intel/compiler: fix ddx and ddy for 16-bit float
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33
34 static enum brw_reg_file
35 brw_file_from_reg(fs_reg *reg)
36 {
37 switch (reg->file) {
38 case ARF:
39 return BRW_ARCHITECTURE_REGISTER_FILE;
40 case FIXED_GRF:
41 case VGRF:
42 return BRW_GENERAL_REGISTER_FILE;
43 case MRF:
44 return BRW_MESSAGE_REGISTER_FILE;
45 case IMM:
46 return BRW_IMMEDIATE_VALUE;
47 case BAD_FILE:
48 case ATTR:
49 case UNIFORM:
50 unreachable("not reached");
51 }
52 return BRW_ARCHITECTURE_REGISTER_FILE;
53 }
54
55 static struct brw_reg
56 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
57 fs_reg *reg, bool compressed)
58 {
59 struct brw_reg brw_reg;
60
61 switch (reg->file) {
62 case MRF:
63 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
64 /* Fallthrough */
65 case VGRF:
66 if (reg->stride == 0) {
67 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
68 } else {
69 /* From the Haswell PRM:
70 *
71 * "VertStride must be used to cross GRF register boundaries. This
72 * rule implies that elements within a 'Width' cannot cross GRF
73 * boundaries."
74 *
75 * The maximum width value that could satisfy this restriction is:
76 */
77 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
78
79 /* Because the hardware can only split source regions at a whole
80 * multiple of width during decompression (i.e. vertically), clamp
81 * the value obtained above to the physical execution size of a
82 * single decompressed chunk of the instruction:
83 */
84 const unsigned phys_width = compressed ? inst->exec_size / 2 :
85 inst->exec_size;
86
87 /* XXX - The equation above is strictly speaking not correct on
88 * hardware that supports unbalanced GRF writes -- On Gen9+
89 * each decompressed chunk of the instruction may have a
90 * different execution size when the number of components
91 * written to each destination GRF is not the same.
92 */
93 if (reg->stride > 4) {
94 assert(reg != &inst->dst);
95 assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
96 brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
97 brw_reg = stride(brw_reg, reg->stride, 1, 0);
98 } else {
99 const unsigned width = MIN2(reg_width, phys_width);
100 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
101 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
102 }
103
104 if (devinfo->gen == 7 && !devinfo->is_haswell) {
105 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
106 * "Each DF (Double Float) operand uses an element size of 4 rather
107 * than 8 and all regioning parameters are twice what the values
108 * would be based on the true element size: ExecSize, Width,
109 * HorzStride, and VertStride. Each DF operand uses a pair of
110 * channels and all masking and swizzing should be adjusted
111 * appropriately."
112 *
113 * From the IvyBridge PRM (Special Requirements for Handling Double
114 * Precision Data Types, page 71):
115 * "In Align1 mode, all regioning parameters like stride, execution
116 * size, and width must use the syntax of a pair of packed
117 * floats. The offsets for these data types must be 64-bit
118 * aligned. The execution size and regioning parameters are in terms
119 * of floats."
120 *
121 * Summarized: when handling DF-typed arguments, ExecSize,
122 * VertStride, and Width must be doubled.
123 *
124 * It applies to BayTrail too.
125 */
126 if (type_sz(reg->type) == 8) {
127 brw_reg.width++;
128 if (brw_reg.vstride > 0)
129 brw_reg.vstride++;
130 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
131 }
132
133 /* When converting from DF->F, we set the destination stride to 2
134 * because each d2f conversion implicitly writes 2 floats, being
135 * the first one the converted value. IVB/BYT actually writes two
136 * F components per SIMD channel, and every other component is
137 * filled with garbage.
138 */
139 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
140 type_sz(inst->dst.type) < 8) {
141 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
142 brw_reg.hstride--;
143 }
144 }
145 }
146
147 brw_reg = retype(brw_reg, reg->type);
148 brw_reg = byte_offset(brw_reg, reg->offset);
149 brw_reg.abs = reg->abs;
150 brw_reg.negate = reg->negate;
151 break;
152 case ARF:
153 case FIXED_GRF:
154 case IMM:
155 assert(reg->offset == 0);
156 brw_reg = reg->as_brw_reg();
157 break;
158 case BAD_FILE:
159 /* Probably unused. */
160 brw_reg = brw_null_reg();
161 break;
162 case ATTR:
163 case UNIFORM:
164 unreachable("not reached");
165 }
166
167 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
168 * region, but on IVB and BYT DF regions must be programmed in terms of
169 * floats. A <0,2,1> region accomplishes this.
170 */
171 if (devinfo->gen == 7 && !devinfo->is_haswell &&
172 type_sz(reg->type) == 8 &&
173 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
174 brw_reg.width == BRW_WIDTH_1 &&
175 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
176 brw_reg.width = BRW_WIDTH_2;
177 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
178 }
179
180 return brw_reg;
181 }
182
183 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
184 void *mem_ctx,
185 struct brw_stage_prog_data *prog_data,
186 unsigned promoted_constants,
187 bool runtime_check_aads_emit,
188 gl_shader_stage stage)
189
190 : compiler(compiler), log_data(log_data),
191 devinfo(compiler->devinfo),
192 prog_data(prog_data),
193 promoted_constants(promoted_constants),
194 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
195 stage(stage), mem_ctx(mem_ctx)
196 {
197 p = rzalloc(mem_ctx, struct brw_codegen);
198 brw_init_codegen(devinfo, p, mem_ctx);
199
200 /* In the FS code generator, we are very careful to ensure that we always
201 * set the right execution size so we don't need the EU code to "help" us
202 * by trying to infer it. Sometimes, it infers the wrong thing.
203 */
204 p->automatic_exec_sizes = false;
205 }
206
207 fs_generator::~fs_generator()
208 {
209 }
210
211 class ip_record : public exec_node {
212 public:
213 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
214
215 ip_record(int ip)
216 {
217 this->ip = ip;
218 }
219
220 int ip;
221 };
222
223 bool
224 fs_generator::patch_discard_jumps_to_fb_writes()
225 {
226 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
227 return false;
228
229 int scale = brw_jump_scale(p->devinfo);
230
231 /* There is a somewhat strange undocumented requirement of using
232 * HALT, according to the simulator. If some channel has HALTed to
233 * a particular UIP, then by the end of the program, every channel
234 * must have HALTed to that UIP. Furthermore, the tracking is a
235 * stack, so you can't do the final halt of a UIP after starting
236 * halting to a new UIP.
237 *
238 * Symptoms of not emitting this instruction on actual hardware
239 * included GPU hangs and sparkly rendering on the piglit discard
240 * tests.
241 */
242 brw_inst *last_halt = gen6_HALT(p);
243 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
244 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
245
246 int ip = p->nr_insn;
247
248 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
249 brw_inst *patch = &p->store[patch_ip->ip];
250
251 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
252 /* HALT takes a half-instruction distance from the pre-incremented IP. */
253 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
254 }
255
256 this->discard_halt_patches.make_empty();
257 return true;
258 }
259
260 void
261 fs_generator::generate_send(fs_inst *inst,
262 struct brw_reg dst,
263 struct brw_reg desc,
264 struct brw_reg ex_desc,
265 struct brw_reg payload,
266 struct brw_reg payload2)
267 {
268 const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
269 dst.nr == BRW_ARF_NULL;
270 const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
271
272 uint32_t desc_imm = inst->desc |
273 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
274
275 uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen);
276
277 if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
278 /* If we have any sort of extended descriptor, then we need SENDS. This
279 * also covers the dual-payload case because ex_mlen goes in ex_desc.
280 */
281 brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
282 desc, desc_imm, ex_desc, ex_desc_imm,
283 inst->eot);
284 if (inst->check_tdr)
285 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDSC);
286 } else {
287 brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
288 inst->eot);
289 if (inst->check_tdr)
290 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
291 }
292 }
293
294 void
295 fs_generator::fire_fb_write(fs_inst *inst,
296 struct brw_reg payload,
297 struct brw_reg implied_header,
298 GLuint nr)
299 {
300 uint32_t msg_control;
301
302 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
303
304 if (devinfo->gen < 6) {
305 brw_push_insn_state(p);
306 brw_set_default_exec_size(p, BRW_EXECUTE_8);
307 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
308 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
309 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
310 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
311 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
312 brw_pop_insn_state(p);
313 }
314
315 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
316 assert(inst->group == 0 && inst->exec_size == 16);
317 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
318
319 } else if (prog_data->dual_src_blend) {
320 assert(inst->exec_size == 8);
321
322 if (inst->group % 16 == 0)
323 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
324 else if (inst->group % 16 == 8)
325 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
326 else
327 unreachable("Invalid dual-source FB write instruction group");
328
329 } else {
330 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
331
332 if (inst->exec_size == 16)
333 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
334 else if (inst->exec_size == 8)
335 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
336 else
337 unreachable("Invalid FB write execution size");
338 }
339
340 /* We assume render targets start at 0, because headerless FB write
341 * messages set "Render Target Index" to 0. Using a different binding
342 * table index would make it impossible to use headerless messages.
343 */
344 const uint32_t surf_index = inst->target;
345
346 brw_inst *insn = brw_fb_WRITE(p,
347 payload,
348 retype(implied_header, BRW_REGISTER_TYPE_UW),
349 msg_control,
350 surf_index,
351 nr,
352 0,
353 inst->eot,
354 inst->last_rt,
355 inst->header_size != 0);
356
357 if (devinfo->gen >= 6)
358 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
359 }
360
361 void
362 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
363 {
364 if (devinfo->gen < 8 && !devinfo->is_haswell) {
365 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
366 }
367
368 const struct brw_reg implied_header =
369 devinfo->gen < 6 ? payload : brw_null_reg();
370
371 if (inst->base_mrf >= 0)
372 payload = brw_message_reg(inst->base_mrf);
373
374 if (!runtime_check_aads_emit) {
375 fire_fb_write(inst, payload, implied_header, inst->mlen);
376 } else {
377 /* This can only happen in gen < 6 */
378 assert(devinfo->gen < 6);
379
380 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
381
382 /* Check runtime bit to detect if we have to send AA data or not */
383 brw_push_insn_state(p);
384 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
385 brw_set_default_exec_size(p, BRW_EXECUTE_1);
386 brw_AND(p,
387 v1_null_ud,
388 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
389 brw_imm_ud(1<<26));
390 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
391
392 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
393 brw_pop_insn_state(p);
394 {
395 /* Don't send AA data */
396 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
397 }
398 brw_land_fwd_jump(p, jmp);
399 fire_fb_write(inst, payload, implied_header, inst->mlen);
400 }
401 }
402
403 void
404 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
405 struct brw_reg payload)
406 {
407 assert(inst->size_written % REG_SIZE == 0);
408 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
409 /* We assume that render targets start at binding table index 0. */
410 const unsigned surf_index = inst->target;
411
412 gen9_fb_READ(p, dst, payload, surf_index,
413 inst->header_size, inst->size_written / REG_SIZE,
414 prog_data->persample_dispatch);
415 }
416
417 void
418 fs_generator::generate_mov_indirect(fs_inst *inst,
419 struct brw_reg dst,
420 struct brw_reg reg,
421 struct brw_reg indirect_byte_offset)
422 {
423 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
424 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
425 assert(!reg.abs && !reg.negate);
426 assert(reg.type == dst.type);
427
428 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
429
430 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
431 imm_byte_offset += indirect_byte_offset.ud;
432
433 reg.nr = imm_byte_offset / REG_SIZE;
434 reg.subnr = imm_byte_offset % REG_SIZE;
435 brw_MOV(p, dst, reg);
436 } else {
437 /* Prior to Broadwell, there are only 8 address registers. */
438 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
439
440 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
441 struct brw_reg addr = vec8(brw_address_reg(0));
442
443 /* The destination stride of an instruction (in bytes) must be greater
444 * than or equal to the size of the rest of the instruction. Since the
445 * address register is of type UW, we can't use a D-type instruction.
446 * In order to get around this, re retype to UW and use a stride.
447 */
448 indirect_byte_offset =
449 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
450
451 /* There are a number of reasons why we don't use the base offset here.
452 * One reason is that the field is only 9 bits which means we can only
453 * use it to access the first 16 GRFs. Also, from the Haswell PRM
454 * section "Register Region Restrictions":
455 *
456 * "The lower bits of the AddressImmediate must not overflow to
457 * change the register address. The lower 5 bits of Address
458 * Immediate when added to lower 5 bits of address register gives
459 * the sub-register offset. The upper bits of Address Immediate
460 * when added to upper bits of address register gives the register
461 * address. Any overflow from sub-register offset is dropped."
462 *
463 * Since the indirect may cause us to cross a register boundary, this
464 * makes the base offset almost useless. We could try and do something
465 * clever where we use a actual base offset if base_offset % 32 == 0 but
466 * that would mean we were generating different code depending on the
467 * base offset. Instead, for the sake of consistency, we'll just do the
468 * add ourselves. This restriction is only listed in the Haswell PRM
469 * but empirical testing indicates that it applies on all older
470 * generations and is lifted on Broadwell.
471 *
472 * In the end, while base_offset is nice to look at in the generated
473 * code, using it saves us 0 instructions and would require quite a bit
474 * of case-by-case work. It's just not worth it.
475 */
476 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
477
478 if (type_sz(reg.type) > 4 &&
479 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
480 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
481 !devinfo->has_64bit_types)) {
482 /* IVB has an issue (which we found empirically) where it reads two
483 * address register components per channel for indirectly addressed
484 * 64-bit sources.
485 *
486 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
487 *
488 * "When source or destination datatype is 64b or operation is
489 * integer DWord multiply, indirect addressing must not be used."
490 *
491 * To work around both of these, we do two integer MOVs insead of one
492 * 64-bit MOV. Because no double value should ever cross a register
493 * boundary, it's safe to use the immediate offset in the indirect
494 * here to handle adding 4 bytes to the offset and avoid the extra
495 * ADD to the register file.
496 */
497 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
498 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
499 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
500 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
501 } else {
502 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
503
504 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
505
506 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
507 !inst->get_next()->is_tail_sentinel() &&
508 ((fs_inst *)inst->get_next())->mlen > 0) {
509 /* From the Sandybridge PRM:
510 *
511 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
512 * instruction that “indexed/indirect” source AND is followed
513 * by a send, the instruction requires a “Switch”. This is to
514 * avoid race condition where send may dispatch before MRF is
515 * updated."
516 */
517 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
518 }
519 }
520 }
521 }
522
523 void
524 fs_generator::generate_shuffle(fs_inst *inst,
525 struct brw_reg dst,
526 struct brw_reg src,
527 struct brw_reg idx)
528 {
529 /* Ivy bridge has some strange behavior that makes this a real pain to
530 * implement for 64-bit values so we just don't bother.
531 */
532 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
533
534 /* Because we're using the address register, we're limited to 8-wide
535 * execution on gen7. On gen8, we're limited to 16-wide by the address
536 * register file and 8-wide for 64-bit types. We could try and make this
537 * instruction splittable higher up in the compiler but that gets weird
538 * because it reads all of the channels regardless of execution size. It's
539 * easier just to split it here.
540 */
541 const unsigned lower_width =
542 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
543 8 : MIN2(16, inst->exec_size);
544
545 brw_set_default_exec_size(p, cvt(lower_width) - 1);
546 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
547 brw_set_default_group(p, group);
548
549 if ((src.vstride == 0 && src.hstride == 0) ||
550 idx.file == BRW_IMMEDIATE_VALUE) {
551 /* Trivial, the source is already uniform or the index is a constant.
552 * We will typically not get here if the optimizer is doing its job,
553 * but asserting would be mean.
554 */
555 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
556 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
557 } else {
558 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
559 struct brw_reg addr = vec8(brw_address_reg(0));
560
561 struct brw_reg group_idx = suboffset(idx, group);
562
563 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
564 /* Things get grumpy if the register is too wide. */
565 group_idx.width--;
566 group_idx.vstride--;
567 }
568
569 assert(type_sz(group_idx.type) <= 4);
570 if (type_sz(group_idx.type) == 4) {
571 /* The destination stride of an instruction (in bytes) must be
572 * greater than or equal to the size of the rest of the
573 * instruction. Since the address register is of type UW, we
574 * can't use a D-type instruction. In order to get around this,
575 * re retype to UW and use a stride.
576 */
577 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
578 }
579
580 /* Take into account the component size and horizontal stride. */
581 assert(src.vstride == src.hstride + src.width);
582 brw_SHL(p, addr, group_idx,
583 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
584 src.hstride - 1));
585
586 /* Add on the register start offset */
587 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
588
589 if (type_sz(src.type) > 4 &&
590 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
591 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
592 /* IVB has an issue (which we found empirically) where it reads
593 * two address register components per channel for indirectly
594 * addressed 64-bit sources.
595 *
596 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
597 *
598 * "When source or destination datatype is 64b or operation is
599 * integer DWord multiply, indirect addressing must not be
600 * used."
601 *
602 * To work around both of these, we do two integer MOVs insead of
603 * one 64-bit MOV. Because no double value should ever cross a
604 * register boundary, it's safe to use the immediate offset in the
605 * indirect here to handle adding 4 bytes to the offset and avoid
606 * the extra ADD to the register file.
607 */
608 struct brw_reg gdst = suboffset(dst, group);
609 struct brw_reg dst_d = retype(spread(gdst, 2),
610 BRW_REGISTER_TYPE_D);
611 brw_MOV(p, dst_d,
612 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
613 brw_MOV(p, byte_offset(dst_d, 4),
614 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
615 } else {
616 brw_MOV(p, suboffset(dst, group),
617 retype(brw_VxH_indirect(0, 0), src.type));
618 }
619 }
620 }
621 }
622
623 void
624 fs_generator::generate_quad_swizzle(const fs_inst *inst,
625 struct brw_reg dst, struct brw_reg src,
626 unsigned swiz)
627 {
628 /* Requires a quad. */
629 assert(inst->exec_size >= 4);
630
631 if (src.file == BRW_IMMEDIATE_VALUE ||
632 has_scalar_region(src)) {
633 /* The value is uniform across all channels */
634 brw_MOV(p, dst, src);
635
636 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
637 /* This only works on 8-wide 32-bit values */
638 assert(inst->exec_size == 8);
639 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
640 assert(src.vstride == src.width + 1);
641 brw_set_default_access_mode(p, BRW_ALIGN_16);
642 struct brw_reg swiz_src = stride(src, 4, 4, 1);
643 swiz_src.swizzle = swiz;
644 brw_MOV(p, dst, swiz_src);
645
646 } else {
647 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
648 assert(src.vstride == src.width + 1);
649 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
650
651 switch (swiz) {
652 case BRW_SWIZZLE_XXXX:
653 case BRW_SWIZZLE_YYYY:
654 case BRW_SWIZZLE_ZZZZ:
655 case BRW_SWIZZLE_WWWW:
656 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
657 break;
658
659 case BRW_SWIZZLE_XXZZ:
660 case BRW_SWIZZLE_YYWW:
661 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
662 break;
663
664 case BRW_SWIZZLE_XYXY:
665 case BRW_SWIZZLE_ZWZW:
666 assert(inst->exec_size == 4);
667 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
668 break;
669
670 default:
671 assert(inst->force_writemask_all);
672 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
673
674 for (unsigned c = 0; c < 4; c++) {
675 brw_inst *insn = brw_MOV(
676 p, stride(suboffset(dst, c),
677 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
678 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
679
680 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
681 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
682 }
683
684 break;
685 }
686 }
687 }
688
689 void
690 fs_generator::generate_urb_read(fs_inst *inst,
691 struct brw_reg dst,
692 struct brw_reg header)
693 {
694 assert(inst->size_written % REG_SIZE == 0);
695 assert(header.file == BRW_GENERAL_REGISTER_FILE);
696 assert(header.type == BRW_REGISTER_TYPE_UD);
697
698 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
699 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
700 brw_set_src0(p, send, header);
701 brw_set_src1(p, send, brw_imm_ud(0u));
702
703 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
704 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
705
706 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
707 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
708
709 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
710 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
711 brw_inst_set_header_present(p->devinfo, send, true);
712 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
713 }
714
715 void
716 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
717 {
718 brw_inst *insn;
719
720 /* WaClearTDRRegBeforeEOTForNonPS.
721 *
722 * WA: Clear tdr register before send EOT in all non-PS shader kernels
723 *
724 * mov(8) tdr0:ud 0x0:ud {NoMask}"
725 */
726 if (inst->eot && p->devinfo->gen == 10) {
727 brw_push_insn_state(p);
728 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
729 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
730 brw_pop_insn_state(p);
731 }
732
733 insn = brw_next_insn(p, BRW_OPCODE_SEND);
734
735 brw_set_dest(p, insn, brw_null_reg());
736 brw_set_src0(p, insn, payload);
737 brw_set_src1(p, insn, brw_imm_ud(0u));
738
739 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
740 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
741
742 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
743 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
744 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
745
746 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
747 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
748 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
749
750 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
751 brw_inst_set_rlen(p->devinfo, insn, 0);
752 brw_inst_set_eot(p->devinfo, insn, inst->eot);
753 brw_inst_set_header_present(p->devinfo, insn, true);
754 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
755 }
756
757 void
758 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
759 {
760 struct brw_inst *insn;
761
762 insn = brw_next_insn(p, BRW_OPCODE_SEND);
763
764 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
765 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
766 brw_set_src1(p, insn, brw_imm_ud(0u));
767
768 /* Terminate a compute shader by sending a message to the thread spawner.
769 */
770 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
771 brw_inst_set_mlen(devinfo, insn, 1);
772 brw_inst_set_rlen(devinfo, insn, 0);
773 brw_inst_set_eot(devinfo, insn, inst->eot);
774 brw_inst_set_header_present(devinfo, insn, false);
775
776 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
777 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
778
779 /* Note that even though the thread has a URB resource associated with it,
780 * we set the "do not dereference URB" bit, because the URB resource is
781 * managed by the fixed-function unit, so it will free it automatically.
782 */
783 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
784
785 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
786 }
787
788 void
789 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
790 {
791 brw_barrier(p, src);
792 brw_WAIT(p);
793 }
794
795 bool
796 fs_generator::generate_linterp(fs_inst *inst,
797 struct brw_reg dst, struct brw_reg *src)
798 {
799 /* PLN reads:
800 * / in SIMD16 \
801 * -----------------------------------
802 * | src1+0 | src1+1 | src1+2 | src1+3 |
803 * |-----------------------------------|
804 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
805 * -----------------------------------
806 *
807 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
808 *
809 * -----------------------------------
810 * | src1+0 | src1+1 | src1+2 | src1+3 |
811 * |-----------------------------------|
812 * |(x0, x1)|(y0, y1)| | | in SIMD8
813 * |-----------------------------------|
814 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
815 * -----------------------------------
816 *
817 * See also: emit_interpolation_setup_gen4().
818 */
819 struct brw_reg delta_x = src[0];
820 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
821 struct brw_reg interp = src[1];
822 brw_inst *i[4];
823
824 if (devinfo->gen >= 11) {
825 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_NF);
826 struct brw_reg dwP = suboffset(interp, 0);
827 struct brw_reg dwQ = suboffset(interp, 1);
828 struct brw_reg dwR = suboffset(interp, 3);
829
830 brw_push_insn_state(p);
831 brw_set_default_exec_size(p, BRW_EXECUTE_8);
832
833 if (inst->exec_size == 8) {
834 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
835 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_y, 0), dwQ);
836
837 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
838
839 /* brw_set_default_saturate() is called before emitting instructions,
840 * so the saturate bit is set in each instruction, so we need to unset
841 * it on the first instruction of each pair.
842 */
843 brw_inst_set_saturate(p->devinfo, i[0], false);
844 } else {
845 brw_set_default_group(p, inst->group);
846 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
847 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_x, 1), dwQ);
848
849 brw_set_default_group(p, inst->group + 8);
850 i[2] = brw_MAD(p, acc, dwR, offset(delta_y, 0), dwP);
851 i[3] = brw_MAD(p, offset(dst, 1), acc, offset(delta_y, 1), dwQ);
852
853 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
854 brw_inst_set_cond_modifier(p->devinfo, i[3], inst->conditional_mod);
855
856 /* brw_set_default_saturate() is called before emitting instructions,
857 * so the saturate bit is set in each instruction, so we need to unset
858 * it on the first instruction of each pair.
859 */
860 brw_inst_set_saturate(p->devinfo, i[0], false);
861 brw_inst_set_saturate(p->devinfo, i[2], false);
862 }
863
864 brw_pop_insn_state(p);
865
866 return true;
867 } else if (devinfo->has_pln) {
868 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
869 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
870 *
871 * "[DevSNB]:<src1> must be even register aligned.
872 *
873 * This restriction is lifted on Ivy Bridge.
874 *
875 * This means that we need to split PLN into LINE+MAC on-the-fly.
876 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
877 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
878 * coordinate registers are laid out differently so we leave it as a
879 * SIMD16 instruction.
880 */
881 assert(inst->exec_size == 8 || inst->exec_size == 16);
882 assert(inst->group % 16 == 0);
883
884 brw_push_insn_state(p);
885 brw_set_default_exec_size(p, BRW_EXECUTE_8);
886
887 /* Thanks to two accumulators, we can emit all the LINEs and then all
888 * the MACs. This improves parallelism a bit.
889 */
890 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
891 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
892 offset(delta_x, g * 2));
893 brw_inst_set_group(devinfo, line, inst->group + g * 8);
894
895 /* LINE writes the accumulator automatically on gen4-5. On Sandy
896 * Bridge and later, we have to explicitly enable it.
897 */
898 if (devinfo->gen >= 6)
899 brw_inst_set_acc_wr_control(p->devinfo, line, true);
900
901 /* brw_set_default_saturate() is called before emitting
902 * instructions, so the saturate bit is set in each instruction,
903 * so we need to unset it on the LINE instructions.
904 */
905 brw_inst_set_saturate(p->devinfo, line, false);
906 }
907
908 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
909 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
910 offset(delta_x, g * 2 + 1));
911 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
912 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
913 }
914
915 brw_pop_insn_state(p);
916
917 return true;
918 } else {
919 brw_PLN(p, dst, interp, delta_x);
920
921 return false;
922 }
923 } else {
924 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
925 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
926
927 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
928
929 /* brw_set_default_saturate() is called before emitting instructions, so
930 * the saturate bit is set in each instruction, so we need to unset it on
931 * the first instruction.
932 */
933 brw_inst_set_saturate(p->devinfo, i[0], false);
934
935 return true;
936 }
937 }
938
939 void
940 fs_generator::generate_get_buffer_size(fs_inst *inst,
941 struct brw_reg dst,
942 struct brw_reg src,
943 struct brw_reg surf_index)
944 {
945 assert(devinfo->gen >= 7);
946 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
947
948 uint32_t simd_mode;
949 int rlen = 4;
950
951 switch (inst->exec_size) {
952 case 8:
953 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
954 break;
955 case 16:
956 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
957 break;
958 default:
959 unreachable("Invalid width for texture instruction");
960 }
961
962 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
963 rlen = 8;
964 dst = vec16(dst);
965 }
966
967 brw_SAMPLE(p,
968 retype(dst, BRW_REGISTER_TYPE_UW),
969 inst->base_mrf,
970 src,
971 surf_index.ud,
972 0,
973 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
974 rlen, /* response length */
975 inst->mlen,
976 inst->header_size > 0,
977 simd_mode,
978 BRW_SAMPLER_RETURN_FORMAT_SINT32);
979 }
980
981 void
982 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
983 struct brw_reg surface_index,
984 struct brw_reg sampler_index)
985 {
986 assert(devinfo->gen < 7);
987 assert(inst->size_written % REG_SIZE == 0);
988 int msg_type = -1;
989 uint32_t simd_mode;
990 uint32_t return_format;
991
992 /* Sampler EOT message of less than the dispatch width would kill the
993 * thread prematurely.
994 */
995 assert(!inst->eot || inst->exec_size == dispatch_width);
996
997 switch (dst.type) {
998 case BRW_REGISTER_TYPE_D:
999 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
1000 break;
1001 case BRW_REGISTER_TYPE_UD:
1002 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
1003 break;
1004 default:
1005 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1006 break;
1007 }
1008
1009 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
1010 * is set as part of the message descriptor. On gen4, the PRM seems to
1011 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
1012 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
1013 * gone from the message descriptor entirely and you just get UINT32 all
1014 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
1015 * just stomp it to UINT32 all the time.
1016 */
1017 if (inst->opcode == SHADER_OPCODE_TXS)
1018 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
1019
1020 switch (inst->exec_size) {
1021 case 8:
1022 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1023 break;
1024 case 16:
1025 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1026 break;
1027 default:
1028 unreachable("Invalid width for texture instruction");
1029 }
1030
1031 if (devinfo->gen >= 5) {
1032 switch (inst->opcode) {
1033 case SHADER_OPCODE_TEX:
1034 if (inst->shadow_compare) {
1035 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
1036 } else {
1037 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
1038 }
1039 break;
1040 case FS_OPCODE_TXB:
1041 if (inst->shadow_compare) {
1042 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
1043 } else {
1044 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
1045 }
1046 break;
1047 case SHADER_OPCODE_TXL:
1048 if (inst->shadow_compare) {
1049 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
1050 } else {
1051 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
1052 }
1053 break;
1054 case SHADER_OPCODE_TXS:
1055 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
1056 break;
1057 case SHADER_OPCODE_TXD:
1058 assert(!inst->shadow_compare);
1059 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1060 break;
1061 case SHADER_OPCODE_TXF:
1062 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1063 break;
1064 case SHADER_OPCODE_TXF_CMS:
1065 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1066 break;
1067 case SHADER_OPCODE_LOD:
1068 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1069 break;
1070 case SHADER_OPCODE_TG4:
1071 assert(devinfo->gen == 6);
1072 assert(!inst->shadow_compare);
1073 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1074 break;
1075 case SHADER_OPCODE_SAMPLEINFO:
1076 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1077 break;
1078 default:
1079 unreachable("not reached");
1080 }
1081 } else {
1082 switch (inst->opcode) {
1083 case SHADER_OPCODE_TEX:
1084 /* Note that G45 and older determines shadow compare and dispatch width
1085 * from message length for most messages.
1086 */
1087 if (inst->exec_size == 8) {
1088 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1089 if (inst->shadow_compare) {
1090 assert(inst->mlen == 6);
1091 } else {
1092 assert(inst->mlen <= 4);
1093 }
1094 } else {
1095 if (inst->shadow_compare) {
1096 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1097 assert(inst->mlen == 9);
1098 } else {
1099 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1100 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1101 }
1102 }
1103 break;
1104 case FS_OPCODE_TXB:
1105 if (inst->shadow_compare) {
1106 assert(inst->exec_size == 8);
1107 assert(inst->mlen == 6);
1108 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1109 } else {
1110 assert(inst->mlen == 9);
1111 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1112 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1113 }
1114 break;
1115 case SHADER_OPCODE_TXL:
1116 if (inst->shadow_compare) {
1117 assert(inst->exec_size == 8);
1118 assert(inst->mlen == 6);
1119 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1120 } else {
1121 assert(inst->mlen == 9);
1122 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1123 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1124 }
1125 break;
1126 case SHADER_OPCODE_TXD:
1127 /* There is no sample_d_c message; comparisons are done manually */
1128 assert(inst->exec_size == 8);
1129 assert(inst->mlen == 7 || inst->mlen == 10);
1130 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1131 break;
1132 case SHADER_OPCODE_TXF:
1133 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1134 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1135 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1136 break;
1137 case SHADER_OPCODE_TXS:
1138 assert(inst->mlen == 3);
1139 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1140 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1141 break;
1142 default:
1143 unreachable("not reached");
1144 }
1145 }
1146 assert(msg_type != -1);
1147
1148 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1149 dst = vec16(dst);
1150 }
1151
1152 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1153
1154 /* Load the message header if present. If there's a texture offset,
1155 * we need to set it up explicitly and load the offset bitfield.
1156 * Otherwise, we can use an implied move from g0 to the first message reg.
1157 */
1158 struct brw_reg src = brw_null_reg();
1159 if (inst->header_size != 0) {
1160 if (devinfo->gen < 6 && !inst->offset) {
1161 /* Set up an implied move from g0 to the MRF. */
1162 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1163 } else {
1164 assert(inst->base_mrf != -1);
1165 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1166
1167 brw_push_insn_state(p);
1168 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1169 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1170 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1171 /* Explicitly set up the message header by copying g0 to the MRF. */
1172 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1173
1174 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1175 if (inst->offset) {
1176 /* Set the offset bits in DWord 2. */
1177 brw_MOV(p, get_element_ud(header_reg, 2),
1178 brw_imm_ud(inst->offset));
1179 }
1180
1181 brw_pop_insn_state(p);
1182 }
1183 }
1184
1185 uint32_t base_binding_table_index;
1186 switch (inst->opcode) {
1187 case SHADER_OPCODE_TG4:
1188 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1189 break;
1190 default:
1191 base_binding_table_index = prog_data->binding_table.texture_start;
1192 break;
1193 }
1194
1195 assert(surface_index.file == BRW_IMMEDIATE_VALUE);
1196 assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
1197
1198 brw_SAMPLE(p,
1199 retype(dst, BRW_REGISTER_TYPE_UW),
1200 inst->base_mrf,
1201 src,
1202 surface_index.ud + base_binding_table_index,
1203 sampler_index.ud % 16,
1204 msg_type,
1205 inst->size_written / REG_SIZE,
1206 inst->mlen,
1207 inst->header_size != 0,
1208 simd_mode,
1209 return_format);
1210 }
1211
1212
1213 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1214 * looking like:
1215 *
1216 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1217 *
1218 * Ideally, we want to produce:
1219 *
1220 * DDX DDY
1221 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1222 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1223 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1224 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1225 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1226 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1227 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1228 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1229 *
1230 * and add another set of two more subspans if in 16-pixel dispatch mode.
1231 *
1232 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1233 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1234 * pair. But the ideal approximation may impose a huge performance cost on
1235 * sample_d. On at least Haswell, sample_d instruction does some
1236 * optimizations if the same LOD is used for all pixels in the subspan.
1237 *
1238 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1239 * appropriate swizzling.
1240 */
1241 void
1242 fs_generator::generate_ddx(const fs_inst *inst,
1243 struct brw_reg dst, struct brw_reg src)
1244 {
1245 unsigned vstride, width;
1246
1247 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1248 /* produce accurate derivatives */
1249 vstride = BRW_VERTICAL_STRIDE_2;
1250 width = BRW_WIDTH_2;
1251 } else {
1252 /* replicate the derivative at the top-left pixel to other pixels */
1253 vstride = BRW_VERTICAL_STRIDE_4;
1254 width = BRW_WIDTH_4;
1255 }
1256
1257 struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
1258 struct brw_reg src1 = src;
1259
1260 src0.vstride = vstride;
1261 src0.width = width;
1262 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1263 src1.vstride = vstride;
1264 src1.width = width;
1265 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1266
1267 brw_ADD(p, dst, src0, negate(src1));
1268 }
1269
1270 /* The negate_value boolean is used to negate the derivative computation for
1271 * FBOs, since they place the origin at the upper left instead of the lower
1272 * left.
1273 */
1274 void
1275 fs_generator::generate_ddy(const fs_inst *inst,
1276 struct brw_reg dst, struct brw_reg src)
1277 {
1278 const uint32_t type_size = type_sz(src.type);
1279
1280 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1281 /* produce accurate derivatives */
1282 if (devinfo->gen >= 11) {
1283 src = stride(src, 0, 2, 1);
1284 struct brw_reg src_0 = byte_offset(src, 0 * type_size);
1285 struct brw_reg src_2 = byte_offset(src, 2 * type_size);
1286 struct brw_reg src_4 = byte_offset(src, 4 * type_size);
1287 struct brw_reg src_6 = byte_offset(src, 6 * type_size);
1288 struct brw_reg src_8 = byte_offset(src, 8 * type_size);
1289 struct brw_reg src_10 = byte_offset(src, 10 * type_size);
1290 struct brw_reg src_12 = byte_offset(src, 12 * type_size);
1291 struct brw_reg src_14 = byte_offset(src, 14 * type_size);
1292
1293 struct brw_reg dst_0 = byte_offset(dst, 0 * type_size);
1294 struct brw_reg dst_4 = byte_offset(dst, 4 * type_size);
1295 struct brw_reg dst_8 = byte_offset(dst, 8 * type_size);
1296 struct brw_reg dst_12 = byte_offset(dst, 12 * type_size);
1297
1298 brw_push_insn_state(p);
1299 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1300
1301 brw_ADD(p, dst_0, negate(src_0), src_2);
1302 brw_ADD(p, dst_4, negate(src_4), src_6);
1303
1304 if (inst->exec_size == 16) {
1305 brw_ADD(p, dst_8, negate(src_8), src_10);
1306 brw_ADD(p, dst_12, negate(src_12), src_14);
1307 }
1308
1309 brw_pop_insn_state(p);
1310 } else {
1311 struct brw_reg src0 = stride(src, 4, 4, 1);
1312 struct brw_reg src1 = stride(src, 4, 4, 1);
1313 src0.swizzle = BRW_SWIZZLE_XYXY;
1314 src1.swizzle = BRW_SWIZZLE_ZWZW;
1315
1316 brw_push_insn_state(p);
1317 brw_set_default_access_mode(p, BRW_ALIGN_16);
1318 brw_ADD(p, dst, negate(src0), src1);
1319 brw_pop_insn_state(p);
1320 }
1321 } else {
1322 /* replicate the derivative at the top-left pixel to other pixels */
1323 struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
1324 struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
1325
1326 brw_ADD(p, dst, negate(src0), src1);
1327 }
1328 }
1329
1330 void
1331 fs_generator::generate_discard_jump(fs_inst *)
1332 {
1333 assert(devinfo->gen >= 6);
1334
1335 /* This HALT will be patched up at FB write time to point UIP at the end of
1336 * the program, and at brw_uip_jip() JIP will be set to the end of the
1337 * current block (or the program).
1338 */
1339 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1340 gen6_HALT(p);
1341 }
1342
1343 void
1344 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1345 {
1346 /* The 32-wide messages only respect the first 16-wide half of the channel
1347 * enable signals which are replicated identically for the second group of
1348 * 16 channels, so we cannot use them unless the write is marked
1349 * force_writemask_all.
1350 */
1351 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1352 MIN2(16, inst->exec_size);
1353 const unsigned block_size = 4 * lower_size / REG_SIZE;
1354 assert(inst->mlen != 0);
1355
1356 brw_push_insn_state(p);
1357 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1358 brw_set_default_compression(p, lower_size > 8);
1359
1360 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1361 brw_set_default_group(p, inst->group + lower_size * i);
1362
1363 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1364 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1365
1366 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1367 block_size,
1368 inst->offset + block_size * REG_SIZE * i);
1369 }
1370
1371 brw_pop_insn_state(p);
1372 }
1373
1374 void
1375 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1376 {
1377 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1378 assert(inst->mlen != 0);
1379
1380 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1381 inst->exec_size / 8, inst->offset);
1382 }
1383
1384 void
1385 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1386 {
1387 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1388
1389 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1390 }
1391
1392 void
1393 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1394 struct brw_reg dst,
1395 struct brw_reg index,
1396 struct brw_reg offset)
1397 {
1398 assert(type_sz(dst.type) == 4);
1399 assert(inst->mlen != 0);
1400
1401 assert(index.file == BRW_IMMEDIATE_VALUE &&
1402 index.type == BRW_REGISTER_TYPE_UD);
1403 uint32_t surf_index = index.ud;
1404
1405 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1406 offset.type == BRW_REGISTER_TYPE_UD);
1407 uint32_t read_offset = offset.ud;
1408
1409 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1410 read_offset, surf_index);
1411 }
1412
1413 void
1414 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1415 struct brw_reg dst,
1416 struct brw_reg index,
1417 struct brw_reg payload)
1418 {
1419 assert(index.type == BRW_REGISTER_TYPE_UD);
1420 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1421 assert(type_sz(dst.type) == 4);
1422
1423 if (index.file == BRW_IMMEDIATE_VALUE) {
1424 const uint32_t surf_index = index.ud;
1425
1426 brw_push_insn_state(p);
1427 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1428 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1429 brw_pop_insn_state(p);
1430
1431 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1432 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1433 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1434 brw_set_desc(p, send,
1435 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1436 REG_SIZE), true) |
1437 brw_dp_read_desc(devinfo, surf_index,
1438 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1439 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1440 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1441
1442 } else {
1443 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1444
1445 brw_push_insn_state(p);
1446 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1447
1448 /* a0.0 = surf_index & 0xff */
1449 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1450 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1451 brw_set_dest(p, insn_and, addr);
1452 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1453 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1454
1455 /* dst = send(payload, a0.0 | <descriptor>) */
1456 brw_send_indirect_message(
1457 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1458 retype(dst, BRW_REGISTER_TYPE_UD),
1459 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1460 brw_message_desc(devinfo, 1,
1461 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1462 brw_dp_read_desc(devinfo, 0 /* surface */,
1463 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1464 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1465 BRW_DATAPORT_READ_TARGET_DATA_CACHE),
1466 false /* EOT */);
1467
1468 brw_pop_insn_state(p);
1469 }
1470 }
1471
1472 void
1473 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1474 struct brw_reg dst,
1475 struct brw_reg index)
1476 {
1477 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1478 assert(inst->header_size != 0);
1479 assert(inst->mlen);
1480
1481 assert(index.file == BRW_IMMEDIATE_VALUE &&
1482 index.type == BRW_REGISTER_TYPE_UD);
1483 uint32_t surf_index = index.ud;
1484
1485 uint32_t simd_mode, rlen, msg_type;
1486 if (inst->exec_size == 16) {
1487 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1488 rlen = 8;
1489 } else {
1490 assert(inst->exec_size == 8);
1491 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1492 rlen = 4;
1493 }
1494
1495 if (devinfo->gen >= 5)
1496 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1497 else {
1498 /* We always use the SIMD16 message so that we only have to load U, and
1499 * not V or R.
1500 */
1501 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1502 assert(inst->mlen == 3);
1503 assert(inst->size_written == 8 * REG_SIZE);
1504 rlen = 8;
1505 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1506 }
1507
1508 struct brw_reg header = brw_vec8_grf(0, 0);
1509 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1510
1511 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1512 brw_inst_set_compression(devinfo, send, false);
1513 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1514 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1515 brw_set_src0(p, send, header);
1516 if (devinfo->gen < 6)
1517 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1518
1519 /* Our surface is set up as floats, regardless of what actual data is
1520 * stored in it.
1521 */
1522 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1523 brw_set_desc(p, send,
1524 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1525 brw_sampler_desc(devinfo, surf_index,
1526 0, /* sampler (unused) */
1527 msg_type, simd_mode, return_format));
1528 }
1529
1530 void
1531 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1532 struct brw_reg dst,
1533 struct brw_reg src,
1534 struct brw_reg msg_data,
1535 unsigned msg_type)
1536 {
1537 const bool has_payload = inst->src[0].file != BAD_FILE;
1538 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1539 assert(inst->size_written % REG_SIZE == 0);
1540
1541 brw_pixel_interpolator_query(p,
1542 retype(dst, BRW_REGISTER_TYPE_UW),
1543 /* If we don't have a payload, what we send doesn't matter */
1544 has_payload ? src : brw_vec8_grf(0, 0),
1545 inst->pi_noperspective,
1546 msg_type,
1547 msg_data,
1548 has_payload ? 2 * inst->exec_size / 8 : 1,
1549 inst->size_written / REG_SIZE);
1550 }
1551
1552 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1553 * the ADD instruction.
1554 */
1555 void
1556 fs_generator::generate_set_sample_id(fs_inst *inst,
1557 struct brw_reg dst,
1558 struct brw_reg src0,
1559 struct brw_reg src1)
1560 {
1561 assert(dst.type == BRW_REGISTER_TYPE_D ||
1562 dst.type == BRW_REGISTER_TYPE_UD);
1563 assert(src0.type == BRW_REGISTER_TYPE_D ||
1564 src0.type == BRW_REGISTER_TYPE_UD);
1565
1566 const struct brw_reg reg = stride(src1, 1, 4, 0);
1567 const unsigned lower_size = MIN2(inst->exec_size,
1568 devinfo->gen >= 8 ? 16 : 8);
1569
1570 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1571 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1572 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1573 (i * lower_size / (1 << src0.width))) *
1574 type_sz(src0.type) / REG_SIZE),
1575 suboffset(reg, i * lower_size / 4));
1576 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1577 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1578 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1579 }
1580 }
1581
1582 void
1583 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1584 struct brw_reg dst,
1585 struct brw_reg x,
1586 struct brw_reg y)
1587 {
1588 assert(devinfo->gen >= 7);
1589 assert(dst.type == BRW_REGISTER_TYPE_UD);
1590 assert(x.type == BRW_REGISTER_TYPE_F);
1591 assert(y.type == BRW_REGISTER_TYPE_F);
1592
1593 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1594 *
1595 * Because this instruction does not have a 16-bit floating-point type,
1596 * the destination data type must be Word (W).
1597 *
1598 * The destination must be DWord-aligned and specify a horizontal stride
1599 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1600 * each destination channel and the upper word is not modified.
1601 */
1602 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1603
1604 /* Give each 32-bit channel of dst the form below, where "." means
1605 * unchanged.
1606 * 0x....hhhh
1607 */
1608 brw_F32TO16(p, dst_w, y);
1609
1610 /* Now the form:
1611 * 0xhhhh0000
1612 */
1613 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1614
1615 /* And, finally the form of packHalf2x16's output:
1616 * 0xhhhhllll
1617 */
1618 brw_F32TO16(p, dst_w, x);
1619 }
1620
1621 void
1622 fs_generator::generate_shader_time_add(fs_inst *,
1623 struct brw_reg payload,
1624 struct brw_reg offset,
1625 struct brw_reg value)
1626 {
1627 assert(devinfo->gen >= 7);
1628 brw_push_insn_state(p);
1629 brw_set_default_mask_control(p, true);
1630
1631 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1632 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1633 offset.type);
1634 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1635 value.type);
1636
1637 assert(offset.file == BRW_IMMEDIATE_VALUE);
1638 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1639 value.width = BRW_WIDTH_1;
1640 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1641 value.vstride = BRW_VERTICAL_STRIDE_0;
1642 } else {
1643 assert(value.file == BRW_IMMEDIATE_VALUE);
1644 }
1645
1646 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1647 * case, and we don't really care about squeezing every bit of performance
1648 * out of this path, so we just emit the MOVs from here.
1649 */
1650 brw_MOV(p, payload_offset, offset);
1651 brw_MOV(p, payload_value, value);
1652 brw_shader_time_add(p, payload,
1653 prog_data->binding_table.shader_time_start);
1654 brw_pop_insn_state(p);
1655 }
1656
1657 void
1658 fs_generator::enable_debug(const char *shader_name)
1659 {
1660 debug_flag = true;
1661 this->shader_name = shader_name;
1662 }
1663
1664 int
1665 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width)
1666 {
1667 /* align to 64 byte boundary. */
1668 while (p->next_insn_offset % 64)
1669 brw_NOP(p);
1670
1671 this->dispatch_width = dispatch_width;
1672
1673 int start_offset = p->next_insn_offset;
1674 int spill_count = 0, fill_count = 0;
1675 int loop_count = 0;
1676
1677 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1678
1679 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1680 struct brw_reg src[4], dst;
1681 unsigned int last_insn_offset = p->next_insn_offset;
1682 bool multiple_instructions_emitted = false;
1683
1684 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1685 * "Register Region Restrictions" section: for BDW, SKL:
1686 *
1687 * "A POW/FDIV operation must not be followed by an instruction
1688 * that requires two destination registers."
1689 *
1690 * The documentation is often lacking annotations for Atom parts,
1691 * and empirically this affects CHV as well.
1692 */
1693 if (devinfo->gen >= 8 &&
1694 devinfo->gen <= 9 &&
1695 p->nr_insn > 1 &&
1696 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1697 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1698 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1699 brw_NOP(p);
1700 last_insn_offset = p->next_insn_offset;
1701 }
1702
1703 if (unlikely(debug_flag))
1704 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1705
1706 /* If the instruction writes to more than one register, it needs to be
1707 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1708 * hardware figures out by itself what the right compression mode is,
1709 * but we still need to know whether the instruction is compressed to
1710 * set up the source register regions appropriately.
1711 *
1712 * XXX - This is wrong for instructions that write a single register but
1713 * read more than one which should strictly speaking be treated as
1714 * compressed. For instructions that don't write any registers it
1715 * relies on the destination being a null register of the correct
1716 * type and regioning so the instruction is considered compressed
1717 * or not accordingly.
1718 */
1719 const bool compressed =
1720 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1721 brw_set_default_compression(p, compressed);
1722 brw_set_default_group(p, inst->group);
1723
1724 for (unsigned int i = 0; i < inst->sources; i++) {
1725 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1726 &inst->src[i], compressed);
1727 /* The accumulator result appears to get used for the
1728 * conditional modifier generation. When negating a UD
1729 * value, there is a 33rd bit generated for the sign in the
1730 * accumulator value, so now you can't check, for example,
1731 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1732 */
1733 assert(!inst->conditional_mod ||
1734 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1735 !inst->src[i].negate);
1736 }
1737 dst = brw_reg_from_fs_reg(devinfo, inst,
1738 &inst->dst, compressed);
1739
1740 brw_set_default_access_mode(p, BRW_ALIGN_1);
1741 brw_set_default_predicate_control(p, inst->predicate);
1742 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1743 /* On gen7 and above, hardware automatically adds the group onto the
1744 * flag subregister number. On Sandy Bridge and older, we have to do it
1745 * ourselves.
1746 */
1747 const unsigned flag_subreg = inst->flag_subreg +
1748 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1749 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1750 brw_set_default_saturate(p, inst->saturate);
1751 brw_set_default_mask_control(p, inst->force_writemask_all);
1752 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1753
1754 unsigned exec_size = inst->exec_size;
1755 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1756 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1757 exec_size *= 2;
1758 }
1759
1760 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1761
1762 assert(inst->force_writemask_all || inst->exec_size >= 4);
1763 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1764 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1765 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1766
1767 switch (inst->opcode) {
1768 case BRW_OPCODE_MOV:
1769 brw_MOV(p, dst, src[0]);
1770 break;
1771 case BRW_OPCODE_ADD:
1772 brw_ADD(p, dst, src[0], src[1]);
1773 break;
1774 case BRW_OPCODE_MUL:
1775 brw_MUL(p, dst, src[0], src[1]);
1776 break;
1777 case BRW_OPCODE_AVG:
1778 brw_AVG(p, dst, src[0], src[1]);
1779 break;
1780 case BRW_OPCODE_MACH:
1781 brw_MACH(p, dst, src[0], src[1]);
1782 break;
1783
1784 case BRW_OPCODE_LINE:
1785 brw_LINE(p, dst, src[0], src[1]);
1786 break;
1787
1788 case BRW_OPCODE_MAD:
1789 assert(devinfo->gen >= 6);
1790 if (devinfo->gen < 10)
1791 brw_set_default_access_mode(p, BRW_ALIGN_16);
1792 brw_MAD(p, dst, src[0], src[1], src[2]);
1793 break;
1794
1795 case BRW_OPCODE_LRP:
1796 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1797 if (devinfo->gen < 10)
1798 brw_set_default_access_mode(p, BRW_ALIGN_16);
1799 brw_LRP(p, dst, src[0], src[1], src[2]);
1800 break;
1801
1802 case BRW_OPCODE_FRC:
1803 brw_FRC(p, dst, src[0]);
1804 break;
1805 case BRW_OPCODE_RNDD:
1806 brw_RNDD(p, dst, src[0]);
1807 break;
1808 case BRW_OPCODE_RNDE:
1809 brw_RNDE(p, dst, src[0]);
1810 break;
1811 case BRW_OPCODE_RNDZ:
1812 brw_RNDZ(p, dst, src[0]);
1813 break;
1814
1815 case BRW_OPCODE_AND:
1816 brw_AND(p, dst, src[0], src[1]);
1817 break;
1818 case BRW_OPCODE_OR:
1819 brw_OR(p, dst, src[0], src[1]);
1820 break;
1821 case BRW_OPCODE_XOR:
1822 brw_XOR(p, dst, src[0], src[1]);
1823 break;
1824 case BRW_OPCODE_NOT:
1825 brw_NOT(p, dst, src[0]);
1826 break;
1827 case BRW_OPCODE_ASR:
1828 brw_ASR(p, dst, src[0], src[1]);
1829 break;
1830 case BRW_OPCODE_SHR:
1831 brw_SHR(p, dst, src[0], src[1]);
1832 break;
1833 case BRW_OPCODE_SHL:
1834 brw_SHL(p, dst, src[0], src[1]);
1835 break;
1836 case BRW_OPCODE_F32TO16:
1837 assert(devinfo->gen >= 7);
1838 brw_F32TO16(p, dst, src[0]);
1839 break;
1840 case BRW_OPCODE_F16TO32:
1841 assert(devinfo->gen >= 7);
1842 brw_F16TO32(p, dst, src[0]);
1843 break;
1844 case BRW_OPCODE_CMP:
1845 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1846 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1847 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1848 * implemented in the compiler is not sufficient. Overriding the
1849 * type when the destination is the null register is necessary but
1850 * not sufficient by itself.
1851 */
1852 assert(dst.nr == BRW_ARF_NULL);
1853 dst.type = BRW_REGISTER_TYPE_D;
1854 }
1855 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1856 break;
1857 case BRW_OPCODE_SEL:
1858 brw_SEL(p, dst, src[0], src[1]);
1859 break;
1860 case BRW_OPCODE_CSEL:
1861 assert(devinfo->gen >= 8);
1862 if (devinfo->gen < 10)
1863 brw_set_default_access_mode(p, BRW_ALIGN_16);
1864 brw_CSEL(p, dst, src[0], src[1], src[2]);
1865 break;
1866 case BRW_OPCODE_BFREV:
1867 assert(devinfo->gen >= 7);
1868 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1869 retype(src[0], BRW_REGISTER_TYPE_UD));
1870 break;
1871 case BRW_OPCODE_FBH:
1872 assert(devinfo->gen >= 7);
1873 brw_FBH(p, retype(dst, src[0].type), src[0]);
1874 break;
1875 case BRW_OPCODE_FBL:
1876 assert(devinfo->gen >= 7);
1877 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1878 retype(src[0], BRW_REGISTER_TYPE_UD));
1879 break;
1880 case BRW_OPCODE_LZD:
1881 brw_LZD(p, dst, src[0]);
1882 break;
1883 case BRW_OPCODE_CBIT:
1884 assert(devinfo->gen >= 7);
1885 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1886 retype(src[0], BRW_REGISTER_TYPE_UD));
1887 break;
1888 case BRW_OPCODE_ADDC:
1889 assert(devinfo->gen >= 7);
1890 brw_ADDC(p, dst, src[0], src[1]);
1891 break;
1892 case BRW_OPCODE_SUBB:
1893 assert(devinfo->gen >= 7);
1894 brw_SUBB(p, dst, src[0], src[1]);
1895 break;
1896 case BRW_OPCODE_MAC:
1897 brw_MAC(p, dst, src[0], src[1]);
1898 break;
1899
1900 case BRW_OPCODE_BFE:
1901 assert(devinfo->gen >= 7);
1902 if (devinfo->gen < 10)
1903 brw_set_default_access_mode(p, BRW_ALIGN_16);
1904 brw_BFE(p, dst, src[0], src[1], src[2]);
1905 break;
1906
1907 case BRW_OPCODE_BFI1:
1908 assert(devinfo->gen >= 7);
1909 brw_BFI1(p, dst, src[0], src[1]);
1910 break;
1911 case BRW_OPCODE_BFI2:
1912 assert(devinfo->gen >= 7);
1913 if (devinfo->gen < 10)
1914 brw_set_default_access_mode(p, BRW_ALIGN_16);
1915 brw_BFI2(p, dst, src[0], src[1], src[2]);
1916 break;
1917
1918 case BRW_OPCODE_IF:
1919 if (inst->src[0].file != BAD_FILE) {
1920 /* The instruction has an embedded compare (only allowed on gen6) */
1921 assert(devinfo->gen == 6);
1922 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
1923 } else {
1924 brw_IF(p, brw_get_default_exec_size(p));
1925 }
1926 break;
1927
1928 case BRW_OPCODE_ELSE:
1929 brw_ELSE(p);
1930 break;
1931 case BRW_OPCODE_ENDIF:
1932 brw_ENDIF(p);
1933 break;
1934
1935 case BRW_OPCODE_DO:
1936 brw_DO(p, brw_get_default_exec_size(p));
1937 break;
1938
1939 case BRW_OPCODE_BREAK:
1940 brw_BREAK(p);
1941 break;
1942 case BRW_OPCODE_CONTINUE:
1943 brw_CONT(p);
1944 break;
1945
1946 case BRW_OPCODE_WHILE:
1947 brw_WHILE(p);
1948 loop_count++;
1949 break;
1950
1951 case SHADER_OPCODE_RCP:
1952 case SHADER_OPCODE_RSQ:
1953 case SHADER_OPCODE_SQRT:
1954 case SHADER_OPCODE_EXP2:
1955 case SHADER_OPCODE_LOG2:
1956 case SHADER_OPCODE_SIN:
1957 case SHADER_OPCODE_COS:
1958 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1959 if (devinfo->gen >= 6) {
1960 assert(inst->mlen == 0);
1961 assert(devinfo->gen >= 7 || inst->exec_size == 8);
1962 gen6_math(p, dst, brw_math_function(inst->opcode),
1963 src[0], brw_null_reg());
1964 } else {
1965 assert(inst->mlen >= 1);
1966 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
1967 gen4_math(p, dst,
1968 brw_math_function(inst->opcode),
1969 inst->base_mrf, src[0],
1970 BRW_MATH_PRECISION_FULL);
1971 }
1972 break;
1973 case SHADER_OPCODE_INT_QUOTIENT:
1974 case SHADER_OPCODE_INT_REMAINDER:
1975 case SHADER_OPCODE_POW:
1976 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1977 if (devinfo->gen >= 6) {
1978 assert(inst->mlen == 0);
1979 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
1980 inst->exec_size == 8);
1981 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1982 } else {
1983 assert(inst->mlen >= 1);
1984 assert(inst->exec_size == 8);
1985 gen4_math(p, dst, brw_math_function(inst->opcode),
1986 inst->base_mrf, src[0],
1987 BRW_MATH_PRECISION_FULL);
1988 }
1989 break;
1990 case FS_OPCODE_LINTERP:
1991 multiple_instructions_emitted = generate_linterp(inst, dst, src);
1992 break;
1993 case FS_OPCODE_PIXEL_X:
1994 assert(src[0].type == BRW_REGISTER_TYPE_UW);
1995 src[0].subnr = 0 * type_sz(src[0].type);
1996 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
1997 break;
1998 case FS_OPCODE_PIXEL_Y:
1999 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2000 src[0].subnr = 4 * type_sz(src[0].type);
2001 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2002 break;
2003
2004 case SHADER_OPCODE_SEND:
2005 generate_send(inst, dst, src[0], src[1], src[2],
2006 inst->ex_mlen > 0 ? src[3] : brw_null_reg());
2007 break;
2008
2009 case SHADER_OPCODE_GET_BUFFER_SIZE:
2010 generate_get_buffer_size(inst, dst, src[0], src[1]);
2011 break;
2012 case SHADER_OPCODE_TEX:
2013 case FS_OPCODE_TXB:
2014 case SHADER_OPCODE_TXD:
2015 case SHADER_OPCODE_TXF:
2016 case SHADER_OPCODE_TXF_CMS:
2017 case SHADER_OPCODE_TXL:
2018 case SHADER_OPCODE_TXS:
2019 case SHADER_OPCODE_LOD:
2020 case SHADER_OPCODE_TG4:
2021 case SHADER_OPCODE_SAMPLEINFO:
2022 assert(inst->src[0].file == BAD_FILE);
2023 generate_tex(inst, dst, src[1], src[2]);
2024 break;
2025
2026 case FS_OPCODE_DDX_COARSE:
2027 case FS_OPCODE_DDX_FINE:
2028 generate_ddx(inst, dst, src[0]);
2029 break;
2030 case FS_OPCODE_DDY_COARSE:
2031 case FS_OPCODE_DDY_FINE:
2032 generate_ddy(inst, dst, src[0]);
2033 break;
2034
2035 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2036 generate_scratch_write(inst, src[0]);
2037 spill_count++;
2038 break;
2039
2040 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2041 generate_scratch_read(inst, dst);
2042 fill_count++;
2043 break;
2044
2045 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2046 generate_scratch_read_gen7(inst, dst);
2047 fill_count++;
2048 break;
2049
2050 case SHADER_OPCODE_MOV_INDIRECT:
2051 generate_mov_indirect(inst, dst, src[0], src[1]);
2052 break;
2053
2054 case SHADER_OPCODE_URB_READ_SIMD8:
2055 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2056 generate_urb_read(inst, dst, src[0]);
2057 break;
2058
2059 case SHADER_OPCODE_URB_WRITE_SIMD8:
2060 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2061 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2062 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2063 generate_urb_write(inst, src[0]);
2064 break;
2065
2066 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2067 assert(inst->force_writemask_all);
2068 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2069 break;
2070
2071 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2072 assert(inst->force_writemask_all);
2073 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2074 break;
2075
2076 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2077 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2078 break;
2079
2080 case FS_OPCODE_REP_FB_WRITE:
2081 case FS_OPCODE_FB_WRITE:
2082 generate_fb_write(inst, src[0]);
2083 break;
2084
2085 case FS_OPCODE_FB_READ:
2086 generate_fb_read(inst, dst, src[0]);
2087 break;
2088
2089 case FS_OPCODE_DISCARD_JUMP:
2090 generate_discard_jump(inst);
2091 break;
2092
2093 case SHADER_OPCODE_SHADER_TIME_ADD:
2094 generate_shader_time_add(inst, src[0], src[1], src[2]);
2095 break;
2096
2097 case SHADER_OPCODE_MEMORY_FENCE:
2098 brw_memory_fence(p, dst, BRW_OPCODE_SEND);
2099 break;
2100
2101 case SHADER_OPCODE_INTERLOCK:
2102 assert(devinfo->gen >= 9);
2103 /* The interlock is basically a memory fence issued via sendc */
2104 brw_memory_fence(p, dst, BRW_OPCODE_SENDC);
2105 break;
2106
2107 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2108 const struct brw_reg mask =
2109 brw_stage_has_packed_dispatch(devinfo, stage,
2110 prog_data) ? brw_imm_ud(~0u) :
2111 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2112 brw_dmask_reg();
2113 brw_find_live_channel(p, dst, mask);
2114 break;
2115 }
2116
2117 case SHADER_OPCODE_BROADCAST:
2118 assert(inst->force_writemask_all);
2119 brw_broadcast(p, dst, src[0], src[1]);
2120 break;
2121
2122 case SHADER_OPCODE_SHUFFLE:
2123 generate_shuffle(inst, dst, src[0], src[1]);
2124 break;
2125
2126 case SHADER_OPCODE_SEL_EXEC:
2127 assert(inst->force_writemask_all);
2128 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2129 brw_MOV(p, dst, src[1]);
2130 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2131 brw_MOV(p, dst, src[0]);
2132 break;
2133
2134 case SHADER_OPCODE_QUAD_SWIZZLE:
2135 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2136 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2137 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2138 break;
2139
2140 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2141 assert(src[0].type == dst.type);
2142 assert(!src[0].negate && !src[0].abs);
2143 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2144 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2145 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2146 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2147 const unsigned component = src[1].ud;
2148 const unsigned cluster_size = src[2].ud;
2149 struct brw_reg strided = stride(suboffset(src[0], component),
2150 cluster_size, cluster_size, 0);
2151 if (type_sz(src[0].type) > 4 &&
2152 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2153 /* IVB has an issue (which we found empirically) where it reads
2154 * two address register components per channel for indirectly
2155 * addressed 64-bit sources.
2156 *
2157 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2158 *
2159 * "When source or destination datatype is 64b or operation is
2160 * integer DWord multiply, indirect addressing must not be
2161 * used."
2162 *
2163 * To work around both of these, we do two integer MOVs insead of
2164 * one 64-bit MOV. Because no double value should ever cross a
2165 * register boundary, it's safe to use the immediate offset in the
2166 * indirect here to handle adding 4 bytes to the offset and avoid
2167 * the extra ADD to the register file.
2168 */
2169 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2170 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2171 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2172 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2173 } else {
2174 brw_MOV(p, dst, strided);
2175 }
2176 break;
2177 }
2178
2179 case FS_OPCODE_SET_SAMPLE_ID:
2180 generate_set_sample_id(inst, dst, src[0], src[1]);
2181 break;
2182
2183 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2184 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2185 break;
2186
2187 case FS_OPCODE_PLACEHOLDER_HALT:
2188 /* This is the place where the final HALT needs to be inserted if
2189 * we've emitted any discards. If not, this will emit no code.
2190 */
2191 if (!patch_discard_jumps_to_fb_writes()) {
2192 if (unlikely(debug_flag)) {
2193 disasm_info->use_tail = true;
2194 }
2195 }
2196 break;
2197
2198 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2199 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2200 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2201 break;
2202
2203 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2204 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2205 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2206 break;
2207
2208 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2209 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2210 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2211 break;
2212
2213 case CS_OPCODE_CS_TERMINATE:
2214 generate_cs_terminate(inst, src[0]);
2215 break;
2216
2217 case SHADER_OPCODE_BARRIER:
2218 generate_barrier(inst, src[0]);
2219 break;
2220
2221 case BRW_OPCODE_DIM:
2222 assert(devinfo->is_haswell);
2223 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2224 assert(dst.type == BRW_REGISTER_TYPE_DF);
2225 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2226 break;
2227
2228 case SHADER_OPCODE_RND_MODE:
2229 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2230 brw_rounding_mode(p, (brw_rnd_mode) src[0].d);
2231 break;
2232
2233 default:
2234 unreachable("Unsupported opcode");
2235
2236 case SHADER_OPCODE_LOAD_PAYLOAD:
2237 unreachable("Should be lowered by lower_load_payload()");
2238 }
2239
2240 if (multiple_instructions_emitted)
2241 continue;
2242
2243 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2244 assert(p->next_insn_offset == last_insn_offset + 16 ||
2245 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2246 "emitting more than 1 instruction");
2247
2248 brw_inst *last = &p->store[last_insn_offset / 16];
2249
2250 if (inst->conditional_mod)
2251 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2252 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2253 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2254 }
2255 }
2256
2257 brw_set_uip_jip(p, start_offset);
2258
2259 /* end of program sentinel */
2260 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2261
2262 #ifndef NDEBUG
2263 bool validated =
2264 #else
2265 if (unlikely(debug_flag))
2266 #endif
2267 brw_validate_instructions(devinfo, p->store,
2268 start_offset,
2269 p->next_insn_offset,
2270 disasm_info);
2271
2272 int before_size = p->next_insn_offset - start_offset;
2273 brw_compact_instructions(p, start_offset, disasm_info);
2274 int after_size = p->next_insn_offset - start_offset;
2275
2276 if (unlikely(debug_flag)) {
2277 fprintf(stderr, "Native code for %s\n"
2278 "SIMD%d shader: %d instructions. %d loops. %u cycles. %d:%d spills:fills. Promoted %u constants. Compacted %d to %d"
2279 " bytes (%.0f%%)\n",
2280 shader_name, dispatch_width, before_size / 16, loop_count, cfg->cycle_count,
2281 spill_count, fill_count, promoted_constants, before_size, after_size,
2282 100.0f * (before_size - after_size) / before_size);
2283
2284 dump_assembly(p->store, disasm_info);
2285 }
2286 ralloc_free(disasm_info);
2287 assert(validated);
2288
2289 compiler->shader_debug_log(log_data,
2290 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2291 "%d:%d spills:fills, Promoted %u constants, "
2292 "compacted %d to %d bytes.",
2293 _mesa_shader_stage_to_abbrev(stage),
2294 dispatch_width, before_size / 16,
2295 loop_count, cfg->cycle_count, spill_count,
2296 fill_count, promoted_constants, before_size,
2297 after_size);
2298
2299 return start_offset;
2300 }
2301
2302 const unsigned *
2303 fs_generator::get_assembly()
2304 {
2305 return brw_get_program(p, &prog_data->program_size);
2306 }