intel/fs: use uint type for per_slot_offset at GS
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
71 if (vec4s[loc] == 0) {
72 loc++;
73 continue;
74 }
75
76 unsigned reg_size = vec4s[loc];
77
78 /* Check if there are any ranges that start within this range and extend
79 * past it. If so, include them in this allocation.
80 */
81 for (unsigned i = 1; i < reg_size; i++)
82 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
83
84 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
85 for (unsigned i = 0; i < reg_size; i++)
86 outputs[loc + i] = offset(reg, bld, 4 * i);
87
88 loc += reg_size;
89 }
90 }
91
92 void
93 fs_visitor::nir_setup_uniforms()
94 {
95 /* Only the first compile gets to set up uniforms. */
96 if (push_constant_loc) {
97 assert(pull_constant_loc);
98 return;
99 }
100
101 uniforms = nir->num_uniforms / 4;
102
103 if (stage == MESA_SHADER_COMPUTE) {
104 /* Add a uniform for the thread local id. It must be the last uniform
105 * on the list.
106 */
107 assert(uniforms == prog_data->nr_params);
108 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
109 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
110 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
111 }
112 }
113
114 static bool
115 emit_system_values_block(nir_block *block, fs_visitor *v)
116 {
117 fs_reg *reg;
118
119 nir_foreach_instr(instr, block) {
120 if (instr->type != nir_instr_type_intrinsic)
121 continue;
122
123 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
124 switch (intrin->intrinsic) {
125 case nir_intrinsic_load_vertex_id:
126 case nir_intrinsic_load_base_vertex:
127 unreachable("should be lowered by nir_lower_system_values().");
128
129 case nir_intrinsic_load_vertex_id_zero_base:
130 case nir_intrinsic_load_is_indexed_draw:
131 case nir_intrinsic_load_first_vertex:
132 case nir_intrinsic_load_instance_id:
133 case nir_intrinsic_load_base_instance:
134 case nir_intrinsic_load_draw_id:
135 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
136
137 case nir_intrinsic_load_invocation_id:
138 if (v->stage == MESA_SHADER_TESS_CTRL)
139 break;
140 assert(v->stage == MESA_SHADER_GEOMETRY);
141 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
142 if (reg->file == BAD_FILE) {
143 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
144 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
145 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
146 abld.SHR(iid, g1, brw_imm_ud(27u));
147 *reg = iid;
148 }
149 break;
150
151 case nir_intrinsic_load_sample_pos:
152 assert(v->stage == MESA_SHADER_FRAGMENT);
153 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
154 if (reg->file == BAD_FILE)
155 *reg = *v->emit_samplepos_setup();
156 break;
157
158 case nir_intrinsic_load_sample_id:
159 assert(v->stage == MESA_SHADER_FRAGMENT);
160 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
161 if (reg->file == BAD_FILE)
162 *reg = *v->emit_sampleid_setup();
163 break;
164
165 case nir_intrinsic_load_sample_mask_in:
166 assert(v->stage == MESA_SHADER_FRAGMENT);
167 assert(v->devinfo->gen >= 7);
168 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
169 if (reg->file == BAD_FILE)
170 *reg = *v->emit_samplemaskin_setup();
171 break;
172
173 case nir_intrinsic_load_work_group_id:
174 assert(v->stage == MESA_SHADER_COMPUTE);
175 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
176 if (reg->file == BAD_FILE)
177 *reg = *v->emit_cs_work_group_id_setup();
178 break;
179
180 case nir_intrinsic_load_helper_invocation:
181 assert(v->stage == MESA_SHADER_FRAGMENT);
182 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
183 if (reg->file == BAD_FILE) {
184 const fs_builder abld =
185 v->bld.annotate("gl_HelperInvocation", NULL);
186
187 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
188 * pixel mask is in g1.7 of the thread payload.
189 *
190 * We move the per-channel pixel enable bit to the low bit of each
191 * channel by shifting the byte containing the pixel mask by the
192 * vector immediate 0x76543210UV.
193 *
194 * The region of <1,8,0> reads only 1 byte (the pixel masks for
195 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
196 * masks for 2 and 3) in SIMD16.
197 */
198 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
199
200 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
201 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
202 hbld.SHR(offset(shifted, hbld, i),
203 stride(retype(brw_vec1_grf(1 + i, 7),
204 BRW_REGISTER_TYPE_UB),
205 1, 8, 0),
206 brw_imm_v(0x76543210));
207 }
208
209 /* A set bit in the pixel mask means the channel is enabled, but
210 * that is the opposite of gl_HelperInvocation so we need to invert
211 * the mask.
212 *
213 * The negate source-modifier bit of logical instructions on Gen8+
214 * performs 1's complement negation, so we can use that instead of
215 * a NOT instruction.
216 */
217 fs_reg inverted = negate(shifted);
218 if (v->devinfo->gen < 8) {
219 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
220 abld.NOT(inverted, shifted);
221 }
222
223 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
224 * with 1 and negating.
225 */
226 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
227 abld.AND(anded, inverted, brw_imm_uw(1));
228
229 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
230 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
231 *reg = dst;
232 }
233 break;
234
235 default:
236 break;
237 }
238 }
239
240 return true;
241 }
242
243 void
244 fs_visitor::nir_emit_system_values()
245 {
246 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
247 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
248 nir_system_values[i] = fs_reg();
249 }
250
251 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
252 * never end up using it.
253 */
254 {
255 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
256 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
257 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
258
259 const fs_builder allbld8 = abld.group(8, 0).exec_all();
260 allbld8.MOV(reg, brw_imm_v(0x76543210));
261 if (dispatch_width > 8)
262 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
263 if (dispatch_width > 16) {
264 const fs_builder allbld16 = abld.group(16, 0).exec_all();
265 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
266 }
267 }
268
269 nir_foreach_function(function, nir) {
270 assert(strcmp(function->name, "main") == 0);
271 assert(function->impl);
272 nir_foreach_block(block, function->impl) {
273 emit_system_values_block(block, this);
274 }
275 }
276 }
277
278 /*
279 * Returns a type based on a reference_type (word, float, half-float) and a
280 * given bit_size.
281 *
282 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
283 *
284 * @FIXME: 64-bit return types are always DF on integer types to maintain
285 * compability with uses of DF previously to the introduction of int64
286 * support.
287 */
288 static brw_reg_type
289 brw_reg_type_from_bit_size(const unsigned bit_size,
290 const brw_reg_type reference_type)
291 {
292 switch(reference_type) {
293 case BRW_REGISTER_TYPE_HF:
294 case BRW_REGISTER_TYPE_F:
295 case BRW_REGISTER_TYPE_DF:
296 switch(bit_size) {
297 case 16:
298 return BRW_REGISTER_TYPE_HF;
299 case 32:
300 return BRW_REGISTER_TYPE_F;
301 case 64:
302 return BRW_REGISTER_TYPE_DF;
303 default:
304 unreachable("Invalid bit size");
305 }
306 case BRW_REGISTER_TYPE_W:
307 case BRW_REGISTER_TYPE_D:
308 case BRW_REGISTER_TYPE_Q:
309 switch(bit_size) {
310 case 16:
311 return BRW_REGISTER_TYPE_W;
312 case 32:
313 return BRW_REGISTER_TYPE_D;
314 case 64:
315 return BRW_REGISTER_TYPE_Q;
316 default:
317 unreachable("Invalid bit size");
318 }
319 case BRW_REGISTER_TYPE_UW:
320 case BRW_REGISTER_TYPE_UD:
321 case BRW_REGISTER_TYPE_UQ:
322 switch(bit_size) {
323 case 16:
324 return BRW_REGISTER_TYPE_UW;
325 case 32:
326 return BRW_REGISTER_TYPE_UD;
327 case 64:
328 return BRW_REGISTER_TYPE_UQ;
329 default:
330 unreachable("Invalid bit size");
331 }
332 default:
333 unreachable("Unknown type");
334 }
335 }
336
337 void
338 fs_visitor::nir_emit_impl(nir_function_impl *impl)
339 {
340 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
341 for (unsigned i = 0; i < impl->reg_alloc; i++) {
342 nir_locals[i] = fs_reg();
343 }
344
345 foreach_list_typed(nir_register, reg, node, &impl->registers) {
346 unsigned array_elems =
347 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
348 unsigned size = array_elems * reg->num_components;
349 const brw_reg_type reg_type =
350 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
351 nir_locals[reg->index] = bld.vgrf(reg_type, size);
352 }
353
354 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
355 impl->ssa_alloc);
356
357 nir_emit_cf_list(&impl->body);
358 }
359
360 void
361 fs_visitor::nir_emit_cf_list(exec_list *list)
362 {
363 exec_list_validate(list);
364 foreach_list_typed(nir_cf_node, node, node, list) {
365 switch (node->type) {
366 case nir_cf_node_if:
367 nir_emit_if(nir_cf_node_as_if(node));
368 break;
369
370 case nir_cf_node_loop:
371 nir_emit_loop(nir_cf_node_as_loop(node));
372 break;
373
374 case nir_cf_node_block:
375 nir_emit_block(nir_cf_node_as_block(node));
376 break;
377
378 default:
379 unreachable("Invalid CFG node block");
380 }
381 }
382 }
383
384 void
385 fs_visitor::nir_emit_if(nir_if *if_stmt)
386 {
387 /* first, put the condition into f0 */
388 fs_inst *inst = bld.MOV(bld.null_reg_d(),
389 retype(get_nir_src(if_stmt->condition),
390 BRW_REGISTER_TYPE_D));
391 inst->conditional_mod = BRW_CONDITIONAL_NZ;
392
393 bld.IF(BRW_PREDICATE_NORMAL);
394
395 nir_emit_cf_list(&if_stmt->then_list);
396
397 /* note: if the else is empty, dead CF elimination will remove it */
398 bld.emit(BRW_OPCODE_ELSE);
399
400 nir_emit_cf_list(&if_stmt->else_list);
401
402 bld.emit(BRW_OPCODE_ENDIF);
403
404 if (devinfo->gen < 7)
405 limit_dispatch_width(16, "Non-uniform control flow unsupported "
406 "in SIMD32 mode.");
407 }
408
409 void
410 fs_visitor::nir_emit_loop(nir_loop *loop)
411 {
412 bld.emit(BRW_OPCODE_DO);
413
414 nir_emit_cf_list(&loop->body);
415
416 bld.emit(BRW_OPCODE_WHILE);
417
418 if (devinfo->gen < 7)
419 limit_dispatch_width(16, "Non-uniform control flow unsupported "
420 "in SIMD32 mode.");
421 }
422
423 void
424 fs_visitor::nir_emit_block(nir_block *block)
425 {
426 nir_foreach_instr(instr, block) {
427 nir_emit_instr(instr);
428 }
429 }
430
431 void
432 fs_visitor::nir_emit_instr(nir_instr *instr)
433 {
434 const fs_builder abld = bld.annotate(NULL, instr);
435
436 switch (instr->type) {
437 case nir_instr_type_alu:
438 nir_emit_alu(abld, nir_instr_as_alu(instr));
439 break;
440
441 case nir_instr_type_deref:
442 /* Derefs can exist for images but they do nothing */
443 break;
444
445 case nir_instr_type_intrinsic:
446 switch (stage) {
447 case MESA_SHADER_VERTEX:
448 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
449 break;
450 case MESA_SHADER_TESS_CTRL:
451 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
452 break;
453 case MESA_SHADER_TESS_EVAL:
454 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456 case MESA_SHADER_GEOMETRY:
457 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
458 break;
459 case MESA_SHADER_FRAGMENT:
460 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462 case MESA_SHADER_COMPUTE:
463 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 default:
466 unreachable("unsupported shader stage");
467 }
468 break;
469
470 case nir_instr_type_tex:
471 nir_emit_texture(abld, nir_instr_as_tex(instr));
472 break;
473
474 case nir_instr_type_load_const:
475 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
476 break;
477
478 case nir_instr_type_ssa_undef:
479 /* We create a new VGRF for undefs on every use (by handling
480 * them in get_nir_src()), rather than for each definition.
481 * This helps register coalescing eliminate MOVs from undef.
482 */
483 break;
484
485 case nir_instr_type_jump:
486 nir_emit_jump(abld, nir_instr_as_jump(instr));
487 break;
488
489 default:
490 unreachable("unknown instruction type");
491 }
492 }
493
494 /**
495 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
496 * match instr.
497 */
498 bool
499 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
500 const fs_reg &result)
501 {
502 if (!instr->src[0].src.is_ssa ||
503 !instr->src[0].src.ssa->parent_instr)
504 return false;
505
506 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
507 return false;
508
509 nir_alu_instr *src0 =
510 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
511
512 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
513 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
514 return false;
515
516 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
517 assert(element != NULL);
518
519 /* Element type to extract.*/
520 const brw_reg_type type = brw_int_type(
521 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
522 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
523
524 fs_reg op0 = get_nir_src(src0->src[0].src);
525 op0.type = brw_type_for_nir_type(devinfo,
526 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
527 nir_src_bit_size(src0->src[0].src)));
528 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
529
530 set_saturate(instr->dest.saturate,
531 bld.MOV(result, subscript(op0, type, element->u32[0])));
532 return true;
533 }
534
535 bool
536 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
537 const fs_reg &result)
538 {
539 if (!instr->src[0].src.is_ssa ||
540 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
541 return false;
542
543 nir_intrinsic_instr *src0 =
544 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
545
546 if (src0->intrinsic != nir_intrinsic_load_front_face)
547 return false;
548
549 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
550 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
551 return false;
552
553 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
554 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
555 return false;
556
557 fs_reg tmp = vgrf(glsl_type::int_type);
558
559 if (devinfo->gen >= 6) {
560 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
561 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
562
563 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
564 *
565 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
566 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
567 *
568 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
569 *
570 * This negation looks like it's safe in practice, because bits 0:4 will
571 * surely be TRIANGLES
572 */
573
574 if (value1->f32[0] == -1.0f) {
575 g0.negate = true;
576 }
577
578 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
579 g0, brw_imm_uw(0x3f80));
580 } else {
581 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
582 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
583
584 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
585 *
586 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
587 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
588 *
589 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
590 *
591 * This negation looks like it's safe in practice, because bits 0:4 will
592 * surely be TRIANGLES
593 */
594
595 if (value1->f32[0] == -1.0f) {
596 g1_6.negate = true;
597 }
598
599 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
600 }
601 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
602
603 return true;
604 }
605
606 static void
607 emit_find_msb_using_lzd(const fs_builder &bld,
608 const fs_reg &result,
609 const fs_reg &src,
610 bool is_signed)
611 {
612 fs_inst *inst;
613 fs_reg temp = src;
614
615 if (is_signed) {
616 /* LZD of an absolute value source almost always does the right
617 * thing. There are two problem values:
618 *
619 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
620 * 0. However, findMSB(int(0x80000000)) == 30.
621 *
622 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
623 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
624 *
625 * For a value of zero or negative one, -1 will be returned.
626 *
627 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
628 * findMSB(-(1<<x)) should return x-1.
629 *
630 * For all negative number cases, including 0x80000000 and
631 * 0xffffffff, the correct value is obtained from LZD if instead of
632 * negating the (already negative) value the logical-not is used. A
633 * conditonal logical-not can be achieved in two instructions.
634 */
635 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
636
637 bld.ASR(temp, src, brw_imm_d(31));
638 bld.XOR(temp, temp, src);
639 }
640
641 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
642 retype(temp, BRW_REGISTER_TYPE_UD));
643
644 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
645 * from the LSB side. Subtract the result from 31 to convert the MSB
646 * count into an LSB count. If no bits are set, LZD will return 32.
647 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
648 */
649 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
650 inst->src[0].negate = true;
651 }
652
653 static brw_rnd_mode
654 brw_rnd_mode_from_nir_op (const nir_op op) {
655 switch (op) {
656 case nir_op_f2f16_rtz:
657 return BRW_RND_MODE_RTZ;
658 case nir_op_f2f16_rtne:
659 return BRW_RND_MODE_RTNE;
660 default:
661 unreachable("Operation doesn't support rounding mode");
662 }
663 }
664
665 void
666 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
667 {
668 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
669 fs_inst *inst;
670
671 fs_reg result = get_nir_dest(instr->dest.dest);
672 result.type = brw_type_for_nir_type(devinfo,
673 (nir_alu_type)(nir_op_infos[instr->op].output_type |
674 nir_dest_bit_size(instr->dest.dest)));
675
676 fs_reg op[4];
677 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
678 op[i] = get_nir_src(instr->src[i].src);
679 op[i].type = brw_type_for_nir_type(devinfo,
680 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
681 nir_src_bit_size(instr->src[i].src)));
682 op[i].abs = instr->src[i].abs;
683 op[i].negate = instr->src[i].negate;
684 }
685
686 /* We get a bunch of mov's out of the from_ssa pass and they may still
687 * be vectorized. We'll handle them as a special-case. We'll also
688 * handle vecN here because it's basically the same thing.
689 */
690 switch (instr->op) {
691 case nir_op_imov:
692 case nir_op_fmov:
693 case nir_op_vec2:
694 case nir_op_vec3:
695 case nir_op_vec4: {
696 fs_reg temp = result;
697 bool need_extra_copy = false;
698 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
699 if (!instr->src[i].src.is_ssa &&
700 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
701 need_extra_copy = true;
702 temp = bld.vgrf(result.type, 4);
703 break;
704 }
705 }
706
707 for (unsigned i = 0; i < 4; i++) {
708 if (!(instr->dest.write_mask & (1 << i)))
709 continue;
710
711 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
712 inst = bld.MOV(offset(temp, bld, i),
713 offset(op[0], bld, instr->src[0].swizzle[i]));
714 } else {
715 inst = bld.MOV(offset(temp, bld, i),
716 offset(op[i], bld, instr->src[i].swizzle[0]));
717 }
718 inst->saturate = instr->dest.saturate;
719 }
720
721 /* In this case the source and destination registers were the same,
722 * so we need to insert an extra set of moves in order to deal with
723 * any swizzling.
724 */
725 if (need_extra_copy) {
726 for (unsigned i = 0; i < 4; i++) {
727 if (!(instr->dest.write_mask & (1 << i)))
728 continue;
729
730 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
731 }
732 }
733 return;
734 }
735 default:
736 break;
737 }
738
739 /* At this point, we have dealt with any instruction that operates on
740 * more than a single channel. Therefore, we can just adjust the source
741 * and destination registers for that channel and emit the instruction.
742 */
743 unsigned channel = 0;
744 if (nir_op_infos[instr->op].output_size == 0) {
745 /* Since NIR is doing the scalarizing for us, we should only ever see
746 * vectorized operations with a single channel.
747 */
748 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
749 channel = ffs(instr->dest.write_mask) - 1;
750
751 result = offset(result, bld, channel);
752 }
753
754 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
755 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
756 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
757 }
758
759 switch (instr->op) {
760 case nir_op_i2f32:
761 case nir_op_u2f32:
762 if (optimize_extract_to_float(instr, result))
763 return;
764 inst = bld.MOV(result, op[0]);
765 inst->saturate = instr->dest.saturate;
766 break;
767
768 case nir_op_f2f16_rtne:
769 case nir_op_f2f16_rtz:
770 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
771 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
772 /* fallthrough */
773
774 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
775 * on the HW gen, it is a special hw opcode or just a MOV, and
776 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
777 *
778 * But if we want to use that opcode, we need to provide support on
779 * different optimizations and lowerings. As right now HF support is
780 * only for gen8+, it will be better to use directly the MOV, and use
781 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
782 */
783
784 case nir_op_f2f16_undef:
785 inst = bld.MOV(result, op[0]);
786 inst->saturate = instr->dest.saturate;
787 break;
788
789 case nir_op_f2f64:
790 case nir_op_f2i64:
791 case nir_op_f2u64:
792 case nir_op_i2f64:
793 case nir_op_i2i64:
794 case nir_op_u2f64:
795 case nir_op_u2u64:
796 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
797 *
798 * "When source or destination is 64b (...), regioning in Align1
799 * must follow these rules:
800 *
801 * 1. Source and destination horizontal stride must be aligned to
802 * the same qword.
803 * (...)"
804 *
805 * This means that conversions from bit-sizes smaller than 64-bit to
806 * 64-bit need to have the source data elements aligned to 64-bit.
807 * This restriction does not apply to BDW and later.
808 */
809 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
810 nir_src_bit_size(instr->src[0].src) < 64 &&
811 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
812 fs_reg tmp = bld.vgrf(result.type, 1);
813 tmp = subscript(tmp, op[0].type, 0);
814 inst = bld.MOV(tmp, op[0]);
815 inst = bld.MOV(result, tmp);
816 inst->saturate = instr->dest.saturate;
817 break;
818 }
819 /* fallthrough */
820 case nir_op_f2f32:
821 case nir_op_f2i32:
822 case nir_op_f2u32:
823 case nir_op_f2i16:
824 case nir_op_f2u16:
825 case nir_op_i2i32:
826 case nir_op_u2u32:
827 case nir_op_i2i16:
828 case nir_op_u2u16:
829 case nir_op_i2f16:
830 case nir_op_u2f16:
831 inst = bld.MOV(result, op[0]);
832 inst->saturate = instr->dest.saturate;
833 break;
834
835 case nir_op_fsign: {
836 if (op[0].abs) {
837 /* Straightforward since the source can be assumed to be either
838 * strictly >= 0 or strictly <= 0 depending on the setting of the
839 * negate flag.
840 */
841 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
842
843 inst = (op[0].negate)
844 ? bld.MOV(result, brw_imm_f(-1.0f))
845 : bld.MOV(result, brw_imm_f(1.0f));
846
847 set_predicate(BRW_PREDICATE_NORMAL, inst);
848
849 if (instr->dest.saturate)
850 inst->saturate = true;
851
852 } else if (type_sz(op[0].type) < 8) {
853 /* AND(val, 0x80000000) gives the sign bit.
854 *
855 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
856 * zero.
857 */
858 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
859
860 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
861 op[0].type = BRW_REGISTER_TYPE_UD;
862 result.type = BRW_REGISTER_TYPE_UD;
863 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
864
865 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
866 inst->predicate = BRW_PREDICATE_NORMAL;
867 if (instr->dest.saturate) {
868 inst = bld.MOV(result, result);
869 inst->saturate = true;
870 }
871 } else {
872 /* For doubles we do the same but we need to consider:
873 *
874 * - 2-src instructions can't operate with 64-bit immediates
875 * - The sign is encoded in the high 32-bit of each DF
876 * - We need to produce a DF result.
877 */
878
879 fs_reg zero = vgrf(glsl_type::double_type);
880 bld.MOV(zero, setup_imm_df(bld, 0.0));
881 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
882
883 bld.MOV(result, zero);
884
885 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
886 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
887 brw_imm_ud(0x80000000u));
888
889 set_predicate(BRW_PREDICATE_NORMAL,
890 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
891
892 if (instr->dest.saturate) {
893 inst = bld.MOV(result, result);
894 inst->saturate = true;
895 }
896 }
897 break;
898 }
899
900 case nir_op_isign: {
901 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
902 * -> non-negative val generates 0x00000000.
903 * Predicated OR sets 1 if val is positive.
904 */
905 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
906 assert(bit_size == 32 || bit_size == 16);
907
908 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
909 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
910 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
911
912 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
913 bld.ASR(result, op[0], shift);
914 inst = bld.OR(result, result, one);
915 inst->predicate = BRW_PREDICATE_NORMAL;
916 break;
917 }
918
919 case nir_op_frcp:
920 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
921 inst->saturate = instr->dest.saturate;
922 break;
923
924 case nir_op_fexp2:
925 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
926 inst->saturate = instr->dest.saturate;
927 break;
928
929 case nir_op_flog2:
930 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
931 inst->saturate = instr->dest.saturate;
932 break;
933
934 case nir_op_fsin:
935 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
936 inst->saturate = instr->dest.saturate;
937 break;
938
939 case nir_op_fcos:
940 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
941 inst->saturate = instr->dest.saturate;
942 break;
943
944 case nir_op_fddx:
945 if (fs_key->high_quality_derivatives) {
946 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
947 } else {
948 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
949 }
950 inst->saturate = instr->dest.saturate;
951 break;
952 case nir_op_fddx_fine:
953 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
954 inst->saturate = instr->dest.saturate;
955 break;
956 case nir_op_fddx_coarse:
957 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
958 inst->saturate = instr->dest.saturate;
959 break;
960 case nir_op_fddy:
961 if (fs_key->high_quality_derivatives) {
962 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
963 } else {
964 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
965 }
966 inst->saturate = instr->dest.saturate;
967 break;
968 case nir_op_fddy_fine:
969 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
970 inst->saturate = instr->dest.saturate;
971 break;
972 case nir_op_fddy_coarse:
973 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
974 inst->saturate = instr->dest.saturate;
975 break;
976
977 case nir_op_iadd:
978 case nir_op_fadd:
979 inst = bld.ADD(result, op[0], op[1]);
980 inst->saturate = instr->dest.saturate;
981 break;
982
983 case nir_op_fmul:
984 inst = bld.MUL(result, op[0], op[1]);
985 inst->saturate = instr->dest.saturate;
986 break;
987
988 case nir_op_imul:
989 assert(nir_dest_bit_size(instr->dest.dest) < 64);
990 bld.MUL(result, op[0], op[1]);
991 break;
992
993 case nir_op_imul_high:
994 case nir_op_umul_high:
995 assert(nir_dest_bit_size(instr->dest.dest) < 64);
996 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
997 break;
998
999 case nir_op_idiv:
1000 case nir_op_udiv:
1001 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1002 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1003 break;
1004
1005 case nir_op_uadd_carry:
1006 unreachable("Should have been lowered by carry_to_arith().");
1007
1008 case nir_op_usub_borrow:
1009 unreachable("Should have been lowered by borrow_to_arith().");
1010
1011 case nir_op_umod:
1012 case nir_op_irem:
1013 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1014 * appears that our hardware just does the right thing for signed
1015 * remainder.
1016 */
1017 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1018 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1019 break;
1020
1021 case nir_op_imod: {
1022 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1023 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1024
1025 /* Math instructions don't support conditional mod */
1026 inst = bld.MOV(bld.null_reg_d(), result);
1027 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1028
1029 /* Now, we need to determine if signs of the sources are different.
1030 * When we XOR the sources, the top bit is 0 if they are the same and 1
1031 * if they are different. We can then use a conditional modifier to
1032 * turn that into a predicate. This leads us to an XOR.l instruction.
1033 *
1034 * Technically, according to the PRM, you're not allowed to use .l on a
1035 * XOR instruction. However, emperical experiments and Curro's reading
1036 * of the simulator source both indicate that it's safe.
1037 */
1038 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1039 inst = bld.XOR(tmp, op[0], op[1]);
1040 inst->predicate = BRW_PREDICATE_NORMAL;
1041 inst->conditional_mod = BRW_CONDITIONAL_L;
1042
1043 /* If the result of the initial remainder operation is non-zero and the
1044 * two sources have different signs, add in a copy of op[1] to get the
1045 * final integer modulus value.
1046 */
1047 inst = bld.ADD(result, result, op[1]);
1048 inst->predicate = BRW_PREDICATE_NORMAL;
1049 break;
1050 }
1051
1052 case nir_op_flt:
1053 case nir_op_fge:
1054 case nir_op_feq:
1055 case nir_op_fne: {
1056 fs_reg dest = result;
1057
1058 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1059 if (bit_size != 32)
1060 dest = bld.vgrf(op[0].type, 1);
1061
1062 brw_conditional_mod cond;
1063 switch (instr->op) {
1064 case nir_op_flt:
1065 cond = BRW_CONDITIONAL_L;
1066 break;
1067 case nir_op_fge:
1068 cond = BRW_CONDITIONAL_GE;
1069 break;
1070 case nir_op_feq:
1071 cond = BRW_CONDITIONAL_Z;
1072 break;
1073 case nir_op_fne:
1074 cond = BRW_CONDITIONAL_NZ;
1075 break;
1076 default:
1077 unreachable("bad opcode");
1078 }
1079
1080 bld.CMP(dest, op[0], op[1], cond);
1081
1082 if (bit_size > 32) {
1083 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1084 } else if(bit_size < 32) {
1085 /* When we convert the result to 32-bit we need to be careful and do
1086 * it as a signed conversion to get sign extension (for 32-bit true)
1087 */
1088 const brw_reg_type src_type =
1089 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1090
1091 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1092 }
1093 break;
1094 }
1095
1096 case nir_op_ilt:
1097 case nir_op_ult:
1098 case nir_op_ige:
1099 case nir_op_uge:
1100 case nir_op_ieq:
1101 case nir_op_ine: {
1102 fs_reg dest = result;
1103
1104 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1105 if (bit_size != 32)
1106 dest = bld.vgrf(op[0].type, 1);
1107
1108 brw_conditional_mod cond;
1109 switch (instr->op) {
1110 case nir_op_ilt:
1111 case nir_op_ult:
1112 cond = BRW_CONDITIONAL_L;
1113 break;
1114 case nir_op_ige:
1115 case nir_op_uge:
1116 cond = BRW_CONDITIONAL_GE;
1117 break;
1118 case nir_op_ieq:
1119 cond = BRW_CONDITIONAL_Z;
1120 break;
1121 case nir_op_ine:
1122 cond = BRW_CONDITIONAL_NZ;
1123 break;
1124 default:
1125 unreachable("bad opcode");
1126 }
1127 bld.CMP(dest, op[0], op[1], cond);
1128
1129 if (bit_size > 32) {
1130 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1131 } else if (bit_size < 32) {
1132 /* When we convert the result to 32-bit we need to be careful and do
1133 * it as a signed conversion to get sign extension (for 32-bit true)
1134 */
1135 const brw_reg_type src_type =
1136 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1137
1138 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1139 }
1140 break;
1141 }
1142
1143 case nir_op_inot:
1144 if (devinfo->gen >= 8) {
1145 op[0] = resolve_source_modifiers(op[0]);
1146 }
1147 bld.NOT(result, op[0]);
1148 break;
1149 case nir_op_ixor:
1150 if (devinfo->gen >= 8) {
1151 op[0] = resolve_source_modifiers(op[0]);
1152 op[1] = resolve_source_modifiers(op[1]);
1153 }
1154 bld.XOR(result, op[0], op[1]);
1155 break;
1156 case nir_op_ior:
1157 if (devinfo->gen >= 8) {
1158 op[0] = resolve_source_modifiers(op[0]);
1159 op[1] = resolve_source_modifiers(op[1]);
1160 }
1161 bld.OR(result, op[0], op[1]);
1162 break;
1163 case nir_op_iand:
1164 if (devinfo->gen >= 8) {
1165 op[0] = resolve_source_modifiers(op[0]);
1166 op[1] = resolve_source_modifiers(op[1]);
1167 }
1168 bld.AND(result, op[0], op[1]);
1169 break;
1170
1171 case nir_op_fdot2:
1172 case nir_op_fdot3:
1173 case nir_op_fdot4:
1174 case nir_op_ball_fequal2:
1175 case nir_op_ball_iequal2:
1176 case nir_op_ball_fequal3:
1177 case nir_op_ball_iequal3:
1178 case nir_op_ball_fequal4:
1179 case nir_op_ball_iequal4:
1180 case nir_op_bany_fnequal2:
1181 case nir_op_bany_inequal2:
1182 case nir_op_bany_fnequal3:
1183 case nir_op_bany_inequal3:
1184 case nir_op_bany_fnequal4:
1185 case nir_op_bany_inequal4:
1186 unreachable("Lowered by nir_lower_alu_reductions");
1187
1188 case nir_op_fnoise1_1:
1189 case nir_op_fnoise1_2:
1190 case nir_op_fnoise1_3:
1191 case nir_op_fnoise1_4:
1192 case nir_op_fnoise2_1:
1193 case nir_op_fnoise2_2:
1194 case nir_op_fnoise2_3:
1195 case nir_op_fnoise2_4:
1196 case nir_op_fnoise3_1:
1197 case nir_op_fnoise3_2:
1198 case nir_op_fnoise3_3:
1199 case nir_op_fnoise3_4:
1200 case nir_op_fnoise4_1:
1201 case nir_op_fnoise4_2:
1202 case nir_op_fnoise4_3:
1203 case nir_op_fnoise4_4:
1204 unreachable("not reached: should be handled by lower_noise");
1205
1206 case nir_op_ldexp:
1207 unreachable("not reached: should be handled by ldexp_to_arith()");
1208
1209 case nir_op_fsqrt:
1210 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1211 inst->saturate = instr->dest.saturate;
1212 break;
1213
1214 case nir_op_frsq:
1215 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1216 inst->saturate = instr->dest.saturate;
1217 break;
1218
1219 case nir_op_b2i:
1220 case nir_op_b2f:
1221 bld.MOV(result, negate(op[0]));
1222 break;
1223
1224 case nir_op_i2b:
1225 case nir_op_f2b: {
1226 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1227 if (bit_size == 64) {
1228 /* two-argument instructions can't take 64-bit immediates */
1229 fs_reg zero;
1230 fs_reg tmp;
1231
1232 if (instr->op == nir_op_f2b) {
1233 zero = vgrf(glsl_type::double_type);
1234 tmp = vgrf(glsl_type::double_type);
1235 bld.MOV(zero, setup_imm_df(bld, 0.0));
1236 } else {
1237 zero = vgrf(glsl_type::int64_t_type);
1238 tmp = vgrf(glsl_type::int64_t_type);
1239 bld.MOV(zero, brw_imm_q(0));
1240 }
1241
1242 /* A SIMD16 execution needs to be split in two instructions, so use
1243 * a vgrf instead of the flag register as dst so instruction splitting
1244 * works
1245 */
1246 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1247 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1248 } else {
1249 fs_reg zero;
1250 if (bit_size == 32) {
1251 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1252 } else {
1253 assert(bit_size == 16);
1254 zero = instr->op == nir_op_f2b ?
1255 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1256 }
1257 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1258 }
1259 break;
1260 }
1261
1262 case nir_op_ftrunc:
1263 inst = bld.RNDZ(result, op[0]);
1264 inst->saturate = instr->dest.saturate;
1265 break;
1266
1267 case nir_op_fceil: {
1268 op[0].negate = !op[0].negate;
1269 fs_reg temp = vgrf(glsl_type::float_type);
1270 bld.RNDD(temp, op[0]);
1271 temp.negate = true;
1272 inst = bld.MOV(result, temp);
1273 inst->saturate = instr->dest.saturate;
1274 break;
1275 }
1276 case nir_op_ffloor:
1277 inst = bld.RNDD(result, op[0]);
1278 inst->saturate = instr->dest.saturate;
1279 break;
1280 case nir_op_ffract:
1281 inst = bld.FRC(result, op[0]);
1282 inst->saturate = instr->dest.saturate;
1283 break;
1284 case nir_op_fround_even:
1285 inst = bld.RNDE(result, op[0]);
1286 inst->saturate = instr->dest.saturate;
1287 break;
1288
1289 case nir_op_fquantize2f16: {
1290 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1291 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1292 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1293
1294 /* The destination stride must be at least as big as the source stride. */
1295 tmp16.type = BRW_REGISTER_TYPE_W;
1296 tmp16.stride = 2;
1297
1298 /* Check for denormal */
1299 fs_reg abs_src0 = op[0];
1300 abs_src0.abs = true;
1301 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1302 BRW_CONDITIONAL_L);
1303 /* Get the appropriately signed zero */
1304 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1305 retype(op[0], BRW_REGISTER_TYPE_UD),
1306 brw_imm_ud(0x80000000));
1307 /* Do the actual F32 -> F16 -> F32 conversion */
1308 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1309 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1310 /* Select that or zero based on normal status */
1311 inst = bld.SEL(result, zero, tmp32);
1312 inst->predicate = BRW_PREDICATE_NORMAL;
1313 inst->saturate = instr->dest.saturate;
1314 break;
1315 }
1316
1317 case nir_op_imin:
1318 case nir_op_umin:
1319 case nir_op_fmin:
1320 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1321 inst->saturate = instr->dest.saturate;
1322 break;
1323
1324 case nir_op_imax:
1325 case nir_op_umax:
1326 case nir_op_fmax:
1327 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1328 inst->saturate = instr->dest.saturate;
1329 break;
1330
1331 case nir_op_pack_snorm_2x16:
1332 case nir_op_pack_snorm_4x8:
1333 case nir_op_pack_unorm_2x16:
1334 case nir_op_pack_unorm_4x8:
1335 case nir_op_unpack_snorm_2x16:
1336 case nir_op_unpack_snorm_4x8:
1337 case nir_op_unpack_unorm_2x16:
1338 case nir_op_unpack_unorm_4x8:
1339 case nir_op_unpack_half_2x16:
1340 case nir_op_pack_half_2x16:
1341 unreachable("not reached: should be handled by lower_packing_builtins");
1342
1343 case nir_op_unpack_half_2x16_split_x:
1344 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1345 inst->saturate = instr->dest.saturate;
1346 break;
1347 case nir_op_unpack_half_2x16_split_y:
1348 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1349 inst->saturate = instr->dest.saturate;
1350 break;
1351
1352 case nir_op_pack_64_2x32_split:
1353 case nir_op_pack_32_2x16_split:
1354 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1355 break;
1356
1357 case nir_op_unpack_64_2x32_split_x:
1358 case nir_op_unpack_64_2x32_split_y: {
1359 if (instr->op == nir_op_unpack_64_2x32_split_x)
1360 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1361 else
1362 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1363 break;
1364 }
1365
1366 case nir_op_unpack_32_2x16_split_x:
1367 case nir_op_unpack_32_2x16_split_y: {
1368 if (instr->op == nir_op_unpack_32_2x16_split_x)
1369 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1370 else
1371 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1372 break;
1373 }
1374
1375 case nir_op_fpow:
1376 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1377 inst->saturate = instr->dest.saturate;
1378 break;
1379
1380 case nir_op_bitfield_reverse:
1381 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1382 bld.BFREV(result, op[0]);
1383 break;
1384
1385 case nir_op_bit_count:
1386 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1387 bld.CBIT(result, op[0]);
1388 break;
1389
1390 case nir_op_ufind_msb: {
1391 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1392 emit_find_msb_using_lzd(bld, result, op[0], false);
1393 break;
1394 }
1395
1396 case nir_op_ifind_msb: {
1397 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1398
1399 if (devinfo->gen < 7) {
1400 emit_find_msb_using_lzd(bld, result, op[0], true);
1401 } else {
1402 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1403
1404 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1405 * count from the LSB side. If FBH didn't return an error
1406 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1407 * count into an LSB count.
1408 */
1409 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1410
1411 inst = bld.ADD(result, result, brw_imm_d(31));
1412 inst->predicate = BRW_PREDICATE_NORMAL;
1413 inst->src[0].negate = true;
1414 }
1415 break;
1416 }
1417
1418 case nir_op_find_lsb:
1419 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1420
1421 if (devinfo->gen < 7) {
1422 fs_reg temp = vgrf(glsl_type::int_type);
1423
1424 /* (x & -x) generates a value that consists of only the LSB of x.
1425 * For all powers of 2, findMSB(y) == findLSB(y).
1426 */
1427 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1428 fs_reg negated_src = src;
1429
1430 /* One must be negated, and the other must be non-negated. It
1431 * doesn't matter which is which.
1432 */
1433 negated_src.negate = true;
1434 src.negate = false;
1435
1436 bld.AND(temp, src, negated_src);
1437 emit_find_msb_using_lzd(bld, result, temp, false);
1438 } else {
1439 bld.FBL(result, op[0]);
1440 }
1441 break;
1442
1443 case nir_op_ubitfield_extract:
1444 case nir_op_ibitfield_extract:
1445 unreachable("should have been lowered");
1446 case nir_op_ubfe:
1447 case nir_op_ibfe:
1448 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1449 bld.BFE(result, op[2], op[1], op[0]);
1450 break;
1451 case nir_op_bfm:
1452 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1453 bld.BFI1(result, op[0], op[1]);
1454 break;
1455 case nir_op_bfi:
1456 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1457 bld.BFI2(result, op[0], op[1], op[2]);
1458 break;
1459
1460 case nir_op_bitfield_insert:
1461 unreachable("not reached: should have been lowered");
1462
1463 case nir_op_ishl:
1464 case nir_op_ishr:
1465 case nir_op_ushr: {
1466 fs_reg shift_count = op[1];
1467
1468 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1469 if (op[1].file == VGRF &&
1470 (result.type == BRW_REGISTER_TYPE_Q ||
1471 result.type == BRW_REGISTER_TYPE_UQ)) {
1472 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1473 BRW_REGISTER_TYPE_UD);
1474 shift_count.stride = 2;
1475 bld.MOV(shift_count, op[1]);
1476 }
1477 }
1478
1479 switch (instr->op) {
1480 case nir_op_ishl:
1481 bld.SHL(result, op[0], shift_count);
1482 break;
1483 case nir_op_ishr:
1484 bld.ASR(result, op[0], shift_count);
1485 break;
1486 case nir_op_ushr:
1487 bld.SHR(result, op[0], shift_count);
1488 break;
1489 default:
1490 unreachable("not reached");
1491 }
1492 break;
1493 }
1494
1495 case nir_op_pack_half_2x16_split:
1496 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1497 break;
1498
1499 case nir_op_ffma:
1500 inst = bld.MAD(result, op[2], op[1], op[0]);
1501 inst->saturate = instr->dest.saturate;
1502 break;
1503
1504 case nir_op_flrp:
1505 inst = bld.LRP(result, op[0], op[1], op[2]);
1506 inst->saturate = instr->dest.saturate;
1507 break;
1508
1509 case nir_op_bcsel:
1510 if (optimize_frontfacing_ternary(instr, result))
1511 return;
1512
1513 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1514 inst = bld.SEL(result, op[1], op[2]);
1515 inst->predicate = BRW_PREDICATE_NORMAL;
1516 break;
1517
1518 case nir_op_extract_u8:
1519 case nir_op_extract_i8: {
1520 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1521 assert(byte != NULL);
1522
1523 /* The PRMs say:
1524 *
1525 * BDW+
1526 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1527 * Use two instructions and a word or DWord intermediate integer type.
1528 */
1529 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1530 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1531
1532 if (instr->op == nir_op_extract_i8) {
1533 /* If we need to sign extend, extract to a word first */
1534 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1535 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1536 bld.MOV(result, w_temp);
1537 } else {
1538 /* Otherwise use an AND with 0xff and a word type */
1539 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1540 }
1541 } else {
1542 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1543 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1544 }
1545 break;
1546 }
1547
1548 case nir_op_extract_u16:
1549 case nir_op_extract_i16: {
1550 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1551 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1552 assert(word != NULL);
1553 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1554 break;
1555 }
1556
1557 default:
1558 unreachable("unhandled instruction");
1559 }
1560
1561 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1562 * to sign extend the low bit to 0/~0
1563 */
1564 if (devinfo->gen <= 5 &&
1565 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1566 fs_reg masked = vgrf(glsl_type::int_type);
1567 bld.AND(masked, result, brw_imm_d(1));
1568 masked.negate = true;
1569 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1570 }
1571 }
1572
1573 void
1574 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1575 nir_load_const_instr *instr)
1576 {
1577 const brw_reg_type reg_type =
1578 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1579 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1580
1581 switch (instr->def.bit_size) {
1582 case 16:
1583 for (unsigned i = 0; i < instr->def.num_components; i++)
1584 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1585 break;
1586
1587 case 32:
1588 for (unsigned i = 0; i < instr->def.num_components; i++)
1589 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1590 break;
1591
1592 case 64:
1593 assert(devinfo->gen >= 7);
1594 if (devinfo->gen == 7) {
1595 /* We don't get 64-bit integer types until gen8 */
1596 for (unsigned i = 0; i < instr->def.num_components; i++) {
1597 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1598 setup_imm_df(bld, instr->value.f64[i]));
1599 }
1600 } else {
1601 for (unsigned i = 0; i < instr->def.num_components; i++)
1602 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1603 }
1604 break;
1605
1606 default:
1607 unreachable("Invalid bit size");
1608 }
1609
1610 nir_ssa_values[instr->def.index] = reg;
1611 }
1612
1613 fs_reg
1614 fs_visitor::get_nir_src(const nir_src &src)
1615 {
1616 fs_reg reg;
1617 if (src.is_ssa) {
1618 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1619 const brw_reg_type reg_type =
1620 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1621 reg = bld.vgrf(reg_type, src.ssa->num_components);
1622 } else {
1623 reg = nir_ssa_values[src.ssa->index];
1624 }
1625 } else {
1626 /* We don't handle indirects on locals */
1627 assert(src.reg.indirect == NULL);
1628 reg = offset(nir_locals[src.reg.reg->index], bld,
1629 src.reg.base_offset * src.reg.reg->num_components);
1630 }
1631
1632 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1633 /* The only 64-bit type available on gen7 is DF, so use that. */
1634 reg.type = BRW_REGISTER_TYPE_DF;
1635 } else {
1636 /* To avoid floating-point denorm flushing problems, set the type by
1637 * default to an integer type - instructions that need floating point
1638 * semantics will set this to F if they need to
1639 */
1640 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1641 BRW_REGISTER_TYPE_D);
1642 }
1643
1644 return reg;
1645 }
1646
1647 /**
1648 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1649 *
1650 * This function should not be called on any value which may be 64 bits.
1651 * We could theoretically support 64-bit on gen8+ but we choose not to
1652 * because it wouldn't work in general (no gen7 support) and there are
1653 * enough restrictions in 64-bit immediates that you can't take the return
1654 * value and treat it the same as the result of get_nir_src().
1655 */
1656 fs_reg
1657 fs_visitor::get_nir_src_imm(const nir_src &src)
1658 {
1659 nir_const_value *val = nir_src_as_const_value(src);
1660 assert(nir_src_bit_size(src) == 32);
1661 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1662 }
1663
1664 fs_reg
1665 fs_visitor::get_nir_dest(const nir_dest &dest)
1666 {
1667 if (dest.is_ssa) {
1668 const brw_reg_type reg_type =
1669 brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
1670 nir_ssa_values[dest.ssa.index] =
1671 bld.vgrf(reg_type, dest.ssa.num_components);
1672 return nir_ssa_values[dest.ssa.index];
1673 } else {
1674 /* We don't handle indirects on locals */
1675 assert(dest.reg.indirect == NULL);
1676 return offset(nir_locals[dest.reg.reg->index], bld,
1677 dest.reg.base_offset * dest.reg.reg->num_components);
1678 }
1679 }
1680
1681 fs_reg
1682 fs_visitor::get_nir_image_deref(nir_deref_instr *deref)
1683 {
1684 fs_reg arr_offset = brw_imm_ud(0);
1685 unsigned array_size = BRW_IMAGE_PARAM_SIZE * 4;
1686 nir_deref_instr *head = deref;
1687 while (head->deref_type != nir_deref_type_var) {
1688 assert(head->deref_type == nir_deref_type_array);
1689
1690 /* This level's element size is the previous level's array size */
1691 const unsigned elem_size = array_size;
1692
1693 fs_reg index = retype(get_nir_src_imm(head->arr.index),
1694 BRW_REGISTER_TYPE_UD);
1695 if (arr_offset.file == BRW_IMMEDIATE_VALUE &&
1696 index.file == BRW_IMMEDIATE_VALUE) {
1697 arr_offset.ud += index.ud * elem_size;
1698 } else if (index.file == BRW_IMMEDIATE_VALUE) {
1699 bld.ADD(arr_offset, arr_offset, brw_imm_ud(index.ud * elem_size));
1700 } else {
1701 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
1702 bld.MUL(tmp, index, brw_imm_ud(elem_size));
1703 bld.ADD(tmp, tmp, arr_offset);
1704 arr_offset = tmp;
1705 }
1706
1707 head = nir_deref_instr_parent(head);
1708 assert(glsl_type_is_array(head->type));
1709 array_size = elem_size * glsl_get_length(head->type);
1710 }
1711
1712 assert(head->deref_type == nir_deref_type_var);
1713 const unsigned max_arr_offset = array_size - (BRW_IMAGE_PARAM_SIZE * 4);
1714 fs_reg image(UNIFORM, head->var->data.driver_location / 4,
1715 BRW_REGISTER_TYPE_UD);
1716
1717 if (arr_offset.file == BRW_IMMEDIATE_VALUE) {
1718 /* The offset is in bytes but we want it in dwords */
1719 return offset(image, bld, MIN2(arr_offset.ud, max_arr_offset) / 4);
1720 } else {
1721 /* Accessing an invalid surface index with the dataport can result
1722 * in a hang. According to the spec "if the index used to
1723 * select an individual element is negative or greater than or
1724 * equal to the size of the array, the results of the operation
1725 * are undefined but may not lead to termination" -- which is one
1726 * of the possible outcomes of the hang. Clamp the index to
1727 * prevent access outside of the array bounds.
1728 */
1729 bld.emit_minmax(arr_offset, arr_offset, brw_imm_ud(max_arr_offset),
1730 BRW_CONDITIONAL_L);
1731
1732 /* Emit a pile of MOVs to load the uniform into a temporary. The
1733 * dead-code elimination pass will get rid of what we don't use.
1734 */
1735 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1736 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1737 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1738 offset(tmp, bld, j), offset(image, bld, j),
1739 arr_offset, brw_imm_ud(max_arr_offset + 4));
1740 }
1741 return tmp;
1742 }
1743 }
1744
1745 void
1746 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1747 unsigned wr_mask)
1748 {
1749 for (unsigned i = 0; i < 4; i++) {
1750 if (!((wr_mask >> i) & 1))
1751 continue;
1752
1753 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1754 new_inst->dst = offset(new_inst->dst, bld, i);
1755 for (unsigned j = 0; j < new_inst->sources; j++)
1756 if (new_inst->src[j].file == VGRF)
1757 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1758
1759 bld.emit(new_inst);
1760 }
1761 }
1762
1763 /**
1764 * Get the matching channel register datatype for an image intrinsic of the
1765 * specified GLSL image type.
1766 */
1767 static brw_reg_type
1768 get_image_base_type(const glsl_type *type)
1769 {
1770 switch ((glsl_base_type)type->sampled_type) {
1771 case GLSL_TYPE_UINT:
1772 return BRW_REGISTER_TYPE_UD;
1773 case GLSL_TYPE_INT:
1774 return BRW_REGISTER_TYPE_D;
1775 case GLSL_TYPE_FLOAT:
1776 return BRW_REGISTER_TYPE_F;
1777 default:
1778 unreachable("Not reached.");
1779 }
1780 }
1781
1782 /**
1783 * Get the appropriate atomic op for an image atomic intrinsic.
1784 */
1785 static unsigned
1786 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1787 {
1788 switch (op) {
1789 case nir_intrinsic_image_deref_atomic_add:
1790 return BRW_AOP_ADD;
1791 case nir_intrinsic_image_deref_atomic_min:
1792 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1793 BRW_AOP_IMIN : BRW_AOP_UMIN);
1794 case nir_intrinsic_image_deref_atomic_max:
1795 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1796 BRW_AOP_IMAX : BRW_AOP_UMAX);
1797 case nir_intrinsic_image_deref_atomic_and:
1798 return BRW_AOP_AND;
1799 case nir_intrinsic_image_deref_atomic_or:
1800 return BRW_AOP_OR;
1801 case nir_intrinsic_image_deref_atomic_xor:
1802 return BRW_AOP_XOR;
1803 case nir_intrinsic_image_deref_atomic_exchange:
1804 return BRW_AOP_MOV;
1805 case nir_intrinsic_image_deref_atomic_comp_swap:
1806 return BRW_AOP_CMPWR;
1807 default:
1808 unreachable("Not reachable.");
1809 }
1810 }
1811
1812 static fs_inst *
1813 emit_pixel_interpolater_send(const fs_builder &bld,
1814 enum opcode opcode,
1815 const fs_reg &dst,
1816 const fs_reg &src,
1817 const fs_reg &desc,
1818 glsl_interp_mode interpolation)
1819 {
1820 struct brw_wm_prog_data *wm_prog_data =
1821 brw_wm_prog_data(bld.shader->stage_prog_data);
1822
1823 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1824 /* 2 floats per slot returned */
1825 inst->size_written = 2 * dst.component_size(inst->exec_size);
1826 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1827
1828 wm_prog_data->pulls_bary = true;
1829
1830 return inst;
1831 }
1832
1833 /**
1834 * Computes 1 << x, given a D/UD register containing some value x.
1835 */
1836 static fs_reg
1837 intexp2(const fs_builder &bld, const fs_reg &x)
1838 {
1839 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1840
1841 fs_reg result = bld.vgrf(x.type, 1);
1842 fs_reg one = bld.vgrf(x.type, 1);
1843
1844 bld.MOV(one, retype(brw_imm_d(1), one.type));
1845 bld.SHL(result, one, x);
1846 return result;
1847 }
1848
1849 void
1850 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1851 {
1852 assert(stage == MESA_SHADER_GEOMETRY);
1853
1854 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1855
1856 if (gs_compile->control_data_header_size_bits == 0)
1857 return;
1858
1859 /* We can only do EndPrimitive() functionality when the control data
1860 * consists of cut bits. Fortunately, the only time it isn't is when the
1861 * output type is points, in which case EndPrimitive() is a no-op.
1862 */
1863 if (gs_prog_data->control_data_format !=
1864 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1865 return;
1866 }
1867
1868 /* Cut bits use one bit per vertex. */
1869 assert(gs_compile->control_data_bits_per_vertex == 1);
1870
1871 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1872 vertex_count.type = BRW_REGISTER_TYPE_UD;
1873
1874 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1875 * vertex n, 0 otherwise. So all we need to do here is mark bit
1876 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1877 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1878 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1879 *
1880 * Note that if EndPrimitive() is called before emitting any vertices, this
1881 * will cause us to set bit 31 of the control_data_bits register to 1.
1882 * That's fine because:
1883 *
1884 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1885 * output, so the hardware will ignore cut bit 31.
1886 *
1887 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1888 * last vertex, so setting cut bit 31 has no effect (since the primitive
1889 * is automatically ended when the GS terminates).
1890 *
1891 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1892 * control_data_bits register to 0 when the first vertex is emitted.
1893 */
1894
1895 const fs_builder abld = bld.annotate("end primitive");
1896
1897 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1898 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1899 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1900 fs_reg mask = intexp2(abld, prev_count);
1901 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1902 * attention to the lower 5 bits of its second source argument, so on this
1903 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1904 * ((vertex_count - 1) % 32).
1905 */
1906 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1907 }
1908
1909 void
1910 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1911 {
1912 assert(stage == MESA_SHADER_GEOMETRY);
1913 assert(gs_compile->control_data_bits_per_vertex != 0);
1914
1915 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1916
1917 const fs_builder abld = bld.annotate("emit control data bits");
1918 const fs_builder fwa_bld = bld.exec_all();
1919
1920 /* We use a single UD register to accumulate control data bits (32 bits
1921 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1922 * at a time.
1923 *
1924 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1925 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1926 * use the Channel Mask phase to enable/disable which DWord within that
1927 * group to write. (Remember, different SIMD8 channels may have emitted
1928 * different numbers of vertices, so we may need per-slot offsets.)
1929 *
1930 * Channel masking presents an annoying problem: we may have to replicate
1931 * the data up to 4 times:
1932 *
1933 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1934 *
1935 * To avoid penalizing shaders that emit a small number of vertices, we
1936 * can avoid these sometimes: if the size of the control data header is
1937 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1938 * land in the same 128-bit group, so we can skip per-slot offsets.
1939 *
1940 * Similarly, if the control data header is <= 32 bits, there is only one
1941 * DWord, so we can skip channel masks.
1942 */
1943 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1944
1945 fs_reg channel_mask, per_slot_offset;
1946
1947 if (gs_compile->control_data_header_size_bits > 32) {
1948 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1949 channel_mask = vgrf(glsl_type::uint_type);
1950 }
1951
1952 if (gs_compile->control_data_header_size_bits > 128) {
1953 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1954 per_slot_offset = vgrf(glsl_type::uint_type);
1955 }
1956
1957 /* Figure out which DWord we're trying to write to using the formula:
1958 *
1959 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1960 *
1961 * Since bits_per_vertex is a power of two, and is known at compile
1962 * time, this can be optimized to:
1963 *
1964 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1965 */
1966 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1967 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1968 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1969 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1970 unsigned log2_bits_per_vertex =
1971 util_last_bit(gs_compile->control_data_bits_per_vertex);
1972 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1973
1974 if (per_slot_offset.file != BAD_FILE) {
1975 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1976 * the appropriate OWord within the control data header.
1977 */
1978 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1979 }
1980
1981 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1982 * write to the appropriate DWORD within the OWORD.
1983 */
1984 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1985 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1986 channel_mask = intexp2(fwa_bld, channel);
1987 /* Then the channel masks need to be in bits 23:16. */
1988 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1989 }
1990
1991 /* Store the control data bits in the message payload and send it. */
1992 int mlen = 2;
1993 if (channel_mask.file != BAD_FILE)
1994 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1995 if (per_slot_offset.file != BAD_FILE)
1996 mlen++;
1997
1998 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1999 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2000 int i = 0;
2001 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2002 if (per_slot_offset.file != BAD_FILE)
2003 sources[i++] = per_slot_offset;
2004 if (channel_mask.file != BAD_FILE)
2005 sources[i++] = channel_mask;
2006 while (i < mlen) {
2007 sources[i++] = this->control_data_bits;
2008 }
2009
2010 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2011 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2012 inst->mlen = mlen;
2013 /* We need to increment Global Offset by 256-bits to make room for
2014 * Broadwell's extra "Vertex Count" payload at the beginning of the
2015 * URB entry. Since this is an OWord message, Global Offset is counted
2016 * in 128-bit units, so we must set it to 2.
2017 */
2018 if (gs_prog_data->static_vertex_count == -1)
2019 inst->offset = 2;
2020 }
2021
2022 void
2023 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2024 unsigned stream_id)
2025 {
2026 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2027
2028 /* Note: we are calling this *before* increasing vertex_count, so
2029 * this->vertex_count == vertex_count - 1 in the formula above.
2030 */
2031
2032 /* Stream mode uses 2 bits per vertex */
2033 assert(gs_compile->control_data_bits_per_vertex == 2);
2034
2035 /* Must be a valid stream */
2036 assert(stream_id < MAX_VERTEX_STREAMS);
2037
2038 /* Control data bits are initialized to 0 so we don't have to set any
2039 * bits when sending vertices to stream 0.
2040 */
2041 if (stream_id == 0)
2042 return;
2043
2044 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2045
2046 /* reg::sid = stream_id */
2047 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2048 abld.MOV(sid, brw_imm_ud(stream_id));
2049
2050 /* reg:shift_count = 2 * (vertex_count - 1) */
2051 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2052 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2053
2054 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2055 * attention to the lower 5 bits of its second source argument, so on this
2056 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2057 * stream_id << ((2 * (vertex_count - 1)) % 32).
2058 */
2059 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2060 abld.SHL(mask, sid, shift_count);
2061 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2062 }
2063
2064 void
2065 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2066 unsigned stream_id)
2067 {
2068 assert(stage == MESA_SHADER_GEOMETRY);
2069
2070 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2071
2072 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2073 vertex_count.type = BRW_REGISTER_TYPE_UD;
2074
2075 /* Haswell and later hardware ignores the "Render Stream Select" bits
2076 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2077 * and instead sends all primitives down the pipeline for rasterization.
2078 * If the SOL stage is enabled, "Render Stream Select" is honored and
2079 * primitives bound to non-zero streams are discarded after stream output.
2080 *
2081 * Since the only purpose of primives sent to non-zero streams is to
2082 * be recorded by transform feedback, we can simply discard all geometry
2083 * bound to these streams when transform feedback is disabled.
2084 */
2085 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2086 return;
2087
2088 /* If we're outputting 32 control data bits or less, then we can wait
2089 * until the shader is over to output them all. Otherwise we need to
2090 * output them as we go. Now is the time to do it, since we're about to
2091 * output the vertex_count'th vertex, so it's guaranteed that the
2092 * control data bits associated with the (vertex_count - 1)th vertex are
2093 * correct.
2094 */
2095 if (gs_compile->control_data_header_size_bits > 32) {
2096 const fs_builder abld =
2097 bld.annotate("emit vertex: emit control data bits");
2098
2099 /* Only emit control data bits if we've finished accumulating a batch
2100 * of 32 bits. This is the case when:
2101 *
2102 * (vertex_count * bits_per_vertex) % 32 == 0
2103 *
2104 * (in other words, when the last 5 bits of vertex_count *
2105 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2106 * integer n (which is always the case, since bits_per_vertex is
2107 * always 1 or 2), this is equivalent to requiring that the last 5-n
2108 * bits of vertex_count are 0:
2109 *
2110 * vertex_count & (2^(5-n) - 1) == 0
2111 *
2112 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2113 * equivalent to:
2114 *
2115 * vertex_count & (32 / bits_per_vertex - 1) == 0
2116 *
2117 * TODO: If vertex_count is an immediate, we could do some of this math
2118 * at compile time...
2119 */
2120 fs_inst *inst =
2121 abld.AND(bld.null_reg_d(), vertex_count,
2122 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2123 inst->conditional_mod = BRW_CONDITIONAL_Z;
2124
2125 abld.IF(BRW_PREDICATE_NORMAL);
2126 /* If vertex_count is 0, then no control data bits have been
2127 * accumulated yet, so we can skip emitting them.
2128 */
2129 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2130 BRW_CONDITIONAL_NEQ);
2131 abld.IF(BRW_PREDICATE_NORMAL);
2132 emit_gs_control_data_bits(vertex_count);
2133 abld.emit(BRW_OPCODE_ENDIF);
2134
2135 /* Reset control_data_bits to 0 so we can start accumulating a new
2136 * batch.
2137 *
2138 * Note: in the case where vertex_count == 0, this neutralizes the
2139 * effect of any call to EndPrimitive() that the shader may have
2140 * made before outputting its first vertex.
2141 */
2142 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2143 inst->force_writemask_all = true;
2144 abld.emit(BRW_OPCODE_ENDIF);
2145 }
2146
2147 emit_urb_writes(vertex_count);
2148
2149 /* In stream mode we have to set control data bits for all vertices
2150 * unless we have disabled control data bits completely (which we do
2151 * do for GL_POINTS outputs that don't use streams).
2152 */
2153 if (gs_compile->control_data_header_size_bits > 0 &&
2154 gs_prog_data->control_data_format ==
2155 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2156 set_gs_stream_control_data_bits(vertex_count, stream_id);
2157 }
2158 }
2159
2160 void
2161 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2162 const nir_src &vertex_src,
2163 unsigned base_offset,
2164 const nir_src &offset_src,
2165 unsigned num_components,
2166 unsigned first_component)
2167 {
2168 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2169
2170 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2171 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2172 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2173
2174 /* TODO: figure out push input layout for invocations == 1 */
2175 /* TODO: make this work with 64-bit inputs */
2176 if (gs_prog_data->invocations == 1 &&
2177 type_sz(dst.type) <= 4 &&
2178 offset_const != NULL && vertex_const != NULL &&
2179 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2180 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2181 vertex_const->u32[0] * push_reg_count;
2182 for (unsigned i = 0; i < num_components; i++) {
2183 bld.MOV(offset(dst, bld, i),
2184 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2185 }
2186 return;
2187 }
2188
2189 /* Resort to the pull model. Ensure the VUE handles are provided. */
2190 assert(gs_prog_data->base.include_vue_handles);
2191
2192 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2193 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2194
2195 if (gs_prog_data->invocations == 1) {
2196 if (vertex_const) {
2197 /* The vertex index is constant; just select the proper URB handle. */
2198 icp_handle =
2199 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2200 BRW_REGISTER_TYPE_UD);
2201 } else {
2202 /* The vertex index is non-constant. We need to use indirect
2203 * addressing to fetch the proper URB handle.
2204 *
2205 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2206 * indicating that channel <n> should read the handle from
2207 * DWord <n>. We convert that to bytes by multiplying by 4.
2208 *
2209 * Next, we convert the vertex index to bytes by multiplying
2210 * by 32 (shifting by 5), and add the two together. This is
2211 * the final indirect byte offset.
2212 */
2213 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2214 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2215 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2216 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2217
2218 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2219 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2220 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2221 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2222 /* Convert vertex_index to bytes (multiply by 32) */
2223 bld.SHL(vertex_offset_bytes,
2224 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2225 brw_imm_ud(5u));
2226 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2227
2228 /* Use first_icp_handle as the base offset. There is one register
2229 * of URB handles per vertex, so inform the register allocator that
2230 * we might read up to nir->info.gs.vertices_in registers.
2231 */
2232 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2233 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2234 fs_reg(icp_offset_bytes),
2235 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2236 }
2237 } else {
2238 assert(gs_prog_data->invocations > 1);
2239
2240 if (vertex_const) {
2241 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2242 bld.MOV(icp_handle,
2243 retype(brw_vec1_grf(first_icp_handle +
2244 vertex_const->i32[0] / 8,
2245 vertex_const->i32[0] % 8),
2246 BRW_REGISTER_TYPE_UD));
2247 } else {
2248 /* The vertex index is non-constant. We need to use indirect
2249 * addressing to fetch the proper URB handle.
2250 *
2251 */
2252 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2253
2254 /* Convert vertex_index to bytes (multiply by 4) */
2255 bld.SHL(icp_offset_bytes,
2256 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2257 brw_imm_ud(2u));
2258
2259 /* Use first_icp_handle as the base offset. There is one DWord
2260 * of URB handles per vertex, so inform the register allocator that
2261 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2262 */
2263 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2264 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2265 fs_reg(icp_offset_bytes),
2266 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2267 REG_SIZE));
2268 }
2269 }
2270
2271 fs_inst *inst;
2272
2273 fs_reg tmp_dst = dst;
2274 fs_reg indirect_offset = get_nir_src(offset_src);
2275 unsigned num_iterations = 1;
2276 unsigned orig_num_components = num_components;
2277
2278 if (type_sz(dst.type) == 8) {
2279 if (num_components > 2) {
2280 num_iterations = 2;
2281 num_components = 2;
2282 }
2283 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2284 tmp_dst = tmp;
2285 first_component = first_component / 2;
2286 }
2287
2288 for (unsigned iter = 0; iter < num_iterations; iter++) {
2289 if (offset_const) {
2290 /* Constant indexing - use global offset. */
2291 if (first_component != 0) {
2292 unsigned read_components = num_components + first_component;
2293 fs_reg tmp = bld.vgrf(dst.type, read_components);
2294 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2295 inst->size_written = read_components *
2296 tmp.component_size(inst->exec_size);
2297 for (unsigned i = 0; i < num_components; i++) {
2298 bld.MOV(offset(tmp_dst, bld, i),
2299 offset(tmp, bld, i + first_component));
2300 }
2301 } else {
2302 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2303 icp_handle);
2304 inst->size_written = num_components *
2305 tmp_dst.component_size(inst->exec_size);
2306 }
2307 inst->offset = base_offset + offset_const->u32[0];
2308 inst->mlen = 1;
2309 } else {
2310 /* Indirect indexing - use per-slot offsets as well. */
2311 const fs_reg srcs[] = { icp_handle, indirect_offset };
2312 unsigned read_components = num_components + first_component;
2313 fs_reg tmp = bld.vgrf(dst.type, read_components);
2314 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2315 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2316 if (first_component != 0) {
2317 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2318 payload);
2319 inst->size_written = read_components *
2320 tmp.component_size(inst->exec_size);
2321 for (unsigned i = 0; i < num_components; i++) {
2322 bld.MOV(offset(tmp_dst, bld, i),
2323 offset(tmp, bld, i + first_component));
2324 }
2325 } else {
2326 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2327 payload);
2328 inst->size_written = num_components *
2329 tmp_dst.component_size(inst->exec_size);
2330 }
2331 inst->offset = base_offset;
2332 inst->mlen = 2;
2333 }
2334
2335 if (type_sz(dst.type) == 8) {
2336 shuffle_from_32bit_read(bld,
2337 offset(dst, bld, iter * 2),
2338 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2339 0,
2340 num_components);
2341 }
2342
2343 if (num_iterations > 1) {
2344 num_components = orig_num_components - 2;
2345 if(offset_const) {
2346 base_offset++;
2347 } else {
2348 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2349 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2350 indirect_offset = new_indirect;
2351 }
2352 }
2353 }
2354 }
2355
2356 fs_reg
2357 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2358 {
2359 nir_src *offset_src = nir_get_io_offset_src(instr);
2360 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2361
2362 if (const_value) {
2363 /* The only constant offset we should find is 0. brw_nir.c's
2364 * add_const_offset_to_base() will fold other constant offsets
2365 * into instr->const_index[0].
2366 */
2367 assert(const_value->u32[0] == 0);
2368 return fs_reg();
2369 }
2370
2371 return get_nir_src(*offset_src);
2372 }
2373
2374 static void
2375 do_untyped_vector_read(const fs_builder &bld,
2376 const fs_reg dest,
2377 const fs_reg surf_index,
2378 const fs_reg offset_reg,
2379 unsigned num_components)
2380 {
2381 if (type_sz(dest.type) <= 2) {
2382 assert(dest.stride == 1);
2383 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2384
2385 if (is_const_offset) {
2386 uint32_t start = offset_reg.ud & ~3;
2387 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2388 end = ALIGN(end, 4);
2389 assert (end - start <= 16);
2390
2391 /* At this point we have 16-bit component/s that have constant
2392 * offset aligned to 4-bytes that can be read with untyped_reads.
2393 * untyped_read message requires 32-bit aligned offsets.
2394 */
2395 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2396 unsigned num_components_32bit = (end - start) / 4;
2397
2398 fs_reg read_result =
2399 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2400 1 /* dims */,
2401 num_components_32bit,
2402 BRW_PREDICATE_NONE);
2403 shuffle_from_32bit_read(bld, dest, read_result, first_component,
2404 num_components);
2405 } else {
2406 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2407 for (unsigned i = 0; i < num_components; i++) {
2408 if (i == 0) {
2409 bld.MOV(read_offset, offset_reg);
2410 } else {
2411 bld.ADD(read_offset, offset_reg,
2412 brw_imm_ud(i * type_sz(dest.type)));
2413 }
2414 /* Non constant offsets are not guaranteed to be aligned 32-bits
2415 * so they are read using one byte_scattered_read message
2416 * for each component.
2417 */
2418 fs_reg read_result =
2419 emit_byte_scattered_read(bld, surf_index, read_offset,
2420 1 /* dims */, 1,
2421 type_sz(dest.type) * 8 /* bit_size */,
2422 BRW_PREDICATE_NONE);
2423 bld.MOV(offset(dest, bld, i),
2424 subscript (read_result, dest.type, 0));
2425 }
2426 }
2427 } else if (type_sz(dest.type) == 4) {
2428 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2429 1 /* dims */,
2430 num_components,
2431 BRW_PREDICATE_NONE);
2432 read_result.type = dest.type;
2433 for (unsigned i = 0; i < num_components; i++)
2434 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2435 } else if (type_sz(dest.type) == 8) {
2436 /* Reading a dvec, so we need to:
2437 *
2438 * 1. Multiply num_components by 2, to account for the fact that we
2439 * need to read 64-bit components.
2440 * 2. Shuffle the result of the load to form valid 64-bit elements
2441 * 3. Emit a second load (for components z/w) if needed.
2442 */
2443 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2444 bld.MOV(read_offset, offset_reg);
2445
2446 int iters = num_components <= 2 ? 1 : 2;
2447
2448 /* Load the dvec, the first iteration loads components x/y, the second
2449 * iteration, if needed, loads components z/w
2450 */
2451 for (int it = 0; it < iters; it++) {
2452 /* Compute number of components to read in this iteration */
2453 int iter_components = MIN2(2, num_components);
2454 num_components -= iter_components;
2455
2456 /* Read. Since this message reads 32-bit components, we need to
2457 * read twice as many components.
2458 */
2459 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2460 1 /* dims */,
2461 iter_components * 2,
2462 BRW_PREDICATE_NONE);
2463
2464 /* Shuffle the 32-bit load result into valid 64-bit data */
2465 shuffle_from_32bit_read(bld, offset(dest, bld, it * 2),
2466 read_result, 0, iter_components);
2467
2468 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2469 }
2470 } else {
2471 unreachable("Unsupported type");
2472 }
2473 }
2474
2475 void
2476 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2477 nir_intrinsic_instr *instr)
2478 {
2479 assert(stage == MESA_SHADER_VERTEX);
2480
2481 fs_reg dest;
2482 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2483 dest = get_nir_dest(instr->dest);
2484
2485 switch (instr->intrinsic) {
2486 case nir_intrinsic_load_vertex_id:
2487 case nir_intrinsic_load_base_vertex:
2488 unreachable("should be lowered by nir_lower_system_values()");
2489
2490 case nir_intrinsic_load_vertex_id_zero_base:
2491 case nir_intrinsic_load_instance_id:
2492 case nir_intrinsic_load_base_instance:
2493 case nir_intrinsic_load_draw_id: {
2494 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2495 fs_reg val = nir_system_values[sv];
2496 assert(val.file != BAD_FILE);
2497 dest.type = val.type;
2498 bld.MOV(dest, val);
2499 break;
2500 }
2501
2502 case nir_intrinsic_load_input: {
2503 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2504 unsigned first_component = nir_intrinsic_component(instr);
2505 unsigned num_components = instr->num_components;
2506
2507 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2508 assert(const_offset && "Indirect input loads not allowed");
2509 src = offset(src, bld, const_offset->u32[0]);
2510
2511 if (type_sz(dest.type) == 8)
2512 first_component /= 2;
2513
2514 /* For 16-bit support maybe a temporary will be needed to copy from
2515 * the ATTR file.
2516 */
2517 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2518 first_component, num_components);
2519 break;
2520 }
2521
2522 case nir_intrinsic_load_first_vertex:
2523 case nir_intrinsic_load_is_indexed_draw:
2524 unreachable("lowered by brw_nir_lower_vs_inputs");
2525
2526 default:
2527 nir_emit_intrinsic(bld, instr);
2528 break;
2529 }
2530 }
2531
2532 void
2533 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2534 nir_intrinsic_instr *instr)
2535 {
2536 assert(stage == MESA_SHADER_TESS_CTRL);
2537 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2538 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2539
2540 fs_reg dst;
2541 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2542 dst = get_nir_dest(instr->dest);
2543
2544 switch (instr->intrinsic) {
2545 case nir_intrinsic_load_primitive_id:
2546 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2547 break;
2548 case nir_intrinsic_load_invocation_id:
2549 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2550 break;
2551 case nir_intrinsic_load_patch_vertices_in:
2552 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2553 brw_imm_d(tcs_key->input_vertices));
2554 break;
2555
2556 case nir_intrinsic_barrier: {
2557 if (tcs_prog_data->instances == 1)
2558 break;
2559
2560 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2561 fs_reg m0_2 = component(m0, 2);
2562
2563 const fs_builder chanbld = bld.exec_all().group(1, 0);
2564
2565 /* Zero the message header */
2566 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2567
2568 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2569 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2570 brw_imm_ud(INTEL_MASK(16, 13)));
2571
2572 /* Shift it up to bits 27:24. */
2573 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2574
2575 /* Set the Barrier Count and the enable bit */
2576 chanbld.OR(m0_2, m0_2,
2577 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2578
2579 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2580 break;
2581 }
2582
2583 case nir_intrinsic_load_input:
2584 unreachable("nir_lower_io should never give us these.");
2585 break;
2586
2587 case nir_intrinsic_load_per_vertex_input: {
2588 fs_reg indirect_offset = get_indirect_offset(instr);
2589 unsigned imm_offset = instr->const_index[0];
2590
2591 const nir_src &vertex_src = instr->src[0];
2592 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2593
2594 fs_inst *inst;
2595
2596 fs_reg icp_handle;
2597
2598 if (vertex_const) {
2599 /* Emit a MOV to resolve <0,1,0> regioning. */
2600 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2601 bld.MOV(icp_handle,
2602 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2603 vertex_const->i32[0] & 7),
2604 BRW_REGISTER_TYPE_UD));
2605 } else if (tcs_prog_data->instances == 1 &&
2606 vertex_src.is_ssa &&
2607 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2608 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2609 /* For the common case of only 1 instance, an array index of
2610 * gl_InvocationID means reading g1. Skip all the indirect work.
2611 */
2612 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2613 } else {
2614 /* The vertex index is non-constant. We need to use indirect
2615 * addressing to fetch the proper URB handle.
2616 */
2617 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2618
2619 /* Each ICP handle is a single DWord (4 bytes) */
2620 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2621 bld.SHL(vertex_offset_bytes,
2622 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2623 brw_imm_ud(2u));
2624
2625 /* Start at g1. We might read up to 4 registers. */
2626 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2627 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2628 brw_imm_ud(4 * REG_SIZE));
2629 }
2630
2631 /* We can only read two double components with each URB read, so
2632 * we send two read messages in that case, each one loading up to
2633 * two double components.
2634 */
2635 unsigned num_iterations = 1;
2636 unsigned num_components = instr->num_components;
2637 unsigned first_component = nir_intrinsic_component(instr);
2638 fs_reg orig_dst = dst;
2639 if (type_sz(dst.type) == 8) {
2640 first_component = first_component / 2;
2641 if (instr->num_components > 2) {
2642 num_iterations = 2;
2643 num_components = 2;
2644 }
2645
2646 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2647 dst = tmp;
2648 }
2649
2650 for (unsigned iter = 0; iter < num_iterations; iter++) {
2651 if (indirect_offset.file == BAD_FILE) {
2652 /* Constant indexing - use global offset. */
2653 if (first_component != 0) {
2654 unsigned read_components = num_components + first_component;
2655 fs_reg tmp = bld.vgrf(dst.type, read_components);
2656 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2657 for (unsigned i = 0; i < num_components; i++) {
2658 bld.MOV(offset(dst, bld, i),
2659 offset(tmp, bld, i + first_component));
2660 }
2661 } else {
2662 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2663 }
2664 inst->offset = imm_offset;
2665 inst->mlen = 1;
2666 } else {
2667 /* Indirect indexing - use per-slot offsets as well. */
2668 const fs_reg srcs[] = { icp_handle, indirect_offset };
2669 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2670 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2671 if (first_component != 0) {
2672 unsigned read_components = num_components + first_component;
2673 fs_reg tmp = bld.vgrf(dst.type, read_components);
2674 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2675 payload);
2676 for (unsigned i = 0; i < num_components; i++) {
2677 bld.MOV(offset(dst, bld, i),
2678 offset(tmp, bld, i + first_component));
2679 }
2680 } else {
2681 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2682 payload);
2683 }
2684 inst->offset = imm_offset;
2685 inst->mlen = 2;
2686 }
2687 inst->size_written = (num_components + first_component) *
2688 inst->dst.component_size(inst->exec_size);
2689
2690 /* If we are reading 64-bit data using 32-bit read messages we need
2691 * build proper 64-bit data elements by shuffling the low and high
2692 * 32-bit components around like we do for other things like UBOs
2693 * or SSBOs.
2694 */
2695 if (type_sz(dst.type) == 8) {
2696 shuffle_from_32bit_read(bld,
2697 offset(orig_dst, bld, iter * 2),
2698 retype(dst, BRW_REGISTER_TYPE_D),
2699 0, num_components);
2700 }
2701
2702 /* Copy the temporary to the destination to deal with writemasking.
2703 *
2704 * Also attempt to deal with gl_PointSize being in the .w component.
2705 */
2706 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2707 assert(type_sz(dst.type) < 8);
2708 inst->dst = bld.vgrf(dst.type, 4);
2709 inst->size_written = 4 * REG_SIZE;
2710 bld.MOV(dst, offset(inst->dst, bld, 3));
2711 }
2712
2713 /* If we are loading double data and we need a second read message
2714 * adjust the write offset
2715 */
2716 if (num_iterations > 1) {
2717 num_components = instr->num_components - 2;
2718 imm_offset++;
2719 }
2720 }
2721 break;
2722 }
2723
2724 case nir_intrinsic_load_output:
2725 case nir_intrinsic_load_per_vertex_output: {
2726 fs_reg indirect_offset = get_indirect_offset(instr);
2727 unsigned imm_offset = instr->const_index[0];
2728 unsigned first_component = nir_intrinsic_component(instr);
2729
2730 fs_inst *inst;
2731 if (indirect_offset.file == BAD_FILE) {
2732 /* Replicate the patch handle to all enabled channels */
2733 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2734 bld.MOV(patch_handle,
2735 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2736
2737 {
2738 if (first_component != 0) {
2739 unsigned read_components =
2740 instr->num_components + first_component;
2741 fs_reg tmp = bld.vgrf(dst.type, read_components);
2742 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2743 patch_handle);
2744 inst->size_written = read_components * REG_SIZE;
2745 for (unsigned i = 0; i < instr->num_components; i++) {
2746 bld.MOV(offset(dst, bld, i),
2747 offset(tmp, bld, i + first_component));
2748 }
2749 } else {
2750 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2751 patch_handle);
2752 inst->size_written = instr->num_components * REG_SIZE;
2753 }
2754 inst->offset = imm_offset;
2755 inst->mlen = 1;
2756 }
2757 } else {
2758 /* Indirect indexing - use per-slot offsets as well. */
2759 const fs_reg srcs[] = {
2760 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2761 indirect_offset
2762 };
2763 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2764 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2765 if (first_component != 0) {
2766 unsigned read_components =
2767 instr->num_components + first_component;
2768 fs_reg tmp = bld.vgrf(dst.type, read_components);
2769 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2770 payload);
2771 inst->size_written = read_components * REG_SIZE;
2772 for (unsigned i = 0; i < instr->num_components; i++) {
2773 bld.MOV(offset(dst, bld, i),
2774 offset(tmp, bld, i + first_component));
2775 }
2776 } else {
2777 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2778 payload);
2779 inst->size_written = instr->num_components * REG_SIZE;
2780 }
2781 inst->offset = imm_offset;
2782 inst->mlen = 2;
2783 }
2784 break;
2785 }
2786
2787 case nir_intrinsic_store_output:
2788 case nir_intrinsic_store_per_vertex_output: {
2789 fs_reg value = get_nir_src(instr->src[0]);
2790 bool is_64bit = (instr->src[0].is_ssa ?
2791 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2792 fs_reg indirect_offset = get_indirect_offset(instr);
2793 unsigned imm_offset = instr->const_index[0];
2794 unsigned mask = instr->const_index[1];
2795 unsigned header_regs = 0;
2796 fs_reg srcs[7];
2797 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2798
2799 if (indirect_offset.file != BAD_FILE) {
2800 srcs[header_regs++] = indirect_offset;
2801 }
2802
2803 if (mask == 0)
2804 break;
2805
2806 unsigned num_components = util_last_bit(mask);
2807 enum opcode opcode;
2808
2809 /* We can only pack two 64-bit components in a single message, so send
2810 * 2 messages if we have more components
2811 */
2812 unsigned num_iterations = 1;
2813 unsigned iter_components = num_components;
2814 unsigned first_component = nir_intrinsic_component(instr);
2815 if (is_64bit) {
2816 first_component = first_component / 2;
2817 if (instr->num_components > 2) {
2818 num_iterations = 2;
2819 iter_components = 2;
2820 }
2821 }
2822
2823 mask = mask << first_component;
2824
2825 for (unsigned iter = 0; iter < num_iterations; iter++) {
2826 if (!is_64bit && mask != WRITEMASK_XYZW) {
2827 srcs[header_regs++] = brw_imm_ud(mask << 16);
2828 opcode = indirect_offset.file != BAD_FILE ?
2829 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2830 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2831 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2832 /* Expand the 64-bit mask to 32-bit channels. We only handle
2833 * two channels in each iteration, so we only care about X/Y.
2834 */
2835 unsigned mask32 = 0;
2836 if (mask & WRITEMASK_X)
2837 mask32 |= WRITEMASK_XY;
2838 if (mask & WRITEMASK_Y)
2839 mask32 |= WRITEMASK_ZW;
2840
2841 /* If the mask does not include any of the channels X or Y there
2842 * is nothing to do in this iteration. Move on to the next couple
2843 * of 64-bit channels.
2844 */
2845 if (!mask32) {
2846 mask >>= 2;
2847 imm_offset++;
2848 continue;
2849 }
2850
2851 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2852 opcode = indirect_offset.file != BAD_FILE ?
2853 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2854 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2855 } else {
2856 opcode = indirect_offset.file != BAD_FILE ?
2857 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2858 SHADER_OPCODE_URB_WRITE_SIMD8;
2859 }
2860
2861 for (unsigned i = 0; i < iter_components; i++) {
2862 if (!(mask & (1 << (i + first_component))))
2863 continue;
2864
2865 if (!is_64bit) {
2866 srcs[header_regs + i + first_component] = offset(value, bld, i);
2867 } else {
2868 /* We need to shuffle the 64-bit data to match the layout
2869 * expected by our 32-bit URB write messages. We use a temporary
2870 * for that.
2871 */
2872 unsigned channel = iter * 2 + i;
2873 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2874
2875 srcs[header_regs + (i + first_component) * 2] = dest;
2876 srcs[header_regs + (i + first_component) * 2 + 1] =
2877 offset(dest, bld, 1);
2878 }
2879 }
2880
2881 unsigned mlen =
2882 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2883 (is_64bit ? 2 * first_component : first_component);
2884 fs_reg payload =
2885 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2886 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2887
2888 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2889 inst->offset = imm_offset;
2890 inst->mlen = mlen;
2891
2892 /* If this is a 64-bit attribute, select the next two 64-bit channels
2893 * to be handled in the next iteration.
2894 */
2895 if (is_64bit) {
2896 mask >>= 2;
2897 imm_offset++;
2898 }
2899 }
2900 break;
2901 }
2902
2903 default:
2904 nir_emit_intrinsic(bld, instr);
2905 break;
2906 }
2907 }
2908
2909 void
2910 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2911 nir_intrinsic_instr *instr)
2912 {
2913 assert(stage == MESA_SHADER_TESS_EVAL);
2914 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2915
2916 fs_reg dest;
2917 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2918 dest = get_nir_dest(instr->dest);
2919
2920 switch (instr->intrinsic) {
2921 case nir_intrinsic_load_primitive_id:
2922 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2923 break;
2924 case nir_intrinsic_load_tess_coord:
2925 /* gl_TessCoord is part of the payload in g1-3 */
2926 for (unsigned i = 0; i < 3; i++) {
2927 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2928 }
2929 break;
2930
2931 case nir_intrinsic_load_input:
2932 case nir_intrinsic_load_per_vertex_input: {
2933 fs_reg indirect_offset = get_indirect_offset(instr);
2934 unsigned imm_offset = instr->const_index[0];
2935 unsigned first_component = nir_intrinsic_component(instr);
2936
2937 if (type_sz(dest.type) == 8) {
2938 first_component = first_component / 2;
2939 }
2940
2941 fs_inst *inst;
2942 if (indirect_offset.file == BAD_FILE) {
2943 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2944 * which is 16 registers (since each holds 2 vec4 slots).
2945 */
2946 unsigned slot_count = 1;
2947 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2948 slot_count++;
2949
2950 const unsigned max_push_slots = 32;
2951 if (imm_offset + slot_count <= max_push_slots) {
2952 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2953 for (int i = 0; i < instr->num_components; i++) {
2954 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2955 i + first_component;
2956 bld.MOV(offset(dest, bld, i), component(src, comp));
2957 }
2958
2959 tes_prog_data->base.urb_read_length =
2960 MAX2(tes_prog_data->base.urb_read_length,
2961 DIV_ROUND_UP(imm_offset + slot_count, 2));
2962 } else {
2963 /* Replicate the patch handle to all enabled channels */
2964 const fs_reg srcs[] = {
2965 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2966 };
2967 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2968 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2969
2970 if (first_component != 0) {
2971 unsigned read_components =
2972 instr->num_components + first_component;
2973 fs_reg tmp = bld.vgrf(dest.type, read_components);
2974 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2975 patch_handle);
2976 inst->size_written = read_components * REG_SIZE;
2977 for (unsigned i = 0; i < instr->num_components; i++) {
2978 bld.MOV(offset(dest, bld, i),
2979 offset(tmp, bld, i + first_component));
2980 }
2981 } else {
2982 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2983 patch_handle);
2984 inst->size_written = instr->num_components * REG_SIZE;
2985 }
2986 inst->mlen = 1;
2987 inst->offset = imm_offset;
2988 }
2989 } else {
2990 /* Indirect indexing - use per-slot offsets as well. */
2991
2992 /* We can only read two double components with each URB read, so
2993 * we send two read messages in that case, each one loading up to
2994 * two double components.
2995 */
2996 unsigned num_iterations = 1;
2997 unsigned num_components = instr->num_components;
2998 fs_reg orig_dest = dest;
2999 if (type_sz(dest.type) == 8) {
3000 if (instr->num_components > 2) {
3001 num_iterations = 2;
3002 num_components = 2;
3003 }
3004 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
3005 dest = tmp;
3006 }
3007
3008 for (unsigned iter = 0; iter < num_iterations; iter++) {
3009 const fs_reg srcs[] = {
3010 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3011 indirect_offset
3012 };
3013 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3014 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3015
3016 if (first_component != 0) {
3017 unsigned read_components =
3018 num_components + first_component;
3019 fs_reg tmp = bld.vgrf(dest.type, read_components);
3020 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3021 payload);
3022 for (unsigned i = 0; i < num_components; i++) {
3023 bld.MOV(offset(dest, bld, i),
3024 offset(tmp, bld, i + first_component));
3025 }
3026 } else {
3027 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3028 payload);
3029 }
3030 inst->mlen = 2;
3031 inst->offset = imm_offset;
3032 inst->size_written = (num_components + first_component) *
3033 inst->dst.component_size(inst->exec_size);
3034
3035 /* If we are reading 64-bit data using 32-bit read messages we need
3036 * build proper 64-bit data elements by shuffling the low and high
3037 * 32-bit components around like we do for other things like UBOs
3038 * or SSBOs.
3039 */
3040 if (type_sz(dest.type) == 8) {
3041 shuffle_from_32bit_read(bld,
3042 offset(orig_dest, bld, iter * 2),
3043 retype(dest, BRW_REGISTER_TYPE_D),
3044 0, num_components);
3045 }
3046
3047 /* If we are loading double data and we need a second read message
3048 * adjust the offset
3049 */
3050 if (num_iterations > 1) {
3051 num_components = instr->num_components - 2;
3052 imm_offset++;
3053 }
3054 }
3055 }
3056 break;
3057 }
3058 default:
3059 nir_emit_intrinsic(bld, instr);
3060 break;
3061 }
3062 }
3063
3064 void
3065 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3066 nir_intrinsic_instr *instr)
3067 {
3068 assert(stage == MESA_SHADER_GEOMETRY);
3069 fs_reg indirect_offset;
3070
3071 fs_reg dest;
3072 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3073 dest = get_nir_dest(instr->dest);
3074
3075 switch (instr->intrinsic) {
3076 case nir_intrinsic_load_primitive_id:
3077 assert(stage == MESA_SHADER_GEOMETRY);
3078 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3079 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3080 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3081 break;
3082
3083 case nir_intrinsic_load_input:
3084 unreachable("load_input intrinsics are invalid for the GS stage");
3085
3086 case nir_intrinsic_load_per_vertex_input:
3087 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3088 instr->src[1], instr->num_components,
3089 nir_intrinsic_component(instr));
3090 break;
3091
3092 case nir_intrinsic_emit_vertex_with_counter:
3093 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3094 break;
3095
3096 case nir_intrinsic_end_primitive_with_counter:
3097 emit_gs_end_primitive(instr->src[0]);
3098 break;
3099
3100 case nir_intrinsic_set_vertex_count:
3101 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3102 break;
3103
3104 case nir_intrinsic_load_invocation_id: {
3105 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3106 assert(val.file != BAD_FILE);
3107 dest.type = val.type;
3108 bld.MOV(dest, val);
3109 break;
3110 }
3111
3112 default:
3113 nir_emit_intrinsic(bld, instr);
3114 break;
3115 }
3116 }
3117
3118 /**
3119 * Fetch the current render target layer index.
3120 */
3121 static fs_reg
3122 fetch_render_target_array_index(const fs_builder &bld)
3123 {
3124 if (bld.shader->devinfo->gen >= 6) {
3125 /* The render target array index is provided in the thread payload as
3126 * bits 26:16 of r0.0.
3127 */
3128 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3129 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3130 brw_imm_uw(0x7ff));
3131 return idx;
3132 } else {
3133 /* Pre-SNB we only ever render into the first layer of the framebuffer
3134 * since layered rendering is not implemented.
3135 */
3136 return brw_imm_ud(0);
3137 }
3138 }
3139
3140 /**
3141 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3142 * framebuffer at the current fragment coordinates and sample index.
3143 */
3144 fs_inst *
3145 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3146 unsigned target)
3147 {
3148 const struct gen_device_info *devinfo = bld.shader->devinfo;
3149
3150 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3151 const brw_wm_prog_key *wm_key =
3152 reinterpret_cast<const brw_wm_prog_key *>(key);
3153 assert(!wm_key->coherent_fb_fetch);
3154 const struct brw_wm_prog_data *wm_prog_data =
3155 brw_wm_prog_data(stage_prog_data);
3156
3157 /* Calculate the surface index relative to the start of the texture binding
3158 * table block, since that's what the texturing messages expect.
3159 */
3160 const unsigned surface = target +
3161 wm_prog_data->binding_table.render_target_read_start -
3162 wm_prog_data->base.binding_table.texture_start;
3163
3164 brw_mark_surface_used(
3165 bld.shader->stage_prog_data,
3166 wm_prog_data->binding_table.render_target_read_start + target);
3167
3168 /* Calculate the fragment coordinates. */
3169 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3170 bld.MOV(offset(coords, bld, 0), pixel_x);
3171 bld.MOV(offset(coords, bld, 1), pixel_y);
3172 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3173
3174 /* Calculate the sample index and MCS payload when multisampling. Luckily
3175 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3176 * shouldn't be necessary to recompile based on whether the framebuffer is
3177 * CMS or UMS.
3178 */
3179 if (wm_key->multisample_fbo &&
3180 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3181 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3182
3183 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3184 const fs_reg mcs = wm_key->multisample_fbo ?
3185 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3186
3187 /* Use either a normal or a CMS texel fetch message depending on whether
3188 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3189 * message just in case the framebuffer uses 16x multisampling, it should
3190 * be equivalent to the normal CMS fetch for lower multisampling modes.
3191 */
3192 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3193 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3194 SHADER_OPCODE_TXF_CMS_LOGICAL;
3195
3196 /* Emit the instruction. */
3197 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3198 sample, mcs,
3199 brw_imm_ud(surface), brw_imm_ud(0),
3200 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3201 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3202
3203 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3204 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3205
3206 return inst;
3207 }
3208
3209 /**
3210 * Actual coherent framebuffer read implemented using the native render target
3211 * read message. Requires SKL+.
3212 */
3213 static fs_inst *
3214 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3215 {
3216 assert(bld.shader->devinfo->gen >= 9);
3217 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3218 inst->target = target;
3219 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3220
3221 return inst;
3222 }
3223
3224 static fs_reg
3225 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3226 {
3227 if (n && regs[0].file != BAD_FILE) {
3228 return regs[0];
3229
3230 } else {
3231 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3232
3233 for (unsigned i = 0; i < n; i++)
3234 regs[i] = tmp;
3235
3236 return tmp;
3237 }
3238 }
3239
3240 static fs_reg
3241 alloc_frag_output(fs_visitor *v, unsigned location)
3242 {
3243 assert(v->stage == MESA_SHADER_FRAGMENT);
3244 const brw_wm_prog_key *const key =
3245 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3246 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3247 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3248
3249 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3250 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3251
3252 else if (l == FRAG_RESULT_COLOR)
3253 return alloc_temporary(v->bld, 4, v->outputs,
3254 MAX2(key->nr_color_regions, 1));
3255
3256 else if (l == FRAG_RESULT_DEPTH)
3257 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3258
3259 else if (l == FRAG_RESULT_STENCIL)
3260 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3261
3262 else if (l == FRAG_RESULT_SAMPLE_MASK)
3263 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3264
3265 else if (l >= FRAG_RESULT_DATA0 &&
3266 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3267 return alloc_temporary(v->bld, 4,
3268 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3269
3270 else
3271 unreachable("Invalid location");
3272 }
3273
3274 void
3275 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3276 nir_intrinsic_instr *instr)
3277 {
3278 assert(stage == MESA_SHADER_FRAGMENT);
3279
3280 fs_reg dest;
3281 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3282 dest = get_nir_dest(instr->dest);
3283
3284 switch (instr->intrinsic) {
3285 case nir_intrinsic_load_front_face:
3286 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3287 *emit_frontfacing_interpolation());
3288 break;
3289
3290 case nir_intrinsic_load_sample_pos: {
3291 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3292 assert(sample_pos.file != BAD_FILE);
3293 dest.type = sample_pos.type;
3294 bld.MOV(dest, sample_pos);
3295 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3296 break;
3297 }
3298
3299 case nir_intrinsic_load_layer_id:
3300 dest.type = BRW_REGISTER_TYPE_UD;
3301 bld.MOV(dest, fetch_render_target_array_index(bld));
3302 break;
3303
3304 case nir_intrinsic_load_helper_invocation:
3305 case nir_intrinsic_load_sample_mask_in:
3306 case nir_intrinsic_load_sample_id: {
3307 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3308 fs_reg val = nir_system_values[sv];
3309 assert(val.file != BAD_FILE);
3310 dest.type = val.type;
3311 bld.MOV(dest, val);
3312 break;
3313 }
3314
3315 case nir_intrinsic_store_output: {
3316 const fs_reg src = get_nir_src(instr->src[0]);
3317 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3318 assert(const_offset && "Indirect output stores not allowed");
3319 const unsigned location = nir_intrinsic_base(instr) +
3320 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3321 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3322 src.type);
3323
3324 for (unsigned j = 0; j < instr->num_components; j++)
3325 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3326 offset(src, bld, j));
3327
3328 break;
3329 }
3330
3331 case nir_intrinsic_load_output: {
3332 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3333 BRW_NIR_FRAG_OUTPUT_LOCATION);
3334 assert(l >= FRAG_RESULT_DATA0);
3335 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3336 assert(const_offset && "Indirect output loads not allowed");
3337 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3338 const fs_reg tmp = bld.vgrf(dest.type, 4);
3339
3340 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3341 emit_coherent_fb_read(bld, tmp, target);
3342 else
3343 emit_non_coherent_fb_read(bld, tmp, target);
3344
3345 for (unsigned j = 0; j < instr->num_components; j++) {
3346 bld.MOV(offset(dest, bld, j),
3347 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3348 }
3349
3350 break;
3351 }
3352
3353 case nir_intrinsic_discard:
3354 case nir_intrinsic_discard_if: {
3355 /* We track our discarded pixels in f0.1. By predicating on it, we can
3356 * update just the flag bits that aren't yet discarded. If there's no
3357 * condition, we emit a CMP of g0 != g0, so all currently executing
3358 * channels will get turned off.
3359 */
3360 fs_inst *cmp;
3361 if (instr->intrinsic == nir_intrinsic_discard_if) {
3362 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3363 brw_imm_d(0), BRW_CONDITIONAL_Z);
3364 } else {
3365 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3366 BRW_REGISTER_TYPE_UW));
3367 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3368 }
3369 cmp->predicate = BRW_PREDICATE_NORMAL;
3370 cmp->flag_subreg = 1;
3371
3372 if (devinfo->gen >= 6) {
3373 emit_discard_jump();
3374 }
3375
3376 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3377 break;
3378 }
3379
3380 case nir_intrinsic_load_input: {
3381 /* load_input is only used for flat inputs */
3382 unsigned base = nir_intrinsic_base(instr);
3383 unsigned comp = nir_intrinsic_component(instr);
3384 unsigned num_components = instr->num_components;
3385 fs_reg orig_dest = dest;
3386 enum brw_reg_type type = dest.type;
3387
3388 /* Special case fields in the VUE header */
3389 if (base == VARYING_SLOT_LAYER)
3390 comp = 1;
3391 else if (base == VARYING_SLOT_VIEWPORT)
3392 comp = 2;
3393
3394 if (nir_dest_bit_size(instr->dest) == 64) {
3395 /* const_index is in 32-bit type size units that could not be aligned
3396 * with DF. We need to read the double vector as if it was a float
3397 * vector of twice the number of components to fetch the right data.
3398 */
3399 type = BRW_REGISTER_TYPE_F;
3400 num_components *= 2;
3401 dest = bld.vgrf(type, num_components);
3402 }
3403
3404 for (unsigned int i = 0; i < num_components; i++) {
3405 bld.MOV(offset(retype(dest, type), bld, i),
3406 retype(component(interp_reg(base, comp + i), 3), type));
3407 }
3408
3409 if (nir_dest_bit_size(instr->dest) == 64) {
3410 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3411 instr->num_components);
3412 }
3413 break;
3414 }
3415
3416 case nir_intrinsic_load_barycentric_pixel:
3417 case nir_intrinsic_load_barycentric_centroid:
3418 case nir_intrinsic_load_barycentric_sample:
3419 /* Do nothing - load_interpolated_input handling will handle it later. */
3420 break;
3421
3422 case nir_intrinsic_load_barycentric_at_sample: {
3423 const glsl_interp_mode interpolation =
3424 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3425
3426 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3427
3428 if (const_sample) {
3429 unsigned msg_data = const_sample->i32[0] << 4;
3430
3431 emit_pixel_interpolater_send(bld,
3432 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3433 dest,
3434 fs_reg(), /* src */
3435 brw_imm_ud(msg_data),
3436 interpolation);
3437 } else {
3438 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3439 BRW_REGISTER_TYPE_UD);
3440
3441 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3442 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3443 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3444 bld.exec_all().group(1, 0)
3445 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3446 emit_pixel_interpolater_send(bld,
3447 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3448 dest,
3449 fs_reg(), /* src */
3450 msg_data,
3451 interpolation);
3452 } else {
3453 /* Make a loop that sends a message to the pixel interpolater
3454 * for the sample number in each live channel. If there are
3455 * multiple channels with the same sample number then these
3456 * will be handled simultaneously with a single interation of
3457 * the loop.
3458 */
3459 bld.emit(BRW_OPCODE_DO);
3460
3461 /* Get the next live sample number into sample_id_reg */
3462 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3463
3464 /* Set the flag register so that we can perform the send
3465 * message on all channels that have the same sample number
3466 */
3467 bld.CMP(bld.null_reg_ud(),
3468 sample_src, sample_id,
3469 BRW_CONDITIONAL_EQ);
3470 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3471 bld.exec_all().group(1, 0)
3472 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3473 fs_inst *inst =
3474 emit_pixel_interpolater_send(bld,
3475 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3476 dest,
3477 fs_reg(), /* src */
3478 component(msg_data, 0),
3479 interpolation);
3480 set_predicate(BRW_PREDICATE_NORMAL, inst);
3481
3482 /* Continue the loop if there are any live channels left */
3483 set_predicate_inv(BRW_PREDICATE_NORMAL,
3484 true, /* inverse */
3485 bld.emit(BRW_OPCODE_WHILE));
3486 }
3487 }
3488 break;
3489 }
3490
3491 case nir_intrinsic_load_barycentric_at_offset: {
3492 const glsl_interp_mode interpolation =
3493 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3494
3495 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3496
3497 if (const_offset) {
3498 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3499 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3500
3501 emit_pixel_interpolater_send(bld,
3502 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3503 dest,
3504 fs_reg(), /* src */
3505 brw_imm_ud(off_x | (off_y << 4)),
3506 interpolation);
3507 } else {
3508 fs_reg src = vgrf(glsl_type::ivec2_type);
3509 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3510 BRW_REGISTER_TYPE_F);
3511 for (int i = 0; i < 2; i++) {
3512 fs_reg temp = vgrf(glsl_type::float_type);
3513 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3514 fs_reg itemp = vgrf(glsl_type::int_type);
3515 /* float to int */
3516 bld.MOV(itemp, temp);
3517
3518 /* Clamp the upper end of the range to +7/16.
3519 * ARB_gpu_shader5 requires that we support a maximum offset
3520 * of +0.5, which isn't representable in a S0.4 value -- if
3521 * we didn't clamp it, we'd end up with -8/16, which is the
3522 * opposite of what the shader author wanted.
3523 *
3524 * This is legal due to ARB_gpu_shader5's quantization
3525 * rules:
3526 *
3527 * "Not all values of <offset> may be supported; x and y
3528 * offsets may be rounded to fixed-point values with the
3529 * number of fraction bits given by the
3530 * implementation-dependent constant
3531 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3532 */
3533 set_condmod(BRW_CONDITIONAL_L,
3534 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3535 }
3536
3537 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3538 emit_pixel_interpolater_send(bld,
3539 opcode,
3540 dest,
3541 src,
3542 brw_imm_ud(0u),
3543 interpolation);
3544 }
3545 break;
3546 }
3547
3548 case nir_intrinsic_load_interpolated_input: {
3549 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3550 emit_fragcoord_interpolation(dest);
3551 break;
3552 }
3553
3554 assert(instr->src[0].ssa &&
3555 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3556 nir_intrinsic_instr *bary_intrinsic =
3557 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3558 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3559 enum glsl_interp_mode interp_mode =
3560 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3561 fs_reg dst_xy;
3562
3563 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3564 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3565 /* Use the result of the PI message */
3566 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3567 } else {
3568 /* Use the delta_xy values computed from the payload */
3569 enum brw_barycentric_mode bary =
3570 brw_barycentric_mode(interp_mode, bary_intrin);
3571
3572 dst_xy = this->delta_xy[bary];
3573 }
3574
3575 for (unsigned int i = 0; i < instr->num_components; i++) {
3576 fs_reg interp =
3577 component(interp_reg(nir_intrinsic_base(instr),
3578 nir_intrinsic_component(instr) + i), 0);
3579 interp.type = BRW_REGISTER_TYPE_F;
3580 dest.type = BRW_REGISTER_TYPE_F;
3581
3582 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3583 fs_reg tmp = vgrf(glsl_type::float_type);
3584 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3585 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3586 } else {
3587 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3588 }
3589 }
3590 break;
3591 }
3592
3593 default:
3594 nir_emit_intrinsic(bld, instr);
3595 break;
3596 }
3597 }
3598
3599 void
3600 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3601 nir_intrinsic_instr *instr)
3602 {
3603 assert(stage == MESA_SHADER_COMPUTE);
3604 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3605
3606 fs_reg dest;
3607 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3608 dest = get_nir_dest(instr->dest);
3609
3610 switch (instr->intrinsic) {
3611 case nir_intrinsic_barrier:
3612 emit_barrier();
3613 cs_prog_data->uses_barrier = true;
3614 break;
3615
3616 case nir_intrinsic_load_subgroup_id:
3617 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3618 break;
3619
3620 case nir_intrinsic_load_local_invocation_id:
3621 case nir_intrinsic_load_work_group_id: {
3622 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3623 fs_reg val = nir_system_values[sv];
3624 assert(val.file != BAD_FILE);
3625 dest.type = val.type;
3626 for (unsigned i = 0; i < 3; i++)
3627 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3628 break;
3629 }
3630
3631 case nir_intrinsic_load_num_work_groups: {
3632 const unsigned surface =
3633 cs_prog_data->binding_table.work_groups_start;
3634
3635 cs_prog_data->uses_num_work_groups = true;
3636
3637 fs_reg surf_index = brw_imm_ud(surface);
3638 brw_mark_surface_used(prog_data, surface);
3639
3640 /* Read the 3 GLuint components of gl_NumWorkGroups */
3641 for (unsigned i = 0; i < 3; i++) {
3642 fs_reg read_result =
3643 emit_untyped_read(bld, surf_index,
3644 brw_imm_ud(i << 2),
3645 1 /* dims */, 1 /* size */,
3646 BRW_PREDICATE_NONE);
3647 read_result.type = dest.type;
3648 bld.MOV(dest, read_result);
3649 dest = offset(dest, bld, 1);
3650 }
3651 break;
3652 }
3653
3654 case nir_intrinsic_shared_atomic_add:
3655 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3656 break;
3657 case nir_intrinsic_shared_atomic_imin:
3658 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3659 break;
3660 case nir_intrinsic_shared_atomic_umin:
3661 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3662 break;
3663 case nir_intrinsic_shared_atomic_imax:
3664 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3665 break;
3666 case nir_intrinsic_shared_atomic_umax:
3667 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3668 break;
3669 case nir_intrinsic_shared_atomic_and:
3670 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3671 break;
3672 case nir_intrinsic_shared_atomic_or:
3673 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3674 break;
3675 case nir_intrinsic_shared_atomic_xor:
3676 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3677 break;
3678 case nir_intrinsic_shared_atomic_exchange:
3679 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3680 break;
3681 case nir_intrinsic_shared_atomic_comp_swap:
3682 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3683 break;
3684
3685 case nir_intrinsic_load_shared: {
3686 assert(devinfo->gen >= 7);
3687
3688 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3689
3690 /* Get the offset to read from */
3691 fs_reg offset_reg;
3692 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3693 if (const_offset) {
3694 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3695 } else {
3696 offset_reg = vgrf(glsl_type::uint_type);
3697 bld.ADD(offset_reg,
3698 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3699 brw_imm_ud(instr->const_index[0]));
3700 }
3701
3702 /* Read the vector */
3703 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3704 instr->num_components);
3705 break;
3706 }
3707
3708 case nir_intrinsic_store_shared: {
3709 assert(devinfo->gen >= 7);
3710
3711 /* Block index */
3712 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3713
3714 /* Value */
3715 fs_reg val_reg = get_nir_src(instr->src[0]);
3716
3717 /* Writemask */
3718 unsigned writemask = instr->const_index[1];
3719
3720 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3721 * since the untyped writes below operate in units of 32-bits, which
3722 * means that we need to write twice as many components each time.
3723 * Also, we have to suffle 64-bit data to be in the appropriate layout
3724 * expected by our 32-bit write messages.
3725 */
3726 unsigned type_size = 4;
3727 if (nir_src_bit_size(instr->src[0]) == 64) {
3728 type_size = 8;
3729 val_reg = shuffle_for_32bit_write(bld, val_reg, 0,
3730 instr->num_components);
3731 }
3732
3733 unsigned type_slots = type_size / 4;
3734
3735 /* Combine groups of consecutive enabled channels in one write
3736 * message. We use ffs to find the first enabled channel and then ffs on
3737 * the bit-inverse, down-shifted writemask to determine the length of
3738 * the block of enabled bits.
3739 */
3740 while (writemask) {
3741 unsigned first_component = ffs(writemask) - 1;
3742 unsigned length = ffs(~(writemask >> first_component)) - 1;
3743
3744 /* We can't write more than 2 64-bit components at once. Limit the
3745 * length of the write to what we can do and let the next iteration
3746 * handle the rest
3747 */
3748 if (type_size > 4)
3749 length = MIN2(2, length);
3750
3751 fs_reg offset_reg;
3752 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3753 if (const_offset) {
3754 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3755 type_size * first_component);
3756 } else {
3757 offset_reg = vgrf(glsl_type::uint_type);
3758 bld.ADD(offset_reg,
3759 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3760 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3761 }
3762
3763 emit_untyped_write(bld, surf_index, offset_reg,
3764 offset(val_reg, bld, first_component * type_slots),
3765 1 /* dims */, length * type_slots,
3766 BRW_PREDICATE_NONE);
3767
3768 /* Clear the bits in the writemask that we just wrote, then try
3769 * again to see if more channels are left.
3770 */
3771 writemask &= (15 << (first_component + length));
3772 }
3773
3774 break;
3775 }
3776
3777 default:
3778 nir_emit_intrinsic(bld, instr);
3779 break;
3780 }
3781 }
3782
3783 static fs_reg
3784 brw_nir_reduction_op_identity(const fs_builder &bld,
3785 nir_op op, brw_reg_type type)
3786 {
3787 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3788 switch (type_sz(type)) {
3789 case 2:
3790 assert(type != BRW_REGISTER_TYPE_HF);
3791 return retype(brw_imm_uw(value.u16[0]), type);
3792 case 4:
3793 return retype(brw_imm_ud(value.u32[0]), type);
3794 case 8:
3795 if (type == BRW_REGISTER_TYPE_DF)
3796 return setup_imm_df(bld, value.f64[0]);
3797 else
3798 return retype(brw_imm_u64(value.u64[0]), type);
3799 default:
3800 unreachable("Invalid type size");
3801 }
3802 }
3803
3804 static opcode
3805 brw_op_for_nir_reduction_op(nir_op op)
3806 {
3807 switch (op) {
3808 case nir_op_iadd: return BRW_OPCODE_ADD;
3809 case nir_op_fadd: return BRW_OPCODE_ADD;
3810 case nir_op_imul: return BRW_OPCODE_MUL;
3811 case nir_op_fmul: return BRW_OPCODE_MUL;
3812 case nir_op_imin: return BRW_OPCODE_SEL;
3813 case nir_op_umin: return BRW_OPCODE_SEL;
3814 case nir_op_fmin: return BRW_OPCODE_SEL;
3815 case nir_op_imax: return BRW_OPCODE_SEL;
3816 case nir_op_umax: return BRW_OPCODE_SEL;
3817 case nir_op_fmax: return BRW_OPCODE_SEL;
3818 case nir_op_iand: return BRW_OPCODE_AND;
3819 case nir_op_ior: return BRW_OPCODE_OR;
3820 case nir_op_ixor: return BRW_OPCODE_XOR;
3821 default:
3822 unreachable("Invalid reduction operation");
3823 }
3824 }
3825
3826 static brw_conditional_mod
3827 brw_cond_mod_for_nir_reduction_op(nir_op op)
3828 {
3829 switch (op) {
3830 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3831 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3832 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3833 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3834 case nir_op_imin: return BRW_CONDITIONAL_L;
3835 case nir_op_umin: return BRW_CONDITIONAL_L;
3836 case nir_op_fmin: return BRW_CONDITIONAL_L;
3837 case nir_op_imax: return BRW_CONDITIONAL_GE;
3838 case nir_op_umax: return BRW_CONDITIONAL_GE;
3839 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3840 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3841 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3842 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3843 default:
3844 unreachable("Invalid reduction operation");
3845 }
3846 }
3847
3848 void
3849 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3850 {
3851 fs_reg dest;
3852 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3853 dest = get_nir_dest(instr->dest);
3854
3855 switch (instr->intrinsic) {
3856 case nir_intrinsic_image_deref_load:
3857 case nir_intrinsic_image_deref_store:
3858 case nir_intrinsic_image_deref_atomic_add:
3859 case nir_intrinsic_image_deref_atomic_min:
3860 case nir_intrinsic_image_deref_atomic_max:
3861 case nir_intrinsic_image_deref_atomic_and:
3862 case nir_intrinsic_image_deref_atomic_or:
3863 case nir_intrinsic_image_deref_atomic_xor:
3864 case nir_intrinsic_image_deref_atomic_exchange:
3865 case nir_intrinsic_image_deref_atomic_comp_swap: {
3866 using namespace image_access;
3867
3868 if (stage == MESA_SHADER_FRAGMENT &&
3869 instr->intrinsic != nir_intrinsic_image_deref_load)
3870 brw_wm_prog_data(prog_data)->has_side_effects = true;
3871
3872 /* Get the referenced image variable and type. */
3873 nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
3874 const nir_variable *var = nir_deref_instr_get_variable(deref);
3875 const glsl_type *type = var->type->without_array();
3876 const brw_reg_type base_type = get_image_base_type(type);
3877
3878 /* Get some metadata from the image intrinsic. */
3879 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3880 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3881 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3882 const unsigned format = var->data.image.format;
3883 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3884
3885 /* Get the arguments of the image intrinsic. */
3886 const fs_reg image = get_nir_image_deref(deref);
3887 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3888 BRW_REGISTER_TYPE_UD);
3889 const fs_reg src0 = (info->num_srcs >= 4 ?
3890 retype(get_nir_src(instr->src[3]), base_type) :
3891 fs_reg());
3892 const fs_reg src1 = (info->num_srcs >= 5 ?
3893 retype(get_nir_src(instr->src[4]), base_type) :
3894 fs_reg());
3895 fs_reg tmp;
3896
3897 /* Emit an image load, store or atomic op. */
3898 if (instr->intrinsic == nir_intrinsic_image_deref_load)
3899 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3900
3901 else if (instr->intrinsic == nir_intrinsic_image_deref_store)
3902 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3903 var->data.image.write_only ? GL_NONE : format);
3904
3905 else
3906 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3907 surf_dims, arr_dims, dest_components,
3908 get_image_atomic_op(instr->intrinsic, type));
3909
3910 /* Assign the result. */
3911 for (unsigned c = 0; c < dest_components; ++c) {
3912 bld.MOV(offset(retype(dest, base_type), bld, c),
3913 offset(tmp, bld, c));
3914 }
3915 break;
3916 }
3917
3918 case nir_intrinsic_memory_barrier_atomic_counter:
3919 case nir_intrinsic_memory_barrier_buffer:
3920 case nir_intrinsic_memory_barrier_image:
3921 case nir_intrinsic_memory_barrier: {
3922 const fs_builder ubld = bld.group(8, 0);
3923 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3924 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3925 ->size_written = 2 * REG_SIZE;
3926 break;
3927 }
3928
3929 case nir_intrinsic_group_memory_barrier:
3930 case nir_intrinsic_memory_barrier_shared:
3931 /* We treat these workgroup-level barriers as no-ops. This should be
3932 * safe at present and as long as:
3933 *
3934 * - Memory access instructions are not subsequently reordered by the
3935 * compiler back-end.
3936 *
3937 * - All threads from a given compute shader workgroup fit within a
3938 * single subslice and therefore talk to the same HDC shared unit
3939 * what supposedly guarantees ordering and coherency between threads
3940 * from the same workgroup. This may change in the future when we
3941 * start splitting workgroups across multiple subslices.
3942 *
3943 * - The context is not in fault-and-stream mode, which could cause
3944 * memory transactions (including to SLM) prior to the barrier to be
3945 * replayed after the barrier if a pagefault occurs. This shouldn't
3946 * be a problem up to and including SKL because fault-and-stream is
3947 * not usable due to hardware issues, but that's likely to change in
3948 * the future.
3949 */
3950 break;
3951
3952 case nir_intrinsic_shader_clock: {
3953 /* We cannot do anything if there is an event, so ignore it for now */
3954 const fs_reg shader_clock = get_timestamp(bld);
3955 const fs_reg srcs[] = { component(shader_clock, 0),
3956 component(shader_clock, 1) };
3957 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3958 break;
3959 }
3960
3961 case nir_intrinsic_image_deref_size: {
3962 /* Get the referenced image variable and type. */
3963 nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
3964 const nir_variable *var = nir_deref_instr_get_variable(deref);
3965 const glsl_type *type = var->type->without_array();
3966
3967 /* Get the size of the image. */
3968 const fs_reg image = get_nir_image_deref(deref);
3969 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3970
3971 /* For 1DArray image types, the array index is stored in the Z component.
3972 * Fix this by swizzling the Z component to the Y component.
3973 */
3974 const bool is_1d_array_image =
3975 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3976 type->sampler_array;
3977
3978 /* For CubeArray images, we should count the number of cubes instead
3979 * of the number of faces. Fix it by dividing the (Z component) by 6.
3980 */
3981 const bool is_cube_array_image =
3982 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3983 type->sampler_array;
3984
3985 /* Copy all the components. */
3986 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3987 if ((int)c >= type->coordinate_components()) {
3988 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3989 brw_imm_d(1));
3990 } else if (c == 1 && is_1d_array_image) {
3991 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3992 offset(size, bld, 2));
3993 } else if (c == 2 && is_cube_array_image) {
3994 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3995 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3996 offset(size, bld, c), brw_imm_d(6));
3997 } else {
3998 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3999 offset(size, bld, c));
4000 }
4001 }
4002
4003 break;
4004 }
4005
4006 case nir_intrinsic_image_deref_samples:
4007 /* The driver does not support multi-sampled images. */
4008 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4009 break;
4010
4011 case nir_intrinsic_load_uniform: {
4012 /* Offsets are in bytes but they should always aligned to
4013 * the type size
4014 */
4015 assert(instr->const_index[0] % 4 == 0 ||
4016 instr->const_index[0] % type_sz(dest.type) == 0);
4017
4018 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4019
4020 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4021 if (const_offset) {
4022 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
4023 /* For 16-bit types we add the module of the const_index[0]
4024 * offset to access to not 32-bit aligned element
4025 */
4026 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
4027
4028 for (unsigned j = 0; j < instr->num_components; j++) {
4029 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4030 }
4031 } else {
4032 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4033 BRW_REGISTER_TYPE_UD);
4034
4035 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4036 * go past the end of the uniform. In order to keep the n'th
4037 * component from running past, we subtract off the size of all but
4038 * one component of the vector.
4039 */
4040 assert(instr->const_index[1] >=
4041 instr->num_components * (int) type_sz(dest.type));
4042 unsigned read_size = instr->const_index[1] -
4043 (instr->num_components - 1) * type_sz(dest.type);
4044
4045 bool supports_64bit_indirects =
4046 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4047
4048 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4049 for (unsigned j = 0; j < instr->num_components; j++) {
4050 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4051 offset(dest, bld, j), offset(src, bld, j),
4052 indirect, brw_imm_ud(read_size));
4053 }
4054 } else {
4055 const unsigned num_mov_indirects =
4056 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4057 /* We read a little bit less per MOV INDIRECT, as they are now
4058 * 32-bits ones instead of 64-bit. Fix read_size then.
4059 */
4060 const unsigned read_size_32bit = read_size -
4061 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4062 for (unsigned j = 0; j < instr->num_components; j++) {
4063 for (unsigned i = 0; i < num_mov_indirects; i++) {
4064 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4065 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4066 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4067 indirect, brw_imm_ud(read_size_32bit));
4068 }
4069 }
4070 }
4071 }
4072 break;
4073 }
4074
4075 case nir_intrinsic_load_ubo: {
4076 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4077 fs_reg surf_index;
4078
4079 if (const_index) {
4080 const unsigned index = stage_prog_data->binding_table.ubo_start +
4081 const_index->u32[0];
4082 surf_index = brw_imm_ud(index);
4083 brw_mark_surface_used(prog_data, index);
4084 } else {
4085 /* The block index is not a constant. Evaluate the index expression
4086 * per-channel and add the base UBO index; we have to select a value
4087 * from any live channel.
4088 */
4089 surf_index = vgrf(glsl_type::uint_type);
4090 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4091 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4092 surf_index = bld.emit_uniformize(surf_index);
4093
4094 /* Assume this may touch any UBO. It would be nice to provide
4095 * a tighter bound, but the array information is already lowered away.
4096 */
4097 brw_mark_surface_used(prog_data,
4098 stage_prog_data->binding_table.ubo_start +
4099 nir->info.num_ubos - 1);
4100 }
4101
4102 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4103 if (const_offset == NULL) {
4104 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4105 BRW_REGISTER_TYPE_UD);
4106
4107 for (int i = 0; i < instr->num_components; i++)
4108 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4109 base_offset, i * type_sz(dest.type));
4110 } else {
4111 /* Even if we are loading doubles, a pull constant load will load
4112 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4113 * need to load a full dvec4 we will have to emit 2 loads. This is
4114 * similar to demote_pull_constants(), except that in that case we
4115 * see individual accesses to each component of the vector and then
4116 * we let CSE deal with duplicate loads. Here we see a vector access
4117 * and we have to split it if necessary.
4118 */
4119 const unsigned type_size = type_sz(dest.type);
4120
4121 /* See if we've selected this as a push constant candidate */
4122 if (const_index) {
4123 const unsigned ubo_block = const_index->u32[0];
4124 const unsigned offset_256b = const_offset->u32[0] / 32;
4125
4126 fs_reg push_reg;
4127 for (int i = 0; i < 4; i++) {
4128 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4129 if (range->block == ubo_block &&
4130 offset_256b >= range->start &&
4131 offset_256b < range->start + range->length) {
4132
4133 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4134 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4135 break;
4136 }
4137 }
4138
4139 if (push_reg.file != BAD_FILE) {
4140 for (unsigned i = 0; i < instr->num_components; i++) {
4141 bld.MOV(offset(dest, bld, i),
4142 byte_offset(push_reg, i * type_size));
4143 }
4144 break;
4145 }
4146 }
4147
4148 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4149 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4150 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4151
4152 for (unsigned c = 0; c < instr->num_components;) {
4153 const unsigned base = const_offset->u32[0] + c * type_size;
4154 /* Number of usable components in the next block-aligned load. */
4155 const unsigned count = MIN2(instr->num_components - c,
4156 (block_sz - base % block_sz) / type_size);
4157
4158 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4159 packed_consts, surf_index,
4160 brw_imm_ud(base & ~(block_sz - 1)));
4161
4162 const fs_reg consts =
4163 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4164 dest.type);
4165
4166 for (unsigned d = 0; d < count; d++)
4167 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4168
4169 c += count;
4170 }
4171 }
4172 break;
4173 }
4174
4175 case nir_intrinsic_load_ssbo: {
4176 assert(devinfo->gen >= 7);
4177
4178 nir_const_value *const_uniform_block =
4179 nir_src_as_const_value(instr->src[0]);
4180
4181 fs_reg surf_index;
4182 if (const_uniform_block) {
4183 unsigned index = stage_prog_data->binding_table.ssbo_start +
4184 const_uniform_block->u32[0];
4185 surf_index = brw_imm_ud(index);
4186 brw_mark_surface_used(prog_data, index);
4187 } else {
4188 surf_index = vgrf(glsl_type::uint_type);
4189 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4190 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4191
4192 /* Assume this may touch any UBO. It would be nice to provide
4193 * a tighter bound, but the array information is already lowered away.
4194 */
4195 brw_mark_surface_used(prog_data,
4196 stage_prog_data->binding_table.ssbo_start +
4197 nir->info.num_ssbos - 1);
4198 }
4199
4200 fs_reg offset_reg;
4201 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4202 if (const_offset) {
4203 offset_reg = brw_imm_ud(const_offset->u32[0]);
4204 } else {
4205 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4206 }
4207
4208 /* Read the vector */
4209 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4210 instr->num_components);
4211
4212 break;
4213 }
4214
4215 case nir_intrinsic_store_ssbo: {
4216 assert(devinfo->gen >= 7);
4217
4218 if (stage == MESA_SHADER_FRAGMENT)
4219 brw_wm_prog_data(prog_data)->has_side_effects = true;
4220
4221 /* Block index */
4222 fs_reg surf_index;
4223 nir_const_value *const_uniform_block =
4224 nir_src_as_const_value(instr->src[1]);
4225 if (const_uniform_block) {
4226 unsigned index = stage_prog_data->binding_table.ssbo_start +
4227 const_uniform_block->u32[0];
4228 surf_index = brw_imm_ud(index);
4229 brw_mark_surface_used(prog_data, index);
4230 } else {
4231 surf_index = vgrf(glsl_type::uint_type);
4232 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4233 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4234
4235 brw_mark_surface_used(prog_data,
4236 stage_prog_data->binding_table.ssbo_start +
4237 nir->info.num_ssbos - 1);
4238 }
4239
4240 /* Value */
4241 fs_reg val_reg = get_nir_src(instr->src[0]);
4242
4243 /* Writemask */
4244 unsigned writemask = instr->const_index[0];
4245
4246 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4247 * since the untyped writes below operate in units of 32-bits, which
4248 * means that we need to write twice as many components each time.
4249 * Also, we have to suffle 64-bit data to be in the appropriate layout
4250 * expected by our 32-bit write messages.
4251 */
4252 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4253 unsigned type_size = bit_size / 8;
4254
4255 /* Combine groups of consecutive enabled channels in one write
4256 * message. We use ffs to find the first enabled channel and then ffs on
4257 * the bit-inverse, down-shifted writemask to determine the num_components
4258 * of the block of enabled bits.
4259 */
4260 while (writemask) {
4261 unsigned first_component = ffs(writemask) - 1;
4262 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4263 fs_reg write_src = offset(val_reg, bld, first_component);
4264
4265 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4266
4267 if (type_size > 4) {
4268 /* We can't write more than 2 64-bit components at once. Limit
4269 * the num_components of the write to what we can do and let the next
4270 * iteration handle the rest.
4271 */
4272 num_components = MIN2(2, num_components);
4273 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4274 num_components);
4275 } else if (type_size < 4) {
4276 assert(type_size == 2);
4277 /* For 16-bit types we pack two consecutive values into a 32-bit
4278 * word and use an untyped write message. For single values or not
4279 * 32-bit-aligned we need to use byte-scattered writes because
4280 * untyped writes works with 32-bit components with 32-bit
4281 * alignment. byte_scattered_write messages only support one
4282 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4283 * could be enabled we can not guarantee that not constant offsets
4284 * to be 32-bit aligned for 16-bit types. For example an array, of
4285 * 16-bit vec3 with array element stride of 6.
4286 *
4287 * In the case of 32-bit aligned constant offsets if there is
4288 * a 3-components vector we submit one untyped-write message
4289 * of 32-bit (first two components), and one byte-scattered
4290 * write message (the last component).
4291 */
4292
4293 if ( !const_offset || ((const_offset->u32[0] +
4294 type_size * first_component) % 4)) {
4295 /* If we use a .yz writemask we also need to emit 2
4296 * byte-scattered write messages because of y-component not
4297 * being aligned to 32-bit.
4298 */
4299 num_components = 1;
4300 } else if (num_components > 2 && (num_components % 2)) {
4301 /* If there is an odd number of consecutive components we left
4302 * the not paired component for a following emit of length == 1
4303 * with byte_scattered_write.
4304 */
4305 num_components --;
4306 }
4307 /* For num_components == 1 we are also shuffling the component
4308 * because byte scattered writes of 16-bit need values to be dword
4309 * aligned. Shuffling only one component would be the same as
4310 * striding it.
4311 */
4312 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4313 num_components);
4314 }
4315
4316 fs_reg offset_reg;
4317
4318 if (const_offset) {
4319 offset_reg = brw_imm_ud(const_offset->u32[0] +
4320 type_size * first_component);
4321 } else {
4322 offset_reg = vgrf(glsl_type::uint_type);
4323 bld.ADD(offset_reg,
4324 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4325 brw_imm_ud(type_size * first_component));
4326 }
4327
4328 if (type_size < 4 && num_components == 1) {
4329 assert(type_size == 2);
4330 /* Untyped Surface messages have a fixed 32-bit size, so we need
4331 * to rely on byte scattered in order to write 16-bit elements.
4332 * The byte_scattered_write message needs that every written 16-bit
4333 * type to be aligned 32-bits (stride=2).
4334 */
4335 emit_byte_scattered_write(bld, surf_index, offset_reg,
4336 write_src,
4337 1 /* dims */, 1,
4338 bit_size,
4339 BRW_PREDICATE_NONE);
4340 } else {
4341 assert(num_components * type_size <= 16);
4342 assert((num_components * type_size) % 4 == 0);
4343 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4344 offset_reg.ud % 4 == 0);
4345 unsigned num_slots = (num_components * type_size) / 4;
4346
4347 emit_untyped_write(bld, surf_index, offset_reg,
4348 write_src,
4349 1 /* dims */, num_slots,
4350 BRW_PREDICATE_NONE);
4351 }
4352
4353 /* Clear the bits in the writemask that we just wrote, then try
4354 * again to see if more channels are left.
4355 */
4356 writemask &= (15 << (first_component + num_components));
4357 }
4358 break;
4359 }
4360
4361 case nir_intrinsic_store_output: {
4362 fs_reg src = get_nir_src(instr->src[0]);
4363
4364 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4365 assert(const_offset && "Indirect output stores not allowed");
4366
4367 unsigned num_components = instr->num_components;
4368 unsigned first_component = nir_intrinsic_component(instr);
4369 if (nir_src_bit_size(instr->src[0]) == 64) {
4370 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4371 num_components *= 2;
4372 }
4373
4374 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4375 4 * const_offset->u32[0]), src.type);
4376 for (unsigned j = 0; j < num_components; j++) {
4377 bld.MOV(offset(new_dest, bld, j + first_component),
4378 offset(src, bld, j));
4379 }
4380 break;
4381 }
4382
4383 case nir_intrinsic_ssbo_atomic_add:
4384 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4385 break;
4386 case nir_intrinsic_ssbo_atomic_imin:
4387 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4388 break;
4389 case nir_intrinsic_ssbo_atomic_umin:
4390 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4391 break;
4392 case nir_intrinsic_ssbo_atomic_imax:
4393 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4394 break;
4395 case nir_intrinsic_ssbo_atomic_umax:
4396 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4397 break;
4398 case nir_intrinsic_ssbo_atomic_and:
4399 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4400 break;
4401 case nir_intrinsic_ssbo_atomic_or:
4402 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4403 break;
4404 case nir_intrinsic_ssbo_atomic_xor:
4405 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4406 break;
4407 case nir_intrinsic_ssbo_atomic_exchange:
4408 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4409 break;
4410 case nir_intrinsic_ssbo_atomic_comp_swap:
4411 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4412 break;
4413
4414 case nir_intrinsic_get_buffer_size: {
4415 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4416 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4417
4418 /* A resinfo's sampler message is used to get the buffer size. The
4419 * SIMD8's writeback message consists of four registers and SIMD16's
4420 * writeback message consists of 8 destination registers (two per each
4421 * component). Because we are only interested on the first channel of
4422 * the first returned component, where resinfo returns the buffer size
4423 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4424 * the dispatch width.
4425 */
4426 const fs_builder ubld = bld.exec_all().group(8, 0);
4427 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4428 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4429
4430 /* Set LOD = 0 */
4431 ubld.MOV(src_payload, brw_imm_d(0));
4432
4433 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4434 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4435 src_payload, brw_imm_ud(index));
4436 inst->header_size = 0;
4437 inst->mlen = 1;
4438 inst->size_written = 4 * REG_SIZE;
4439
4440 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4441 *
4442 * "Out-of-bounds checking is always performed at a DWord granularity. If
4443 * any part of the DWord is out-of-bounds then the whole DWord is
4444 * considered out-of-bounds."
4445 *
4446 * This implies that types with size smaller than 4-bytes need to be
4447 * padded if they don't complete the last dword of the buffer. But as we
4448 * need to maintain the original size we need to reverse the padding
4449 * calculation to return the correct size to know the number of elements
4450 * of an unsized array. As we stored in the last two bits of the surface
4451 * size the needed padding for the buffer, we calculate here the
4452 * original buffer_size reversing the surface_size calculation:
4453 *
4454 * surface_size = isl_align(buffer_size, 4) +
4455 * (isl_align(buffer_size) - buffer_size)
4456 *
4457 * buffer_size = surface_size & ~3 - surface_size & 3
4458 */
4459
4460 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4461 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4462 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4463
4464 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4465 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4466 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4467
4468 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4469
4470 brw_mark_surface_used(prog_data, index);
4471 break;
4472 }
4473
4474 case nir_intrinsic_load_subgroup_invocation:
4475 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4476 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4477 break;
4478
4479 case nir_intrinsic_load_subgroup_eq_mask:
4480 case nir_intrinsic_load_subgroup_ge_mask:
4481 case nir_intrinsic_load_subgroup_gt_mask:
4482 case nir_intrinsic_load_subgroup_le_mask:
4483 case nir_intrinsic_load_subgroup_lt_mask:
4484 unreachable("not reached");
4485
4486 case nir_intrinsic_vote_any: {
4487 const fs_builder ubld = bld.exec_all().group(1, 0);
4488
4489 /* The any/all predicates do not consider channel enables. To prevent
4490 * dead channels from affecting the result, we initialize the flag with
4491 * with the identity value for the logical operation.
4492 */
4493 if (dispatch_width == 32) {
4494 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4495 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4496 brw_imm_ud(0));
4497 } else {
4498 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4499 }
4500 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4501
4502 /* For some reason, the any/all predicates don't work properly with
4503 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4504 * doesn't read the correct subset of the flag register and you end up
4505 * getting garbage in the second half. Work around this by using a pair
4506 * of 1-wide MOVs and scattering the result.
4507 */
4508 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4509 ubld.MOV(res1, brw_imm_d(0));
4510 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4511 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4512 BRW_PREDICATE_ALIGN1_ANY32H,
4513 ubld.MOV(res1, brw_imm_d(-1)));
4514
4515 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4516 break;
4517 }
4518 case nir_intrinsic_vote_all: {
4519 const fs_builder ubld = bld.exec_all().group(1, 0);
4520
4521 /* The any/all predicates do not consider channel enables. To prevent
4522 * dead channels from affecting the result, we initialize the flag with
4523 * with the identity value for the logical operation.
4524 */
4525 if (dispatch_width == 32) {
4526 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4527 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4528 brw_imm_ud(0xffffffff));
4529 } else {
4530 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4531 }
4532 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4533
4534 /* For some reason, the any/all predicates don't work properly with
4535 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4536 * doesn't read the correct subset of the flag register and you end up
4537 * getting garbage in the second half. Work around this by using a pair
4538 * of 1-wide MOVs and scattering the result.
4539 */
4540 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4541 ubld.MOV(res1, brw_imm_d(0));
4542 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4543 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4544 BRW_PREDICATE_ALIGN1_ALL32H,
4545 ubld.MOV(res1, brw_imm_d(-1)));
4546
4547 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4548 break;
4549 }
4550 case nir_intrinsic_vote_feq:
4551 case nir_intrinsic_vote_ieq: {
4552 fs_reg value = get_nir_src(instr->src[0]);
4553 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4554 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4555 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4556 }
4557
4558 fs_reg uniformized = bld.emit_uniformize(value);
4559 const fs_builder ubld = bld.exec_all().group(1, 0);
4560
4561 /* The any/all predicates do not consider channel enables. To prevent
4562 * dead channels from affecting the result, we initialize the flag with
4563 * with the identity value for the logical operation.
4564 */
4565 if (dispatch_width == 32) {
4566 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4567 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4568 brw_imm_ud(0xffffffff));
4569 } else {
4570 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4571 }
4572 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4573
4574 /* For some reason, the any/all predicates don't work properly with
4575 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4576 * doesn't read the correct subset of the flag register and you end up
4577 * getting garbage in the second half. Work around this by using a pair
4578 * of 1-wide MOVs and scattering the result.
4579 */
4580 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4581 ubld.MOV(res1, brw_imm_d(0));
4582 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4583 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4584 BRW_PREDICATE_ALIGN1_ALL32H,
4585 ubld.MOV(res1, brw_imm_d(-1)));
4586
4587 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4588 break;
4589 }
4590
4591 case nir_intrinsic_ballot: {
4592 const fs_reg value = retype(get_nir_src(instr->src[0]),
4593 BRW_REGISTER_TYPE_UD);
4594 struct brw_reg flag = brw_flag_reg(0, 0);
4595 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4596 * as f0.0. This is a problem for fragment programs as we currently use
4597 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4598 * programs yet so this isn't a problem. When we do, something will
4599 * have to change.
4600 */
4601 if (dispatch_width == 32)
4602 flag.type = BRW_REGISTER_TYPE_UD;
4603
4604 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4605 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4606
4607 if (instr->dest.ssa.bit_size > 32) {
4608 dest.type = BRW_REGISTER_TYPE_UQ;
4609 } else {
4610 dest.type = BRW_REGISTER_TYPE_UD;
4611 }
4612 bld.MOV(dest, flag);
4613 break;
4614 }
4615
4616 case nir_intrinsic_read_invocation: {
4617 const fs_reg value = get_nir_src(instr->src[0]);
4618 const fs_reg invocation = get_nir_src(instr->src[1]);
4619 fs_reg tmp = bld.vgrf(value.type);
4620
4621 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4622 bld.emit_uniformize(invocation));
4623
4624 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4625 break;
4626 }
4627
4628 case nir_intrinsic_read_first_invocation: {
4629 const fs_reg value = get_nir_src(instr->src[0]);
4630 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4631 break;
4632 }
4633
4634 case nir_intrinsic_shuffle: {
4635 const fs_reg value = get_nir_src(instr->src[0]);
4636 const fs_reg index = get_nir_src(instr->src[1]);
4637
4638 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4639 break;
4640 }
4641
4642 case nir_intrinsic_first_invocation: {
4643 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4644 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4645 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4646 fs_reg(component(tmp, 0)));
4647 break;
4648 }
4649
4650 case nir_intrinsic_quad_broadcast: {
4651 const fs_reg value = get_nir_src(instr->src[0]);
4652 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4653 assert(nir_src_bit_size(instr->src[1]) == 32);
4654
4655 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4656 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4657 break;
4658 }
4659
4660 case nir_intrinsic_quad_swap_horizontal: {
4661 const fs_reg value = get_nir_src(instr->src[0]);
4662 const fs_reg tmp = bld.vgrf(value.type);
4663 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4664
4665 const fs_reg src_left = horiz_stride(value, 2);
4666 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4667 const fs_reg tmp_left = horiz_stride(tmp, 2);
4668 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4669
4670 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4671 *
4672 * "When source or destination datatype is 64b or operation is
4673 * integer DWord multiply, regioning in Align1 must follow
4674 * these rules:
4675 *
4676 * [...]
4677 *
4678 * 3. Source and Destination offset must be the same, except
4679 * the case of scalar source."
4680 *
4681 * In order to work around this, we have to emit two 32-bit MOVs instead
4682 * of a single 64-bit MOV to do the shuffle.
4683 */
4684 if (type_sz(value.type) > 4 &&
4685 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4686 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4687 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4688 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4689 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4690 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4691 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4692 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4693 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4694 } else {
4695 ubld.MOV(tmp_left, src_right);
4696 ubld.MOV(tmp_right, src_left);
4697 }
4698 bld.MOV(retype(dest, value.type), tmp);
4699 break;
4700 }
4701
4702 case nir_intrinsic_quad_swap_vertical: {
4703 const fs_reg value = get_nir_src(instr->src[0]);
4704 if (nir_src_bit_size(instr->src[0]) == 32) {
4705 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4706 const fs_reg tmp = bld.vgrf(value.type);
4707 const fs_builder ubld = bld.exec_all();
4708 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4709 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4710 bld.MOV(retype(dest, value.type), tmp);
4711 } else {
4712 /* For larger data types, we have to either emit dispatch_width many
4713 * MOVs or else fall back to doing indirects.
4714 */
4715 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4716 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4717 brw_imm_w(0x2));
4718 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4719 }
4720 break;
4721 }
4722
4723 case nir_intrinsic_quad_swap_diagonal: {
4724 const fs_reg value = get_nir_src(instr->src[0]);
4725 if (nir_src_bit_size(instr->src[0]) == 32) {
4726 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4727 const fs_reg tmp = bld.vgrf(value.type);
4728 const fs_builder ubld = bld.exec_all();
4729 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4730 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4731 bld.MOV(retype(dest, value.type), tmp);
4732 } else {
4733 /* For larger data types, we have to either emit dispatch_width many
4734 * MOVs or else fall back to doing indirects.
4735 */
4736 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4737 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4738 brw_imm_w(0x3));
4739 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4740 }
4741 break;
4742 }
4743
4744 case nir_intrinsic_reduce: {
4745 fs_reg src = get_nir_src(instr->src[0]);
4746 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4747 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4748 if (cluster_size == 0 || cluster_size > dispatch_width)
4749 cluster_size = dispatch_width;
4750
4751 /* Figure out the source type */
4752 src.type = brw_type_for_nir_type(devinfo,
4753 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4754 nir_src_bit_size(instr->src[0])));
4755
4756 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4757 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4758 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4759
4760 /* Set up a register for all of our scratching around and initialize it
4761 * to reduction operation's identity value.
4762 */
4763 fs_reg scan = bld.vgrf(src.type);
4764 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4765
4766 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4767
4768 dest.type = src.type;
4769 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4770 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4771 * the distance between clusters is at least 2 GRFs. In this case,
4772 * we don't need the weird striding of the CLUSTER_BROADCAST
4773 * instruction and can just do regular MOVs.
4774 */
4775 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4776 const unsigned groups =
4777 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4778 const unsigned group_size = dispatch_width / groups;
4779 for (unsigned i = 0; i < groups; i++) {
4780 const unsigned cluster = (i * group_size) / cluster_size;
4781 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4782 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4783 component(scan, comp));
4784 }
4785 } else {
4786 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4787 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4788 }
4789 break;
4790 }
4791
4792 case nir_intrinsic_inclusive_scan:
4793 case nir_intrinsic_exclusive_scan: {
4794 fs_reg src = get_nir_src(instr->src[0]);
4795 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4796
4797 /* Figure out the source type */
4798 src.type = brw_type_for_nir_type(devinfo,
4799 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4800 nir_src_bit_size(instr->src[0])));
4801
4802 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4803 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4804 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4805
4806 /* Set up a register for all of our scratching around and initialize it
4807 * to reduction operation's identity value.
4808 */
4809 fs_reg scan = bld.vgrf(src.type);
4810 const fs_builder allbld = bld.exec_all();
4811 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4812
4813 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4814 /* Exclusive scan is a bit harder because we have to do an annoying
4815 * shift of the contents before we can begin. To make things worse,
4816 * we can't do this with a normal stride; we have to use indirects.
4817 */
4818 fs_reg shifted = bld.vgrf(src.type);
4819 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4820 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4821 brw_imm_w(-1));
4822 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4823 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4824 scan = shifted;
4825 }
4826
4827 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4828
4829 bld.MOV(retype(dest, src.type), scan);
4830 break;
4831 }
4832
4833 case nir_intrinsic_begin_invocation_interlock: {
4834 const fs_builder ubld = bld.group(8, 0);
4835 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4836
4837 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4838 REG_SIZE;
4839
4840 break;
4841 }
4842
4843 case nir_intrinsic_end_invocation_interlock: {
4844 /* We don't need to do anything here */
4845 break;
4846 }
4847
4848 default:
4849 unreachable("unknown intrinsic");
4850 }
4851 }
4852
4853 void
4854 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4855 int op, nir_intrinsic_instr *instr)
4856 {
4857 if (stage == MESA_SHADER_FRAGMENT)
4858 brw_wm_prog_data(prog_data)->has_side_effects = true;
4859
4860 fs_reg dest;
4861 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4862 dest = get_nir_dest(instr->dest);
4863
4864 fs_reg surface;
4865 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4866 if (const_surface) {
4867 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4868 const_surface->u32[0];
4869 surface = brw_imm_ud(surf_index);
4870 brw_mark_surface_used(prog_data, surf_index);
4871 } else {
4872 surface = vgrf(glsl_type::uint_type);
4873 bld.ADD(surface, get_nir_src(instr->src[0]),
4874 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4875
4876 /* Assume this may touch any SSBO. This is the same we do for other
4877 * UBO/SSBO accesses with non-constant surface.
4878 */
4879 brw_mark_surface_used(prog_data,
4880 stage_prog_data->binding_table.ssbo_start +
4881 nir->info.num_ssbos - 1);
4882 }
4883
4884 fs_reg offset = get_nir_src(instr->src[1]);
4885 fs_reg data1 = get_nir_src(instr->src[2]);
4886 fs_reg data2;
4887 if (op == BRW_AOP_CMPWR)
4888 data2 = get_nir_src(instr->src[3]);
4889
4890 /* Emit the actual atomic operation */
4891
4892 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4893 data1, data2,
4894 1 /* dims */, 1 /* rsize */,
4895 op,
4896 BRW_PREDICATE_NONE);
4897 dest.type = atomic_result.type;
4898 bld.MOV(dest, atomic_result);
4899 }
4900
4901 void
4902 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4903 int op, nir_intrinsic_instr *instr)
4904 {
4905 fs_reg dest;
4906 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4907 dest = get_nir_dest(instr->dest);
4908
4909 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4910 fs_reg offset;
4911 fs_reg data1 = get_nir_src(instr->src[1]);
4912 fs_reg data2;
4913 if (op == BRW_AOP_CMPWR)
4914 data2 = get_nir_src(instr->src[2]);
4915
4916 /* Get the offset */
4917 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4918 if (const_offset) {
4919 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4920 } else {
4921 offset = vgrf(glsl_type::uint_type);
4922 bld.ADD(offset,
4923 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4924 brw_imm_ud(instr->const_index[0]));
4925 }
4926
4927 /* Emit the actual atomic operation operation */
4928
4929 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4930 data1, data2,
4931 1 /* dims */, 1 /* rsize */,
4932 op,
4933 BRW_PREDICATE_NONE);
4934 dest.type = atomic_result.type;
4935 bld.MOV(dest, atomic_result);
4936 }
4937
4938 void
4939 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4940 {
4941 unsigned texture = instr->texture_index;
4942 unsigned sampler = instr->sampler_index;
4943
4944 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4945
4946 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4947 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4948
4949 int lod_components = 0;
4950
4951 /* The hardware requires a LOD for buffer textures */
4952 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4953 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4954
4955 uint32_t header_bits = 0;
4956 for (unsigned i = 0; i < instr->num_srcs; i++) {
4957 fs_reg src = get_nir_src(instr->src[i].src);
4958 switch (instr->src[i].src_type) {
4959 case nir_tex_src_bias:
4960 srcs[TEX_LOGICAL_SRC_LOD] =
4961 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4962 break;
4963 case nir_tex_src_comparator:
4964 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4965 break;
4966 case nir_tex_src_coord:
4967 switch (instr->op) {
4968 case nir_texop_txf:
4969 case nir_texop_txf_ms:
4970 case nir_texop_txf_ms_mcs:
4971 case nir_texop_samples_identical:
4972 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4973 break;
4974 default:
4975 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4976 break;
4977 }
4978 break;
4979 case nir_tex_src_ddx:
4980 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4981 lod_components = nir_tex_instr_src_size(instr, i);
4982 break;
4983 case nir_tex_src_ddy:
4984 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4985 break;
4986 case nir_tex_src_lod:
4987 switch (instr->op) {
4988 case nir_texop_txs:
4989 srcs[TEX_LOGICAL_SRC_LOD] =
4990 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4991 break;
4992 case nir_texop_txf:
4993 srcs[TEX_LOGICAL_SRC_LOD] =
4994 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4995 break;
4996 default:
4997 srcs[TEX_LOGICAL_SRC_LOD] =
4998 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4999 break;
5000 }
5001 break;
5002 case nir_tex_src_ms_index:
5003 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5004 break;
5005
5006 case nir_tex_src_offset: {
5007 nir_const_value *const_offset =
5008 nir_src_as_const_value(instr->src[i].src);
5009 unsigned offset_bits = 0;
5010 if (const_offset &&
5011 brw_texture_offset(const_offset->i32,
5012 nir_tex_instr_src_size(instr, i),
5013 &offset_bits)) {
5014 header_bits |= offset_bits;
5015 } else {
5016 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5017 retype(src, BRW_REGISTER_TYPE_D);
5018 }
5019 break;
5020 }
5021
5022 case nir_tex_src_projector:
5023 unreachable("should be lowered");
5024
5025 case nir_tex_src_texture_offset: {
5026 /* Figure out the highest possible texture index and mark it as used */
5027 uint32_t max_used = texture + instr->texture_array_size - 1;
5028 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5029 max_used += stage_prog_data->binding_table.gather_texture_start;
5030 } else {
5031 max_used += stage_prog_data->binding_table.texture_start;
5032 }
5033 brw_mark_surface_used(prog_data, max_used);
5034
5035 /* Emit code to evaluate the actual indexing expression */
5036 fs_reg tmp = vgrf(glsl_type::uint_type);
5037 bld.ADD(tmp, src, brw_imm_ud(texture));
5038 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5039 break;
5040 }
5041
5042 case nir_tex_src_sampler_offset: {
5043 /* Emit code to evaluate the actual indexing expression */
5044 fs_reg tmp = vgrf(glsl_type::uint_type);
5045 bld.ADD(tmp, src, brw_imm_ud(sampler));
5046 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5047 break;
5048 }
5049
5050 case nir_tex_src_ms_mcs:
5051 assert(instr->op == nir_texop_txf_ms);
5052 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5053 break;
5054
5055 case nir_tex_src_plane: {
5056 nir_const_value *const_plane =
5057 nir_src_as_const_value(instr->src[i].src);
5058 const uint32_t plane = const_plane->u32[0];
5059 const uint32_t texture_index =
5060 instr->texture_index +
5061 stage_prog_data->binding_table.plane_start[plane] -
5062 stage_prog_data->binding_table.texture_start;
5063
5064 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5065 break;
5066 }
5067
5068 default:
5069 unreachable("unknown texture source");
5070 }
5071 }
5072
5073 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5074 (instr->op == nir_texop_txf_ms ||
5075 instr->op == nir_texop_samples_identical)) {
5076 if (devinfo->gen >= 7 &&
5077 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5078 srcs[TEX_LOGICAL_SRC_MCS] =
5079 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5080 instr->coord_components,
5081 srcs[TEX_LOGICAL_SRC_SURFACE]);
5082 } else {
5083 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5084 }
5085 }
5086
5087 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5088 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5089
5090 enum opcode opcode;
5091 switch (instr->op) {
5092 case nir_texop_tex:
5093 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5094 SHADER_OPCODE_TXL_LOGICAL);
5095 break;
5096 case nir_texop_txb:
5097 opcode = FS_OPCODE_TXB_LOGICAL;
5098 break;
5099 case nir_texop_txl:
5100 opcode = SHADER_OPCODE_TXL_LOGICAL;
5101 break;
5102 case nir_texop_txd:
5103 opcode = SHADER_OPCODE_TXD_LOGICAL;
5104 break;
5105 case nir_texop_txf:
5106 opcode = SHADER_OPCODE_TXF_LOGICAL;
5107 break;
5108 case nir_texop_txf_ms:
5109 if ((key_tex->msaa_16 & (1 << sampler)))
5110 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5111 else
5112 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5113 break;
5114 case nir_texop_txf_ms_mcs:
5115 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5116 break;
5117 case nir_texop_query_levels:
5118 case nir_texop_txs:
5119 opcode = SHADER_OPCODE_TXS_LOGICAL;
5120 break;
5121 case nir_texop_lod:
5122 opcode = SHADER_OPCODE_LOD_LOGICAL;
5123 break;
5124 case nir_texop_tg4:
5125 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5126 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5127 else
5128 opcode = SHADER_OPCODE_TG4_LOGICAL;
5129 break;
5130 case nir_texop_texture_samples:
5131 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5132 break;
5133 case nir_texop_samples_identical: {
5134 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5135
5136 /* If mcs is an immediate value, it means there is no MCS. In that case
5137 * just return false.
5138 */
5139 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5140 bld.MOV(dst, brw_imm_ud(0u));
5141 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5142 fs_reg tmp = vgrf(glsl_type::uint_type);
5143 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5144 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5145 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5146 } else {
5147 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5148 BRW_CONDITIONAL_EQ);
5149 }
5150 return;
5151 }
5152 default:
5153 unreachable("unknown texture opcode");
5154 }
5155
5156 if (instr->op == nir_texop_tg4) {
5157 if (instr->component == 1 &&
5158 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5159 /* gather4 sampler is broken for green channel on RG32F --
5160 * we must ask for blue instead.
5161 */
5162 header_bits |= 2 << 16;
5163 } else {
5164 header_bits |= instr->component << 16;
5165 }
5166 }
5167
5168 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5169 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5170 inst->offset = header_bits;
5171
5172 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5173 if (devinfo->gen >= 9 &&
5174 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5175 unsigned write_mask = instr->dest.is_ssa ?
5176 nir_ssa_def_components_read(&instr->dest.ssa):
5177 (1 << dest_size) - 1;
5178 assert(write_mask != 0); /* dead code should have been eliminated */
5179 inst->size_written = util_last_bit(write_mask) *
5180 inst->dst.component_size(inst->exec_size);
5181 } else {
5182 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5183 }
5184
5185 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5186 inst->shadow_compare = true;
5187
5188 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5189 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5190
5191 fs_reg nir_dest[4];
5192 for (unsigned i = 0; i < dest_size; i++)
5193 nir_dest[i] = offset(dst, bld, i);
5194
5195 if (instr->op == nir_texop_query_levels) {
5196 /* # levels is in .w */
5197 nir_dest[0] = offset(dst, bld, 3);
5198 } else if (instr->op == nir_texop_txs &&
5199 dest_size >= 3 && devinfo->gen < 7) {
5200 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5201 fs_reg depth = offset(dst, bld, 2);
5202 nir_dest[2] = vgrf(glsl_type::int_type);
5203 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5204 }
5205
5206 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5207 }
5208
5209 void
5210 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5211 {
5212 switch (instr->type) {
5213 case nir_jump_break:
5214 bld.emit(BRW_OPCODE_BREAK);
5215 break;
5216 case nir_jump_continue:
5217 bld.emit(BRW_OPCODE_CONTINUE);
5218 break;
5219 case nir_jump_return:
5220 default:
5221 unreachable("unknown jump");
5222 }
5223 }
5224
5225 /*
5226 * This helper takes a source register and un/shuffles it into the destination
5227 * register.
5228 *
5229 * If source type size is smaller than destination type size the operation
5230 * needed is a component shuffle. The opposite case would be an unshuffle. If
5231 * source/destination type size is equal a shuffle is done that would be
5232 * equivalent to a simple MOV.
5233 *
5234 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5235 * components .xyz 16-bit vector on SIMD8 would be.
5236 *
5237 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5238 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5239 *
5240 * This helper will return the following 2 32-bit components with the 16-bit
5241 * values shuffled:
5242 *
5243 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5244 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5245 *
5246 * For unshuffle, the example would be the opposite, a 64-bit type source
5247 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5248 * would be:
5249 *
5250 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5251 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5252 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5253 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5254 *
5255 * The returned result would be the following 4 32-bit components unshuffled:
5256 *
5257 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5258 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5259 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5260 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5261 *
5262 * - Source and destination register must not be overlapped.
5263 * - components units are measured in terms of the smaller type between
5264 * source and destination because we are un/shuffling the smaller
5265 * components from/into the bigger ones.
5266 * - first_component parameter allows skipping source components.
5267 */
5268 void
5269 shuffle_src_to_dst(const fs_builder &bld,
5270 const fs_reg &dst,
5271 const fs_reg &src,
5272 uint32_t first_component,
5273 uint32_t components)
5274 {
5275 if (type_sz(src.type) == type_sz(dst.type)) {
5276 assert(!regions_overlap(dst,
5277 type_sz(dst.type) * bld.dispatch_width() * components,
5278 offset(src, bld, first_component),
5279 type_sz(src.type) * bld.dispatch_width() * components));
5280 for (unsigned i = 0; i < components; i++) {
5281 bld.MOV(retype(offset(dst, bld, i), src.type),
5282 offset(src, bld, i + first_component));
5283 }
5284 } else if (type_sz(src.type) < type_sz(dst.type)) {
5285 /* Source is shuffled into destination */
5286 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5287 assert(!regions_overlap(dst,
5288 type_sz(dst.type) * bld.dispatch_width() *
5289 DIV_ROUND_UP(components, size_ratio),
5290 offset(src, bld, first_component),
5291 type_sz(src.type) * bld.dispatch_width() * components));
5292
5293 brw_reg_type shuffle_type =
5294 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5295 BRW_REGISTER_TYPE_D);
5296 for (unsigned i = 0; i < components; i++) {
5297 fs_reg shuffle_component_i =
5298 subscript(offset(dst, bld, i / size_ratio),
5299 shuffle_type, i % size_ratio);
5300 bld.MOV(shuffle_component_i,
5301 retype(offset(src, bld, i + first_component), shuffle_type));
5302 }
5303 } else {
5304 /* Source is unshuffled into destination */
5305 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5306 assert(!regions_overlap(dst,
5307 type_sz(dst.type) * bld.dispatch_width() * components,
5308 offset(src, bld, first_component / size_ratio),
5309 type_sz(src.type) * bld.dispatch_width() *
5310 DIV_ROUND_UP(components + (first_component % size_ratio),
5311 size_ratio)));
5312
5313 brw_reg_type shuffle_type =
5314 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5315 BRW_REGISTER_TYPE_D);
5316 for (unsigned i = 0; i < components; i++) {
5317 fs_reg shuffle_component_i =
5318 subscript(offset(src, bld, (first_component + i) / size_ratio),
5319 shuffle_type, (first_component + i) % size_ratio);
5320 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5321 shuffle_component_i);
5322 }
5323 }
5324 }
5325
5326 void
5327 shuffle_from_32bit_read(const fs_builder &bld,
5328 const fs_reg &dst,
5329 const fs_reg &src,
5330 uint32_t first_component,
5331 uint32_t components)
5332 {
5333 assert(type_sz(src.type) == 4);
5334
5335 /* This function takes components in units of the destination type while
5336 * shuffle_src_to_dst takes components in units of the smallest type
5337 */
5338 if (type_sz(dst.type) > 4) {
5339 assert(type_sz(dst.type) == 8);
5340 first_component *= 2;
5341 components *= 2;
5342 }
5343
5344 shuffle_src_to_dst(bld, dst, src, first_component, components);
5345 }
5346
5347 fs_reg
5348 shuffle_for_32bit_write(const fs_builder &bld,
5349 const fs_reg &src,
5350 uint32_t first_component,
5351 uint32_t components)
5352 {
5353 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5354 DIV_ROUND_UP (components * type_sz(src.type), 4));
5355 /* This function takes components in units of the source type while
5356 * shuffle_src_to_dst takes components in units of the smallest type
5357 */
5358 if (type_sz(src.type) > 4) {
5359 assert(type_sz(src.type) == 8);
5360 first_component *= 2;
5361 components *= 2;
5362 }
5363
5364 shuffle_src_to_dst(bld, dst, src, first_component, components);
5365
5366 return dst;
5367 }
5368
5369 fs_reg
5370 setup_imm_df(const fs_builder &bld, double v)
5371 {
5372 const struct gen_device_info *devinfo = bld.shader->devinfo;
5373 assert(devinfo->gen >= 7);
5374
5375 if (devinfo->gen >= 8)
5376 return brw_imm_df(v);
5377
5378 /* gen7.5 does not support DF immediates straighforward but the DIM
5379 * instruction allows to set the 64-bit immediate value.
5380 */
5381 if (devinfo->is_haswell) {
5382 const fs_builder ubld = bld.exec_all().group(1, 0);
5383 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5384 ubld.DIM(dst, brw_imm_df(v));
5385 return component(dst, 0);
5386 }
5387
5388 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5389 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5390 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5391 *
5392 * Alternatively, we could also produce a normal VGRF (without stride 0)
5393 * by writing to all the channels in the VGRF, however, that would hit the
5394 * gen7 bug where we have to split writes that span more than 1 register
5395 * into instructions with a width of 4 (otherwise the write to the second
5396 * register written runs into an execmask hardware bug) which isn't very
5397 * nice.
5398 */
5399 union {
5400 double d;
5401 struct {
5402 uint32_t i1;
5403 uint32_t i2;
5404 };
5405 } di;
5406
5407 di.d = v;
5408
5409 const fs_builder ubld = bld.exec_all().group(1, 0);
5410 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5411 ubld.MOV(tmp, brw_imm_ud(di.i1));
5412 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5413
5414 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5415 }