert(header.file == BRW_GENERAL_REGISTER_FILE);
659 assert(header.type == BRW_REGISTER_TYPE_UD);
660
661 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
662 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
663 brw_set_src0(p, send, header);
664 brw_set_src1(p, send, brw_imm_ud(0u));
665
666 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
667 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
668
669 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
670 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
671
672 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
673 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
674 brw_inst_set_header_present(p->devinfo, send, true);
675 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
676 }
677
678 void
679 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
680 {
681 brw_inst *insn;
682
683 /* WaClearTDRRegBeforeEOTForNonPS.
684 *
685 * WA: Clear tdr register before send EOT in all non-PS shader kernels
686 *
687 * mov(8) tdr0:ud 0x0:ud {NoMask}"
688 */
689 if (inst->eot && p->devinfo->gen == 10) {
690 brw_push_insn_state(p);
691 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
692 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
693 brw_pop_insn_state(p);
694 }
695
696 insn = brw_next_insn(p, BRW_OPCODE_SEND);
697
698 brw_set_dest(p, insn, brw_null_reg());
699 brw_set_src0(p, insn, payload);
700 brw_set_src1(p, insn, brw_imm_ud(0u));
701
702 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
703 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
704
705 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
706 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
707 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
708
709 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
710 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
711 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
712
713 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
714 brw_inst_set_rlen(p->devinfo, insn, 0);
715 brw_inst_set_eot(p->devinfo, insn, inst->eot);
716 brw_inst_set_header_present(p->devinfo, insn, true);
717 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
718 }
719
720 void
721 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
722 {
723 struct brw_inst *insn;
724
725 insn = brw_next_insn(p, BRW_OPCODE_SEND);
726
727 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
728 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
729 brw_set_src1(p, insn, brw_imm_ud(0u));
730
731 /* Terminate a compute shader by sending a message to the thread spawner.
732 */
733 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
734 brw_inst_set_mlen(devinfo, insn, 1);
735 brw_inst_set_rlen(devinfo, insn, 0);
736 brw_inst_set_eot(devinfo, insn, inst->eot);
737 brw_inst_set_header_present(devinfo, insn, false);
738
739 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
740 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
741
742 /* Note that even though the thread has a URB resource associated with it,
743 * we set the "do not dereference URB" bit, because the URB resource is
744 * managed by the fixed-function unit, so it will free it automatically.
745 */
746 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
747
748 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
749 }
750
751 void
752 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
753 {
754 brw_barrier(p, src);
755 brw_WAIT(p);
756 }
757
758 bool
759 fs_generator::generate_linterp(fs_inst *inst,
760 struct brw_reg dst, struct brw_reg *src)
761 {
762 /* PLN reads:
763 * / in SIMD16 \
764 * -----------------------------------
765 * | src1+0 | src1+1 | src1+2 | src1+3 |
766 * |-----------------------------------|
767 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
768 * -----------------------------------
769 *
770 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
771 *
772 * -----------------------------------
773 * | src1+0 | src1+1 | src1+2 | src1+3 |
774 * |-----------------------------------|
775 * |(x0, x1)|(y0, y1)| | | in SIMD8
776 * |-----------------------------------|
777 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
778 * -----------------------------------
779 *
780 * See also: emit_interpolation_setup_gen4().
781 */
782 struct brw_reg delta_x = src[0];
783 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
784 struct brw_reg interp = src[1];
785 brw_inst *i[4];
786
787 if (devinfo->gen >= 11) {
788 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_NF);
789 struct brw_reg dwP = suboffset(interp, 0);
790 struct brw_reg dwQ = suboffset(interp, 1);
791 struct brw_reg dwR = suboffset(interp, 3);
792
793 brw_push_insn_state(p);
794 brw_set_default_exec_size(p, BRW_EXECUTE_8);
795
796 if (inst->exec_size == 8) {
797 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
798 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_y, 0), dwQ);
799
800 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
801
802 /* brw_set_default_saturate() is called before emitting instructions,
803 * so the saturate bit is set in each instruction, so we need to unset
804 * it on the first instruction of each pair.
805 */
806 brw_inst_set_saturate(p->devinfo, i[0], false);
807 } else {
808 brw_set_default_group(p, inst->group);
809 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
810 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_x, 1), dwQ);
811
812 brw_set_default_group(p, inst->group + 8);
813 i[2] = brw_MAD(p, acc, dwR, offset(delta_y, 0), dwP);
814 i[3] = brw_MAD(p, offset(dst, 1), acc, offset(delta_y, 1), dwQ);
815
816 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
817 brw_inst_set_cond_modifier(p->devinfo, i[3], inst->conditional_mod);
818
819 /* brw_set_default_saturate() is called before emitting instructions,
820 * so the saturate bit is set in each instruction, so we need to unset
821 * it on the first instruction of each pair.
822 */
823 brw_inst_set_saturate(p->devinfo, i[0], false);
824 brw_inst_set_saturate(p->devinfo, i[2], false);
825 }
826
827 brw_pop_insn_state(p);
828
829 return true;
830 } else if (devinfo->has_pln) {
831 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
832 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
833 *
834 * "[DevSNB]:<src1> must be even register aligned.
835 *
836 * This restriction is lifted on Ivy Bridge.
837 *
838 * This means that we need to split PLN into LINE+MAC on-the-fly.
839 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
840 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
841 * coordinate registers are laid out differently so we leave it as a
842 * SIMD16 instruction.
843 */
844 assert(inst->exec_size == 8 || inst->exec_size == 16);
845 assert(inst->group % 16 == 0);
846
847 brw_push_insn_state(p);
848 brw_set_default_exec_size(p, BRW_EXECUTE_8);
849
850 /* Thanks to two accumulators, we can emit all the LINEs and then all
851 * the MACs. This improves parallelism a bit.
852 */
853 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
854 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
855 offset(delta_x, g * 2));
856 brw_inst_set_group(devinfo, line, inst->group + g * 8);
857
858 /* LINE writes the accumulator automatically on gen4-5. On Sandy
859 * Bridge and later, we have to explicitly enable it.
860 */
861 if (devinfo->gen >= 6)
862 brw_inst_set_acc_wr_control(p->devinfo, line, true);
863
864 /* brw_set_default_saturate() is called before emitting
865 * instructions, so the saturate bit is set in each instruction,
866 * so we need to unset it on the LINE instructions.
867 */
868 brw_inst_set_saturate(p->devinfo, line, false);
869 }
870
871 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
872 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
873 offset(delta_x, g * 2 + 1));
874 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
875 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
876 }
877
878 brw_pop_insn_state(p);
879
880 return true;
881 } else {
882 brw_PLN(p, dst, interp, delta_x);
883
884 return false;
885 }
886 } else {
887 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
888 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
889
890 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
891
892 /* brw_set_default_saturate() is called before emitting instructions, so
893 * the saturate bit is set in each instruction, so we need to unset it on
894 * the first instruction.
895 */
896 brw_inst_set_saturate(p->devinfo, i[0], false);
897
898 return true;
899 }
900 }
901
902 void
903 fs_generator::generate_get_buffer_size(fs_inst *inst,
904 struct brw_reg dst,
905 struct brw_reg src,
906 struct brw_reg surf_index)
907 {
908 assert(devinfo->gen >= 7);
909 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
910
911 uint32_t simd_mode;
912 int rlen = 4;
913
914 switch (inst->exec_size) {
915 case 8:
916 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
917 break;
918 case 16:
919 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
920 break;
921 default:
922 unreachable("Invalid width for texture instruction");
923 }
924
925 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
926 rlen = 8;
927 dst = vec16(dst);
928 }
929
930 brw_SAMPLE(p,
931 retype(dst, BRW_REGISTER_TYPE_UW),
932 inst->base_mrf,
933 src,
934 surf_index.ud,
935 0,
936 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
937 rlen, /* response length */
938 inst->mlen,
939 inst->header_size > 0,
940 simd_mode,
941 BRW_SAMPLER_RETURN_FORMAT_SINT32);
942
943 brw_mark_surface_used(prog_data, surf_index.ud);
944 }
945
946 void
947 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src,
948 struct brw_reg surface_index,
949 struct brw_reg sampler_index)
950 {
951 assert(inst->size_written % REG_SIZE == 0);
952 int msg_type = -1;
953 uint32_t simd_mode;
954 uint32_t return_format;
955 bool is_combined_send = inst->eot;
956
957 /* Sampler EOT message of less than the dispatch width would kill the
958 * thread prematurely.
959 */
960 assert(!is_combined_send || inst->exec_size == dispatch_width);
961
962 switch (dst.type) {
963 case BRW_REGISTER_TYPE_D:
964 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
965 break;
966 case BRW_REGISTER_TYPE_UD:
967 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
968 break;
969 default:
970 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
971 break;
972 }
973
974 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
975 * is set as part of the message descriptor. On gen4, the PRM seems to
976 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
977 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
978 * gone from the message descriptor entirely and you just get UINT32 all
979 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
980 * just stomp it to UINT32 all the time.
981 */
982 if (inst->opcode == SHADER_OPCODE_TXS)
983 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
984
985 switch (inst->exec_size) {
986 case 8:
987 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
988 break;
989 case 16:
990 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
991 break;
992 default:
993 unreachable("Invalid width for texture instruction");
994 }
995
996 if (devinfo->gen >= 5) {
997 switch (inst->opcode) {
998 case SHADER_OPCODE_TEX:
999 if (inst->shadow_compare) {
1000 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
1001 } else {
1002 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
1003 }
1004 break;
1005 case FS_OPCODE_TXB:
1006 if (inst->shadow_compare) {
1007 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
1008 } else {
1009 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
1010 }
1011 break;
1012 case SHADER_OPCODE_TXL:
1013 if (inst->shadow_compare) {
1014 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
1015 } else {
1016 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
1017 }
1018 break;
1019 case SHADER_OPCODE_TXL_LZ:
1020 assert(devinfo->gen >= 9);
1021 if (inst->shadow_compare) {
1022 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ;
1023 } else {
1024 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
1025 }
1026 break;
1027 case SHADER_OPCODE_TXS:
1028 case SHADER_OPCODE_IMAGE_SIZE:
1029 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
1030 break;
1031 case SHADER_OPCODE_TXD:
1032 if (inst->shadow_compare) {
1033 /* Gen7.5+. Otherwise, lowered in NIR */
1034 assert(devinfo->gen >= 8 || devinfo->is_haswell);
1035 msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
1036 } else {
1037 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1038 }
1039 break;
1040 case SHADER_OPCODE_TXF:
1041 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1042 break;
1043 case SHADER_OPCODE_TXF_LZ:
1044 assert(devinfo->gen >= 9);
1045 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
1046 break;
1047 case SHADER_OPCODE_TXF_CMS_W:
1048 assert(devinfo->gen >= 9);
1049 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
1050 break;
1051 case SHADER_OPCODE_TXF_CMS:
1052 if (devinfo->gen >= 7)
1053 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
1054 else
1055 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1056 break;
1057 case SHADER_OPCODE_TXF_UMS:
1058 assert(devinfo->gen >= 7);
1059 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
1060 break;
1061 case SHADER_OPCODE_TXF_MCS:
1062 assert(devinfo->gen >= 7);
1063 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
1064 break;
1065 case SHADER_OPCODE_LOD:
1066 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1067 break;
1068 case SHADER_OPCODE_TG4:
1069 if (inst->shadow_compare) {
1070 assert(devinfo->gen >= 7);
1071 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
1072 } else {
1073 assert(devinfo->gen >= 6);
1074 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1075 }
1076 break;
1077 case SHADER_OPCODE_TG4_OFFSET:
1078 assert(devinfo->gen >= 7);
1079 if (inst->shadow_compare) {
1080 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
1081 } else {
1082 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
1083 }
1084 break;
1085 case SHADER_OPCODE_SAMPLEINFO:
1086 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1087 break;
1088 default:
1089 unreachable("not reached");
1090 }
1091 } else {
1092 switch (inst->opcode) {
1093 case SHADER_OPCODE_TEX:
1094 /* Note that G45 and older determines shadow compare and dispatch width
1095 * from message length for most messages.
1096 */
1097 if (inst->exec_size == 8) {
1098 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1099 if (inst->shadow_compare) {
1100 assert(inst->mlen == 6);
1101 } else {
1102 assert(inst->mlen <= 4);
1103 }
1104 } else {
1105 if (inst->shadow_compare) {
1106 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1107 assert(inst->mlen == 9);
1108 } else {
1109 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1110 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1111 }
1112 }
1113 break;
1114 case FS_OPCODE_TXB:
1115 if (inst->shadow_compare) {
1116 assert(inst->exec_size == 8);
1117 assert(inst->mlen == 6);
1118 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1119 } else {
1120 assert(inst->mlen == 9);
1121 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1122 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1123 }
1124 break;
1125 case SHADER_OPCODE_TXL:
1126 if (inst->shadow_compare) {
1127 assert(inst->exec_size == 8);
1128 assert(inst->mlen == 6);
1129 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1130 } else {
1131 assert(inst->mlen == 9);
1132 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1133 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1134 }
1135 break;
1136 case SHADER_OPCODE_TXD:
1137 /* There is no sample_d_c message; comparisons are done manually */
1138 assert(inst->exec_size == 8);
1139 assert(inst->mlen == 7 || inst->mlen == 10);
1140 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1141 break;
1142 case SHADER_OPCODE_TXF:
1143 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1144 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1145 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1146 break;
1147 case SHADER_OPCODE_TXS:
1148 assert(inst->mlen == 3);
1149 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1150 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1151 break;
1152 default:
1153 unreachable("not reached");
1154 }
1155 }
1156 assert(msg_type != -1);
1157
1158 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1159 dst = vec16(dst);
1160 }
1161
1162 assert(devinfo->gen < 7 || inst->header_size == 0 ||
1163 src.file == BRW_GENERAL_REGISTER_FILE);
1164
1165 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1166
1167 /* Load the message header if present. If there's a texture offset,
1168 * we need to set it up explicitly and load the offset bitfield.
1169 * Otherwise, we can use an implied move from g0 to the first message reg.
1170 */
1171 if (inst->header_size != 0 && devinfo->gen < 7) {
1172 if (devinfo->gen < 6 && !inst->offset) {
1173 /* Set up an implied move from g0 to the MRF. */
1174 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1175 } else {
1176 assert(inst->base_mrf != -1);
1177 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1178
1179 brw_push_insn_state(p);
1180 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1181 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1182 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1183 /* Explicitly set up the message header by copying g0 to the MRF. */
1184 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1185
1186 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1187 if (inst->offset) {
1188 /* Set the offset bits in DWord 2. */
1189 brw_MOV(p, get_element_ud(header_reg, 2),
1190 brw_imm_ud(inst->offset));
1191 }
1192
1193 brw_pop_insn_state(p);
1194 }
1195 }
1196
1197 uint32_t base_binding_table_index;
1198 switch (inst->opcode) {
1199 case SHADER_OPCODE_TG4:
1200 case SHADER_OPCODE_TG4_OFFSET:
1201 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1202 break;
1203 case SHADER_OPCODE_IMAGE_SIZE:
1204 base_binding_table_index = prog_data->binding_table.image_start;
1205 break;
1206 default:
1207 base_binding_table_index = prog_data->binding_table.texture_start;
1208 break;
1209 }
1210
1211 if (surface_index.file == BRW_IMMEDIATE_VALUE &&
1212 sampler_index.file == BRW_IMMEDIATE_VALUE) {
1213 uint32_t surface = surface_index.ud;
1214 uint32_t sampler = sampler_index.ud;
1215
1216 brw_SAMPLE(p,
1217 retype(dst, BRW_REGISTER_TYPE_UW),
1218 inst->base_mrf,
1219 src,
1220 surface + base_binding_table_index,
1221 sampler % 16,
1222 msg_type,
1223 inst->size_written / REG_SIZE,
1224 inst->mlen,
1225 inst->header_size != 0,
1226 simd_mode,
1227 return_format);
1228
1229 brw_mark_surface_used(prog_data, surface + base_binding_table_index);
1230 } else {
1231 /* Non-const sampler index */
1232
1233 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1234 struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
1235 struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
1236
1237 brw_push_insn_state(p);
1238 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1239 brw_set_default_access_mode(p, BRW_ALIGN_1);
1240 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1241
1242 if (brw_regs_equal(&surface_reg, &sampler_reg)) {
1243 brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
1244 } else {
1245 if (sampler_reg.file == BRW_IMMEDIATE_VALUE) {
1246 brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8));
1247 } else {
1248 brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
1249 brw_OR(p, addr, addr, surface_reg);
1250 }
1251 }
1252 if (base_binding_table_index)
1253 brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
1254 brw_AND(p, addr, addr, brw_imm_ud(0xfff));
1255
1256 brw_pop_insn_state(p);
1257
1258 /* dst = send(offset, a0.0 | <descriptor>) */
1259 brw_send_indirect_message(
1260 p, BRW_SFID_SAMPLER, dst, src, addr,
1261 brw_message_desc(devinfo, inst->mlen, inst->size_written / REG_SIZE,
1262 inst->header_size) |
1263 brw_sampler_desc(devinfo,
1264 0 /* surface */,
1265 0 /* sampler */,
1266 msg_type,
1267 simd_mode,
1268 return_format));
1269
1270 /* visitor knows more than we do about the surface limit required,
1271 * so has already done marking.
1272 */
1273 }
1274
1275 if (is_combined_send) {
1276 brw_inst_set_eot(p->devinfo, brw_last_inst, true);
1277 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
1278 }
1279 }
1280
1281
1282 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1283 * looking like:
1284 *
1285 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1286 *
1287 * Ideally, we want to produce:
1288 *
1289 * DDX DDY
1290 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1291 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1292 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1293 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1294 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1295 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1296 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1297 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1298 *
1299 * and add another set of two more subspans if in 16-pixel dispatch mode.
1300 *
1301 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1302 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1303 * pair. But the ideal approximation may impose a huge performance cost on
1304 * sample_d. On at least Haswell, sample_d instruction does some
1305 * optimizations if the same LOD is used for all pixels in the subspan.
1306 *
1307 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1308 * appropriate swizzling.
1309 */
1310 void
1311 fs_generator::generate_ddx(const fs_inst *inst,
1312 struct brw_reg dst, struct brw_reg src)
1313 {
1314 unsigned vstride, width;
1315
1316 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1317 /* produce accurate derivatives */
1318 vstride = BRW_VERTICAL_STRIDE_2;
1319 width = BRW_WIDTH_2;
1320 } else {
1321 /* replicate the derivative at the top-left pixel to other pixels */
1322 vstride = BRW_VERTICAL_STRIDE_4;
1323 width = BRW_WIDTH_4;
1324 }
1325
1326 struct brw_reg src0 = src;
1327 struct brw_reg src1 = src;
1328
1329 src0.subnr = sizeof(float);
1330 src0.vstride = vstride;
1331 src0.width = width;
1332 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1333 src1.vstride = vstride;
1334 src1.width = width;
1335 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1336
1337 brw_ADD(p, dst, src0, negate(src1));
1338 }
1339
1340 /* The negate_value boolean is used to negate the derivative computation for
1341 * FBOs, since they place the origin at the upper left instead of the lower
1342 * left.
1343 */
1344 void
1345 fs_generator::generate_ddy(const fs_inst *inst,
1346 struct brw_reg dst, struct brw_reg src)
1347 {
1348 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1349 /* produce accurate derivatives */
1350 if (devinfo->gen >= 11) {
1351 src = stride(src, 0, 2, 1);
1352 struct brw_reg src_0 = byte_offset(src, 0 * sizeof(float));
1353 struct brw_reg src_2 = byte_offset(src, 2 * sizeof(float));
1354 struct brw_reg src_4 = byte_offset(src, 4 * sizeof(float));
1355 struct brw_reg src_6 = byte_offset(src, 6 * sizeof(float));
1356 struct brw_reg src_8 = byte_offset(src, 8 * sizeof(float));
1357 struct brw_reg src_10 = byte_offset(src, 10 * sizeof(float));
1358 struct brw_reg src_12 = byte_offset(src, 12 * sizeof(float));
1359 struct brw_reg src_14 = byte_offset(src, 14 * sizeof(float));
1360
1361 struct brw_reg dst_0 = byte_offset(dst, 0 * sizeof(float));
1362 struct brw_reg dst_4 = byte_offset(dst, 4 * sizeof(float));
1363 struct brw_reg dst_8 = byte_offset(dst, 8 * sizeof(float));
1364 struct brw_reg dst_12 = byte_offset(dst, 12 * sizeof(float));
1365
1366 brw_push_insn_state(p);
1367 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1368
1369 brw_ADD(p, dst_0, negate(src_0), src_2);
1370 brw_ADD(p, dst_4, negate(src_4), src_6);
1371
1372 if (inst->exec_size == 16) {
1373 brw_ADD(p, dst_8, negate(src_8), src_10);
1374 brw_ADD(p, dst_12, negate(src_12), src_14);
1375 }
1376
1377 brw_pop_insn_state(p);
1378 } else {
1379 struct brw_reg src0 = stride(src, 4, 4, 1);
1380 struct brw_reg src1 = stride(src, 4, 4, 1);
1381 src0.swizzle = BRW_SWIZZLE_XYXY;
1382 src1.swizzle = BRW_SWIZZLE_ZWZW;
1383
1384 brw_push_insn_state(p);
1385 brw_set_default_access_mode(p, BRW_ALIGN_16);
1386 brw_ADD(p, dst, negate(src0), src1);
1387 brw_pop_insn_state(p);
1388 }
1389 } else {
1390 /* replicate the derivative at the top-left pixel to other pixels */
1391 struct brw_reg src0 = stride(src, 4, 4, 0);
1392 struct brw_reg src1 = stride(src, 4, 4, 0);
1393 src0.subnr = 0 * sizeof(float);
1394 src1.subnr = 2 * sizeof(float);
1395
1396 brw_ADD(p, dst, negate(src0), src1);
1397 }
1398 }
1399
1400 void
1401 fs_generator::generate_discard_jump(fs_inst *)
1402 {
1403 assert(devinfo->gen >= 6);
1404
1405 /* This HALT will be patched up at FB write time to point UIP at the end of
1406 * the program, and at brw_uip_jip() JIP will be set to the end of the
1407 * current block (or the program).
1408 */
1409 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1410 gen6_HALT(p);
1411 }
1412
1413 void
1414 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1415 {
1416 /* The 32-wide messages only respect the first 16-wide half of the channel
1417 * enable signals which are replicated identically for the second group of
1418 * 16 channels, so we cannot use them unless the write is marked
1419 * force_writemask_all.
1420 */
1421 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1422 MIN2(16, inst->exec_size);
1423 const unsigned block_size = 4 * lower_size / REG_SIZE;
1424 assert(inst->mlen != 0);
1425
1426 brw_push_insn_state(p);
1427 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1428 brw_set_default_compression(p, lower_size > 8);
1429
1430 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1431 brw_set_default_group(p, inst->group + lower_size * i);
1432
1433 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1434 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1435
1436 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1437 block_size,
1438 inst->offset + block_size * REG_SIZE * i);
1439 }
1440
1441 brw_pop_insn_state(p);
1442 }
1443
1444 void
1445 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1446 {
1447 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1448 assert(inst->mlen != 0);
1449
1450 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1451 inst->exec_size / 8, inst->offset);
1452 }
1453
1454 void
1455 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1456 {
1457 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1458
1459 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1460 }
1461
1462 void
1463 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1464 struct brw_reg dst,
1465 struct brw_reg index,
1466 struct brw_reg offset)
1467 {
1468 assert(type_sz(dst.type) == 4);
1469 assert(inst->mlen != 0);
1470
1471 assert(index.file == BRW_IMMEDIATE_VALUE &&
1472 index.type == BRW_REGISTER_TYPE_UD);
1473 uint32_t surf_index = index.ud;
1474
1475 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1476 offset.type == BRW_REGISTER_TYPE_UD);
1477 uint32_t read_offset = offset.ud;
1478
1479 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1480 read_offset, surf_index);
1481 }
1482
1483 void
1484 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1485 struct brw_reg dst,
1486 struct brw_reg index,
1487 struct brw_reg payload)
1488 {
1489 assert(index.type == BRW_REGISTER_TYPE_UD);
1490 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1491 assert(type_sz(dst.type) == 4);
1492
1493 if (index.file == BRW_IMMEDIATE_VALUE) {
1494 const uint32_t surf_index = index.ud;
1495
1496 brw_push_insn_state(p);
1497 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1498 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1499 brw_pop_insn_state(p);
1500
1501 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1502 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1503 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1504 brw_set_desc(p, send,
1505 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1506 REG_SIZE), true) |
1507 brw_dp_read_desc(devinfo, surf_index,
1508 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1509 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1510 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1511
1512 } else {
1513 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1514
1515 brw_push_insn_state(p);
1516 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1517
1518 /* a0.0 = surf_index & 0xff */
1519 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1520 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1521 brw_set_dest(p, insn_and, addr);
1522 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1523 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1524
1525 /* dst = send(payload, a0.0 | <descriptor>) */
1526 brw_send_indirect_message(
1527 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1528 retype(dst, BRW_REGISTER_TYPE_UD),
1529 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1530 brw_message_desc(devinfo, 1,
1531 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1532 brw_dp_read_desc(devinfo, 0 /* surface */,
1533 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1534 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1535 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1536
1537 brw_pop_insn_state(p);
1538 }
1539 }
1540
1541 void
1542 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1543 struct brw_reg dst,
1544 struct brw_reg index)
1545 {
1546 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1547 assert(inst->header_size != 0);
1548 assert(inst->mlen);
1549
1550 assert(index.file == BRW_IMMEDIATE_VALUE &&
1551 index.type == BRW_REGISTER_TYPE_UD);
1552 uint32_t surf_index = index.ud;
1553
1554 uint32_t simd_mode, rlen, msg_type;
1555 if (inst->exec_size == 16) {
1556 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1557 rlen = 8;
1558 } else {
1559 assert(inst->exec_size == 8);
1560 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1561 rlen = 4;
1562 }
1563
1564 if (devinfo->gen >= 5)
1565 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1566 else {
1567 /* We always use the SIMD16 message so that we only have to load U, and
1568 * not V or R.
1569 */
1570 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1571 assert(inst->mlen == 3);
1572 assert(inst->size_written == 8 * REG_SIZE);
1573 rlen = 8;
1574 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1575 }
1576
1577 struct brw_reg header = brw_vec8_grf(0, 0);
1578 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1579
1580 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1581 brw_inst_set_compression(devinfo, send, false);
1582 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1583 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1584 brw_set_src0(p, send, header);
1585 if (devinfo->gen < 6)
1586 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1587
1588 /* Our surface is set up as floats, regardless of what actual data is
1589 * stored in it.
1590 */
1591 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1592 brw_set_desc(p, send,
1593 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1594 brw_sampler_desc(devinfo, surf_index,
1595 0, /* sampler (unused) */
1596 msg_type, simd_mode, return_format));
1597 }
1598
1599 void
1600 fs_generator::generate_varying_pull_constant_load_gen7(fs_inst *inst,
1601 struct brw_reg dst,
1602 struct brw_reg index,
1603 struct brw_reg offset)
1604 {
1605 assert(devinfo->gen >= 7);
1606 /* Varying-offset pull constant loads are treated as a normal expression on
1607 * gen7, so the fact that it's a send message is hidden at the IR level.
1608 */
1609 assert(inst->header_size == 0);
1610 assert(inst->mlen);
1611 assert(index.type == BRW_REGISTER_TYPE_UD);
1612
1613 uint32_t simd_mode, rlen;
1614 if (inst->exec_size == 16) {
1615 rlen = 8;
1616 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1617 } else {
1618 assert(inst->exec_size == 8);
1619 rlen = 4;
1620 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1621 }
1622
1623 if (index.file == BRW_IMMEDIATE_VALUE) {
1624
1625 uint32_t surf_index = index.ud;
1626
1627 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1628 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1629 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1630 brw_set_src0(p, send, offset);
1631 brw_set_desc(p, send,
1632 brw_message_desc(devinfo, inst->mlen, rlen, false) |
1633 brw_sampler_desc(devinfo, surf_index,
1634 0, /* LD message ignores sampler unit */
1635 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1636 simd_mode, 0));
1637
1638 } else {
1639
1640 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1641
1642 brw_push_insn_state(p);
1643 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1644
1645 /* a0.0 = surf_index & 0xff */
1646 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1647 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1648 brw_set_dest(p, insn_and, addr);
1649 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1650 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1651
1652 brw_pop_insn_state(p);
1653
1654 /* dst = send(offset, a0.0 | <descriptor>) */
1655 brw_send_indirect_message(
1656 p, BRW_SFID_SAMPLER, retype(dst, BRW_REGISTER_TYPE_UW),
1657 offset, addr,
1658 brw_message_desc(devinfo, inst->mlen, rlen, false) |
1659 brw_sampler_desc(devinfo,
1660 0 /* surface */,
1661 0 /* sampler */,
1662 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1663 simd_mode,
1664 0));
1665 }
1666 }
1667
1668 void
1669 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1670 struct brw_reg dst,
1671 struct brw_reg src,
1672 struct brw_reg msg_data,
1673 unsigned msg_type)
1674 {
1675 const bool has_payload = inst->src[0].file != BAD_FILE;
1676 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1677 assert(inst->size_written % REG_SIZE == 0);
1678
1679 brw_pixel_interpolator_query(p,
1680 retype(dst, BRW_REGISTER_TYPE_UW),
1681 /* If we don't have a payload, what we send doesn't matter */
1682 has_payload ? src : brw_vec8_grf(0, 0),
1683 inst->pi_noperspective,
1684 msg_type,
1685 msg_data,
1686 has_payload ? 2 * inst->exec_size / 8 : 1,
1687 inst->size_written / REG_SIZE);
1688 }
1689
1690 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1691 * the ADD instruction.
1692 */
1693 void
1694 fs_generator::generate_set_sample_id(fs_inst *inst,
1695 struct brw_reg dst,
1696 struct brw_reg src0,
1697 struct brw_reg src1)
1698 {
1699 assert(dst.type == BRW_REGISTER_TYPE_D ||
1700 dst.type == BRW_REGISTER_TYPE_UD);
1701 assert(src0.type == BRW_REGISTER_TYPE_D ||
1702 src0.type == BRW_REGISTER_TYPE_UD);
1703
1704 const struct brw_reg reg = stride(src1, 1, 4, 0);
1705 const unsigned lower_size = MIN2(inst->exec_size,
1706 devinfo->gen >= 8 ? 16 : 8);
1707
1708 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1709 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1710 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1711 (i * lower_size / (1 << src0.width))) *
1712 type_sz(src0.type) / REG_SIZE),
1713 suboffset(reg, i * lower_size / 4));
1714 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1715 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1716 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1717 }
1718 }
1719
1720 void
1721 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1722 struct brw_reg dst,
1723 struct brw_reg x,
1724 struct brw_reg y)
1725 {
1726 assert(devinfo->gen >= 7);
1727 assert(dst.type == BRW_REGISTER_TYPE_UD);
1728 assert(x.type == BRW_REGISTER_TYPE_F);
1729 assert(y.type == BRW_REGISTER_TYPE_F);
1730
1731 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1732 *
1733 * Because this instruction does not have a 16-bit floating-point type,
1734 * the destination data type must be Word (W).
1735 *
1736 * The destination must be DWord-aligned and specify a horizontal stride
1737 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1738 * each destination channel and the upper word is not modified.
1739 */
1740 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1741
1742 /* Give each 32-bit channel of dst the form below, where "." means
1743 * unchanged.
1744 * 0x....hhhh
1745 */
1746 brw_F32TO16(p, dst_w, y);
1747
1748 /* Now the form:
1749 * 0xhhhh0000
1750 */
1751 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1752
1753 /* And, finally the form of packHalf2x16's output:
1754 * 0xhhhhllll
1755 */
1756 brw_F32TO16(p, dst_w, x);
1757 }
1758
1759 void
1760 fs_generator::generate_shader_time_add(fs_inst *,
1761 struct brw_reg payload,
1762 struct brw_reg offset,
1763 struct brw_reg value)
1764 {
1765 assert(devinfo->gen >= 7);
1766 brw_push_insn_state(p);
1767 brw_set_default_mask_control(p, true);
1768
1769 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1770 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1771 offset.type);
1772 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1773 value.type);
1774
1775 assert(offset.file == BRW_IMMEDIATE_VALUE);
1776 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1777 value.width = BRW_WIDTH_1;
1778 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1779 value.vstride = BRW_VERTICAL_STRIDE_0;
1780 } else {
1781 assert(value.file == BRW_IMMEDIATE_VALUE);
1782 }
1783
1784 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1785 * case, and we don't really care about squeezing every bit of performance
1786 * out of this path, so we just emit the MOVs from here.
1787 */
1788 brw_MOV(p, payload_offset, offset);
1789 brw_MOV(p, payload_value, value);
1790 brw_shader_time_add(p, payload,
1791 prog_data->binding_table.shader_time_start);
1792 brw_pop_insn_state(p);
1793
1794 brw_mark_surface_used(prog_data,
1795 prog_data->binding_table.shader_time_start);
1796 }
1797
1798 void
1799 fs_generator::enable_debug(const char *shader_name)
1800 {
1801 debug_flag = true;
1802 this->shader_name = shader_name;
1803 }
1804
1805 int
1806 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width)
1807 {
1808 /* align to 64 byte boundary. */
1809 while (p->next_insn_offset % 64)
1810 brw_NOP(p);
1811
1812 this->dispatch_width = dispatch_width;
1813
1814 int start_offset = p->next_insn_offset;
1815 int spill_count = 0, fill_count = 0;
1816 int loop_count = 0;
1817
1818 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1819
1820 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1821 struct brw_reg src[3], dst;
1822 unsigned int last_insn_offset = p->next_insn_offset;
1823 bool multiple_instructions_emitted = false;
1824
1825 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1826 * "Register Region Restrictions" section: for BDW, SKL:
1827 *
1828 * "A POW/FDIV operation must not be followed by an instruction
1829 * that requires two destination registers."
1830 *
1831 * The documentation is often lacking annotations for Atom parts,
1832 * and empirically this affects CHV as well.
1833 */
1834 if (devinfo->gen >= 8 &&
1835 devinfo->gen <= 9 &&
1836 p->nr_insn > 1 &&
1837 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1838 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1839 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1840 brw_NOP(p);
1841 last_insn_offset = p->next_insn_offset;
1842 }
1843
1844 if (unlikely(debug_flag))
1845 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1846
1847 /* If the instruction writes to more than one register, it needs to be
1848 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1849 * hardware figures out by itself what the right compression mode is,
1850 * but we still need to know whether the instruction is compressed to
1851 * set up the source register regions appropriately.
1852 *
1853 * XXX - This is wrong for instructions that write a single register but
1854 * read more than one which should strictly speaking be treated as
1855 * compressed. For instructions that don't write any registers it
1856 * relies on the destination being a null register of the correct
1857 * type and regioning so the instruction is considered compressed
1858 * or not accordingly.
1859 */
1860 const bool compressed =
1861 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1862 brw_set_default_compression(p, compressed);
1863 brw_set_default_group(p, inst->group);
1864
1865 for (unsigned int i = 0; i < inst->sources; i++) {
1866 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1867 &inst->src[i], compressed);
1868 /* The accumulator result appears to get used for the
1869 * conditional modifier generation. When negating a UD
1870 * value, there is a 33rd bit generated for the sign in the
1871 * accumulator value, so now you can't check, for example,
1872 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1873 */
1874 assert(!inst->conditional_mod ||
1875 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1876 !inst->src[i].negate);
1877 }
1878 dst = brw_reg_from_fs_reg(devinfo, inst,
1879 &inst->dst, compressed);
1880
1881 brw_set_default_access_mode(p, BRW_ALIGN_1);
1882 brw_set_default_predicate_control(p, inst->predicate);
1883 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1884 /* On gen7 and above, hardware automatically adds the group onto the
1885 * flag subregister number. On Sandy Bridge and older, we have to do it
1886 * ourselves.
1887 */
1888 const unsigned flag_subreg = inst->flag_subreg +
1889 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1890 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1891 brw_set_default_saturate(p, inst->saturate);
1892 brw_set_default_mask_control(p, inst->force_writemask_all);
1893 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1894
1895 unsigned exec_size = inst->exec_size;
1896 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1897 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1898 exec_size *= 2;
1899 }
1900
1901 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1902
1903 assert(inst->force_writemask_all || inst->exec_size >= 4);
1904 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1905 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1906 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1907
1908 switch (inst->opcode) {
1909 case BRW_OPCODE_MOV:
1910 brw_MOV(p, dst, src[0]);
1911 break;
1912 case BRW_OPCODE_ADD:
1913 brw_ADD(p, dst, src[0], src[1]);
1914 break;
1915 case BRW_OPCODE_MUL:
1916 brw_MUL(p, dst, src[0], src[1]);
1917 break;
1918 case BRW_OPCODE_AVG:
1919 brw_AVG(p, dst, src[0], src[1]);
1920 break;
1921 case BRW_OPCODE_MACH:
1922 brw_MACH(p, dst, src[0], src[1]);
1923 break;
1924
1925 case BRW_OPCODE_LINE:
1926 brw_LINE(p, dst, src[0], src[1]);
1927 break;
1928
1929 case BRW_OPCODE_MAD:
1930 assert(devinfo->gen >= 6);
1931 if (devinfo->gen < 10)
1932 brw_set_default_access_mode(p, BRW_ALIGN_16);
1933 brw_MAD(p, dst, src[0], src[1], src[2]);
1934 break;
1935
1936 case BRW_OPCODE_LRP:
1937 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1938 if (devinfo->gen < 10)
1939 brw_set_default_access_mode(p, BRW_ALIGN_16);
1940 brw_LRP(p, dst, src[0], src[1], src[2]);
1941 break;
1942
1943 case BRW_OPCODE_FRC:
1944 brw_FRC(p, dst, src[0]);
1945 break;
1946 case BRW_OPCODE_RNDD:
1947 brw_RNDD(p, dst, src[0]);
1948 break;
1949 case BRW_OPCODE_RNDE:
1950 brw_RNDE(p, dst, src[0]);
1951 break;
1952 case BRW_OPCODE_RNDZ:
1953 brw_RNDZ(p, dst, src[0]);
1954 break;
1955
1956 case BRW_OPCODE_AND:
1957 brw_AND(p, dst, src[0], src[1]);
1958 break;
1959 case BRW_OPCODE_OR:
1960 brw_OR(p, dst, src[0], src[1]);
1961 break;
1962 case BRW_OPCODE_XOR:
1963 brw_XOR(p, dst, src[0], src[1]);
1964 break;
1965 case BRW_OPCODE_NOT:
1966 brw_NOT(p, dst, src[0]);
1967 break;
1968 case BRW_OPCODE_ASR:
1969 brw_ASR(p, dst, src[0], src[1]);
1970 break;
1971 case BRW_OPCODE_SHR:
1972 brw_SHR(p, dst, src[0], src[1]);
1973 break;
1974 case BRW_OPCODE_SHL:
1975 brw_SHL(p, dst, src[0], src[1]);
1976 break;
1977 case BRW_OPCODE_F32TO16:
1978 assert(devinfo->gen >= 7);
1979 brw_F32TO16(p, dst, src[0]);
1980 break;
1981 case BRW_OPCODE_F16TO32:
1982 assert(devinfo->gen >= 7);
1983 brw_F16TO32(p, dst, src[0]);
1984 break;
1985 case BRW_OPCODE_CMP:
1986 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1987 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1988 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1989 * implemented in the compiler is not sufficient. Overriding the
1990 * type when the destination is the null register is necessary but
1991 * not sufficient by itself.
1992 */
1993 assert(dst.nr == BRW_ARF_NULL);
1994 dst.type = BRW_REGISTER_TYPE_D;
1995 }
1996 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1997 break;
1998 case BRW_OPCODE_SEL:
1999 brw_SEL(p, dst, src[0], src[1]);
2000 break;
2001 case BRW_OPCODE_CSEL:
2002 assert(devinfo->gen >= 8);
2003 if (devinfo->gen < 10)
2004 brw_set_default_access_mode(p, BRW_ALIGN_16);
2005 brw_CSEL(p, dst, src[0], src[1], src[2]);
2006 break;
2007 case BRW_OPCODE_BFREV:
2008 assert(devinfo->gen >= 7);
2009 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
2010 retype(src[0], BRW_REGISTER_TYPE_UD));
2011 break;
2012 case BRW_OPCODE_FBH:
2013 assert(devinfo->gen >= 7);
2014 brw_FBH(p, retype(dst, src[0].type), src[0]);
2015 break;
2016 case BRW_OPCODE_FBL:
2017 assert(devinfo->gen >= 7);
2018 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
2019 retype(src[0], BRW_REGISTER_TYPE_UD));
2020 break;
2021 case BRW_OPCODE_LZD:
2022 brw_LZD(p, dst, src[0]);
2023 break;
2024 case BRW_OPCODE_CBIT:
2025 assert(devinfo->gen >= 7);
2026 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
2027 retype(src[0], BRW_REGISTER_TYPE_UD));
2028 break;
2029 case BRW_OPCODE_ADDC:
2030 assert(devinfo->gen >= 7);
2031 brw_ADDC(p, dst, src[0], src[1]);
2032 break;
2033 case BRW_OPCODE_SUBB:
2034 assert(devinfo->gen >= 7);
2035 brw_SUBB(p, dst, src[0], src[1]);
2036 break;
2037 case BRW_OPCODE_MAC:
2038 brw_MAC(p, dst, src[0], src[1]);
2039 break;
2040
2041 case BRW_OPCODE_BFE:
2042 assert(devinfo->gen >= 7);
2043 if (devinfo->gen < 10)
2044 brw_set_default_access_mode(p, BRW_ALIGN_16);
2045 brw_BFE(p, dst, src[0], src[1], src[2]);
2046 break;
2047
2048 case BRW_OPCODE_BFI1:
2049 assert(devinfo->gen >= 7);
2050 brw_BFI1(p, dst, src[0], src[1]);
2051 break;
2052 case BRW_OPCODE_BFI2:
2053 assert(devinfo->gen >= 7);
2054 if (devinfo->gen < 10)
2055 brw_set_default_access_mode(p, BRW_ALIGN_16);
2056 brw_BFI2(p, dst, src[0], src[1], src[2]);
2057 break;
2058
2059 case BRW_OPCODE_IF:
2060 if (inst->src[0].file != BAD_FILE) {
2061 /* The instruction has an embedded compare (only allowed on gen6) */
2062 assert(devinfo->gen == 6);
2063 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
2064 } else {
2065 brw_IF(p, brw_get_default_exec_size(p));
2066 }
2067 break;
2068
2069 case BRW_OPCODE_ELSE:
2070 brw_ELSE(p);
2071 break;
2072 case BRW_OPCODE_ENDIF:
2073 brw_ENDIF(p);
2074 break;
2075
2076 case BRW_OPCODE_DO:
2077 brw_DO(p, brw_get_default_exec_size(p));
2078 break;
2079
2080 case BRW_OPCODE_BREAK:
2081 brw_BREAK(p);
2082 break;
2083 case BRW_OPCODE_CONTINUE:
2084 brw_CONT(p);
2085 break;
2086
2087 case BRW_OPCODE_WHILE:
2088 brw_WHILE(p);
2089 loop_count++;
2090 break;
2091
2092 case SHADER_OPCODE_RCP:
2093 case SHADER_OPCODE_RSQ:
2094 case SHADER_OPCODE_SQRT:
2095 case SHADER_OPCODE_EXP2:
2096 case SHADER_OPCODE_LOG2:
2097 case SHADER_OPCODE_SIN:
2098 case SHADER_OPCODE_COS:
2099 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2100 if (devinfo->gen >= 6) {
2101 assert(inst->mlen == 0);
2102 assert(devinfo->gen >= 7 || inst->exec_size == 8);
2103 gen6_math(p, dst, brw_math_function(inst->opcode),
2104 src[0], brw_null_reg());
2105 } else {
2106 assert(inst->mlen >= 1);
2107 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
2108 gen4_math(p, dst,
2109 brw_math_function(inst->opcode),
2110 inst->base_mrf, src[0],
2111 BRW_MATH_PRECISION_FULL);
2112 }
2113 break;
2114 case SHADER_OPCODE_INT_QUOTIENT:
2115 case SHADER_OPCODE_INT_REMAINDER:
2116 case SHADER_OPCODE_POW:
2117 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2118 if (devinfo->gen >= 6) {
2119 assert(inst->mlen == 0);
2120 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2121 inst->exec_size == 8);
2122 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2123 } else {
2124 assert(inst->mlen >= 1);
2125 assert(inst->exec_size == 8);
2126 gen4_math(p, dst, brw_math_function(inst->opcode),
2127 inst->base_mrf, src[0],
2128 BRW_MATH_PRECISION_FULL);
2129 }
2130 break;
2131 case FS_OPCODE_LINTERP:
2132 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2133 break;
2134 case FS_OPCODE_PIXEL_X:
2135 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2136 src[0].subnr = 0 * type_sz(src[0].type);
2137 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2138 break;
2139 case FS_OPCODE_PIXEL_Y:
2140 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2141 src[0].subnr = 4 * type_sz(src[0].type);
2142 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2143 break;
2144 case SHADER_OPCODE_GET_BUFFER_SIZE:
2145 generate_get_buffer_size(inst, dst, src[0], src[1]);
2146 break;
2147 case SHADER_OPCODE_TEX:
2148 case FS_OPCODE_TXB:
2149 case SHADER_OPCODE_TXD:
2150 case SHADER_OPCODE_TXF:
2151 case SHADER_OPCODE_TXF_LZ:
2152 case SHADER_OPCODE_TXF_CMS:
2153 case SHADER_OPCODE_TXF_CMS_W:
2154 case SHADER_OPCODE_TXF_UMS:
2155 case SHADER_OPCODE_TXF_MCS:
2156 case SHADER_OPCODE_TXL:
2157 case SHADER_OPCODE_TXL_LZ:
2158 case SHADER_OPCODE_TXS:
2159 case SHADER_OPCODE_LOD:
2160 case SHADER_OPCODE_TG4:
2161 case SHADER_OPCODE_TG4_OFFSET:
2162 case SHADER_OPCODE_SAMPLEINFO:
2163 generate_tex(inst, dst, src[0], src[1], src[2]);
2164 break;
2165
2166 case SHADER_OPCODE_IMAGE_SIZE:
2167 generate_tex(inst, dst, src[0], src[1], brw_imm_ud(0));
2168 break;
2169
2170 case FS_OPCODE_DDX_COARSE:
2171 case FS_OPCODE_DDX_FINE:
2172 generate_ddx(inst, dst, src[0]);
2173 break;
2174 case FS_OPCODE_DDY_COARSE:
2175 case FS_OPCODE_DDY_FINE:
2176 generate_ddy(inst, dst, src[0]);
2177 break;
2178
2179 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2180 generate_scratch_write(inst, src[0]);
2181 spill_count++;
2182 break;
2183
2184 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2185 generate_scratch_read(inst, dst);
2186 fill_count++;
2187 break;
2188
2189 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2190 generate_scratch_read_gen7(inst, dst);
2191 fill_count++;
2192 break;
2193
2194 case SHADER_OPCODE_MOV_INDIRECT:
2195 generate_mov_indirect(inst, dst, src[0], src[1]);
2196 break;
2197
2198 case SHADER_OPCODE_URB_READ_SIMD8:
2199 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2200 generate_urb_read(inst, dst, src[0]);
2201 break;
2202
2203 case SHADER_OPCODE_URB_WRITE_SIMD8:
2204 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2205 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2206 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2207 generate_urb_write(inst, src[0]);
2208 break;
2209
2210 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2211 assert(inst->force_writemask_all);
2212 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2213 break;
2214
2215 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2216 assert(inst->force_writemask_all);
2217 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2218 break;
2219
2220 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2221 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2222 break;
2223
2224 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
2225 generate_varying_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2226 break;
2227
2228 case FS_OPCODE_REP_FB_WRITE:
2229 case FS_OPCODE_FB_WRITE:
2230 generate_fb_write(inst, src[0]);
2231 break;
2232
2233 case FS_OPCODE_FB_READ:
2234 generate_fb_read(inst, dst, src[0]);
2235 break;
2236
2237 case FS_OPCODE_DISCARD_JUMP:
2238 generate_discard_jump(inst);
2239 break;
2240
2241 case SHADER_OPCODE_SHADER_TIME_ADD:
2242 generate_shader_time_add(inst, src[0], src[1], src[2]);
2243 break;
2244
2245 case SHADER_OPCODE_UNTYPED_ATOMIC:
2246 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2247 brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud,
2248 inst->mlen, !inst->dst.is_null(),
2249 inst->header_size);
2250 break;
2251
2252 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT:
2253 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2254 brw_untyped_atomic_float(p, dst, src[0], src[1], src[2].ud,
2255 inst->mlen, !inst->dst.is_null(),
2256 inst->header_size);
2257 break;
2258
2259 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
2260 assert(!inst->header_size);
2261 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2262 brw_untyped_surface_read(p, dst, src[0], src[1],
2263 inst->mlen, src[2].ud);
2264 break;
2265
2266 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
2267 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2268 brw_untyped_surface_write(p, src[0], src[1],
2269 inst->mlen, src[2].ud,
2270 inst->header_size);
2271 break;
2272
2273 case SHADER_OPCODE_BYTE_SCATTERED_READ:
2274 assert(!inst->header_size);
2275 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2276 brw_byte_scattered_read(p, dst, src[0], src[1],
2277 inst->mlen, src[2].ud);
2278 break;
2279
2280 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
2281 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2282 brw_byte_scattered_write(p, src[0], src[1],
2283 inst->mlen, src[2].ud,
2284 inst->header_size);
2285 break;
2286
2287 case SHADER_OPCODE_TYPED_ATOMIC:
2288 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2289 brw_typed_atomic(p, dst, src[0], src[1],
2290 src[2].ud, inst->mlen, !inst->dst.is_null(),
2291 inst->header_size);
2292 break;
2293
2294 case SHADER_OPCODE_TYPED_SURFACE_READ:
2295 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2296 brw_typed_surface_read(p, dst, src[0], src[1],
2297 inst->mlen, src[2].ud,
2298 inst->header_size);
2299 break;
2300
2301 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
2302 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2303 brw_typed_surface_write(p, src[0], src[1], inst->mlen, src[2].ud,
2304 inst->header_size);
2305 break;
2306
2307 case SHADER_OPCODE_MEMORY_FENCE:
2308 brw_memory_fence(p, dst, BRW_OPCODE_SEND);
2309 break;
2310
2311 case SHADER_OPCODE_INTERLOCK:
2312 /* The interlock is basically a memory fence issued via sendc */
2313 brw_memory_fence(p, dst, BRW_OPCODE_SENDC);
2314 break;
2315
2316 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2317 const struct brw_reg mask =
2318 brw_stage_has_packed_dispatch(devinfo, stage,
2319 prog_data) ? brw_imm_ud(~0u) :
2320 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2321 brw_dmask_reg();
2322 brw_find_live_channel(p, dst, mask);
2323 break;
2324 }
2325
2326 case SHADER_OPCODE_BROADCAST:
2327 assert(inst->force_writemask_all);
2328 brw_broadcast(p, dst, src[0], src[1]);
2329 break;
2330
2331 case SHADER_OPCODE_SHUFFLE:
2332 generate_shuffle(inst, dst, src[0], src[1]);
2333 break;
2334
2335 case SHADER_OPCODE_SEL_EXEC:
2336 assert(inst->force_writemask_all);
2337 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2338 brw_MOV(p, dst, src[1]);
2339 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2340 brw_MOV(p, dst, src[0]);
2341 break;
2342
2343 case SHADER_OPCODE_QUAD_SWIZZLE:
2344 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2345 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2346 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2347 break;
2348
2349 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2350 assert(src[0].type == dst.type);
2351 assert(!src[0].negate && !src[0].abs);
2352 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2353 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2354 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2355 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2356 const unsigned component = src[1].ud;
2357 const unsigned cluster_size = src[2].ud;
2358 struct brw_reg strided = stride(suboffset(src[0], component),
2359 cluster_size, cluster_size, 0);
2360 if (type_sz(src[0].type) > 4 &&
2361 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2362 /* IVB has an issue (which we found empirically) where it reads
2363 * two address register components per channel for indirectly
2364 * addressed 64-bit sources.
2365 *
2366 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2367 *
2368 * "When source or destination datatype is 64b or operation is
2369 * integer DWord multiply, indirect addressing must not be
2370 * used."
2371 *
2372 * To work around both of these, we do two integer MOVs insead of
2373 * one 64-bit MOV. Because no double value should ever cross a
2374 * register boundary, it's safe to use the immediate offset in the
2375 * indirect here to handle adding 4 bytes to the offset and avoid
2376 * the extra ADD to the register file.
2377 */
2378 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2379 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2380 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2381 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2382 } else {
2383 brw_MOV(p, dst, strided);
2384 }
2385 break;
2386 }
2387
2388 case FS_OPCODE_SET_SAMPLE_ID:
2389 generate_set_sample_id(inst, dst, src[0], src[1]);
2390 break;
2391
2392 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2393 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2394 break;
2395
2396 case FS_OPCODE_PLACEHOLDER_HALT:
2397 /* This is the place where the final HALT needs to be inserted if
2398 * we've emitted any discards. If not, this will emit no code.
2399 */
2400 if (!patch_discard_jumps_to_fb_writes()) {
2401 if (unlikely(debug_flag)) {
2402 disasm_info->use_tail = true;
2403 }
2404 }
2405 break;
2406
2407 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2408 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2409 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2410 break;
2411
2412 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2413 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2414 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2415 break;
2416
2417 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2418 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2419 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2420 break;
2421
2422 case CS_OPCODE_CS_TERMINATE:
2423 generate_cs_terminate(inst, src[0]);
2424 break;
2425
2426 case SHADER_OPCODE_BARRIER:
2427 generate_barrier(inst, src[0]);
2428 break;
2429
2430 case BRW_OPCODE_DIM:
2431 assert(devinfo->is_haswell);
2432 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2433 assert(dst.type == BRW_REGISTER_TYPE_DF);
2434 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2435 break;
2436
2437 case SHADER_OPCODE_RND_MODE:
2438 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2439 brw_rounding_mode(p, (brw_rnd_mode) src[0].d);
2440 break;
2441
2442 default:
2443 unreachable("Unsupported opcode");
2444
2445 case SHADER_OPCODE_LOAD_PAYLOAD:
2446 unreachable("Should be lowered by lower_load_payload()");
2447 }
2448
2449 if (multiple_instructions_emitted)
2450 continue;
2451
2452 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2453 assert(p->next_insn_offset == last_insn_offset + 16 ||
2454 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2455 "emitting more than 1 instruction");
2456
2457 brw_inst *last = &p->store[last_insn_offset / 16];
2458
2459 if (inst->conditional_mod)
2460 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2461 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2462 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2463 }
2464 }
2465
2466 brw_set_uip_jip(p, start_offset);
2467
2468 /* end of program sentinel */
2469 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2470
2471 #ifndef NDEBUG
2472 bool validated =
2473 #else
2474 if (unlikely(debug_flag))
2475 #endif
2476 brw_validate_instructions(devinfo, p->store,
2477 start_offset,
2478 p->next_insn_offset,
2479 disasm_info);
2480
2481 int before_size = p->next_insn_offset - start_offset;
2482 brw_compact_instructions(p, start_offset, disasm_info);
2483 int after_size = p->next_insn_offset - start_offset;
2484
2485 if (unlikely(debug_flag)) {
2486 fprintf(stderr, "Native code for %s\n"
2487 "SIMD%d shader: %d instructions. %d loops. %u cycles. %d:%d spills:fills. Promoted %u constants. Compacted %d to %d"
2488 " bytes (%.0f%%)\n",
2489 shader_name, dispatch_width, before_size / 16, loop_count, cfg->cycle_count,
2490 spill_count, fill_count, promoted_constants, before_size, after_size,
2491 100.0f * (before_size - after_size) / before_size);
2492
2493 dump_assembly(p->store, disasm_info);
2494 }
2495 ralloc_free(disasm_info);
2496 assert(validated);
2497
2498 compiler->shader_debug_log(log_data,
2499 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2500 "%d:%d spills:fills, Promoted %u constants, "
2501 "compacted %d to %d bytes.",
2502 _mesa_shader_stage_to_abbrev(stage),
2503 dispatch_width, before_size / 16,
2504 loop_count, cfg->cycle_count, spill_count,
2505 fill_count, promoted_constants, before_size,
2506 after_size);
2507
2508 return start_offset;
2509 }
2510
2511 const unsigned *
2512 fs_generator::get_assembly()
2513 {
2514 return brw_get_program(p, &prog_data->program_size);
2515 }