64872fc948756c59bf94e541d7bb6a0022021495
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33
34 static enum brw_reg_file
35 brw_file_from_reg(fs_reg *reg)
36 {
37 switch (reg->file) {
38 case ARF:
39 return BRW_ARCHITECTURE_REGISTER_FILE;
40 case FIXED_GRF:
41 case VGRF:
42 return BRW_GENERAL_REGISTER_FILE;
43 case MRF:
44 return BRW_MESSAGE_REGISTER_FILE;
45 case IMM:
46 return BRW_IMMEDIATE_VALUE;
47 case BAD_FILE:
48 case ATTR:
49 case UNIFORM:
50 unreachable("not reached");
51 }
52 return BRW_ARCHITECTURE_REGISTER_FILE;
53 }
54
55 static struct brw_reg
56 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
57 fs_reg *reg, bool compressed)
58 {
59 struct brw_reg brw_reg;
60
61 switch (reg->file) {
62 case MRF:
63 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
64 /* Fallthrough */
65 case VGRF:
66 if (reg->stride == 0) {
67 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
68 } else {
69 /* From the Haswell PRM:
70 *
71 * "VertStride must be used to cross GRF register boundaries. This
72 * rule implies that elements within a 'Width' cannot cross GRF
73 * boundaries."
74 *
75 * The maximum width value that could satisfy this restriction is:
76 */
77 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
78
79 /* Because the hardware can only split source regions at a whole
80 * multiple of width during decompression (i.e. vertically), clamp
81 * the value obtained above to the physical execution size of a
82 * single decompressed chunk of the instruction:
83 */
84 const unsigned phys_width = compressed ? inst->exec_size / 2 :
85 inst->exec_size;
86
87 /* XXX - The equation above is strictly speaking not correct on
88 * hardware that supports unbalanced GRF writes -- On Gen9+
89 * each decompressed chunk of the instruction may have a
90 * different execution size when the number of components
91 * written to each destination GRF is not the same.
92 */
93 const unsigned width = MIN2(reg_width, phys_width);
94 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
95 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
96
97 if (devinfo->gen == 7 && !devinfo->is_haswell) {
98 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
99 * "Each DF (Double Float) operand uses an element size of 4 rather
100 * than 8 and all regioning parameters are twice what the values
101 * would be based on the true element size: ExecSize, Width,
102 * HorzStride, and VertStride. Each DF operand uses a pair of
103 * channels and all masking and swizzing should be adjusted
104 * appropriately."
105 *
106 * From the IvyBridge PRM (Special Requirements for Handling Double
107 * Precision Data Types, page 71):
108 * "In Align1 mode, all regioning parameters like stride, execution
109 * size, and width must use the syntax of a pair of packed
110 * floats. The offsets for these data types must be 64-bit
111 * aligned. The execution size and regioning parameters are in terms
112 * of floats."
113 *
114 * Summarized: when handling DF-typed arguments, ExecSize,
115 * VertStride, and Width must be doubled.
116 *
117 * It applies to BayTrail too.
118 */
119 if (type_sz(reg->type) == 8) {
120 brw_reg.width++;
121 if (brw_reg.vstride > 0)
122 brw_reg.vstride++;
123 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
124 }
125
126 /* When converting from DF->F, we set the destination stride to 2
127 * because each d2f conversion implicitly writes 2 floats, being
128 * the first one the converted value. IVB/BYT actually writes two
129 * F components per SIMD channel, and every other component is
130 * filled with garbage.
131 */
132 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
133 type_sz(inst->dst.type) < 8) {
134 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
135 brw_reg.hstride--;
136 }
137 }
138 }
139
140 brw_reg = retype(brw_reg, reg->type);
141 brw_reg = byte_offset(brw_reg, reg->offset);
142 brw_reg.abs = reg->abs;
143 brw_reg.negate = reg->negate;
144 break;
145 case ARF:
146 case FIXED_GRF:
147 case IMM:
148 assert(reg->offset == 0);
149 brw_reg = reg->as_brw_reg();
150 break;
151 case BAD_FILE:
152 /* Probably unused. */
153 brw_reg = brw_null_reg();
154 break;
155 case ATTR:
156 case UNIFORM:
157 unreachable("not reached");
158 }
159
160 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
161 * region, but on IVB and BYT DF regions must be programmed in terms of
162 * floats. A <0,2,1> region accomplishes this.
163 */
164 if (devinfo->gen == 7 && !devinfo->is_haswell &&
165 type_sz(reg->type) == 8 &&
166 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
167 brw_reg.width == BRW_WIDTH_1 &&
168 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
169 brw_reg.width = BRW_WIDTH_2;
170 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
171 }
172
173 return brw_reg;
174 }
175
176 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
177 void *mem_ctx,
178 struct brw_stage_prog_data *prog_data,
179 unsigned promoted_constants,
180 bool runtime_check_aads_emit,
181 gl_shader_stage stage)
182
183 : compiler(compiler), log_data(log_data),
184 devinfo(compiler->devinfo),
185 prog_data(prog_data),
186 promoted_constants(promoted_constants),
187 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
188 stage(stage), mem_ctx(mem_ctx)
189 {
190 p = rzalloc(mem_ctx, struct brw_codegen);
191 brw_init_codegen(devinfo, p, mem_ctx);
192
193 /* In the FS code generator, we are very careful to ensure that we always
194 * set the right execution size so we don't need the EU code to "help" us
195 * by trying to infer it. Sometimes, it infers the wrong thing.
196 */
197 p->automatic_exec_sizes = false;
198 }
199
200 fs_generator::~fs_generator()
201 {
202 }
203
204 class ip_record : public exec_node {
205 public:
206 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
207
208 ip_record(int ip)
209 {
210 this->ip = ip;
211 }
212
213 int ip;
214 };
215
216 bool
217 fs_generator::patch_discard_jumps_to_fb_writes()
218 {
219 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
220 return false;
221
222 int scale = brw_jump_scale(p->devinfo);
223
224 /* There is a somewhat strange undocumented requirement of using
225 * HALT, according to the simulator. If some channel has HALTed to
226 * a particular UIP, then by the end of the program, every channel
227 * must have HALTed to that UIP. Furthermore, the tracking is a
228 * stack, so you can't do the final halt of a UIP after starting
229 * halting to a new UIP.
230 *
231 * Symptoms of not emitting this instruction on actual hardware
232 * included GPU hangs and sparkly rendering on the piglit discard
233 * tests.
234 */
235 brw_inst *last_halt = gen6_HALT(p);
236 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
237 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
238
239 int ip = p->nr_insn;
240
241 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
242 brw_inst *patch = &p->store[patch_ip->ip];
243
244 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
245 /* HALT takes a half-instruction distance from the pre-incremented IP. */
246 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
247 }
248
249 this->discard_halt_patches.make_empty();
250 return true;
251 }
252
253 void
254 fs_generator::generate_send(fs_inst *inst,
255 struct brw_reg dst,
256 struct brw_reg desc,
257 struct brw_reg ex_desc,
258 struct brw_reg payload,
259 struct brw_reg payload2)
260 {
261 const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
262 dst.nr == BRW_ARF_NULL;
263 const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
264
265 uint32_t desc_imm = inst->desc |
266 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
267
268 uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen);
269
270 if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
271 /* If we have any sort of extended descriptor, then we need SENDS. This
272 * also covers the dual-payload case because ex_mlen goes in ex_desc.
273 */
274 brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
275 desc, desc_imm, ex_desc, ex_desc_imm);
276 if (inst->check_tdr)
277 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDSC);
278 } else {
279 brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm);
280 if (inst->check_tdr)
281 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
282 }
283
284 brw_inst_set_eot(p->devinfo, brw_last_inst, inst->eot);
285 }
286
287 void
288 fs_generator::fire_fb_write(fs_inst *inst,
289 struct brw_reg payload,
290 struct brw_reg implied_header,
291 GLuint nr)
292 {
293 uint32_t msg_control;
294
295 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
296
297 if (devinfo->gen < 6) {
298 brw_push_insn_state(p);
299 brw_set_default_exec_size(p, BRW_EXECUTE_8);
300 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
301 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
302 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
303 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
304 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
305 brw_pop_insn_state(p);
306 }
307
308 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
309 assert(inst->group == 0 && inst->exec_size == 16);
310 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
311
312 } else if (prog_data->dual_src_blend) {
313 assert(inst->exec_size == 8);
314
315 if (inst->group % 16 == 0)
316 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
317 else if (inst->group % 16 == 8)
318 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
319 else
320 unreachable("Invalid dual-source FB write instruction group");
321
322 } else {
323 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
324
325 if (inst->exec_size == 16)
326 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
327 else if (inst->exec_size == 8)
328 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
329 else
330 unreachable("Invalid FB write execution size");
331 }
332
333 /* We assume render targets start at 0, because headerless FB write
334 * messages set "Render Target Index" to 0. Using a different binding
335 * table index would make it impossible to use headerless messages.
336 */
337 const uint32_t surf_index = inst->target;
338
339 brw_inst *insn = brw_fb_WRITE(p,
340 payload,
341 retype(implied_header, BRW_REGISTER_TYPE_UW),
342 msg_control,
343 surf_index,
344 nr,
345 0,
346 inst->eot,
347 inst->last_rt,
348 inst->header_size != 0);
349
350 if (devinfo->gen >= 6)
351 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
352 }
353
354 void
355 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
356 {
357 if (devinfo->gen < 8 && !devinfo->is_haswell) {
358 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
359 }
360
361 const struct brw_reg implied_header =
362 devinfo->gen < 6 ? payload : brw_null_reg();
363
364 if (inst->base_mrf >= 0)
365 payload = brw_message_reg(inst->base_mrf);
366
367 if (!runtime_check_aads_emit) {
368 fire_fb_write(inst, payload, implied_header, inst->mlen);
369 } else {
370 /* This can only happen in gen < 6 */
371 assert(devinfo->gen < 6);
372
373 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
374
375 /* Check runtime bit to detect if we have to send AA data or not */
376 brw_push_insn_state(p);
377 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
378 brw_set_default_exec_size(p, BRW_EXECUTE_1);
379 brw_AND(p,
380 v1_null_ud,
381 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
382 brw_imm_ud(1<<26));
383 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
384
385 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
386 brw_pop_insn_state(p);
387 {
388 /* Don't send AA data */
389 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
390 }
391 brw_land_fwd_jump(p, jmp);
392 fire_fb_write(inst, payload, implied_header, inst->mlen);
393 }
394 }
395
396 void
397 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
398 struct brw_reg payload)
399 {
400 assert(inst->size_written % REG_SIZE == 0);
401 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
402 /* We assume that render targets start at binding table index 0. */
403 const unsigned surf_index = inst->target;
404
405 gen9_fb_READ(p, dst, payload, surf_index,
406 inst->header_size, inst->size_written / REG_SIZE,
407 prog_data->persample_dispatch);
408 }
409
410 void
411 fs_generator::generate_mov_indirect(fs_inst *inst,
412 struct brw_reg dst,
413 struct brw_reg reg,
414 struct brw_reg indirect_byte_offset)
415 {
416 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
417 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
418 assert(!reg.abs && !reg.negate);
419 assert(reg.type == dst.type);
420
421 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
422
423 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
424 imm_byte_offset += indirect_byte_offset.ud;
425
426 reg.nr = imm_byte_offset / REG_SIZE;
427 reg.subnr = imm_byte_offset % REG_SIZE;
428 brw_MOV(p, dst, reg);
429 } else {
430 /* Prior to Broadwell, there are only 8 address registers. */
431 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
432
433 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
434 struct brw_reg addr = vec8(brw_address_reg(0));
435
436 /* The destination stride of an instruction (in bytes) must be greater
437 * than or equal to the size of the rest of the instruction. Since the
438 * address register is of type UW, we can't use a D-type instruction.
439 * In order to get around this, re retype to UW and use a stride.
440 */
441 indirect_byte_offset =
442 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
443
444 /* There are a number of reasons why we don't use the base offset here.
445 * One reason is that the field is only 9 bits which means we can only
446 * use it to access the first 16 GRFs. Also, from the Haswell PRM
447 * section "Register Region Restrictions":
448 *
449 * "The lower bits of the AddressImmediate must not overflow to
450 * change the register address. The lower 5 bits of Address
451 * Immediate when added to lower 5 bits of address register gives
452 * the sub-register offset. The upper bits of Address Immediate
453 * when added to upper bits of address register gives the register
454 * address. Any overflow from sub-register offset is dropped."
455 *
456 * Since the indirect may cause us to cross a register boundary, this
457 * makes the base offset almost useless. We could try and do something
458 * clever where we use a actual base offset if base_offset % 32 == 0 but
459 * that would mean we were generating different code depending on the
460 * base offset. Instead, for the sake of consistency, we'll just do the
461 * add ourselves. This restriction is only listed in the Haswell PRM
462 * but empirical testing indicates that it applies on all older
463 * generations and is lifted on Broadwell.
464 *
465 * In the end, while base_offset is nice to look at in the generated
466 * code, using it saves us 0 instructions and would require quite a bit
467 * of case-by-case work. It's just not worth it.
468 */
469 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
470
471 if (type_sz(reg.type) > 4 &&
472 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
473 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
474 !devinfo->has_64bit_types)) {
475 /* IVB has an issue (which we found empirically) where it reads two
476 * address register components per channel for indirectly addressed
477 * 64-bit sources.
478 *
479 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
480 *
481 * "When source or destination datatype is 64b or operation is
482 * integer DWord multiply, indirect addressing must not be used."
483 *
484 * To work around both of these, we do two integer MOVs insead of one
485 * 64-bit MOV. Because no double value should ever cross a register
486 * boundary, it's safe to use the immediate offset in the indirect
487 * here to handle adding 4 bytes to the offset and avoid the extra
488 * ADD to the register file.
489 */
490 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
491 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
492 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
493 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
494 } else {
495 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
496
497 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
498
499 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
500 !inst->get_next()->is_tail_sentinel() &&
501 ((fs_inst *)inst->get_next())->mlen > 0) {
502 /* From the Sandybridge PRM:
503 *
504 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
505 * instruction that “indexed/indirect” source AND is followed
506 * by a send, the instruction requires a “Switch”. This is to
507 * avoid race condition where send may dispatch before MRF is
508 * updated."
509 */
510 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
511 }
512 }
513 }
514 }
515
516 void
517 fs_generator::generate_shuffle(fs_inst *inst,
518 struct brw_reg dst,
519 struct brw_reg src,
520 struct brw_reg idx)
521 {
522 /* Ivy bridge has some strange behavior that makes this a real pain to
523 * implement for 64-bit values so we just don't bother.
524 */
525 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
526
527 /* Because we're using the address register, we're limited to 8-wide
528 * execution on gen7. On gen8, we're limited to 16-wide by the address
529 * register file and 8-wide for 64-bit types. We could try and make this
530 * instruction splittable higher up in the compiler but that gets weird
531 * because it reads all of the channels regardless of execution size. It's
532 * easier just to split it here.
533 */
534 const unsigned lower_width =
535 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
536 8 : MIN2(16, inst->exec_size);
537
538 brw_set_default_exec_size(p, cvt(lower_width) - 1);
539 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
540 brw_set_default_group(p, group);
541
542 if ((src.vstride == 0 && src.hstride == 0) ||
543 idx.file == BRW_IMMEDIATE_VALUE) {
544 /* Trivial, the source is already uniform or the index is a constant.
545 * We will typically not get here if the optimizer is doing its job,
546 * but asserting would be mean.
547 */
548 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
549 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
550 } else {
551 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
552 struct brw_reg addr = vec8(brw_address_reg(0));
553
554 struct brw_reg group_idx = suboffset(idx, group);
555
556 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
557 /* Things get grumpy if the register is too wide. */
558 group_idx.width--;
559 group_idx.vstride--;
560 }
561
562 assert(type_sz(group_idx.type) <= 4);
563 if (type_sz(group_idx.type) == 4) {
564 /* The destination stride of an instruction (in bytes) must be
565 * greater than or equal to the size of the rest of the
566 * instruction. Since the address register is of type UW, we
567 * can't use a D-type instruction. In order to get around this,
568 * re retype to UW and use a stride.
569 */
570 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
571 }
572
573 /* Take into account the component size and horizontal stride. */
574 assert(src.vstride == src.hstride + src.width);
575 brw_SHL(p, addr, group_idx,
576 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
577 src.hstride - 1));
578
579 /* Add on the register start offset */
580 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
581
582 if (type_sz(src.type) > 4 &&
583 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
584 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
585 /* IVB has an issue (which we found empirically) where it reads
586 * two address register components per channel for indirectly
587 * addressed 64-bit sources.
588 *
589 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
590 *
591 * "When source or destination datatype is 64b or operation is
592 * integer DWord multiply, indirect addressing must not be
593 * used."
594 *
595 * To work around both of these, we do two integer MOVs insead of
596 * one 64-bit MOV. Because no double value should ever cross a
597 * register boundary, it's safe to use the immediate offset in the
598 * indirect here to handle adding 4 bytes to the offset and avoid
599 * the extra ADD to the register file.
600 */
601 struct brw_reg gdst = suboffset(dst, group);
602 struct brw_reg dst_d = retype(spread(gdst, 2),
603 BRW_REGISTER_TYPE_D);
604 brw_MOV(p, dst_d,
605 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
606 brw_MOV(p, byte_offset(dst_d, 4),
607 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
608 } else {
609 brw_MOV(p, suboffset(dst, group),
610 retype(brw_VxH_indirect(0, 0), src.type));
611 }
612 }
613 }
614 }
615
616 void
617 fs_generator::generate_quad_swizzle(const fs_inst *inst,
618 struct brw_reg dst, struct brw_reg src,
619 unsigned swiz)
620 {
621 /* Requires a quad. */
622 assert(inst->exec_size >= 4);
623
624 if (src.file == BRW_IMMEDIATE_VALUE ||
625 has_scalar_region(src)) {
626 /* The value is uniform across all channels */
627 brw_MOV(p, dst, src);
628
629 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
630 /* This only works on 8-wide 32-bit values */
631 assert(inst->exec_size == 8);
632 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
633 assert(src.vstride == src.width + 1);
634 brw_set_default_access_mode(p, BRW_ALIGN_16);
635 struct brw_reg swiz_src = stride(src, 4, 4, 1);
636 swiz_src.swizzle = swiz;
637 brw_MOV(p, dst, swiz_src);
638
639 } else {
640 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
641 assert(src.vstride == src.width + 1);
642 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
643
644 switch (swiz) {
645 case BRW_SWIZZLE_XXXX:
646 case BRW_SWIZZLE_YYYY:
647 case BRW_SWIZZLE_ZZZZ:
648 case BRW_SWIZZLE_WWWW:
649 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
650 break;
651
652 case BRW_SWIZZLE_XXZZ:
653 case BRW_SWIZZLE_YYWW:
654 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
655 break;
656
657 case BRW_SWIZZLE_XYXY:
658 case BRW_SWIZZLE_ZWZW:
659 assert(inst->exec_size == 4);
660 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
661 break;
662
663 default:
664 assert(inst->force_writemask_all);
665 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
666
667 for (unsigned c = 0; c < 4; c++) {
668 brw_inst *insn = brw_MOV(
669 p, stride(suboffset(dst, c),
670 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
671 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
672
673 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
674 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
675 }
676
677 break;
678 }
679 }
680 }
681
682 void
683 fs_generator::generate_urb_read(fs_inst *inst,
684 struct brw_reg dst,
685 struct brw_reg header)
686 {
687 assert(inst->size_written % REG_SIZE == 0);
688 assert(header.file == BRW_GENERAL_REGISTER_FILE);
689 assert(header.type == BRW_REGISTER_TYPE_UD);
690
691 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
692 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
693 brw_set_src0(p, send, header);
694 brw_set_src1(p, send, brw_imm_ud(0u));
695
696 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
697 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
698
699 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
700 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
701
702 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
703 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
704 brw_inst_set_header_present(p->devinfo, send, true);
705 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
706 }
707
708 void
709 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
710 {
711 brw_inst *insn;
712
713 /* WaClearTDRRegBeforeEOTForNonPS.
714 *
715 * WA: Clear tdr register before send EOT in all non-PS shader kernels
716 *
717 * mov(8) tdr0:ud 0x0:ud {NoMask}"
718 */
719 if (inst->eot && p->devinfo->gen == 10) {
720 brw_push_insn_state(p);
721 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
722 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
723 brw_pop_insn_state(p);
724 }
725
726 insn = brw_next_insn(p, BRW_OPCODE_SEND);
727
728 brw_set_dest(p, insn, brw_null_reg());
729 brw_set_src0(p, insn, payload);
730 brw_set_src1(p, insn, brw_imm_ud(0u));
731
732 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
733 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
734
735 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
736 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
737 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
738
739 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
740 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
741 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
742
743 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
744 brw_inst_set_rlen(p->devinfo, insn, 0);
745 brw_inst_set_eot(p->devinfo, insn, inst->eot);
746 brw_inst_set_header_present(p->devinfo, insn, true);
747 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
748 }
749
750 void
751 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
752 {
753 struct brw_inst *insn;
754
755 insn = brw_next_insn(p, BRW_OPCODE_SEND);
756
757 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
758 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
759 brw_set_src1(p, insn, brw_imm_ud(0u));
760
761 /* Terminate a compute shader by sending a message to the thread spawner.
762 */
763 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
764 brw_inst_set_mlen(devinfo, insn, 1);
765 brw_inst_set_rlen(devinfo, insn, 0);
766 brw_inst_set_eot(devinfo, insn, inst->eot);
767 brw_inst_set_header_present(devinfo, insn, false);
768
769 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
770 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
771
772 /* Note that even though the thread has a URB resource associated with it,
773 * we set the "do not dereference URB" bit, because the URB resource is
774 * managed by the fixed-function unit, so it will free it automatically.
775 */
776 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
777
778 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
779 }
780
781 void
782 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
783 {
784 brw_barrier(p, src);
785 brw_WAIT(p);
786 }
787
788 bool
789 fs_generator::generate_linterp(fs_inst *inst,
790 struct brw_reg dst, struct brw_reg *src)
791 {
792 /* PLN reads:
793 * / in SIMD16 \
794 * -----------------------------------
795 * | src1+0 | src1+1 | src1+2 | src1+3 |
796 * |-----------------------------------|
797 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
798 * -----------------------------------
799 *
800 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
801 *
802 * -----------------------------------
803 * | src1+0 | src1+1 | src1+2 | src1+3 |
804 * |-----------------------------------|
805 * |(x0, x1)|(y0, y1)| | | in SIMD8
806 * |-----------------------------------|
807 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
808 * -----------------------------------
809 *
810 * See also: emit_interpolation_setup_gen4().
811 */
812 struct brw_reg delta_x = src[0];
813 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
814 struct brw_reg interp = src[1];
815 brw_inst *i[4];
816
817 if (devinfo->gen >= 11) {
818 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_NF);
819 struct brw_reg dwP = suboffset(interp, 0);
820 struct brw_reg dwQ = suboffset(interp, 1);
821 struct brw_reg dwR = suboffset(interp, 3);
822
823 brw_push_insn_state(p);
824 brw_set_default_exec_size(p, BRW_EXECUTE_8);
825
826 if (inst->exec_size == 8) {
827 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
828 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_y, 0), dwQ);
829
830 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
831
832 /* brw_set_default_saturate() is called before emitting instructions,
833 * so the saturate bit is set in each instruction, so we need to unset
834 * it on the first instruction of each pair.
835 */
836 brw_inst_set_saturate(p->devinfo, i[0], false);
837 } else {
838 brw_set_default_group(p, inst->group);
839 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
840 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_x, 1), dwQ);
841
842 brw_set_default_group(p, inst->group + 8);
843 i[2] = brw_MAD(p, acc, dwR, offset(delta_y, 0), dwP);
844 i[3] = brw_MAD(p, offset(dst, 1), acc, offset(delta_y, 1), dwQ);
845
846 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
847 brw_inst_set_cond_modifier(p->devinfo, i[3], inst->conditional_mod);
848
849 /* brw_set_default_saturate() is called before emitting instructions,
850 * so the saturate bit is set in each instruction, so we need to unset
851 * it on the first instruction of each pair.
852 */
853 brw_inst_set_saturate(p->devinfo, i[0], false);
854 brw_inst_set_saturate(p->devinfo, i[2], false);
855 }
856
857 brw_pop_insn_state(p);
858
859 return true;
860 } else if (devinfo->has_pln) {
861 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
862 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
863 *
864 * "[DevSNB]:<src1> must be even register aligned.
865 *
866 * This restriction is lifted on Ivy Bridge.
867 *
868 * This means that we need to split PLN into LINE+MAC on-the-fly.
869 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
870 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
871 * coordinate registers are laid out differently so we leave it as a
872 * SIMD16 instruction.
873 */
874 assert(inst->exec_size == 8 || inst->exec_size == 16);
875 assert(inst->group % 16 == 0);
876
877 brw_push_insn_state(p);
878 brw_set_default_exec_size(p, BRW_EXECUTE_8);
879
880 /* Thanks to two accumulators, we can emit all the LINEs and then all
881 * the MACs. This improves parallelism a bit.
882 */
883 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
884 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
885 offset(delta_x, g * 2));
886 brw_inst_set_group(devinfo, line, inst->group + g * 8);
887
888 /* LINE writes the accumulator automatically on gen4-5. On Sandy
889 * Bridge and later, we have to explicitly enable it.
890 */
891 if (devinfo->gen >= 6)
892 brw_inst_set_acc_wr_control(p->devinfo, line, true);
893
894 /* brw_set_default_saturate() is called before emitting
895 * instructions, so the saturate bit is set in each instruction,
896 * so we need to unset it on the LINE instructions.
897 */
898 brw_inst_set_saturate(p->devinfo, line, false);
899 }
900
901 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
902 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
903 offset(delta_x, g * 2 + 1));
904 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
905 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
906 }
907
908 brw_pop_insn_state(p);
909
910 return true;
911 } else {
912 brw_PLN(p, dst, interp, delta_x);
913
914 return false;
915 }
916 } else {
917 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
918 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
919
920 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
921
922 /* brw_set_default_saturate() is called before emitting instructions, so
923 * the saturate bit is set in each instruction, so we need to unset it on
924 * the first instruction.
925 */
926 brw_inst_set_saturate(p->devinfo, i[0], false);
927
928 return true;
929 }
930 }
931
932 void
933 fs_generator::generate_get_buffer_size(fs_inst *inst,
934 struct brw_reg dst,
935 struct brw_reg src,
936 struct brw_reg surf_index)
937 {
938 assert(devinfo->gen >= 7);
939 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
940
941 uint32_t simd_mode;
942 int rlen = 4;
943
944 switch (inst->exec_size) {
945 case 8:
946 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
947 break;
948 case 16:
949 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
950 break;
951 default:
952 unreachable("Invalid width for texture instruction");
953 }
954
955 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
956 rlen = 8;
957 dst = vec16(dst);
958 }
959
960 brw_SAMPLE(p,
961 retype(dst, BRW_REGISTER_TYPE_UW),
962 inst->base_mrf,
963 src,
964 surf_index.ud,
965 0,
966 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
967 rlen, /* response length */
968 inst->mlen,
969 inst->header_size > 0,
970 simd_mode,
971 BRW_SAMPLER_RETURN_FORMAT_SINT32);
972 }
973
974 void
975 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
976 struct brw_reg surface_index,
977 struct brw_reg sampler_index)
978 {
979 assert(devinfo->gen < 7);
980 assert(inst->size_written % REG_SIZE == 0);
981 int msg_type = -1;
982 uint32_t simd_mode;
983 uint32_t return_format;
984
985 /* Sampler EOT message of less than the dispatch width would kill the
986 * thread prematurely.
987 */
988 assert(!inst->eot || inst->exec_size == dispatch_width);
989
990 switch (dst.type) {
991 case BRW_REGISTER_TYPE_D:
992 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
993 break;
994 case BRW_REGISTER_TYPE_UD:
995 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
996 break;
997 default:
998 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
999 break;
1000 }
1001
1002 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
1003 * is set as part of the message descriptor. On gen4, the PRM seems to
1004 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
1005 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
1006 * gone from the message descriptor entirely and you just get UINT32 all
1007 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
1008 * just stomp it to UINT32 all the time.
1009 */
1010 if (inst->opcode == SHADER_OPCODE_TXS)
1011 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
1012
1013 switch (inst->exec_size) {
1014 case 8:
1015 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1016 break;
1017 case 16:
1018 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1019 break;
1020 default:
1021 unreachable("Invalid width for texture instruction");
1022 }
1023
1024 if (devinfo->gen >= 5) {
1025 switch (inst->opcode) {
1026 case SHADER_OPCODE_TEX:
1027 if (inst->shadow_compare) {
1028 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
1029 } else {
1030 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
1031 }
1032 break;
1033 case FS_OPCODE_TXB:
1034 if (inst->shadow_compare) {
1035 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
1036 } else {
1037 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
1038 }
1039 break;
1040 case SHADER_OPCODE_TXL:
1041 if (inst->shadow_compare) {
1042 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
1043 } else {
1044 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
1045 }
1046 break;
1047 case SHADER_OPCODE_TXS:
1048 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
1049 break;
1050 case SHADER_OPCODE_TXD:
1051 assert(!inst->shadow_compare);
1052 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1053 break;
1054 case SHADER_OPCODE_TXF:
1055 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1056 break;
1057 case SHADER_OPCODE_TXF_CMS:
1058 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1059 break;
1060 case SHADER_OPCODE_LOD:
1061 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1062 break;
1063 case SHADER_OPCODE_TG4:
1064 assert(devinfo->gen == 6);
1065 assert(!inst->shadow_compare);
1066 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1067 break;
1068 case SHADER_OPCODE_SAMPLEINFO:
1069 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1070 break;
1071 default:
1072 unreachable("not reached");
1073 }
1074 } else {
1075 switch (inst->opcode) {
1076 case SHADER_OPCODE_TEX:
1077 /* Note that G45 and older determines shadow compare and dispatch width
1078 * from message length for most messages.
1079 */
1080 if (inst->exec_size == 8) {
1081 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1082 if (inst->shadow_compare) {
1083 assert(inst->mlen == 6);
1084 } else {
1085 assert(inst->mlen <= 4);
1086 }
1087 } else {
1088 if (inst->shadow_compare) {
1089 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1090 assert(inst->mlen == 9);
1091 } else {
1092 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1093 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1094 }
1095 }
1096 break;
1097 case FS_OPCODE_TXB:
1098 if (inst->shadow_compare) {
1099 assert(inst->exec_size == 8);
1100 assert(inst->mlen == 6);
1101 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1102 } else {
1103 assert(inst->mlen == 9);
1104 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1105 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1106 }
1107 break;
1108 case SHADER_OPCODE_TXL:
1109 if (inst->shadow_compare) {
1110 assert(inst->exec_size == 8);
1111 assert(inst->mlen == 6);
1112 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1113 } else {
1114 assert(inst->mlen == 9);
1115 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1116 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1117 }
1118 break;
1119 case SHADER_OPCODE_TXD:
1120 /* There is no sample_d_c message; comparisons are done manually */
1121 assert(inst->exec_size == 8);
1122 assert(inst->mlen == 7 || inst->mlen == 10);
1123 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1124 break;
1125 case SHADER_OPCODE_TXF:
1126 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1127 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1128 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1129 break;
1130 case SHADER_OPCODE_TXS:
1131 assert(inst->mlen == 3);
1132 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1133 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1134 break;
1135 default:
1136 unreachable("not reached");
1137 }
1138 }
1139 assert(msg_type != -1);
1140
1141 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1142 dst = vec16(dst);
1143 }
1144
1145 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1146
1147 /* Load the message header if present. If there's a texture offset,
1148 * we need to set it up explicitly and load the offset bitfield.
1149 * Otherwise, we can use an implied move from g0 to the first message reg.
1150 */
1151 struct brw_reg src = brw_null_reg();
1152 if (inst->header_size != 0) {
1153 if (devinfo->gen < 6 && !inst->offset) {
1154 /* Set up an implied move from g0 to the MRF. */
1155 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1156 } else {
1157 assert(inst->base_mrf != -1);
1158 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1159
1160 brw_push_insn_state(p);
1161 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1162 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1163 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1164 /* Explicitly set up the message header by copying g0 to the MRF. */
1165 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1166
1167 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1168 if (inst->offset) {
1169 /* Set the offset bits in DWord 2. */
1170 brw_MOV(p, get_element_ud(header_reg, 2),
1171 brw_imm_ud(inst->offset));
1172 }
1173
1174 brw_pop_insn_state(p);
1175 }
1176 }
1177
1178 uint32_t base_binding_table_index;
1179 switch (inst->opcode) {
1180 case SHADER_OPCODE_TG4:
1181 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1182 break;
1183 default:
1184 base_binding_table_index = prog_data->binding_table.texture_start;
1185 break;
1186 }
1187
1188 assert(surface_index.file == BRW_IMMEDIATE_VALUE);
1189 assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
1190
1191 brw_SAMPLE(p,
1192 retype(dst, BRW_REGISTER_TYPE_UW),
1193 inst->base_mrf,
1194 src,
1195 surface_index.ud + base_binding_table_index,
1196 sampler_index.ud % 16,
1197 msg_type,
1198 inst->size_written / REG_SIZE,
1199 inst->mlen,
1200 inst->header_size != 0,
1201 simd_mode,
1202 return_format);
1203 }
1204
1205
1206 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1207 * looking like:
1208 *
1209 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1210 *
1211 * Ideally, we want to produce:
1212 *
1213 * DDX DDY
1214 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1215 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1216 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1217 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1218 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1219 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1220 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1221 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1222 *
1223 * and add another set of two more subspans if in 16-pixel dispatch mode.
1224 *
1225 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1226 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1227 * pair. But the ideal approximation may impose a huge performance cost on
1228 * sample_d. On at least Haswell, sample_d instruction does some
1229 * optimizations if the same LOD is used for all pixels in the subspan.
1230 *
1231 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1232 * appropriate swizzling.
1233 */
1234 void
1235 fs_generator::generate_ddx(const fs_inst *inst,
1236 struct brw_reg dst, struct brw_reg src)
1237 {
1238 unsigned vstride, width;
1239
1240 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1241 /* produce accurate derivatives */
1242 vstride = BRW_VERTICAL_STRIDE_2;
1243 width = BRW_WIDTH_2;
1244 } else {
1245 /* replicate the derivative at the top-left pixel to other pixels */
1246 vstride = BRW_VERTICAL_STRIDE_4;
1247 width = BRW_WIDTH_4;
1248 }
1249
1250 struct brw_reg src0 = src;
1251 struct brw_reg src1 = src;
1252
1253 src0.subnr = sizeof(float);
1254 src0.vstride = vstride;
1255 src0.width = width;
1256 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1257 src1.vstride = vstride;
1258 src1.width = width;
1259 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1260
1261 brw_ADD(p, dst, src0, negate(src1));
1262 }
1263
1264 /* The negate_value boolean is used to negate the derivative computation for
1265 * FBOs, since they place the origin at the upper left instead of the lower
1266 * left.
1267 */
1268 void
1269 fs_generator::generate_ddy(const fs_inst *inst,
1270 struct brw_reg dst, struct brw_reg src)
1271 {
1272 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1273 /* produce accurate derivatives */
1274 if (devinfo->gen >= 11) {
1275 src = stride(src, 0, 2, 1);
1276 struct brw_reg src_0 = byte_offset(src, 0 * sizeof(float));
1277 struct brw_reg src_2 = byte_offset(src, 2 * sizeof(float));
1278 struct brw_reg src_4 = byte_offset(src, 4 * sizeof(float));
1279 struct brw_reg src_6 = byte_offset(src, 6 * sizeof(float));
1280 struct brw_reg src_8 = byte_offset(src, 8 * sizeof(float));
1281 struct brw_reg src_10 = byte_offset(src, 10 * sizeof(float));
1282 struct brw_reg src_12 = byte_offset(src, 12 * sizeof(float));
1283 struct brw_reg src_14 = byte_offset(src, 14 * sizeof(float));
1284
1285 struct brw_reg dst_0 = byte_offset(dst, 0 * sizeof(float));
1286 struct brw_reg dst_4 = byte_offset(dst, 4 * sizeof(float));
1287 struct brw_reg dst_8 = byte_offset(dst, 8 * sizeof(float));
1288 struct brw_reg dst_12 = byte_offset(dst, 12 * sizeof(float));
1289
1290 brw_push_insn_state(p);
1291 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1292
1293 brw_ADD(p, dst_0, negate(src_0), src_2);
1294 brw_ADD(p, dst_4, negate(src_4), src_6);
1295
1296 if (inst->exec_size == 16) {
1297 brw_ADD(p, dst_8, negate(src_8), src_10);
1298 brw_ADD(p, dst_12, negate(src_12), src_14);
1299 }
1300
1301 brw_pop_insn_state(p);
1302 } else {
1303 struct brw_reg src0 = stride(src, 4, 4, 1);
1304 struct brw_reg src1 = stride(src, 4, 4, 1);
1305 src0.swizzle = BRW_SWIZZLE_XYXY;
1306 src1.swizzle = BRW_SWIZZLE_ZWZW;
1307
1308 brw_push_insn_state(p);
1309 brw_set_default_access_mode(p, BRW_ALIGN_16);
1310 brw_ADD(p, dst, negate(src0), src1);
1311 brw_pop_insn_state(p);
1312 }
1313 } else {
1314 /* replicate the derivative at the top-left pixel to other pixels */
1315 struct brw_reg src0 = stride(src, 4, 4, 0);
1316 struct brw_reg src1 = stride(src, 4, 4, 0);
1317 src0.subnr = 0 * sizeof(float);
1318 src1.subnr = 2 * sizeof(float);
1319
1320 brw_ADD(p, dst, negate(src0), src1);
1321 }
1322 }
1323
1324 void
1325 fs_generator::generate_discard_jump(fs_inst *)
1326 {
1327 assert(devinfo->gen >= 6);
1328
1329 /* This HALT will be patched up at FB write time to point UIP at the end of
1330 * the program, and at brw_uip_jip() JIP will be set to the end of the
1331 * current block (or the program).
1332 */
1333 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1334 gen6_HALT(p);
1335 }
1336
1337 void
1338 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1339 {
1340 /* The 32-wide messages only respect the first 16-wide half of the channel
1341 * enable signals which are replicated identically for the second group of
1342 * 16 channels, so we cannot use them unless the write is marked
1343 * force_writemask_all.
1344 */
1345 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1346 MIN2(16, inst->exec_size);
1347 const unsigned block_size = 4 * lower_size / REG_SIZE;
1348 assert(inst->mlen != 0);
1349
1350 brw_push_insn_state(p);
1351 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1352 brw_set_default_compression(p, lower_size > 8);
1353
1354 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1355 brw_set_default_group(p, inst->group + lower_size * i);
1356
1357 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1358 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1359
1360 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1361 block_size,
1362 inst->offset + block_size * REG_SIZE * i);
1363 }
1364
1365 brw_pop_insn_state(p);
1366 }
1367
1368 void
1369 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1370 {
1371 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1372 assert(inst->mlen != 0);
1373
1374 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1375 inst->exec_size / 8, inst->offset);
1376 }
1377
1378 void
1379 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1380 {
1381 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1382
1383 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1384 }
1385
1386 void
1387 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1388 struct brw_reg dst,
1389 struct brw_reg index,
1390 struct brw_reg offset)
1391 {
1392 assert(type_sz(dst.type) == 4);
1393 assert(inst->mlen != 0);
1394
1395 assert(index.file == BRW_IMMEDIATE_VALUE &&
1396 index.type == BRW_REGISTER_TYPE_UD);
1397 uint32_t surf_index = index.ud;
1398
1399 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1400 offset.type == BRW_REGISTER_TYPE_UD);
1401 uint32_t read_offset = offset.ud;
1402
1403 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1404 read_offset, surf_index);
1405 }
1406
1407 void
1408 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1409 struct brw_reg dst,
1410 struct brw_reg index,
1411 struct brw_reg payload)
1412 {
1413 assert(index.type == BRW_REGISTER_TYPE_UD);
1414 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1415 assert(type_sz(dst.type) == 4);
1416
1417 if (index.file == BRW_IMMEDIATE_VALUE) {
1418 const uint32_t surf_index = index.ud;
1419
1420 brw_push_insn_state(p);
1421 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1422 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1423 brw_pop_insn_state(p);
1424
1425 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1426 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1427 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1428 brw_set_desc(p, send,
1429 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1430 REG_SIZE), true) |
1431 brw_dp_read_desc(devinfo, surf_index,
1432 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1433 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1434 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1435
1436 } else {
1437 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1438
1439 brw_push_insn_state(p);
1440 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1441
1442 /* a0.0 = surf_index & 0xff */
1443 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1444 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1445 brw_set_dest(p, insn_and, addr);
1446 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1447 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1448
1449 /* dst = send(payload, a0.0 | <descriptor>) */
1450 brw_send_indirect_message(
1451 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1452 retype(dst, BRW_REGISTER_TYPE_UD),
1453 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1454 brw_message_desc(devinfo, 1,
1455 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1456 brw_dp_read_desc(devinfo, 0 /* surface */,
1457 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1458 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1459 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1460
1461 brw_pop_insn_state(p);
1462 }
1463 }
1464
1465 void
1466 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1467 struct brw_reg dst,
1468 struct brw_reg index)
1469 {
1470 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1471 assert(inst->header_size != 0);
1472 assert(inst->mlen);
1473
1474 assert(index.file == BRW_IMMEDIATE_VALUE &&
1475 index.type == BRW_REGISTER_TYPE_UD);
1476 uint32_t surf_index = index.ud;
1477
1478 uint32_t simd_mode, rlen, msg_type;
1479 if (inst->exec_size == 16) {
1480 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1481 rlen = 8;
1482 } else {
1483 assert(inst->exec_size == 8);
1484 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1485 rlen = 4;
1486 }
1487
1488 if (devinfo->gen >= 5)
1489 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1490 else {
1491 /* We always use the SIMD16 message so that we only have to load U, and
1492 * not V or R.
1493 */
1494 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1495 assert(inst->mlen == 3);
1496 assert(inst->size_written == 8 * REG_SIZE);
1497 rlen = 8;
1498 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1499 }
1500
1501 struct brw_reg header = brw_vec8_grf(0, 0);
1502 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1503
1504 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1505 brw_inst_set_compression(devinfo, send, false);
1506 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1507 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1508 brw_set_src0(p, send, header);
1509 if (devinfo->gen < 6)
1510 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1511
1512 /* Our surface is set up as floats, regardless of what actual data is
1513 * stored in it.
1514 */
1515 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1516 brw_set_desc(p, send,
1517 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1518 brw_sampler_desc(devinfo, surf_index,
1519 0, /* sampler (unused) */
1520 msg_type, simd_mode, return_format));
1521 }
1522
1523 void
1524 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1525 struct brw_reg dst,
1526 struct brw_reg src,
1527 struct brw_reg msg_data,
1528 unsigned msg_type)
1529 {
1530 const bool has_payload = inst->src[0].file != BAD_FILE;
1531 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1532 assert(inst->size_written % REG_SIZE == 0);
1533
1534 brw_pixel_interpolator_query(p,
1535 retype(dst, BRW_REGISTER_TYPE_UW),
1536 /* If we don't have a payload, what we send doesn't matter */
1537 has_payload ? src : brw_vec8_grf(0, 0),
1538 inst->pi_noperspective,
1539 msg_type,
1540 msg_data,
1541 has_payload ? 2 * inst->exec_size / 8 : 1,
1542 inst->size_written / REG_SIZE);
1543 }
1544
1545 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1546 * the ADD instruction.
1547 */
1548 void
1549 fs_generator::generate_set_sample_id(fs_inst *inst,
1550 struct brw_reg dst,
1551 struct brw_reg src0,
1552 struct brw_reg src1)
1553 {
1554 assert(dst.type == BRW_REGISTER_TYPE_D ||
1555 dst.type == BRW_REGISTER_TYPE_UD);
1556 assert(src0.type == BRW_REGISTER_TYPE_D ||
1557 src0.type == BRW_REGISTER_TYPE_UD);
1558
1559 const struct brw_reg reg = stride(src1, 1, 4, 0);
1560 const unsigned lower_size = MIN2(inst->exec_size,
1561 devinfo->gen >= 8 ? 16 : 8);
1562
1563 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1564 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1565 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1566 (i * lower_size / (1 << src0.width))) *
1567 type_sz(src0.type) / REG_SIZE),
1568 suboffset(reg, i * lower_size / 4));
1569 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1570 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1571 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1572 }
1573 }
1574
1575 void
1576 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1577 struct brw_reg dst,
1578 struct brw_reg x,
1579 struct brw_reg y)
1580 {
1581 assert(devinfo->gen >= 7);
1582 assert(dst.type == BRW_REGISTER_TYPE_UD);
1583 assert(x.type == BRW_REGISTER_TYPE_F);
1584 assert(y.type == BRW_REGISTER_TYPE_F);
1585
1586 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1587 *
1588 * Because this instruction does not have a 16-bit floating-point type,
1589 * the destination data type must be Word (W).
1590 *
1591 * The destination must be DWord-aligned and specify a horizontal stride
1592 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1593 * each destination channel and the upper word is not modified.
1594 */
1595 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1596
1597 /* Give each 32-bit channel of dst the form below, where "." means
1598 * unchanged.
1599 * 0x....hhhh
1600 */
1601 brw_F32TO16(p, dst_w, y);
1602
1603 /* Now the form:
1604 * 0xhhhh0000
1605 */
1606 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1607
1608 /* And, finally the form of packHalf2x16's output:
1609 * 0xhhhhllll
1610 */
1611 brw_F32TO16(p, dst_w, x);
1612 }
1613
1614 void
1615 fs_generator::generate_shader_time_add(fs_inst *,
1616 struct brw_reg payload,
1617 struct brw_reg offset,
1618 struct brw_reg value)
1619 {
1620 assert(devinfo->gen >= 7);
1621 brw_push_insn_state(p);
1622 brw_set_default_mask_control(p, true);
1623
1624 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1625 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1626 offset.type);
1627 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1628 value.type);
1629
1630 assert(offset.file == BRW_IMMEDIATE_VALUE);
1631 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1632 value.width = BRW_WIDTH_1;
1633 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1634 value.vstride = BRW_VERTICAL_STRIDE_0;
1635 } else {
1636 assert(value.file == BRW_IMMEDIATE_VALUE);
1637 }
1638
1639 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1640 * case, and we don't really care about squeezing every bit of performance
1641 * out of this path, so we just emit the MOVs from here.
1642 */
1643 brw_MOV(p, payload_offset, offset);
1644 brw_MOV(p, payload_value, value);
1645 brw_shader_time_add(p, payload,
1646 prog_data->binding_table.shader_time_start);
1647 brw_pop_insn_state(p);
1648 }
1649
1650 void
1651 fs_generator::enable_debug(const char *shader_name)
1652 {
1653 debug_flag = true;
1654 this->shader_name = shader_name;
1655 }
1656
1657 int
1658 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width)
1659 {
1660 /* align to 64 byte boundary. */
1661 while (p->next_insn_offset % 64)
1662 brw_NOP(p);
1663
1664 this->dispatch_width = dispatch_width;
1665
1666 int start_offset = p->next_insn_offset;
1667 int spill_count = 0, fill_count = 0;
1668 int loop_count = 0;
1669
1670 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1671
1672 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1673 struct brw_reg src[4], dst;
1674 unsigned int last_insn_offset = p->next_insn_offset;
1675 bool multiple_instructions_emitted = false;
1676
1677 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1678 * "Register Region Restrictions" section: for BDW, SKL:
1679 *
1680 * "A POW/FDIV operation must not be followed by an instruction
1681 * that requires two destination registers."
1682 *
1683 * The documentation is often lacking annotations for Atom parts,
1684 * and empirically this affects CHV as well.
1685 */
1686 if (devinfo->gen >= 8 &&
1687 devinfo->gen <= 9 &&
1688 p->nr_insn > 1 &&
1689 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1690 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1691 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1692 brw_NOP(p);
1693 last_insn_offset = p->next_insn_offset;
1694 }
1695
1696 if (unlikely(debug_flag))
1697 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1698
1699 /* If the instruction writes to more than one register, it needs to be
1700 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1701 * hardware figures out by itself what the right compression mode is,
1702 * but we still need to know whether the instruction is compressed to
1703 * set up the source register regions appropriately.
1704 *
1705 * XXX - This is wrong for instructions that write a single register but
1706 * read more than one which should strictly speaking be treated as
1707 * compressed. For instructions that don't write any registers it
1708 * relies on the destination being a null register of the correct
1709 * type and regioning so the instruction is considered compressed
1710 * or not accordingly.
1711 */
1712 const bool compressed =
1713 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1714 brw_set_default_compression(p, compressed);
1715 brw_set_default_group(p, inst->group);
1716
1717 for (unsigned int i = 0; i < inst->sources; i++) {
1718 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1719 &inst->src[i], compressed);
1720 /* The accumulator result appears to get used for the
1721 * conditional modifier generation. When negating a UD
1722 * value, there is a 33rd bit generated for the sign in the
1723 * accumulator value, so now you can't check, for example,
1724 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1725 */
1726 assert(!inst->conditional_mod ||
1727 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1728 !inst->src[i].negate);
1729 }
1730 dst = brw_reg_from_fs_reg(devinfo, inst,
1731 &inst->dst, compressed);
1732
1733 brw_set_default_access_mode(p, BRW_ALIGN_1);
1734 brw_set_default_predicate_control(p, inst->predicate);
1735 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1736 /* On gen7 and above, hardware automatically adds the group onto the
1737 * flag subregister number. On Sandy Bridge and older, we have to do it
1738 * ourselves.
1739 */
1740 const unsigned flag_subreg = inst->flag_subreg +
1741 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1742 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1743 brw_set_default_saturate(p, inst->saturate);
1744 brw_set_default_mask_control(p, inst->force_writemask_all);
1745 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1746
1747 unsigned exec_size = inst->exec_size;
1748 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1749 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1750 exec_size *= 2;
1751 }
1752
1753 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1754
1755 assert(inst->force_writemask_all || inst->exec_size >= 4);
1756 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1757 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1758 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1759
1760 switch (inst->opcode) {
1761 case BRW_OPCODE_MOV:
1762 brw_MOV(p, dst, src[0]);
1763 break;
1764 case BRW_OPCODE_ADD:
1765 brw_ADD(p, dst, src[0], src[1]);
1766 break;
1767 case BRW_OPCODE_MUL:
1768 brw_MUL(p, dst, src[0], src[1]);
1769 break;
1770 case BRW_OPCODE_AVG:
1771 brw_AVG(p, dst, src[0], src[1]);
1772 break;
1773 case BRW_OPCODE_MACH:
1774 brw_MACH(p, dst, src[0], src[1]);
1775 break;
1776
1777 case BRW_OPCODE_LINE:
1778 brw_LINE(p, dst, src[0], src[1]);
1779 break;
1780
1781 case BRW_OPCODE_MAD:
1782 assert(devinfo->gen >= 6);
1783 if (devinfo->gen < 10)
1784 brw_set_default_access_mode(p, BRW_ALIGN_16);
1785 brw_MAD(p, dst, src[0], src[1], src[2]);
1786 break;
1787
1788 case BRW_OPCODE_LRP:
1789 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1790 if (devinfo->gen < 10)
1791 brw_set_default_access_mode(p, BRW_ALIGN_16);
1792 brw_LRP(p, dst, src[0], src[1], src[2]);
1793 break;
1794
1795 case BRW_OPCODE_FRC:
1796 brw_FRC(p, dst, src[0]);
1797 break;
1798 case BRW_OPCODE_RNDD:
1799 brw_RNDD(p, dst, src[0]);
1800 break;
1801 case BRW_OPCODE_RNDE:
1802 brw_RNDE(p, dst, src[0]);
1803 break;
1804 case BRW_OPCODE_RNDZ:
1805 brw_RNDZ(p, dst, src[0]);
1806 break;
1807
1808 case BRW_OPCODE_AND:
1809 brw_AND(p, dst, src[0], src[1]);
1810 break;
1811 case BRW_OPCODE_OR:
1812 brw_OR(p, dst, src[0], src[1]);
1813 break;
1814 case BRW_OPCODE_XOR:
1815 brw_XOR(p, dst, src[0], src[1]);
1816 break;
1817 case BRW_OPCODE_NOT:
1818 brw_NOT(p, dst, src[0]);
1819 break;
1820 case BRW_OPCODE_ASR:
1821 brw_ASR(p, dst, src[0], src[1]);
1822 break;
1823 case BRW_OPCODE_SHR:
1824 brw_SHR(p, dst, src[0], src[1]);
1825 break;
1826 case BRW_OPCODE_SHL:
1827 brw_SHL(p, dst, src[0], src[1]);
1828 break;
1829 case BRW_OPCODE_F32TO16:
1830 assert(devinfo->gen >= 7);
1831 brw_F32TO16(p, dst, src[0]);
1832 break;
1833 case BRW_OPCODE_F16TO32:
1834 assert(devinfo->gen >= 7);
1835 brw_F16TO32(p, dst, src[0]);
1836 break;
1837 case BRW_OPCODE_CMP:
1838 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1839 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1840 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1841 * implemented in the compiler is not sufficient. Overriding the
1842 * type when the destination is the null register is necessary but
1843 * not sufficient by itself.
1844 */
1845 assert(dst.nr == BRW_ARF_NULL);
1846 dst.type = BRW_REGISTER_TYPE_D;
1847 }
1848 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1849 break;
1850 case BRW_OPCODE_SEL:
1851 brw_SEL(p, dst, src[0], src[1]);
1852 break;
1853 case BRW_OPCODE_CSEL:
1854 assert(devinfo->gen >= 8);
1855 if (devinfo->gen < 10)
1856 brw_set_default_access_mode(p, BRW_ALIGN_16);
1857 brw_CSEL(p, dst, src[0], src[1], src[2]);
1858 break;
1859 case BRW_OPCODE_BFREV:
1860 assert(devinfo->gen >= 7);
1861 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1862 retype(src[0], BRW_REGISTER_TYPE_UD));
1863 break;
1864 case BRW_OPCODE_FBH:
1865 assert(devinfo->gen >= 7);
1866 brw_FBH(p, retype(dst, src[0].type), src[0]);
1867 break;
1868 case BRW_OPCODE_FBL:
1869 assert(devinfo->gen >= 7);
1870 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1871 retype(src[0], BRW_REGISTER_TYPE_UD));
1872 break;
1873 case BRW_OPCODE_LZD:
1874 brw_LZD(p, dst, src[0]);
1875 break;
1876 case BRW_OPCODE_CBIT:
1877 assert(devinfo->gen >= 7);
1878 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1879 retype(src[0], BRW_REGISTER_TYPE_UD));
1880 break;
1881 case BRW_OPCODE_ADDC:
1882 assert(devinfo->gen >= 7);
1883 brw_ADDC(p, dst, src[0], src[1]);
1884 break;
1885 case BRW_OPCODE_SUBB:
1886 assert(devinfo->gen >= 7);
1887 brw_SUBB(p, dst, src[0], src[1]);
1888 break;
1889 case BRW_OPCODE_MAC:
1890 brw_MAC(p, dst, src[0], src[1]);
1891 break;
1892
1893 case BRW_OPCODE_BFE:
1894 assert(devinfo->gen >= 7);
1895 if (devinfo->gen < 10)
1896 brw_set_default_access_mode(p, BRW_ALIGN_16);
1897 brw_BFE(p, dst, src[0], src[1], src[2]);
1898 break;
1899
1900 case BRW_OPCODE_BFI1:
1901 assert(devinfo->gen >= 7);
1902 brw_BFI1(p, dst, src[0], src[1]);
1903 break;
1904 case BRW_OPCODE_BFI2:
1905 assert(devinfo->gen >= 7);
1906 if (devinfo->gen < 10)
1907 brw_set_default_access_mode(p, BRW_ALIGN_16);
1908 brw_BFI2(p, dst, src[0], src[1], src[2]);
1909 break;
1910
1911 case BRW_OPCODE_IF:
1912 if (inst->src[0].file != BAD_FILE) {
1913 /* The instruction has an embedded compare (only allowed on gen6) */
1914 assert(devinfo->gen == 6);
1915 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
1916 } else {
1917 brw_IF(p, brw_get_default_exec_size(p));
1918 }
1919 break;
1920
1921 case BRW_OPCODE_ELSE:
1922 brw_ELSE(p);
1923 break;
1924 case BRW_OPCODE_ENDIF:
1925 brw_ENDIF(p);
1926 break;
1927
1928 case BRW_OPCODE_DO:
1929 brw_DO(p, brw_get_default_exec_size(p));
1930 break;
1931
1932 case BRW_OPCODE_BREAK:
1933 brw_BREAK(p);
1934 break;
1935 case BRW_OPCODE_CONTINUE:
1936 brw_CONT(p);
1937 break;
1938
1939 case BRW_OPCODE_WHILE:
1940 brw_WHILE(p);
1941 loop_count++;
1942 break;
1943
1944 case SHADER_OPCODE_RCP:
1945 case SHADER_OPCODE_RSQ:
1946 case SHADER_OPCODE_SQRT:
1947 case SHADER_OPCODE_EXP2:
1948 case SHADER_OPCODE_LOG2:
1949 case SHADER_OPCODE_SIN:
1950 case SHADER_OPCODE_COS:
1951 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1952 if (devinfo->gen >= 6) {
1953 assert(inst->mlen == 0);
1954 assert(devinfo->gen >= 7 || inst->exec_size == 8);
1955 gen6_math(p, dst, brw_math_function(inst->opcode),
1956 src[0], brw_null_reg());
1957 } else {
1958 assert(inst->mlen >= 1);
1959 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
1960 gen4_math(p, dst,
1961 brw_math_function(inst->opcode),
1962 inst->base_mrf, src[0],
1963 BRW_MATH_PRECISION_FULL);
1964 }
1965 break;
1966 case SHADER_OPCODE_INT_QUOTIENT:
1967 case SHADER_OPCODE_INT_REMAINDER:
1968 case SHADER_OPCODE_POW:
1969 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1970 if (devinfo->gen >= 6) {
1971 assert(inst->mlen == 0);
1972 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
1973 inst->exec_size == 8);
1974 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1975 } else {
1976 assert(inst->mlen >= 1);
1977 assert(inst->exec_size == 8);
1978 gen4_math(p, dst, brw_math_function(inst->opcode),
1979 inst->base_mrf, src[0],
1980 BRW_MATH_PRECISION_FULL);
1981 }
1982 break;
1983 case FS_OPCODE_LINTERP:
1984 multiple_instructions_emitted = generate_linterp(inst, dst, src);
1985 break;
1986 case FS_OPCODE_PIXEL_X:
1987 assert(src[0].type == BRW_REGISTER_TYPE_UW);
1988 src[0].subnr = 0 * type_sz(src[0].type);
1989 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
1990 break;
1991 case FS_OPCODE_PIXEL_Y:
1992 assert(src[0].type == BRW_REGISTER_TYPE_UW);
1993 src[0].subnr = 4 * type_sz(src[0].type);
1994 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
1995 break;
1996
1997 case SHADER_OPCODE_SEND:
1998 generate_send(inst, dst, src[0], src[1], src[2],
1999 inst->ex_mlen > 0 ? src[3] : brw_null_reg());
2000 break;
2001
2002 case SHADER_OPCODE_GET_BUFFER_SIZE:
2003 generate_get_buffer_size(inst, dst, src[0], src[1]);
2004 break;
2005 case SHADER_OPCODE_TEX:
2006 case FS_OPCODE_TXB:
2007 case SHADER_OPCODE_TXD:
2008 case SHADER_OPCODE_TXF:
2009 case SHADER_OPCODE_TXF_CMS:
2010 case SHADER_OPCODE_TXL:
2011 case SHADER_OPCODE_TXS:
2012 case SHADER_OPCODE_LOD:
2013 case SHADER_OPCODE_TG4:
2014 case SHADER_OPCODE_SAMPLEINFO:
2015 assert(inst->src[0].file == BAD_FILE);
2016 generate_tex(inst, dst, src[1], src[2]);
2017 break;
2018
2019 case FS_OPCODE_DDX_COARSE:
2020 case FS_OPCODE_DDX_FINE:
2021 generate_ddx(inst, dst, src[0]);
2022 break;
2023 case FS_OPCODE_DDY_COARSE:
2024 case FS_OPCODE_DDY_FINE:
2025 generate_ddy(inst, dst, src[0]);
2026 break;
2027
2028 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2029 generate_scratch_write(inst, src[0]);
2030 spill_count++;
2031 break;
2032
2033 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2034 generate_scratch_read(inst, dst);
2035 fill_count++;
2036 break;
2037
2038 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2039 generate_scratch_read_gen7(inst, dst);
2040 fill_count++;
2041 break;
2042
2043 case SHADER_OPCODE_MOV_INDIRECT:
2044 generate_mov_indirect(inst, dst, src[0], src[1]);
2045 break;
2046
2047 case SHADER_OPCODE_URB_READ_SIMD8:
2048 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2049 generate_urb_read(inst, dst, src[0]);
2050 break;
2051
2052 case SHADER_OPCODE_URB_WRITE_SIMD8:
2053 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2054 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2055 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2056 generate_urb_write(inst, src[0]);
2057 break;
2058
2059 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2060 assert(inst->force_writemask_all);
2061 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2062 break;
2063
2064 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2065 assert(inst->force_writemask_all);
2066 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2067 break;
2068
2069 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2070 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2071 break;
2072
2073 case FS_OPCODE_REP_FB_WRITE:
2074 case FS_OPCODE_FB_WRITE:
2075 generate_fb_write(inst, src[0]);
2076 break;
2077
2078 case FS_OPCODE_FB_READ:
2079 generate_fb_read(inst, dst, src[0]);
2080 break;
2081
2082 case FS_OPCODE_DISCARD_JUMP:
2083 generate_discard_jump(inst);
2084 break;
2085
2086 case SHADER_OPCODE_SHADER_TIME_ADD:
2087 generate_shader_time_add(inst, src[0], src[1], src[2]);
2088 break;
2089
2090 case SHADER_OPCODE_MEMORY_FENCE:
2091 brw_memory_fence(p, dst, BRW_OPCODE_SEND);
2092 break;
2093
2094 case SHADER_OPCODE_INTERLOCK:
2095 /* The interlock is basically a memory fence issued via sendc */
2096 brw_memory_fence(p, dst, BRW_OPCODE_SENDC);
2097 break;
2098
2099 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2100 const struct brw_reg mask =
2101 brw_stage_has_packed_dispatch(devinfo, stage,
2102 prog_data) ? brw_imm_ud(~0u) :
2103 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2104 brw_dmask_reg();
2105 brw_find_live_channel(p, dst, mask);
2106 break;
2107 }
2108
2109 case SHADER_OPCODE_BROADCAST:
2110 assert(inst->force_writemask_all);
2111 brw_broadcast(p, dst, src[0], src[1]);
2112 break;
2113
2114 case SHADER_OPCODE_SHUFFLE:
2115 generate_shuffle(inst, dst, src[0], src[1]);
2116 break;
2117
2118 case SHADER_OPCODE_SEL_EXEC:
2119 assert(inst->force_writemask_all);
2120 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2121 brw_MOV(p, dst, src[1]);
2122 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2123 brw_MOV(p, dst, src[0]);
2124 break;
2125
2126 case SHADER_OPCODE_QUAD_SWIZZLE:
2127 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2128 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2129 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2130 break;
2131
2132 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2133 assert(src[0].type == dst.type);
2134 assert(!src[0].negate && !src[0].abs);
2135 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2136 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2137 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2138 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2139 const unsigned component = src[1].ud;
2140 const unsigned cluster_size = src[2].ud;
2141 struct brw_reg strided = stride(suboffset(src[0], component),
2142 cluster_size, cluster_size, 0);
2143 if (type_sz(src[0].type) > 4 &&
2144 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2145 /* IVB has an issue (which we found empirically) where it reads
2146 * two address register components per channel for indirectly
2147 * addressed 64-bit sources.
2148 *
2149 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2150 *
2151 * "When source or destination datatype is 64b or operation is
2152 * integer DWord multiply, indirect addressing must not be
2153 * used."
2154 *
2155 * To work around both of these, we do two integer MOVs insead of
2156 * one 64-bit MOV. Because no double value should ever cross a
2157 * register boundary, it's safe to use the immediate offset in the
2158 * indirect here to handle adding 4 bytes to the offset and avoid
2159 * the extra ADD to the register file.
2160 */
2161 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2162 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2163 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2164 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2165 } else {
2166 brw_MOV(p, dst, strided);
2167 }
2168 break;
2169 }
2170
2171 case FS_OPCODE_SET_SAMPLE_ID:
2172 generate_set_sample_id(inst, dst, src[0], src[1]);
2173 break;
2174
2175 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2176 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2177 break;
2178
2179 case FS_OPCODE_PLACEHOLDER_HALT:
2180 /* This is the place where the final HALT needs to be inserted if
2181 * we've emitted any discards. If not, this will emit no code.
2182 */
2183 if (!patch_discard_jumps_to_fb_writes()) {
2184 if (unlikely(debug_flag)) {
2185 disasm_info->use_tail = true;
2186 }
2187 }
2188 break;
2189
2190 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2191 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2192 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2193 break;
2194
2195 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2196 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2197 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2198 break;
2199
2200 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2201 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2202 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2203 break;
2204
2205 case CS_OPCODE_CS_TERMINATE:
2206 generate_cs_terminate(inst, src[0]);
2207 break;
2208
2209 case SHADER_OPCODE_BARRIER:
2210 generate_barrier(inst, src[0]);
2211 break;
2212
2213 case BRW_OPCODE_DIM:
2214 assert(devinfo->is_haswell);
2215 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2216 assert(dst.type == BRW_REGISTER_TYPE_DF);
2217 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2218 break;
2219
2220 case SHADER_OPCODE_RND_MODE:
2221 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2222 brw_rounding_mode(p, (brw_rnd_mode) src[0].d);
2223 break;
2224
2225 default:
2226 unreachable("Unsupported opcode");
2227
2228 case SHADER_OPCODE_LOAD_PAYLOAD:
2229 unreachable("Should be lowered by lower_load_payload()");
2230 }
2231
2232 if (multiple_instructions_emitted)
2233 continue;
2234
2235 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2236 assert(p->next_insn_offset == last_insn_offset + 16 ||
2237 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2238 "emitting more than 1 instruction");
2239
2240 brw_inst *last = &p->store[last_insn_offset / 16];
2241
2242 if (inst->conditional_mod)
2243 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2244 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2245 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2246 }
2247 }
2248
2249 brw_set_uip_jip(p, start_offset);
2250
2251 /* end of program sentinel */
2252 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2253
2254 #ifndef NDEBUG
2255 bool validated =
2256 #else
2257 if (unlikely(debug_flag))
2258 #endif
2259 brw_validate_instructions(devinfo, p->store,
2260 start_offset,
2261 p->next_insn_offset,
2262 disasm_info);
2263
2264 int before_size = p->next_insn_offset - start_offset;
2265 brw_compact_instructions(p, start_offset, disasm_info);
2266 int after_size = p->next_insn_offset - start_offset;
2267
2268 if (unlikely(debug_flag)) {
2269 fprintf(stderr, "Native code for %s\n"
2270 "SIMD%d shader: %d instructions. %d loops. %u cycles. %d:%d spills:fills. Promoted %u constants. Compacted %d to %d"
2271 " bytes (%.0f%%)\n",
2272 shader_name, dispatch_width, before_size / 16, loop_count, cfg->cycle_count,
2273 spill_count, fill_count, promoted_constants, before_size, after_size,
2274 100.0f * (before_size - after_size) / before_size);
2275
2276 dump_assembly(p->store, disasm_info);
2277 }
2278 ralloc_free(disasm_info);
2279 assert(validated);
2280
2281 compiler->shader_debug_log(log_data,
2282 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2283 "%d:%d spills:fills, Promoted %u constants, "
2284 "compacted %d to %d bytes.",
2285 _mesa_shader_stage_to_abbrev(stage),
2286 dispatch_width, before_size / 16,
2287 loop_count, cfg->cycle_count, spill_count,
2288 fill_count, promoted_constants, before_size,
2289 after_size);
2290
2291 return start_offset;
2292 }
2293
2294 const unsigned *
2295 fs_generator::get_assembly()
2296 {
2297 return brw_get_program(p, &prog_data->program_size);
2298 }