intel/fs: the maximum supported stride width is 16
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33 #include "util/mesa-sha1.h"
34
35 static enum brw_reg_file
36 brw_file_from_reg(fs_reg *reg)
37 {
38 switch (reg->file) {
39 case ARF:
40 return BRW_ARCHITECTURE_REGISTER_FILE;
41 case FIXED_GRF:
42 case VGRF:
43 return BRW_GENERAL_REGISTER_FILE;
44 case MRF:
45 return BRW_MESSAGE_REGISTER_FILE;
46 case IMM:
47 return BRW_IMMEDIATE_VALUE;
48 case BAD_FILE:
49 case ATTR:
50 case UNIFORM:
51 unreachable("not reached");
52 }
53 return BRW_ARCHITECTURE_REGISTER_FILE;
54 }
55
56 static struct brw_reg
57 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
58 fs_reg *reg, bool compressed)
59 {
60 struct brw_reg brw_reg;
61
62 switch (reg->file) {
63 case MRF:
64 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
65 /* Fallthrough */
66 case VGRF:
67 if (reg->stride == 0) {
68 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
69 } else {
70 /* From the Haswell PRM:
71 *
72 * "VertStride must be used to cross GRF register boundaries. This
73 * rule implies that elements within a 'Width' cannot cross GRF
74 * boundaries."
75 *
76 * The maximum width value that could satisfy this restriction is:
77 */
78 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
79
80 /* Because the hardware can only split source regions at a whole
81 * multiple of width during decompression (i.e. vertically), clamp
82 * the value obtained above to the physical execution size of a
83 * single decompressed chunk of the instruction:
84 */
85 const unsigned phys_width = compressed ? inst->exec_size / 2 :
86 inst->exec_size;
87
88 const unsigned max_hw_width = 16;
89
90 /* XXX - The equation above is strictly speaking not correct on
91 * hardware that supports unbalanced GRF writes -- On Gen9+
92 * each decompressed chunk of the instruction may have a
93 * different execution size when the number of components
94 * written to each destination GRF is not the same.
95 */
96 if (reg->stride > 4) {
97 assert(reg != &inst->dst);
98 assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
99 brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
100 brw_reg = stride(brw_reg, reg->stride, 1, 0);
101 } else {
102 const unsigned width = MIN3(reg_width, phys_width, max_hw_width);
103 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
104 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
105 }
106
107 if (devinfo->gen == 7 && !devinfo->is_haswell) {
108 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
109 * "Each DF (Double Float) operand uses an element size of 4 rather
110 * than 8 and all regioning parameters are twice what the values
111 * would be based on the true element size: ExecSize, Width,
112 * HorzStride, and VertStride. Each DF operand uses a pair of
113 * channels and all masking and swizzing should be adjusted
114 * appropriately."
115 *
116 * From the IvyBridge PRM (Special Requirements for Handling Double
117 * Precision Data Types, page 71):
118 * "In Align1 mode, all regioning parameters like stride, execution
119 * size, and width must use the syntax of a pair of packed
120 * floats. The offsets for these data types must be 64-bit
121 * aligned. The execution size and regioning parameters are in terms
122 * of floats."
123 *
124 * Summarized: when handling DF-typed arguments, ExecSize,
125 * VertStride, and Width must be doubled.
126 *
127 * It applies to BayTrail too.
128 */
129 if (type_sz(reg->type) == 8) {
130 brw_reg.width++;
131 if (brw_reg.vstride > 0)
132 brw_reg.vstride++;
133 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
134 }
135
136 /* When converting from DF->F, we set the destination stride to 2
137 * because each d2f conversion implicitly writes 2 floats, being
138 * the first one the converted value. IVB/BYT actually writes two
139 * F components per SIMD channel, and every other component is
140 * filled with garbage.
141 */
142 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
143 type_sz(inst->dst.type) < 8) {
144 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
145 brw_reg.hstride--;
146 }
147 }
148 }
149
150 brw_reg = retype(brw_reg, reg->type);
151 brw_reg = byte_offset(brw_reg, reg->offset);
152 brw_reg.abs = reg->abs;
153 brw_reg.negate = reg->negate;
154 break;
155 case ARF:
156 case FIXED_GRF:
157 case IMM:
158 assert(reg->offset == 0);
159 brw_reg = reg->as_brw_reg();
160 break;
161 case BAD_FILE:
162 /* Probably unused. */
163 brw_reg = brw_null_reg();
164 break;
165 case ATTR:
166 case UNIFORM:
167 unreachable("not reached");
168 }
169
170 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
171 * region, but on IVB and BYT DF regions must be programmed in terms of
172 * floats. A <0,2,1> region accomplishes this.
173 */
174 if (devinfo->gen == 7 && !devinfo->is_haswell &&
175 type_sz(reg->type) == 8 &&
176 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
177 brw_reg.width == BRW_WIDTH_1 &&
178 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
179 brw_reg.width = BRW_WIDTH_2;
180 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
181 }
182
183 return brw_reg;
184 }
185
186 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
187 void *mem_ctx,
188 struct brw_stage_prog_data *prog_data,
189 struct shader_stats shader_stats,
190 bool runtime_check_aads_emit,
191 gl_shader_stage stage)
192
193 : compiler(compiler), log_data(log_data),
194 devinfo(compiler->devinfo),
195 prog_data(prog_data),
196 shader_stats(shader_stats),
197 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
198 stage(stage), mem_ctx(mem_ctx)
199 {
200 p = rzalloc(mem_ctx, struct brw_codegen);
201 brw_init_codegen(devinfo, p, mem_ctx);
202
203 /* In the FS code generator, we are very careful to ensure that we always
204 * set the right execution size so we don't need the EU code to "help" us
205 * by trying to infer it. Sometimes, it infers the wrong thing.
206 */
207 p->automatic_exec_sizes = false;
208 }
209
210 fs_generator::~fs_generator()
211 {
212 }
213
214 class ip_record : public exec_node {
215 public:
216 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
217
218 ip_record(int ip)
219 {
220 this->ip = ip;
221 }
222
223 int ip;
224 };
225
226 bool
227 fs_generator::patch_discard_jumps_to_fb_writes()
228 {
229 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
230 return false;
231
232 int scale = brw_jump_scale(p->devinfo);
233
234 /* There is a somewhat strange undocumented requirement of using
235 * HALT, according to the simulator. If some channel has HALTed to
236 * a particular UIP, then by the end of the program, every channel
237 * must have HALTed to that UIP. Furthermore, the tracking is a
238 * stack, so you can't do the final halt of a UIP after starting
239 * halting to a new UIP.
240 *
241 * Symptoms of not emitting this instruction on actual hardware
242 * included GPU hangs and sparkly rendering on the piglit discard
243 * tests.
244 */
245 brw_inst *last_halt = gen6_HALT(p);
246 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
247 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
248
249 int ip = p->nr_insn;
250
251 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
252 brw_inst *patch = &p->store[patch_ip->ip];
253
254 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
255 /* HALT takes a half-instruction distance from the pre-incremented IP. */
256 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
257 }
258
259 this->discard_halt_patches.make_empty();
260 return true;
261 }
262
263 void
264 fs_generator::generate_send(fs_inst *inst,
265 struct brw_reg dst,
266 struct brw_reg desc,
267 struct brw_reg ex_desc,
268 struct brw_reg payload,
269 struct brw_reg payload2)
270 {
271 const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
272 dst.nr == BRW_ARF_NULL;
273 const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
274
275 uint32_t desc_imm = inst->desc |
276 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
277
278 uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen);
279
280 if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
281 /* If we have any sort of extended descriptor, then we need SENDS. This
282 * also covers the dual-payload case because ex_mlen goes in ex_desc.
283 */
284 brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
285 desc, desc_imm, ex_desc, ex_desc_imm,
286 inst->eot);
287 if (inst->check_tdr)
288 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDSC);
289 } else {
290 brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
291 inst->eot);
292 if (inst->check_tdr)
293 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
294 }
295 }
296
297 void
298 fs_generator::fire_fb_write(fs_inst *inst,
299 struct brw_reg payload,
300 struct brw_reg implied_header,
301 GLuint nr)
302 {
303 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
304
305 if (devinfo->gen < 6) {
306 brw_push_insn_state(p);
307 brw_set_default_exec_size(p, BRW_EXECUTE_8);
308 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
309 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
310 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
311 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
312 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
313 brw_pop_insn_state(p);
314 }
315
316 uint32_t msg_control = brw_fb_write_msg_control(inst, prog_data);
317
318 /* We assume render targets start at 0, because headerless FB write
319 * messages set "Render Target Index" to 0. Using a different binding
320 * table index would make it impossible to use headerless messages.
321 */
322 const uint32_t surf_index = inst->target;
323
324 brw_inst *insn = brw_fb_WRITE(p,
325 payload,
326 retype(implied_header, BRW_REGISTER_TYPE_UW),
327 msg_control,
328 surf_index,
329 nr,
330 0,
331 inst->eot,
332 inst->last_rt,
333 inst->header_size != 0);
334
335 if (devinfo->gen >= 6)
336 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
337 }
338
339 void
340 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
341 {
342 if (devinfo->gen < 8 && !devinfo->is_haswell) {
343 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
344 brw_set_default_flag_reg(p, 0, 0);
345 }
346
347 const struct brw_reg implied_header =
348 devinfo->gen < 6 ? payload : brw_null_reg();
349
350 if (inst->base_mrf >= 0)
351 payload = brw_message_reg(inst->base_mrf);
352
353 if (!runtime_check_aads_emit) {
354 fire_fb_write(inst, payload, implied_header, inst->mlen);
355 } else {
356 /* This can only happen in gen < 6 */
357 assert(devinfo->gen < 6);
358
359 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
360
361 /* Check runtime bit to detect if we have to send AA data or not */
362 brw_push_insn_state(p);
363 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
364 brw_set_default_exec_size(p, BRW_EXECUTE_1);
365 brw_AND(p,
366 v1_null_ud,
367 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
368 brw_imm_ud(1<<26));
369 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
370
371 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
372 brw_pop_insn_state(p);
373 {
374 /* Don't send AA data */
375 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
376 }
377 brw_land_fwd_jump(p, jmp);
378 fire_fb_write(inst, payload, implied_header, inst->mlen);
379 }
380 }
381
382 void
383 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
384 struct brw_reg payload)
385 {
386 assert(inst->size_written % REG_SIZE == 0);
387 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
388 /* We assume that render targets start at binding table index 0. */
389 const unsigned surf_index = inst->target;
390
391 gen9_fb_READ(p, dst, payload, surf_index,
392 inst->header_size, inst->size_written / REG_SIZE,
393 prog_data->persample_dispatch);
394 }
395
396 void
397 fs_generator::generate_mov_indirect(fs_inst *inst,
398 struct brw_reg dst,
399 struct brw_reg reg,
400 struct brw_reg indirect_byte_offset)
401 {
402 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
403 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
404 assert(!reg.abs && !reg.negate);
405 assert(reg.type == dst.type);
406
407 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
408
409 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
410 imm_byte_offset += indirect_byte_offset.ud;
411
412 reg.nr = imm_byte_offset / REG_SIZE;
413 reg.subnr = imm_byte_offset % REG_SIZE;
414 brw_MOV(p, dst, reg);
415 } else {
416 /* Prior to Broadwell, there are only 8 address registers. */
417 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
418
419 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
420 struct brw_reg addr = vec8(brw_address_reg(0));
421
422 /* The destination stride of an instruction (in bytes) must be greater
423 * than or equal to the size of the rest of the instruction. Since the
424 * address register is of type UW, we can't use a D-type instruction.
425 * In order to get around this, re retype to UW and use a stride.
426 */
427 indirect_byte_offset =
428 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
429
430 /* There are a number of reasons why we don't use the base offset here.
431 * One reason is that the field is only 9 bits which means we can only
432 * use it to access the first 16 GRFs. Also, from the Haswell PRM
433 * section "Register Region Restrictions":
434 *
435 * "The lower bits of the AddressImmediate must not overflow to
436 * change the register address. The lower 5 bits of Address
437 * Immediate when added to lower 5 bits of address register gives
438 * the sub-register offset. The upper bits of Address Immediate
439 * when added to upper bits of address register gives the register
440 * address. Any overflow from sub-register offset is dropped."
441 *
442 * Since the indirect may cause us to cross a register boundary, this
443 * makes the base offset almost useless. We could try and do something
444 * clever where we use a actual base offset if base_offset % 32 == 0 but
445 * that would mean we were generating different code depending on the
446 * base offset. Instead, for the sake of consistency, we'll just do the
447 * add ourselves. This restriction is only listed in the Haswell PRM
448 * but empirical testing indicates that it applies on all older
449 * generations and is lifted on Broadwell.
450 *
451 * In the end, while base_offset is nice to look at in the generated
452 * code, using it saves us 0 instructions and would require quite a bit
453 * of case-by-case work. It's just not worth it.
454 */
455 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
456
457 if (type_sz(reg.type) > 4 &&
458 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
459 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
460 !devinfo->has_64bit_types)) {
461 /* IVB has an issue (which we found empirically) where it reads two
462 * address register components per channel for indirectly addressed
463 * 64-bit sources.
464 *
465 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
466 *
467 * "When source or destination datatype is 64b or operation is
468 * integer DWord multiply, indirect addressing must not be used."
469 *
470 * To work around both of these, we do two integer MOVs insead of one
471 * 64-bit MOV. Because no double value should ever cross a register
472 * boundary, it's safe to use the immediate offset in the indirect
473 * here to handle adding 4 bytes to the offset and avoid the extra
474 * ADD to the register file.
475 */
476 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
477 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
478 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
479 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
480 } else {
481 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
482
483 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
484
485 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
486 !inst->get_next()->is_tail_sentinel() &&
487 ((fs_inst *)inst->get_next())->mlen > 0) {
488 /* From the Sandybridge PRM:
489 *
490 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
491 * instruction that “indexed/indirect” source AND is followed
492 * by a send, the instruction requires a “Switch”. This is to
493 * avoid race condition where send may dispatch before MRF is
494 * updated."
495 */
496 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
497 }
498 }
499 }
500 }
501
502 void
503 fs_generator::generate_shuffle(fs_inst *inst,
504 struct brw_reg dst,
505 struct brw_reg src,
506 struct brw_reg idx)
507 {
508 /* Ivy bridge has some strange behavior that makes this a real pain to
509 * implement for 64-bit values so we just don't bother.
510 */
511 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
512
513 /* Because we're using the address register, we're limited to 8-wide
514 * execution on gen7. On gen8, we're limited to 16-wide by the address
515 * register file and 8-wide for 64-bit types. We could try and make this
516 * instruction splittable higher up in the compiler but that gets weird
517 * because it reads all of the channels regardless of execution size. It's
518 * easier just to split it here.
519 */
520 const unsigned lower_width =
521 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
522 8 : MIN2(16, inst->exec_size);
523
524 brw_set_default_exec_size(p, cvt(lower_width) - 1);
525 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
526 brw_set_default_group(p, group);
527
528 if ((src.vstride == 0 && src.hstride == 0) ||
529 idx.file == BRW_IMMEDIATE_VALUE) {
530 /* Trivial, the source is already uniform or the index is a constant.
531 * We will typically not get here if the optimizer is doing its job,
532 * but asserting would be mean.
533 */
534 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
535 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
536 } else {
537 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
538 struct brw_reg addr = vec8(brw_address_reg(0));
539
540 struct brw_reg group_idx = suboffset(idx, group);
541
542 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
543 /* Things get grumpy if the register is too wide. */
544 group_idx.width--;
545 group_idx.vstride--;
546 }
547
548 assert(type_sz(group_idx.type) <= 4);
549 if (type_sz(group_idx.type) == 4) {
550 /* The destination stride of an instruction (in bytes) must be
551 * greater than or equal to the size of the rest of the
552 * instruction. Since the address register is of type UW, we
553 * can't use a D-type instruction. In order to get around this,
554 * re retype to UW and use a stride.
555 */
556 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
557 }
558
559 /* Take into account the component size and horizontal stride. */
560 assert(src.vstride == src.hstride + src.width);
561 brw_SHL(p, addr, group_idx,
562 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
563 src.hstride - 1));
564
565 /* Add on the register start offset */
566 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
567
568 if (type_sz(src.type) > 4 &&
569 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
570 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
571 /* IVB has an issue (which we found empirically) where it reads
572 * two address register components per channel for indirectly
573 * addressed 64-bit sources.
574 *
575 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
576 *
577 * "When source or destination datatype is 64b or operation is
578 * integer DWord multiply, indirect addressing must not be
579 * used."
580 *
581 * To work around both of these, we do two integer MOVs insead of
582 * one 64-bit MOV. Because no double value should ever cross a
583 * register boundary, it's safe to use the immediate offset in the
584 * indirect here to handle adding 4 bytes to the offset and avoid
585 * the extra ADD to the register file.
586 */
587 struct brw_reg gdst = suboffset(dst, group);
588 struct brw_reg dst_d = retype(spread(gdst, 2),
589 BRW_REGISTER_TYPE_D);
590 brw_MOV(p, dst_d,
591 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
592 brw_MOV(p, byte_offset(dst_d, 4),
593 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
594 } else {
595 brw_MOV(p, suboffset(dst, group),
596 retype(brw_VxH_indirect(0, 0), src.type));
597 }
598 }
599 }
600 }
601
602 void
603 fs_generator::generate_quad_swizzle(const fs_inst *inst,
604 struct brw_reg dst, struct brw_reg src,
605 unsigned swiz)
606 {
607 /* Requires a quad. */
608 assert(inst->exec_size >= 4);
609
610 if (src.file == BRW_IMMEDIATE_VALUE ||
611 has_scalar_region(src)) {
612 /* The value is uniform across all channels */
613 brw_MOV(p, dst, src);
614
615 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
616 /* This only works on 8-wide 32-bit values */
617 assert(inst->exec_size == 8);
618 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
619 assert(src.vstride == src.width + 1);
620 brw_set_default_access_mode(p, BRW_ALIGN_16);
621 struct brw_reg swiz_src = stride(src, 4, 4, 1);
622 swiz_src.swizzle = swiz;
623 brw_MOV(p, dst, swiz_src);
624
625 } else {
626 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
627 assert(src.vstride == src.width + 1);
628 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
629
630 switch (swiz) {
631 case BRW_SWIZZLE_XXXX:
632 case BRW_SWIZZLE_YYYY:
633 case BRW_SWIZZLE_ZZZZ:
634 case BRW_SWIZZLE_WWWW:
635 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
636 break;
637
638 case BRW_SWIZZLE_XXZZ:
639 case BRW_SWIZZLE_YYWW:
640 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
641 break;
642
643 case BRW_SWIZZLE_XYXY:
644 case BRW_SWIZZLE_ZWZW:
645 assert(inst->exec_size == 4);
646 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
647 break;
648
649 default:
650 assert(inst->force_writemask_all);
651 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
652
653 for (unsigned c = 0; c < 4; c++) {
654 brw_inst *insn = brw_MOV(
655 p, stride(suboffset(dst, c),
656 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
657 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
658
659 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
660 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
661 }
662
663 break;
664 }
665 }
666 }
667
668 void
669 fs_generator::generate_urb_read(fs_inst *inst,
670 struct brw_reg dst,
671 struct brw_reg header)
672 {
673 assert(inst->size_written % REG_SIZE == 0);
674 assert(header.file == BRW_GENERAL_REGISTER_FILE);
675 assert(header.type == BRW_REGISTER_TYPE_UD);
676
677 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
678 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
679 brw_set_src0(p, send, header);
680 brw_set_src1(p, send, brw_imm_ud(0u));
681
682 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
683 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
684
685 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
686 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
687
688 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
689 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
690 brw_inst_set_header_present(p->devinfo, send, true);
691 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
692 }
693
694 void
695 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
696 {
697 brw_inst *insn;
698
699 /* WaClearTDRRegBeforeEOTForNonPS.
700 *
701 * WA: Clear tdr register before send EOT in all non-PS shader kernels
702 *
703 * mov(8) tdr0:ud 0x0:ud {NoMask}"
704 */
705 if (inst->eot && p->devinfo->gen == 10) {
706 brw_push_insn_state(p);
707 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
708 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
709 brw_pop_insn_state(p);
710 }
711
712 insn = brw_next_insn(p, BRW_OPCODE_SEND);
713
714 brw_set_dest(p, insn, brw_null_reg());
715 brw_set_src0(p, insn, payload);
716 brw_set_src1(p, insn, brw_imm_ud(0u));
717
718 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
719 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
720
721 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
722 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
723 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
724
725 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
726 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
727 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
728
729 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
730 brw_inst_set_rlen(p->devinfo, insn, 0);
731 brw_inst_set_eot(p->devinfo, insn, inst->eot);
732 brw_inst_set_header_present(p->devinfo, insn, true);
733 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
734 }
735
736 void
737 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
738 {
739 struct brw_inst *insn;
740
741 insn = brw_next_insn(p, BRW_OPCODE_SEND);
742
743 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
744 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
745 brw_set_src1(p, insn, brw_imm_ud(0u));
746
747 /* Terminate a compute shader by sending a message to the thread spawner.
748 */
749 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
750 brw_inst_set_mlen(devinfo, insn, 1);
751 brw_inst_set_rlen(devinfo, insn, 0);
752 brw_inst_set_eot(devinfo, insn, inst->eot);
753 brw_inst_set_header_present(devinfo, insn, false);
754
755 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
756 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
757
758 /* Note that even though the thread has a URB resource associated with it,
759 * we set the "do not dereference URB" bit, because the URB resource is
760 * managed by the fixed-function unit, so it will free it automatically.
761 */
762 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
763
764 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
765 }
766
767 void
768 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
769 {
770 brw_barrier(p, src);
771 brw_WAIT(p);
772 }
773
774 bool
775 fs_generator::generate_linterp(fs_inst *inst,
776 struct brw_reg dst, struct brw_reg *src)
777 {
778 /* PLN reads:
779 * / in SIMD16 \
780 * -----------------------------------
781 * | src1+0 | src1+1 | src1+2 | src1+3 |
782 * |-----------------------------------|
783 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
784 * -----------------------------------
785 *
786 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
787 *
788 * -----------------------------------
789 * | src1+0 | src1+1 | src1+2 | src1+3 |
790 * |-----------------------------------|
791 * |(x0, x1)|(y0, y1)| | | in SIMD8
792 * |-----------------------------------|
793 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
794 * -----------------------------------
795 *
796 * See also: emit_interpolation_setup_gen4().
797 */
798 struct brw_reg delta_x = src[0];
799 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
800 struct brw_reg interp = src[1];
801 brw_inst *i[2];
802
803 /* nir_lower_interpolation() will do the lowering to MAD instructions for
804 * us on gen11+
805 */
806 assert(devinfo->gen < 11);
807
808 if (devinfo->has_pln) {
809 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
810 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
811 *
812 * "[DevSNB]:<src1> must be even register aligned.
813 *
814 * This restriction is lifted on Ivy Bridge.
815 *
816 * This means that we need to split PLN into LINE+MAC on-the-fly.
817 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
818 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
819 * coordinate registers are laid out differently so we leave it as a
820 * SIMD16 instruction.
821 */
822 assert(inst->exec_size == 8 || inst->exec_size == 16);
823 assert(inst->group % 16 == 0);
824
825 brw_push_insn_state(p);
826 brw_set_default_exec_size(p, BRW_EXECUTE_8);
827
828 /* Thanks to two accumulators, we can emit all the LINEs and then all
829 * the MACs. This improves parallelism a bit.
830 */
831 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
832 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
833 offset(delta_x, g * 2));
834 brw_inst_set_group(devinfo, line, inst->group + g * 8);
835
836 /* LINE writes the accumulator automatically on gen4-5. On Sandy
837 * Bridge and later, we have to explicitly enable it.
838 */
839 if (devinfo->gen >= 6)
840 brw_inst_set_acc_wr_control(p->devinfo, line, true);
841
842 /* brw_set_default_saturate() is called before emitting
843 * instructions, so the saturate bit is set in each instruction,
844 * so we need to unset it on the LINE instructions.
845 */
846 brw_inst_set_saturate(p->devinfo, line, false);
847 }
848
849 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
850 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
851 offset(delta_x, g * 2 + 1));
852 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
853 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
854 }
855
856 brw_pop_insn_state(p);
857
858 return true;
859 } else {
860 brw_PLN(p, dst, interp, delta_x);
861
862 return false;
863 }
864 } else {
865 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
866 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
867
868 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
869
870 /* brw_set_default_saturate() is called before emitting instructions, so
871 * the saturate bit is set in each instruction, so we need to unset it on
872 * the first instruction.
873 */
874 brw_inst_set_saturate(p->devinfo, i[0], false);
875
876 return true;
877 }
878 }
879
880 void
881 fs_generator::generate_get_buffer_size(fs_inst *inst,
882 struct brw_reg dst,
883 struct brw_reg src,
884 struct brw_reg surf_index)
885 {
886 assert(devinfo->gen >= 7);
887 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
888
889 uint32_t simd_mode;
890 int rlen = 4;
891
892 switch (inst->exec_size) {
893 case 8:
894 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
895 break;
896 case 16:
897 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
898 break;
899 default:
900 unreachable("Invalid width for texture instruction");
901 }
902
903 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
904 rlen = 8;
905 dst = vec16(dst);
906 }
907
908 brw_SAMPLE(p,
909 retype(dst, BRW_REGISTER_TYPE_UW),
910 inst->base_mrf,
911 src,
912 surf_index.ud,
913 0,
914 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
915 rlen, /* response length */
916 inst->mlen,
917 inst->header_size > 0,
918 simd_mode,
919 BRW_SAMPLER_RETURN_FORMAT_SINT32);
920 }
921
922 void
923 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
924 struct brw_reg surface_index,
925 struct brw_reg sampler_index)
926 {
927 assert(devinfo->gen < 7);
928 assert(inst->size_written % REG_SIZE == 0);
929 int msg_type = -1;
930 uint32_t simd_mode;
931 uint32_t return_format;
932
933 /* Sampler EOT message of less than the dispatch width would kill the
934 * thread prematurely.
935 */
936 assert(!inst->eot || inst->exec_size == dispatch_width);
937
938 switch (dst.type) {
939 case BRW_REGISTER_TYPE_D:
940 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
941 break;
942 case BRW_REGISTER_TYPE_UD:
943 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
944 break;
945 default:
946 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
947 break;
948 }
949
950 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
951 * is set as part of the message descriptor. On gen4, the PRM seems to
952 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
953 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
954 * gone from the message descriptor entirely and you just get UINT32 all
955 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
956 * just stomp it to UINT32 all the time.
957 */
958 if (inst->opcode == SHADER_OPCODE_TXS)
959 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
960
961 switch (inst->exec_size) {
962 case 8:
963 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
964 break;
965 case 16:
966 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
967 break;
968 default:
969 unreachable("Invalid width for texture instruction");
970 }
971
972 if (devinfo->gen >= 5) {
973 switch (inst->opcode) {
974 case SHADER_OPCODE_TEX:
975 if (inst->shadow_compare) {
976 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
977 } else {
978 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
979 }
980 break;
981 case FS_OPCODE_TXB:
982 if (inst->shadow_compare) {
983 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
984 } else {
985 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
986 }
987 break;
988 case SHADER_OPCODE_TXL:
989 if (inst->shadow_compare) {
990 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
991 } else {
992 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
993 }
994 break;
995 case SHADER_OPCODE_TXS:
996 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
997 break;
998 case SHADER_OPCODE_TXD:
999 assert(!inst->shadow_compare);
1000 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1001 break;
1002 case SHADER_OPCODE_TXF:
1003 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1004 break;
1005 case SHADER_OPCODE_TXF_CMS:
1006 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1007 break;
1008 case SHADER_OPCODE_LOD:
1009 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1010 break;
1011 case SHADER_OPCODE_TG4:
1012 assert(devinfo->gen == 6);
1013 assert(!inst->shadow_compare);
1014 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1015 break;
1016 case SHADER_OPCODE_SAMPLEINFO:
1017 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1018 break;
1019 default:
1020 unreachable("not reached");
1021 }
1022 } else {
1023 switch (inst->opcode) {
1024 case SHADER_OPCODE_TEX:
1025 /* Note that G45 and older determines shadow compare and dispatch width
1026 * from message length for most messages.
1027 */
1028 if (inst->exec_size == 8) {
1029 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1030 if (inst->shadow_compare) {
1031 assert(inst->mlen == 6);
1032 } else {
1033 assert(inst->mlen <= 4);
1034 }
1035 } else {
1036 if (inst->shadow_compare) {
1037 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1038 assert(inst->mlen == 9);
1039 } else {
1040 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1041 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1042 }
1043 }
1044 break;
1045 case FS_OPCODE_TXB:
1046 if (inst->shadow_compare) {
1047 assert(inst->exec_size == 8);
1048 assert(inst->mlen == 6);
1049 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1050 } else {
1051 assert(inst->mlen == 9);
1052 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1053 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1054 }
1055 break;
1056 case SHADER_OPCODE_TXL:
1057 if (inst->shadow_compare) {
1058 assert(inst->exec_size == 8);
1059 assert(inst->mlen == 6);
1060 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1061 } else {
1062 assert(inst->mlen == 9);
1063 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1064 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1065 }
1066 break;
1067 case SHADER_OPCODE_TXD:
1068 /* There is no sample_d_c message; comparisons are done manually */
1069 assert(inst->exec_size == 8);
1070 assert(inst->mlen == 7 || inst->mlen == 10);
1071 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1072 break;
1073 case SHADER_OPCODE_TXF:
1074 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1075 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1076 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1077 break;
1078 case SHADER_OPCODE_TXS:
1079 assert(inst->mlen == 3);
1080 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1081 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1082 break;
1083 default:
1084 unreachable("not reached");
1085 }
1086 }
1087 assert(msg_type != -1);
1088
1089 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1090 dst = vec16(dst);
1091 }
1092
1093 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1094
1095 /* Load the message header if present. If there's a texture offset,
1096 * we need to set it up explicitly and load the offset bitfield.
1097 * Otherwise, we can use an implied move from g0 to the first message reg.
1098 */
1099 struct brw_reg src = brw_null_reg();
1100 if (inst->header_size != 0) {
1101 if (devinfo->gen < 6 && !inst->offset) {
1102 /* Set up an implied move from g0 to the MRF. */
1103 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1104 } else {
1105 assert(inst->base_mrf != -1);
1106 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1107
1108 brw_push_insn_state(p);
1109 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1110 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1111 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1112 /* Explicitly set up the message header by copying g0 to the MRF. */
1113 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1114
1115 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1116 if (inst->offset) {
1117 /* Set the offset bits in DWord 2. */
1118 brw_MOV(p, get_element_ud(header_reg, 2),
1119 brw_imm_ud(inst->offset));
1120 }
1121
1122 brw_pop_insn_state(p);
1123 }
1124 }
1125
1126 uint32_t base_binding_table_index;
1127 switch (inst->opcode) {
1128 case SHADER_OPCODE_TG4:
1129 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1130 break;
1131 default:
1132 base_binding_table_index = prog_data->binding_table.texture_start;
1133 break;
1134 }
1135
1136 assert(surface_index.file == BRW_IMMEDIATE_VALUE);
1137 assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
1138
1139 brw_SAMPLE(p,
1140 retype(dst, BRW_REGISTER_TYPE_UW),
1141 inst->base_mrf,
1142 src,
1143 surface_index.ud + base_binding_table_index,
1144 sampler_index.ud % 16,
1145 msg_type,
1146 inst->size_written / REG_SIZE,
1147 inst->mlen,
1148 inst->header_size != 0,
1149 simd_mode,
1150 return_format);
1151 }
1152
1153
1154 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1155 * looking like:
1156 *
1157 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1158 *
1159 * Ideally, we want to produce:
1160 *
1161 * DDX DDY
1162 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1163 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1164 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1165 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1166 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1167 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1168 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1169 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1170 *
1171 * and add another set of two more subspans if in 16-pixel dispatch mode.
1172 *
1173 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1174 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1175 * pair. But the ideal approximation may impose a huge performance cost on
1176 * sample_d. On at least Haswell, sample_d instruction does some
1177 * optimizations if the same LOD is used for all pixels in the subspan.
1178 *
1179 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1180 * appropriate swizzling.
1181 */
1182 void
1183 fs_generator::generate_ddx(const fs_inst *inst,
1184 struct brw_reg dst, struct brw_reg src)
1185 {
1186 unsigned vstride, width;
1187
1188 if (devinfo->gen >= 8) {
1189 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1190 /* produce accurate derivatives */
1191 vstride = BRW_VERTICAL_STRIDE_2;
1192 width = BRW_WIDTH_2;
1193 } else {
1194 /* replicate the derivative at the top-left pixel to other pixels */
1195 vstride = BRW_VERTICAL_STRIDE_4;
1196 width = BRW_WIDTH_4;
1197 }
1198
1199 struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
1200 struct brw_reg src1 = src;
1201
1202 src0.vstride = vstride;
1203 src0.width = width;
1204 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1205 src1.vstride = vstride;
1206 src1.width = width;
1207 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1208
1209 brw_ADD(p, dst, src0, negate(src1));
1210 } else {
1211 /* On Haswell and earlier, the region used above appears to not work
1212 * correctly for compressed instructions. At least on Haswell and
1213 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1214 * would have to split to SIMD8 no matter which method we choose, we
1215 * may as well use ALIGN16 on all platforms gen7 and earlier.
1216 */
1217 struct brw_reg src0 = stride(src, 4, 4, 1);
1218 struct brw_reg src1 = stride(src, 4, 4, 1);
1219 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1220 src0.swizzle = BRW_SWIZZLE_XXZZ;
1221 src1.swizzle = BRW_SWIZZLE_YYWW;
1222 } else {
1223 src0.swizzle = BRW_SWIZZLE_XXXX;
1224 src1.swizzle = BRW_SWIZZLE_YYYY;
1225 }
1226
1227 brw_push_insn_state(p);
1228 brw_set_default_access_mode(p, BRW_ALIGN_16);
1229 brw_ADD(p, dst, negate(src0), src1);
1230 brw_pop_insn_state(p);
1231 }
1232 }
1233
1234 /* The negate_value boolean is used to negate the derivative computation for
1235 * FBOs, since they place the origin at the upper left instead of the lower
1236 * left.
1237 */
1238 void
1239 fs_generator::generate_ddy(const fs_inst *inst,
1240 struct brw_reg dst, struct brw_reg src)
1241 {
1242 const uint32_t type_size = type_sz(src.type);
1243
1244 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1245 /* produce accurate derivatives.
1246 *
1247 * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU)
1248 * "Register Region Restrictions", Section "1. Special Restrictions":
1249 *
1250 * "In Align16 mode, the channel selects and channel enables apply to
1251 * a pair of half-floats, because these parameters are defined for
1252 * DWord elements ONLY. This is applicable when both source and
1253 * destination are half-floats."
1254 *
1255 * So for half-float operations we use the Gen11+ Align1 path. CHV
1256 * inherits its FP16 hardware from SKL, so it is not affected.
1257 */
1258 if (devinfo->gen >= 11 ||
1259 (devinfo->is_broadwell && src.type == BRW_REGISTER_TYPE_HF)) {
1260 src = stride(src, 0, 2, 1);
1261
1262 brw_push_insn_state(p);
1263 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1264 for (uint32_t g = 0; g < inst->exec_size; g += 4) {
1265 brw_set_default_group(p, inst->group + g);
1266 brw_ADD(p, byte_offset(dst, g * type_size),
1267 negate(byte_offset(src, g * type_size)),
1268 byte_offset(src, (g + 2) * type_size));
1269 }
1270 brw_pop_insn_state(p);
1271 } else {
1272 struct brw_reg src0 = stride(src, 4, 4, 1);
1273 struct brw_reg src1 = stride(src, 4, 4, 1);
1274 src0.swizzle = BRW_SWIZZLE_XYXY;
1275 src1.swizzle = BRW_SWIZZLE_ZWZW;
1276
1277 brw_push_insn_state(p);
1278 brw_set_default_access_mode(p, BRW_ALIGN_16);
1279 brw_ADD(p, dst, negate(src0), src1);
1280 brw_pop_insn_state(p);
1281 }
1282 } else {
1283 /* replicate the derivative at the top-left pixel to other pixels */
1284 if (devinfo->gen >= 8) {
1285 struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
1286 struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
1287
1288 brw_ADD(p, dst, negate(src0), src1);
1289 } else {
1290 /* On Haswell and earlier, the region used above appears to not work
1291 * correctly for compressed instructions. At least on Haswell and
1292 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1293 * would have to split to SIMD8 no matter which method we choose, we
1294 * may as well use ALIGN16 on all platforms gen7 and earlier.
1295 */
1296 struct brw_reg src0 = stride(src, 4, 4, 1);
1297 struct brw_reg src1 = stride(src, 4, 4, 1);
1298 src0.swizzle = BRW_SWIZZLE_XXXX;
1299 src1.swizzle = BRW_SWIZZLE_ZZZZ;
1300
1301 brw_push_insn_state(p);
1302 brw_set_default_access_mode(p, BRW_ALIGN_16);
1303 brw_ADD(p, dst, negate(src0), src1);
1304 brw_pop_insn_state(p);
1305 }
1306 }
1307 }
1308
1309 void
1310 fs_generator::generate_discard_jump(fs_inst *)
1311 {
1312 assert(devinfo->gen >= 6);
1313
1314 /* This HALT will be patched up at FB write time to point UIP at the end of
1315 * the program, and at brw_uip_jip() JIP will be set to the end of the
1316 * current block (or the program).
1317 */
1318 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1319 gen6_HALT(p);
1320 }
1321
1322 void
1323 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1324 {
1325 /* The 32-wide messages only respect the first 16-wide half of the channel
1326 * enable signals which are replicated identically for the second group of
1327 * 16 channels, so we cannot use them unless the write is marked
1328 * force_writemask_all.
1329 */
1330 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1331 MIN2(16, inst->exec_size);
1332 const unsigned block_size = 4 * lower_size / REG_SIZE;
1333 assert(inst->mlen != 0);
1334
1335 brw_push_insn_state(p);
1336 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1337 brw_set_default_compression(p, lower_size > 8);
1338
1339 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1340 brw_set_default_group(p, inst->group + lower_size * i);
1341
1342 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1343 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1344
1345 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1346 block_size,
1347 inst->offset + block_size * REG_SIZE * i);
1348 }
1349
1350 brw_pop_insn_state(p);
1351 }
1352
1353 void
1354 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1355 {
1356 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1357 assert(inst->mlen != 0);
1358
1359 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1360 inst->exec_size / 8, inst->offset);
1361 }
1362
1363 void
1364 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1365 {
1366 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1367
1368 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1369 }
1370
1371 void
1372 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1373 struct brw_reg dst,
1374 struct brw_reg index,
1375 struct brw_reg offset)
1376 {
1377 assert(type_sz(dst.type) == 4);
1378 assert(inst->mlen != 0);
1379
1380 assert(index.file == BRW_IMMEDIATE_VALUE &&
1381 index.type == BRW_REGISTER_TYPE_UD);
1382 uint32_t surf_index = index.ud;
1383
1384 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1385 offset.type == BRW_REGISTER_TYPE_UD);
1386 uint32_t read_offset = offset.ud;
1387
1388 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1389 read_offset, surf_index);
1390 }
1391
1392 void
1393 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1394 struct brw_reg dst,
1395 struct brw_reg index,
1396 struct brw_reg payload)
1397 {
1398 assert(index.type == BRW_REGISTER_TYPE_UD);
1399 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1400 assert(type_sz(dst.type) == 4);
1401
1402 if (index.file == BRW_IMMEDIATE_VALUE) {
1403 const uint32_t surf_index = index.ud;
1404
1405 brw_push_insn_state(p);
1406 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1407 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1408 brw_pop_insn_state(p);
1409
1410 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1411 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1412 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1413 brw_set_desc(p, send,
1414 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1415 REG_SIZE), true) |
1416 brw_dp_read_desc(devinfo, surf_index,
1417 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1418 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1419 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1420
1421 } else {
1422 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1423
1424 brw_push_insn_state(p);
1425 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1426
1427 /* a0.0 = surf_index & 0xff */
1428 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1429 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1430 brw_set_dest(p, insn_and, addr);
1431 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1432 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1433
1434 /* dst = send(payload, a0.0 | <descriptor>) */
1435 brw_send_indirect_message(
1436 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1437 retype(dst, BRW_REGISTER_TYPE_UD),
1438 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1439 brw_message_desc(devinfo, 1,
1440 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1441 brw_dp_read_desc(devinfo, 0 /* surface */,
1442 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1443 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1444 BRW_DATAPORT_READ_TARGET_DATA_CACHE),
1445 false /* EOT */);
1446
1447 brw_pop_insn_state(p);
1448 }
1449 }
1450
1451 void
1452 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1453 struct brw_reg dst,
1454 struct brw_reg index)
1455 {
1456 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1457 assert(inst->header_size != 0);
1458 assert(inst->mlen);
1459
1460 assert(index.file == BRW_IMMEDIATE_VALUE &&
1461 index.type == BRW_REGISTER_TYPE_UD);
1462 uint32_t surf_index = index.ud;
1463
1464 uint32_t simd_mode, rlen, msg_type;
1465 if (inst->exec_size == 16) {
1466 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1467 rlen = 8;
1468 } else {
1469 assert(inst->exec_size == 8);
1470 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1471 rlen = 4;
1472 }
1473
1474 if (devinfo->gen >= 5)
1475 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1476 else {
1477 /* We always use the SIMD16 message so that we only have to load U, and
1478 * not V or R.
1479 */
1480 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1481 assert(inst->mlen == 3);
1482 assert(inst->size_written == 8 * REG_SIZE);
1483 rlen = 8;
1484 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1485 }
1486
1487 struct brw_reg header = brw_vec8_grf(0, 0);
1488 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1489
1490 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1491 brw_inst_set_compression(devinfo, send, false);
1492 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1493 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1494 brw_set_src0(p, send, header);
1495 if (devinfo->gen < 6)
1496 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1497
1498 /* Our surface is set up as floats, regardless of what actual data is
1499 * stored in it.
1500 */
1501 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1502 brw_set_desc(p, send,
1503 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1504 brw_sampler_desc(devinfo, surf_index,
1505 0, /* sampler (unused) */
1506 msg_type, simd_mode, return_format));
1507 }
1508
1509 void
1510 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1511 struct brw_reg dst,
1512 struct brw_reg src,
1513 struct brw_reg msg_data,
1514 unsigned msg_type)
1515 {
1516 const bool has_payload = inst->src[0].file != BAD_FILE;
1517 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1518 assert(inst->size_written % REG_SIZE == 0);
1519
1520 brw_pixel_interpolator_query(p,
1521 retype(dst, BRW_REGISTER_TYPE_UW),
1522 /* If we don't have a payload, what we send doesn't matter */
1523 has_payload ? src : brw_vec8_grf(0, 0),
1524 inst->pi_noperspective,
1525 msg_type,
1526 msg_data,
1527 has_payload ? 2 * inst->exec_size / 8 : 1,
1528 inst->size_written / REG_SIZE);
1529 }
1530
1531 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1532 * the ADD instruction.
1533 */
1534 void
1535 fs_generator::generate_set_sample_id(fs_inst *inst,
1536 struct brw_reg dst,
1537 struct brw_reg src0,
1538 struct brw_reg src1)
1539 {
1540 assert(dst.type == BRW_REGISTER_TYPE_D ||
1541 dst.type == BRW_REGISTER_TYPE_UD);
1542 assert(src0.type == BRW_REGISTER_TYPE_D ||
1543 src0.type == BRW_REGISTER_TYPE_UD);
1544
1545 const struct brw_reg reg = stride(src1, 1, 4, 0);
1546 const unsigned lower_size = MIN2(inst->exec_size,
1547 devinfo->gen >= 8 ? 16 : 8);
1548
1549 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1550 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1551 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1552 (i * lower_size / (1 << src0.width))) *
1553 type_sz(src0.type) / REG_SIZE),
1554 suboffset(reg, i * lower_size / 4));
1555 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1556 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1557 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1558 }
1559 }
1560
1561 void
1562 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1563 struct brw_reg dst,
1564 struct brw_reg x,
1565 struct brw_reg y)
1566 {
1567 assert(devinfo->gen >= 7);
1568 assert(dst.type == BRW_REGISTER_TYPE_UD);
1569 assert(x.type == BRW_REGISTER_TYPE_F);
1570 assert(y.type == BRW_REGISTER_TYPE_F);
1571
1572 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1573 *
1574 * Because this instruction does not have a 16-bit floating-point type,
1575 * the destination data type must be Word (W).
1576 *
1577 * The destination must be DWord-aligned and specify a horizontal stride
1578 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1579 * each destination channel and the upper word is not modified.
1580 */
1581 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1582
1583 /* Give each 32-bit channel of dst the form below, where "." means
1584 * unchanged.
1585 * 0x....hhhh
1586 */
1587 brw_F32TO16(p, dst_w, y);
1588
1589 /* Now the form:
1590 * 0xhhhh0000
1591 */
1592 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1593
1594 /* And, finally the form of packHalf2x16's output:
1595 * 0xhhhhllll
1596 */
1597 brw_F32TO16(p, dst_w, x);
1598 }
1599
1600 void
1601 fs_generator::generate_shader_time_add(fs_inst *,
1602 struct brw_reg payload,
1603 struct brw_reg offset,
1604 struct brw_reg value)
1605 {
1606 assert(devinfo->gen >= 7);
1607 brw_push_insn_state(p);
1608 brw_set_default_mask_control(p, true);
1609
1610 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1611 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1612 offset.type);
1613 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1614 value.type);
1615
1616 assert(offset.file == BRW_IMMEDIATE_VALUE);
1617 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1618 value.width = BRW_WIDTH_1;
1619 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1620 value.vstride = BRW_VERTICAL_STRIDE_0;
1621 } else {
1622 assert(value.file == BRW_IMMEDIATE_VALUE);
1623 }
1624
1625 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1626 * case, and we don't really care about squeezing every bit of performance
1627 * out of this path, so we just emit the MOVs from here.
1628 */
1629 brw_MOV(p, payload_offset, offset);
1630 brw_MOV(p, payload_value, value);
1631 brw_shader_time_add(p, payload,
1632 prog_data->binding_table.shader_time_start);
1633 brw_pop_insn_state(p);
1634 }
1635
1636 void
1637 fs_generator::enable_debug(const char *shader_name)
1638 {
1639 debug_flag = true;
1640 this->shader_name = shader_name;
1641 }
1642
1643 int
1644 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width,
1645 struct brw_compile_stats *stats)
1646 {
1647 /* align to 64 byte boundary. */
1648 while (p->next_insn_offset % 64)
1649 brw_NOP(p);
1650
1651 this->dispatch_width = dispatch_width;
1652
1653 int start_offset = p->next_insn_offset;
1654 int spill_count = 0, fill_count = 0;
1655 int loop_count = 0;
1656
1657 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1658
1659 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1660 if (inst->opcode == SHADER_OPCODE_UNDEF)
1661 continue;
1662
1663 struct brw_reg src[4], dst;
1664 unsigned int last_insn_offset = p->next_insn_offset;
1665 bool multiple_instructions_emitted = false;
1666
1667 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1668 * "Register Region Restrictions" section: for BDW, SKL:
1669 *
1670 * "A POW/FDIV operation must not be followed by an instruction
1671 * that requires two destination registers."
1672 *
1673 * The documentation is often lacking annotations for Atom parts,
1674 * and empirically this affects CHV as well.
1675 */
1676 if (devinfo->gen >= 8 &&
1677 devinfo->gen <= 9 &&
1678 p->nr_insn > 1 &&
1679 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1680 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1681 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1682 brw_NOP(p);
1683 last_insn_offset = p->next_insn_offset;
1684 }
1685
1686 if (unlikely(debug_flag))
1687 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1688
1689 /* If the instruction writes to more than one register, it needs to be
1690 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1691 * hardware figures out by itself what the right compression mode is,
1692 * but we still need to know whether the instruction is compressed to
1693 * set up the source register regions appropriately.
1694 *
1695 * XXX - This is wrong for instructions that write a single register but
1696 * read more than one which should strictly speaking be treated as
1697 * compressed. For instructions that don't write any registers it
1698 * relies on the destination being a null register of the correct
1699 * type and regioning so the instruction is considered compressed
1700 * or not accordingly.
1701 */
1702 const bool compressed =
1703 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1704 brw_set_default_compression(p, compressed);
1705 brw_set_default_group(p, inst->group);
1706
1707 for (unsigned int i = 0; i < inst->sources; i++) {
1708 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1709 &inst->src[i], compressed);
1710 /* The accumulator result appears to get used for the
1711 * conditional modifier generation. When negating a UD
1712 * value, there is a 33rd bit generated for the sign in the
1713 * accumulator value, so now you can't check, for example,
1714 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1715 */
1716 assert(!inst->conditional_mod ||
1717 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1718 !inst->src[i].negate);
1719 }
1720 dst = brw_reg_from_fs_reg(devinfo, inst,
1721 &inst->dst, compressed);
1722
1723 brw_set_default_access_mode(p, BRW_ALIGN_1);
1724 brw_set_default_predicate_control(p, inst->predicate);
1725 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1726 /* On gen7 and above, hardware automatically adds the group onto the
1727 * flag subregister number. On Sandy Bridge and older, we have to do it
1728 * ourselves.
1729 */
1730 const unsigned flag_subreg = inst->flag_subreg +
1731 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1732 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1733 brw_set_default_saturate(p, inst->saturate);
1734 brw_set_default_mask_control(p, inst->force_writemask_all);
1735 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1736
1737 unsigned exec_size = inst->exec_size;
1738 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1739 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1740 exec_size *= 2;
1741 }
1742
1743 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1744
1745 assert(inst->force_writemask_all || inst->exec_size >= 4);
1746 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1747 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1748 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1749
1750 switch (inst->opcode) {
1751 case BRW_OPCODE_MOV:
1752 brw_MOV(p, dst, src[0]);
1753 break;
1754 case BRW_OPCODE_ADD:
1755 brw_ADD(p, dst, src[0], src[1]);
1756 break;
1757 case BRW_OPCODE_MUL:
1758 brw_MUL(p, dst, src[0], src[1]);
1759 break;
1760 case BRW_OPCODE_AVG:
1761 brw_AVG(p, dst, src[0], src[1]);
1762 break;
1763 case BRW_OPCODE_MACH:
1764 brw_MACH(p, dst, src[0], src[1]);
1765 break;
1766
1767 case BRW_OPCODE_LINE:
1768 brw_LINE(p, dst, src[0], src[1]);
1769 break;
1770
1771 case BRW_OPCODE_MAD:
1772 assert(devinfo->gen >= 6);
1773 if (devinfo->gen < 10)
1774 brw_set_default_access_mode(p, BRW_ALIGN_16);
1775 brw_MAD(p, dst, src[0], src[1], src[2]);
1776 break;
1777
1778 case BRW_OPCODE_LRP:
1779 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1780 if (devinfo->gen < 10)
1781 brw_set_default_access_mode(p, BRW_ALIGN_16);
1782 brw_LRP(p, dst, src[0], src[1], src[2]);
1783 break;
1784
1785 case BRW_OPCODE_FRC:
1786 brw_FRC(p, dst, src[0]);
1787 break;
1788 case BRW_OPCODE_RNDD:
1789 brw_RNDD(p, dst, src[0]);
1790 break;
1791 case BRW_OPCODE_RNDE:
1792 brw_RNDE(p, dst, src[0]);
1793 break;
1794 case BRW_OPCODE_RNDZ:
1795 brw_RNDZ(p, dst, src[0]);
1796 break;
1797
1798 case BRW_OPCODE_AND:
1799 brw_AND(p, dst, src[0], src[1]);
1800 break;
1801 case BRW_OPCODE_OR:
1802 brw_OR(p, dst, src[0], src[1]);
1803 break;
1804 case BRW_OPCODE_XOR:
1805 brw_XOR(p, dst, src[0], src[1]);
1806 break;
1807 case BRW_OPCODE_NOT:
1808 brw_NOT(p, dst, src[0]);
1809 break;
1810 case BRW_OPCODE_ASR:
1811 brw_ASR(p, dst, src[0], src[1]);
1812 break;
1813 case BRW_OPCODE_SHR:
1814 brw_SHR(p, dst, src[0], src[1]);
1815 break;
1816 case BRW_OPCODE_SHL:
1817 brw_SHL(p, dst, src[0], src[1]);
1818 break;
1819 case BRW_OPCODE_ROL:
1820 assert(devinfo->gen >= 11);
1821 assert(src[0].type == dst.type);
1822 brw_ROL(p, dst, src[0], src[1]);
1823 break;
1824 case BRW_OPCODE_ROR:
1825 assert(devinfo->gen >= 11);
1826 assert(src[0].type == dst.type);
1827 brw_ROR(p, dst, src[0], src[1]);
1828 break;
1829 case BRW_OPCODE_F32TO16:
1830 assert(devinfo->gen >= 7);
1831 brw_F32TO16(p, dst, src[0]);
1832 break;
1833 case BRW_OPCODE_F16TO32:
1834 assert(devinfo->gen >= 7);
1835 brw_F16TO32(p, dst, src[0]);
1836 break;
1837 case BRW_OPCODE_CMP:
1838 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1839 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1840 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1841 * implemented in the compiler is not sufficient. Overriding the
1842 * type when the destination is the null register is necessary but
1843 * not sufficient by itself.
1844 */
1845 assert(dst.nr == BRW_ARF_NULL);
1846 dst.type = BRW_REGISTER_TYPE_D;
1847 }
1848 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1849 break;
1850 case BRW_OPCODE_SEL:
1851 brw_SEL(p, dst, src[0], src[1]);
1852 break;
1853 case BRW_OPCODE_CSEL:
1854 assert(devinfo->gen >= 8);
1855 if (devinfo->gen < 10)
1856 brw_set_default_access_mode(p, BRW_ALIGN_16);
1857 brw_CSEL(p, dst, src[0], src[1], src[2]);
1858 break;
1859 case BRW_OPCODE_BFREV:
1860 assert(devinfo->gen >= 7);
1861 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1862 retype(src[0], BRW_REGISTER_TYPE_UD));
1863 break;
1864 case BRW_OPCODE_FBH:
1865 assert(devinfo->gen >= 7);
1866 brw_FBH(p, retype(dst, src[0].type), src[0]);
1867 break;
1868 case BRW_OPCODE_FBL:
1869 assert(devinfo->gen >= 7);
1870 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1871 retype(src[0], BRW_REGISTER_TYPE_UD));
1872 break;
1873 case BRW_OPCODE_LZD:
1874 brw_LZD(p, dst, src[0]);
1875 break;
1876 case BRW_OPCODE_CBIT:
1877 assert(devinfo->gen >= 7);
1878 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1879 retype(src[0], BRW_REGISTER_TYPE_UD));
1880 break;
1881 case BRW_OPCODE_ADDC:
1882 assert(devinfo->gen >= 7);
1883 brw_ADDC(p, dst, src[0], src[1]);
1884 break;
1885 case BRW_OPCODE_SUBB:
1886 assert(devinfo->gen >= 7);
1887 brw_SUBB(p, dst, src[0], src[1]);
1888 break;
1889 case BRW_OPCODE_MAC:
1890 brw_MAC(p, dst, src[0], src[1]);
1891 break;
1892
1893 case BRW_OPCODE_BFE:
1894 assert(devinfo->gen >= 7);
1895 if (devinfo->gen < 10)
1896 brw_set_default_access_mode(p, BRW_ALIGN_16);
1897 brw_BFE(p, dst, src[0], src[1], src[2]);
1898 break;
1899
1900 case BRW_OPCODE_BFI1:
1901 assert(devinfo->gen >= 7);
1902 brw_BFI1(p, dst, src[0], src[1]);
1903 break;
1904 case BRW_OPCODE_BFI2:
1905 assert(devinfo->gen >= 7);
1906 if (devinfo->gen < 10)
1907 brw_set_default_access_mode(p, BRW_ALIGN_16);
1908 brw_BFI2(p, dst, src[0], src[1], src[2]);
1909 break;
1910
1911 case BRW_OPCODE_IF:
1912 if (inst->src[0].file != BAD_FILE) {
1913 /* The instruction has an embedded compare (only allowed on gen6) */
1914 assert(devinfo->gen == 6);
1915 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
1916 } else {
1917 brw_IF(p, brw_get_default_exec_size(p));
1918 }
1919 break;
1920
1921 case BRW_OPCODE_ELSE:
1922 brw_ELSE(p);
1923 break;
1924 case BRW_OPCODE_ENDIF:
1925 brw_ENDIF(p);
1926 break;
1927
1928 case BRW_OPCODE_DO:
1929 brw_DO(p, brw_get_default_exec_size(p));
1930 break;
1931
1932 case BRW_OPCODE_BREAK:
1933 brw_BREAK(p);
1934 break;
1935 case BRW_OPCODE_CONTINUE:
1936 brw_CONT(p);
1937 break;
1938
1939 case BRW_OPCODE_WHILE:
1940 brw_WHILE(p);
1941 loop_count++;
1942 break;
1943
1944 case SHADER_OPCODE_RCP:
1945 case SHADER_OPCODE_RSQ:
1946 case SHADER_OPCODE_SQRT:
1947 case SHADER_OPCODE_EXP2:
1948 case SHADER_OPCODE_LOG2:
1949 case SHADER_OPCODE_SIN:
1950 case SHADER_OPCODE_COS:
1951 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1952 if (devinfo->gen >= 6) {
1953 assert(inst->mlen == 0);
1954 assert(devinfo->gen >= 7 || inst->exec_size == 8);
1955 gen6_math(p, dst, brw_math_function(inst->opcode),
1956 src[0], brw_null_reg());
1957 } else {
1958 assert(inst->mlen >= 1);
1959 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
1960 gen4_math(p, dst,
1961 brw_math_function(inst->opcode),
1962 inst->base_mrf, src[0],
1963 BRW_MATH_PRECISION_FULL);
1964 }
1965 break;
1966 case SHADER_OPCODE_INT_QUOTIENT:
1967 case SHADER_OPCODE_INT_REMAINDER:
1968 case SHADER_OPCODE_POW:
1969 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1970 if (devinfo->gen >= 6) {
1971 assert(inst->mlen == 0);
1972 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
1973 inst->exec_size == 8);
1974 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1975 } else {
1976 assert(inst->mlen >= 1);
1977 assert(inst->exec_size == 8);
1978 gen4_math(p, dst, brw_math_function(inst->opcode),
1979 inst->base_mrf, src[0],
1980 BRW_MATH_PRECISION_FULL);
1981 }
1982 break;
1983 case FS_OPCODE_LINTERP:
1984 multiple_instructions_emitted = generate_linterp(inst, dst, src);
1985 break;
1986 case FS_OPCODE_PIXEL_X:
1987 assert(src[0].type == BRW_REGISTER_TYPE_UW);
1988 src[0].subnr = 0 * type_sz(src[0].type);
1989 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
1990 break;
1991 case FS_OPCODE_PIXEL_Y:
1992 assert(src[0].type == BRW_REGISTER_TYPE_UW);
1993 src[0].subnr = 4 * type_sz(src[0].type);
1994 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
1995 break;
1996
1997 case SHADER_OPCODE_SEND:
1998 generate_send(inst, dst, src[0], src[1], src[2],
1999 inst->ex_mlen > 0 ? src[3] : brw_null_reg());
2000 break;
2001
2002 case SHADER_OPCODE_GET_BUFFER_SIZE:
2003 generate_get_buffer_size(inst, dst, src[0], src[1]);
2004 break;
2005 case SHADER_OPCODE_TEX:
2006 case FS_OPCODE_TXB:
2007 case SHADER_OPCODE_TXD:
2008 case SHADER_OPCODE_TXF:
2009 case SHADER_OPCODE_TXF_CMS:
2010 case SHADER_OPCODE_TXL:
2011 case SHADER_OPCODE_TXS:
2012 case SHADER_OPCODE_LOD:
2013 case SHADER_OPCODE_TG4:
2014 case SHADER_OPCODE_SAMPLEINFO:
2015 assert(inst->src[0].file == BAD_FILE);
2016 generate_tex(inst, dst, src[1], src[2]);
2017 break;
2018
2019 case FS_OPCODE_DDX_COARSE:
2020 case FS_OPCODE_DDX_FINE:
2021 generate_ddx(inst, dst, src[0]);
2022 break;
2023 case FS_OPCODE_DDY_COARSE:
2024 case FS_OPCODE_DDY_FINE:
2025 generate_ddy(inst, dst, src[0]);
2026 break;
2027
2028 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2029 generate_scratch_write(inst, src[0]);
2030 spill_count++;
2031 break;
2032
2033 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2034 generate_scratch_read(inst, dst);
2035 fill_count++;
2036 break;
2037
2038 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2039 generate_scratch_read_gen7(inst, dst);
2040 fill_count++;
2041 break;
2042
2043 case SHADER_OPCODE_MOV_INDIRECT:
2044 generate_mov_indirect(inst, dst, src[0], src[1]);
2045 break;
2046
2047 case SHADER_OPCODE_URB_READ_SIMD8:
2048 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2049 generate_urb_read(inst, dst, src[0]);
2050 break;
2051
2052 case SHADER_OPCODE_URB_WRITE_SIMD8:
2053 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2054 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2055 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2056 generate_urb_write(inst, src[0]);
2057 break;
2058
2059 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2060 assert(inst->force_writemask_all);
2061 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2062 break;
2063
2064 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2065 assert(inst->force_writemask_all);
2066 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2067 break;
2068
2069 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2070 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2071 break;
2072
2073 case FS_OPCODE_REP_FB_WRITE:
2074 case FS_OPCODE_FB_WRITE:
2075 generate_fb_write(inst, src[0]);
2076 break;
2077
2078 case FS_OPCODE_FB_READ:
2079 generate_fb_read(inst, dst, src[0]);
2080 break;
2081
2082 case FS_OPCODE_DISCARD_JUMP:
2083 generate_discard_jump(inst);
2084 break;
2085
2086 case SHADER_OPCODE_SHADER_TIME_ADD:
2087 generate_shader_time_add(inst, src[0], src[1], src[2]);
2088 break;
2089
2090 case SHADER_OPCODE_MEMORY_FENCE:
2091 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2092 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2093 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SEND, src[1].ud, src[2].ud);
2094 break;
2095
2096 case SHADER_OPCODE_INTERLOCK:
2097 assert(devinfo->gen >= 9);
2098 /* The interlock is basically a memory fence issued via sendc */
2099 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SENDC, false, /* bti */ 0);
2100 break;
2101
2102 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2103 const struct brw_reg mask =
2104 brw_stage_has_packed_dispatch(devinfo, stage,
2105 prog_data) ? brw_imm_ud(~0u) :
2106 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2107 brw_dmask_reg();
2108 brw_find_live_channel(p, dst, mask);
2109 break;
2110 }
2111
2112 case SHADER_OPCODE_BROADCAST:
2113 assert(inst->force_writemask_all);
2114 brw_broadcast(p, dst, src[0], src[1]);
2115 break;
2116
2117 case SHADER_OPCODE_SHUFFLE:
2118 generate_shuffle(inst, dst, src[0], src[1]);
2119 break;
2120
2121 case SHADER_OPCODE_SEL_EXEC:
2122 assert(inst->force_writemask_all);
2123 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2124 brw_MOV(p, dst, src[1]);
2125 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2126 brw_MOV(p, dst, src[0]);
2127 break;
2128
2129 case SHADER_OPCODE_QUAD_SWIZZLE:
2130 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2131 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2132 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2133 break;
2134
2135 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2136 assert(src[0].type == dst.type);
2137 assert(!src[0].negate && !src[0].abs);
2138 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2139 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2140 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2141 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2142 const unsigned component = src[1].ud;
2143 const unsigned cluster_size = src[2].ud;
2144 struct brw_reg strided = stride(suboffset(src[0], component),
2145 cluster_size, cluster_size, 0);
2146 if (type_sz(src[0].type) > 4 &&
2147 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2148 /* IVB has an issue (which we found empirically) where it reads
2149 * two address register components per channel for indirectly
2150 * addressed 64-bit sources.
2151 *
2152 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2153 *
2154 * "When source or destination datatype is 64b or operation is
2155 * integer DWord multiply, indirect addressing must not be
2156 * used."
2157 *
2158 * To work around both of these, we do two integer MOVs insead of
2159 * one 64-bit MOV. Because no double value should ever cross a
2160 * register boundary, it's safe to use the immediate offset in the
2161 * indirect here to handle adding 4 bytes to the offset and avoid
2162 * the extra ADD to the register file.
2163 */
2164 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2165 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2166 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2167 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2168 } else {
2169 brw_MOV(p, dst, strided);
2170 }
2171 break;
2172 }
2173
2174 case FS_OPCODE_SET_SAMPLE_ID:
2175 generate_set_sample_id(inst, dst, src[0], src[1]);
2176 break;
2177
2178 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2179 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2180 break;
2181
2182 case FS_OPCODE_PLACEHOLDER_HALT:
2183 /* This is the place where the final HALT needs to be inserted if
2184 * we've emitted any discards. If not, this will emit no code.
2185 */
2186 if (!patch_discard_jumps_to_fb_writes()) {
2187 if (unlikely(debug_flag)) {
2188 disasm_info->use_tail = true;
2189 }
2190 }
2191 break;
2192
2193 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2194 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2195 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2196 break;
2197
2198 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2199 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2200 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2201 break;
2202
2203 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2204 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2205 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2206 break;
2207
2208 case CS_OPCODE_CS_TERMINATE:
2209 generate_cs_terminate(inst, src[0]);
2210 break;
2211
2212 case SHADER_OPCODE_BARRIER:
2213 generate_barrier(inst, src[0]);
2214 break;
2215
2216 case BRW_OPCODE_DIM:
2217 assert(devinfo->is_haswell);
2218 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2219 assert(dst.type == BRW_REGISTER_TYPE_DF);
2220 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2221 break;
2222
2223 case SHADER_OPCODE_RND_MODE: {
2224 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2225 /*
2226 * Changes the floating point rounding mode updating the control
2227 * register field defined at cr0.0[5-6] bits.
2228 */
2229 enum brw_rnd_mode mode =
2230 (enum brw_rnd_mode) (src[0].d << BRW_CR0_RND_MODE_SHIFT);
2231 brw_float_controls_mode(p, mode, BRW_CR0_RND_MODE_MASK);
2232 }
2233 break;
2234
2235 case SHADER_OPCODE_FLOAT_CONTROL_MODE:
2236 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2237 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2238 brw_float_controls_mode(p, src[0].d, src[1].d);
2239 break;
2240
2241 default:
2242 unreachable("Unsupported opcode");
2243
2244 case SHADER_OPCODE_LOAD_PAYLOAD:
2245 unreachable("Should be lowered by lower_load_payload()");
2246 }
2247
2248 if (multiple_instructions_emitted)
2249 continue;
2250
2251 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2252 assert(p->next_insn_offset == last_insn_offset + 16 ||
2253 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2254 "emitting more than 1 instruction");
2255
2256 brw_inst *last = &p->store[last_insn_offset / 16];
2257
2258 if (inst->conditional_mod)
2259 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2260 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2261 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2262 }
2263 }
2264
2265 brw_set_uip_jip(p, start_offset);
2266
2267 /* end of program sentinel */
2268 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2269
2270 #ifndef NDEBUG
2271 bool validated =
2272 #else
2273 if (unlikely(debug_flag))
2274 #endif
2275 brw_validate_instructions(devinfo, p->store,
2276 start_offset,
2277 p->next_insn_offset,
2278 disasm_info);
2279
2280 int before_size = p->next_insn_offset - start_offset;
2281 brw_compact_instructions(p, start_offset, disasm_info);
2282 int after_size = p->next_insn_offset - start_offset;
2283
2284 if (unlikely(debug_flag)) {
2285 unsigned char sha1[21];
2286 char sha1buf[41];
2287
2288 _mesa_sha1_compute(p->store + start_offset / sizeof(brw_inst),
2289 after_size, sha1);
2290 _mesa_sha1_format(sha1buf, sha1);
2291
2292 fprintf(stderr, "Native code for %s (sha1 %s)\n"
2293 "SIMD%d shader: %d instructions. %d loops. %u cycles. "
2294 "%d:%d spills:fills. "
2295 "scheduled with mode %s. "
2296 "Promoted %u constants. "
2297 "Compacted %d to %d bytes (%.0f%%)\n",
2298 shader_name, sha1buf,
2299 dispatch_width, before_size / 16,
2300 loop_count, cfg->cycle_count,
2301 spill_count, fill_count,
2302 shader_stats.scheduler_mode,
2303 shader_stats.promoted_constants,
2304 before_size, after_size,
2305 100.0f * (before_size - after_size) / before_size);
2306
2307 /* overriding the shader makes disasm_info invalid */
2308 if (!brw_try_override_assembly(p, start_offset, sha1buf)) {
2309 dump_assembly(p->store, disasm_info);
2310 } else {
2311 fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf);
2312 }
2313 }
2314 ralloc_free(disasm_info);
2315 assert(validated);
2316
2317 compiler->shader_debug_log(log_data,
2318 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2319 "%d:%d spills:fills, "
2320 "scheduled with mode %s, "
2321 "Promoted %u constants, "
2322 "compacted %d to %d bytes.",
2323 _mesa_shader_stage_to_abbrev(stage),
2324 dispatch_width, before_size / 16,
2325 loop_count, cfg->cycle_count,
2326 spill_count, fill_count,
2327 shader_stats.scheduler_mode,
2328 shader_stats.promoted_constants,
2329 before_size, after_size);
2330 if (stats) {
2331 stats->dispatch_width = dispatch_width;
2332 stats->instructions = before_size / 16;
2333 stats->loops = loop_count;
2334 stats->cycles = cfg->cycle_count;
2335 stats->spills = spill_count;
2336 stats->fills = fill_count;
2337 }
2338
2339 return start_offset;
2340 }
2341
2342 const unsigned *
2343 fs_generator::get_assembly()
2344 {
2345 return brw_get_program(p, &prog_data->program_size);
2346 }