intel/eu: Use descriptor constructors for sampler messages.
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33
34 static enum brw_reg_file
35 brw_file_from_reg(fs_reg *reg)
36 {
37 switch (reg->file) {
38 case ARF:
39 return BRW_ARCHITECTURE_REGISTER_FILE;
40 case FIXED_GRF:
41 case VGRF:
42 return BRW_GENERAL_REGISTER_FILE;
43 case MRF:
44 return BRW_MESSAGE_REGISTER_FILE;
45 case IMM:
46 return BRW_IMMEDIATE_VALUE;
47 case BAD_FILE:
48 case ATTR:
49 case UNIFORM:
50 unreachable("not reached");
51 }
52 return BRW_ARCHITECTURE_REGISTER_FILE;
53 }
54
55 static struct brw_reg
56 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
57 fs_reg *reg, bool compressed)
58 {
59 struct brw_reg brw_reg;
60
61 switch (reg->file) {
62 case MRF:
63 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
64 /* Fallthrough */
65 case VGRF:
66 if (reg->stride == 0) {
67 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
68 } else {
69 /* From the Haswell PRM:
70 *
71 * "VertStride must be used to cross GRF register boundaries. This
72 * rule implies that elements within a 'Width' cannot cross GRF
73 * boundaries."
74 *
75 * The maximum width value that could satisfy this restriction is:
76 */
77 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
78
79 /* Because the hardware can only split source regions at a whole
80 * multiple of width during decompression (i.e. vertically), clamp
81 * the value obtained above to the physical execution size of a
82 * single decompressed chunk of the instruction:
83 */
84 const unsigned phys_width = compressed ? inst->exec_size / 2 :
85 inst->exec_size;
86
87 /* XXX - The equation above is strictly speaking not correct on
88 * hardware that supports unbalanced GRF writes -- On Gen9+
89 * each decompressed chunk of the instruction may have a
90 * different execution size when the number of components
91 * written to each destination GRF is not the same.
92 */
93 const unsigned width = MIN2(reg_width, phys_width);
94 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
95 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
96
97 if (devinfo->gen == 7 && !devinfo->is_haswell) {
98 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
99 * "Each DF (Double Float) operand uses an element size of 4 rather
100 * than 8 and all regioning parameters are twice what the values
101 * would be based on the true element size: ExecSize, Width,
102 * HorzStride, and VertStride. Each DF operand uses a pair of
103 * channels and all masking and swizzing should be adjusted
104 * appropriately."
105 *
106 * From the IvyBridge PRM (Special Requirements for Handling Double
107 * Precision Data Types, page 71):
108 * "In Align1 mode, all regioning parameters like stride, execution
109 * size, and width must use the syntax of a pair of packed
110 * floats. The offsets for these data types must be 64-bit
111 * aligned. The execution size and regioning parameters are in terms
112 * of floats."
113 *
114 * Summarized: when handling DF-typed arguments, ExecSize,
115 * VertStride, and Width must be doubled.
116 *
117 * It applies to BayTrail too.
118 */
119 if (type_sz(reg->type) == 8) {
120 brw_reg.width++;
121 if (brw_reg.vstride > 0)
122 brw_reg.vstride++;
123 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
124 }
125
126 /* When converting from DF->F, we set the destination stride to 2
127 * because each d2f conversion implicitly writes 2 floats, being
128 * the first one the converted value. IVB/BYT actually writes two
129 * F components per SIMD channel, and every other component is
130 * filled with garbage.
131 */
132 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
133 type_sz(inst->dst.type) < 8) {
134 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
135 brw_reg.hstride--;
136 }
137 }
138 }
139
140 brw_reg = retype(brw_reg, reg->type);
141 brw_reg = byte_offset(brw_reg, reg->offset);
142 brw_reg.abs = reg->abs;
143 brw_reg.negate = reg->negate;
144 break;
145 case ARF:
146 case FIXED_GRF:
147 case IMM:
148 assert(reg->offset == 0);
149 brw_reg = reg->as_brw_reg();
150 break;
151 case BAD_FILE:
152 /* Probably unused. */
153 brw_reg = brw_null_reg();
154 break;
155 case ATTR:
156 case UNIFORM:
157 unreachable("not reached");
158 }
159
160 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
161 * region, but on IVB and BYT DF regions must be programmed in terms of
162 * floats. A <0,2,1> region accomplishes this.
163 */
164 if (devinfo->gen == 7 && !devinfo->is_haswell &&
165 type_sz(reg->type) == 8 &&
166 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
167 brw_reg.width == BRW_WIDTH_1 &&
168 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
169 brw_reg.width = BRW_WIDTH_2;
170 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
171 }
172
173 return brw_reg;
174 }
175
176 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
177 void *mem_ctx,
178 struct brw_stage_prog_data *prog_data,
179 unsigned promoted_constants,
180 bool runtime_check_aads_emit,
181 gl_shader_stage stage)
182
183 : compiler(compiler), log_data(log_data),
184 devinfo(compiler->devinfo),
185 prog_data(prog_data),
186 promoted_constants(promoted_constants),
187 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
188 stage(stage), mem_ctx(mem_ctx)
189 {
190 p = rzalloc(mem_ctx, struct brw_codegen);
191 brw_init_codegen(devinfo, p, mem_ctx);
192
193 /* In the FS code generator, we are very careful to ensure that we always
194 * set the right execution size so we don't need the EU code to "help" us
195 * by trying to infer it. Sometimes, it infers the wrong thing.
196 */
197 p->automatic_exec_sizes = false;
198 }
199
200 fs_generator::~fs_generator()
201 {
202 }
203
204 class ip_record : public exec_node {
205 public:
206 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
207
208 ip_record(int ip)
209 {
210 this->ip = ip;
211 }
212
213 int ip;
214 };
215
216 bool
217 fs_generator::patch_discard_jumps_to_fb_writes()
218 {
219 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
220 return false;
221
222 int scale = brw_jump_scale(p->devinfo);
223
224 /* There is a somewhat strange undocumented requirement of using
225 * HALT, according to the simulator. If some channel has HALTed to
226 * a particular UIP, then by the end of the program, every channel
227 * must have HALTed to that UIP. Furthermore, the tracking is a
228 * stack, so you can't do the final halt of a UIP after starting
229 * halting to a new UIP.
230 *
231 * Symptoms of not emitting this instruction on actual hardware
232 * included GPU hangs and sparkly rendering on the piglit discard
233 * tests.
234 */
235 brw_inst *last_halt = gen6_HALT(p);
236 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
237 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
238
239 int ip = p->nr_insn;
240
241 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
242 brw_inst *patch = &p->store[patch_ip->ip];
243
244 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
245 /* HALT takes a half-instruction distance from the pre-incremented IP. */
246 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
247 }
248
249 this->discard_halt_patches.make_empty();
250 return true;
251 }
252
253 void
254 fs_generator::fire_fb_write(fs_inst *inst,
255 struct brw_reg payload,
256 struct brw_reg implied_header,
257 GLuint nr)
258 {
259 uint32_t msg_control;
260
261 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
262
263 if (devinfo->gen < 6) {
264 brw_push_insn_state(p);
265 brw_set_default_exec_size(p, BRW_EXECUTE_8);
266 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
267 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
268 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
269 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
270 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
271 brw_pop_insn_state(p);
272 }
273
274 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
275 assert(inst->group == 0 && inst->exec_size == 16);
276 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
277
278 } else if (prog_data->dual_src_blend) {
279 assert(inst->exec_size == 8);
280
281 if (inst->group % 16 == 0)
282 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
283 else if (inst->group % 16 == 8)
284 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
285 else
286 unreachable("Invalid dual-source FB write instruction group");
287
288 } else {
289 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
290
291 if (inst->exec_size == 16)
292 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
293 else if (inst->exec_size == 8)
294 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
295 else
296 unreachable("Invalid FB write execution size");
297 }
298
299 /* We assume render targets start at 0, because headerless FB write
300 * messages set "Render Target Index" to 0. Using a different binding
301 * table index would make it impossible to use headerless messages.
302 */
303 const uint32_t surf_index = inst->target;
304
305 brw_inst *insn = brw_fb_WRITE(p,
306 payload,
307 retype(implied_header, BRW_REGISTER_TYPE_UW),
308 msg_control,
309 surf_index,
310 nr,
311 0,
312 inst->eot,
313 inst->last_rt,
314 inst->header_size != 0);
315
316 if (devinfo->gen >= 6)
317 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
318
319 brw_mark_surface_used(&prog_data->base, surf_index);
320 }
321
322 void
323 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
324 {
325 if (devinfo->gen < 8 && !devinfo->is_haswell) {
326 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
327 }
328
329 const struct brw_reg implied_header =
330 devinfo->gen < 6 ? payload : brw_null_reg();
331
332 if (inst->base_mrf >= 0)
333 payload = brw_message_reg(inst->base_mrf);
334
335 if (!runtime_check_aads_emit) {
336 fire_fb_write(inst, payload, implied_header, inst->mlen);
337 } else {
338 /* This can only happen in gen < 6 */
339 assert(devinfo->gen < 6);
340
341 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
342
343 /* Check runtime bit to detect if we have to send AA data or not */
344 brw_push_insn_state(p);
345 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
346 brw_set_default_exec_size(p, BRW_EXECUTE_1);
347 brw_AND(p,
348 v1_null_ud,
349 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
350 brw_imm_ud(1<<26));
351 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
352
353 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
354 brw_pop_insn_state(p);
355 {
356 /* Don't send AA data */
357 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
358 }
359 brw_land_fwd_jump(p, jmp);
360 fire_fb_write(inst, payload, implied_header, inst->mlen);
361 }
362 }
363
364 void
365 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
366 struct brw_reg payload)
367 {
368 assert(inst->size_written % REG_SIZE == 0);
369 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
370 /* We assume that render targets start at binding table index 0. */
371 const unsigned surf_index = inst->target;
372
373 gen9_fb_READ(p, dst, payload, surf_index,
374 inst->header_size, inst->size_written / REG_SIZE,
375 prog_data->persample_dispatch);
376
377 brw_mark_surface_used(&prog_data->base, surf_index);
378 }
379
380 void
381 fs_generator::generate_mov_indirect(fs_inst *inst,
382 struct brw_reg dst,
383 struct brw_reg reg,
384 struct brw_reg indirect_byte_offset)
385 {
386 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
387 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
388 assert(!reg.abs && !reg.negate);
389 assert(reg.type == dst.type);
390
391 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
392
393 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
394 imm_byte_offset += indirect_byte_offset.ud;
395
396 reg.nr = imm_byte_offset / REG_SIZE;
397 reg.subnr = imm_byte_offset % REG_SIZE;
398 brw_MOV(p, dst, reg);
399 } else {
400 /* Prior to Broadwell, there are only 8 address registers. */
401 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
402
403 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
404 struct brw_reg addr = vec8(brw_address_reg(0));
405
406 /* The destination stride of an instruction (in bytes) must be greater
407 * than or equal to the size of the rest of the instruction. Since the
408 * address register is of type UW, we can't use a D-type instruction.
409 * In order to get around this, re retype to UW and use a stride.
410 */
411 indirect_byte_offset =
412 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
413
414 /* There are a number of reasons why we don't use the base offset here.
415 * One reason is that the field is only 9 bits which means we can only
416 * use it to access the first 16 GRFs. Also, from the Haswell PRM
417 * section "Register Region Restrictions":
418 *
419 * "The lower bits of the AddressImmediate must not overflow to
420 * change the register address. The lower 5 bits of Address
421 * Immediate when added to lower 5 bits of address register gives
422 * the sub-register offset. The upper bits of Address Immediate
423 * when added to upper bits of address register gives the register
424 * address. Any overflow from sub-register offset is dropped."
425 *
426 * Since the indirect may cause us to cross a register boundary, this
427 * makes the base offset almost useless. We could try and do something
428 * clever where we use a actual base offset if base_offset % 32 == 0 but
429 * that would mean we were generating different code depending on the
430 * base offset. Instead, for the sake of consistency, we'll just do the
431 * add ourselves. This restriction is only listed in the Haswell PRM
432 * but empirical testing indicates that it applies on all older
433 * generations and is lifted on Broadwell.
434 *
435 * In the end, while base_offset is nice to look at in the generated
436 * code, using it saves us 0 instructions and would require quite a bit
437 * of case-by-case work. It's just not worth it.
438 */
439 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
440
441 if (type_sz(reg.type) > 4 &&
442 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
443 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
444 /* IVB has an issue (which we found empirically) where it reads two
445 * address register components per channel for indirectly addressed
446 * 64-bit sources.
447 *
448 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
449 *
450 * "When source or destination datatype is 64b or operation is
451 * integer DWord multiply, indirect addressing must not be used."
452 *
453 * To work around both of these, we do two integer MOVs insead of one
454 * 64-bit MOV. Because no double value should ever cross a register
455 * boundary, it's safe to use the immediate offset in the indirect
456 * here to handle adding 4 bytes to the offset and avoid the extra
457 * ADD to the register file.
458 */
459 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
460 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
461 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
462 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
463 } else {
464 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
465
466 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
467
468 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
469 !inst->get_next()->is_tail_sentinel() &&
470 ((fs_inst *)inst->get_next())->mlen > 0) {
471 /* From the Sandybridge PRM:
472 *
473 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
474 * instruction that “indexed/indirect” source AND is followed
475 * by a send, the instruction requires a “Switch”. This is to
476 * avoid race condition where send may dispatch before MRF is
477 * updated."
478 */
479 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
480 }
481 }
482 }
483 }
484
485 void
486 fs_generator::generate_shuffle(fs_inst *inst,
487 struct brw_reg dst,
488 struct brw_reg src,
489 struct brw_reg idx)
490 {
491 /* Ivy bridge has some strange behavior that makes this a real pain to
492 * implement for 64-bit values so we just don't bother.
493 */
494 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
495
496 /* Because we're using the address register, we're limited to 8-wide
497 * execution on gen7. On gen8, we're limited to 16-wide by the address
498 * register file and 8-wide for 64-bit types. We could try and make this
499 * instruction splittable higher up in the compiler but that gets weird
500 * because it reads all of the channels regardless of execution size. It's
501 * easier just to split it here.
502 */
503 const unsigned lower_width =
504 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
505 8 : MIN2(16, inst->exec_size);
506
507 brw_set_default_exec_size(p, cvt(lower_width) - 1);
508 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
509 brw_set_default_group(p, group);
510
511 if ((src.vstride == 0 && src.hstride == 0) ||
512 idx.file == BRW_IMMEDIATE_VALUE) {
513 /* Trivial, the source is already uniform or the index is a constant.
514 * We will typically not get here if the optimizer is doing its job,
515 * but asserting would be mean.
516 */
517 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
518 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
519 } else {
520 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
521 struct brw_reg addr = vec8(brw_address_reg(0));
522
523 struct brw_reg group_idx = suboffset(idx, group);
524
525 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
526 /* Things get grumpy if the register is too wide. */
527 group_idx.width--;
528 group_idx.vstride--;
529 }
530
531 assert(type_sz(group_idx.type) <= 4);
532 if (type_sz(group_idx.type) == 4) {
533 /* The destination stride of an instruction (in bytes) must be
534 * greater than or equal to the size of the rest of the
535 * instruction. Since the address register is of type UW, we
536 * can't use a D-type instruction. In order to get around this,
537 * re retype to UW and use a stride.
538 */
539 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
540 }
541
542 /* Take into account the component size and horizontal stride. */
543 assert(src.vstride == src.hstride + src.width);
544 brw_SHL(p, addr, group_idx,
545 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
546 src.hstride - 1));
547
548 /* Add on the register start offset */
549 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
550
551 if (type_sz(src.type) > 4 &&
552 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
553 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
554 /* IVB has an issue (which we found empirically) where it reads
555 * two address register components per channel for indirectly
556 * addressed 64-bit sources.
557 *
558 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
559 *
560 * "When source or destination datatype is 64b or operation is
561 * integer DWord multiply, indirect addressing must not be
562 * used."
563 *
564 * To work around both of these, we do two integer MOVs insead of
565 * one 64-bit MOV. Because no double value should ever cross a
566 * register boundary, it's safe to use the immediate offset in the
567 * indirect here to handle adding 4 bytes to the offset and avoid
568 * the extra ADD to the register file.
569 */
570 struct brw_reg gdst = suboffset(dst, group);
571 struct brw_reg dst_d = retype(spread(gdst, 2),
572 BRW_REGISTER_TYPE_D);
573 brw_MOV(p, dst_d,
574 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
575 brw_MOV(p, byte_offset(dst_d, 4),
576 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
577 } else {
578 brw_MOV(p, suboffset(dst, group),
579 retype(brw_VxH_indirect(0, 0), src.type));
580 }
581 }
582 }
583 }
584
585 void
586 fs_generator::generate_urb_read(fs_inst *inst,
587 struct brw_reg dst,
588 struct brw_reg header)
589 {
590 assert(inst->size_written % REG_SIZE == 0);
591 assert(header.file == BRW_GENERAL_REGISTER_FILE);
592 assert(header.type == BRW_REGISTER_TYPE_UD);
593
594 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
595 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
596 brw_set_src0(p, send, header);
597 brw_set_src1(p, send, brw_imm_ud(0u));
598
599 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
600 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
601
602 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
603 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
604
605 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
606 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
607 brw_inst_set_header_present(p->devinfo, send, true);
608 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
609 }
610
611 void
612 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
613 {
614 brw_inst *insn;
615
616 /* WaClearTDRRegBeforeEOTForNonPS.
617 *
618 * WA: Clear tdr register before send EOT in all non-PS shader kernels
619 *
620 * mov(8) tdr0:ud 0x0:ud {NoMask}"
621 */
622 if (inst->eot && p->devinfo->gen == 10) {
623 brw_push_insn_state(p);
624 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
625 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
626 brw_pop_insn_state(p);
627 }
628
629 insn = brw_next_insn(p, BRW_OPCODE_SEND);
630
631 brw_set_dest(p, insn, brw_null_reg());
632 brw_set_src0(p, insn, payload);
633 brw_set_src1(p, insn, brw_imm_d(0));
634
635 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
636 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
637
638 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
639 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
640 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
641
642 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
643 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
644 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
645
646 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
647 brw_inst_set_rlen(p->devinfo, insn, 0);
648 brw_inst_set_eot(p->devinfo, insn, inst->eot);
649 brw_inst_set_header_present(p->devinfo, insn, true);
650 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
651 }
652
653 void
654 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
655 {
656 struct brw_inst *insn;
657
658 insn = brw_next_insn(p, BRW_OPCODE_SEND);
659
660 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
661 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
662 brw_set_src1(p, insn, brw_imm_d(0));
663
664 /* Terminate a compute shader by sending a message to the thread spawner.
665 */
666 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
667 brw_inst_set_mlen(devinfo, insn, 1);
668 brw_inst_set_rlen(devinfo, insn, 0);
669 brw_inst_set_eot(devinfo, insn, inst->eot);
670 brw_inst_set_header_present(devinfo, insn, false);
671
672 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
673 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
674
675 /* Note that even though the thread has a URB resource associated with it,
676 * we set the "do not dereference URB" bit, because the URB resource is
677 * managed by the fixed-function unit, so it will free it automatically.
678 */
679 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
680
681 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
682 }
683
684 void
685 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
686 {
687 brw_barrier(p, src);
688 brw_WAIT(p);
689 }
690
691 bool
692 fs_generator::generate_linterp(fs_inst *inst,
693 struct brw_reg dst, struct brw_reg *src)
694 {
695 /* PLN reads:
696 * / in SIMD16 \
697 * -----------------------------------
698 * | src1+0 | src1+1 | src1+2 | src1+3 |
699 * |-----------------------------------|
700 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
701 * -----------------------------------
702 *
703 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
704 *
705 * -----------------------------------
706 * | src1+0 | src1+1 | src1+2 | src1+3 |
707 * |-----------------------------------|
708 * |(x0, x1)|(y0, y1)| | | in SIMD8
709 * |-----------------------------------|
710 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
711 * -----------------------------------
712 *
713 * See also: emit_interpolation_setup_gen4().
714 */
715 struct brw_reg delta_x = src[0];
716 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
717 struct brw_reg interp = src[1];
718 brw_inst *i[4];
719
720 if (devinfo->gen >= 11) {
721 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_NF);
722 struct brw_reg dwP = suboffset(interp, 0);
723 struct brw_reg dwQ = suboffset(interp, 1);
724 struct brw_reg dwR = suboffset(interp, 3);
725
726 brw_push_insn_state(p);
727 brw_set_default_exec_size(p, BRW_EXECUTE_8);
728
729 if (inst->exec_size == 8) {
730 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
731 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_y, 0), dwQ);
732
733 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
734
735 /* brw_set_default_saturate() is called before emitting instructions,
736 * so the saturate bit is set in each instruction, so we need to unset
737 * it on the first instruction of each pair.
738 */
739 brw_inst_set_saturate(p->devinfo, i[0], false);
740 } else {
741 brw_set_default_group(p, inst->group);
742 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
743 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_x, 1), dwQ);
744
745 brw_set_default_group(p, inst->group + 8);
746 i[2] = brw_MAD(p, acc, dwR, offset(delta_y, 0), dwP);
747 i[3] = brw_MAD(p, offset(dst, 1), acc, offset(delta_y, 1), dwQ);
748
749 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
750 brw_inst_set_cond_modifier(p->devinfo, i[3], inst->conditional_mod);
751
752 /* brw_set_default_saturate() is called before emitting instructions,
753 * so the saturate bit is set in each instruction, so we need to unset
754 * it on the first instruction of each pair.
755 */
756 brw_inst_set_saturate(p->devinfo, i[0], false);
757 brw_inst_set_saturate(p->devinfo, i[2], false);
758 }
759
760 brw_pop_insn_state(p);
761
762 return true;
763 } else if (devinfo->has_pln) {
764 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
765 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
766 *
767 * "[DevSNB]:<src1> must be even register aligned.
768 *
769 * This restriction is lifted on Ivy Bridge.
770 *
771 * This means that we need to split PLN into LINE+MAC on-the-fly.
772 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
773 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
774 * coordinate registers are laid out differently so we leave it as a
775 * SIMD16 instruction.
776 */
777 assert(inst->exec_size == 8 || inst->exec_size == 16);
778 assert(inst->group % 16 == 0);
779
780 brw_push_insn_state(p);
781 brw_set_default_exec_size(p, BRW_EXECUTE_8);
782
783 /* Thanks to two accumulators, we can emit all the LINEs and then all
784 * the MACs. This improves parallelism a bit.
785 */
786 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
787 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
788 offset(delta_x, g * 2));
789 brw_inst_set_group(devinfo, line, inst->group + g * 8);
790
791 /* LINE writes the accumulator automatically on gen4-5. On Sandy
792 * Bridge and later, we have to explicitly enable it.
793 */
794 if (devinfo->gen >= 6)
795 brw_inst_set_acc_wr_control(p->devinfo, line, true);
796
797 /* brw_set_default_saturate() is called before emitting
798 * instructions, so the saturate bit is set in each instruction,
799 * so we need to unset it on the LINE instructions.
800 */
801 brw_inst_set_saturate(p->devinfo, line, false);
802 }
803
804 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
805 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
806 offset(delta_x, g * 2 + 1));
807 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
808 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
809 }
810
811 brw_pop_insn_state(p);
812
813 return true;
814 } else {
815 brw_PLN(p, dst, interp, delta_x);
816
817 return false;
818 }
819 } else {
820 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
821 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
822
823 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
824
825 /* brw_set_default_saturate() is called before emitting instructions, so
826 * the saturate bit is set in each instruction, so we need to unset it on
827 * the first instruction.
828 */
829 brw_inst_set_saturate(p->devinfo, i[0], false);
830
831 return true;
832 }
833 }
834
835 void
836 fs_generator::generate_get_buffer_size(fs_inst *inst,
837 struct brw_reg dst,
838 struct brw_reg src,
839 struct brw_reg surf_index)
840 {
841 assert(devinfo->gen >= 7);
842 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
843
844 uint32_t simd_mode;
845 int rlen = 4;
846
847 switch (inst->exec_size) {
848 case 8:
849 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
850 break;
851 case 16:
852 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
853 break;
854 default:
855 unreachable("Invalid width for texture instruction");
856 }
857
858 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
859 rlen = 8;
860 dst = vec16(dst);
861 }
862
863 brw_SAMPLE(p,
864 retype(dst, BRW_REGISTER_TYPE_UW),
865 inst->base_mrf,
866 src,
867 surf_index.ud,
868 0,
869 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
870 rlen, /* response length */
871 inst->mlen,
872 inst->header_size > 0,
873 simd_mode,
874 BRW_SAMPLER_RETURN_FORMAT_SINT32);
875
876 brw_mark_surface_used(prog_data, surf_index.ud);
877 }
878
879 void
880 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src,
881 struct brw_reg surface_index,
882 struct brw_reg sampler_index)
883 {
884 assert(inst->size_written % REG_SIZE == 0);
885 int msg_type = -1;
886 uint32_t simd_mode;
887 uint32_t return_format;
888 bool is_combined_send = inst->eot;
889
890 /* Sampler EOT message of less than the dispatch width would kill the
891 * thread prematurely.
892 */
893 assert(!is_combined_send || inst->exec_size == dispatch_width);
894
895 switch (dst.type) {
896 case BRW_REGISTER_TYPE_D:
897 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
898 break;
899 case BRW_REGISTER_TYPE_UD:
900 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
901 break;
902 default:
903 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
904 break;
905 }
906
907 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
908 * is set as part of the message descriptor. On gen4, the PRM seems to
909 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
910 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
911 * gone from the message descriptor entirely and you just get UINT32 all
912 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
913 * just stomp it to UINT32 all the time.
914 */
915 if (inst->opcode == SHADER_OPCODE_TXS)
916 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
917
918 switch (inst->exec_size) {
919 case 8:
920 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
921 break;
922 case 16:
923 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
924 break;
925 default:
926 unreachable("Invalid width for texture instruction");
927 }
928
929 if (devinfo->gen >= 5) {
930 switch (inst->opcode) {
931 case SHADER_OPCODE_TEX:
932 if (inst->shadow_compare) {
933 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
934 } else {
935 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
936 }
937 break;
938 case FS_OPCODE_TXB:
939 if (inst->shadow_compare) {
940 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
941 } else {
942 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
943 }
944 break;
945 case SHADER_OPCODE_TXL:
946 if (inst->shadow_compare) {
947 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
948 } else {
949 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
950 }
951 break;
952 case SHADER_OPCODE_TXL_LZ:
953 assert(devinfo->gen >= 9);
954 if (inst->shadow_compare) {
955 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ;
956 } else {
957 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
958 }
959 break;
960 case SHADER_OPCODE_TXS:
961 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
962 break;
963 case SHADER_OPCODE_TXD:
964 if (inst->shadow_compare) {
965 /* Gen7.5+. Otherwise, lowered in NIR */
966 assert(devinfo->gen >= 8 || devinfo->is_haswell);
967 msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
968 } else {
969 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
970 }
971 break;
972 case SHADER_OPCODE_TXF:
973 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
974 break;
975 case SHADER_OPCODE_TXF_LZ:
976 assert(devinfo->gen >= 9);
977 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
978 break;
979 case SHADER_OPCODE_TXF_CMS_W:
980 assert(devinfo->gen >= 9);
981 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
982 break;
983 case SHADER_OPCODE_TXF_CMS:
984 if (devinfo->gen >= 7)
985 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
986 else
987 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
988 break;
989 case SHADER_OPCODE_TXF_UMS:
990 assert(devinfo->gen >= 7);
991 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
992 break;
993 case SHADER_OPCODE_TXF_MCS:
994 assert(devinfo->gen >= 7);
995 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
996 break;
997 case SHADER_OPCODE_LOD:
998 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
999 break;
1000 case SHADER_OPCODE_TG4:
1001 if (inst->shadow_compare) {
1002 assert(devinfo->gen >= 7);
1003 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
1004 } else {
1005 assert(devinfo->gen >= 6);
1006 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1007 }
1008 break;
1009 case SHADER_OPCODE_TG4_OFFSET:
1010 assert(devinfo->gen >= 7);
1011 if (inst->shadow_compare) {
1012 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
1013 } else {
1014 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
1015 }
1016 break;
1017 case SHADER_OPCODE_SAMPLEINFO:
1018 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1019 break;
1020 default:
1021 unreachable("not reached");
1022 }
1023 } else {
1024 switch (inst->opcode) {
1025 case SHADER_OPCODE_TEX:
1026 /* Note that G45 and older determines shadow compare and dispatch width
1027 * from message length for most messages.
1028 */
1029 if (inst->exec_size == 8) {
1030 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1031 if (inst->shadow_compare) {
1032 assert(inst->mlen == 6);
1033 } else {
1034 assert(inst->mlen <= 4);
1035 }
1036 } else {
1037 if (inst->shadow_compare) {
1038 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1039 assert(inst->mlen == 9);
1040 } else {
1041 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1042 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1043 }
1044 }
1045 break;
1046 case FS_OPCODE_TXB:
1047 if (inst->shadow_compare) {
1048 assert(inst->exec_size == 8);
1049 assert(inst->mlen == 6);
1050 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1051 } else {
1052 assert(inst->mlen == 9);
1053 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1054 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1055 }
1056 break;
1057 case SHADER_OPCODE_TXL:
1058 if (inst->shadow_compare) {
1059 assert(inst->exec_size == 8);
1060 assert(inst->mlen == 6);
1061 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1062 } else {
1063 assert(inst->mlen == 9);
1064 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1065 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1066 }
1067 break;
1068 case SHADER_OPCODE_TXD:
1069 /* There is no sample_d_c message; comparisons are done manually */
1070 assert(inst->exec_size == 8);
1071 assert(inst->mlen == 7 || inst->mlen == 10);
1072 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1073 break;
1074 case SHADER_OPCODE_TXF:
1075 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1076 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1077 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1078 break;
1079 case SHADER_OPCODE_TXS:
1080 assert(inst->mlen == 3);
1081 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1082 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1083 break;
1084 default:
1085 unreachable("not reached");
1086 }
1087 }
1088 assert(msg_type != -1);
1089
1090 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1091 dst = vec16(dst);
1092 }
1093
1094 assert(devinfo->gen < 7 || inst->header_size == 0 ||
1095 src.file == BRW_GENERAL_REGISTER_FILE);
1096
1097 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1098
1099 /* Load the message header if present. If there's a texture offset,
1100 * we need to set it up explicitly and load the offset bitfield.
1101 * Otherwise, we can use an implied move from g0 to the first message reg.
1102 */
1103 if (inst->header_size != 0 && devinfo->gen < 7) {
1104 if (devinfo->gen < 6 && !inst->offset) {
1105 /* Set up an implied move from g0 to the MRF. */
1106 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1107 } else {
1108 assert(inst->base_mrf != -1);
1109 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1110
1111 brw_push_insn_state(p);
1112 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1113 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1114 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1115 /* Explicitly set up the message header by copying g0 to the MRF. */
1116 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1117
1118 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1119 if (inst->offset) {
1120 /* Set the offset bits in DWord 2. */
1121 brw_MOV(p, get_element_ud(header_reg, 2),
1122 brw_imm_ud(inst->offset));
1123 }
1124
1125 brw_pop_insn_state(p);
1126 }
1127 }
1128
1129 uint32_t base_binding_table_index = (inst->opcode == SHADER_OPCODE_TG4 ||
1130 inst->opcode == SHADER_OPCODE_TG4_OFFSET)
1131 ? prog_data->binding_table.gather_texture_start
1132 : prog_data->binding_table.texture_start;
1133
1134 if (surface_index.file == BRW_IMMEDIATE_VALUE &&
1135 sampler_index.file == BRW_IMMEDIATE_VALUE) {
1136 uint32_t surface = surface_index.ud;
1137 uint32_t sampler = sampler_index.ud;
1138
1139 brw_SAMPLE(p,
1140 retype(dst, BRW_REGISTER_TYPE_UW),
1141 inst->base_mrf,
1142 src,
1143 surface + base_binding_table_index,
1144 sampler % 16,
1145 msg_type,
1146 inst->size_written / REG_SIZE,
1147 inst->mlen,
1148 inst->header_size != 0,
1149 simd_mode,
1150 return_format);
1151
1152 brw_mark_surface_used(prog_data, surface + base_binding_table_index);
1153 } else {
1154 /* Non-const sampler index */
1155
1156 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1157 struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
1158 struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
1159
1160 brw_push_insn_state(p);
1161 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1162 brw_set_default_access_mode(p, BRW_ALIGN_1);
1163 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1164
1165 if (brw_regs_equal(&surface_reg, &sampler_reg)) {
1166 brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
1167 } else {
1168 if (sampler_reg.file == BRW_IMMEDIATE_VALUE) {
1169 brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8));
1170 } else {
1171 brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
1172 brw_OR(p, addr, addr, surface_reg);
1173 }
1174 }
1175 if (base_binding_table_index)
1176 brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
1177 brw_AND(p, addr, addr, brw_imm_ud(0xfff));
1178
1179 brw_pop_insn_state(p);
1180
1181 /* dst = send(offset, a0.0 | <descriptor>) */
1182 brw_send_indirect_message(
1183 p, BRW_SFID_SAMPLER, dst, src, addr,
1184 brw_message_desc(devinfo, inst->mlen, inst->size_written / REG_SIZE,
1185 inst->header_size) |
1186 brw_sampler_desc(devinfo,
1187 0 /* surface */,
1188 0 /* sampler */,
1189 msg_type,
1190 simd_mode,
1191 return_format));
1192
1193 /* visitor knows more than we do about the surface limit required,
1194 * so has already done marking.
1195 */
1196 }
1197
1198 if (is_combined_send) {
1199 brw_inst_set_eot(p->devinfo, brw_last_inst, true);
1200 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
1201 }
1202 }
1203
1204
1205 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1206 * looking like:
1207 *
1208 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1209 *
1210 * Ideally, we want to produce:
1211 *
1212 * DDX DDY
1213 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1214 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1215 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1216 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1217 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1218 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1219 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1220 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1221 *
1222 * and add another set of two more subspans if in 16-pixel dispatch mode.
1223 *
1224 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1225 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1226 * pair. But the ideal approximation may impose a huge performance cost on
1227 * sample_d. On at least Haswell, sample_d instruction does some
1228 * optimizations if the same LOD is used for all pixels in the subspan.
1229 *
1230 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1231 * appropriate swizzling.
1232 */
1233 void
1234 fs_generator::generate_ddx(const fs_inst *inst,
1235 struct brw_reg dst, struct brw_reg src)
1236 {
1237 unsigned vstride, width;
1238
1239 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1240 /* produce accurate derivatives */
1241 vstride = BRW_VERTICAL_STRIDE_2;
1242 width = BRW_WIDTH_2;
1243 } else {
1244 /* replicate the derivative at the top-left pixel to other pixels */
1245 vstride = BRW_VERTICAL_STRIDE_4;
1246 width = BRW_WIDTH_4;
1247 }
1248
1249 struct brw_reg src0 = src;
1250 struct brw_reg src1 = src;
1251
1252 src0.subnr = sizeof(float);
1253 src0.vstride = vstride;
1254 src0.width = width;
1255 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1256 src1.vstride = vstride;
1257 src1.width = width;
1258 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1259
1260 brw_ADD(p, dst, src0, negate(src1));
1261 }
1262
1263 /* The negate_value boolean is used to negate the derivative computation for
1264 * FBOs, since they place the origin at the upper left instead of the lower
1265 * left.
1266 */
1267 void
1268 fs_generator::generate_ddy(const fs_inst *inst,
1269 struct brw_reg dst, struct brw_reg src)
1270 {
1271 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1272 /* produce accurate derivatives */
1273 if (devinfo->gen >= 11) {
1274 src = stride(src, 0, 2, 1);
1275 struct brw_reg src_0 = byte_offset(src, 0 * sizeof(float));
1276 struct brw_reg src_2 = byte_offset(src, 2 * sizeof(float));
1277 struct brw_reg src_4 = byte_offset(src, 4 * sizeof(float));
1278 struct brw_reg src_6 = byte_offset(src, 6 * sizeof(float));
1279 struct brw_reg src_8 = byte_offset(src, 8 * sizeof(float));
1280 struct brw_reg src_10 = byte_offset(src, 10 * sizeof(float));
1281 struct brw_reg src_12 = byte_offset(src, 12 * sizeof(float));
1282 struct brw_reg src_14 = byte_offset(src, 14 * sizeof(float));
1283
1284 struct brw_reg dst_0 = byte_offset(dst, 0 * sizeof(float));
1285 struct brw_reg dst_4 = byte_offset(dst, 4 * sizeof(float));
1286 struct brw_reg dst_8 = byte_offset(dst, 8 * sizeof(float));
1287 struct brw_reg dst_12 = byte_offset(dst, 12 * sizeof(float));
1288
1289 brw_push_insn_state(p);
1290 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1291
1292 brw_ADD(p, dst_0, negate(src_0), src_2);
1293 brw_ADD(p, dst_4, negate(src_4), src_6);
1294
1295 if (inst->exec_size == 16) {
1296 brw_ADD(p, dst_8, negate(src_8), src_10);
1297 brw_ADD(p, dst_12, negate(src_12), src_14);
1298 }
1299
1300 brw_pop_insn_state(p);
1301 } else {
1302 struct brw_reg src0 = stride(src, 4, 4, 1);
1303 struct brw_reg src1 = stride(src, 4, 4, 1);
1304 src0.swizzle = BRW_SWIZZLE_XYXY;
1305 src1.swizzle = BRW_SWIZZLE_ZWZW;
1306
1307 brw_push_insn_state(p);
1308 brw_set_default_access_mode(p, BRW_ALIGN_16);
1309 brw_ADD(p, dst, negate(src0), src1);
1310 brw_pop_insn_state(p);
1311 }
1312 } else {
1313 /* replicate the derivative at the top-left pixel to other pixels */
1314 struct brw_reg src0 = stride(src, 4, 4, 0);
1315 struct brw_reg src1 = stride(src, 4, 4, 0);
1316 src0.subnr = 0 * sizeof(float);
1317 src1.subnr = 2 * sizeof(float);
1318
1319 brw_ADD(p, dst, negate(src0), src1);
1320 }
1321 }
1322
1323 void
1324 fs_generator::generate_discard_jump(fs_inst *)
1325 {
1326 assert(devinfo->gen >= 6);
1327
1328 /* This HALT will be patched up at FB write time to point UIP at the end of
1329 * the program, and at brw_uip_jip() JIP will be set to the end of the
1330 * current block (or the program).
1331 */
1332 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1333 gen6_HALT(p);
1334 }
1335
1336 void
1337 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1338 {
1339 /* The 32-wide messages only respect the first 16-wide half of the channel
1340 * enable signals which are replicated identically for the second group of
1341 * 16 channels, so we cannot use them unless the write is marked
1342 * force_writemask_all.
1343 */
1344 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1345 MIN2(16, inst->exec_size);
1346 const unsigned block_size = 4 * lower_size / REG_SIZE;
1347 assert(inst->mlen != 0);
1348
1349 brw_push_insn_state(p);
1350 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1351 brw_set_default_compression(p, lower_size > 8);
1352
1353 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1354 brw_set_default_group(p, inst->group + lower_size * i);
1355
1356 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1357 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1358
1359 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1360 block_size,
1361 inst->offset + block_size * REG_SIZE * i);
1362 }
1363
1364 brw_pop_insn_state(p);
1365 }
1366
1367 void
1368 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1369 {
1370 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1371 assert(inst->mlen != 0);
1372
1373 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1374 inst->exec_size / 8, inst->offset);
1375 }
1376
1377 void
1378 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1379 {
1380 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1381
1382 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1383 }
1384
1385 void
1386 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1387 struct brw_reg dst,
1388 struct brw_reg index,
1389 struct brw_reg offset)
1390 {
1391 assert(type_sz(dst.type) == 4);
1392 assert(inst->mlen != 0);
1393
1394 assert(index.file == BRW_IMMEDIATE_VALUE &&
1395 index.type == BRW_REGISTER_TYPE_UD);
1396 uint32_t surf_index = index.ud;
1397
1398 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1399 offset.type == BRW_REGISTER_TYPE_UD);
1400 uint32_t read_offset = offset.ud;
1401
1402 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1403 read_offset, surf_index);
1404 }
1405
1406 void
1407 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1408 struct brw_reg dst,
1409 struct brw_reg index,
1410 struct brw_reg payload)
1411 {
1412 assert(index.type == BRW_REGISTER_TYPE_UD);
1413 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1414 assert(type_sz(dst.type) == 4);
1415
1416 if (index.file == BRW_IMMEDIATE_VALUE) {
1417 const uint32_t surf_index = index.ud;
1418
1419 brw_push_insn_state(p);
1420 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1421 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1422 brw_pop_insn_state(p);
1423
1424 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1425 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1426 brw_set_dp_read_message(p, send, surf_index,
1427 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1428 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1429 GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1430 1, /* mlen */
1431 true, /* header */
1432 DIV_ROUND_UP(inst->size_written, REG_SIZE));
1433
1434 } else {
1435 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1436
1437 brw_push_insn_state(p);
1438 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1439
1440 /* a0.0 = surf_index & 0xff */
1441 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1442 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1443 brw_set_dest(p, insn_and, addr);
1444 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1445 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1446
1447 /* dst = send(payload, a0.0 | <descriptor>) */
1448 brw_inst *insn = brw_send_indirect_message(
1449 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1450 retype(dst, BRW_REGISTER_TYPE_UD),
1451 retype(payload, BRW_REGISTER_TYPE_UD), addr, 0);
1452 brw_set_dp_read_message(p, insn, 0 /* surface */,
1453 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1454 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1455 GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1456 1, /* mlen */
1457 true, /* header */
1458 DIV_ROUND_UP(inst->size_written, REG_SIZE));
1459
1460 brw_pop_insn_state(p);
1461 }
1462 }
1463
1464 void
1465 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1466 struct brw_reg dst,
1467 struct brw_reg index)
1468 {
1469 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1470 assert(inst->header_size != 0);
1471 assert(inst->mlen);
1472
1473 assert(index.file == BRW_IMMEDIATE_VALUE &&
1474 index.type == BRW_REGISTER_TYPE_UD);
1475 uint32_t surf_index = index.ud;
1476
1477 uint32_t simd_mode, rlen, msg_type;
1478 if (inst->exec_size == 16) {
1479 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1480 rlen = 8;
1481 } else {
1482 assert(inst->exec_size == 8);
1483 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1484 rlen = 4;
1485 }
1486
1487 if (devinfo->gen >= 5)
1488 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1489 else {
1490 /* We always use the SIMD16 message so that we only have to load U, and
1491 * not V or R.
1492 */
1493 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1494 assert(inst->mlen == 3);
1495 assert(inst->size_written == 8 * REG_SIZE);
1496 rlen = 8;
1497 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1498 }
1499
1500 struct brw_reg header = brw_vec8_grf(0, 0);
1501 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1502
1503 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1504 brw_inst_set_compression(devinfo, send, false);
1505 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1506 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1507 brw_set_src0(p, send, header);
1508 if (devinfo->gen < 6)
1509 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1510
1511 /* Our surface is set up as floats, regardless of what actual data is
1512 * stored in it.
1513 */
1514 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1515 brw_set_desc(p, send,
1516 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1517 brw_sampler_desc(devinfo, surf_index,
1518 0, /* sampler (unused) */
1519 msg_type, simd_mode, return_format));
1520 }
1521
1522 void
1523 fs_generator::generate_varying_pull_constant_load_gen7(fs_inst *inst,
1524 struct brw_reg dst,
1525 struct brw_reg index,
1526 struct brw_reg offset)
1527 {
1528 assert(devinfo->gen >= 7);
1529 /* Varying-offset pull constant loads are treated as a normal expression on
1530 * gen7, so the fact that it's a send message is hidden at the IR level.
1531 */
1532 assert(inst->header_size == 0);
1533 assert(!inst->mlen);
1534 assert(index.type == BRW_REGISTER_TYPE_UD);
1535
1536 uint32_t simd_mode, rlen, mlen;
1537 if (inst->exec_size == 16) {
1538 mlen = 2;
1539 rlen = 8;
1540 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1541 } else {
1542 assert(inst->exec_size == 8);
1543 mlen = 1;
1544 rlen = 4;
1545 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1546 }
1547
1548 if (index.file == BRW_IMMEDIATE_VALUE) {
1549
1550 uint32_t surf_index = index.ud;
1551
1552 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1553 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1554 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1555 brw_set_src0(p, send, offset);
1556 brw_set_desc(p, send,
1557 brw_message_desc(devinfo, mlen, rlen, false) |
1558 brw_sampler_desc(devinfo, surf_index,
1559 0, /* LD message ignores sampler unit */
1560 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1561 simd_mode, 0));
1562
1563 } else {
1564
1565 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1566
1567 brw_push_insn_state(p);
1568 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1569
1570 /* a0.0 = surf_index & 0xff */
1571 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1572 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1573 brw_set_dest(p, insn_and, addr);
1574 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1575 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1576
1577 brw_pop_insn_state(p);
1578
1579 /* dst = send(offset, a0.0 | <descriptor>) */
1580 brw_send_indirect_message(
1581 p, BRW_SFID_SAMPLER, retype(dst, BRW_REGISTER_TYPE_UW),
1582 offset, addr,
1583 brw_message_desc(devinfo, mlen, rlen, false) |
1584 brw_sampler_desc(devinfo,
1585 0 /* surface */,
1586 0 /* sampler */,
1587 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1588 simd_mode,
1589 0));
1590 }
1591 }
1592
1593 void
1594 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1595 struct brw_reg dst,
1596 struct brw_reg src,
1597 struct brw_reg msg_data,
1598 unsigned msg_type)
1599 {
1600 const bool has_payload = inst->src[0].file != BAD_FILE;
1601 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1602 assert(inst->size_written % REG_SIZE == 0);
1603
1604 brw_pixel_interpolator_query(p,
1605 retype(dst, BRW_REGISTER_TYPE_UW),
1606 /* If we don't have a payload, what we send doesn't matter */
1607 has_payload ? src : brw_vec8_grf(0, 0),
1608 inst->pi_noperspective,
1609 msg_type,
1610 msg_data,
1611 has_payload ? 2 * inst->exec_size / 8 : 1,
1612 inst->size_written / REG_SIZE);
1613 }
1614
1615 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1616 * the ADD instruction.
1617 */
1618 void
1619 fs_generator::generate_set_sample_id(fs_inst *inst,
1620 struct brw_reg dst,
1621 struct brw_reg src0,
1622 struct brw_reg src1)
1623 {
1624 assert(dst.type == BRW_REGISTER_TYPE_D ||
1625 dst.type == BRW_REGISTER_TYPE_UD);
1626 assert(src0.type == BRW_REGISTER_TYPE_D ||
1627 src0.type == BRW_REGISTER_TYPE_UD);
1628
1629 const struct brw_reg reg = stride(src1, 1, 4, 0);
1630 const unsigned lower_size = MIN2(inst->exec_size,
1631 devinfo->gen >= 8 ? 16 : 8);
1632
1633 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1634 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1635 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1636 (i * lower_size / (1 << src0.width))) *
1637 type_sz(src0.type) / REG_SIZE),
1638 suboffset(reg, i * lower_size / 4));
1639 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1640 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1641 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1642 }
1643 }
1644
1645 void
1646 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1647 struct brw_reg dst,
1648 struct brw_reg x,
1649 struct brw_reg y)
1650 {
1651 assert(devinfo->gen >= 7);
1652 assert(dst.type == BRW_REGISTER_TYPE_UD);
1653 assert(x.type == BRW_REGISTER_TYPE_F);
1654 assert(y.type == BRW_REGISTER_TYPE_F);
1655
1656 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1657 *
1658 * Because this instruction does not have a 16-bit floating-point type,
1659 * the destination data type must be Word (W).
1660 *
1661 * The destination must be DWord-aligned and specify a horizontal stride
1662 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1663 * each destination channel and the upper word is not modified.
1664 */
1665 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1666
1667 /* Give each 32-bit channel of dst the form below, where "." means
1668 * unchanged.
1669 * 0x....hhhh
1670 */
1671 brw_F32TO16(p, dst_w, y);
1672
1673 /* Now the form:
1674 * 0xhhhh0000
1675 */
1676 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1677
1678 /* And, finally the form of packHalf2x16's output:
1679 * 0xhhhhllll
1680 */
1681 brw_F32TO16(p, dst_w, x);
1682 }
1683
1684 void
1685 fs_generator::generate_unpack_half_2x16_split(fs_inst *inst,
1686 struct brw_reg dst,
1687 struct brw_reg src)
1688 {
1689 assert(devinfo->gen >= 7);
1690 assert(dst.type == BRW_REGISTER_TYPE_F);
1691 assert(src.type == BRW_REGISTER_TYPE_UD);
1692
1693 /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
1694 *
1695 * Because this instruction does not have a 16-bit floating-point type,
1696 * the source data type must be Word (W). The destination type must be
1697 * F (Float).
1698 */
1699 struct brw_reg src_w = spread(retype(src, BRW_REGISTER_TYPE_W), 2);
1700
1701 /* Each channel of src has the form of unpackHalf2x16's input: 0xhhhhllll.
1702 * For the Y case, we wish to access only the upper word; therefore
1703 * a 16-bit subregister offset is needed.
1704 */
1705 assert(inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X ||
1706 inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y);
1707 if (inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y)
1708 src_w.subnr += 2;
1709
1710 brw_F16TO32(p, dst, src_w);
1711 }
1712
1713 void
1714 fs_generator::generate_shader_time_add(fs_inst *,
1715 struct brw_reg payload,
1716 struct brw_reg offset,
1717 struct brw_reg value)
1718 {
1719 assert(devinfo->gen >= 7);
1720 brw_push_insn_state(p);
1721 brw_set_default_mask_control(p, true);
1722
1723 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1724 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1725 offset.type);
1726 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1727 value.type);
1728
1729 assert(offset.file == BRW_IMMEDIATE_VALUE);
1730 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1731 value.width = BRW_WIDTH_1;
1732 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1733 value.vstride = BRW_VERTICAL_STRIDE_0;
1734 } else {
1735 assert(value.file == BRW_IMMEDIATE_VALUE);
1736 }
1737
1738 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1739 * case, and we don't really care about squeezing every bit of performance
1740 * out of this path, so we just emit the MOVs from here.
1741 */
1742 brw_MOV(p, payload_offset, offset);
1743 brw_MOV(p, payload_value, value);
1744 brw_shader_time_add(p, payload,
1745 prog_data->binding_table.shader_time_start);
1746 brw_pop_insn_state(p);
1747
1748 brw_mark_surface_used(prog_data,
1749 prog_data->binding_table.shader_time_start);
1750 }
1751
1752 void
1753 fs_generator::enable_debug(const char *shader_name)
1754 {
1755 debug_flag = true;
1756 this->shader_name = shader_name;
1757 }
1758
1759 int
1760 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width)
1761 {
1762 /* align to 64 byte boundary. */
1763 while (p->next_insn_offset % 64)
1764 brw_NOP(p);
1765
1766 this->dispatch_width = dispatch_width;
1767
1768 int start_offset = p->next_insn_offset;
1769 int spill_count = 0, fill_count = 0;
1770 int loop_count = 0;
1771
1772 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1773
1774 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1775 struct brw_reg src[3], dst;
1776 unsigned int last_insn_offset = p->next_insn_offset;
1777 bool multiple_instructions_emitted = false;
1778
1779 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1780 * "Register Region Restrictions" section: for BDW, SKL:
1781 *
1782 * "A POW/FDIV operation must not be followed by an instruction
1783 * that requires two destination registers."
1784 *
1785 * The documentation is often lacking annotations for Atom parts,
1786 * and empirically this affects CHV as well.
1787 */
1788 if (devinfo->gen >= 8 &&
1789 devinfo->gen <= 9 &&
1790 p->nr_insn > 1 &&
1791 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1792 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1793 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1794 brw_NOP(p);
1795 last_insn_offset = p->next_insn_offset;
1796 }
1797
1798 if (unlikely(debug_flag))
1799 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1800
1801 /* If the instruction writes to more than one register, it needs to be
1802 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1803 * hardware figures out by itself what the right compression mode is,
1804 * but we still need to know whether the instruction is compressed to
1805 * set up the source register regions appropriately.
1806 *
1807 * XXX - This is wrong for instructions that write a single register but
1808 * read more than one which should strictly speaking be treated as
1809 * compressed. For instructions that don't write any registers it
1810 * relies on the destination being a null register of the correct
1811 * type and regioning so the instruction is considered compressed
1812 * or not accordingly.
1813 */
1814 const bool compressed =
1815 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1816 brw_set_default_compression(p, compressed);
1817 brw_set_default_group(p, inst->group);
1818
1819 for (unsigned int i = 0; i < inst->sources; i++) {
1820 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1821 &inst->src[i], compressed);
1822 /* The accumulator result appears to get used for the
1823 * conditional modifier generation. When negating a UD
1824 * value, there is a 33rd bit generated for the sign in the
1825 * accumulator value, so now you can't check, for example,
1826 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1827 */
1828 assert(!inst->conditional_mod ||
1829 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1830 !inst->src[i].negate);
1831 }
1832 dst = brw_reg_from_fs_reg(devinfo, inst,
1833 &inst->dst, compressed);
1834
1835 brw_set_default_access_mode(p, BRW_ALIGN_1);
1836 brw_set_default_predicate_control(p, inst->predicate);
1837 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1838 /* On gen7 and above, hardware automatically adds the group onto the
1839 * flag subregister number. On Sandy Bridge and older, we have to do it
1840 * ourselves.
1841 */
1842 const unsigned flag_subreg = inst->flag_subreg +
1843 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1844 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1845 brw_set_default_saturate(p, inst->saturate);
1846 brw_set_default_mask_control(p, inst->force_writemask_all);
1847 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1848
1849 unsigned exec_size = inst->exec_size;
1850 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1851 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1852 exec_size *= 2;
1853 }
1854
1855 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1856
1857 assert(inst->force_writemask_all || inst->exec_size >= 4);
1858 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1859 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1860 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1861
1862 switch (inst->opcode) {
1863 case BRW_OPCODE_MOV:
1864 brw_MOV(p, dst, src[0]);
1865 break;
1866 case BRW_OPCODE_ADD:
1867 brw_ADD(p, dst, src[0], src[1]);
1868 break;
1869 case BRW_OPCODE_MUL:
1870 brw_MUL(p, dst, src[0], src[1]);
1871 break;
1872 case BRW_OPCODE_AVG:
1873 brw_AVG(p, dst, src[0], src[1]);
1874 break;
1875 case BRW_OPCODE_MACH:
1876 brw_MACH(p, dst, src[0], src[1]);
1877 break;
1878
1879 case BRW_OPCODE_LINE:
1880 brw_LINE(p, dst, src[0], src[1]);
1881 break;
1882
1883 case BRW_OPCODE_MAD:
1884 assert(devinfo->gen >= 6);
1885 if (devinfo->gen < 10)
1886 brw_set_default_access_mode(p, BRW_ALIGN_16);
1887 brw_MAD(p, dst, src[0], src[1], src[2]);
1888 break;
1889
1890 case BRW_OPCODE_LRP:
1891 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1892 if (devinfo->gen < 10)
1893 brw_set_default_access_mode(p, BRW_ALIGN_16);
1894 brw_LRP(p, dst, src[0], src[1], src[2]);
1895 break;
1896
1897 case BRW_OPCODE_FRC:
1898 brw_FRC(p, dst, src[0]);
1899 break;
1900 case BRW_OPCODE_RNDD:
1901 brw_RNDD(p, dst, src[0]);
1902 break;
1903 case BRW_OPCODE_RNDE:
1904 brw_RNDE(p, dst, src[0]);
1905 break;
1906 case BRW_OPCODE_RNDZ:
1907 brw_RNDZ(p, dst, src[0]);
1908 break;
1909
1910 case BRW_OPCODE_AND:
1911 brw_AND(p, dst, src[0], src[1]);
1912 break;
1913 case BRW_OPCODE_OR:
1914 brw_OR(p, dst, src[0], src[1]);
1915 break;
1916 case BRW_OPCODE_XOR:
1917 brw_XOR(p, dst, src[0], src[1]);
1918 break;
1919 case BRW_OPCODE_NOT:
1920 brw_NOT(p, dst, src[0]);
1921 break;
1922 case BRW_OPCODE_ASR:
1923 brw_ASR(p, dst, src[0], src[1]);
1924 break;
1925 case BRW_OPCODE_SHR:
1926 brw_SHR(p, dst, src[0], src[1]);
1927 break;
1928 case BRW_OPCODE_SHL:
1929 brw_SHL(p, dst, src[0], src[1]);
1930 break;
1931 case BRW_OPCODE_F32TO16:
1932 assert(devinfo->gen >= 7);
1933 brw_F32TO16(p, dst, src[0]);
1934 break;
1935 case BRW_OPCODE_F16TO32:
1936 assert(devinfo->gen >= 7);
1937 brw_F16TO32(p, dst, src[0]);
1938 break;
1939 case BRW_OPCODE_CMP:
1940 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1941 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1942 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1943 * implemented in the compiler is not sufficient. Overriding the
1944 * type when the destination is the null register is necessary but
1945 * not sufficient by itself.
1946 */
1947 assert(dst.nr == BRW_ARF_NULL);
1948 dst.type = BRW_REGISTER_TYPE_D;
1949 }
1950 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1951 break;
1952 case BRW_OPCODE_SEL:
1953 brw_SEL(p, dst, src[0], src[1]);
1954 break;
1955 case BRW_OPCODE_CSEL:
1956 assert(devinfo->gen >= 8);
1957 if (devinfo->gen < 10)
1958 brw_set_default_access_mode(p, BRW_ALIGN_16);
1959 brw_CSEL(p, dst, src[0], src[1], src[2]);
1960 break;
1961 case BRW_OPCODE_BFREV:
1962 assert(devinfo->gen >= 7);
1963 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1964 retype(src[0], BRW_REGISTER_TYPE_UD));
1965 break;
1966 case BRW_OPCODE_FBH:
1967 assert(devinfo->gen >= 7);
1968 brw_FBH(p, retype(dst, src[0].type), src[0]);
1969 break;
1970 case BRW_OPCODE_FBL:
1971 assert(devinfo->gen >= 7);
1972 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1973 retype(src[0], BRW_REGISTER_TYPE_UD));
1974 break;
1975 case BRW_OPCODE_LZD:
1976 brw_LZD(p, dst, src[0]);
1977 break;
1978 case BRW_OPCODE_CBIT:
1979 assert(devinfo->gen >= 7);
1980 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1981 retype(src[0], BRW_REGISTER_TYPE_UD));
1982 break;
1983 case BRW_OPCODE_ADDC:
1984 assert(devinfo->gen >= 7);
1985 brw_ADDC(p, dst, src[0], src[1]);
1986 break;
1987 case BRW_OPCODE_SUBB:
1988 assert(devinfo->gen >= 7);
1989 brw_SUBB(p, dst, src[0], src[1]);
1990 break;
1991 case BRW_OPCODE_MAC:
1992 brw_MAC(p, dst, src[0], src[1]);
1993 break;
1994
1995 case BRW_OPCODE_BFE:
1996 assert(devinfo->gen >= 7);
1997 if (devinfo->gen < 10)
1998 brw_set_default_access_mode(p, BRW_ALIGN_16);
1999 brw_BFE(p, dst, src[0], src[1], src[2]);
2000 break;
2001
2002 case BRW_OPCODE_BFI1:
2003 assert(devinfo->gen >= 7);
2004 brw_BFI1(p, dst, src[0], src[1]);
2005 break;
2006 case BRW_OPCODE_BFI2:
2007 assert(devinfo->gen >= 7);
2008 if (devinfo->gen < 10)
2009 brw_set_default_access_mode(p, BRW_ALIGN_16);
2010 brw_BFI2(p, dst, src[0], src[1], src[2]);
2011 break;
2012
2013 case BRW_OPCODE_IF:
2014 if (inst->src[0].file != BAD_FILE) {
2015 /* The instruction has an embedded compare (only allowed on gen6) */
2016 assert(devinfo->gen == 6);
2017 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
2018 } else {
2019 brw_IF(p, brw_get_default_exec_size(p));
2020 }
2021 break;
2022
2023 case BRW_OPCODE_ELSE:
2024 brw_ELSE(p);
2025 break;
2026 case BRW_OPCODE_ENDIF:
2027 brw_ENDIF(p);
2028 break;
2029
2030 case BRW_OPCODE_DO:
2031 brw_DO(p, brw_get_default_exec_size(p));
2032 break;
2033
2034 case BRW_OPCODE_BREAK:
2035 brw_BREAK(p);
2036 break;
2037 case BRW_OPCODE_CONTINUE:
2038 brw_CONT(p);
2039 break;
2040
2041 case BRW_OPCODE_WHILE:
2042 brw_WHILE(p);
2043 loop_count++;
2044 break;
2045
2046 case SHADER_OPCODE_RCP:
2047 case SHADER_OPCODE_RSQ:
2048 case SHADER_OPCODE_SQRT:
2049 case SHADER_OPCODE_EXP2:
2050 case SHADER_OPCODE_LOG2:
2051 case SHADER_OPCODE_SIN:
2052 case SHADER_OPCODE_COS:
2053 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2054 if (devinfo->gen >= 6) {
2055 assert(inst->mlen == 0);
2056 assert(devinfo->gen >= 7 || inst->exec_size == 8);
2057 gen6_math(p, dst, brw_math_function(inst->opcode),
2058 src[0], brw_null_reg());
2059 } else {
2060 assert(inst->mlen >= 1);
2061 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
2062 gen4_math(p, dst,
2063 brw_math_function(inst->opcode),
2064 inst->base_mrf, src[0],
2065 BRW_MATH_PRECISION_FULL);
2066 }
2067 break;
2068 case SHADER_OPCODE_INT_QUOTIENT:
2069 case SHADER_OPCODE_INT_REMAINDER:
2070 case SHADER_OPCODE_POW:
2071 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2072 if (devinfo->gen >= 6) {
2073 assert(inst->mlen == 0);
2074 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2075 inst->exec_size == 8);
2076 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2077 } else {
2078 assert(inst->mlen >= 1);
2079 assert(inst->exec_size == 8);
2080 gen4_math(p, dst, brw_math_function(inst->opcode),
2081 inst->base_mrf, src[0],
2082 BRW_MATH_PRECISION_FULL);
2083 }
2084 break;
2085 case FS_OPCODE_LINTERP:
2086 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2087 break;
2088 case FS_OPCODE_PIXEL_X:
2089 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2090 src[0].subnr = 0 * type_sz(src[0].type);
2091 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2092 break;
2093 case FS_OPCODE_PIXEL_Y:
2094 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2095 src[0].subnr = 4 * type_sz(src[0].type);
2096 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2097 break;
2098 case SHADER_OPCODE_GET_BUFFER_SIZE:
2099 generate_get_buffer_size(inst, dst, src[0], src[1]);
2100 break;
2101 case SHADER_OPCODE_TEX:
2102 case FS_OPCODE_TXB:
2103 case SHADER_OPCODE_TXD:
2104 case SHADER_OPCODE_TXF:
2105 case SHADER_OPCODE_TXF_LZ:
2106 case SHADER_OPCODE_TXF_CMS:
2107 case SHADER_OPCODE_TXF_CMS_W:
2108 case SHADER_OPCODE_TXF_UMS:
2109 case SHADER_OPCODE_TXF_MCS:
2110 case SHADER_OPCODE_TXL:
2111 case SHADER_OPCODE_TXL_LZ:
2112 case SHADER_OPCODE_TXS:
2113 case SHADER_OPCODE_LOD:
2114 case SHADER_OPCODE_TG4:
2115 case SHADER_OPCODE_TG4_OFFSET:
2116 case SHADER_OPCODE_SAMPLEINFO:
2117 generate_tex(inst, dst, src[0], src[1], src[2]);
2118 break;
2119 case FS_OPCODE_DDX_COARSE:
2120 case FS_OPCODE_DDX_FINE:
2121 generate_ddx(inst, dst, src[0]);
2122 break;
2123 case FS_OPCODE_DDY_COARSE:
2124 case FS_OPCODE_DDY_FINE:
2125 generate_ddy(inst, dst, src[0]);
2126 break;
2127
2128 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2129 generate_scratch_write(inst, src[0]);
2130 spill_count++;
2131 break;
2132
2133 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2134 generate_scratch_read(inst, dst);
2135 fill_count++;
2136 break;
2137
2138 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2139 generate_scratch_read_gen7(inst, dst);
2140 fill_count++;
2141 break;
2142
2143 case SHADER_OPCODE_MOV_INDIRECT:
2144 generate_mov_indirect(inst, dst, src[0], src[1]);
2145 break;
2146
2147 case SHADER_OPCODE_URB_READ_SIMD8:
2148 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2149 generate_urb_read(inst, dst, src[0]);
2150 break;
2151
2152 case SHADER_OPCODE_URB_WRITE_SIMD8:
2153 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2154 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2155 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2156 generate_urb_write(inst, src[0]);
2157 break;
2158
2159 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2160 assert(inst->force_writemask_all);
2161 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2162 break;
2163
2164 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2165 assert(inst->force_writemask_all);
2166 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2167 break;
2168
2169 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2170 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2171 break;
2172
2173 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
2174 generate_varying_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2175 break;
2176
2177 case FS_OPCODE_REP_FB_WRITE:
2178 case FS_OPCODE_FB_WRITE:
2179 generate_fb_write(inst, src[0]);
2180 break;
2181
2182 case FS_OPCODE_FB_READ:
2183 generate_fb_read(inst, dst, src[0]);
2184 break;
2185
2186 case FS_OPCODE_DISCARD_JUMP:
2187 generate_discard_jump(inst);
2188 break;
2189
2190 case SHADER_OPCODE_SHADER_TIME_ADD:
2191 generate_shader_time_add(inst, src[0], src[1], src[2]);
2192 break;
2193
2194 case SHADER_OPCODE_UNTYPED_ATOMIC:
2195 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2196 brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud,
2197 inst->mlen, !inst->dst.is_null(),
2198 inst->header_size);
2199 break;
2200
2201 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
2202 assert(!inst->header_size);
2203 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2204 brw_untyped_surface_read(p, dst, src[0], src[1],
2205 inst->mlen, src[2].ud);
2206 break;
2207
2208 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
2209 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2210 brw_untyped_surface_write(p, src[0], src[1],
2211 inst->mlen, src[2].ud,
2212 inst->header_size);
2213 break;
2214
2215 case SHADER_OPCODE_BYTE_SCATTERED_READ:
2216 assert(!inst->header_size);
2217 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2218 brw_byte_scattered_read(p, dst, src[0], src[1],
2219 inst->mlen, src[2].ud);
2220 break;
2221
2222 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
2223 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2224 brw_byte_scattered_write(p, src[0], src[1],
2225 inst->mlen, src[2].ud,
2226 inst->header_size);
2227 break;
2228
2229 case SHADER_OPCODE_TYPED_ATOMIC:
2230 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2231 brw_typed_atomic(p, dst, src[0], src[1],
2232 src[2].ud, inst->mlen, !inst->dst.is_null(),
2233 inst->header_size);
2234 break;
2235
2236 case SHADER_OPCODE_TYPED_SURFACE_READ:
2237 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2238 brw_typed_surface_read(p, dst, src[0], src[1],
2239 inst->mlen, src[2].ud,
2240 inst->header_size);
2241 break;
2242
2243 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
2244 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2245 brw_typed_surface_write(p, src[0], src[1], inst->mlen, src[2].ud,
2246 inst->header_size);
2247 break;
2248
2249 case SHADER_OPCODE_MEMORY_FENCE:
2250 brw_memory_fence(p, dst, BRW_OPCODE_SEND);
2251 break;
2252
2253 case SHADER_OPCODE_INTERLOCK:
2254 /* The interlock is basically a memory fence issued via sendc */
2255 brw_memory_fence(p, dst, BRW_OPCODE_SENDC);
2256 break;
2257
2258 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2259 const struct brw_reg mask =
2260 brw_stage_has_packed_dispatch(devinfo, stage,
2261 prog_data) ? brw_imm_ud(~0u) :
2262 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2263 brw_dmask_reg();
2264 brw_find_live_channel(p, dst, mask);
2265 break;
2266 }
2267
2268 case SHADER_OPCODE_BROADCAST:
2269 assert(inst->force_writemask_all);
2270 brw_broadcast(p, dst, src[0], src[1]);
2271 break;
2272
2273 case SHADER_OPCODE_SHUFFLE:
2274 generate_shuffle(inst, dst, src[0], src[1]);
2275 break;
2276
2277 case SHADER_OPCODE_SEL_EXEC:
2278 assert(inst->force_writemask_all);
2279 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2280 brw_MOV(p, dst, src[1]);
2281 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2282 brw_MOV(p, dst, src[0]);
2283 break;
2284
2285 case SHADER_OPCODE_QUAD_SWIZZLE:
2286 /* This only works on 8-wide 32-bit values */
2287 assert(inst->exec_size == 8);
2288 assert(type_sz(src[0].type) == 4);
2289 assert(inst->force_writemask_all);
2290 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2291 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2292
2293 if (src[0].file == BRW_IMMEDIATE_VALUE ||
2294 (src[0].vstride == 0 && src[0].hstride == 0)) {
2295 /* The value is uniform across all channels */
2296 brw_MOV(p, dst, src[0]);
2297 } else {
2298 brw_set_default_access_mode(p, BRW_ALIGN_16);
2299 struct brw_reg swiz_src = stride(src[0], 4, 4, 1);
2300 swiz_src.swizzle = inst->src[1].ud;
2301 brw_MOV(p, dst, swiz_src);
2302 }
2303 break;
2304
2305 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2306 assert(src[0].type == dst.type);
2307 assert(!src[0].negate && !src[0].abs);
2308 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2309 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2310 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2311 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2312 const unsigned component = src[1].ud;
2313 const unsigned cluster_size = src[2].ud;
2314 struct brw_reg strided = stride(suboffset(src[0], component),
2315 cluster_size, cluster_size, 0);
2316 if (type_sz(src[0].type) > 4 &&
2317 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2318 /* IVB has an issue (which we found empirically) where it reads
2319 * two address register components per channel for indirectly
2320 * addressed 64-bit sources.
2321 *
2322 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2323 *
2324 * "When source or destination datatype is 64b or operation is
2325 * integer DWord multiply, indirect addressing must not be
2326 * used."
2327 *
2328 * To work around both of these, we do two integer MOVs insead of
2329 * one 64-bit MOV. Because no double value should ever cross a
2330 * register boundary, it's safe to use the immediate offset in the
2331 * indirect here to handle adding 4 bytes to the offset and avoid
2332 * the extra ADD to the register file.
2333 */
2334 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2335 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2336 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2337 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2338 } else {
2339 brw_MOV(p, dst, strided);
2340 }
2341 break;
2342 }
2343
2344 case FS_OPCODE_SET_SAMPLE_ID:
2345 generate_set_sample_id(inst, dst, src[0], src[1]);
2346 break;
2347
2348 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2349 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2350 break;
2351
2352 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
2353 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
2354 generate_unpack_half_2x16_split(inst, dst, src[0]);
2355 break;
2356
2357 case FS_OPCODE_PLACEHOLDER_HALT:
2358 /* This is the place where the final HALT needs to be inserted if
2359 * we've emitted any discards. If not, this will emit no code.
2360 */
2361 if (!patch_discard_jumps_to_fb_writes()) {
2362 if (unlikely(debug_flag)) {
2363 disasm_info->use_tail = true;
2364 }
2365 }
2366 break;
2367
2368 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2369 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2370 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2371 break;
2372
2373 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2374 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2375 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2376 break;
2377
2378 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2379 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2380 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2381 break;
2382
2383 case CS_OPCODE_CS_TERMINATE:
2384 generate_cs_terminate(inst, src[0]);
2385 break;
2386
2387 case SHADER_OPCODE_BARRIER:
2388 generate_barrier(inst, src[0]);
2389 break;
2390
2391 case BRW_OPCODE_DIM:
2392 assert(devinfo->is_haswell);
2393 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2394 assert(dst.type == BRW_REGISTER_TYPE_DF);
2395 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2396 break;
2397
2398 case SHADER_OPCODE_RND_MODE:
2399 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2400 brw_rounding_mode(p, (brw_rnd_mode) src[0].d);
2401 break;
2402
2403 default:
2404 unreachable("Unsupported opcode");
2405
2406 case SHADER_OPCODE_LOAD_PAYLOAD:
2407 unreachable("Should be lowered by lower_load_payload()");
2408 }
2409
2410 if (multiple_instructions_emitted)
2411 continue;
2412
2413 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2414 assert(p->next_insn_offset == last_insn_offset + 16 ||
2415 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2416 "emitting more than 1 instruction");
2417
2418 brw_inst *last = &p->store[last_insn_offset / 16];
2419
2420 if (inst->conditional_mod)
2421 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2422 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2423 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2424 }
2425 }
2426
2427 brw_set_uip_jip(p, start_offset);
2428
2429 /* end of program sentinel */
2430 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2431
2432 #ifndef NDEBUG
2433 bool validated =
2434 #else
2435 if (unlikely(debug_flag))
2436 #endif
2437 brw_validate_instructions(devinfo, p->store,
2438 start_offset,
2439 p->next_insn_offset,
2440 disasm_info);
2441
2442 int before_size = p->next_insn_offset - start_offset;
2443 brw_compact_instructions(p, start_offset, disasm_info);
2444 int after_size = p->next_insn_offset - start_offset;
2445
2446 if (unlikely(debug_flag)) {
2447 fprintf(stderr, "Native code for %s\n"
2448 "SIMD%d shader: %d instructions. %d loops. %u cycles. %d:%d spills:fills. Promoted %u constants. Compacted %d to %d"
2449 " bytes (%.0f%%)\n",
2450 shader_name, dispatch_width, before_size / 16, loop_count, cfg->cycle_count,
2451 spill_count, fill_count, promoted_constants, before_size, after_size,
2452 100.0f * (before_size - after_size) / before_size);
2453
2454 dump_assembly(p->store, disasm_info);
2455 }
2456 ralloc_free(disasm_info);
2457 assert(validated);
2458
2459 compiler->shader_debug_log(log_data,
2460 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2461 "%d:%d spills:fills, Promoted %u constants, "
2462 "compacted %d to %d bytes.",
2463 _mesa_shader_stage_to_abbrev(stage),
2464 dispatch_width, before_size / 16,
2465 loop_count, cfg->cycle_count, spill_count,
2466 fill_count, promoted_constants, before_size,
2467 after_size);
2468
2469 return start_offset;
2470 }
2471
2472 const unsigned *
2473 fs_generator::get_assembly()
2474 {
2475 return brw_get_program(p, &prog_data->program_size);
2476 }