intel/eu/gen12: Don't set thread control, it's gone.
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33 #include "util/mesa-sha1.h"
34
35 static enum brw_reg_file
36 brw_file_from_reg(fs_reg *reg)
37 {
38 switch (reg->file) {
39 case ARF:
40 return BRW_ARCHITECTURE_REGISTER_FILE;
41 case FIXED_GRF:
42 case VGRF:
43 return BRW_GENERAL_REGISTER_FILE;
44 case MRF:
45 return BRW_MESSAGE_REGISTER_FILE;
46 case IMM:
47 return BRW_IMMEDIATE_VALUE;
48 case BAD_FILE:
49 case ATTR:
50 case UNIFORM:
51 unreachable("not reached");
52 }
53 return BRW_ARCHITECTURE_REGISTER_FILE;
54 }
55
56 static struct brw_reg
57 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
58 fs_reg *reg, bool compressed)
59 {
60 struct brw_reg brw_reg;
61
62 switch (reg->file) {
63 case MRF:
64 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
65 /* Fallthrough */
66 case VGRF:
67 if (reg->stride == 0) {
68 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
69 } else {
70 /* From the Haswell PRM:
71 *
72 * "VertStride must be used to cross GRF register boundaries. This
73 * rule implies that elements within a 'Width' cannot cross GRF
74 * boundaries."
75 *
76 * The maximum width value that could satisfy this restriction is:
77 */
78 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
79
80 /* Because the hardware can only split source regions at a whole
81 * multiple of width during decompression (i.e. vertically), clamp
82 * the value obtained above to the physical execution size of a
83 * single decompressed chunk of the instruction:
84 */
85 const unsigned phys_width = compressed ? inst->exec_size / 2 :
86 inst->exec_size;
87
88 const unsigned max_hw_width = 16;
89
90 /* XXX - The equation above is strictly speaking not correct on
91 * hardware that supports unbalanced GRF writes -- On Gen9+
92 * each decompressed chunk of the instruction may have a
93 * different execution size when the number of components
94 * written to each destination GRF is not the same.
95 */
96 if (reg->stride > 4) {
97 assert(reg != &inst->dst);
98 assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
99 brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
100 brw_reg = stride(brw_reg, reg->stride, 1, 0);
101 } else {
102 const unsigned width = MIN3(reg_width, phys_width, max_hw_width);
103 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
104 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
105 }
106
107 if (devinfo->gen == 7 && !devinfo->is_haswell) {
108 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
109 * "Each DF (Double Float) operand uses an element size of 4 rather
110 * than 8 and all regioning parameters are twice what the values
111 * would be based on the true element size: ExecSize, Width,
112 * HorzStride, and VertStride. Each DF operand uses a pair of
113 * channels and all masking and swizzing should be adjusted
114 * appropriately."
115 *
116 * From the IvyBridge PRM (Special Requirements for Handling Double
117 * Precision Data Types, page 71):
118 * "In Align1 mode, all regioning parameters like stride, execution
119 * size, and width must use the syntax of a pair of packed
120 * floats. The offsets for these data types must be 64-bit
121 * aligned. The execution size and regioning parameters are in terms
122 * of floats."
123 *
124 * Summarized: when handling DF-typed arguments, ExecSize,
125 * VertStride, and Width must be doubled.
126 *
127 * It applies to BayTrail too.
128 */
129 if (type_sz(reg->type) == 8) {
130 brw_reg.width++;
131 if (brw_reg.vstride > 0)
132 brw_reg.vstride++;
133 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
134 }
135
136 /* When converting from DF->F, we set the destination stride to 2
137 * because each d2f conversion implicitly writes 2 floats, being
138 * the first one the converted value. IVB/BYT actually writes two
139 * F components per SIMD channel, and every other component is
140 * filled with garbage.
141 */
142 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
143 type_sz(inst->dst.type) < 8) {
144 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
145 brw_reg.hstride--;
146 }
147 }
148 }
149
150 brw_reg = retype(brw_reg, reg->type);
151 brw_reg = byte_offset(brw_reg, reg->offset);
152 brw_reg.abs = reg->abs;
153 brw_reg.negate = reg->negate;
154 break;
155 case ARF:
156 case FIXED_GRF:
157 case IMM:
158 assert(reg->offset == 0);
159 brw_reg = reg->as_brw_reg();
160 break;
161 case BAD_FILE:
162 /* Probably unused. */
163 brw_reg = brw_null_reg();
164 break;
165 case ATTR:
166 case UNIFORM:
167 unreachable("not reached");
168 }
169
170 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
171 * region, but on IVB and BYT DF regions must be programmed in terms of
172 * floats. A <0,2,1> region accomplishes this.
173 */
174 if (devinfo->gen == 7 && !devinfo->is_haswell &&
175 type_sz(reg->type) == 8 &&
176 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
177 brw_reg.width == BRW_WIDTH_1 &&
178 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
179 brw_reg.width = BRW_WIDTH_2;
180 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
181 }
182
183 return brw_reg;
184 }
185
186 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
187 void *mem_ctx,
188 struct brw_stage_prog_data *prog_data,
189 struct shader_stats shader_stats,
190 bool runtime_check_aads_emit,
191 gl_shader_stage stage)
192
193 : compiler(compiler), log_data(log_data),
194 devinfo(compiler->devinfo),
195 prog_data(prog_data),
196 shader_stats(shader_stats),
197 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
198 stage(stage), mem_ctx(mem_ctx)
199 {
200 p = rzalloc(mem_ctx, struct brw_codegen);
201 brw_init_codegen(devinfo, p, mem_ctx);
202
203 /* In the FS code generator, we are very careful to ensure that we always
204 * set the right execution size so we don't need the EU code to "help" us
205 * by trying to infer it. Sometimes, it infers the wrong thing.
206 */
207 p->automatic_exec_sizes = false;
208 }
209
210 fs_generator::~fs_generator()
211 {
212 }
213
214 class ip_record : public exec_node {
215 public:
216 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
217
218 ip_record(int ip)
219 {
220 this->ip = ip;
221 }
222
223 int ip;
224 };
225
226 bool
227 fs_generator::patch_discard_jumps_to_fb_writes()
228 {
229 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
230 return false;
231
232 int scale = brw_jump_scale(p->devinfo);
233
234 /* There is a somewhat strange undocumented requirement of using
235 * HALT, according to the simulator. If some channel has HALTed to
236 * a particular UIP, then by the end of the program, every channel
237 * must have HALTed to that UIP. Furthermore, the tracking is a
238 * stack, so you can't do the final halt of a UIP after starting
239 * halting to a new UIP.
240 *
241 * Symptoms of not emitting this instruction on actual hardware
242 * included GPU hangs and sparkly rendering on the piglit discard
243 * tests.
244 */
245 brw_inst *last_halt = gen6_HALT(p);
246 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
247 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
248
249 int ip = p->nr_insn;
250
251 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
252 brw_inst *patch = &p->store[patch_ip->ip];
253
254 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
255 /* HALT takes a half-instruction distance from the pre-incremented IP. */
256 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
257 }
258
259 this->discard_halt_patches.make_empty();
260 return true;
261 }
262
263 void
264 fs_generator::generate_send(fs_inst *inst,
265 struct brw_reg dst,
266 struct brw_reg desc,
267 struct brw_reg ex_desc,
268 struct brw_reg payload,
269 struct brw_reg payload2)
270 {
271 const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
272 dst.nr == BRW_ARF_NULL;
273 const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
274
275 uint32_t desc_imm = inst->desc |
276 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
277
278 uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen);
279
280 if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
281 /* If we have any sort of extended descriptor, then we need SENDS. This
282 * also covers the dual-payload case because ex_mlen goes in ex_desc.
283 */
284 brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
285 desc, desc_imm, ex_desc, ex_desc_imm,
286 inst->eot);
287 if (inst->check_tdr)
288 brw_inst_set_opcode(p->devinfo, brw_last_inst,
289 devinfo->gen >= 12 ? BRW_OPCODE_SENDC : BRW_OPCODE_SENDSC);
290 } else {
291 brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
292 inst->eot);
293 if (inst->check_tdr)
294 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
295 }
296 }
297
298 void
299 fs_generator::fire_fb_write(fs_inst *inst,
300 struct brw_reg payload,
301 struct brw_reg implied_header,
302 GLuint nr)
303 {
304 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
305
306 if (devinfo->gen < 6) {
307 brw_push_insn_state(p);
308 brw_set_default_exec_size(p, BRW_EXECUTE_8);
309 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
310 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
311 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
312 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
313 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
314 brw_pop_insn_state(p);
315 }
316
317 uint32_t msg_control = brw_fb_write_msg_control(inst, prog_data);
318
319 /* We assume render targets start at 0, because headerless FB write
320 * messages set "Render Target Index" to 0. Using a different binding
321 * table index would make it impossible to use headerless messages.
322 */
323 const uint32_t surf_index = inst->target;
324
325 brw_inst *insn = brw_fb_WRITE(p,
326 payload,
327 retype(implied_header, BRW_REGISTER_TYPE_UW),
328 msg_control,
329 surf_index,
330 nr,
331 0,
332 inst->eot,
333 inst->last_rt,
334 inst->header_size != 0);
335
336 if (devinfo->gen >= 6)
337 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
338 }
339
340 void
341 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
342 {
343 if (devinfo->gen < 8 && !devinfo->is_haswell) {
344 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
345 brw_set_default_flag_reg(p, 0, 0);
346 }
347
348 const struct brw_reg implied_header =
349 devinfo->gen < 6 ? payload : brw_null_reg();
350
351 if (inst->base_mrf >= 0)
352 payload = brw_message_reg(inst->base_mrf);
353
354 if (!runtime_check_aads_emit) {
355 fire_fb_write(inst, payload, implied_header, inst->mlen);
356 } else {
357 /* This can only happen in gen < 6 */
358 assert(devinfo->gen < 6);
359
360 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
361
362 /* Check runtime bit to detect if we have to send AA data or not */
363 brw_push_insn_state(p);
364 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
365 brw_set_default_exec_size(p, BRW_EXECUTE_1);
366 brw_AND(p,
367 v1_null_ud,
368 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
369 brw_imm_ud(1<<26));
370 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
371
372 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
373 brw_pop_insn_state(p);
374 {
375 /* Don't send AA data */
376 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
377 }
378 brw_land_fwd_jump(p, jmp);
379 fire_fb_write(inst, payload, implied_header, inst->mlen);
380 }
381 }
382
383 void
384 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
385 struct brw_reg payload)
386 {
387 assert(inst->size_written % REG_SIZE == 0);
388 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
389 /* We assume that render targets start at binding table index 0. */
390 const unsigned surf_index = inst->target;
391
392 gen9_fb_READ(p, dst, payload, surf_index,
393 inst->header_size, inst->size_written / REG_SIZE,
394 prog_data->persample_dispatch);
395 }
396
397 void
398 fs_generator::generate_mov_indirect(fs_inst *inst,
399 struct brw_reg dst,
400 struct brw_reg reg,
401 struct brw_reg indirect_byte_offset)
402 {
403 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
404 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
405 assert(!reg.abs && !reg.negate);
406 assert(reg.type == dst.type);
407
408 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
409
410 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
411 imm_byte_offset += indirect_byte_offset.ud;
412
413 reg.nr = imm_byte_offset / REG_SIZE;
414 reg.subnr = imm_byte_offset % REG_SIZE;
415 brw_MOV(p, dst, reg);
416 } else {
417 /* Prior to Broadwell, there are only 8 address registers. */
418 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
419
420 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
421 struct brw_reg addr = vec8(brw_address_reg(0));
422
423 /* The destination stride of an instruction (in bytes) must be greater
424 * than or equal to the size of the rest of the instruction. Since the
425 * address register is of type UW, we can't use a D-type instruction.
426 * In order to get around this, re retype to UW and use a stride.
427 */
428 indirect_byte_offset =
429 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
430
431 /* There are a number of reasons why we don't use the base offset here.
432 * One reason is that the field is only 9 bits which means we can only
433 * use it to access the first 16 GRFs. Also, from the Haswell PRM
434 * section "Register Region Restrictions":
435 *
436 * "The lower bits of the AddressImmediate must not overflow to
437 * change the register address. The lower 5 bits of Address
438 * Immediate when added to lower 5 bits of address register gives
439 * the sub-register offset. The upper bits of Address Immediate
440 * when added to upper bits of address register gives the register
441 * address. Any overflow from sub-register offset is dropped."
442 *
443 * Since the indirect may cause us to cross a register boundary, this
444 * makes the base offset almost useless. We could try and do something
445 * clever where we use a actual base offset if base_offset % 32 == 0 but
446 * that would mean we were generating different code depending on the
447 * base offset. Instead, for the sake of consistency, we'll just do the
448 * add ourselves. This restriction is only listed in the Haswell PRM
449 * but empirical testing indicates that it applies on all older
450 * generations and is lifted on Broadwell.
451 *
452 * In the end, while base_offset is nice to look at in the generated
453 * code, using it saves us 0 instructions and would require quite a bit
454 * of case-by-case work. It's just not worth it.
455 */
456 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
457
458 if (type_sz(reg.type) > 4 &&
459 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
460 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
461 !devinfo->has_64bit_types)) {
462 /* IVB has an issue (which we found empirically) where it reads two
463 * address register components per channel for indirectly addressed
464 * 64-bit sources.
465 *
466 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
467 *
468 * "When source or destination datatype is 64b or operation is
469 * integer DWord multiply, indirect addressing must not be used."
470 *
471 * To work around both of these, we do two integer MOVs insead of one
472 * 64-bit MOV. Because no double value should ever cross a register
473 * boundary, it's safe to use the immediate offset in the indirect
474 * here to handle adding 4 bytes to the offset and avoid the extra
475 * ADD to the register file.
476 */
477 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
478 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
479 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
480 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
481 } else {
482 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
483
484 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
485
486 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
487 !inst->get_next()->is_tail_sentinel() &&
488 ((fs_inst *)inst->get_next())->mlen > 0) {
489 /* From the Sandybridge PRM:
490 *
491 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
492 * instruction that “indexed/indirect” source AND is followed
493 * by a send, the instruction requires a “Switch”. This is to
494 * avoid race condition where send may dispatch before MRF is
495 * updated."
496 */
497 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
498 }
499 }
500 }
501 }
502
503 void
504 fs_generator::generate_shuffle(fs_inst *inst,
505 struct brw_reg dst,
506 struct brw_reg src,
507 struct brw_reg idx)
508 {
509 /* Ivy bridge has some strange behavior that makes this a real pain to
510 * implement for 64-bit values so we just don't bother.
511 */
512 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
513
514 /* Because we're using the address register, we're limited to 8-wide
515 * execution on gen7. On gen8, we're limited to 16-wide by the address
516 * register file and 8-wide for 64-bit types. We could try and make this
517 * instruction splittable higher up in the compiler but that gets weird
518 * because it reads all of the channels regardless of execution size. It's
519 * easier just to split it here.
520 */
521 const unsigned lower_width =
522 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
523 8 : MIN2(16, inst->exec_size);
524
525 brw_set_default_exec_size(p, cvt(lower_width) - 1);
526 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
527 brw_set_default_group(p, group);
528
529 if ((src.vstride == 0 && src.hstride == 0) ||
530 idx.file == BRW_IMMEDIATE_VALUE) {
531 /* Trivial, the source is already uniform or the index is a constant.
532 * We will typically not get here if the optimizer is doing its job,
533 * but asserting would be mean.
534 */
535 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
536 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
537 } else {
538 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
539 struct brw_reg addr = vec8(brw_address_reg(0));
540
541 struct brw_reg group_idx = suboffset(idx, group);
542
543 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
544 /* Things get grumpy if the register is too wide. */
545 group_idx.width--;
546 group_idx.vstride--;
547 }
548
549 assert(type_sz(group_idx.type) <= 4);
550 if (type_sz(group_idx.type) == 4) {
551 /* The destination stride of an instruction (in bytes) must be
552 * greater than or equal to the size of the rest of the
553 * instruction. Since the address register is of type UW, we
554 * can't use a D-type instruction. In order to get around this,
555 * re retype to UW and use a stride.
556 */
557 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
558 }
559
560 /* Take into account the component size and horizontal stride. */
561 assert(src.vstride == src.hstride + src.width);
562 brw_SHL(p, addr, group_idx,
563 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
564 src.hstride - 1));
565
566 /* Add on the register start offset */
567 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
568
569 if (type_sz(src.type) > 4 &&
570 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
571 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
572 /* IVB has an issue (which we found empirically) where it reads
573 * two address register components per channel for indirectly
574 * addressed 64-bit sources.
575 *
576 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
577 *
578 * "When source or destination datatype is 64b or operation is
579 * integer DWord multiply, indirect addressing must not be
580 * used."
581 *
582 * To work around both of these, we do two integer MOVs insead of
583 * one 64-bit MOV. Because no double value should ever cross a
584 * register boundary, it's safe to use the immediate offset in the
585 * indirect here to handle adding 4 bytes to the offset and avoid
586 * the extra ADD to the register file.
587 */
588 struct brw_reg gdst = suboffset(dst, group);
589 struct brw_reg dst_d = retype(spread(gdst, 2),
590 BRW_REGISTER_TYPE_D);
591 assert(dst.hstride == 1);
592 brw_MOV(p, dst_d,
593 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
594 brw_MOV(p, byte_offset(dst_d, 4),
595 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
596 } else {
597 brw_MOV(p, suboffset(dst, group * dst.hstride),
598 retype(brw_VxH_indirect(0, 0), src.type));
599 }
600 }
601 }
602 }
603
604 void
605 fs_generator::generate_quad_swizzle(const fs_inst *inst,
606 struct brw_reg dst, struct brw_reg src,
607 unsigned swiz)
608 {
609 /* Requires a quad. */
610 assert(inst->exec_size >= 4);
611
612 if (src.file == BRW_IMMEDIATE_VALUE ||
613 has_scalar_region(src)) {
614 /* The value is uniform across all channels */
615 brw_MOV(p, dst, src);
616
617 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
618 /* This only works on 8-wide 32-bit values */
619 assert(inst->exec_size == 8);
620 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
621 assert(src.vstride == src.width + 1);
622 brw_set_default_access_mode(p, BRW_ALIGN_16);
623 struct brw_reg swiz_src = stride(src, 4, 4, 1);
624 swiz_src.swizzle = swiz;
625 brw_MOV(p, dst, swiz_src);
626
627 } else {
628 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
629 assert(src.vstride == src.width + 1);
630 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
631
632 switch (swiz) {
633 case BRW_SWIZZLE_XXXX:
634 case BRW_SWIZZLE_YYYY:
635 case BRW_SWIZZLE_ZZZZ:
636 case BRW_SWIZZLE_WWWW:
637 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
638 break;
639
640 case BRW_SWIZZLE_XXZZ:
641 case BRW_SWIZZLE_YYWW:
642 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
643 break;
644
645 case BRW_SWIZZLE_XYXY:
646 case BRW_SWIZZLE_ZWZW:
647 assert(inst->exec_size == 4);
648 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
649 break;
650
651 default:
652 assert(inst->force_writemask_all);
653 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
654
655 for (unsigned c = 0; c < 4; c++) {
656 brw_inst *insn = brw_MOV(
657 p, stride(suboffset(dst, c),
658 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
659 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
660
661 if (devinfo->gen < 12) {
662 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
663 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
664 }
665 }
666
667 break;
668 }
669 }
670 }
671
672 void
673 fs_generator::generate_urb_read(fs_inst *inst,
674 struct brw_reg dst,
675 struct brw_reg header)
676 {
677 assert(inst->size_written % REG_SIZE == 0);
678 assert(header.file == BRW_GENERAL_REGISTER_FILE);
679 assert(header.type == BRW_REGISTER_TYPE_UD);
680
681 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
682 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
683 brw_set_src0(p, send, header);
684 if (devinfo->gen < 12)
685 brw_set_src1(p, send, brw_imm_ud(0u));
686
687 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
688 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
689
690 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
691 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
692
693 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
694 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
695 brw_inst_set_header_present(p->devinfo, send, true);
696 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
697 }
698
699 void
700 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
701 {
702 brw_inst *insn;
703
704 /* WaClearTDRRegBeforeEOTForNonPS.
705 *
706 * WA: Clear tdr register before send EOT in all non-PS shader kernels
707 *
708 * mov(8) tdr0:ud 0x0:ud {NoMask}"
709 */
710 if (inst->eot && p->devinfo->gen == 10) {
711 brw_push_insn_state(p);
712 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
713 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
714 brw_pop_insn_state(p);
715 }
716
717 insn = brw_next_insn(p, BRW_OPCODE_SEND);
718
719 brw_set_dest(p, insn, brw_null_reg());
720 brw_set_src0(p, insn, payload);
721 if (devinfo->gen < 12)
722 brw_set_src1(p, insn, brw_imm_ud(0u));
723
724 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
725 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
726
727 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
728 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
729 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
730
731 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
732 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
733 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
734
735 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
736 brw_inst_set_rlen(p->devinfo, insn, 0);
737 brw_inst_set_eot(p->devinfo, insn, inst->eot);
738 brw_inst_set_header_present(p->devinfo, insn, true);
739 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
740 }
741
742 void
743 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
744 {
745 struct brw_inst *insn;
746
747 insn = brw_next_insn(p, BRW_OPCODE_SEND);
748
749 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
750 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
751 if (devinfo->gen < 12)
752 brw_set_src1(p, insn, brw_imm_ud(0u));
753
754 /* Terminate a compute shader by sending a message to the thread spawner.
755 */
756 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
757 brw_inst_set_mlen(devinfo, insn, 1);
758 brw_inst_set_rlen(devinfo, insn, 0);
759 brw_inst_set_eot(devinfo, insn, inst->eot);
760 brw_inst_set_header_present(devinfo, insn, false);
761
762 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
763 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
764
765 /* Note that even though the thread has a URB resource associated with it,
766 * we set the "do not dereference URB" bit, because the URB resource is
767 * managed by the fixed-function unit, so it will free it automatically.
768 */
769 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
770
771 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
772 }
773
774 void
775 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
776 {
777 brw_barrier(p, src);
778 brw_WAIT(p);
779 }
780
781 bool
782 fs_generator::generate_linterp(fs_inst *inst,
783 struct brw_reg dst, struct brw_reg *src)
784 {
785 /* PLN reads:
786 * / in SIMD16 \
787 * -----------------------------------
788 * | src1+0 | src1+1 | src1+2 | src1+3 |
789 * |-----------------------------------|
790 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
791 * -----------------------------------
792 *
793 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
794 *
795 * -----------------------------------
796 * | src1+0 | src1+1 | src1+2 | src1+3 |
797 * |-----------------------------------|
798 * |(x0, x1)|(y0, y1)| | | in SIMD8
799 * |-----------------------------------|
800 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
801 * -----------------------------------
802 *
803 * See also: emit_interpolation_setup_gen4().
804 */
805 struct brw_reg delta_x = src[0];
806 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
807 struct brw_reg interp = src[1];
808 brw_inst *i[2];
809
810 /* nir_lower_interpolation() will do the lowering to MAD instructions for
811 * us on gen11+
812 */
813 assert(devinfo->gen < 11);
814
815 if (devinfo->has_pln) {
816 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
817 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
818 *
819 * "[DevSNB]:<src1> must be even register aligned.
820 *
821 * This restriction is lifted on Ivy Bridge.
822 *
823 * This means that we need to split PLN into LINE+MAC on-the-fly.
824 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
825 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
826 * coordinate registers are laid out differently so we leave it as a
827 * SIMD16 instruction.
828 */
829 assert(inst->exec_size == 8 || inst->exec_size == 16);
830 assert(inst->group % 16 == 0);
831
832 brw_push_insn_state(p);
833 brw_set_default_exec_size(p, BRW_EXECUTE_8);
834
835 /* Thanks to two accumulators, we can emit all the LINEs and then all
836 * the MACs. This improves parallelism a bit.
837 */
838 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
839 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
840 offset(delta_x, g * 2));
841 brw_inst_set_group(devinfo, line, inst->group + g * 8);
842
843 /* LINE writes the accumulator automatically on gen4-5. On Sandy
844 * Bridge and later, we have to explicitly enable it.
845 */
846 if (devinfo->gen >= 6)
847 brw_inst_set_acc_wr_control(p->devinfo, line, true);
848
849 /* brw_set_default_saturate() is called before emitting
850 * instructions, so the saturate bit is set in each instruction,
851 * so we need to unset it on the LINE instructions.
852 */
853 brw_inst_set_saturate(p->devinfo, line, false);
854 }
855
856 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
857 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
858 offset(delta_x, g * 2 + 1));
859 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
860 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
861 }
862
863 brw_pop_insn_state(p);
864
865 return true;
866 } else {
867 brw_PLN(p, dst, interp, delta_x);
868
869 return false;
870 }
871 } else {
872 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
873 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
874
875 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
876
877 /* brw_set_default_saturate() is called before emitting instructions, so
878 * the saturate bit is set in each instruction, so we need to unset it on
879 * the first instruction.
880 */
881 brw_inst_set_saturate(p->devinfo, i[0], false);
882
883 return true;
884 }
885 }
886
887 void
888 fs_generator::generate_get_buffer_size(fs_inst *inst,
889 struct brw_reg dst,
890 struct brw_reg src,
891 struct brw_reg surf_index)
892 {
893 assert(devinfo->gen >= 7);
894 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
895
896 uint32_t simd_mode;
897 int rlen = 4;
898
899 switch (inst->exec_size) {
900 case 8:
901 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
902 break;
903 case 16:
904 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
905 break;
906 default:
907 unreachable("Invalid width for texture instruction");
908 }
909
910 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
911 rlen = 8;
912 dst = vec16(dst);
913 }
914
915 brw_SAMPLE(p,
916 retype(dst, BRW_REGISTER_TYPE_UW),
917 inst->base_mrf,
918 src,
919 surf_index.ud,
920 0,
921 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
922 rlen, /* response length */
923 inst->mlen,
924 inst->header_size > 0,
925 simd_mode,
926 BRW_SAMPLER_RETURN_FORMAT_SINT32);
927 }
928
929 void
930 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
931 struct brw_reg surface_index,
932 struct brw_reg sampler_index)
933 {
934 assert(devinfo->gen < 7);
935 assert(inst->size_written % REG_SIZE == 0);
936 int msg_type = -1;
937 uint32_t simd_mode;
938 uint32_t return_format;
939
940 /* Sampler EOT message of less than the dispatch width would kill the
941 * thread prematurely.
942 */
943 assert(!inst->eot || inst->exec_size == dispatch_width);
944
945 switch (dst.type) {
946 case BRW_REGISTER_TYPE_D:
947 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
948 break;
949 case BRW_REGISTER_TYPE_UD:
950 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
951 break;
952 default:
953 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
954 break;
955 }
956
957 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
958 * is set as part of the message descriptor. On gen4, the PRM seems to
959 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
960 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
961 * gone from the message descriptor entirely and you just get UINT32 all
962 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
963 * just stomp it to UINT32 all the time.
964 */
965 if (inst->opcode == SHADER_OPCODE_TXS)
966 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
967
968 switch (inst->exec_size) {
969 case 8:
970 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
971 break;
972 case 16:
973 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
974 break;
975 default:
976 unreachable("Invalid width for texture instruction");
977 }
978
979 if (devinfo->gen >= 5) {
980 switch (inst->opcode) {
981 case SHADER_OPCODE_TEX:
982 if (inst->shadow_compare) {
983 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
984 } else {
985 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
986 }
987 break;
988 case FS_OPCODE_TXB:
989 if (inst->shadow_compare) {
990 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
991 } else {
992 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
993 }
994 break;
995 case SHADER_OPCODE_TXL:
996 if (inst->shadow_compare) {
997 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
998 } else {
999 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
1000 }
1001 break;
1002 case SHADER_OPCODE_TXS:
1003 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
1004 break;
1005 case SHADER_OPCODE_TXD:
1006 assert(!inst->shadow_compare);
1007 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1008 break;
1009 case SHADER_OPCODE_TXF:
1010 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1011 break;
1012 case SHADER_OPCODE_TXF_CMS:
1013 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1014 break;
1015 case SHADER_OPCODE_LOD:
1016 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1017 break;
1018 case SHADER_OPCODE_TG4:
1019 assert(devinfo->gen == 6);
1020 assert(!inst->shadow_compare);
1021 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1022 break;
1023 case SHADER_OPCODE_SAMPLEINFO:
1024 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1025 break;
1026 default:
1027 unreachable("not reached");
1028 }
1029 } else {
1030 switch (inst->opcode) {
1031 case SHADER_OPCODE_TEX:
1032 /* Note that G45 and older determines shadow compare and dispatch width
1033 * from message length for most messages.
1034 */
1035 if (inst->exec_size == 8) {
1036 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1037 if (inst->shadow_compare) {
1038 assert(inst->mlen == 6);
1039 } else {
1040 assert(inst->mlen <= 4);
1041 }
1042 } else {
1043 if (inst->shadow_compare) {
1044 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1045 assert(inst->mlen == 9);
1046 } else {
1047 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1048 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1049 }
1050 }
1051 break;
1052 case FS_OPCODE_TXB:
1053 if (inst->shadow_compare) {
1054 assert(inst->exec_size == 8);
1055 assert(inst->mlen == 6);
1056 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1057 } else {
1058 assert(inst->mlen == 9);
1059 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1060 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1061 }
1062 break;
1063 case SHADER_OPCODE_TXL:
1064 if (inst->shadow_compare) {
1065 assert(inst->exec_size == 8);
1066 assert(inst->mlen == 6);
1067 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1068 } else {
1069 assert(inst->mlen == 9);
1070 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1071 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1072 }
1073 break;
1074 case SHADER_OPCODE_TXD:
1075 /* There is no sample_d_c message; comparisons are done manually */
1076 assert(inst->exec_size == 8);
1077 assert(inst->mlen == 7 || inst->mlen == 10);
1078 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1079 break;
1080 case SHADER_OPCODE_TXF:
1081 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1082 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1083 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1084 break;
1085 case SHADER_OPCODE_TXS:
1086 assert(inst->mlen == 3);
1087 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1088 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1089 break;
1090 default:
1091 unreachable("not reached");
1092 }
1093 }
1094 assert(msg_type != -1);
1095
1096 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1097 dst = vec16(dst);
1098 }
1099
1100 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1101
1102 /* Load the message header if present. If there's a texture offset,
1103 * we need to set it up explicitly and load the offset bitfield.
1104 * Otherwise, we can use an implied move from g0 to the first message reg.
1105 */
1106 struct brw_reg src = brw_null_reg();
1107 if (inst->header_size != 0) {
1108 if (devinfo->gen < 6 && !inst->offset) {
1109 /* Set up an implied move from g0 to the MRF. */
1110 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1111 } else {
1112 assert(inst->base_mrf != -1);
1113 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1114
1115 brw_push_insn_state(p);
1116 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1117 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1118 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1119 /* Explicitly set up the message header by copying g0 to the MRF. */
1120 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1121
1122 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1123 if (inst->offset) {
1124 /* Set the offset bits in DWord 2. */
1125 brw_MOV(p, get_element_ud(header_reg, 2),
1126 brw_imm_ud(inst->offset));
1127 }
1128
1129 brw_pop_insn_state(p);
1130 }
1131 }
1132
1133 uint32_t base_binding_table_index;
1134 switch (inst->opcode) {
1135 case SHADER_OPCODE_TG4:
1136 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1137 break;
1138 default:
1139 base_binding_table_index = prog_data->binding_table.texture_start;
1140 break;
1141 }
1142
1143 assert(surface_index.file == BRW_IMMEDIATE_VALUE);
1144 assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
1145
1146 brw_SAMPLE(p,
1147 retype(dst, BRW_REGISTER_TYPE_UW),
1148 inst->base_mrf,
1149 src,
1150 surface_index.ud + base_binding_table_index,
1151 sampler_index.ud % 16,
1152 msg_type,
1153 inst->size_written / REG_SIZE,
1154 inst->mlen,
1155 inst->header_size != 0,
1156 simd_mode,
1157 return_format);
1158 }
1159
1160
1161 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1162 * looking like:
1163 *
1164 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1165 *
1166 * Ideally, we want to produce:
1167 *
1168 * DDX DDY
1169 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1170 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1171 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1172 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1173 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1174 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1175 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1176 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1177 *
1178 * and add another set of two more subspans if in 16-pixel dispatch mode.
1179 *
1180 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1181 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1182 * pair. But the ideal approximation may impose a huge performance cost on
1183 * sample_d. On at least Haswell, sample_d instruction does some
1184 * optimizations if the same LOD is used for all pixels in the subspan.
1185 *
1186 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1187 * appropriate swizzling.
1188 */
1189 void
1190 fs_generator::generate_ddx(const fs_inst *inst,
1191 struct brw_reg dst, struct brw_reg src)
1192 {
1193 unsigned vstride, width;
1194
1195 if (devinfo->gen >= 8) {
1196 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1197 /* produce accurate derivatives */
1198 vstride = BRW_VERTICAL_STRIDE_2;
1199 width = BRW_WIDTH_2;
1200 } else {
1201 /* replicate the derivative at the top-left pixel to other pixels */
1202 vstride = BRW_VERTICAL_STRIDE_4;
1203 width = BRW_WIDTH_4;
1204 }
1205
1206 struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
1207 struct brw_reg src1 = src;
1208
1209 src0.vstride = vstride;
1210 src0.width = width;
1211 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1212 src1.vstride = vstride;
1213 src1.width = width;
1214 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1215
1216 brw_ADD(p, dst, src0, negate(src1));
1217 } else {
1218 /* On Haswell and earlier, the region used above appears to not work
1219 * correctly for compressed instructions. At least on Haswell and
1220 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1221 * would have to split to SIMD8 no matter which method we choose, we
1222 * may as well use ALIGN16 on all platforms gen7 and earlier.
1223 */
1224 struct brw_reg src0 = stride(src, 4, 4, 1);
1225 struct brw_reg src1 = stride(src, 4, 4, 1);
1226 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1227 src0.swizzle = BRW_SWIZZLE_XXZZ;
1228 src1.swizzle = BRW_SWIZZLE_YYWW;
1229 } else {
1230 src0.swizzle = BRW_SWIZZLE_XXXX;
1231 src1.swizzle = BRW_SWIZZLE_YYYY;
1232 }
1233
1234 brw_push_insn_state(p);
1235 brw_set_default_access_mode(p, BRW_ALIGN_16);
1236 brw_ADD(p, dst, negate(src0), src1);
1237 brw_pop_insn_state(p);
1238 }
1239 }
1240
1241 /* The negate_value boolean is used to negate the derivative computation for
1242 * FBOs, since they place the origin at the upper left instead of the lower
1243 * left.
1244 */
1245 void
1246 fs_generator::generate_ddy(const fs_inst *inst,
1247 struct brw_reg dst, struct brw_reg src)
1248 {
1249 const uint32_t type_size = type_sz(src.type);
1250
1251 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1252 /* produce accurate derivatives.
1253 *
1254 * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU)
1255 * "Register Region Restrictions", Section "1. Special Restrictions":
1256 *
1257 * "In Align16 mode, the channel selects and channel enables apply to
1258 * a pair of half-floats, because these parameters are defined for
1259 * DWord elements ONLY. This is applicable when both source and
1260 * destination are half-floats."
1261 *
1262 * So for half-float operations we use the Gen11+ Align1 path. CHV
1263 * inherits its FP16 hardware from SKL, so it is not affected.
1264 */
1265 if (devinfo->gen >= 11 ||
1266 (devinfo->is_broadwell && src.type == BRW_REGISTER_TYPE_HF)) {
1267 src = stride(src, 0, 2, 1);
1268
1269 brw_push_insn_state(p);
1270 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1271 for (uint32_t g = 0; g < inst->exec_size; g += 4) {
1272 brw_set_default_group(p, inst->group + g);
1273 brw_ADD(p, byte_offset(dst, g * type_size),
1274 negate(byte_offset(src, g * type_size)),
1275 byte_offset(src, (g + 2) * type_size));
1276 }
1277 brw_pop_insn_state(p);
1278 } else {
1279 struct brw_reg src0 = stride(src, 4, 4, 1);
1280 struct brw_reg src1 = stride(src, 4, 4, 1);
1281 src0.swizzle = BRW_SWIZZLE_XYXY;
1282 src1.swizzle = BRW_SWIZZLE_ZWZW;
1283
1284 brw_push_insn_state(p);
1285 brw_set_default_access_mode(p, BRW_ALIGN_16);
1286 brw_ADD(p, dst, negate(src0), src1);
1287 brw_pop_insn_state(p);
1288 }
1289 } else {
1290 /* replicate the derivative at the top-left pixel to other pixels */
1291 if (devinfo->gen >= 8) {
1292 struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
1293 struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
1294
1295 brw_ADD(p, dst, negate(src0), src1);
1296 } else {
1297 /* On Haswell and earlier, the region used above appears to not work
1298 * correctly for compressed instructions. At least on Haswell and
1299 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1300 * would have to split to SIMD8 no matter which method we choose, we
1301 * may as well use ALIGN16 on all platforms gen7 and earlier.
1302 */
1303 struct brw_reg src0 = stride(src, 4, 4, 1);
1304 struct brw_reg src1 = stride(src, 4, 4, 1);
1305 src0.swizzle = BRW_SWIZZLE_XXXX;
1306 src1.swizzle = BRW_SWIZZLE_ZZZZ;
1307
1308 brw_push_insn_state(p);
1309 brw_set_default_access_mode(p, BRW_ALIGN_16);
1310 brw_ADD(p, dst, negate(src0), src1);
1311 brw_pop_insn_state(p);
1312 }
1313 }
1314 }
1315
1316 void
1317 fs_generator::generate_discard_jump(fs_inst *)
1318 {
1319 assert(devinfo->gen >= 6);
1320
1321 /* This HALT will be patched up at FB write time to point UIP at the end of
1322 * the program, and at brw_uip_jip() JIP will be set to the end of the
1323 * current block (or the program).
1324 */
1325 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1326 gen6_HALT(p);
1327 }
1328
1329 void
1330 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1331 {
1332 /* The 32-wide messages only respect the first 16-wide half of the channel
1333 * enable signals which are replicated identically for the second group of
1334 * 16 channels, so we cannot use them unless the write is marked
1335 * force_writemask_all.
1336 */
1337 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1338 MIN2(16, inst->exec_size);
1339 const unsigned block_size = 4 * lower_size / REG_SIZE;
1340 assert(inst->mlen != 0);
1341
1342 brw_push_insn_state(p);
1343 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1344 brw_set_default_compression(p, lower_size > 8);
1345
1346 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1347 brw_set_default_group(p, inst->group + lower_size * i);
1348
1349 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1350 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1351
1352 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1353 block_size,
1354 inst->offset + block_size * REG_SIZE * i);
1355 }
1356
1357 brw_pop_insn_state(p);
1358 }
1359
1360 void
1361 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1362 {
1363 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1364 assert(inst->mlen != 0);
1365
1366 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1367 inst->exec_size / 8, inst->offset);
1368 }
1369
1370 void
1371 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1372 {
1373 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1374
1375 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1376 }
1377
1378 void
1379 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1380 struct brw_reg dst,
1381 struct brw_reg index,
1382 struct brw_reg offset)
1383 {
1384 assert(type_sz(dst.type) == 4);
1385 assert(inst->mlen != 0);
1386
1387 assert(index.file == BRW_IMMEDIATE_VALUE &&
1388 index.type == BRW_REGISTER_TYPE_UD);
1389 uint32_t surf_index = index.ud;
1390
1391 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1392 offset.type == BRW_REGISTER_TYPE_UD);
1393 uint32_t read_offset = offset.ud;
1394
1395 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1396 read_offset, surf_index);
1397 }
1398
1399 void
1400 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1401 struct brw_reg dst,
1402 struct brw_reg index,
1403 struct brw_reg payload)
1404 {
1405 assert(index.type == BRW_REGISTER_TYPE_UD);
1406 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1407 assert(type_sz(dst.type) == 4);
1408
1409 if (index.file == BRW_IMMEDIATE_VALUE) {
1410 const uint32_t surf_index = index.ud;
1411
1412 brw_push_insn_state(p);
1413 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1414 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1415 brw_pop_insn_state(p);
1416
1417 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1418 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1419 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1420 brw_set_desc(p, send,
1421 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1422 REG_SIZE), true) |
1423 brw_dp_read_desc(devinfo, surf_index,
1424 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1425 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1426 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1427
1428 } else {
1429 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1430
1431 brw_push_insn_state(p);
1432 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1433
1434 /* a0.0 = surf_index & 0xff */
1435 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1436 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1437 brw_set_dest(p, insn_and, addr);
1438 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1439 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1440
1441 /* dst = send(payload, a0.0 | <descriptor>) */
1442 brw_send_indirect_message(
1443 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1444 retype(dst, BRW_REGISTER_TYPE_UD),
1445 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1446 brw_message_desc(devinfo, 1,
1447 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1448 brw_dp_read_desc(devinfo, 0 /* surface */,
1449 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1450 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1451 BRW_DATAPORT_READ_TARGET_DATA_CACHE),
1452 false /* EOT */);
1453
1454 brw_pop_insn_state(p);
1455 }
1456 }
1457
1458 void
1459 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1460 struct brw_reg dst,
1461 struct brw_reg index)
1462 {
1463 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1464 assert(inst->header_size != 0);
1465 assert(inst->mlen);
1466
1467 assert(index.file == BRW_IMMEDIATE_VALUE &&
1468 index.type == BRW_REGISTER_TYPE_UD);
1469 uint32_t surf_index = index.ud;
1470
1471 uint32_t simd_mode, rlen, msg_type;
1472 if (inst->exec_size == 16) {
1473 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1474 rlen = 8;
1475 } else {
1476 assert(inst->exec_size == 8);
1477 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1478 rlen = 4;
1479 }
1480
1481 if (devinfo->gen >= 5)
1482 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1483 else {
1484 /* We always use the SIMD16 message so that we only have to load U, and
1485 * not V or R.
1486 */
1487 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1488 assert(inst->mlen == 3);
1489 assert(inst->size_written == 8 * REG_SIZE);
1490 rlen = 8;
1491 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1492 }
1493
1494 struct brw_reg header = brw_vec8_grf(0, 0);
1495 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1496
1497 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1498 brw_inst_set_compression(devinfo, send, false);
1499 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1500 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1501 brw_set_src0(p, send, header);
1502 if (devinfo->gen < 6)
1503 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1504
1505 /* Our surface is set up as floats, regardless of what actual data is
1506 * stored in it.
1507 */
1508 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1509 brw_set_desc(p, send,
1510 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1511 brw_sampler_desc(devinfo, surf_index,
1512 0, /* sampler (unused) */
1513 msg_type, simd_mode, return_format));
1514 }
1515
1516 void
1517 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1518 struct brw_reg dst,
1519 struct brw_reg src,
1520 struct brw_reg msg_data,
1521 unsigned msg_type)
1522 {
1523 const bool has_payload = inst->src[0].file != BAD_FILE;
1524 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1525 assert(inst->size_written % REG_SIZE == 0);
1526
1527 brw_pixel_interpolator_query(p,
1528 retype(dst, BRW_REGISTER_TYPE_UW),
1529 /* If we don't have a payload, what we send doesn't matter */
1530 has_payload ? src : brw_vec8_grf(0, 0),
1531 inst->pi_noperspective,
1532 msg_type,
1533 msg_data,
1534 has_payload ? 2 * inst->exec_size / 8 : 1,
1535 inst->size_written / REG_SIZE);
1536 }
1537
1538 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1539 * the ADD instruction.
1540 */
1541 void
1542 fs_generator::generate_set_sample_id(fs_inst *inst,
1543 struct brw_reg dst,
1544 struct brw_reg src0,
1545 struct brw_reg src1)
1546 {
1547 assert(dst.type == BRW_REGISTER_TYPE_D ||
1548 dst.type == BRW_REGISTER_TYPE_UD);
1549 assert(src0.type == BRW_REGISTER_TYPE_D ||
1550 src0.type == BRW_REGISTER_TYPE_UD);
1551
1552 const struct brw_reg reg = stride(src1, 1, 4, 0);
1553 const unsigned lower_size = MIN2(inst->exec_size,
1554 devinfo->gen >= 8 ? 16 : 8);
1555
1556 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1557 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1558 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1559 (i * lower_size / (1 << src0.width))) *
1560 type_sz(src0.type) / REG_SIZE),
1561 suboffset(reg, i * lower_size / 4));
1562 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1563 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1564 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1565 }
1566 }
1567
1568 void
1569 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1570 struct brw_reg dst,
1571 struct brw_reg x,
1572 struct brw_reg y)
1573 {
1574 assert(devinfo->gen >= 7);
1575 assert(dst.type == BRW_REGISTER_TYPE_UD);
1576 assert(x.type == BRW_REGISTER_TYPE_F);
1577 assert(y.type == BRW_REGISTER_TYPE_F);
1578
1579 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1580 *
1581 * Because this instruction does not have a 16-bit floating-point type,
1582 * the destination data type must be Word (W).
1583 *
1584 * The destination must be DWord-aligned and specify a horizontal stride
1585 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1586 * each destination channel and the upper word is not modified.
1587 */
1588 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1589
1590 /* Give each 32-bit channel of dst the form below, where "." means
1591 * unchanged.
1592 * 0x....hhhh
1593 */
1594 brw_F32TO16(p, dst_w, y);
1595
1596 /* Now the form:
1597 * 0xhhhh0000
1598 */
1599 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1600
1601 /* And, finally the form of packHalf2x16's output:
1602 * 0xhhhhllll
1603 */
1604 brw_F32TO16(p, dst_w, x);
1605 }
1606
1607 void
1608 fs_generator::generate_shader_time_add(fs_inst *,
1609 struct brw_reg payload,
1610 struct brw_reg offset,
1611 struct brw_reg value)
1612 {
1613 assert(devinfo->gen >= 7);
1614 brw_push_insn_state(p);
1615 brw_set_default_mask_control(p, true);
1616
1617 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1618 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1619 offset.type);
1620 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1621 value.type);
1622
1623 assert(offset.file == BRW_IMMEDIATE_VALUE);
1624 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1625 value.width = BRW_WIDTH_1;
1626 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1627 value.vstride = BRW_VERTICAL_STRIDE_0;
1628 } else {
1629 assert(value.file == BRW_IMMEDIATE_VALUE);
1630 }
1631
1632 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1633 * case, and we don't really care about squeezing every bit of performance
1634 * out of this path, so we just emit the MOVs from here.
1635 */
1636 brw_MOV(p, payload_offset, offset);
1637 brw_MOV(p, payload_value, value);
1638 brw_shader_time_add(p, payload,
1639 prog_data->binding_table.shader_time_start);
1640 brw_pop_insn_state(p);
1641 }
1642
1643 void
1644 fs_generator::enable_debug(const char *shader_name)
1645 {
1646 debug_flag = true;
1647 this->shader_name = shader_name;
1648 }
1649
1650 int
1651 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width,
1652 struct brw_compile_stats *stats)
1653 {
1654 /* align to 64 byte boundary. */
1655 while (p->next_insn_offset % 64)
1656 brw_NOP(p);
1657
1658 this->dispatch_width = dispatch_width;
1659
1660 int start_offset = p->next_insn_offset;
1661 int spill_count = 0, fill_count = 0;
1662 int loop_count = 0;
1663
1664 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1665
1666 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1667 if (inst->opcode == SHADER_OPCODE_UNDEF)
1668 continue;
1669
1670 struct brw_reg src[4], dst;
1671 unsigned int last_insn_offset = p->next_insn_offset;
1672 bool multiple_instructions_emitted = false;
1673
1674 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1675 * "Register Region Restrictions" section: for BDW, SKL:
1676 *
1677 * "A POW/FDIV operation must not be followed by an instruction
1678 * that requires two destination registers."
1679 *
1680 * The documentation is often lacking annotations for Atom parts,
1681 * and empirically this affects CHV as well.
1682 */
1683 if (devinfo->gen >= 8 &&
1684 devinfo->gen <= 9 &&
1685 p->nr_insn > 1 &&
1686 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1687 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1688 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1689 brw_NOP(p);
1690 last_insn_offset = p->next_insn_offset;
1691 }
1692
1693 if (unlikely(debug_flag))
1694 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1695
1696 /* If the instruction writes to more than one register, it needs to be
1697 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1698 * hardware figures out by itself what the right compression mode is,
1699 * but we still need to know whether the instruction is compressed to
1700 * set up the source register regions appropriately.
1701 *
1702 * XXX - This is wrong for instructions that write a single register but
1703 * read more than one which should strictly speaking be treated as
1704 * compressed. For instructions that don't write any registers it
1705 * relies on the destination being a null register of the correct
1706 * type and regioning so the instruction is considered compressed
1707 * or not accordingly.
1708 */
1709 const bool compressed =
1710 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1711 brw_set_default_compression(p, compressed);
1712 brw_set_default_group(p, inst->group);
1713
1714 for (unsigned int i = 0; i < inst->sources; i++) {
1715 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1716 &inst->src[i], compressed);
1717 /* The accumulator result appears to get used for the
1718 * conditional modifier generation. When negating a UD
1719 * value, there is a 33rd bit generated for the sign in the
1720 * accumulator value, so now you can't check, for example,
1721 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1722 */
1723 assert(!inst->conditional_mod ||
1724 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1725 !inst->src[i].negate);
1726 }
1727 dst = brw_reg_from_fs_reg(devinfo, inst,
1728 &inst->dst, compressed);
1729
1730 brw_set_default_access_mode(p, BRW_ALIGN_1);
1731 brw_set_default_predicate_control(p, inst->predicate);
1732 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1733 /* On gen7 and above, hardware automatically adds the group onto the
1734 * flag subregister number. On Sandy Bridge and older, we have to do it
1735 * ourselves.
1736 */
1737 const unsigned flag_subreg = inst->flag_subreg +
1738 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1739 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1740 brw_set_default_saturate(p, inst->saturate);
1741 brw_set_default_mask_control(p, inst->force_writemask_all);
1742 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1743
1744 unsigned exec_size = inst->exec_size;
1745 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1746 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1747 exec_size *= 2;
1748 }
1749
1750 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1751
1752 assert(inst->force_writemask_all || inst->exec_size >= 4);
1753 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1754 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1755 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1756
1757 switch (inst->opcode) {
1758 case BRW_OPCODE_MOV:
1759 brw_MOV(p, dst, src[0]);
1760 break;
1761 case BRW_OPCODE_ADD:
1762 brw_ADD(p, dst, src[0], src[1]);
1763 break;
1764 case BRW_OPCODE_MUL:
1765 brw_MUL(p, dst, src[0], src[1]);
1766 break;
1767 case BRW_OPCODE_AVG:
1768 brw_AVG(p, dst, src[0], src[1]);
1769 break;
1770 case BRW_OPCODE_MACH:
1771 brw_MACH(p, dst, src[0], src[1]);
1772 break;
1773
1774 case BRW_OPCODE_LINE:
1775 brw_LINE(p, dst, src[0], src[1]);
1776 break;
1777
1778 case BRW_OPCODE_MAD:
1779 assert(devinfo->gen >= 6);
1780 if (devinfo->gen < 10)
1781 brw_set_default_access_mode(p, BRW_ALIGN_16);
1782 brw_MAD(p, dst, src[0], src[1], src[2]);
1783 break;
1784
1785 case BRW_OPCODE_LRP:
1786 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1787 if (devinfo->gen < 10)
1788 brw_set_default_access_mode(p, BRW_ALIGN_16);
1789 brw_LRP(p, dst, src[0], src[1], src[2]);
1790 break;
1791
1792 case BRW_OPCODE_FRC:
1793 brw_FRC(p, dst, src[0]);
1794 break;
1795 case BRW_OPCODE_RNDD:
1796 brw_RNDD(p, dst, src[0]);
1797 break;
1798 case BRW_OPCODE_RNDE:
1799 brw_RNDE(p, dst, src[0]);
1800 break;
1801 case BRW_OPCODE_RNDZ:
1802 brw_RNDZ(p, dst, src[0]);
1803 break;
1804
1805 case BRW_OPCODE_AND:
1806 brw_AND(p, dst, src[0], src[1]);
1807 break;
1808 case BRW_OPCODE_OR:
1809 brw_OR(p, dst, src[0], src[1]);
1810 break;
1811 case BRW_OPCODE_XOR:
1812 brw_XOR(p, dst, src[0], src[1]);
1813 break;
1814 case BRW_OPCODE_NOT:
1815 brw_NOT(p, dst, src[0]);
1816 break;
1817 case BRW_OPCODE_ASR:
1818 brw_ASR(p, dst, src[0], src[1]);
1819 break;
1820 case BRW_OPCODE_SHR:
1821 brw_SHR(p, dst, src[0], src[1]);
1822 break;
1823 case BRW_OPCODE_SHL:
1824 brw_SHL(p, dst, src[0], src[1]);
1825 break;
1826 case BRW_OPCODE_ROL:
1827 assert(devinfo->gen >= 11);
1828 assert(src[0].type == dst.type);
1829 brw_ROL(p, dst, src[0], src[1]);
1830 break;
1831 case BRW_OPCODE_ROR:
1832 assert(devinfo->gen >= 11);
1833 assert(src[0].type == dst.type);
1834 brw_ROR(p, dst, src[0], src[1]);
1835 break;
1836 case BRW_OPCODE_F32TO16:
1837 assert(devinfo->gen >= 7);
1838 brw_F32TO16(p, dst, src[0]);
1839 break;
1840 case BRW_OPCODE_F16TO32:
1841 assert(devinfo->gen >= 7);
1842 brw_F16TO32(p, dst, src[0]);
1843 break;
1844 case BRW_OPCODE_CMP:
1845 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1846 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1847 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1848 * implemented in the compiler is not sufficient. Overriding the
1849 * type when the destination is the null register is necessary but
1850 * not sufficient by itself.
1851 */
1852 assert(dst.nr == BRW_ARF_NULL);
1853 dst.type = BRW_REGISTER_TYPE_D;
1854 }
1855 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1856 break;
1857 case BRW_OPCODE_SEL:
1858 brw_SEL(p, dst, src[0], src[1]);
1859 break;
1860 case BRW_OPCODE_CSEL:
1861 assert(devinfo->gen >= 8);
1862 if (devinfo->gen < 10)
1863 brw_set_default_access_mode(p, BRW_ALIGN_16);
1864 brw_CSEL(p, dst, src[0], src[1], src[2]);
1865 break;
1866 case BRW_OPCODE_BFREV:
1867 assert(devinfo->gen >= 7);
1868 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1869 retype(src[0], BRW_REGISTER_TYPE_UD));
1870 break;
1871 case BRW_OPCODE_FBH:
1872 assert(devinfo->gen >= 7);
1873 brw_FBH(p, retype(dst, src[0].type), src[0]);
1874 break;
1875 case BRW_OPCODE_FBL:
1876 assert(devinfo->gen >= 7);
1877 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1878 retype(src[0], BRW_REGISTER_TYPE_UD));
1879 break;
1880 case BRW_OPCODE_LZD:
1881 brw_LZD(p, dst, src[0]);
1882 break;
1883 case BRW_OPCODE_CBIT:
1884 assert(devinfo->gen >= 7);
1885 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1886 retype(src[0], BRW_REGISTER_TYPE_UD));
1887 break;
1888 case BRW_OPCODE_ADDC:
1889 assert(devinfo->gen >= 7);
1890 brw_ADDC(p, dst, src[0], src[1]);
1891 break;
1892 case BRW_OPCODE_SUBB:
1893 assert(devinfo->gen >= 7);
1894 brw_SUBB(p, dst, src[0], src[1]);
1895 break;
1896 case BRW_OPCODE_MAC:
1897 brw_MAC(p, dst, src[0], src[1]);
1898 break;
1899
1900 case BRW_OPCODE_BFE:
1901 assert(devinfo->gen >= 7);
1902 if (devinfo->gen < 10)
1903 brw_set_default_access_mode(p, BRW_ALIGN_16);
1904 brw_BFE(p, dst, src[0], src[1], src[2]);
1905 break;
1906
1907 case BRW_OPCODE_BFI1:
1908 assert(devinfo->gen >= 7);
1909 brw_BFI1(p, dst, src[0], src[1]);
1910 break;
1911 case BRW_OPCODE_BFI2:
1912 assert(devinfo->gen >= 7);
1913 if (devinfo->gen < 10)
1914 brw_set_default_access_mode(p, BRW_ALIGN_16);
1915 brw_BFI2(p, dst, src[0], src[1], src[2]);
1916 break;
1917
1918 case BRW_OPCODE_IF:
1919 if (inst->src[0].file != BAD_FILE) {
1920 /* The instruction has an embedded compare (only allowed on gen6) */
1921 assert(devinfo->gen == 6);
1922 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
1923 } else {
1924 brw_IF(p, brw_get_default_exec_size(p));
1925 }
1926 break;
1927
1928 case BRW_OPCODE_ELSE:
1929 brw_ELSE(p);
1930 break;
1931 case BRW_OPCODE_ENDIF:
1932 brw_ENDIF(p);
1933 break;
1934
1935 case BRW_OPCODE_DO:
1936 brw_DO(p, brw_get_default_exec_size(p));
1937 break;
1938
1939 case BRW_OPCODE_BREAK:
1940 brw_BREAK(p);
1941 break;
1942 case BRW_OPCODE_CONTINUE:
1943 brw_CONT(p);
1944 break;
1945
1946 case BRW_OPCODE_WHILE:
1947 brw_WHILE(p);
1948 loop_count++;
1949 break;
1950
1951 case SHADER_OPCODE_RCP:
1952 case SHADER_OPCODE_RSQ:
1953 case SHADER_OPCODE_SQRT:
1954 case SHADER_OPCODE_EXP2:
1955 case SHADER_OPCODE_LOG2:
1956 case SHADER_OPCODE_SIN:
1957 case SHADER_OPCODE_COS:
1958 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1959 if (devinfo->gen >= 6) {
1960 assert(inst->mlen == 0);
1961 assert(devinfo->gen >= 7 || inst->exec_size == 8);
1962 gen6_math(p, dst, brw_math_function(inst->opcode),
1963 src[0], brw_null_reg());
1964 } else {
1965 assert(inst->mlen >= 1);
1966 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
1967 gen4_math(p, dst,
1968 brw_math_function(inst->opcode),
1969 inst->base_mrf, src[0],
1970 BRW_MATH_PRECISION_FULL);
1971 }
1972 break;
1973 case SHADER_OPCODE_INT_QUOTIENT:
1974 case SHADER_OPCODE_INT_REMAINDER:
1975 case SHADER_OPCODE_POW:
1976 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1977 if (devinfo->gen >= 6) {
1978 assert(inst->mlen == 0);
1979 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
1980 inst->exec_size == 8);
1981 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1982 } else {
1983 assert(inst->mlen >= 1);
1984 assert(inst->exec_size == 8);
1985 gen4_math(p, dst, brw_math_function(inst->opcode),
1986 inst->base_mrf, src[0],
1987 BRW_MATH_PRECISION_FULL);
1988 }
1989 break;
1990 case FS_OPCODE_LINTERP:
1991 multiple_instructions_emitted = generate_linterp(inst, dst, src);
1992 break;
1993 case FS_OPCODE_PIXEL_X:
1994 assert(src[0].type == BRW_REGISTER_TYPE_UW);
1995 src[0].subnr = 0 * type_sz(src[0].type);
1996 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
1997 break;
1998 case FS_OPCODE_PIXEL_Y:
1999 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2000 src[0].subnr = 4 * type_sz(src[0].type);
2001 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2002 break;
2003
2004 case SHADER_OPCODE_SEND:
2005 generate_send(inst, dst, src[0], src[1], src[2],
2006 inst->ex_mlen > 0 ? src[3] : brw_null_reg());
2007 break;
2008
2009 case SHADER_OPCODE_GET_BUFFER_SIZE:
2010 generate_get_buffer_size(inst, dst, src[0], src[1]);
2011 break;
2012 case SHADER_OPCODE_TEX:
2013 case FS_OPCODE_TXB:
2014 case SHADER_OPCODE_TXD:
2015 case SHADER_OPCODE_TXF:
2016 case SHADER_OPCODE_TXF_CMS:
2017 case SHADER_OPCODE_TXL:
2018 case SHADER_OPCODE_TXS:
2019 case SHADER_OPCODE_LOD:
2020 case SHADER_OPCODE_TG4:
2021 case SHADER_OPCODE_SAMPLEINFO:
2022 assert(inst->src[0].file == BAD_FILE);
2023 generate_tex(inst, dst, src[1], src[2]);
2024 break;
2025
2026 case FS_OPCODE_DDX_COARSE:
2027 case FS_OPCODE_DDX_FINE:
2028 generate_ddx(inst, dst, src[0]);
2029 break;
2030 case FS_OPCODE_DDY_COARSE:
2031 case FS_OPCODE_DDY_FINE:
2032 generate_ddy(inst, dst, src[0]);
2033 break;
2034
2035 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2036 generate_scratch_write(inst, src[0]);
2037 spill_count++;
2038 break;
2039
2040 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2041 generate_scratch_read(inst, dst);
2042 fill_count++;
2043 break;
2044
2045 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2046 generate_scratch_read_gen7(inst, dst);
2047 fill_count++;
2048 break;
2049
2050 case SHADER_OPCODE_MOV_INDIRECT:
2051 generate_mov_indirect(inst, dst, src[0], src[1]);
2052 break;
2053
2054 case SHADER_OPCODE_URB_READ_SIMD8:
2055 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2056 generate_urb_read(inst, dst, src[0]);
2057 break;
2058
2059 case SHADER_OPCODE_URB_WRITE_SIMD8:
2060 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2061 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2062 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2063 generate_urb_write(inst, src[0]);
2064 break;
2065
2066 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2067 assert(inst->force_writemask_all);
2068 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2069 break;
2070
2071 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2072 assert(inst->force_writemask_all);
2073 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2074 break;
2075
2076 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2077 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2078 break;
2079
2080 case FS_OPCODE_REP_FB_WRITE:
2081 case FS_OPCODE_FB_WRITE:
2082 generate_fb_write(inst, src[0]);
2083 break;
2084
2085 case FS_OPCODE_FB_READ:
2086 generate_fb_read(inst, dst, src[0]);
2087 break;
2088
2089 case FS_OPCODE_DISCARD_JUMP:
2090 generate_discard_jump(inst);
2091 break;
2092
2093 case SHADER_OPCODE_SHADER_TIME_ADD:
2094 generate_shader_time_add(inst, src[0], src[1], src[2]);
2095 break;
2096
2097 case SHADER_OPCODE_MEMORY_FENCE:
2098 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2099 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2100 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SEND, src[1].ud, src[2].ud);
2101 break;
2102
2103 case SHADER_OPCODE_INTERLOCK:
2104 assert(devinfo->gen >= 9);
2105 /* The interlock is basically a memory fence issued via sendc */
2106 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SENDC, false, /* bti */ 0);
2107 break;
2108
2109 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2110 const struct brw_reg mask =
2111 brw_stage_has_packed_dispatch(devinfo, stage,
2112 prog_data) ? brw_imm_ud(~0u) :
2113 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2114 brw_dmask_reg();
2115 brw_find_live_channel(p, dst, mask);
2116 break;
2117 }
2118
2119 case SHADER_OPCODE_BROADCAST:
2120 assert(inst->force_writemask_all);
2121 brw_broadcast(p, dst, src[0], src[1]);
2122 break;
2123
2124 case SHADER_OPCODE_SHUFFLE:
2125 generate_shuffle(inst, dst, src[0], src[1]);
2126 break;
2127
2128 case SHADER_OPCODE_SEL_EXEC:
2129 assert(inst->force_writemask_all);
2130 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2131 brw_MOV(p, dst, src[1]);
2132 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2133 brw_MOV(p, dst, src[0]);
2134 break;
2135
2136 case SHADER_OPCODE_QUAD_SWIZZLE:
2137 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2138 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2139 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2140 break;
2141
2142 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2143 assert(!src[0].negate && !src[0].abs);
2144 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2145 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2146 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2147 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2148 const unsigned component = src[1].ud;
2149 const unsigned cluster_size = src[2].ud;
2150 unsigned vstride = cluster_size;
2151 unsigned width = cluster_size;
2152
2153 /* The maximum exec_size is 32, but the maximum width is only 16. */
2154 if (inst->exec_size == width) {
2155 vstride = 0;
2156 width = 1;
2157 }
2158
2159 struct brw_reg strided = stride(suboffset(src[0], component),
2160 vstride, width, 0);
2161 if (type_sz(src[0].type) > 4 &&
2162 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2163 /* IVB has an issue (which we found empirically) where it reads
2164 * two address register components per channel for indirectly
2165 * addressed 64-bit sources.
2166 *
2167 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2168 *
2169 * "When source or destination datatype is 64b or operation is
2170 * integer DWord multiply, indirect addressing must not be
2171 * used."
2172 *
2173 * To work around both of these, we do two integer MOVs insead of
2174 * one 64-bit MOV. Because no double value should ever cross a
2175 * register boundary, it's safe to use the immediate offset in the
2176 * indirect here to handle adding 4 bytes to the offset and avoid
2177 * the extra ADD to the register file.
2178 */
2179 assert(src[0].type == dst.type);
2180 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2181 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2182 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2183 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2184 } else {
2185 brw_MOV(p, dst, strided);
2186 }
2187 break;
2188 }
2189
2190 case FS_OPCODE_SET_SAMPLE_ID:
2191 generate_set_sample_id(inst, dst, src[0], src[1]);
2192 break;
2193
2194 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2195 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2196 break;
2197
2198 case FS_OPCODE_PLACEHOLDER_HALT:
2199 /* This is the place where the final HALT needs to be inserted if
2200 * we've emitted any discards. If not, this will emit no code.
2201 */
2202 if (!patch_discard_jumps_to_fb_writes()) {
2203 if (unlikely(debug_flag)) {
2204 disasm_info->use_tail = true;
2205 }
2206 }
2207 break;
2208
2209 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2210 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2211 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2212 break;
2213
2214 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2215 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2216 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2217 break;
2218
2219 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2220 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2221 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2222 break;
2223
2224 case CS_OPCODE_CS_TERMINATE:
2225 generate_cs_terminate(inst, src[0]);
2226 break;
2227
2228 case SHADER_OPCODE_BARRIER:
2229 generate_barrier(inst, src[0]);
2230 break;
2231
2232 case BRW_OPCODE_DIM:
2233 assert(devinfo->is_haswell);
2234 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2235 assert(dst.type == BRW_REGISTER_TYPE_DF);
2236 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2237 break;
2238
2239 case SHADER_OPCODE_RND_MODE: {
2240 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2241 /*
2242 * Changes the floating point rounding mode updating the control
2243 * register field defined at cr0.0[5-6] bits.
2244 */
2245 enum brw_rnd_mode mode =
2246 (enum brw_rnd_mode) (src[0].d << BRW_CR0_RND_MODE_SHIFT);
2247 brw_float_controls_mode(p, mode, BRW_CR0_RND_MODE_MASK);
2248 }
2249 break;
2250
2251 case SHADER_OPCODE_FLOAT_CONTROL_MODE:
2252 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2253 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2254 brw_float_controls_mode(p, src[0].d, src[1].d);
2255 break;
2256
2257 default:
2258 unreachable("Unsupported opcode");
2259
2260 case SHADER_OPCODE_LOAD_PAYLOAD:
2261 unreachable("Should be lowered by lower_load_payload()");
2262 }
2263
2264 if (multiple_instructions_emitted)
2265 continue;
2266
2267 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2268 assert(p->next_insn_offset == last_insn_offset + 16 ||
2269 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2270 "emitting more than 1 instruction");
2271
2272 brw_inst *last = &p->store[last_insn_offset / 16];
2273
2274 if (inst->conditional_mod)
2275 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2276 if (devinfo->gen < 12) {
2277 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2278 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2279 }
2280 }
2281 }
2282
2283 brw_set_uip_jip(p, start_offset);
2284
2285 /* end of program sentinel */
2286 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2287
2288 #ifndef NDEBUG
2289 bool validated =
2290 #else
2291 if (unlikely(debug_flag))
2292 #endif
2293 brw_validate_instructions(devinfo, p->store,
2294 start_offset,
2295 p->next_insn_offset,
2296 disasm_info);
2297
2298 int before_size = p->next_insn_offset - start_offset;
2299 brw_compact_instructions(p, start_offset, disasm_info);
2300 int after_size = p->next_insn_offset - start_offset;
2301
2302 if (unlikely(debug_flag)) {
2303 unsigned char sha1[21];
2304 char sha1buf[41];
2305
2306 _mesa_sha1_compute(p->store + start_offset / sizeof(brw_inst),
2307 after_size, sha1);
2308 _mesa_sha1_format(sha1buf, sha1);
2309
2310 fprintf(stderr, "Native code for %s (sha1 %s)\n"
2311 "SIMD%d shader: %d instructions. %d loops. %u cycles. "
2312 "%d:%d spills:fills. "
2313 "scheduled with mode %s. "
2314 "Promoted %u constants. "
2315 "Compacted %d to %d bytes (%.0f%%)\n",
2316 shader_name, sha1buf,
2317 dispatch_width, before_size / 16,
2318 loop_count, cfg->cycle_count,
2319 spill_count, fill_count,
2320 shader_stats.scheduler_mode,
2321 shader_stats.promoted_constants,
2322 before_size, after_size,
2323 100.0f * (before_size - after_size) / before_size);
2324
2325 /* overriding the shader makes disasm_info invalid */
2326 if (!brw_try_override_assembly(p, start_offset, sha1buf)) {
2327 dump_assembly(p->store, disasm_info);
2328 } else {
2329 fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf);
2330 }
2331 }
2332 ralloc_free(disasm_info);
2333 assert(validated);
2334
2335 compiler->shader_debug_log(log_data,
2336 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2337 "%d:%d spills:fills, "
2338 "scheduled with mode %s, "
2339 "Promoted %u constants, "
2340 "compacted %d to %d bytes.",
2341 _mesa_shader_stage_to_abbrev(stage),
2342 dispatch_width, before_size / 16,
2343 loop_count, cfg->cycle_count,
2344 spill_count, fill_count,
2345 shader_stats.scheduler_mode,
2346 shader_stats.promoted_constants,
2347 before_size, after_size);
2348 if (stats) {
2349 stats->dispatch_width = dispatch_width;
2350 stats->instructions = before_size / 16;
2351 stats->loops = loop_count;
2352 stats->cycles = cfg->cycle_count;
2353 stats->spills = spill_count;
2354 stats->fills = fill_count;
2355 }
2356
2357 return start_offset;
2358 }
2359
2360 const unsigned *
2361 fs_generator::get_assembly()
2362 {
2363 return brw_get_program(p, &prog_data->program_size);
2364 }