intel/fs: Implement quad swizzles on ICL+.
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33
34 static enum brw_reg_file
35 brw_file_from_reg(fs_reg *reg)
36 {
37 switch (reg->file) {
38 case ARF:
39 return BRW_ARCHITECTURE_REGISTER_FILE;
40 case FIXED_GRF:
41 case VGRF:
42 return BRW_GENERAL_REGISTER_FILE;
43 case MRF:
44 return BRW_MESSAGE_REGISTER_FILE;
45 case IMM:
46 return BRW_IMMEDIATE_VALUE;
47 case BAD_FILE:
48 case ATTR:
49 case UNIFORM:
50 unreachable("not reached");
51 }
52 return BRW_ARCHITECTURE_REGISTER_FILE;
53 }
54
55 static struct brw_reg
56 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
57 fs_reg *reg, bool compressed)
58 {
59 struct brw_reg brw_reg;
60
61 switch (reg->file) {
62 case MRF:
63 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
64 /* Fallthrough */
65 case VGRF:
66 if (reg->stride == 0) {
67 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
68 } else {
69 /* From the Haswell PRM:
70 *
71 * "VertStride must be used to cross GRF register boundaries. This
72 * rule implies that elements within a 'Width' cannot cross GRF
73 * boundaries."
74 *
75 * The maximum width value that could satisfy this restriction is:
76 */
77 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
78
79 /* Because the hardware can only split source regions at a whole
80 * multiple of width during decompression (i.e. vertically), clamp
81 * the value obtained above to the physical execution size of a
82 * single decompressed chunk of the instruction:
83 */
84 const unsigned phys_width = compressed ? inst->exec_size / 2 :
85 inst->exec_size;
86
87 /* XXX - The equation above is strictly speaking not correct on
88 * hardware that supports unbalanced GRF writes -- On Gen9+
89 * each decompressed chunk of the instruction may have a
90 * different execution size when the number of components
91 * written to each destination GRF is not the same.
92 */
93 const unsigned width = MIN2(reg_width, phys_width);
94 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
95 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
96
97 if (devinfo->gen == 7 && !devinfo->is_haswell) {
98 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
99 * "Each DF (Double Float) operand uses an element size of 4 rather
100 * than 8 and all regioning parameters are twice what the values
101 * would be based on the true element size: ExecSize, Width,
102 * HorzStride, and VertStride. Each DF operand uses a pair of
103 * channels and all masking and swizzing should be adjusted
104 * appropriately."
105 *
106 * From the IvyBridge PRM (Special Requirements for Handling Double
107 * Precision Data Types, page 71):
108 * "In Align1 mode, all regioning parameters like stride, execution
109 * size, and width must use the syntax of a pair of packed
110 * floats. The offsets for these data types must be 64-bit
111 * aligned. The execution size and regioning parameters are in terms
112 * of floats."
113 *
114 * Summarized: when handling DF-typed arguments, ExecSize,
115 * VertStride, and Width must be doubled.
116 *
117 * It applies to BayTrail too.
118 */
119 if (type_sz(reg->type) == 8) {
120 brw_reg.width++;
121 if (brw_reg.vstride > 0)
122 brw_reg.vstride++;
123 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
124 }
125
126 /* When converting from DF->F, we set the destination stride to 2
127 * because each d2f conversion implicitly writes 2 floats, being
128 * the first one the converted value. IVB/BYT actually writes two
129 * F components per SIMD channel, and every other component is
130 * filled with garbage.
131 */
132 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
133 type_sz(inst->dst.type) < 8) {
134 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
135 brw_reg.hstride--;
136 }
137 }
138 }
139
140 brw_reg = retype(brw_reg, reg->type);
141 brw_reg = byte_offset(brw_reg, reg->offset);
142 brw_reg.abs = reg->abs;
143 brw_reg.negate = reg->negate;
144 break;
145 case ARF:
146 case FIXED_GRF:
147 case IMM:
148 assert(reg->offset == 0);
149 brw_reg = reg->as_brw_reg();
150 break;
151 case BAD_FILE:
152 /* Probably unused. */
153 brw_reg = brw_null_reg();
154 break;
155 case ATTR:
156 case UNIFORM:
157 unreachable("not reached");
158 }
159
160 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
161 * region, but on IVB and BYT DF regions must be programmed in terms of
162 * floats. A <0,2,1> region accomplishes this.
163 */
164 if (devinfo->gen == 7 && !devinfo->is_haswell &&
165 type_sz(reg->type) == 8 &&
166 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
167 brw_reg.width == BRW_WIDTH_1 &&
168 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
169 brw_reg.width = BRW_WIDTH_2;
170 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
171 }
172
173 return brw_reg;
174 }
175
176 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
177 void *mem_ctx,
178 struct brw_stage_prog_data *prog_data,
179 unsigned promoted_constants,
180 bool runtime_check_aads_emit,
181 gl_shader_stage stage)
182
183 : compiler(compiler), log_data(log_data),
184 devinfo(compiler->devinfo),
185 prog_data(prog_data),
186 promoted_constants(promoted_constants),
187 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
188 stage(stage), mem_ctx(mem_ctx)
189 {
190 p = rzalloc(mem_ctx, struct brw_codegen);
191 brw_init_codegen(devinfo, p, mem_ctx);
192
193 /* In the FS code generator, we are very careful to ensure that we always
194 * set the right execution size so we don't need the EU code to "help" us
195 * by trying to infer it. Sometimes, it infers the wrong thing.
196 */
197 p->automatic_exec_sizes = false;
198 }
199
200 fs_generator::~fs_generator()
201 {
202 }
203
204 class ip_record : public exec_node {
205 public:
206 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
207
208 ip_record(int ip)
209 {
210 this->ip = ip;
211 }
212
213 int ip;
214 };
215
216 bool
217 fs_generator::patch_discard_jumps_to_fb_writes()
218 {
219 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
220 return false;
221
222 int scale = brw_jump_scale(p->devinfo);
223
224 /* There is a somewhat strange undocumented requirement of using
225 * HALT, according to the simulator. If some channel has HALTed to
226 * a particular UIP, then by the end of the program, every channel
227 * must have HALTed to that UIP. Furthermore, the tracking is a
228 * stack, so you can't do the final halt of a UIP after starting
229 * halting to a new UIP.
230 *
231 * Symptoms of not emitting this instruction on actual hardware
232 * included GPU hangs and sparkly rendering on the piglit discard
233 * tests.
234 */
235 brw_inst *last_halt = gen6_HALT(p);
236 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
237 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
238
239 int ip = p->nr_insn;
240
241 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
242 brw_inst *patch = &p->store[patch_ip->ip];
243
244 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
245 /* HALT takes a half-instruction distance from the pre-incremented IP. */
246 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
247 }
248
249 this->discard_halt_patches.make_empty();
250 return true;
251 }
252
253 void
254 fs_generator::fire_fb_write(fs_inst *inst,
255 struct brw_reg payload,
256 struct brw_reg implied_header,
257 GLuint nr)
258 {
259 uint32_t msg_control;
260
261 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
262
263 if (devinfo->gen < 6) {
264 brw_push_insn_state(p);
265 brw_set_default_exec_size(p, BRW_EXECUTE_8);
266 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
267 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
268 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
269 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
270 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
271 brw_pop_insn_state(p);
272 }
273
274 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
275 assert(inst->group == 0 && inst->exec_size == 16);
276 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
277
278 } else if (prog_data->dual_src_blend) {
279 assert(inst->exec_size == 8);
280
281 if (inst->group % 16 == 0)
282 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
283 else if (inst->group % 16 == 8)
284 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
285 else
286 unreachable("Invalid dual-source FB write instruction group");
287
288 } else {
289 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
290
291 if (inst->exec_size == 16)
292 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
293 else if (inst->exec_size == 8)
294 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
295 else
296 unreachable("Invalid FB write execution size");
297 }
298
299 /* We assume render targets start at 0, because headerless FB write
300 * messages set "Render Target Index" to 0. Using a different binding
301 * table index would make it impossible to use headerless messages.
302 */
303 const uint32_t surf_index = inst->target;
304
305 brw_inst *insn = brw_fb_WRITE(p,
306 payload,
307 retype(implied_header, BRW_REGISTER_TYPE_UW),
308 msg_control,
309 surf_index,
310 nr,
311 0,
312 inst->eot,
313 inst->last_rt,
314 inst->header_size != 0);
315
316 if (devinfo->gen >= 6)
317 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
318
319 brw_mark_surface_used(&prog_data->base, surf_index);
320 }
321
322 void
323 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
324 {
325 if (devinfo->gen < 8 && !devinfo->is_haswell) {
326 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
327 }
328
329 const struct brw_reg implied_header =
330 devinfo->gen < 6 ? payload : brw_null_reg();
331
332 if (inst->base_mrf >= 0)
333 payload = brw_message_reg(inst->base_mrf);
334
335 if (!runtime_check_aads_emit) {
336 fire_fb_write(inst, payload, implied_header, inst->mlen);
337 } else {
338 /* This can only happen in gen < 6 */
339 assert(devinfo->gen < 6);
340
341 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
342
343 /* Check runtime bit to detect if we have to send AA data or not */
344 brw_push_insn_state(p);
345 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
346 brw_set_default_exec_size(p, BRW_EXECUTE_1);
347 brw_AND(p,
348 v1_null_ud,
349 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
350 brw_imm_ud(1<<26));
351 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
352
353 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
354 brw_pop_insn_state(p);
355 {
356 /* Don't send AA data */
357 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
358 }
359 brw_land_fwd_jump(p, jmp);
360 fire_fb_write(inst, payload, implied_header, inst->mlen);
361 }
362 }
363
364 void
365 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
366 struct brw_reg payload)
367 {
368 assert(inst->size_written % REG_SIZE == 0);
369 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
370 /* We assume that render targets start at binding table index 0. */
371 const unsigned surf_index = inst->target;
372
373 gen9_fb_READ(p, dst, payload, surf_index,
374 inst->header_size, inst->size_written / REG_SIZE,
375 prog_data->persample_dispatch);
376
377 brw_mark_surface_used(&prog_data->base, surf_index);
378 }
379
380 void
381 fs_generator::generate_mov_indirect(fs_inst *inst,
382 struct brw_reg dst,
383 struct brw_reg reg,
384 struct brw_reg indirect_byte_offset)
385 {
386 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
387 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
388 assert(!reg.abs && !reg.negate);
389 assert(reg.type == dst.type);
390
391 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
392
393 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
394 imm_byte_offset += indirect_byte_offset.ud;
395
396 reg.nr = imm_byte_offset / REG_SIZE;
397 reg.subnr = imm_byte_offset % REG_SIZE;
398 brw_MOV(p, dst, reg);
399 } else {
400 /* Prior to Broadwell, there are only 8 address registers. */
401 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
402
403 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
404 struct brw_reg addr = vec8(brw_address_reg(0));
405
406 /* The destination stride of an instruction (in bytes) must be greater
407 * than or equal to the size of the rest of the instruction. Since the
408 * address register is of type UW, we can't use a D-type instruction.
409 * In order to get around this, re retype to UW and use a stride.
410 */
411 indirect_byte_offset =
412 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
413
414 /* There are a number of reasons why we don't use the base offset here.
415 * One reason is that the field is only 9 bits which means we can only
416 * use it to access the first 16 GRFs. Also, from the Haswell PRM
417 * section "Register Region Restrictions":
418 *
419 * "The lower bits of the AddressImmediate must not overflow to
420 * change the register address. The lower 5 bits of Address
421 * Immediate when added to lower 5 bits of address register gives
422 * the sub-register offset. The upper bits of Address Immediate
423 * when added to upper bits of address register gives the register
424 * address. Any overflow from sub-register offset is dropped."
425 *
426 * Since the indirect may cause us to cross a register boundary, this
427 * makes the base offset almost useless. We could try and do something
428 * clever where we use a actual base offset if base_offset % 32 == 0 but
429 * that would mean we were generating different code depending on the
430 * base offset. Instead, for the sake of consistency, we'll just do the
431 * add ourselves. This restriction is only listed in the Haswell PRM
432 * but empirical testing indicates that it applies on all older
433 * generations and is lifted on Broadwell.
434 *
435 * In the end, while base_offset is nice to look at in the generated
436 * code, using it saves us 0 instructions and would require quite a bit
437 * of case-by-case work. It's just not worth it.
438 */
439 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
440
441 if (type_sz(reg.type) > 4 &&
442 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
443 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
444 /* IVB has an issue (which we found empirically) where it reads two
445 * address register components per channel for indirectly addressed
446 * 64-bit sources.
447 *
448 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
449 *
450 * "When source or destination datatype is 64b or operation is
451 * integer DWord multiply, indirect addressing must not be used."
452 *
453 * To work around both of these, we do two integer MOVs insead of one
454 * 64-bit MOV. Because no double value should ever cross a register
455 * boundary, it's safe to use the immediate offset in the indirect
456 * here to handle adding 4 bytes to the offset and avoid the extra
457 * ADD to the register file.
458 */
459 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
460 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
461 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
462 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
463 } else {
464 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
465
466 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
467
468 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
469 !inst->get_next()->is_tail_sentinel() &&
470 ((fs_inst *)inst->get_next())->mlen > 0) {
471 /* From the Sandybridge PRM:
472 *
473 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
474 * instruction that “indexed/indirect” source AND is followed
475 * by a send, the instruction requires a “Switch”. This is to
476 * avoid race condition where send may dispatch before MRF is
477 * updated."
478 */
479 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
480 }
481 }
482 }
483 }
484
485 void
486 fs_generator::generate_shuffle(fs_inst *inst,
487 struct brw_reg dst,
488 struct brw_reg src,
489 struct brw_reg idx)
490 {
491 /* Ivy bridge has some strange behavior that makes this a real pain to
492 * implement for 64-bit values so we just don't bother.
493 */
494 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
495
496 /* Because we're using the address register, we're limited to 8-wide
497 * execution on gen7. On gen8, we're limited to 16-wide by the address
498 * register file and 8-wide for 64-bit types. We could try and make this
499 * instruction splittable higher up in the compiler but that gets weird
500 * because it reads all of the channels regardless of execution size. It's
501 * easier just to split it here.
502 */
503 const unsigned lower_width =
504 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
505 8 : MIN2(16, inst->exec_size);
506
507 brw_set_default_exec_size(p, cvt(lower_width) - 1);
508 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
509 brw_set_default_group(p, group);
510
511 if ((src.vstride == 0 && src.hstride == 0) ||
512 idx.file == BRW_IMMEDIATE_VALUE) {
513 /* Trivial, the source is already uniform or the index is a constant.
514 * We will typically not get here if the optimizer is doing its job,
515 * but asserting would be mean.
516 */
517 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
518 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
519 } else {
520 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
521 struct brw_reg addr = vec8(brw_address_reg(0));
522
523 struct brw_reg group_idx = suboffset(idx, group);
524
525 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
526 /* Things get grumpy if the register is too wide. */
527 group_idx.width--;
528 group_idx.vstride--;
529 }
530
531 assert(type_sz(group_idx.type) <= 4);
532 if (type_sz(group_idx.type) == 4) {
533 /* The destination stride of an instruction (in bytes) must be
534 * greater than or equal to the size of the rest of the
535 * instruction. Since the address register is of type UW, we
536 * can't use a D-type instruction. In order to get around this,
537 * re retype to UW and use a stride.
538 */
539 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
540 }
541
542 /* Take into account the component size and horizontal stride. */
543 assert(src.vstride == src.hstride + src.width);
544 brw_SHL(p, addr, group_idx,
545 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
546 src.hstride - 1));
547
548 /* Add on the register start offset */
549 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
550
551 if (type_sz(src.type) > 4 &&
552 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
553 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
554 /* IVB has an issue (which we found empirically) where it reads
555 * two address register components per channel for indirectly
556 * addressed 64-bit sources.
557 *
558 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
559 *
560 * "When source or destination datatype is 64b or operation is
561 * integer DWord multiply, indirect addressing must not be
562 * used."
563 *
564 * To work around both of these, we do two integer MOVs insead of
565 * one 64-bit MOV. Because no double value should ever cross a
566 * register boundary, it's safe to use the immediate offset in the
567 * indirect here to handle adding 4 bytes to the offset and avoid
568 * the extra ADD to the register file.
569 */
570 struct brw_reg gdst = suboffset(dst, group);
571 struct brw_reg dst_d = retype(spread(gdst, 2),
572 BRW_REGISTER_TYPE_D);
573 brw_MOV(p, dst_d,
574 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
575 brw_MOV(p, byte_offset(dst_d, 4),
576 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
577 } else {
578 brw_MOV(p, suboffset(dst, group),
579 retype(brw_VxH_indirect(0, 0), src.type));
580 }
581 }
582 }
583 }
584
585 void
586 fs_generator::generate_quad_swizzle(const fs_inst *inst,
587 struct brw_reg dst, struct brw_reg src,
588 unsigned swiz)
589 {
590 /* Requires a quad. */
591 assert(inst->exec_size >= 4);
592
593 if (src.file == BRW_IMMEDIATE_VALUE ||
594 has_scalar_region(src)) {
595 /* The value is uniform across all channels */
596 brw_MOV(p, dst, src);
597
598 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
599 /* This only works on 8-wide 32-bit values */
600 assert(inst->exec_size == 8);
601 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
602 assert(src.vstride == src.width + 1);
603 brw_set_default_access_mode(p, BRW_ALIGN_16);
604 struct brw_reg swiz_src = stride(src, 4, 4, 1);
605 swiz_src.swizzle = swiz;
606 brw_MOV(p, dst, swiz_src);
607
608 } else {
609 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
610 assert(src.vstride == src.width + 1);
611 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
612
613 switch (swiz) {
614 case BRW_SWIZZLE_XXXX:
615 case BRW_SWIZZLE_YYYY:
616 case BRW_SWIZZLE_ZZZZ:
617 case BRW_SWIZZLE_WWWW:
618 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
619 break;
620
621 case BRW_SWIZZLE_XXZZ:
622 case BRW_SWIZZLE_YYWW:
623 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
624 break;
625
626 case BRW_SWIZZLE_XYXY:
627 case BRW_SWIZZLE_ZWZW:
628 assert(inst->exec_size == 4);
629 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
630 break;
631
632 default:
633 assert(inst->force_writemask_all);
634 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
635
636 for (unsigned c = 0; c < 4; c++) {
637 brw_inst *insn = brw_MOV(
638 p, stride(suboffset(dst, c),
639 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
640 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
641
642 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
643 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
644 }
645
646 break;
647 }
648 }
649 }
650
651 void
652 fs_generator::generate_urb_read(fs_inst *inst,
653 struct brw_reg dst,
654 struct brw_reg header)
655 {
656 assert(inst->size_written % REG_SIZE == 0);
657 assert(header.file == BRW_GENERAL_REGISTER_FILE);
658 assert(header.type == BRW_REGISTER_TYPE_UD);
659
660 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
661 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
662 brw_set_src0(p, send, header);
663 brw_set_src1(p, send, brw_imm_ud(0u));
664
665 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
666 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
667
668 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
669 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
670
671 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
672 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
673 brw_inst_set_header_present(p->devinfo, send, true);
674 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
675 }
676
677 void
678 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
679 {
680 brw_inst *insn;
681
682 /* WaClearTDRRegBeforeEOTForNonPS.
683 *
684 * WA: Clear tdr register before send EOT in all non-PS shader kernels
685 *
686 * mov(8) tdr0:ud 0x0:ud {NoMask}"
687 */
688 if (inst->eot && p->devinfo->gen == 10) {
689 brw_push_insn_state(p);
690 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
691 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
692 brw_pop_insn_state(p);
693 }
694
695 insn = brw_next_insn(p, BRW_OPCODE_SEND);
696
697 brw_set_dest(p, insn, brw_null_reg());
698 brw_set_src0(p, insn, payload);
699 brw_set_src1(p, insn, brw_imm_ud(0u));
700
701 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
702 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
703
704 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
705 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
706 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
707
708 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
709 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
710 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
711
712 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
713 brw_inst_set_rlen(p->devinfo, insn, 0);
714 brw_inst_set_eot(p->devinfo, insn, inst->eot);
715 brw_inst_set_header_present(p->devinfo, insn, true);
716 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
717 }
718
719 void
720 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
721 {
722 struct brw_inst *insn;
723
724 insn = brw_next_insn(p, BRW_OPCODE_SEND);
725
726 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
727 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
728 brw_set_src1(p, insn, brw_imm_ud(0u));
729
730 /* Terminate a compute shader by sending a message to the thread spawner.
731 */
732 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
733 brw_inst_set_mlen(devinfo, insn, 1);
734 brw_inst_set_rlen(devinfo, insn, 0);
735 brw_inst_set_eot(devinfo, insn, inst->eot);
736 brw_inst_set_header_present(devinfo, insn, false);
737
738 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
739 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
740
741 /* Note that even though the thread has a URB resource associated with it,
742 * we set the "do not dereference URB" bit, because the URB resource is
743 * managed by the fixed-function unit, so it will free it automatically.
744 */
745 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
746
747 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
748 }
749
750 void
751 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
752 {
753 brw_barrier(p, src);
754 brw_WAIT(p);
755 }
756
757 bool
758 fs_generator::generate_linterp(fs_inst *inst,
759 struct brw_reg dst, struct brw_reg *src)
760 {
761 /* PLN reads:
762 * / in SIMD16 \
763 * -----------------------------------
764 * | src1+0 | src1+1 | src1+2 | src1+3 |
765 * |-----------------------------------|
766 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
767 * -----------------------------------
768 *
769 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
770 *
771 * -----------------------------------
772 * | src1+0 | src1+1 | src1+2 | src1+3 |
773 * |-----------------------------------|
774 * |(x0, x1)|(y0, y1)| | | in SIMD8
775 * |-----------------------------------|
776 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
777 * -----------------------------------
778 *
779 * See also: emit_interpolation_setup_gen4().
780 */
781 struct brw_reg delta_x = src[0];
782 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
783 struct brw_reg interp = src[1];
784 brw_inst *i[4];
785
786 if (devinfo->gen >= 11) {
787 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_NF);
788 struct brw_reg dwP = suboffset(interp, 0);
789 struct brw_reg dwQ = suboffset(interp, 1);
790 struct brw_reg dwR = suboffset(interp, 3);
791
792 brw_push_insn_state(p);
793 brw_set_default_exec_size(p, BRW_EXECUTE_8);
794
795 if (inst->exec_size == 8) {
796 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
797 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_y, 0), dwQ);
798
799 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
800
801 /* brw_set_default_saturate() is called before emitting instructions,
802 * so the saturate bit is set in each instruction, so we need to unset
803 * it on the first instruction of each pair.
804 */
805 brw_inst_set_saturate(p->devinfo, i[0], false);
806 } else {
807 brw_set_default_group(p, inst->group);
808 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
809 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_x, 1), dwQ);
810
811 brw_set_default_group(p, inst->group + 8);
812 i[2] = brw_MAD(p, acc, dwR, offset(delta_y, 0), dwP);
813 i[3] = brw_MAD(p, offset(dst, 1), acc, offset(delta_y, 1), dwQ);
814
815 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
816 brw_inst_set_cond_modifier(p->devinfo, i[3], inst->conditional_mod);
817
818 /* brw_set_default_saturate() is called before emitting instructions,
819 * so the saturate bit is set in each instruction, so we need to unset
820 * it on the first instruction of each pair.
821 */
822 brw_inst_set_saturate(p->devinfo, i[0], false);
823 brw_inst_set_saturate(p->devinfo, i[2], false);
824 }
825
826 brw_pop_insn_state(p);
827
828 return true;
829 } else if (devinfo->has_pln) {
830 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
831 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
832 *
833 * "[DevSNB]:<src1> must be even register aligned.
834 *
835 * This restriction is lifted on Ivy Bridge.
836 *
837 * This means that we need to split PLN into LINE+MAC on-the-fly.
838 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
839 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
840 * coordinate registers are laid out differently so we leave it as a
841 * SIMD16 instruction.
842 */
843 assert(inst->exec_size == 8 || inst->exec_size == 16);
844 assert(inst->group % 16 == 0);
845
846 brw_push_insn_state(p);
847 brw_set_default_exec_size(p, BRW_EXECUTE_8);
848
849 /* Thanks to two accumulators, we can emit all the LINEs and then all
850 * the MACs. This improves parallelism a bit.
851 */
852 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
853 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
854 offset(delta_x, g * 2));
855 brw_inst_set_group(devinfo, line, inst->group + g * 8);
856
857 /* LINE writes the accumulator automatically on gen4-5. On Sandy
858 * Bridge and later, we have to explicitly enable it.
859 */
860 if (devinfo->gen >= 6)
861 brw_inst_set_acc_wr_control(p->devinfo, line, true);
862
863 /* brw_set_default_saturate() is called before emitting
864 * instructions, so the saturate bit is set in each instruction,
865 * so we need to unset it on the LINE instructions.
866 */
867 brw_inst_set_saturate(p->devinfo, line, false);
868 }
869
870 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
871 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
872 offset(delta_x, g * 2 + 1));
873 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
874 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
875 }
876
877 brw_pop_insn_state(p);
878
879 return true;
880 } else {
881 brw_PLN(p, dst, interp, delta_x);
882
883 return false;
884 }
885 } else {
886 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
887 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
888
889 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
890
891 /* brw_set_default_saturate() is called before emitting instructions, so
892 * the saturate bit is set in each instruction, so we need to unset it on
893 * the first instruction.
894 */
895 brw_inst_set_saturate(p->devinfo, i[0], false);
896
897 return true;
898 }
899 }
900
901 void
902 fs_generator::generate_get_buffer_size(fs_inst *inst,
903 struct brw_reg dst,
904 struct brw_reg src,
905 struct brw_reg surf_index)
906 {
907 assert(devinfo->gen >= 7);
908 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
909
910 uint32_t simd_mode;
911 int rlen = 4;
912
913 switch (inst->exec_size) {
914 case 8:
915 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
916 break;
917 case 16:
918 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
919 break;
920 default:
921 unreachable("Invalid width for texture instruction");
922 }
923
924 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
925 rlen = 8;
926 dst = vec16(dst);
927 }
928
929 brw_SAMPLE(p,
930 retype(dst, BRW_REGISTER_TYPE_UW),
931 inst->base_mrf,
932 src,
933 surf_index.ud,
934 0,
935 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
936 rlen, /* response length */
937 inst->mlen,
938 inst->header_size > 0,
939 simd_mode,
940 BRW_SAMPLER_RETURN_FORMAT_SINT32);
941
942 brw_mark_surface_used(prog_data, surf_index.ud);
943 }
944
945 void
946 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src,
947 struct brw_reg surface_index,
948 struct brw_reg sampler_index)
949 {
950 assert(inst->size_written % REG_SIZE == 0);
951 int msg_type = -1;
952 uint32_t simd_mode;
953 uint32_t return_format;
954 bool is_combined_send = inst->eot;
955
956 /* Sampler EOT message of less than the dispatch width would kill the
957 * thread prematurely.
958 */
959 assert(!is_combined_send || inst->exec_size == dispatch_width);
960
961 switch (dst.type) {
962 case BRW_REGISTER_TYPE_D:
963 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
964 break;
965 case BRW_REGISTER_TYPE_UD:
966 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
967 break;
968 default:
969 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
970 break;
971 }
972
973 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
974 * is set as part of the message descriptor. On gen4, the PRM seems to
975 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
976 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
977 * gone from the message descriptor entirely and you just get UINT32 all
978 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
979 * just stomp it to UINT32 all the time.
980 */
981 if (inst->opcode == SHADER_OPCODE_TXS)
982 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
983
984 switch (inst->exec_size) {
985 case 8:
986 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
987 break;
988 case 16:
989 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
990 break;
991 default:
992 unreachable("Invalid width for texture instruction");
993 }
994
995 if (devinfo->gen >= 5) {
996 switch (inst->opcode) {
997 case SHADER_OPCODE_TEX:
998 if (inst->shadow_compare) {
999 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
1000 } else {
1001 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
1002 }
1003 break;
1004 case FS_OPCODE_TXB:
1005 if (inst->shadow_compare) {
1006 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
1007 } else {
1008 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
1009 }
1010 break;
1011 case SHADER_OPCODE_TXL:
1012 if (inst->shadow_compare) {
1013 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
1014 } else {
1015 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
1016 }
1017 break;
1018 case SHADER_OPCODE_TXL_LZ:
1019 assert(devinfo->gen >= 9);
1020 if (inst->shadow_compare) {
1021 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ;
1022 } else {
1023 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
1024 }
1025 break;
1026 case SHADER_OPCODE_TXS:
1027 case SHADER_OPCODE_IMAGE_SIZE:
1028 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
1029 break;
1030 case SHADER_OPCODE_TXD:
1031 if (inst->shadow_compare) {
1032 /* Gen7.5+. Otherwise, lowered in NIR */
1033 assert(devinfo->gen >= 8 || devinfo->is_haswell);
1034 msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
1035 } else {
1036 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1037 }
1038 break;
1039 case SHADER_OPCODE_TXF:
1040 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1041 break;
1042 case SHADER_OPCODE_TXF_LZ:
1043 assert(devinfo->gen >= 9);
1044 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
1045 break;
1046 case SHADER_OPCODE_TXF_CMS_W:
1047 assert(devinfo->gen >= 9);
1048 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
1049 break;
1050 case SHADER_OPCODE_TXF_CMS:
1051 if (devinfo->gen >= 7)
1052 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
1053 else
1054 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1055 break;
1056 case SHADER_OPCODE_TXF_UMS:
1057 assert(devinfo->gen >= 7);
1058 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
1059 break;
1060 case SHADER_OPCODE_TXF_MCS:
1061 assert(devinfo->gen >= 7);
1062 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
1063 break;
1064 case SHADER_OPCODE_LOD:
1065 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1066 break;
1067 case SHADER_OPCODE_TG4:
1068 if (inst->shadow_compare) {
1069 assert(devinfo->gen >= 7);
1070 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
1071 } else {
1072 assert(devinfo->gen >= 6);
1073 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1074 }
1075 break;
1076 case SHADER_OPCODE_TG4_OFFSET:
1077 assert(devinfo->gen >= 7);
1078 if (inst->shadow_compare) {
1079 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
1080 } else {
1081 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
1082 }
1083 break;
1084 case SHADER_OPCODE_SAMPLEINFO:
1085 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1086 break;
1087 default:
1088 unreachable("not reached");
1089 }
1090 } else {
1091 switch (inst->opcode) {
1092 case SHADER_OPCODE_TEX:
1093 /* Note that G45 and older determines shadow compare and dispatch width
1094 * from message length for most messages.
1095 */
1096 if (inst->exec_size == 8) {
1097 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1098 if (inst->shadow_compare) {
1099 assert(inst->mlen == 6);
1100 } else {
1101 assert(inst->mlen <= 4);
1102 }
1103 } else {
1104 if (inst->shadow_compare) {
1105 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1106 assert(inst->mlen == 9);
1107 } else {
1108 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1109 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1110 }
1111 }
1112 break;
1113 case FS_OPCODE_TXB:
1114 if (inst->shadow_compare) {
1115 assert(inst->exec_size == 8);
1116 assert(inst->mlen == 6);
1117 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1118 } else {
1119 assert(inst->mlen == 9);
1120 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1121 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1122 }
1123 break;
1124 case SHADER_OPCODE_TXL:
1125 if (inst->shadow_compare) {
1126 assert(inst->exec_size == 8);
1127 assert(inst->mlen == 6);
1128 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1129 } else {
1130 assert(inst->mlen == 9);
1131 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1132 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1133 }
1134 break;
1135 case SHADER_OPCODE_TXD:
1136 /* There is no sample_d_c message; comparisons are done manually */
1137 assert(inst->exec_size == 8);
1138 assert(inst->mlen == 7 || inst->mlen == 10);
1139 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1140 break;
1141 case SHADER_OPCODE_TXF:
1142 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1143 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1144 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1145 break;
1146 case SHADER_OPCODE_TXS:
1147 assert(inst->mlen == 3);
1148 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1149 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1150 break;
1151 default:
1152 unreachable("not reached");
1153 }
1154 }
1155 assert(msg_type != -1);
1156
1157 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1158 dst = vec16(dst);
1159 }
1160
1161 assert(devinfo->gen < 7 || inst->header_size == 0 ||
1162 src.file == BRW_GENERAL_REGISTER_FILE);
1163
1164 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1165
1166 /* Load the message header if present. If there's a texture offset,
1167 * we need to set it up explicitly and load the offset bitfield.
1168 * Otherwise, we can use an implied move from g0 to the first message reg.
1169 */
1170 if (inst->header_size != 0 && devinfo->gen < 7) {
1171 if (devinfo->gen < 6 && !inst->offset) {
1172 /* Set up an implied move from g0 to the MRF. */
1173 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1174 } else {
1175 assert(inst->base_mrf != -1);
1176 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1177
1178 brw_push_insn_state(p);
1179 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1180 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1181 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1182 /* Explicitly set up the message header by copying g0 to the MRF. */
1183 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1184
1185 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1186 if (inst->offset) {
1187 /* Set the offset bits in DWord 2. */
1188 brw_MOV(p, get_element_ud(header_reg, 2),
1189 brw_imm_ud(inst->offset));
1190 }
1191
1192 brw_pop_insn_state(p);
1193 }
1194 }
1195
1196 uint32_t base_binding_table_index;
1197 switch (inst->opcode) {
1198 case SHADER_OPCODE_TG4:
1199 case SHADER_OPCODE_TG4_OFFSET:
1200 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1201 break;
1202 case SHADER_OPCODE_IMAGE_SIZE:
1203 base_binding_table_index = prog_data->binding_table.image_start;
1204 break;
1205 default:
1206 base_binding_table_index = prog_data->binding_table.texture_start;
1207 break;
1208 }
1209
1210 if (surface_index.file == BRW_IMMEDIATE_VALUE &&
1211 sampler_index.file == BRW_IMMEDIATE_VALUE) {
1212 uint32_t surface = surface_index.ud;
1213 uint32_t sampler = sampler_index.ud;
1214
1215 brw_SAMPLE(p,
1216 retype(dst, BRW_REGISTER_TYPE_UW),
1217 inst->base_mrf,
1218 src,
1219 surface + base_binding_table_index,
1220 sampler % 16,
1221 msg_type,
1222 inst->size_written / REG_SIZE,
1223 inst->mlen,
1224 inst->header_size != 0,
1225 simd_mode,
1226 return_format);
1227
1228 brw_mark_surface_used(prog_data, surface + base_binding_table_index);
1229 } else {
1230 /* Non-const sampler index */
1231
1232 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1233 struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
1234 struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
1235
1236 brw_push_insn_state(p);
1237 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1238 brw_set_default_access_mode(p, BRW_ALIGN_1);
1239 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1240
1241 if (brw_regs_equal(&surface_reg, &sampler_reg)) {
1242 brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
1243 } else {
1244 if (sampler_reg.file == BRW_IMMEDIATE_VALUE) {
1245 brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8));
1246 } else {
1247 brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
1248 brw_OR(p, addr, addr, surface_reg);
1249 }
1250 }
1251 if (base_binding_table_index)
1252 brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
1253 brw_AND(p, addr, addr, brw_imm_ud(0xfff));
1254
1255 brw_pop_insn_state(p);
1256
1257 /* dst = send(offset, a0.0 | <descriptor>) */
1258 brw_send_indirect_message(
1259 p, BRW_SFID_SAMPLER, dst, src, addr,
1260 brw_message_desc(devinfo, inst->mlen, inst->size_written / REG_SIZE,
1261 inst->header_size) |
1262 brw_sampler_desc(devinfo,
1263 0 /* surface */,
1264 0 /* sampler */,
1265 msg_type,
1266 simd_mode,
1267 return_format));
1268
1269 /* visitor knows more than we do about the surface limit required,
1270 * so has already done marking.
1271 */
1272 }
1273
1274 if (is_combined_send) {
1275 brw_inst_set_eot(p->devinfo, brw_last_inst, true);
1276 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
1277 }
1278 }
1279
1280
1281 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1282 * looking like:
1283 *
1284 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1285 *
1286 * Ideally, we want to produce:
1287 *
1288 * DDX DDY
1289 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1290 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1291 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1292 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1293 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1294 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1295 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1296 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1297 *
1298 * and add another set of two more subspans if in 16-pixel dispatch mode.
1299 *
1300 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1301 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1302 * pair. But the ideal approximation may impose a huge performance cost on
1303 * sample_d. On at least Haswell, sample_d instruction does some
1304 * optimizations if the same LOD is used for all pixels in the subspan.
1305 *
1306 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1307 * appropriate swizzling.
1308 */
1309 void
1310 fs_generator::generate_ddx(const fs_inst *inst,
1311 struct brw_reg dst, struct brw_reg src)
1312 {
1313 unsigned vstride, width;
1314
1315 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1316 /* produce accurate derivatives */
1317 vstride = BRW_VERTICAL_STRIDE_2;
1318 width = BRW_WIDTH_2;
1319 } else {
1320 /* replicate the derivative at the top-left pixel to other pixels */
1321 vstride = BRW_VERTICAL_STRIDE_4;
1322 width = BRW_WIDTH_4;
1323 }
1324
1325 struct brw_reg src0 = src;
1326 struct brw_reg src1 = src;
1327
1328 src0.subnr = sizeof(float);
1329 src0.vstride = vstride;
1330 src0.width = width;
1331 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1332 src1.vstride = vstride;
1333 src1.width = width;
1334 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1335
1336 brw_ADD(p, dst, src0, negate(src1));
1337 }
1338
1339 /* The negate_value boolean is used to negate the derivative computation for
1340 * FBOs, since they place the origin at the upper left instead of the lower
1341 * left.
1342 */
1343 void
1344 fs_generator::generate_ddy(const fs_inst *inst,
1345 struct brw_reg dst, struct brw_reg src)
1346 {
1347 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1348 /* produce accurate derivatives */
1349 if (devinfo->gen >= 11) {
1350 src = stride(src, 0, 2, 1);
1351 struct brw_reg src_0 = byte_offset(src, 0 * sizeof(float));
1352 struct brw_reg src_2 = byte_offset(src, 2 * sizeof(float));
1353 struct brw_reg src_4 = byte_offset(src, 4 * sizeof(float));
1354 struct brw_reg src_6 = byte_offset(src, 6 * sizeof(float));
1355 struct brw_reg src_8 = byte_offset(src, 8 * sizeof(float));
1356 struct brw_reg src_10 = byte_offset(src, 10 * sizeof(float));
1357 struct brw_reg src_12 = byte_offset(src, 12 * sizeof(float));
1358 struct brw_reg src_14 = byte_offset(src, 14 * sizeof(float));
1359
1360 struct brw_reg dst_0 = byte_offset(dst, 0 * sizeof(float));
1361 struct brw_reg dst_4 = byte_offset(dst, 4 * sizeof(float));
1362 struct brw_reg dst_8 = byte_offset(dst, 8 * sizeof(float));
1363 struct brw_reg dst_12 = byte_offset(dst, 12 * sizeof(float));
1364
1365 brw_push_insn_state(p);
1366 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1367
1368 brw_ADD(p, dst_0, negate(src_0), src_2);
1369 brw_ADD(p, dst_4, negate(src_4), src_6);
1370
1371 if (inst->exec_size == 16) {
1372 brw_ADD(p, dst_8, negate(src_8), src_10);
1373 brw_ADD(p, dst_12, negate(src_12), src_14);
1374 }
1375
1376 brw_pop_insn_state(p);
1377 } else {
1378 struct brw_reg src0 = stride(src, 4, 4, 1);
1379 struct brw_reg src1 = stride(src, 4, 4, 1);
1380 src0.swizzle = BRW_SWIZZLE_XYXY;
1381 src1.swizzle = BRW_SWIZZLE_ZWZW;
1382
1383 brw_push_insn_state(p);
1384 brw_set_default_access_mode(p, BRW_ALIGN_16);
1385 brw_ADD(p, dst, negate(src0), src1);
1386 brw_pop_insn_state(p);
1387 }
1388 } else {
1389 /* replicate the derivative at the top-left pixel to other pixels */
1390 struct brw_reg src0 = stride(src, 4, 4, 0);
1391 struct brw_reg src1 = stride(src, 4, 4, 0);
1392 src0.subnr = 0 * sizeof(float);
1393 src1.subnr = 2 * sizeof(float);
1394
1395 brw_ADD(p, dst, negate(src0), src1);
1396 }
1397 }
1398
1399 void
1400 fs_generator::generate_discard_jump(fs_inst *)
1401 {
1402 assert(devinfo->gen >= 6);
1403
1404 /* This HALT will be patched up at FB write time to point UIP at the end of
1405 * the program, and at brw_uip_jip() JIP will be set to the end of the
1406 * current block (or the program).
1407 */
1408 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1409 gen6_HALT(p);
1410 }
1411
1412 void
1413 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1414 {
1415 /* The 32-wide messages only respect the first 16-wide half of the channel
1416 * enable signals which are replicated identically for the second group of
1417 * 16 channels, so we cannot use them unless the write is marked
1418 * force_writemask_all.
1419 */
1420 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1421 MIN2(16, inst->exec_size);
1422 const unsigned block_size = 4 * lower_size / REG_SIZE;
1423 assert(inst->mlen != 0);
1424
1425 brw_push_insn_state(p);
1426 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1427 brw_set_default_compression(p, lower_size > 8);
1428
1429 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1430 brw_set_default_group(p, inst->group + lower_size * i);
1431
1432 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1433 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1434
1435 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1436 block_size,
1437 inst->offset + block_size * REG_SIZE * i);
1438 }
1439
1440 brw_pop_insn_state(p);
1441 }
1442
1443 void
1444 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1445 {
1446 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1447 assert(inst->mlen != 0);
1448
1449 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1450 inst->exec_size / 8, inst->offset);
1451 }
1452
1453 void
1454 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1455 {
1456 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1457
1458 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1459 }
1460
1461 void
1462 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1463 struct brw_reg dst,
1464 struct brw_reg index,
1465 struct brw_reg offset)
1466 {
1467 assert(type_sz(dst.type) == 4);
1468 assert(inst->mlen != 0);
1469
1470 assert(index.file == BRW_IMMEDIATE_VALUE &&
1471 index.type == BRW_REGISTER_TYPE_UD);
1472 uint32_t surf_index = index.ud;
1473
1474 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1475 offset.type == BRW_REGISTER_TYPE_UD);
1476 uint32_t read_offset = offset.ud;
1477
1478 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1479 read_offset, surf_index);
1480 }
1481
1482 void
1483 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1484 struct brw_reg dst,
1485 struct brw_reg index,
1486 struct brw_reg payload)
1487 {
1488 assert(index.type == BRW_REGISTER_TYPE_UD);
1489 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1490 assert(type_sz(dst.type) == 4);
1491
1492 if (index.file == BRW_IMMEDIATE_VALUE) {
1493 const uint32_t surf_index = index.ud;
1494
1495 brw_push_insn_state(p);
1496 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1497 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1498 brw_pop_insn_state(p);
1499
1500 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1501 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1502 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1503 brw_set_desc(p, send,
1504 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1505 REG_SIZE), true) |
1506 brw_dp_read_desc(devinfo, surf_index,
1507 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1508 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1509 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1510
1511 } else {
1512 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1513
1514 brw_push_insn_state(p);
1515 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1516
1517 /* a0.0 = surf_index & 0xff */
1518 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1519 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1520 brw_set_dest(p, insn_and, addr);
1521 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1522 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1523
1524 /* dst = send(payload, a0.0 | <descriptor>) */
1525 brw_send_indirect_message(
1526 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1527 retype(dst, BRW_REGISTER_TYPE_UD),
1528 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1529 brw_message_desc(devinfo, 1,
1530 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1531 brw_dp_read_desc(devinfo, 0 /* surface */,
1532 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1533 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1534 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1535
1536 brw_pop_insn_state(p);
1537 }
1538 }
1539
1540 void
1541 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1542 struct brw_reg dst,
1543 struct brw_reg index)
1544 {
1545 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1546 assert(inst->header_size != 0);
1547 assert(inst->mlen);
1548
1549 assert(index.file == BRW_IMMEDIATE_VALUE &&
1550 index.type == BRW_REGISTER_TYPE_UD);
1551 uint32_t surf_index = index.ud;
1552
1553 uint32_t simd_mode, rlen, msg_type;
1554 if (inst->exec_size == 16) {
1555 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1556 rlen = 8;
1557 } else {
1558 assert(inst->exec_size == 8);
1559 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1560 rlen = 4;
1561 }
1562
1563 if (devinfo->gen >= 5)
1564 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1565 else {
1566 /* We always use the SIMD16 message so that we only have to load U, and
1567 * not V or R.
1568 */
1569 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1570 assert(inst->mlen == 3);
1571 assert(inst->size_written == 8 * REG_SIZE);
1572 rlen = 8;
1573 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1574 }
1575
1576 struct brw_reg header = brw_vec8_grf(0, 0);
1577 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1578
1579 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1580 brw_inst_set_compression(devinfo, send, false);
1581 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1582 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1583 brw_set_src0(p, send, header);
1584 if (devinfo->gen < 6)
1585 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1586
1587 /* Our surface is set up as floats, regardless of what actual data is
1588 * stored in it.
1589 */
1590 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1591 brw_set_desc(p, send,
1592 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1593 brw_sampler_desc(devinfo, surf_index,
1594 0, /* sampler (unused) */
1595 msg_type, simd_mode, return_format));
1596 }
1597
1598 void
1599 fs_generator::generate_varying_pull_constant_load_gen7(fs_inst *inst,
1600 struct brw_reg dst,
1601 struct brw_reg index,
1602 struct brw_reg offset)
1603 {
1604 assert(devinfo->gen >= 7);
1605 /* Varying-offset pull constant loads are treated as a normal expression on
1606 * gen7, so the fact that it's a send message is hidden at the IR level.
1607 */
1608 assert(inst->header_size == 0);
1609 assert(inst->mlen);
1610 assert(index.type == BRW_REGISTER_TYPE_UD);
1611
1612 uint32_t simd_mode, rlen;
1613 if (inst->exec_size == 16) {
1614 rlen = 8;
1615 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1616 } else {
1617 assert(inst->exec_size == 8);
1618 rlen = 4;
1619 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1620 }
1621
1622 if (index.file == BRW_IMMEDIATE_VALUE) {
1623
1624 uint32_t surf_index = index.ud;
1625
1626 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1627 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1628 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1629 brw_set_src0(p, send, offset);
1630 brw_set_desc(p, send,
1631 brw_message_desc(devinfo, inst->mlen, rlen, false) |
1632 brw_sampler_desc(devinfo, surf_index,
1633 0, /* LD message ignores sampler unit */
1634 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1635 simd_mode, 0));
1636
1637 } else {
1638
1639 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1640
1641 brw_push_insn_state(p);
1642 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1643
1644 /* a0.0 = surf_index & 0xff */
1645 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1646 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1647 brw_set_dest(p, insn_and, addr);
1648 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1649 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1650
1651 brw_pop_insn_state(p);
1652
1653 /* dst = send(offset, a0.0 | <descriptor>) */
1654 brw_send_indirect_message(
1655 p, BRW_SFID_SAMPLER, retype(dst, BRW_REGISTER_TYPE_UW),
1656 offset, addr,
1657 brw_message_desc(devinfo, inst->mlen, rlen, false) |
1658 brw_sampler_desc(devinfo,
1659 0 /* surface */,
1660 0 /* sampler */,
1661 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1662 simd_mode,
1663 0));
1664 }
1665 }
1666
1667 void
1668 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1669 struct brw_reg dst,
1670 struct brw_reg src,
1671 struct brw_reg msg_data,
1672 unsigned msg_type)
1673 {
1674 const bool has_payload = inst->src[0].file != BAD_FILE;
1675 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1676 assert(inst->size_written % REG_SIZE == 0);
1677
1678 brw_pixel_interpolator_query(p,
1679 retype(dst, BRW_REGISTER_TYPE_UW),
1680 /* If we don't have a payload, what we send doesn't matter */
1681 has_payload ? src : brw_vec8_grf(0, 0),
1682 inst->pi_noperspective,
1683 msg_type,
1684 msg_data,
1685 has_payload ? 2 * inst->exec_size / 8 : 1,
1686 inst->size_written / REG_SIZE);
1687 }
1688
1689 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1690 * the ADD instruction.
1691 */
1692 void
1693 fs_generator::generate_set_sample_id(fs_inst *inst,
1694 struct brw_reg dst,
1695 struct brw_reg src0,
1696 struct brw_reg src1)
1697 {
1698 assert(dst.type == BRW_REGISTER_TYPE_D ||
1699 dst.type == BRW_REGISTER_TYPE_UD);
1700 assert(src0.type == BRW_REGISTER_TYPE_D ||
1701 src0.type == BRW_REGISTER_TYPE_UD);
1702
1703 const struct brw_reg reg = stride(src1, 1, 4, 0);
1704 const unsigned lower_size = MIN2(inst->exec_size,
1705 devinfo->gen >= 8 ? 16 : 8);
1706
1707 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1708 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1709 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1710 (i * lower_size / (1 << src0.width))) *
1711 type_sz(src0.type) / REG_SIZE),
1712 suboffset(reg, i * lower_size / 4));
1713 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1714 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1715 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1716 }
1717 }
1718
1719 void
1720 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1721 struct brw_reg dst,
1722 struct brw_reg x,
1723 struct brw_reg y)
1724 {
1725 assert(devinfo->gen >= 7);
1726 assert(dst.type == BRW_REGISTER_TYPE_UD);
1727 assert(x.type == BRW_REGISTER_TYPE_F);
1728 assert(y.type == BRW_REGISTER_TYPE_F);
1729
1730 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1731 *
1732 * Because this instruction does not have a 16-bit floating-point type,
1733 * the destination data type must be Word (W).
1734 *
1735 * The destination must be DWord-aligned and specify a horizontal stride
1736 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1737 * each destination channel and the upper word is not modified.
1738 */
1739 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1740
1741 /* Give each 32-bit channel of dst the form below, where "." means
1742 * unchanged.
1743 * 0x....hhhh
1744 */
1745 brw_F32TO16(p, dst_w, y);
1746
1747 /* Now the form:
1748 * 0xhhhh0000
1749 */
1750 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1751
1752 /* And, finally the form of packHalf2x16's output:
1753 * 0xhhhhllll
1754 */
1755 brw_F32TO16(p, dst_w, x);
1756 }
1757
1758 void
1759 fs_generator::generate_unpack_half_2x16_split(fs_inst *inst,
1760 struct brw_reg dst,
1761 struct brw_reg src)
1762 {
1763 assert(devinfo->gen >= 7);
1764 assert(dst.type == BRW_REGISTER_TYPE_F);
1765 assert(src.type == BRW_REGISTER_TYPE_UD);
1766
1767 /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
1768 *
1769 * Because this instruction does not have a 16-bit floating-point type,
1770 * the source data type must be Word (W). The destination type must be
1771 * F (Float).
1772 */
1773 struct brw_reg src_w = spread(retype(src, BRW_REGISTER_TYPE_W), 2);
1774
1775 /* Each channel of src has the form of unpackHalf2x16's input: 0xhhhhllll.
1776 * For the Y case, we wish to access only the upper word; therefore
1777 * a 16-bit subregister offset is needed.
1778 */
1779 assert(inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X ||
1780 inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y);
1781 if (inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y)
1782 src_w.subnr += 2;
1783
1784 brw_F16TO32(p, dst, src_w);
1785 }
1786
1787 void
1788 fs_generator::generate_shader_time_add(fs_inst *,
1789 struct brw_reg payload,
1790 struct brw_reg offset,
1791 struct brw_reg value)
1792 {
1793 assert(devinfo->gen >= 7);
1794 brw_push_insn_state(p);
1795 brw_set_default_mask_control(p, true);
1796
1797 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1798 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1799 offset.type);
1800 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1801 value.type);
1802
1803 assert(offset.file == BRW_IMMEDIATE_VALUE);
1804 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1805 value.width = BRW_WIDTH_1;
1806 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1807 value.vstride = BRW_VERTICAL_STRIDE_0;
1808 } else {
1809 assert(value.file == BRW_IMMEDIATE_VALUE);
1810 }
1811
1812 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1813 * case, and we don't really care about squeezing every bit of performance
1814 * out of this path, so we just emit the MOVs from here.
1815 */
1816 brw_MOV(p, payload_offset, offset);
1817 brw_MOV(p, payload_value, value);
1818 brw_shader_time_add(p, payload,
1819 prog_data->binding_table.shader_time_start);
1820 brw_pop_insn_state(p);
1821
1822 brw_mark_surface_used(prog_data,
1823 prog_data->binding_table.shader_time_start);
1824 }
1825
1826 void
1827 fs_generator::enable_debug(const char *shader_name)
1828 {
1829 debug_flag = true;
1830 this->shader_name = shader_name;
1831 }
1832
1833 int
1834 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width)
1835 {
1836 /* align to 64 byte boundary. */
1837 while (p->next_insn_offset % 64)
1838 brw_NOP(p);
1839
1840 this->dispatch_width = dispatch_width;
1841
1842 int start_offset = p->next_insn_offset;
1843 int spill_count = 0, fill_count = 0;
1844 int loop_count = 0;
1845
1846 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1847
1848 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1849 struct brw_reg src[3], dst;
1850 unsigned int last_insn_offset = p->next_insn_offset;
1851 bool multiple_instructions_emitted = false;
1852
1853 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1854 * "Register Region Restrictions" section: for BDW, SKL:
1855 *
1856 * "A POW/FDIV operation must not be followed by an instruction
1857 * that requires two destination registers."
1858 *
1859 * The documentation is often lacking annotations for Atom parts,
1860 * and empirically this affects CHV as well.
1861 */
1862 if (devinfo->gen >= 8 &&
1863 devinfo->gen <= 9 &&
1864 p->nr_insn > 1 &&
1865 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1866 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1867 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1868 brw_NOP(p);
1869 last_insn_offset = p->next_insn_offset;
1870 }
1871
1872 if (unlikely(debug_flag))
1873 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1874
1875 /* If the instruction writes to more than one register, it needs to be
1876 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1877 * hardware figures out by itself what the right compression mode is,
1878 * but we still need to know whether the instruction is compressed to
1879 * set up the source register regions appropriately.
1880 *
1881 * XXX - This is wrong for instructions that write a single register but
1882 * read more than one which should strictly speaking be treated as
1883 * compressed. For instructions that don't write any registers it
1884 * relies on the destination being a null register of the correct
1885 * type and regioning so the instruction is considered compressed
1886 * or not accordingly.
1887 */
1888 const bool compressed =
1889 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1890 brw_set_default_compression(p, compressed);
1891 brw_set_default_group(p, inst->group);
1892
1893 for (unsigned int i = 0; i < inst->sources; i++) {
1894 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1895 &inst->src[i], compressed);
1896 /* The accumulator result appears to get used for the
1897 * conditional modifier generation. When negating a UD
1898 * value, there is a 33rd bit generated for the sign in the
1899 * accumulator value, so now you can't check, for example,
1900 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1901 */
1902 assert(!inst->conditional_mod ||
1903 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1904 !inst->src[i].negate);
1905 }
1906 dst = brw_reg_from_fs_reg(devinfo, inst,
1907 &inst->dst, compressed);
1908
1909 brw_set_default_access_mode(p, BRW_ALIGN_1);
1910 brw_set_default_predicate_control(p, inst->predicate);
1911 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1912 /* On gen7 and above, hardware automatically adds the group onto the
1913 * flag subregister number. On Sandy Bridge and older, we have to do it
1914 * ourselves.
1915 */
1916 const unsigned flag_subreg = inst->flag_subreg +
1917 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1918 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1919 brw_set_default_saturate(p, inst->saturate);
1920 brw_set_default_mask_control(p, inst->force_writemask_all);
1921 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1922
1923 unsigned exec_size = inst->exec_size;
1924 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1925 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1926 exec_size *= 2;
1927 }
1928
1929 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1930
1931 assert(inst->force_writemask_all || inst->exec_size >= 4);
1932 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1933 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1934 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1935
1936 switch (inst->opcode) {
1937 case BRW_OPCODE_MOV:
1938 brw_MOV(p, dst, src[0]);
1939 break;
1940 case BRW_OPCODE_ADD:
1941 brw_ADD(p, dst, src[0], src[1]);
1942 break;
1943 case BRW_OPCODE_MUL:
1944 brw_MUL(p, dst, src[0], src[1]);
1945 break;
1946 case BRW_OPCODE_AVG:
1947 brw_AVG(p, dst, src[0], src[1]);
1948 break;
1949 case BRW_OPCODE_MACH:
1950 brw_MACH(p, dst, src[0], src[1]);
1951 break;
1952
1953 case BRW_OPCODE_LINE:
1954 brw_LINE(p, dst, src[0], src[1]);
1955 break;
1956
1957 case BRW_OPCODE_MAD:
1958 assert(devinfo->gen >= 6);
1959 if (devinfo->gen < 10)
1960 brw_set_default_access_mode(p, BRW_ALIGN_16);
1961 brw_MAD(p, dst, src[0], src[1], src[2]);
1962 break;
1963
1964 case BRW_OPCODE_LRP:
1965 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1966 if (devinfo->gen < 10)
1967 brw_set_default_access_mode(p, BRW_ALIGN_16);
1968 brw_LRP(p, dst, src[0], src[1], src[2]);
1969 break;
1970
1971 case BRW_OPCODE_FRC:
1972 brw_FRC(p, dst, src[0]);
1973 break;
1974 case BRW_OPCODE_RNDD:
1975 brw_RNDD(p, dst, src[0]);
1976 break;
1977 case BRW_OPCODE_RNDE:
1978 brw_RNDE(p, dst, src[0]);
1979 break;
1980 case BRW_OPCODE_RNDZ:
1981 brw_RNDZ(p, dst, src[0]);
1982 break;
1983
1984 case BRW_OPCODE_AND:
1985 brw_AND(p, dst, src[0], src[1]);
1986 break;
1987 case BRW_OPCODE_OR:
1988 brw_OR(p, dst, src[0], src[1]);
1989 break;
1990 case BRW_OPCODE_XOR:
1991 brw_XOR(p, dst, src[0], src[1]);
1992 break;
1993 case BRW_OPCODE_NOT:
1994 brw_NOT(p, dst, src[0]);
1995 break;
1996 case BRW_OPCODE_ASR:
1997 brw_ASR(p, dst, src[0], src[1]);
1998 break;
1999 case BRW_OPCODE_SHR:
2000 brw_SHR(p, dst, src[0], src[1]);
2001 break;
2002 case BRW_OPCODE_SHL:
2003 brw_SHL(p, dst, src[0], src[1]);
2004 break;
2005 case BRW_OPCODE_F32TO16:
2006 assert(devinfo->gen >= 7);
2007 brw_F32TO16(p, dst, src[0]);
2008 break;
2009 case BRW_OPCODE_F16TO32:
2010 assert(devinfo->gen >= 7);
2011 brw_F16TO32(p, dst, src[0]);
2012 break;
2013 case BRW_OPCODE_CMP:
2014 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
2015 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
2016 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
2017 * implemented in the compiler is not sufficient. Overriding the
2018 * type when the destination is the null register is necessary but
2019 * not sufficient by itself.
2020 */
2021 assert(dst.nr == BRW_ARF_NULL);
2022 dst.type = BRW_REGISTER_TYPE_D;
2023 }
2024 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
2025 break;
2026 case BRW_OPCODE_SEL:
2027 brw_SEL(p, dst, src[0], src[1]);
2028 break;
2029 case BRW_OPCODE_CSEL:
2030 assert(devinfo->gen >= 8);
2031 if (devinfo->gen < 10)
2032 brw_set_default_access_mode(p, BRW_ALIGN_16);
2033 brw_CSEL(p, dst, src[0], src[1], src[2]);
2034 break;
2035 case BRW_OPCODE_BFREV:
2036 assert(devinfo->gen >= 7);
2037 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
2038 retype(src[0], BRW_REGISTER_TYPE_UD));
2039 break;
2040 case BRW_OPCODE_FBH:
2041 assert(devinfo->gen >= 7);
2042 brw_FBH(p, retype(dst, src[0].type), src[0]);
2043 break;
2044 case BRW_OPCODE_FBL:
2045 assert(devinfo->gen >= 7);
2046 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
2047 retype(src[0], BRW_REGISTER_TYPE_UD));
2048 break;
2049 case BRW_OPCODE_LZD:
2050 brw_LZD(p, dst, src[0]);
2051 break;
2052 case BRW_OPCODE_CBIT:
2053 assert(devinfo->gen >= 7);
2054 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
2055 retype(src[0], BRW_REGISTER_TYPE_UD));
2056 break;
2057 case BRW_OPCODE_ADDC:
2058 assert(devinfo->gen >= 7);
2059 brw_ADDC(p, dst, src[0], src[1]);
2060 break;
2061 case BRW_OPCODE_SUBB:
2062 assert(devinfo->gen >= 7);
2063 brw_SUBB(p, dst, src[0], src[1]);
2064 break;
2065 case BRW_OPCODE_MAC:
2066 brw_MAC(p, dst, src[0], src[1]);
2067 break;
2068
2069 case BRW_OPCODE_BFE:
2070 assert(devinfo->gen >= 7);
2071 if (devinfo->gen < 10)
2072 brw_set_default_access_mode(p, BRW_ALIGN_16);
2073 brw_BFE(p, dst, src[0], src[1], src[2]);
2074 break;
2075
2076 case BRW_OPCODE_BFI1:
2077 assert(devinfo->gen >= 7);
2078 brw_BFI1(p, dst, src[0], src[1]);
2079 break;
2080 case BRW_OPCODE_BFI2:
2081 assert(devinfo->gen >= 7);
2082 if (devinfo->gen < 10)
2083 brw_set_default_access_mode(p, BRW_ALIGN_16);
2084 brw_BFI2(p, dst, src[0], src[1], src[2]);
2085 break;
2086
2087 case BRW_OPCODE_IF:
2088 if (inst->src[0].file != BAD_FILE) {
2089 /* The instruction has an embedded compare (only allowed on gen6) */
2090 assert(devinfo->gen == 6);
2091 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
2092 } else {
2093 brw_IF(p, brw_get_default_exec_size(p));
2094 }
2095 break;
2096
2097 case BRW_OPCODE_ELSE:
2098 brw_ELSE(p);
2099 break;
2100 case BRW_OPCODE_ENDIF:
2101 brw_ENDIF(p);
2102 break;
2103
2104 case BRW_OPCODE_DO:
2105 brw_DO(p, brw_get_default_exec_size(p));
2106 break;
2107
2108 case BRW_OPCODE_BREAK:
2109 brw_BREAK(p);
2110 break;
2111 case BRW_OPCODE_CONTINUE:
2112 brw_CONT(p);
2113 break;
2114
2115 case BRW_OPCODE_WHILE:
2116 brw_WHILE(p);
2117 loop_count++;
2118 break;
2119
2120 case SHADER_OPCODE_RCP:
2121 case SHADER_OPCODE_RSQ:
2122 case SHADER_OPCODE_SQRT:
2123 case SHADER_OPCODE_EXP2:
2124 case SHADER_OPCODE_LOG2:
2125 case SHADER_OPCODE_SIN:
2126 case SHADER_OPCODE_COS:
2127 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2128 if (devinfo->gen >= 6) {
2129 assert(inst->mlen == 0);
2130 assert(devinfo->gen >= 7 || inst->exec_size == 8);
2131 gen6_math(p, dst, brw_math_function(inst->opcode),
2132 src[0], brw_null_reg());
2133 } else {
2134 assert(inst->mlen >= 1);
2135 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
2136 gen4_math(p, dst,
2137 brw_math_function(inst->opcode),
2138 inst->base_mrf, src[0],
2139 BRW_MATH_PRECISION_FULL);
2140 }
2141 break;
2142 case SHADER_OPCODE_INT_QUOTIENT:
2143 case SHADER_OPCODE_INT_REMAINDER:
2144 case SHADER_OPCODE_POW:
2145 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2146 if (devinfo->gen >= 6) {
2147 assert(inst->mlen == 0);
2148 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2149 inst->exec_size == 8);
2150 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2151 } else {
2152 assert(inst->mlen >= 1);
2153 assert(inst->exec_size == 8);
2154 gen4_math(p, dst, brw_math_function(inst->opcode),
2155 inst->base_mrf, src[0],
2156 BRW_MATH_PRECISION_FULL);
2157 }
2158 break;
2159 case FS_OPCODE_LINTERP:
2160 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2161 break;
2162 case FS_OPCODE_PIXEL_X:
2163 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2164 src[0].subnr = 0 * type_sz(src[0].type);
2165 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2166 break;
2167 case FS_OPCODE_PIXEL_Y:
2168 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2169 src[0].subnr = 4 * type_sz(src[0].type);
2170 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2171 break;
2172 case SHADER_OPCODE_GET_BUFFER_SIZE:
2173 generate_get_buffer_size(inst, dst, src[0], src[1]);
2174 break;
2175 case SHADER_OPCODE_TEX:
2176 case FS_OPCODE_TXB:
2177 case SHADER_OPCODE_TXD:
2178 case SHADER_OPCODE_TXF:
2179 case SHADER_OPCODE_TXF_LZ:
2180 case SHADER_OPCODE_TXF_CMS:
2181 case SHADER_OPCODE_TXF_CMS_W:
2182 case SHADER_OPCODE_TXF_UMS:
2183 case SHADER_OPCODE_TXF_MCS:
2184 case SHADER_OPCODE_TXL:
2185 case SHADER_OPCODE_TXL_LZ:
2186 case SHADER_OPCODE_TXS:
2187 case SHADER_OPCODE_LOD:
2188 case SHADER_OPCODE_TG4:
2189 case SHADER_OPCODE_TG4_OFFSET:
2190 case SHADER_OPCODE_SAMPLEINFO:
2191 generate_tex(inst, dst, src[0], src[1], src[2]);
2192 break;
2193
2194 case SHADER_OPCODE_IMAGE_SIZE:
2195 generate_tex(inst, dst, src[0], src[1], brw_imm_ud(0));
2196 break;
2197
2198 case FS_OPCODE_DDX_COARSE:
2199 case FS_OPCODE_DDX_FINE:
2200 generate_ddx(inst, dst, src[0]);
2201 break;
2202 case FS_OPCODE_DDY_COARSE:
2203 case FS_OPCODE_DDY_FINE:
2204 generate_ddy(inst, dst, src[0]);
2205 break;
2206
2207 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2208 generate_scratch_write(inst, src[0]);
2209 spill_count++;
2210 break;
2211
2212 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2213 generate_scratch_read(inst, dst);
2214 fill_count++;
2215 break;
2216
2217 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2218 generate_scratch_read_gen7(inst, dst);
2219 fill_count++;
2220 break;
2221
2222 case SHADER_OPCODE_MOV_INDIRECT:
2223 generate_mov_indirect(inst, dst, src[0], src[1]);
2224 break;
2225
2226 case SHADER_OPCODE_URB_READ_SIMD8:
2227 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2228 generate_urb_read(inst, dst, src[0]);
2229 break;
2230
2231 case SHADER_OPCODE_URB_WRITE_SIMD8:
2232 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2233 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2234 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2235 generate_urb_write(inst, src[0]);
2236 break;
2237
2238 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2239 assert(inst->force_writemask_all);
2240 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2241 break;
2242
2243 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2244 assert(inst->force_writemask_all);
2245 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2246 break;
2247
2248 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2249 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2250 break;
2251
2252 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
2253 generate_varying_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2254 break;
2255
2256 case FS_OPCODE_REP_FB_WRITE:
2257 case FS_OPCODE_FB_WRITE:
2258 generate_fb_write(inst, src[0]);
2259 break;
2260
2261 case FS_OPCODE_FB_READ:
2262 generate_fb_read(inst, dst, src[0]);
2263 break;
2264
2265 case FS_OPCODE_DISCARD_JUMP:
2266 generate_discard_jump(inst);
2267 break;
2268
2269 case SHADER_OPCODE_SHADER_TIME_ADD:
2270 generate_shader_time_add(inst, src[0], src[1], src[2]);
2271 break;
2272
2273 case SHADER_OPCODE_UNTYPED_ATOMIC:
2274 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2275 brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud,
2276 inst->mlen, !inst->dst.is_null(),
2277 inst->header_size);
2278 break;
2279
2280 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT:
2281 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2282 brw_untyped_atomic_float(p, dst, src[0], src[1], src[2].ud,
2283 inst->mlen, !inst->dst.is_null(),
2284 inst->header_size);
2285 break;
2286
2287 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
2288 assert(!inst->header_size);
2289 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2290 brw_untyped_surface_read(p, dst, src[0], src[1],
2291 inst->mlen, src[2].ud);
2292 break;
2293
2294 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
2295 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2296 brw_untyped_surface_write(p, src[0], src[1],
2297 inst->mlen, src[2].ud,
2298 inst->header_size);
2299 break;
2300
2301 case SHADER_OPCODE_BYTE_SCATTERED_READ:
2302 assert(!inst->header_size);
2303 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2304 brw_byte_scattered_read(p, dst, src[0], src[1],
2305 inst->mlen, src[2].ud);
2306 break;
2307
2308 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
2309 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2310 brw_byte_scattered_write(p, src[0], src[1],
2311 inst->mlen, src[2].ud,
2312 inst->header_size);
2313 break;
2314
2315 case SHADER_OPCODE_TYPED_ATOMIC:
2316 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2317 brw_typed_atomic(p, dst, src[0], src[1],
2318 src[2].ud, inst->mlen, !inst->dst.is_null(),
2319 inst->header_size);
2320 break;
2321
2322 case SHADER_OPCODE_TYPED_SURFACE_READ:
2323 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2324 brw_typed_surface_read(p, dst, src[0], src[1],
2325 inst->mlen, src[2].ud,
2326 inst->header_size);
2327 break;
2328
2329 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
2330 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2331 brw_typed_surface_write(p, src[0], src[1], inst->mlen, src[2].ud,
2332 inst->header_size);
2333 break;
2334
2335 case SHADER_OPCODE_MEMORY_FENCE:
2336 brw_memory_fence(p, dst, BRW_OPCODE_SEND);
2337 break;
2338
2339 case SHADER_OPCODE_INTERLOCK:
2340 /* The interlock is basically a memory fence issued via sendc */
2341 brw_memory_fence(p, dst, BRW_OPCODE_SENDC);
2342 break;
2343
2344 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2345 const struct brw_reg mask =
2346 brw_stage_has_packed_dispatch(devinfo, stage,
2347 prog_data) ? brw_imm_ud(~0u) :
2348 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2349 brw_dmask_reg();
2350 brw_find_live_channel(p, dst, mask);
2351 break;
2352 }
2353
2354 case SHADER_OPCODE_BROADCAST:
2355 assert(inst->force_writemask_all);
2356 brw_broadcast(p, dst, src[0], src[1]);
2357 break;
2358
2359 case SHADER_OPCODE_SHUFFLE:
2360 generate_shuffle(inst, dst, src[0], src[1]);
2361 break;
2362
2363 case SHADER_OPCODE_SEL_EXEC:
2364 assert(inst->force_writemask_all);
2365 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2366 brw_MOV(p, dst, src[1]);
2367 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2368 brw_MOV(p, dst, src[0]);
2369 break;
2370
2371 case SHADER_OPCODE_QUAD_SWIZZLE:
2372 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2373 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2374 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2375 break;
2376
2377 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2378 assert(src[0].type == dst.type);
2379 assert(!src[0].negate && !src[0].abs);
2380 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2381 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2382 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2383 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2384 const unsigned component = src[1].ud;
2385 const unsigned cluster_size = src[2].ud;
2386 struct brw_reg strided = stride(suboffset(src[0], component),
2387 cluster_size, cluster_size, 0);
2388 if (type_sz(src[0].type) > 4 &&
2389 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2390 /* IVB has an issue (which we found empirically) where it reads
2391 * two address register components per channel for indirectly
2392 * addressed 64-bit sources.
2393 *
2394 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2395 *
2396 * "When source or destination datatype is 64b or operation is
2397 * integer DWord multiply, indirect addressing must not be
2398 * used."
2399 *
2400 * To work around both of these, we do two integer MOVs insead of
2401 * one 64-bit MOV. Because no double value should ever cross a
2402 * register boundary, it's safe to use the immediate offset in the
2403 * indirect here to handle adding 4 bytes to the offset and avoid
2404 * the extra ADD to the register file.
2405 */
2406 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2407 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2408 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2409 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2410 } else {
2411 brw_MOV(p, dst, strided);
2412 }
2413 break;
2414 }
2415
2416 case FS_OPCODE_SET_SAMPLE_ID:
2417 generate_set_sample_id(inst, dst, src[0], src[1]);
2418 break;
2419
2420 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2421 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2422 break;
2423
2424 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
2425 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
2426 generate_unpack_half_2x16_split(inst, dst, src[0]);
2427 break;
2428
2429 case FS_OPCODE_PLACEHOLDER_HALT:
2430 /* This is the place where the final HALT needs to be inserted if
2431 * we've emitted any discards. If not, this will emit no code.
2432 */
2433 if (!patch_discard_jumps_to_fb_writes()) {
2434 if (unlikely(debug_flag)) {
2435 disasm_info->use_tail = true;
2436 }
2437 }
2438 break;
2439
2440 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2441 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2442 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2443 break;
2444
2445 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2446 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2447 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2448 break;
2449
2450 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2451 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2452 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2453 break;
2454
2455 case CS_OPCODE_CS_TERMINATE:
2456 generate_cs_terminate(inst, src[0]);
2457 break;
2458
2459 case SHADER_OPCODE_BARRIER:
2460 generate_barrier(inst, src[0]);
2461 break;
2462
2463 case BRW_OPCODE_DIM:
2464 assert(devinfo->is_haswell);
2465 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2466 assert(dst.type == BRW_REGISTER_TYPE_DF);
2467 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2468 break;
2469
2470 case SHADER_OPCODE_RND_MODE:
2471 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2472 brw_rounding_mode(p, (brw_rnd_mode) src[0].d);
2473 break;
2474
2475 default:
2476 unreachable("Unsupported opcode");
2477
2478 case SHADER_OPCODE_LOAD_PAYLOAD:
2479 unreachable("Should be lowered by lower_load_payload()");
2480 }
2481
2482 if (multiple_instructions_emitted)
2483 continue;
2484
2485 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2486 assert(p->next_insn_offset == last_insn_offset + 16 ||
2487 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2488 "emitting more than 1 instruction");
2489
2490 brw_inst *last = &p->store[last_insn_offset / 16];
2491
2492 if (inst->conditional_mod)
2493 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2494 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2495 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2496 }
2497 }
2498
2499 brw_set_uip_jip(p, start_offset);
2500
2501 /* end of program sentinel */
2502 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2503
2504 #ifndef NDEBUG
2505 bool validated =
2506 #else
2507 if (unlikely(debug_flag))
2508 #endif
2509 brw_validate_instructions(devinfo, p->store,
2510 start_offset,
2511 p->next_insn_offset,
2512 disasm_info);
2513
2514 int before_size = p->next_insn_offset - start_offset;
2515 brw_compact_instructions(p, start_offset, disasm_info);
2516 int after_size = p->next_insn_offset - start_offset;
2517
2518 if (unlikely(debug_flag)) {
2519 fprintf(stderr, "Native code for %s\n"
2520 "SIMD%d shader: %d instructions. %d loops. %u cycles. %d:%d spills:fills. Promoted %u constants. Compacted %d to %d"
2521 " bytes (%.0f%%)\n",
2522 shader_name, dispatch_width, before_size / 16, loop_count, cfg->cycle_count,
2523 spill_count, fill_count, promoted_constants, before_size, after_size,
2524 100.0f * (before_size - after_size) / before_size);
2525
2526 dump_assembly(p->store, disasm_info);
2527 }
2528 ralloc_free(disasm_info);
2529 assert(validated);
2530
2531 compiler->shader_debug_log(log_data,
2532 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2533 "%d:%d spills:fills, Promoted %u constants, "
2534 "compacted %d to %d bytes.",
2535 _mesa_shader_stage_to_abbrev(stage),
2536 dispatch_width, before_size / 16,
2537 loop_count, cfg->cycle_count, spill_count,
2538 fill_count, promoted_constants, before_size,
2539 after_size);
2540
2541 return start_offset;
2542 }
2543
2544 const unsigned *
2545 fs_generator::get_assembly()
2546 {
2547 return brw_get_program(p, &prog_data->program_size);
2548 }