intel/compiler: Split has_64bit_types into float/int
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33 #include "util/mesa-sha1.h"
34
35 static enum brw_reg_file
36 brw_file_from_reg(fs_reg *reg)
37 {
38 switch (reg->file) {
39 case ARF:
40 return BRW_ARCHITECTURE_REGISTER_FILE;
41 case FIXED_GRF:
42 case VGRF:
43 return BRW_GENERAL_REGISTER_FILE;
44 case MRF:
45 return BRW_MESSAGE_REGISTER_FILE;
46 case IMM:
47 return BRW_IMMEDIATE_VALUE;
48 case BAD_FILE:
49 case ATTR:
50 case UNIFORM:
51 unreachable("not reached");
52 }
53 return BRW_ARCHITECTURE_REGISTER_FILE;
54 }
55
56 static struct brw_reg
57 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
58 fs_reg *reg, bool compressed)
59 {
60 struct brw_reg brw_reg;
61
62 switch (reg->file) {
63 case MRF:
64 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
65 /* Fallthrough */
66 case VGRF:
67 if (reg->stride == 0) {
68 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
69 } else {
70 /* From the Haswell PRM:
71 *
72 * "VertStride must be used to cross GRF register boundaries. This
73 * rule implies that elements within a 'Width' cannot cross GRF
74 * boundaries."
75 *
76 * The maximum width value that could satisfy this restriction is:
77 */
78 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
79
80 /* Because the hardware can only split source regions at a whole
81 * multiple of width during decompression (i.e. vertically), clamp
82 * the value obtained above to the physical execution size of a
83 * single decompressed chunk of the instruction:
84 */
85 const unsigned phys_width = compressed ? inst->exec_size / 2 :
86 inst->exec_size;
87
88 const unsigned max_hw_width = 16;
89
90 /* XXX - The equation above is strictly speaking not correct on
91 * hardware that supports unbalanced GRF writes -- On Gen9+
92 * each decompressed chunk of the instruction may have a
93 * different execution size when the number of components
94 * written to each destination GRF is not the same.
95 */
96 if (reg->stride > 4) {
97 assert(reg != &inst->dst);
98 assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
99 brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
100 brw_reg = stride(brw_reg, reg->stride, 1, 0);
101 } else {
102 const unsigned width = MIN3(reg_width, phys_width, max_hw_width);
103 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
104 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
105 }
106
107 if (devinfo->gen == 7 && !devinfo->is_haswell) {
108 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
109 * "Each DF (Double Float) operand uses an element size of 4 rather
110 * than 8 and all regioning parameters are twice what the values
111 * would be based on the true element size: ExecSize, Width,
112 * HorzStride, and VertStride. Each DF operand uses a pair of
113 * channels and all masking and swizzing should be adjusted
114 * appropriately."
115 *
116 * From the IvyBridge PRM (Special Requirements for Handling Double
117 * Precision Data Types, page 71):
118 * "In Align1 mode, all regioning parameters like stride, execution
119 * size, and width must use the syntax of a pair of packed
120 * floats. The offsets for these data types must be 64-bit
121 * aligned. The execution size and regioning parameters are in terms
122 * of floats."
123 *
124 * Summarized: when handling DF-typed arguments, ExecSize,
125 * VertStride, and Width must be doubled.
126 *
127 * It applies to BayTrail too.
128 */
129 if (type_sz(reg->type) == 8) {
130 brw_reg.width++;
131 if (brw_reg.vstride > 0)
132 brw_reg.vstride++;
133 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
134 }
135
136 /* When converting from DF->F, we set the destination stride to 2
137 * because each d2f conversion implicitly writes 2 floats, being
138 * the first one the converted value. IVB/BYT actually writes two
139 * F components per SIMD channel, and every other component is
140 * filled with garbage.
141 */
142 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
143 type_sz(inst->dst.type) < 8) {
144 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
145 brw_reg.hstride--;
146 }
147 }
148 }
149
150 brw_reg = retype(brw_reg, reg->type);
151 brw_reg = byte_offset(brw_reg, reg->offset);
152 brw_reg.abs = reg->abs;
153 brw_reg.negate = reg->negate;
154 break;
155 case ARF:
156 case FIXED_GRF:
157 case IMM:
158 assert(reg->offset == 0);
159 brw_reg = reg->as_brw_reg();
160 break;
161 case BAD_FILE:
162 /* Probably unused. */
163 brw_reg = brw_null_reg();
164 break;
165 case ATTR:
166 case UNIFORM:
167 unreachable("not reached");
168 }
169
170 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
171 * region, but on IVB and BYT DF regions must be programmed in terms of
172 * floats. A <0,2,1> region accomplishes this.
173 */
174 if (devinfo->gen == 7 && !devinfo->is_haswell &&
175 type_sz(reg->type) == 8 &&
176 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
177 brw_reg.width == BRW_WIDTH_1 &&
178 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
179 brw_reg.width = BRW_WIDTH_2;
180 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
181 }
182
183 return brw_reg;
184 }
185
186 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
187 void *mem_ctx,
188 struct brw_stage_prog_data *prog_data,
189 struct shader_stats shader_stats,
190 bool runtime_check_aads_emit,
191 gl_shader_stage stage)
192
193 : compiler(compiler), log_data(log_data),
194 devinfo(compiler->devinfo),
195 prog_data(prog_data),
196 shader_stats(shader_stats),
197 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
198 stage(stage), mem_ctx(mem_ctx)
199 {
200 p = rzalloc(mem_ctx, struct brw_codegen);
201 brw_init_codegen(devinfo, p, mem_ctx);
202
203 /* In the FS code generator, we are very careful to ensure that we always
204 * set the right execution size so we don't need the EU code to "help" us
205 * by trying to infer it. Sometimes, it infers the wrong thing.
206 */
207 p->automatic_exec_sizes = false;
208 }
209
210 fs_generator::~fs_generator()
211 {
212 }
213
214 class ip_record : public exec_node {
215 public:
216 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
217
218 ip_record(int ip)
219 {
220 this->ip = ip;
221 }
222
223 int ip;
224 };
225
226 bool
227 fs_generator::patch_discard_jumps_to_fb_writes()
228 {
229 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
230 return false;
231
232 int scale = brw_jump_scale(p->devinfo);
233
234 /* There is a somewhat strange undocumented requirement of using
235 * HALT, according to the simulator. If some channel has HALTed to
236 * a particular UIP, then by the end of the program, every channel
237 * must have HALTed to that UIP. Furthermore, the tracking is a
238 * stack, so you can't do the final halt of a UIP after starting
239 * halting to a new UIP.
240 *
241 * Symptoms of not emitting this instruction on actual hardware
242 * included GPU hangs and sparkly rendering on the piglit discard
243 * tests.
244 */
245 brw_inst *last_halt = gen6_HALT(p);
246 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
247 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
248
249 int ip = p->nr_insn;
250
251 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
252 brw_inst *patch = &p->store[patch_ip->ip];
253
254 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
255 /* HALT takes a half-instruction distance from the pre-incremented IP. */
256 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
257 }
258
259 this->discard_halt_patches.make_empty();
260 return true;
261 }
262
263 void
264 fs_generator::generate_send(fs_inst *inst,
265 struct brw_reg dst,
266 struct brw_reg desc,
267 struct brw_reg ex_desc,
268 struct brw_reg payload,
269 struct brw_reg payload2)
270 {
271 const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
272 dst.nr == BRW_ARF_NULL;
273 const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
274
275 uint32_t desc_imm = inst->desc |
276 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
277
278 uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen);
279
280 if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
281 /* If we have any sort of extended descriptor, then we need SENDS. This
282 * also covers the dual-payload case because ex_mlen goes in ex_desc.
283 */
284 brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
285 desc, desc_imm, ex_desc, ex_desc_imm,
286 inst->eot);
287 if (inst->check_tdr)
288 brw_inst_set_opcode(p->devinfo, brw_last_inst,
289 devinfo->gen >= 12 ? BRW_OPCODE_SENDC : BRW_OPCODE_SENDSC);
290 } else {
291 brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
292 inst->eot);
293 if (inst->check_tdr)
294 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
295 }
296 }
297
298 void
299 fs_generator::fire_fb_write(fs_inst *inst,
300 struct brw_reg payload,
301 struct brw_reg implied_header,
302 GLuint nr)
303 {
304 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
305
306 if (devinfo->gen < 6) {
307 brw_push_insn_state(p);
308 brw_set_default_exec_size(p, BRW_EXECUTE_8);
309 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
310 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
311 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
312 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
313 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
314 brw_pop_insn_state(p);
315 }
316
317 uint32_t msg_control = brw_fb_write_msg_control(inst, prog_data);
318
319 /* We assume render targets start at 0, because headerless FB write
320 * messages set "Render Target Index" to 0. Using a different binding
321 * table index would make it impossible to use headerless messages.
322 */
323 const uint32_t surf_index = inst->target;
324
325 brw_inst *insn = brw_fb_WRITE(p,
326 payload,
327 retype(implied_header, BRW_REGISTER_TYPE_UW),
328 msg_control,
329 surf_index,
330 nr,
331 0,
332 inst->eot,
333 inst->last_rt,
334 inst->header_size != 0);
335
336 if (devinfo->gen >= 6)
337 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
338 }
339
340 void
341 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
342 {
343 if (devinfo->gen < 8 && !devinfo->is_haswell) {
344 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
345 brw_set_default_flag_reg(p, 0, 0);
346 }
347
348 const struct brw_reg implied_header =
349 devinfo->gen < 6 ? payload : brw_null_reg();
350
351 if (inst->base_mrf >= 0)
352 payload = brw_message_reg(inst->base_mrf);
353
354 if (!runtime_check_aads_emit) {
355 fire_fb_write(inst, payload, implied_header, inst->mlen);
356 } else {
357 /* This can only happen in gen < 6 */
358 assert(devinfo->gen < 6);
359
360 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
361
362 /* Check runtime bit to detect if we have to send AA data or not */
363 brw_push_insn_state(p);
364 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
365 brw_set_default_exec_size(p, BRW_EXECUTE_1);
366 brw_AND(p,
367 v1_null_ud,
368 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
369 brw_imm_ud(1<<26));
370 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
371
372 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
373 brw_pop_insn_state(p);
374 {
375 /* Don't send AA data */
376 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
377 }
378 brw_land_fwd_jump(p, jmp);
379 fire_fb_write(inst, payload, implied_header, inst->mlen);
380 }
381 }
382
383 void
384 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
385 struct brw_reg payload)
386 {
387 assert(inst->size_written % REG_SIZE == 0);
388 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
389 /* We assume that render targets start at binding table index 0. */
390 const unsigned surf_index = inst->target;
391
392 gen9_fb_READ(p, dst, payload, surf_index,
393 inst->header_size, inst->size_written / REG_SIZE,
394 prog_data->persample_dispatch);
395 }
396
397 void
398 fs_generator::generate_mov_indirect(fs_inst *inst,
399 struct brw_reg dst,
400 struct brw_reg reg,
401 struct brw_reg indirect_byte_offset)
402 {
403 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
404 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
405 assert(!reg.abs && !reg.negate);
406 assert(reg.type == dst.type);
407
408 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
409
410 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
411 imm_byte_offset += indirect_byte_offset.ud;
412
413 reg.nr = imm_byte_offset / REG_SIZE;
414 reg.subnr = imm_byte_offset % REG_SIZE;
415 brw_MOV(p, dst, reg);
416 } else {
417 /* Prior to Broadwell, there are only 8 address registers. */
418 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
419
420 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
421 struct brw_reg addr = vec8(brw_address_reg(0));
422
423 /* The destination stride of an instruction (in bytes) must be greater
424 * than or equal to the size of the rest of the instruction. Since the
425 * address register is of type UW, we can't use a D-type instruction.
426 * In order to get around this, re retype to UW and use a stride.
427 */
428 indirect_byte_offset =
429 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
430
431 /* There are a number of reasons why we don't use the base offset here.
432 * One reason is that the field is only 9 bits which means we can only
433 * use it to access the first 16 GRFs. Also, from the Haswell PRM
434 * section "Register Region Restrictions":
435 *
436 * "The lower bits of the AddressImmediate must not overflow to
437 * change the register address. The lower 5 bits of Address
438 * Immediate when added to lower 5 bits of address register gives
439 * the sub-register offset. The upper bits of Address Immediate
440 * when added to upper bits of address register gives the register
441 * address. Any overflow from sub-register offset is dropped."
442 *
443 * Since the indirect may cause us to cross a register boundary, this
444 * makes the base offset almost useless. We could try and do something
445 * clever where we use a actual base offset if base_offset % 32 == 0 but
446 * that would mean we were generating different code depending on the
447 * base offset. Instead, for the sake of consistency, we'll just do the
448 * add ourselves. This restriction is only listed in the Haswell PRM
449 * but empirical testing indicates that it applies on all older
450 * generations and is lifted on Broadwell.
451 *
452 * In the end, while base_offset is nice to look at in the generated
453 * code, using it saves us 0 instructions and would require quite a bit
454 * of case-by-case work. It's just not worth it.
455 */
456 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
457 brw_set_default_swsb(p, tgl_swsb_regdist(1));
458
459 if (type_sz(reg.type) > 4 &&
460 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
461 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
462 !devinfo->has_64bit_float)) {
463 /* IVB has an issue (which we found empirically) where it reads two
464 * address register components per channel for indirectly addressed
465 * 64-bit sources.
466 *
467 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
468 *
469 * "When source or destination datatype is 64b or operation is
470 * integer DWord multiply, indirect addressing must not be used."
471 *
472 * To work around both of these, we do two integer MOVs insead of one
473 * 64-bit MOV. Because no double value should ever cross a register
474 * boundary, it's safe to use the immediate offset in the indirect
475 * here to handle adding 4 bytes to the offset and avoid the extra
476 * ADD to the register file.
477 */
478 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
479 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
480 brw_set_default_swsb(p, tgl_swsb_null());
481 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
482 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
483 } else {
484 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
485
486 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
487
488 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
489 !inst->get_next()->is_tail_sentinel() &&
490 ((fs_inst *)inst->get_next())->mlen > 0) {
491 /* From the Sandybridge PRM:
492 *
493 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
494 * instruction that “indexed/indirect” source AND is followed
495 * by a send, the instruction requires a “Switch”. This is to
496 * avoid race condition where send may dispatch before MRF is
497 * updated."
498 */
499 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
500 }
501 }
502 }
503 }
504
505 void
506 fs_generator::generate_shuffle(fs_inst *inst,
507 struct brw_reg dst,
508 struct brw_reg src,
509 struct brw_reg idx)
510 {
511 /* Ivy bridge has some strange behavior that makes this a real pain to
512 * implement for 64-bit values so we just don't bother.
513 */
514 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
515
516 /* Because we're using the address register, we're limited to 8-wide
517 * execution on gen7. On gen8, we're limited to 16-wide by the address
518 * register file and 8-wide for 64-bit types. We could try and make this
519 * instruction splittable higher up in the compiler but that gets weird
520 * because it reads all of the channels regardless of execution size. It's
521 * easier just to split it here.
522 */
523 const unsigned lower_width =
524 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
525 8 : MIN2(16, inst->exec_size);
526
527 brw_set_default_exec_size(p, cvt(lower_width) - 1);
528 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
529 brw_set_default_group(p, group);
530
531 if ((src.vstride == 0 && src.hstride == 0) ||
532 idx.file == BRW_IMMEDIATE_VALUE) {
533 /* Trivial, the source is already uniform or the index is a constant.
534 * We will typically not get here if the optimizer is doing its job,
535 * but asserting would be mean.
536 */
537 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
538 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
539 } else {
540 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
541 struct brw_reg addr = vec8(brw_address_reg(0));
542
543 struct brw_reg group_idx = suboffset(idx, group);
544
545 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
546 /* Things get grumpy if the register is too wide. */
547 group_idx.width--;
548 group_idx.vstride--;
549 }
550
551 assert(type_sz(group_idx.type) <= 4);
552 if (type_sz(group_idx.type) == 4) {
553 /* The destination stride of an instruction (in bytes) must be
554 * greater than or equal to the size of the rest of the
555 * instruction. Since the address register is of type UW, we
556 * can't use a D-type instruction. In order to get around this,
557 * re retype to UW and use a stride.
558 */
559 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
560 }
561
562 /* Take into account the component size and horizontal stride. */
563 assert(src.vstride == src.hstride + src.width);
564 brw_SHL(p, addr, group_idx,
565 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
566 src.hstride - 1));
567
568 /* Add on the register start offset */
569 brw_set_default_swsb(p, tgl_swsb_regdist(1));
570 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
571
572 if (type_sz(src.type) > 4 &&
573 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
574 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
575 /* IVB has an issue (which we found empirically) where it reads
576 * two address register components per channel for indirectly
577 * addressed 64-bit sources.
578 *
579 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
580 *
581 * "When source or destination datatype is 64b or operation is
582 * integer DWord multiply, indirect addressing must not be
583 * used."
584 *
585 * To work around both of these, we do two integer MOVs insead of
586 * one 64-bit MOV. Because no double value should ever cross a
587 * register boundary, it's safe to use the immediate offset in the
588 * indirect here to handle adding 4 bytes to the offset and avoid
589 * the extra ADD to the register file.
590 */
591 struct brw_reg gdst = suboffset(dst, group);
592 struct brw_reg dst_d = retype(spread(gdst, 2),
593 BRW_REGISTER_TYPE_D);
594 assert(dst.hstride == 1);
595 brw_MOV(p, dst_d,
596 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
597 brw_set_default_swsb(p, tgl_swsb_null());
598 brw_MOV(p, byte_offset(dst_d, 4),
599 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
600 } else {
601 brw_MOV(p, suboffset(dst, group * dst.hstride),
602 retype(brw_VxH_indirect(0, 0), src.type));
603 }
604 }
605
606 brw_set_default_swsb(p, tgl_swsb_null());
607 }
608 }
609
610 void
611 fs_generator::generate_quad_swizzle(const fs_inst *inst,
612 struct brw_reg dst, struct brw_reg src,
613 unsigned swiz)
614 {
615 /* Requires a quad. */
616 assert(inst->exec_size >= 4);
617
618 if (src.file == BRW_IMMEDIATE_VALUE ||
619 has_scalar_region(src)) {
620 /* The value is uniform across all channels */
621 brw_MOV(p, dst, src);
622
623 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
624 /* This only works on 8-wide 32-bit values */
625 assert(inst->exec_size == 8);
626 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
627 assert(src.vstride == src.width + 1);
628 brw_set_default_access_mode(p, BRW_ALIGN_16);
629 struct brw_reg swiz_src = stride(src, 4, 4, 1);
630 swiz_src.swizzle = swiz;
631 brw_MOV(p, dst, swiz_src);
632
633 } else {
634 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
635 assert(src.vstride == src.width + 1);
636 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
637
638 switch (swiz) {
639 case BRW_SWIZZLE_XXXX:
640 case BRW_SWIZZLE_YYYY:
641 case BRW_SWIZZLE_ZZZZ:
642 case BRW_SWIZZLE_WWWW:
643 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
644 break;
645
646 case BRW_SWIZZLE_XXZZ:
647 case BRW_SWIZZLE_YYWW:
648 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
649 break;
650
651 case BRW_SWIZZLE_XYXY:
652 case BRW_SWIZZLE_ZWZW:
653 assert(inst->exec_size == 4);
654 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
655 break;
656
657 default:
658 assert(inst->force_writemask_all);
659 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
660
661 for (unsigned c = 0; c < 4; c++) {
662 brw_inst *insn = brw_MOV(
663 p, stride(suboffset(dst, c),
664 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
665 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
666
667 if (devinfo->gen < 12) {
668 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
669 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
670 }
671
672 brw_set_default_swsb(p, tgl_swsb_null());
673 }
674
675 break;
676 }
677 }
678 }
679
680 void
681 fs_generator::generate_urb_read(fs_inst *inst,
682 struct brw_reg dst,
683 struct brw_reg header)
684 {
685 assert(inst->size_written % REG_SIZE == 0);
686 assert(header.file == BRW_GENERAL_REGISTER_FILE);
687 assert(header.type == BRW_REGISTER_TYPE_UD);
688
689 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
690 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
691 brw_set_src0(p, send, header);
692 if (devinfo->gen < 12)
693 brw_set_src1(p, send, brw_imm_ud(0u));
694
695 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
696 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
697
698 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
699 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
700
701 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
702 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
703 brw_inst_set_header_present(p->devinfo, send, true);
704 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
705 }
706
707 void
708 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
709 {
710 brw_inst *insn;
711
712 /* WaClearTDRRegBeforeEOTForNonPS.
713 *
714 * WA: Clear tdr register before send EOT in all non-PS shader kernels
715 *
716 * mov(8) tdr0:ud 0x0:ud {NoMask}"
717 */
718 if (inst->eot && p->devinfo->gen == 10) {
719 brw_push_insn_state(p);
720 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
721 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
722 brw_pop_insn_state(p);
723 }
724
725 insn = brw_next_insn(p, BRW_OPCODE_SEND);
726
727 brw_set_dest(p, insn, brw_null_reg());
728 brw_set_src0(p, insn, payload);
729 if (devinfo->gen < 12)
730 brw_set_src1(p, insn, brw_imm_ud(0u));
731
732 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
733 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
734
735 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
736 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
737 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
738
739 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
740 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
741 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
742
743 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
744 brw_inst_set_rlen(p->devinfo, insn, 0);
745 brw_inst_set_eot(p->devinfo, insn, inst->eot);
746 brw_inst_set_header_present(p->devinfo, insn, true);
747 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
748 }
749
750 void
751 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
752 {
753 struct brw_inst *insn;
754
755 insn = brw_next_insn(p, BRW_OPCODE_SEND);
756
757 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
758 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
759 if (devinfo->gen < 12)
760 brw_set_src1(p, insn, brw_imm_ud(0u));
761
762 /* Terminate a compute shader by sending a message to the thread spawner.
763 */
764 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
765 brw_inst_set_mlen(devinfo, insn, 1);
766 brw_inst_set_rlen(devinfo, insn, 0);
767 brw_inst_set_eot(devinfo, insn, inst->eot);
768 brw_inst_set_header_present(devinfo, insn, false);
769
770 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
771
772 if (devinfo->gen < 11) {
773 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
774
775 /* Note that even though the thread has a URB resource associated with it,
776 * we set the "do not dereference URB" bit, because the URB resource is
777 * managed by the fixed-function unit, so it will free it automatically.
778 */
779 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
780 }
781
782 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
783 }
784
785 void
786 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
787 {
788 brw_barrier(p, src);
789 if (devinfo->gen >= 12) {
790 brw_set_default_swsb(p, tgl_swsb_null());
791 brw_SYNC(p, TGL_SYNC_BAR);
792 } else {
793 brw_WAIT(p);
794 }
795 }
796
797 bool
798 fs_generator::generate_linterp(fs_inst *inst,
799 struct brw_reg dst, struct brw_reg *src)
800 {
801 /* PLN reads:
802 * / in SIMD16 \
803 * -----------------------------------
804 * | src1+0 | src1+1 | src1+2 | src1+3 |
805 * |-----------------------------------|
806 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
807 * -----------------------------------
808 *
809 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
810 *
811 * -----------------------------------
812 * | src1+0 | src1+1 | src1+2 | src1+3 |
813 * |-----------------------------------|
814 * |(x0, x1)|(y0, y1)| | | in SIMD8
815 * |-----------------------------------|
816 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
817 * -----------------------------------
818 *
819 * See also: emit_interpolation_setup_gen4().
820 */
821 struct brw_reg delta_x = src[0];
822 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
823 struct brw_reg interp = src[1];
824 brw_inst *i[2];
825
826 /* nir_lower_interpolation() will do the lowering to MAD instructions for
827 * us on gen11+
828 */
829 assert(devinfo->gen < 11);
830
831 if (devinfo->has_pln) {
832 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
833 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
834 *
835 * "[DevSNB]:<src1> must be even register aligned.
836 *
837 * This restriction is lifted on Ivy Bridge.
838 *
839 * This means that we need to split PLN into LINE+MAC on-the-fly.
840 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
841 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
842 * coordinate registers are laid out differently so we leave it as a
843 * SIMD16 instruction.
844 */
845 assert(inst->exec_size == 8 || inst->exec_size == 16);
846 assert(inst->group % 16 == 0);
847
848 brw_push_insn_state(p);
849 brw_set_default_exec_size(p, BRW_EXECUTE_8);
850
851 /* Thanks to two accumulators, we can emit all the LINEs and then all
852 * the MACs. This improves parallelism a bit.
853 */
854 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
855 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
856 offset(delta_x, g * 2));
857 brw_inst_set_group(devinfo, line, inst->group + g * 8);
858
859 /* LINE writes the accumulator automatically on gen4-5. On Sandy
860 * Bridge and later, we have to explicitly enable it.
861 */
862 if (devinfo->gen >= 6)
863 brw_inst_set_acc_wr_control(p->devinfo, line, true);
864
865 /* brw_set_default_saturate() is called before emitting
866 * instructions, so the saturate bit is set in each instruction,
867 * so we need to unset it on the LINE instructions.
868 */
869 brw_inst_set_saturate(p->devinfo, line, false);
870 }
871
872 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
873 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
874 offset(delta_x, g * 2 + 1));
875 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
876 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
877 }
878
879 brw_pop_insn_state(p);
880
881 return true;
882 } else {
883 brw_PLN(p, dst, interp, delta_x);
884
885 return false;
886 }
887 } else {
888 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
889 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
890
891 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
892
893 /* brw_set_default_saturate() is called before emitting instructions, so
894 * the saturate bit is set in each instruction, so we need to unset it on
895 * the first instruction.
896 */
897 brw_inst_set_saturate(p->devinfo, i[0], false);
898
899 return true;
900 }
901 }
902
903 void
904 fs_generator::generate_get_buffer_size(fs_inst *inst,
905 struct brw_reg dst,
906 struct brw_reg src,
907 struct brw_reg surf_index)
908 {
909 assert(devinfo->gen >= 7);
910 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
911
912 uint32_t simd_mode;
913 int rlen = 4;
914
915 switch (inst->exec_size) {
916 case 8:
917 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
918 break;
919 case 16:
920 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
921 break;
922 default:
923 unreachable("Invalid width for texture instruction");
924 }
925
926 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
927 rlen = 8;
928 dst = vec16(dst);
929 }
930
931 brw_SAMPLE(p,
932 retype(dst, BRW_REGISTER_TYPE_UW),
933 inst->base_mrf,
934 src,
935 surf_index.ud,
936 0,
937 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
938 rlen, /* response length */
939 inst->mlen,
940 inst->header_size > 0,
941 simd_mode,
942 BRW_SAMPLER_RETURN_FORMAT_SINT32);
943 }
944
945 void
946 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
947 struct brw_reg surface_index,
948 struct brw_reg sampler_index)
949 {
950 assert(devinfo->gen < 7);
951 assert(inst->size_written % REG_SIZE == 0);
952 int msg_type = -1;
953 uint32_t simd_mode;
954 uint32_t return_format;
955
956 /* Sampler EOT message of less than the dispatch width would kill the
957 * thread prematurely.
958 */
959 assert(!inst->eot || inst->exec_size == dispatch_width);
960
961 switch (dst.type) {
962 case BRW_REGISTER_TYPE_D:
963 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
964 break;
965 case BRW_REGISTER_TYPE_UD:
966 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
967 break;
968 default:
969 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
970 break;
971 }
972
973 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
974 * is set as part of the message descriptor. On gen4, the PRM seems to
975 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
976 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
977 * gone from the message descriptor entirely and you just get UINT32 all
978 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
979 * just stomp it to UINT32 all the time.
980 */
981 if (inst->opcode == SHADER_OPCODE_TXS)
982 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
983
984 switch (inst->exec_size) {
985 case 8:
986 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
987 break;
988 case 16:
989 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
990 break;
991 default:
992 unreachable("Invalid width for texture instruction");
993 }
994
995 if (devinfo->gen >= 5) {
996 switch (inst->opcode) {
997 case SHADER_OPCODE_TEX:
998 if (inst->shadow_compare) {
999 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
1000 } else {
1001 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
1002 }
1003 break;
1004 case FS_OPCODE_TXB:
1005 if (inst->shadow_compare) {
1006 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
1007 } else {
1008 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
1009 }
1010 break;
1011 case SHADER_OPCODE_TXL:
1012 if (inst->shadow_compare) {
1013 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
1014 } else {
1015 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
1016 }
1017 break;
1018 case SHADER_OPCODE_TXS:
1019 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
1020 break;
1021 case SHADER_OPCODE_TXD:
1022 assert(!inst->shadow_compare);
1023 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1024 break;
1025 case SHADER_OPCODE_TXF:
1026 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1027 break;
1028 case SHADER_OPCODE_TXF_CMS:
1029 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1030 break;
1031 case SHADER_OPCODE_LOD:
1032 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1033 break;
1034 case SHADER_OPCODE_TG4:
1035 assert(devinfo->gen == 6);
1036 assert(!inst->shadow_compare);
1037 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1038 break;
1039 case SHADER_OPCODE_SAMPLEINFO:
1040 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1041 break;
1042 default:
1043 unreachable("not reached");
1044 }
1045 } else {
1046 switch (inst->opcode) {
1047 case SHADER_OPCODE_TEX:
1048 /* Note that G45 and older determines shadow compare and dispatch width
1049 * from message length for most messages.
1050 */
1051 if (inst->exec_size == 8) {
1052 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1053 if (inst->shadow_compare) {
1054 assert(inst->mlen == 6);
1055 } else {
1056 assert(inst->mlen <= 4);
1057 }
1058 } else {
1059 if (inst->shadow_compare) {
1060 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1061 assert(inst->mlen == 9);
1062 } else {
1063 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1064 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1065 }
1066 }
1067 break;
1068 case FS_OPCODE_TXB:
1069 if (inst->shadow_compare) {
1070 assert(inst->exec_size == 8);
1071 assert(inst->mlen == 6);
1072 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1073 } else {
1074 assert(inst->mlen == 9);
1075 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1076 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1077 }
1078 break;
1079 case SHADER_OPCODE_TXL:
1080 if (inst->shadow_compare) {
1081 assert(inst->exec_size == 8);
1082 assert(inst->mlen == 6);
1083 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1084 } else {
1085 assert(inst->mlen == 9);
1086 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1087 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1088 }
1089 break;
1090 case SHADER_OPCODE_TXD:
1091 /* There is no sample_d_c message; comparisons are done manually */
1092 assert(inst->exec_size == 8);
1093 assert(inst->mlen == 7 || inst->mlen == 10);
1094 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1095 break;
1096 case SHADER_OPCODE_TXF:
1097 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1098 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1099 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1100 break;
1101 case SHADER_OPCODE_TXS:
1102 assert(inst->mlen == 3);
1103 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1104 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1105 break;
1106 default:
1107 unreachable("not reached");
1108 }
1109 }
1110 assert(msg_type != -1);
1111
1112 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1113 dst = vec16(dst);
1114 }
1115
1116 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1117
1118 /* Load the message header if present. If there's a texture offset,
1119 * we need to set it up explicitly and load the offset bitfield.
1120 * Otherwise, we can use an implied move from g0 to the first message reg.
1121 */
1122 struct brw_reg src = brw_null_reg();
1123 if (inst->header_size != 0) {
1124 if (devinfo->gen < 6 && !inst->offset) {
1125 /* Set up an implied move from g0 to the MRF. */
1126 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1127 } else {
1128 const tgl_swsb swsb = brw_get_default_swsb(p);
1129 assert(inst->base_mrf != -1);
1130 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1131
1132 brw_push_insn_state(p);
1133 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1134 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1135 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1136 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1137 /* Explicitly set up the message header by copying g0 to the MRF. */
1138 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1139 brw_set_default_swsb(p, tgl_swsb_regdist(1));
1140
1141 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1142 if (inst->offset) {
1143 /* Set the offset bits in DWord 2. */
1144 brw_MOV(p, get_element_ud(header_reg, 2),
1145 brw_imm_ud(inst->offset));
1146 }
1147
1148 brw_pop_insn_state(p);
1149 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1150 }
1151 }
1152
1153 uint32_t base_binding_table_index;
1154 switch (inst->opcode) {
1155 case SHADER_OPCODE_TG4:
1156 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1157 break;
1158 default:
1159 base_binding_table_index = prog_data->binding_table.texture_start;
1160 break;
1161 }
1162
1163 assert(surface_index.file == BRW_IMMEDIATE_VALUE);
1164 assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
1165
1166 brw_SAMPLE(p,
1167 retype(dst, BRW_REGISTER_TYPE_UW),
1168 inst->base_mrf,
1169 src,
1170 surface_index.ud + base_binding_table_index,
1171 sampler_index.ud % 16,
1172 msg_type,
1173 inst->size_written / REG_SIZE,
1174 inst->mlen,
1175 inst->header_size != 0,
1176 simd_mode,
1177 return_format);
1178 }
1179
1180
1181 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1182 * looking like:
1183 *
1184 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1185 *
1186 * Ideally, we want to produce:
1187 *
1188 * DDX DDY
1189 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1190 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1191 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1192 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1193 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1194 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1195 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1196 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1197 *
1198 * and add another set of two more subspans if in 16-pixel dispatch mode.
1199 *
1200 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1201 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1202 * pair. But the ideal approximation may impose a huge performance cost on
1203 * sample_d. On at least Haswell, sample_d instruction does some
1204 * optimizations if the same LOD is used for all pixels in the subspan.
1205 *
1206 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1207 * appropriate swizzling.
1208 */
1209 void
1210 fs_generator::generate_ddx(const fs_inst *inst,
1211 struct brw_reg dst, struct brw_reg src)
1212 {
1213 unsigned vstride, width;
1214
1215 if (devinfo->gen >= 8) {
1216 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1217 /* produce accurate derivatives */
1218 vstride = BRW_VERTICAL_STRIDE_2;
1219 width = BRW_WIDTH_2;
1220 } else {
1221 /* replicate the derivative at the top-left pixel to other pixels */
1222 vstride = BRW_VERTICAL_STRIDE_4;
1223 width = BRW_WIDTH_4;
1224 }
1225
1226 struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
1227 struct brw_reg src1 = src;
1228
1229 src0.vstride = vstride;
1230 src0.width = width;
1231 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1232 src1.vstride = vstride;
1233 src1.width = width;
1234 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1235
1236 brw_ADD(p, dst, src0, negate(src1));
1237 } else {
1238 /* On Haswell and earlier, the region used above appears to not work
1239 * correctly for compressed instructions. At least on Haswell and
1240 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1241 * would have to split to SIMD8 no matter which method we choose, we
1242 * may as well use ALIGN16 on all platforms gen7 and earlier.
1243 */
1244 struct brw_reg src0 = stride(src, 4, 4, 1);
1245 struct brw_reg src1 = stride(src, 4, 4, 1);
1246 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1247 src0.swizzle = BRW_SWIZZLE_XXZZ;
1248 src1.swizzle = BRW_SWIZZLE_YYWW;
1249 } else {
1250 src0.swizzle = BRW_SWIZZLE_XXXX;
1251 src1.swizzle = BRW_SWIZZLE_YYYY;
1252 }
1253
1254 brw_push_insn_state(p);
1255 brw_set_default_access_mode(p, BRW_ALIGN_16);
1256 brw_ADD(p, dst, negate(src0), src1);
1257 brw_pop_insn_state(p);
1258 }
1259 }
1260
1261 /* The negate_value boolean is used to negate the derivative computation for
1262 * FBOs, since they place the origin at the upper left instead of the lower
1263 * left.
1264 */
1265 void
1266 fs_generator::generate_ddy(const fs_inst *inst,
1267 struct brw_reg dst, struct brw_reg src)
1268 {
1269 const uint32_t type_size = type_sz(src.type);
1270
1271 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1272 /* produce accurate derivatives.
1273 *
1274 * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU)
1275 * "Register Region Restrictions", Section "1. Special Restrictions":
1276 *
1277 * "In Align16 mode, the channel selects and channel enables apply to
1278 * a pair of half-floats, because these parameters are defined for
1279 * DWord elements ONLY. This is applicable when both source and
1280 * destination are half-floats."
1281 *
1282 * So for half-float operations we use the Gen11+ Align1 path. CHV
1283 * inherits its FP16 hardware from SKL, so it is not affected.
1284 */
1285 if (devinfo->gen >= 11 ||
1286 (devinfo->is_broadwell && src.type == BRW_REGISTER_TYPE_HF)) {
1287 src = stride(src, 0, 2, 1);
1288
1289 brw_push_insn_state(p);
1290 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1291 for (uint32_t g = 0; g < inst->exec_size; g += 4) {
1292 brw_set_default_group(p, inst->group + g);
1293 brw_ADD(p, byte_offset(dst, g * type_size),
1294 negate(byte_offset(src, g * type_size)),
1295 byte_offset(src, (g + 2) * type_size));
1296 brw_set_default_swsb(p, tgl_swsb_null());
1297 }
1298 brw_pop_insn_state(p);
1299 } else {
1300 struct brw_reg src0 = stride(src, 4, 4, 1);
1301 struct brw_reg src1 = stride(src, 4, 4, 1);
1302 src0.swizzle = BRW_SWIZZLE_XYXY;
1303 src1.swizzle = BRW_SWIZZLE_ZWZW;
1304
1305 brw_push_insn_state(p);
1306 brw_set_default_access_mode(p, BRW_ALIGN_16);
1307 brw_ADD(p, dst, negate(src0), src1);
1308 brw_pop_insn_state(p);
1309 }
1310 } else {
1311 /* replicate the derivative at the top-left pixel to other pixels */
1312 if (devinfo->gen >= 8) {
1313 struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
1314 struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
1315
1316 brw_ADD(p, dst, negate(src0), src1);
1317 } else {
1318 /* On Haswell and earlier, the region used above appears to not work
1319 * correctly for compressed instructions. At least on Haswell and
1320 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1321 * would have to split to SIMD8 no matter which method we choose, we
1322 * may as well use ALIGN16 on all platforms gen7 and earlier.
1323 */
1324 struct brw_reg src0 = stride(src, 4, 4, 1);
1325 struct brw_reg src1 = stride(src, 4, 4, 1);
1326 src0.swizzle = BRW_SWIZZLE_XXXX;
1327 src1.swizzle = BRW_SWIZZLE_ZZZZ;
1328
1329 brw_push_insn_state(p);
1330 brw_set_default_access_mode(p, BRW_ALIGN_16);
1331 brw_ADD(p, dst, negate(src0), src1);
1332 brw_pop_insn_state(p);
1333 }
1334 }
1335 }
1336
1337 void
1338 fs_generator::generate_discard_jump(fs_inst *)
1339 {
1340 assert(devinfo->gen >= 6);
1341
1342 /* This HALT will be patched up at FB write time to point UIP at the end of
1343 * the program, and at brw_uip_jip() JIP will be set to the end of the
1344 * current block (or the program).
1345 */
1346 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1347 gen6_HALT(p);
1348 }
1349
1350 void
1351 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1352 {
1353 /* The 32-wide messages only respect the first 16-wide half of the channel
1354 * enable signals which are replicated identically for the second group of
1355 * 16 channels, so we cannot use them unless the write is marked
1356 * force_writemask_all.
1357 */
1358 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1359 MIN2(16, inst->exec_size);
1360 const unsigned block_size = 4 * lower_size / REG_SIZE;
1361 const tgl_swsb swsb = brw_get_default_swsb(p);
1362 assert(inst->mlen != 0);
1363
1364 brw_push_insn_state(p);
1365 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1366 brw_set_default_compression(p, lower_size > 8);
1367
1368 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1369 brw_set_default_group(p, inst->group + lower_size * i);
1370
1371 if (i > 0) {
1372 brw_set_default_swsb(p, tgl_swsb_null());
1373 brw_SYNC(p, TGL_SYNC_ALLRD);
1374 } else {
1375 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1376 }
1377
1378 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1379 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1380
1381 if (i + 1 < inst->exec_size / lower_size)
1382 brw_set_default_swsb(p, tgl_swsb_regdist(1));
1383 else
1384 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1385
1386 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1387 block_size,
1388 inst->offset + block_size * REG_SIZE * i);
1389 }
1390
1391 brw_pop_insn_state(p);
1392 }
1393
1394 void
1395 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1396 {
1397 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1398 assert(inst->mlen != 0);
1399
1400 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1401 inst->exec_size / 8, inst->offset);
1402 }
1403
1404 void
1405 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1406 {
1407 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1408
1409 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1410 }
1411
1412 void
1413 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1414 struct brw_reg dst,
1415 struct brw_reg index,
1416 struct brw_reg offset)
1417 {
1418 assert(type_sz(dst.type) == 4);
1419 assert(inst->mlen != 0);
1420
1421 assert(index.file == BRW_IMMEDIATE_VALUE &&
1422 index.type == BRW_REGISTER_TYPE_UD);
1423 uint32_t surf_index = index.ud;
1424
1425 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1426 offset.type == BRW_REGISTER_TYPE_UD);
1427 uint32_t read_offset = offset.ud;
1428
1429 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1430 read_offset, surf_index);
1431 }
1432
1433 void
1434 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1435 struct brw_reg dst,
1436 struct brw_reg index,
1437 struct brw_reg payload)
1438 {
1439 assert(index.type == BRW_REGISTER_TYPE_UD);
1440 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1441 assert(type_sz(dst.type) == 4);
1442
1443 if (index.file == BRW_IMMEDIATE_VALUE) {
1444 const uint32_t surf_index = index.ud;
1445
1446 brw_push_insn_state(p);
1447 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1448 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1449 brw_pop_insn_state(p);
1450
1451 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1452 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1453 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1454 brw_set_desc(p, send,
1455 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1456 REG_SIZE), true) |
1457 brw_dp_read_desc(devinfo, surf_index,
1458 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1459 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1460 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1461
1462 } else {
1463 const tgl_swsb swsb = brw_get_default_swsb(p);
1464 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1465
1466 brw_push_insn_state(p);
1467 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1468
1469 /* a0.0 = surf_index & 0xff */
1470 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1471 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1472 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1473 brw_set_dest(p, insn_and, addr);
1474 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1475 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1476
1477 /* dst = send(payload, a0.0 | <descriptor>) */
1478 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1479 brw_send_indirect_message(
1480 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1481 retype(dst, BRW_REGISTER_TYPE_UD),
1482 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1483 brw_message_desc(devinfo, 1,
1484 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1485 brw_dp_read_desc(devinfo, 0 /* surface */,
1486 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1487 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1488 BRW_DATAPORT_READ_TARGET_DATA_CACHE),
1489 false /* EOT */);
1490
1491 brw_pop_insn_state(p);
1492 }
1493 }
1494
1495 void
1496 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1497 struct brw_reg dst,
1498 struct brw_reg index)
1499 {
1500 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1501 assert(inst->header_size != 0);
1502 assert(inst->mlen);
1503
1504 assert(index.file == BRW_IMMEDIATE_VALUE &&
1505 index.type == BRW_REGISTER_TYPE_UD);
1506 uint32_t surf_index = index.ud;
1507
1508 uint32_t simd_mode, rlen, msg_type;
1509 if (inst->exec_size == 16) {
1510 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1511 rlen = 8;
1512 } else {
1513 assert(inst->exec_size == 8);
1514 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1515 rlen = 4;
1516 }
1517
1518 if (devinfo->gen >= 5)
1519 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1520 else {
1521 /* We always use the SIMD16 message so that we only have to load U, and
1522 * not V or R.
1523 */
1524 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1525 assert(inst->mlen == 3);
1526 assert(inst->size_written == 8 * REG_SIZE);
1527 rlen = 8;
1528 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1529 }
1530
1531 struct brw_reg header = brw_vec8_grf(0, 0);
1532 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1533
1534 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1535 brw_inst_set_compression(devinfo, send, false);
1536 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1537 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1538 brw_set_src0(p, send, header);
1539 if (devinfo->gen < 6)
1540 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1541
1542 /* Our surface is set up as floats, regardless of what actual data is
1543 * stored in it.
1544 */
1545 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1546 brw_set_desc(p, send,
1547 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1548 brw_sampler_desc(devinfo, surf_index,
1549 0, /* sampler (unused) */
1550 msg_type, simd_mode, return_format));
1551 }
1552
1553 void
1554 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1555 struct brw_reg dst,
1556 struct brw_reg src,
1557 struct brw_reg msg_data,
1558 unsigned msg_type)
1559 {
1560 const bool has_payload = inst->src[0].file != BAD_FILE;
1561 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1562 assert(inst->size_written % REG_SIZE == 0);
1563
1564 brw_pixel_interpolator_query(p,
1565 retype(dst, BRW_REGISTER_TYPE_UW),
1566 /* If we don't have a payload, what we send doesn't matter */
1567 has_payload ? src : brw_vec8_grf(0, 0),
1568 inst->pi_noperspective,
1569 msg_type,
1570 msg_data,
1571 has_payload ? 2 * inst->exec_size / 8 : 1,
1572 inst->size_written / REG_SIZE);
1573 }
1574
1575 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1576 * the ADD instruction.
1577 */
1578 void
1579 fs_generator::generate_set_sample_id(fs_inst *inst,
1580 struct brw_reg dst,
1581 struct brw_reg src0,
1582 struct brw_reg src1)
1583 {
1584 assert(dst.type == BRW_REGISTER_TYPE_D ||
1585 dst.type == BRW_REGISTER_TYPE_UD);
1586 assert(src0.type == BRW_REGISTER_TYPE_D ||
1587 src0.type == BRW_REGISTER_TYPE_UD);
1588
1589 const struct brw_reg reg = stride(src1, 1, 4, 0);
1590 const unsigned lower_size = MIN2(inst->exec_size,
1591 devinfo->gen >= 8 ? 16 : 8);
1592
1593 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1594 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1595 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1596 (i * lower_size / (1 << src0.width))) *
1597 type_sz(src0.type) / REG_SIZE),
1598 suboffset(reg, i * lower_size / 4));
1599 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1600 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1601 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1602 brw_set_default_swsb(p, tgl_swsb_null());
1603 }
1604 }
1605
1606 void
1607 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1608 struct brw_reg dst,
1609 struct brw_reg x,
1610 struct brw_reg y)
1611 {
1612 assert(devinfo->gen >= 7);
1613 assert(dst.type == BRW_REGISTER_TYPE_UD);
1614 assert(x.type == BRW_REGISTER_TYPE_F);
1615 assert(y.type == BRW_REGISTER_TYPE_F);
1616
1617 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1618 *
1619 * Because this instruction does not have a 16-bit floating-point type,
1620 * the destination data type must be Word (W).
1621 *
1622 * The destination must be DWord-aligned and specify a horizontal stride
1623 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1624 * each destination channel and the upper word is not modified.
1625 */
1626 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1627
1628 /* Give each 32-bit channel of dst the form below, where "." means
1629 * unchanged.
1630 * 0x....hhhh
1631 */
1632 brw_F32TO16(p, dst_w, y);
1633
1634 /* Now the form:
1635 * 0xhhhh0000
1636 */
1637 brw_set_default_swsb(p, tgl_swsb_regdist(1));
1638 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1639
1640 /* And, finally the form of packHalf2x16's output:
1641 * 0xhhhhllll
1642 */
1643 brw_F32TO16(p, dst_w, x);
1644 }
1645
1646 void
1647 fs_generator::generate_shader_time_add(fs_inst *,
1648 struct brw_reg payload,
1649 struct brw_reg offset,
1650 struct brw_reg value)
1651 {
1652 const tgl_swsb swsb = brw_get_default_swsb(p);
1653
1654 assert(devinfo->gen >= 7);
1655 brw_push_insn_state(p);
1656 brw_set_default_mask_control(p, true);
1657 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1658
1659 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1660 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1661 offset.type);
1662 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1663 value.type);
1664
1665 assert(offset.file == BRW_IMMEDIATE_VALUE);
1666 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1667 value.width = BRW_WIDTH_1;
1668 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1669 value.vstride = BRW_VERTICAL_STRIDE_0;
1670 } else {
1671 assert(value.file == BRW_IMMEDIATE_VALUE);
1672 }
1673
1674 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1675 * case, and we don't really care about squeezing every bit of performance
1676 * out of this path, so we just emit the MOVs from here.
1677 */
1678 brw_MOV(p, payload_offset, offset);
1679 brw_set_default_swsb(p, tgl_swsb_null());
1680 brw_MOV(p, payload_value, value);
1681 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1682 brw_shader_time_add(p, payload,
1683 prog_data->binding_table.shader_time_start);
1684 brw_pop_insn_state(p);
1685 }
1686
1687 void
1688 fs_generator::enable_debug(const char *shader_name)
1689 {
1690 debug_flag = true;
1691 this->shader_name = shader_name;
1692 }
1693
1694 int
1695 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width,
1696 struct brw_compile_stats *stats)
1697 {
1698 /* align to 64 byte boundary. */
1699 while (p->next_insn_offset % 64)
1700 brw_NOP(p);
1701
1702 this->dispatch_width = dispatch_width;
1703
1704 int start_offset = p->next_insn_offset;
1705
1706 /* `send_count` explicitly does not include spills or fills, as we'd
1707 * like to use it as a metric for intentional memory access or other
1708 * shared function use. Otherwise, subtle changes to scheduling or
1709 * register allocation could cause it to fluctuate wildly - and that
1710 * effect is already counted in spill/fill counts.
1711 */
1712 int spill_count = 0, fill_count = 0;
1713 int loop_count = 0, send_count = 0;
1714
1715 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1716
1717 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1718 if (inst->opcode == SHADER_OPCODE_UNDEF)
1719 continue;
1720
1721 struct brw_reg src[4], dst;
1722 unsigned int last_insn_offset = p->next_insn_offset;
1723 bool multiple_instructions_emitted = false;
1724
1725 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1726 * "Register Region Restrictions" section: for BDW, SKL:
1727 *
1728 * "A POW/FDIV operation must not be followed by an instruction
1729 * that requires two destination registers."
1730 *
1731 * The documentation is often lacking annotations for Atom parts,
1732 * and empirically this affects CHV as well.
1733 */
1734 if (devinfo->gen >= 8 &&
1735 devinfo->gen <= 9 &&
1736 p->nr_insn > 1 &&
1737 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1738 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1739 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1740 brw_NOP(p);
1741 last_insn_offset = p->next_insn_offset;
1742 }
1743
1744 if (unlikely(debug_flag))
1745 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1746
1747 /* If the instruction writes to more than one register, it needs to be
1748 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1749 * hardware figures out by itself what the right compression mode is,
1750 * but we still need to know whether the instruction is compressed to
1751 * set up the source register regions appropriately.
1752 *
1753 * XXX - This is wrong for instructions that write a single register but
1754 * read more than one which should strictly speaking be treated as
1755 * compressed. For instructions that don't write any registers it
1756 * relies on the destination being a null register of the correct
1757 * type and regioning so the instruction is considered compressed
1758 * or not accordingly.
1759 */
1760 const bool compressed =
1761 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1762 brw_set_default_compression(p, compressed);
1763 brw_set_default_group(p, inst->group);
1764
1765 for (unsigned int i = 0; i < inst->sources; i++) {
1766 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1767 &inst->src[i], compressed);
1768 /* The accumulator result appears to get used for the
1769 * conditional modifier generation. When negating a UD
1770 * value, there is a 33rd bit generated for the sign in the
1771 * accumulator value, so now you can't check, for example,
1772 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1773 */
1774 assert(!inst->conditional_mod ||
1775 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1776 !inst->src[i].negate);
1777 }
1778 dst = brw_reg_from_fs_reg(devinfo, inst,
1779 &inst->dst, compressed);
1780
1781 brw_set_default_access_mode(p, BRW_ALIGN_1);
1782 brw_set_default_predicate_control(p, inst->predicate);
1783 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1784 /* On gen7 and above, hardware automatically adds the group onto the
1785 * flag subregister number. On Sandy Bridge and older, we have to do it
1786 * ourselves.
1787 */
1788 const unsigned flag_subreg = inst->flag_subreg +
1789 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1790 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1791 brw_set_default_saturate(p, inst->saturate);
1792 brw_set_default_mask_control(p, inst->force_writemask_all);
1793 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1794 brw_set_default_swsb(p, inst->sched);
1795
1796 unsigned exec_size = inst->exec_size;
1797 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1798 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1799 exec_size *= 2;
1800 }
1801
1802 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1803
1804 assert(inst->force_writemask_all || inst->exec_size >= 4);
1805 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1806 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1807 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1808
1809 switch (inst->opcode) {
1810 case BRW_OPCODE_SYNC:
1811 assert(src[0].file == BRW_IMMEDIATE_VALUE);
1812 brw_SYNC(p, tgl_sync_function(src[0].ud));
1813 break;
1814 case BRW_OPCODE_MOV:
1815 brw_MOV(p, dst, src[0]);
1816 break;
1817 case BRW_OPCODE_ADD:
1818 brw_ADD(p, dst, src[0], src[1]);
1819 break;
1820 case BRW_OPCODE_MUL:
1821 brw_MUL(p, dst, src[0], src[1]);
1822 break;
1823 case BRW_OPCODE_AVG:
1824 brw_AVG(p, dst, src[0], src[1]);
1825 break;
1826 case BRW_OPCODE_MACH:
1827 brw_MACH(p, dst, src[0], src[1]);
1828 break;
1829
1830 case BRW_OPCODE_LINE:
1831 brw_LINE(p, dst, src[0], src[1]);
1832 break;
1833
1834 case BRW_OPCODE_MAD:
1835 assert(devinfo->gen >= 6);
1836 if (devinfo->gen < 10)
1837 brw_set_default_access_mode(p, BRW_ALIGN_16);
1838 brw_MAD(p, dst, src[0], src[1], src[2]);
1839 break;
1840
1841 case BRW_OPCODE_LRP:
1842 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1843 if (devinfo->gen < 10)
1844 brw_set_default_access_mode(p, BRW_ALIGN_16);
1845 brw_LRP(p, dst, src[0], src[1], src[2]);
1846 break;
1847
1848 case BRW_OPCODE_FRC:
1849 brw_FRC(p, dst, src[0]);
1850 break;
1851 case BRW_OPCODE_RNDD:
1852 brw_RNDD(p, dst, src[0]);
1853 break;
1854 case BRW_OPCODE_RNDE:
1855 brw_RNDE(p, dst, src[0]);
1856 break;
1857 case BRW_OPCODE_RNDZ:
1858 brw_RNDZ(p, dst, src[0]);
1859 break;
1860
1861 case BRW_OPCODE_AND:
1862 brw_AND(p, dst, src[0], src[1]);
1863 break;
1864 case BRW_OPCODE_OR:
1865 brw_OR(p, dst, src[0], src[1]);
1866 break;
1867 case BRW_OPCODE_XOR:
1868 brw_XOR(p, dst, src[0], src[1]);
1869 break;
1870 case BRW_OPCODE_NOT:
1871 brw_NOT(p, dst, src[0]);
1872 break;
1873 case BRW_OPCODE_ASR:
1874 brw_ASR(p, dst, src[0], src[1]);
1875 break;
1876 case BRW_OPCODE_SHR:
1877 brw_SHR(p, dst, src[0], src[1]);
1878 break;
1879 case BRW_OPCODE_SHL:
1880 brw_SHL(p, dst, src[0], src[1]);
1881 break;
1882 case BRW_OPCODE_ROL:
1883 assert(devinfo->gen >= 11);
1884 assert(src[0].type == dst.type);
1885 brw_ROL(p, dst, src[0], src[1]);
1886 break;
1887 case BRW_OPCODE_ROR:
1888 assert(devinfo->gen >= 11);
1889 assert(src[0].type == dst.type);
1890 brw_ROR(p, dst, src[0], src[1]);
1891 break;
1892 case BRW_OPCODE_F32TO16:
1893 assert(devinfo->gen >= 7);
1894 brw_F32TO16(p, dst, src[0]);
1895 break;
1896 case BRW_OPCODE_F16TO32:
1897 assert(devinfo->gen >= 7);
1898 brw_F16TO32(p, dst, src[0]);
1899 break;
1900 case BRW_OPCODE_CMP:
1901 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1902 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1903 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1904 * implemented in the compiler is not sufficient. Overriding the
1905 * type when the destination is the null register is necessary but
1906 * not sufficient by itself.
1907 */
1908 assert(dst.nr == BRW_ARF_NULL);
1909 dst.type = BRW_REGISTER_TYPE_D;
1910 }
1911 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1912 break;
1913 case BRW_OPCODE_SEL:
1914 brw_SEL(p, dst, src[0], src[1]);
1915 break;
1916 case BRW_OPCODE_CSEL:
1917 assert(devinfo->gen >= 8);
1918 if (devinfo->gen < 10)
1919 brw_set_default_access_mode(p, BRW_ALIGN_16);
1920 brw_CSEL(p, dst, src[0], src[1], src[2]);
1921 break;
1922 case BRW_OPCODE_BFREV:
1923 assert(devinfo->gen >= 7);
1924 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1925 retype(src[0], BRW_REGISTER_TYPE_UD));
1926 break;
1927 case BRW_OPCODE_FBH:
1928 assert(devinfo->gen >= 7);
1929 brw_FBH(p, retype(dst, src[0].type), src[0]);
1930 break;
1931 case BRW_OPCODE_FBL:
1932 assert(devinfo->gen >= 7);
1933 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1934 retype(src[0], BRW_REGISTER_TYPE_UD));
1935 break;
1936 case BRW_OPCODE_LZD:
1937 brw_LZD(p, dst, src[0]);
1938 break;
1939 case BRW_OPCODE_CBIT:
1940 assert(devinfo->gen >= 7);
1941 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1942 retype(src[0], BRW_REGISTER_TYPE_UD));
1943 break;
1944 case BRW_OPCODE_ADDC:
1945 assert(devinfo->gen >= 7);
1946 brw_ADDC(p, dst, src[0], src[1]);
1947 break;
1948 case BRW_OPCODE_SUBB:
1949 assert(devinfo->gen >= 7);
1950 brw_SUBB(p, dst, src[0], src[1]);
1951 break;
1952 case BRW_OPCODE_MAC:
1953 brw_MAC(p, dst, src[0], src[1]);
1954 break;
1955
1956 case BRW_OPCODE_BFE:
1957 assert(devinfo->gen >= 7);
1958 if (devinfo->gen < 10)
1959 brw_set_default_access_mode(p, BRW_ALIGN_16);
1960 brw_BFE(p, dst, src[0], src[1], src[2]);
1961 break;
1962
1963 case BRW_OPCODE_BFI1:
1964 assert(devinfo->gen >= 7);
1965 brw_BFI1(p, dst, src[0], src[1]);
1966 break;
1967 case BRW_OPCODE_BFI2:
1968 assert(devinfo->gen >= 7);
1969 if (devinfo->gen < 10)
1970 brw_set_default_access_mode(p, BRW_ALIGN_16);
1971 brw_BFI2(p, dst, src[0], src[1], src[2]);
1972 break;
1973
1974 case BRW_OPCODE_IF:
1975 if (inst->src[0].file != BAD_FILE) {
1976 /* The instruction has an embedded compare (only allowed on gen6) */
1977 assert(devinfo->gen == 6);
1978 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
1979 } else {
1980 brw_IF(p, brw_get_default_exec_size(p));
1981 }
1982 break;
1983
1984 case BRW_OPCODE_ELSE:
1985 brw_ELSE(p);
1986 break;
1987 case BRW_OPCODE_ENDIF:
1988 brw_ENDIF(p);
1989 break;
1990
1991 case BRW_OPCODE_DO:
1992 brw_DO(p, brw_get_default_exec_size(p));
1993 break;
1994
1995 case BRW_OPCODE_BREAK:
1996 brw_BREAK(p);
1997 break;
1998 case BRW_OPCODE_CONTINUE:
1999 brw_CONT(p);
2000 break;
2001
2002 case BRW_OPCODE_WHILE:
2003 brw_WHILE(p);
2004 loop_count++;
2005 break;
2006
2007 case SHADER_OPCODE_RCP:
2008 case SHADER_OPCODE_RSQ:
2009 case SHADER_OPCODE_SQRT:
2010 case SHADER_OPCODE_EXP2:
2011 case SHADER_OPCODE_LOG2:
2012 case SHADER_OPCODE_SIN:
2013 case SHADER_OPCODE_COS:
2014 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2015 if (devinfo->gen >= 6) {
2016 assert(inst->mlen == 0);
2017 assert(devinfo->gen >= 7 || inst->exec_size == 8);
2018 gen6_math(p, dst, brw_math_function(inst->opcode),
2019 src[0], brw_null_reg());
2020 } else {
2021 assert(inst->mlen >= 1);
2022 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
2023 gen4_math(p, dst,
2024 brw_math_function(inst->opcode),
2025 inst->base_mrf, src[0],
2026 BRW_MATH_PRECISION_FULL);
2027 send_count++;
2028 }
2029 break;
2030 case SHADER_OPCODE_INT_QUOTIENT:
2031 case SHADER_OPCODE_INT_REMAINDER:
2032 case SHADER_OPCODE_POW:
2033 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2034 if (devinfo->gen >= 6) {
2035 assert(inst->mlen == 0);
2036 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2037 inst->exec_size == 8);
2038 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2039 } else {
2040 assert(inst->mlen >= 1);
2041 assert(inst->exec_size == 8);
2042 gen4_math(p, dst, brw_math_function(inst->opcode),
2043 inst->base_mrf, src[0],
2044 BRW_MATH_PRECISION_FULL);
2045 send_count++;
2046 }
2047 break;
2048 case FS_OPCODE_LINTERP:
2049 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2050 break;
2051 case FS_OPCODE_PIXEL_X:
2052 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2053 src[0].subnr = 0 * type_sz(src[0].type);
2054 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2055 break;
2056 case FS_OPCODE_PIXEL_Y:
2057 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2058 src[0].subnr = 4 * type_sz(src[0].type);
2059 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2060 break;
2061
2062 case SHADER_OPCODE_SEND:
2063 generate_send(inst, dst, src[0], src[1], src[2],
2064 inst->ex_mlen > 0 ? src[3] : brw_null_reg());
2065 if ((inst->desc & 0xff) == BRW_BTI_STATELESS ||
2066 (inst->desc & 0xff) == GEN8_BTI_STATELESS_NON_COHERENT) {
2067 if (inst->size_written)
2068 fill_count++;
2069 else
2070 spill_count++;
2071 } else {
2072 send_count++;
2073 }
2074 break;
2075
2076 case SHADER_OPCODE_GET_BUFFER_SIZE:
2077 generate_get_buffer_size(inst, dst, src[0], src[1]);
2078 send_count++;
2079 break;
2080 case SHADER_OPCODE_TEX:
2081 case FS_OPCODE_TXB:
2082 case SHADER_OPCODE_TXD:
2083 case SHADER_OPCODE_TXF:
2084 case SHADER_OPCODE_TXF_CMS:
2085 case SHADER_OPCODE_TXL:
2086 case SHADER_OPCODE_TXS:
2087 case SHADER_OPCODE_LOD:
2088 case SHADER_OPCODE_TG4:
2089 case SHADER_OPCODE_SAMPLEINFO:
2090 assert(inst->src[0].file == BAD_FILE);
2091 generate_tex(inst, dst, src[1], src[2]);
2092 send_count++;
2093 break;
2094
2095 case FS_OPCODE_DDX_COARSE:
2096 case FS_OPCODE_DDX_FINE:
2097 generate_ddx(inst, dst, src[0]);
2098 break;
2099 case FS_OPCODE_DDY_COARSE:
2100 case FS_OPCODE_DDY_FINE:
2101 generate_ddy(inst, dst, src[0]);
2102 break;
2103
2104 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2105 generate_scratch_write(inst, src[0]);
2106 spill_count++;
2107 break;
2108
2109 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2110 generate_scratch_read(inst, dst);
2111 fill_count++;
2112 break;
2113
2114 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2115 generate_scratch_read_gen7(inst, dst);
2116 fill_count++;
2117 break;
2118
2119 case SHADER_OPCODE_MOV_INDIRECT:
2120 generate_mov_indirect(inst, dst, src[0], src[1]);
2121 break;
2122
2123 case SHADER_OPCODE_URB_READ_SIMD8:
2124 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2125 generate_urb_read(inst, dst, src[0]);
2126 send_count++;
2127 break;
2128
2129 case SHADER_OPCODE_URB_WRITE_SIMD8:
2130 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2131 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2132 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2133 generate_urb_write(inst, src[0]);
2134 send_count++;
2135 break;
2136
2137 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2138 assert(inst->force_writemask_all);
2139 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2140 send_count++;
2141 break;
2142
2143 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2144 assert(inst->force_writemask_all);
2145 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2146 send_count++;
2147 break;
2148
2149 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2150 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2151 send_count++;
2152 break;
2153
2154 case FS_OPCODE_REP_FB_WRITE:
2155 case FS_OPCODE_FB_WRITE:
2156 generate_fb_write(inst, src[0]);
2157 send_count++;
2158 break;
2159
2160 case FS_OPCODE_FB_READ:
2161 generate_fb_read(inst, dst, src[0]);
2162 send_count++;
2163 break;
2164
2165 case FS_OPCODE_DISCARD_JUMP:
2166 generate_discard_jump(inst);
2167 break;
2168
2169 case SHADER_OPCODE_SHADER_TIME_ADD:
2170 generate_shader_time_add(inst, src[0], src[1], src[2]);
2171 break;
2172
2173 case SHADER_OPCODE_MEMORY_FENCE:
2174 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2175 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2176 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SEND, src[1].ud, src[2].ud);
2177 send_count++;
2178 break;
2179
2180 case FS_OPCODE_SCHEDULING_FENCE:
2181 if (unlikely(debug_flag))
2182 disasm_info->use_tail = true;
2183 break;
2184
2185 case SHADER_OPCODE_INTERLOCK:
2186 assert(devinfo->gen >= 9);
2187 /* The interlock is basically a memory fence issued via sendc */
2188 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SENDC, false, /* bti */ 0);
2189 break;
2190
2191 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2192 const struct brw_reg mask =
2193 brw_stage_has_packed_dispatch(devinfo, stage,
2194 prog_data) ? brw_imm_ud(~0u) :
2195 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2196 brw_dmask_reg();
2197 brw_find_live_channel(p, dst, mask);
2198 break;
2199 }
2200
2201 case SHADER_OPCODE_BROADCAST:
2202 assert(inst->force_writemask_all);
2203 brw_broadcast(p, dst, src[0], src[1]);
2204 break;
2205
2206 case SHADER_OPCODE_SHUFFLE:
2207 generate_shuffle(inst, dst, src[0], src[1]);
2208 break;
2209
2210 case SHADER_OPCODE_SEL_EXEC:
2211 assert(inst->force_writemask_all);
2212 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2213 brw_MOV(p, dst, src[1]);
2214 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2215 brw_set_default_swsb(p, tgl_swsb_null());
2216 brw_MOV(p, dst, src[0]);
2217 break;
2218
2219 case SHADER_OPCODE_QUAD_SWIZZLE:
2220 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2221 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2222 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2223 break;
2224
2225 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2226 assert(!src[0].negate && !src[0].abs);
2227 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2228 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2229 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2230 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2231 const unsigned component = src[1].ud;
2232 const unsigned cluster_size = src[2].ud;
2233 unsigned vstride = cluster_size;
2234 unsigned width = cluster_size;
2235
2236 /* The maximum exec_size is 32, but the maximum width is only 16. */
2237 if (inst->exec_size == width) {
2238 vstride = 0;
2239 width = 1;
2240 }
2241
2242 struct brw_reg strided = stride(suboffset(src[0], component),
2243 vstride, width, 0);
2244 if (type_sz(src[0].type) > 4 &&
2245 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2246 /* IVB has an issue (which we found empirically) where it reads
2247 * two address register components per channel for indirectly
2248 * addressed 64-bit sources.
2249 *
2250 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2251 *
2252 * "When source or destination datatype is 64b or operation is
2253 * integer DWord multiply, indirect addressing must not be
2254 * used."
2255 *
2256 * To work around both of these, we do two integer MOVs insead of
2257 * one 64-bit MOV. Because no double value should ever cross a
2258 * register boundary, it's safe to use the immediate offset in the
2259 * indirect here to handle adding 4 bytes to the offset and avoid
2260 * the extra ADD to the register file.
2261 */
2262 assert(src[0].type == dst.type);
2263 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2264 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2265 brw_set_default_swsb(p, tgl_swsb_null());
2266 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2267 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2268 } else {
2269 brw_MOV(p, dst, strided);
2270 }
2271 break;
2272 }
2273
2274 case FS_OPCODE_SET_SAMPLE_ID:
2275 generate_set_sample_id(inst, dst, src[0], src[1]);
2276 break;
2277
2278 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2279 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2280 break;
2281
2282 case FS_OPCODE_PLACEHOLDER_HALT:
2283 /* This is the place where the final HALT needs to be inserted if
2284 * we've emitted any discards. If not, this will emit no code.
2285 */
2286 if (!patch_discard_jumps_to_fb_writes()) {
2287 if (unlikely(debug_flag)) {
2288 disasm_info->use_tail = true;
2289 }
2290 }
2291 break;
2292
2293 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2294 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2295 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2296 send_count++;
2297 break;
2298
2299 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2300 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2301 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2302 send_count++;
2303 break;
2304
2305 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2306 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2307 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2308 send_count++;
2309 break;
2310
2311 case CS_OPCODE_CS_TERMINATE:
2312 generate_cs_terminate(inst, src[0]);
2313 send_count++;
2314 break;
2315
2316 case SHADER_OPCODE_BARRIER:
2317 generate_barrier(inst, src[0]);
2318 send_count++;
2319 break;
2320
2321 case BRW_OPCODE_DIM:
2322 assert(devinfo->is_haswell);
2323 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2324 assert(dst.type == BRW_REGISTER_TYPE_DF);
2325 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2326 break;
2327
2328 case SHADER_OPCODE_RND_MODE: {
2329 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2330 /*
2331 * Changes the floating point rounding mode updating the control
2332 * register field defined at cr0.0[5-6] bits.
2333 */
2334 enum brw_rnd_mode mode =
2335 (enum brw_rnd_mode) (src[0].d << BRW_CR0_RND_MODE_SHIFT);
2336 brw_float_controls_mode(p, mode, BRW_CR0_RND_MODE_MASK);
2337 }
2338 break;
2339
2340 case SHADER_OPCODE_FLOAT_CONTROL_MODE:
2341 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2342 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2343 brw_float_controls_mode(p, src[0].d, src[1].d);
2344 break;
2345
2346 default:
2347 unreachable("Unsupported opcode");
2348
2349 case SHADER_OPCODE_LOAD_PAYLOAD:
2350 unreachable("Should be lowered by lower_load_payload()");
2351 }
2352
2353 if (multiple_instructions_emitted)
2354 continue;
2355
2356 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2357 assert(p->next_insn_offset == last_insn_offset + 16 ||
2358 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2359 "emitting more than 1 instruction");
2360
2361 brw_inst *last = &p->store[last_insn_offset / 16];
2362
2363 if (inst->conditional_mod)
2364 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2365 if (devinfo->gen < 12) {
2366 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2367 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2368 }
2369 }
2370 }
2371
2372 brw_set_uip_jip(p, start_offset);
2373
2374 /* end of program sentinel */
2375 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2376
2377 #ifndef NDEBUG
2378 bool validated =
2379 #else
2380 if (unlikely(debug_flag))
2381 #endif
2382 brw_validate_instructions(devinfo, p->store,
2383 start_offset,
2384 p->next_insn_offset,
2385 disasm_info);
2386
2387 int before_size = p->next_insn_offset - start_offset;
2388 brw_compact_instructions(p, start_offset, disasm_info);
2389 int after_size = p->next_insn_offset - start_offset;
2390
2391 if (unlikely(debug_flag)) {
2392 unsigned char sha1[21];
2393 char sha1buf[41];
2394
2395 _mesa_sha1_compute(p->store + start_offset / sizeof(brw_inst),
2396 after_size, sha1);
2397 _mesa_sha1_format(sha1buf, sha1);
2398
2399 fprintf(stderr, "Native code for %s (sha1 %s)\n"
2400 "SIMD%d shader: %d instructions. %d loops. %u cycles. "
2401 "%d:%d spills:fills, %u sends, "
2402 "scheduled with mode %s. "
2403 "Promoted %u constants. "
2404 "Compacted %d to %d bytes (%.0f%%)\n",
2405 shader_name, sha1buf,
2406 dispatch_width, before_size / 16,
2407 loop_count, cfg->cycle_count,
2408 spill_count, fill_count, send_count,
2409 shader_stats.scheduler_mode,
2410 shader_stats.promoted_constants,
2411 before_size, after_size,
2412 100.0f * (before_size - after_size) / before_size);
2413
2414 /* overriding the shader makes disasm_info invalid */
2415 if (!brw_try_override_assembly(p, start_offset, sha1buf)) {
2416 dump_assembly(p->store, disasm_info);
2417 } else {
2418 fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf);
2419 }
2420 }
2421 ralloc_free(disasm_info);
2422 assert(validated);
2423
2424 compiler->shader_debug_log(log_data,
2425 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2426 "%d:%d spills:fills, %u sends, "
2427 "scheduled with mode %s, "
2428 "Promoted %u constants, "
2429 "compacted %d to %d bytes.",
2430 _mesa_shader_stage_to_abbrev(stage),
2431 dispatch_width, before_size / 16,
2432 loop_count, cfg->cycle_count,
2433 spill_count, fill_count, send_count,
2434 shader_stats.scheduler_mode,
2435 shader_stats.promoted_constants,
2436 before_size, after_size);
2437 if (stats) {
2438 stats->dispatch_width = dispatch_width;
2439 stats->instructions = before_size / 16;
2440 stats->loops = loop_count;
2441 stats->cycles = cfg->cycle_count;
2442 stats->spills = spill_count;
2443 stats->fills = fill_count;
2444 }
2445
2446 return start_offset;
2447 }
2448
2449 const unsigned *
2450 fs_generator::get_assembly()
2451 {
2452 return brw_get_program(p, &prog_data->program_size);
2453 }