2aaa473e69838ca6fb1279ed8cebc3b470a6e2ae
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "util/u_math.h"
28 #include "util/bitscan.h"
29
30 using namespace brw;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
43 }
44
45 void
46 fs_visitor::nir_setup_outputs()
47 {
48 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
49 return;
50
51 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
52
53 /* Calculate the size of output registers in a separate pass, before
54 * allocating them. With ARB_enhanced_layouts, multiple output variables
55 * may occupy the same slot, but have different type sizes.
56 */
57 nir_foreach_variable(var, &nir->outputs) {
58 const int loc = var->data.driver_location;
59 const unsigned var_vec4s =
60 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
61 : type_size_vec4(var->type, true);
62 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
63 }
64
65 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
66 if (vec4s[loc] == 0) {
67 loc++;
68 continue;
69 }
70
71 unsigned reg_size = vec4s[loc];
72
73 /* Check if there are any ranges that start within this range and extend
74 * past it. If so, include them in this allocation.
75 */
76 for (unsigned i = 1; i < reg_size; i++)
77 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
78
79 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
80 for (unsigned i = 0; i < reg_size; i++)
81 outputs[loc + i] = offset(reg, bld, 4 * i);
82
83 loc += reg_size;
84 }
85 }
86
87 void
88 fs_visitor::nir_setup_uniforms()
89 {
90 /* Only the first compile gets to set up uniforms. */
91 if (push_constant_loc) {
92 assert(pull_constant_loc);
93 return;
94 }
95
96 uniforms = nir->num_uniforms / 4;
97
98 if (stage == MESA_SHADER_COMPUTE) {
99 /* Add a uniform for the thread local id. It must be the last uniform
100 * on the list.
101 */
102 assert(uniforms == prog_data->nr_params);
103 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
104 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
105 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
106 }
107 }
108
109 static bool
110 emit_system_values_block(nir_block *block, fs_visitor *v)
111 {
112 fs_reg *reg;
113
114 nir_foreach_instr(instr, block) {
115 if (instr->type != nir_instr_type_intrinsic)
116 continue;
117
118 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
119 switch (intrin->intrinsic) {
120 case nir_intrinsic_load_vertex_id:
121 case nir_intrinsic_load_base_vertex:
122 unreachable("should be lowered by nir_lower_system_values().");
123
124 case nir_intrinsic_load_vertex_id_zero_base:
125 case nir_intrinsic_load_is_indexed_draw:
126 case nir_intrinsic_load_first_vertex:
127 case nir_intrinsic_load_instance_id:
128 case nir_intrinsic_load_base_instance:
129 case nir_intrinsic_load_draw_id:
130 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
131
132 case nir_intrinsic_load_invocation_id:
133 if (v->stage == MESA_SHADER_TESS_CTRL)
134 break;
135 assert(v->stage == MESA_SHADER_GEOMETRY);
136 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
137 if (reg->file == BAD_FILE) {
138 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
139 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
140 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
141 abld.SHR(iid, g1, brw_imm_ud(27u));
142 *reg = iid;
143 }
144 break;
145
146 case nir_intrinsic_load_sample_pos:
147 assert(v->stage == MESA_SHADER_FRAGMENT);
148 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
149 if (reg->file == BAD_FILE)
150 *reg = *v->emit_samplepos_setup();
151 break;
152
153 case nir_intrinsic_load_sample_id:
154 assert(v->stage == MESA_SHADER_FRAGMENT);
155 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
156 if (reg->file == BAD_FILE)
157 *reg = *v->emit_sampleid_setup();
158 break;
159
160 case nir_intrinsic_load_sample_mask_in:
161 assert(v->stage == MESA_SHADER_FRAGMENT);
162 assert(v->devinfo->gen >= 7);
163 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
164 if (reg->file == BAD_FILE)
165 *reg = *v->emit_samplemaskin_setup();
166 break;
167
168 case nir_intrinsic_load_work_group_id:
169 assert(v->stage == MESA_SHADER_COMPUTE);
170 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
171 if (reg->file == BAD_FILE)
172 *reg = *v->emit_cs_work_group_id_setup();
173 break;
174
175 case nir_intrinsic_load_helper_invocation:
176 assert(v->stage == MESA_SHADER_FRAGMENT);
177 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
178 if (reg->file == BAD_FILE) {
179 const fs_builder abld =
180 v->bld.annotate("gl_HelperInvocation", NULL);
181
182 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
183 * pixel mask is in g1.7 of the thread payload.
184 *
185 * We move the per-channel pixel enable bit to the low bit of each
186 * channel by shifting the byte containing the pixel mask by the
187 * vector immediate 0x76543210UV.
188 *
189 * The region of <1,8,0> reads only 1 byte (the pixel masks for
190 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
191 * masks for 2 and 3) in SIMD16.
192 */
193 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
194
195 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
196 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
197 hbld.SHR(offset(shifted, hbld, i),
198 stride(retype(brw_vec1_grf(1 + i, 7),
199 BRW_REGISTER_TYPE_UB),
200 1, 8, 0),
201 brw_imm_v(0x76543210));
202 }
203
204 /* A set bit in the pixel mask means the channel is enabled, but
205 * that is the opposite of gl_HelperInvocation so we need to invert
206 * the mask.
207 *
208 * The negate source-modifier bit of logical instructions on Gen8+
209 * performs 1's complement negation, so we can use that instead of
210 * a NOT instruction.
211 */
212 fs_reg inverted = negate(shifted);
213 if (v->devinfo->gen < 8) {
214 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
215 abld.NOT(inverted, shifted);
216 }
217
218 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
219 * with 1 and negating.
220 */
221 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
222 abld.AND(anded, inverted, brw_imm_uw(1));
223
224 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
225 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
226 *reg = dst;
227 }
228 break;
229
230 default:
231 break;
232 }
233 }
234
235 return true;
236 }
237
238 void
239 fs_visitor::nir_emit_system_values()
240 {
241 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
242 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
243 nir_system_values[i] = fs_reg();
244 }
245
246 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
247 * never end up using it.
248 */
249 {
250 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
251 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
252 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
253
254 const fs_builder allbld8 = abld.group(8, 0).exec_all();
255 allbld8.MOV(reg, brw_imm_v(0x76543210));
256 if (dispatch_width > 8)
257 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
258 if (dispatch_width > 16) {
259 const fs_builder allbld16 = abld.group(16, 0).exec_all();
260 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
261 }
262 }
263
264 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
265 nir_foreach_block(block, impl)
266 emit_system_values_block(block, this);
267 }
268
269 /*
270 * Returns a type based on a reference_type (word, float, half-float) and a
271 * given bit_size.
272 *
273 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
274 *
275 * @FIXME: 64-bit return types are always DF on integer types to maintain
276 * compability with uses of DF previously to the introduction of int64
277 * support.
278 */
279 static brw_reg_type
280 brw_reg_type_from_bit_size(const unsigned bit_size,
281 const brw_reg_type reference_type)
282 {
283 switch(reference_type) {
284 case BRW_REGISTER_TYPE_HF:
285 case BRW_REGISTER_TYPE_F:
286 case BRW_REGISTER_TYPE_DF:
287 switch(bit_size) {
288 case 16:
289 return BRW_REGISTER_TYPE_HF;
290 case 32:
291 return BRW_REGISTER_TYPE_F;
292 case 64:
293 return BRW_REGISTER_TYPE_DF;
294 default:
295 unreachable("Invalid bit size");
296 }
297 case BRW_REGISTER_TYPE_B:
298 case BRW_REGISTER_TYPE_W:
299 case BRW_REGISTER_TYPE_D:
300 case BRW_REGISTER_TYPE_Q:
301 switch(bit_size) {
302 case 8:
303 return BRW_REGISTER_TYPE_B;
304 case 16:
305 return BRW_REGISTER_TYPE_W;
306 case 32:
307 return BRW_REGISTER_TYPE_D;
308 case 64:
309 return BRW_REGISTER_TYPE_Q;
310 default:
311 unreachable("Invalid bit size");
312 }
313 case BRW_REGISTER_TYPE_UB:
314 case BRW_REGISTER_TYPE_UW:
315 case BRW_REGISTER_TYPE_UD:
316 case BRW_REGISTER_TYPE_UQ:
317 switch(bit_size) {
318 case 8:
319 return BRW_REGISTER_TYPE_UB;
320 case 16:
321 return BRW_REGISTER_TYPE_UW;
322 case 32:
323 return BRW_REGISTER_TYPE_UD;
324 case 64:
325 return BRW_REGISTER_TYPE_UQ;
326 default:
327 unreachable("Invalid bit size");
328 }
329 default:
330 unreachable("Unknown type");
331 }
332 }
333
334 void
335 fs_visitor::nir_emit_impl(nir_function_impl *impl)
336 {
337 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
338 for (unsigned i = 0; i < impl->reg_alloc; i++) {
339 nir_locals[i] = fs_reg();
340 }
341
342 foreach_list_typed(nir_register, reg, node, &impl->registers) {
343 unsigned array_elems =
344 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
345 unsigned size = array_elems * reg->num_components;
346 const brw_reg_type reg_type =
347 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
348 nir_locals[reg->index] = bld.vgrf(reg_type, size);
349 }
350
351 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
352 impl->ssa_alloc);
353
354 nir_emit_cf_list(&impl->body);
355 }
356
357 void
358 fs_visitor::nir_emit_cf_list(exec_list *list)
359 {
360 exec_list_validate(list);
361 foreach_list_typed(nir_cf_node, node, node, list) {
362 switch (node->type) {
363 case nir_cf_node_if:
364 nir_emit_if(nir_cf_node_as_if(node));
365 break;
366
367 case nir_cf_node_loop:
368 nir_emit_loop(nir_cf_node_as_loop(node));
369 break;
370
371 case nir_cf_node_block:
372 nir_emit_block(nir_cf_node_as_block(node));
373 break;
374
375 default:
376 unreachable("Invalid CFG node block");
377 }
378 }
379 }
380
381 void
382 fs_visitor::nir_emit_if(nir_if *if_stmt)
383 {
384 bool invert;
385 fs_reg cond_reg;
386
387 /* If the condition has the form !other_condition, use other_condition as
388 * the source, but invert the predicate on the if instruction.
389 */
390 nir_alu_instr *const cond = nir_src_as_alu_instr(&if_stmt->condition);
391 if (cond != NULL && cond->op == nir_op_inot) {
392 assert(!cond->src[0].negate);
393 assert(!cond->src[0].abs);
394
395 invert = true;
396 cond_reg = get_nir_src(cond->src[0].src);
397 } else {
398 invert = false;
399 cond_reg = get_nir_src(if_stmt->condition);
400 }
401
402 /* first, put the condition into f0 */
403 fs_inst *inst = bld.MOV(bld.null_reg_d(),
404 retype(cond_reg, BRW_REGISTER_TYPE_D));
405 inst->conditional_mod = BRW_CONDITIONAL_NZ;
406
407 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
408
409 nir_emit_cf_list(&if_stmt->then_list);
410
411 /* note: if the else is empty, dead CF elimination will remove it */
412 bld.emit(BRW_OPCODE_ELSE);
413
414 nir_emit_cf_list(&if_stmt->else_list);
415
416 bld.emit(BRW_OPCODE_ENDIF);
417
418 if (devinfo->gen < 7)
419 limit_dispatch_width(16, "Non-uniform control flow unsupported "
420 "in SIMD32 mode.");
421 }
422
423 void
424 fs_visitor::nir_emit_loop(nir_loop *loop)
425 {
426 bld.emit(BRW_OPCODE_DO);
427
428 nir_emit_cf_list(&loop->body);
429
430 bld.emit(BRW_OPCODE_WHILE);
431
432 if (devinfo->gen < 7)
433 limit_dispatch_width(16, "Non-uniform control flow unsupported "
434 "in SIMD32 mode.");
435 }
436
437 void
438 fs_visitor::nir_emit_block(nir_block *block)
439 {
440 nir_foreach_instr(instr, block) {
441 nir_emit_instr(instr);
442 }
443 }
444
445 void
446 fs_visitor::nir_emit_instr(nir_instr *instr)
447 {
448 const fs_builder abld = bld.annotate(NULL, instr);
449
450 switch (instr->type) {
451 case nir_instr_type_alu:
452 nir_emit_alu(abld, nir_instr_as_alu(instr));
453 break;
454
455 case nir_instr_type_deref:
456 /* Derefs can exist for images but they do nothing */
457 break;
458
459 case nir_instr_type_intrinsic:
460 switch (stage) {
461 case MESA_SHADER_VERTEX:
462 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
463 break;
464 case MESA_SHADER_TESS_CTRL:
465 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
466 break;
467 case MESA_SHADER_TESS_EVAL:
468 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
469 break;
470 case MESA_SHADER_GEOMETRY:
471 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
472 break;
473 case MESA_SHADER_FRAGMENT:
474 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
475 break;
476 case MESA_SHADER_COMPUTE:
477 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
478 break;
479 default:
480 unreachable("unsupported shader stage");
481 }
482 break;
483
484 case nir_instr_type_tex:
485 nir_emit_texture(abld, nir_instr_as_tex(instr));
486 break;
487
488 case nir_instr_type_load_const:
489 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
490 break;
491
492 case nir_instr_type_ssa_undef:
493 /* We create a new VGRF for undefs on every use (by handling
494 * them in get_nir_src()), rather than for each definition.
495 * This helps register coalescing eliminate MOVs from undef.
496 */
497 break;
498
499 case nir_instr_type_jump:
500 nir_emit_jump(abld, nir_instr_as_jump(instr));
501 break;
502
503 default:
504 unreachable("unknown instruction type");
505 }
506 }
507
508 /**
509 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
510 * match instr.
511 */
512 bool
513 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
514 const fs_reg &result)
515 {
516 if (!instr->src[0].src.is_ssa ||
517 !instr->src[0].src.ssa->parent_instr)
518 return false;
519
520 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
521 return false;
522
523 nir_alu_instr *src0 =
524 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
525
526 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
527 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
528 return false;
529
530 /* If either opcode has source modifiers, bail.
531 *
532 * TODO: We can potentially handle source modifiers if both of the opcodes
533 * we're combining are signed integers.
534 */
535 if (instr->src[0].abs || instr->src[0].negate ||
536 src0->src[0].abs || src0->src[0].negate)
537 return false;
538
539 unsigned element = nir_src_as_uint(src0->src[1].src);
540
541 /* Element type to extract.*/
542 const brw_reg_type type = brw_int_type(
543 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
544 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
545
546 fs_reg op0 = get_nir_src(src0->src[0].src);
547 op0.type = brw_type_for_nir_type(devinfo,
548 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
549 nir_src_bit_size(src0->src[0].src)));
550 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
551
552 set_saturate(instr->dest.saturate,
553 bld.MOV(result, subscript(op0, type, element)));
554 return true;
555 }
556
557 bool
558 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
559 const fs_reg &result)
560 {
561 if (!instr->src[0].src.is_ssa ||
562 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
563 return false;
564
565 nir_intrinsic_instr *src0 =
566 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
567
568 if (src0->intrinsic != nir_intrinsic_load_front_face)
569 return false;
570
571 if (!nir_src_is_const(instr->src[1].src) ||
572 !nir_src_is_const(instr->src[2].src))
573 return false;
574
575 const float value1 = nir_src_as_float(instr->src[1].src);
576 const float value2 = nir_src_as_float(instr->src[2].src);
577 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
578 return false;
579
580 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
581 assert(value1 == -value2);
582
583 fs_reg tmp = vgrf(glsl_type::int_type);
584
585 if (devinfo->gen >= 6) {
586 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
587 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
588
589 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
590 *
591 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
592 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
593 *
594 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
595 *
596 * This negation looks like it's safe in practice, because bits 0:4 will
597 * surely be TRIANGLES
598 */
599
600 if (value1 == -1.0f) {
601 g0.negate = true;
602 }
603
604 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
605 g0, brw_imm_uw(0x3f80));
606 } else {
607 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
608 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
609
610 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
611 *
612 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
613 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
614 *
615 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
616 *
617 * This negation looks like it's safe in practice, because bits 0:4 will
618 * surely be TRIANGLES
619 */
620
621 if (value1 == -1.0f) {
622 g1_6.negate = true;
623 }
624
625 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
626 }
627 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
628
629 return true;
630 }
631
632 static void
633 emit_find_msb_using_lzd(const fs_builder &bld,
634 const fs_reg &result,
635 const fs_reg &src,
636 bool is_signed)
637 {
638 fs_inst *inst;
639 fs_reg temp = src;
640
641 if (is_signed) {
642 /* LZD of an absolute value source almost always does the right
643 * thing. There are two problem values:
644 *
645 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
646 * 0. However, findMSB(int(0x80000000)) == 30.
647 *
648 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
649 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
650 *
651 * For a value of zero or negative one, -1 will be returned.
652 *
653 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
654 * findMSB(-(1<<x)) should return x-1.
655 *
656 * For all negative number cases, including 0x80000000 and
657 * 0xffffffff, the correct value is obtained from LZD if instead of
658 * negating the (already negative) value the logical-not is used. A
659 * conditonal logical-not can be achieved in two instructions.
660 */
661 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
662
663 bld.ASR(temp, src, brw_imm_d(31));
664 bld.XOR(temp, temp, src);
665 }
666
667 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
668 retype(temp, BRW_REGISTER_TYPE_UD));
669
670 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
671 * from the LSB side. Subtract the result from 31 to convert the MSB
672 * count into an LSB count. If no bits are set, LZD will return 32.
673 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
674 */
675 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
676 inst->src[0].negate = true;
677 }
678
679 static brw_rnd_mode
680 brw_rnd_mode_from_nir_op (const nir_op op) {
681 switch (op) {
682 case nir_op_f2f16_rtz:
683 return BRW_RND_MODE_RTZ;
684 case nir_op_f2f16_rtne:
685 return BRW_RND_MODE_RTNE;
686 default:
687 unreachable("Operation doesn't support rounding mode");
688 }
689 }
690
691 fs_reg
692 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
693 nir_alu_instr *instr,
694 fs_reg *op,
695 bool need_dest)
696 {
697 fs_reg result =
698 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
699
700 result.type = brw_type_for_nir_type(devinfo,
701 (nir_alu_type)(nir_op_infos[instr->op].output_type |
702 nir_dest_bit_size(instr->dest.dest)));
703
704 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
705 op[i] = get_nir_src(instr->src[i].src);
706 op[i].type = brw_type_for_nir_type(devinfo,
707 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
708 nir_src_bit_size(instr->src[i].src)));
709 op[i].abs = instr->src[i].abs;
710 op[i].negate = instr->src[i].negate;
711 }
712
713 /* Move and vecN instrutions may still be vectored. Return the raw,
714 * vectored source and destination so that fs_visitor::nir_emit_alu can
715 * handle it. Other callers should not have to handle these kinds of
716 * instructions.
717 */
718 switch (instr->op) {
719 case nir_op_imov:
720 case nir_op_fmov:
721 case nir_op_vec2:
722 case nir_op_vec3:
723 case nir_op_vec4:
724 return result;
725 default:
726 break;
727 }
728
729 /* At this point, we have dealt with any instruction that operates on
730 * more than a single channel. Therefore, we can just adjust the source
731 * and destination registers for that channel and emit the instruction.
732 */
733 unsigned channel = 0;
734 if (nir_op_infos[instr->op].output_size == 0) {
735 /* Since NIR is doing the scalarizing for us, we should only ever see
736 * vectorized operations with a single channel.
737 */
738 assert(util_bitcount(instr->dest.write_mask) == 1);
739 channel = ffs(instr->dest.write_mask) - 1;
740
741 result = offset(result, bld, channel);
742 }
743
744 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
745 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
746 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
747 }
748
749 return result;
750 }
751
752 void
753 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
754 fs_reg *op)
755 {
756 for (unsigned i = 0; i < 2; i++) {
757 nir_alu_instr *const inot_instr =
758 nir_src_as_alu_instr(&instr->src[i].src);
759
760 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
761 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
762 /* The source of the inot is now the source of instr. */
763 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
764
765 assert(!op[i].negate);
766 op[i].negate = true;
767 } else {
768 op[i] = resolve_source_modifiers(op[i]);
769 }
770 }
771 }
772
773 bool
774 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
775 fs_reg result,
776 nir_alu_instr *instr)
777 {
778 if (devinfo->gen < 6 || devinfo->gen >= 12)
779 return false;
780
781 nir_alu_instr *const inot_instr = nir_src_as_alu_instr(&instr->src[0].src);
782
783 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
784 return false;
785
786 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
787 * of valid size-changing combinations is a bit more complex.
788 *
789 * The source restriction is just because I was lazy about generating the
790 * constant below.
791 */
792 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
793 nir_src_bit_size(inot_instr->src[0].src) != 32)
794 return false;
795
796 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
797 * this is float(1 + a).
798 */
799 fs_reg op;
800
801 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
802
803 /* Ignore the saturate modifier, if there is one. The result of the
804 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
805 */
806 bld.ADD(result, op, brw_imm_d(1));
807
808 return true;
809 }
810
811 void
812 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
813 {
814 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
815 fs_inst *inst;
816
817 fs_reg op[4];
818 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, true);
819
820 switch (instr->op) {
821 case nir_op_imov:
822 case nir_op_fmov:
823 case nir_op_vec2:
824 case nir_op_vec3:
825 case nir_op_vec4: {
826 fs_reg temp = result;
827 bool need_extra_copy = false;
828 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
829 if (!instr->src[i].src.is_ssa &&
830 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
831 need_extra_copy = true;
832 temp = bld.vgrf(result.type, 4);
833 break;
834 }
835 }
836
837 for (unsigned i = 0; i < 4; i++) {
838 if (!(instr->dest.write_mask & (1 << i)))
839 continue;
840
841 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
842 inst = bld.MOV(offset(temp, bld, i),
843 offset(op[0], bld, instr->src[0].swizzle[i]));
844 } else {
845 inst = bld.MOV(offset(temp, bld, i),
846 offset(op[i], bld, instr->src[i].swizzle[0]));
847 }
848 inst->saturate = instr->dest.saturate;
849 }
850
851 /* In this case the source and destination registers were the same,
852 * so we need to insert an extra set of moves in order to deal with
853 * any swizzling.
854 */
855 if (need_extra_copy) {
856 for (unsigned i = 0; i < 4; i++) {
857 if (!(instr->dest.write_mask & (1 << i)))
858 continue;
859
860 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
861 }
862 }
863 return;
864 }
865
866 case nir_op_i2f32:
867 case nir_op_u2f32:
868 if (optimize_extract_to_float(instr, result))
869 return;
870 inst = bld.MOV(result, op[0]);
871 inst->saturate = instr->dest.saturate;
872 break;
873
874 case nir_op_f2f16_rtne:
875 case nir_op_f2f16_rtz:
876 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
877 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
878 /* fallthrough */
879
880 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
881 * on the HW gen, it is a special hw opcode or just a MOV, and
882 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
883 *
884 * But if we want to use that opcode, we need to provide support on
885 * different optimizations and lowerings. As right now HF support is
886 * only for gen8+, it will be better to use directly the MOV, and use
887 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
888 */
889
890 case nir_op_f2f16:
891 inst = bld.MOV(result, op[0]);
892 inst->saturate = instr->dest.saturate;
893 break;
894
895 case nir_op_f2f64:
896 case nir_op_f2i64:
897 case nir_op_f2u64:
898 assert(type_sz(op[0].type) > 2); /* brw_nir_lower_conversions */
899 inst = bld.MOV(result, op[0]);
900 inst->saturate = instr->dest.saturate;
901 break;
902
903 case nir_op_b2i8:
904 case nir_op_b2i16:
905 case nir_op_b2i32:
906 case nir_op_b2i64:
907 case nir_op_b2f16:
908 case nir_op_b2f32:
909 case nir_op_b2f64:
910 if (try_emit_b2fi_of_inot(bld, result, instr))
911 break;
912 op[0].type = BRW_REGISTER_TYPE_D;
913 op[0].negate = !op[0].negate;
914 /* fallthrough */
915 case nir_op_i2f64:
916 case nir_op_i2i64:
917 case nir_op_u2f64:
918 case nir_op_u2u64:
919 assert(type_sz(op[0].type) > 1); /* brw_nir_lower_conversions */
920 /* fallthrough */
921 case nir_op_f2f32:
922 case nir_op_f2i32:
923 case nir_op_f2u32:
924 case nir_op_f2i16:
925 case nir_op_f2u16:
926 case nir_op_i2i32:
927 case nir_op_u2u32:
928 case nir_op_i2i16:
929 case nir_op_u2u16:
930 case nir_op_i2f16:
931 case nir_op_u2f16:
932 case nir_op_i2i8:
933 case nir_op_u2u8:
934 inst = bld.MOV(result, op[0]);
935 inst->saturate = instr->dest.saturate;
936 break;
937
938 case nir_op_fsign: {
939 assert(!instr->dest.saturate);
940 if (op[0].abs) {
941 /* Straightforward since the source can be assumed to be either
942 * strictly >= 0 or strictly <= 0 depending on the setting of the
943 * negate flag.
944 */
945 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
946
947 inst = (op[0].negate)
948 ? bld.MOV(result, brw_imm_f(-1.0f))
949 : bld.MOV(result, brw_imm_f(1.0f));
950
951 set_predicate(BRW_PREDICATE_NORMAL, inst);
952 } else if (type_sz(op[0].type) < 8) {
953 /* AND(val, 0x80000000) gives the sign bit.
954 *
955 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
956 * zero.
957 */
958 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
959
960 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
961 op[0].type = BRW_REGISTER_TYPE_UD;
962 result.type = BRW_REGISTER_TYPE_UD;
963 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
964
965 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
966 inst->predicate = BRW_PREDICATE_NORMAL;
967 } else {
968 /* For doubles we do the same but we need to consider:
969 *
970 * - 2-src instructions can't operate with 64-bit immediates
971 * - The sign is encoded in the high 32-bit of each DF
972 * - We need to produce a DF result.
973 */
974
975 fs_reg zero = vgrf(glsl_type::double_type);
976 bld.MOV(zero, setup_imm_df(bld, 0.0));
977 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
978
979 bld.MOV(result, zero);
980
981 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
982 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
983 brw_imm_ud(0x80000000u));
984
985 set_predicate(BRW_PREDICATE_NORMAL,
986 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
987 }
988 break;
989 }
990
991 case nir_op_frcp:
992 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
993 inst->saturate = instr->dest.saturate;
994 break;
995
996 case nir_op_fexp2:
997 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
998 inst->saturate = instr->dest.saturate;
999 break;
1000
1001 case nir_op_flog2:
1002 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1003 inst->saturate = instr->dest.saturate;
1004 break;
1005
1006 case nir_op_fsin:
1007 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1008 inst->saturate = instr->dest.saturate;
1009 break;
1010
1011 case nir_op_fcos:
1012 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1013 inst->saturate = instr->dest.saturate;
1014 break;
1015
1016 case nir_op_fddx:
1017 if (fs_key->high_quality_derivatives) {
1018 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1019 } else {
1020 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1021 }
1022 inst->saturate = instr->dest.saturate;
1023 break;
1024 case nir_op_fddx_fine:
1025 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1026 inst->saturate = instr->dest.saturate;
1027 break;
1028 case nir_op_fddx_coarse:
1029 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1030 inst->saturate = instr->dest.saturate;
1031 break;
1032 case nir_op_fddy:
1033 if (fs_key->high_quality_derivatives) {
1034 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1035 } else {
1036 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1037 }
1038 inst->saturate = instr->dest.saturate;
1039 break;
1040 case nir_op_fddy_fine:
1041 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1042 inst->saturate = instr->dest.saturate;
1043 break;
1044 case nir_op_fddy_coarse:
1045 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1046 inst->saturate = instr->dest.saturate;
1047 break;
1048
1049 case nir_op_iadd:
1050 case nir_op_fadd:
1051 inst = bld.ADD(result, op[0], op[1]);
1052 inst->saturate = instr->dest.saturate;
1053 break;
1054
1055 case nir_op_uadd_sat:
1056 inst = bld.ADD(result, op[0], op[1]);
1057 inst->saturate = true;
1058 break;
1059
1060 case nir_op_fmul:
1061 inst = bld.MUL(result, op[0], op[1]);
1062 inst->saturate = instr->dest.saturate;
1063 break;
1064
1065 case nir_op_imul_2x32_64:
1066 case nir_op_umul_2x32_64:
1067 bld.MUL(result, op[0], op[1]);
1068 break;
1069
1070 case nir_op_imul:
1071 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1072 bld.MUL(result, op[0], op[1]);
1073 break;
1074
1075 case nir_op_imul_high:
1076 case nir_op_umul_high:
1077 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1078 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1079 break;
1080
1081 case nir_op_idiv:
1082 case nir_op_udiv:
1083 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1084 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1085 break;
1086
1087 case nir_op_uadd_carry:
1088 unreachable("Should have been lowered by carry_to_arith().");
1089
1090 case nir_op_usub_borrow:
1091 unreachable("Should have been lowered by borrow_to_arith().");
1092
1093 case nir_op_umod:
1094 case nir_op_irem:
1095 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1096 * appears that our hardware just does the right thing for signed
1097 * remainder.
1098 */
1099 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1100 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1101 break;
1102
1103 case nir_op_imod: {
1104 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1105 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1106
1107 /* Math instructions don't support conditional mod */
1108 inst = bld.MOV(bld.null_reg_d(), result);
1109 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1110
1111 /* Now, we need to determine if signs of the sources are different.
1112 * When we XOR the sources, the top bit is 0 if they are the same and 1
1113 * if they are different. We can then use a conditional modifier to
1114 * turn that into a predicate. This leads us to an XOR.l instruction.
1115 *
1116 * Technically, according to the PRM, you're not allowed to use .l on a
1117 * XOR instruction. However, emperical experiments and Curro's reading
1118 * of the simulator source both indicate that it's safe.
1119 */
1120 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1121 inst = bld.XOR(tmp, op[0], op[1]);
1122 inst->predicate = BRW_PREDICATE_NORMAL;
1123 inst->conditional_mod = BRW_CONDITIONAL_L;
1124
1125 /* If the result of the initial remainder operation is non-zero and the
1126 * two sources have different signs, add in a copy of op[1] to get the
1127 * final integer modulus value.
1128 */
1129 inst = bld.ADD(result, result, op[1]);
1130 inst->predicate = BRW_PREDICATE_NORMAL;
1131 break;
1132 }
1133
1134 case nir_op_flt32:
1135 case nir_op_fge32:
1136 case nir_op_feq32:
1137 case nir_op_fne32: {
1138 fs_reg dest = result;
1139
1140 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1141 if (bit_size != 32)
1142 dest = bld.vgrf(op[0].type, 1);
1143
1144 brw_conditional_mod cond;
1145 switch (instr->op) {
1146 case nir_op_flt32:
1147 cond = BRW_CONDITIONAL_L;
1148 break;
1149 case nir_op_fge32:
1150 cond = BRW_CONDITIONAL_GE;
1151 break;
1152 case nir_op_feq32:
1153 cond = BRW_CONDITIONAL_Z;
1154 break;
1155 case nir_op_fne32:
1156 cond = BRW_CONDITIONAL_NZ;
1157 break;
1158 default:
1159 unreachable("bad opcode");
1160 }
1161
1162 bld.CMP(dest, op[0], op[1], cond);
1163
1164 if (bit_size > 32) {
1165 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1166 } else if(bit_size < 32) {
1167 /* When we convert the result to 32-bit we need to be careful and do
1168 * it as a signed conversion to get sign extension (for 32-bit true)
1169 */
1170 const brw_reg_type src_type =
1171 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1172
1173 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1174 }
1175 break;
1176 }
1177
1178 case nir_op_ilt32:
1179 case nir_op_ult32:
1180 case nir_op_ige32:
1181 case nir_op_uge32:
1182 case nir_op_ieq32:
1183 case nir_op_ine32: {
1184 fs_reg dest = result;
1185
1186 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1187 if (bit_size != 32)
1188 dest = bld.vgrf(op[0].type, 1);
1189
1190 brw_conditional_mod cond;
1191 switch (instr->op) {
1192 case nir_op_ilt32:
1193 case nir_op_ult32:
1194 cond = BRW_CONDITIONAL_L;
1195 break;
1196 case nir_op_ige32:
1197 case nir_op_uge32:
1198 cond = BRW_CONDITIONAL_GE;
1199 break;
1200 case nir_op_ieq32:
1201 cond = BRW_CONDITIONAL_Z;
1202 break;
1203 case nir_op_ine32:
1204 cond = BRW_CONDITIONAL_NZ;
1205 break;
1206 default:
1207 unreachable("bad opcode");
1208 }
1209 bld.CMP(dest, op[0], op[1], cond);
1210
1211 if (bit_size > 32) {
1212 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1213 } else if (bit_size < 32) {
1214 /* When we convert the result to 32-bit we need to be careful and do
1215 * it as a signed conversion to get sign extension (for 32-bit true)
1216 */
1217 const brw_reg_type src_type =
1218 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1219
1220 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1221 }
1222 break;
1223 }
1224
1225 case nir_op_inot:
1226 if (devinfo->gen >= 8) {
1227 nir_alu_instr *const inot_src_instr =
1228 nir_src_as_alu_instr(&instr->src[0].src);
1229
1230 if (inot_src_instr != NULL &&
1231 (inot_src_instr->op == nir_op_ior ||
1232 inot_src_instr->op == nir_op_ixor ||
1233 inot_src_instr->op == nir_op_iand) &&
1234 !inot_src_instr->src[0].abs &&
1235 !inot_src_instr->src[0].negate &&
1236 !inot_src_instr->src[1].abs &&
1237 !inot_src_instr->src[1].negate) {
1238 /* The sources of the source logical instruction are now the
1239 * sources of the instruction that will be generated.
1240 */
1241 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1242 resolve_inot_sources(bld, inot_src_instr, op);
1243
1244 /* Smash all of the sources and destination to be signed. This
1245 * doesn't matter for the operation of the instruction, but cmod
1246 * propagation fails on unsigned sources with negation (due to
1247 * fs_inst::can_do_cmod returning false).
1248 */
1249 result.type =
1250 brw_type_for_nir_type(devinfo,
1251 (nir_alu_type)(nir_type_int |
1252 nir_dest_bit_size(instr->dest.dest)));
1253 op[0].type =
1254 brw_type_for_nir_type(devinfo,
1255 (nir_alu_type)(nir_type_int |
1256 nir_src_bit_size(inot_src_instr->src[0].src)));
1257 op[1].type =
1258 brw_type_for_nir_type(devinfo,
1259 (nir_alu_type)(nir_type_int |
1260 nir_src_bit_size(inot_src_instr->src[1].src)));
1261
1262 /* For XOR, only invert one of the sources. Arbitrarily choose
1263 * the first source.
1264 */
1265 op[0].negate = !op[0].negate;
1266 if (inot_src_instr->op != nir_op_ixor)
1267 op[1].negate = !op[1].negate;
1268
1269 switch (inot_src_instr->op) {
1270 case nir_op_ior:
1271 bld.AND(result, op[0], op[1]);
1272 return;
1273
1274 case nir_op_iand:
1275 bld.OR(result, op[0], op[1]);
1276 return;
1277
1278 case nir_op_ixor:
1279 bld.XOR(result, op[0], op[1]);
1280 return;
1281
1282 default:
1283 unreachable("impossible opcode");
1284 }
1285 }
1286 op[0] = resolve_source_modifiers(op[0]);
1287 }
1288 bld.NOT(result, op[0]);
1289 break;
1290 case nir_op_ixor:
1291 if (devinfo->gen >= 8) {
1292 resolve_inot_sources(bld, instr, op);
1293 }
1294 bld.XOR(result, op[0], op[1]);
1295 break;
1296 case nir_op_ior:
1297 if (devinfo->gen >= 8) {
1298 resolve_inot_sources(bld, instr, op);
1299 }
1300 bld.OR(result, op[0], op[1]);
1301 break;
1302 case nir_op_iand:
1303 if (devinfo->gen >= 8) {
1304 resolve_inot_sources(bld, instr, op);
1305 }
1306 bld.AND(result, op[0], op[1]);
1307 break;
1308
1309 case nir_op_fdot2:
1310 case nir_op_fdot3:
1311 case nir_op_fdot4:
1312 case nir_op_b32all_fequal2:
1313 case nir_op_b32all_iequal2:
1314 case nir_op_b32all_fequal3:
1315 case nir_op_b32all_iequal3:
1316 case nir_op_b32all_fequal4:
1317 case nir_op_b32all_iequal4:
1318 case nir_op_b32any_fnequal2:
1319 case nir_op_b32any_inequal2:
1320 case nir_op_b32any_fnequal3:
1321 case nir_op_b32any_inequal3:
1322 case nir_op_b32any_fnequal4:
1323 case nir_op_b32any_inequal4:
1324 unreachable("Lowered by nir_lower_alu_reductions");
1325
1326 case nir_op_fnoise1_1:
1327 case nir_op_fnoise1_2:
1328 case nir_op_fnoise1_3:
1329 case nir_op_fnoise1_4:
1330 case nir_op_fnoise2_1:
1331 case nir_op_fnoise2_2:
1332 case nir_op_fnoise2_3:
1333 case nir_op_fnoise2_4:
1334 case nir_op_fnoise3_1:
1335 case nir_op_fnoise3_2:
1336 case nir_op_fnoise3_3:
1337 case nir_op_fnoise3_4:
1338 case nir_op_fnoise4_1:
1339 case nir_op_fnoise4_2:
1340 case nir_op_fnoise4_3:
1341 case nir_op_fnoise4_4:
1342 unreachable("not reached: should be handled by lower_noise");
1343
1344 case nir_op_ldexp:
1345 unreachable("not reached: should be handled by ldexp_to_arith()");
1346
1347 case nir_op_fsqrt:
1348 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1349 inst->saturate = instr->dest.saturate;
1350 break;
1351
1352 case nir_op_frsq:
1353 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1354 inst->saturate = instr->dest.saturate;
1355 break;
1356
1357 case nir_op_i2b32:
1358 case nir_op_f2b32: {
1359 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1360 if (bit_size == 64) {
1361 /* two-argument instructions can't take 64-bit immediates */
1362 fs_reg zero;
1363 fs_reg tmp;
1364
1365 if (instr->op == nir_op_f2b32) {
1366 zero = vgrf(glsl_type::double_type);
1367 tmp = vgrf(glsl_type::double_type);
1368 bld.MOV(zero, setup_imm_df(bld, 0.0));
1369 } else {
1370 zero = vgrf(glsl_type::int64_t_type);
1371 tmp = vgrf(glsl_type::int64_t_type);
1372 bld.MOV(zero, brw_imm_q(0));
1373 }
1374
1375 /* A SIMD16 execution needs to be split in two instructions, so use
1376 * a vgrf instead of the flag register as dst so instruction splitting
1377 * works
1378 */
1379 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1380 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1381 } else {
1382 fs_reg zero;
1383 if (bit_size == 32) {
1384 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1385 } else {
1386 assert(bit_size == 16);
1387 zero = instr->op == nir_op_f2b32 ?
1388 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1389 }
1390 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1391 }
1392 break;
1393 }
1394
1395 case nir_op_ftrunc:
1396 inst = bld.RNDZ(result, op[0]);
1397 inst->saturate = instr->dest.saturate;
1398 break;
1399
1400 case nir_op_fceil: {
1401 op[0].negate = !op[0].negate;
1402 fs_reg temp = vgrf(glsl_type::float_type);
1403 bld.RNDD(temp, op[0]);
1404 temp.negate = true;
1405 inst = bld.MOV(result, temp);
1406 inst->saturate = instr->dest.saturate;
1407 break;
1408 }
1409 case nir_op_ffloor:
1410 inst = bld.RNDD(result, op[0]);
1411 inst->saturate = instr->dest.saturate;
1412 break;
1413 case nir_op_ffract:
1414 inst = bld.FRC(result, op[0]);
1415 inst->saturate = instr->dest.saturate;
1416 break;
1417 case nir_op_fround_even:
1418 inst = bld.RNDE(result, op[0]);
1419 inst->saturate = instr->dest.saturate;
1420 break;
1421
1422 case nir_op_fquantize2f16: {
1423 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1424 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1425 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1426
1427 /* The destination stride must be at least as big as the source stride. */
1428 tmp16.type = BRW_REGISTER_TYPE_W;
1429 tmp16.stride = 2;
1430
1431 /* Check for denormal */
1432 fs_reg abs_src0 = op[0];
1433 abs_src0.abs = true;
1434 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1435 BRW_CONDITIONAL_L);
1436 /* Get the appropriately signed zero */
1437 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1438 retype(op[0], BRW_REGISTER_TYPE_UD),
1439 brw_imm_ud(0x80000000));
1440 /* Do the actual F32 -> F16 -> F32 conversion */
1441 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1442 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1443 /* Select that or zero based on normal status */
1444 inst = bld.SEL(result, zero, tmp32);
1445 inst->predicate = BRW_PREDICATE_NORMAL;
1446 inst->saturate = instr->dest.saturate;
1447 break;
1448 }
1449
1450 case nir_op_imin:
1451 case nir_op_umin:
1452 case nir_op_fmin:
1453 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1454 inst->saturate = instr->dest.saturate;
1455 break;
1456
1457 case nir_op_imax:
1458 case nir_op_umax:
1459 case nir_op_fmax:
1460 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1461 inst->saturate = instr->dest.saturate;
1462 break;
1463
1464 case nir_op_pack_snorm_2x16:
1465 case nir_op_pack_snorm_4x8:
1466 case nir_op_pack_unorm_2x16:
1467 case nir_op_pack_unorm_4x8:
1468 case nir_op_unpack_snorm_2x16:
1469 case nir_op_unpack_snorm_4x8:
1470 case nir_op_unpack_unorm_2x16:
1471 case nir_op_unpack_unorm_4x8:
1472 case nir_op_unpack_half_2x16:
1473 case nir_op_pack_half_2x16:
1474 unreachable("not reached: should be handled by lower_packing_builtins");
1475
1476 case nir_op_unpack_half_2x16_split_x:
1477 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1478 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1479 inst->saturate = instr->dest.saturate;
1480 break;
1481 case nir_op_unpack_half_2x16_split_y:
1482 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1483 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1484 inst->saturate = instr->dest.saturate;
1485 break;
1486
1487 case nir_op_pack_64_2x32_split:
1488 case nir_op_pack_32_2x16_split:
1489 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1490 break;
1491
1492 case nir_op_unpack_64_2x32_split_x:
1493 case nir_op_unpack_64_2x32_split_y: {
1494 if (instr->op == nir_op_unpack_64_2x32_split_x)
1495 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1496 else
1497 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1498 break;
1499 }
1500
1501 case nir_op_unpack_32_2x16_split_x:
1502 case nir_op_unpack_32_2x16_split_y: {
1503 if (instr->op == nir_op_unpack_32_2x16_split_x)
1504 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1505 else
1506 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1507 break;
1508 }
1509
1510 case nir_op_fpow:
1511 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1512 inst->saturate = instr->dest.saturate;
1513 break;
1514
1515 case nir_op_bitfield_reverse:
1516 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1517 bld.BFREV(result, op[0]);
1518 break;
1519
1520 case nir_op_bit_count:
1521 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1522 bld.CBIT(result, op[0]);
1523 break;
1524
1525 case nir_op_ufind_msb: {
1526 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1527 emit_find_msb_using_lzd(bld, result, op[0], false);
1528 break;
1529 }
1530
1531 case nir_op_ifind_msb: {
1532 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1533
1534 if (devinfo->gen < 7) {
1535 emit_find_msb_using_lzd(bld, result, op[0], true);
1536 } else {
1537 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1538
1539 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1540 * count from the LSB side. If FBH didn't return an error
1541 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1542 * count into an LSB count.
1543 */
1544 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1545
1546 inst = bld.ADD(result, result, brw_imm_d(31));
1547 inst->predicate = BRW_PREDICATE_NORMAL;
1548 inst->src[0].negate = true;
1549 }
1550 break;
1551 }
1552
1553 case nir_op_find_lsb:
1554 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1555
1556 if (devinfo->gen < 7) {
1557 fs_reg temp = vgrf(glsl_type::int_type);
1558
1559 /* (x & -x) generates a value that consists of only the LSB of x.
1560 * For all powers of 2, findMSB(y) == findLSB(y).
1561 */
1562 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1563 fs_reg negated_src = src;
1564
1565 /* One must be negated, and the other must be non-negated. It
1566 * doesn't matter which is which.
1567 */
1568 negated_src.negate = true;
1569 src.negate = false;
1570
1571 bld.AND(temp, src, negated_src);
1572 emit_find_msb_using_lzd(bld, result, temp, false);
1573 } else {
1574 bld.FBL(result, op[0]);
1575 }
1576 break;
1577
1578 case nir_op_ubitfield_extract:
1579 case nir_op_ibitfield_extract:
1580 unreachable("should have been lowered");
1581 case nir_op_ubfe:
1582 case nir_op_ibfe:
1583 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1584 bld.BFE(result, op[2], op[1], op[0]);
1585 break;
1586 case nir_op_bfm:
1587 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1588 bld.BFI1(result, op[0], op[1]);
1589 break;
1590 case nir_op_bfi:
1591 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1592 bld.BFI2(result, op[0], op[1], op[2]);
1593 break;
1594
1595 case nir_op_bitfield_insert:
1596 unreachable("not reached: should have been lowered");
1597
1598 case nir_op_ishl:
1599 bld.SHL(result, op[0], op[1]);
1600 break;
1601 case nir_op_ishr:
1602 bld.ASR(result, op[0], op[1]);
1603 break;
1604 case nir_op_ushr:
1605 bld.SHR(result, op[0], op[1]);
1606 break;
1607
1608 case nir_op_pack_half_2x16_split:
1609 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1610 break;
1611
1612 case nir_op_ffma:
1613 inst = bld.MAD(result, op[2], op[1], op[0]);
1614 inst->saturate = instr->dest.saturate;
1615 break;
1616
1617 case nir_op_flrp:
1618 inst = bld.LRP(result, op[0], op[1], op[2]);
1619 inst->saturate = instr->dest.saturate;
1620 break;
1621
1622 case nir_op_b32csel:
1623 if (optimize_frontfacing_ternary(instr, result))
1624 return;
1625
1626 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1627 inst = bld.SEL(result, op[1], op[2]);
1628 inst->predicate = BRW_PREDICATE_NORMAL;
1629 break;
1630
1631 case nir_op_extract_u8:
1632 case nir_op_extract_i8: {
1633 unsigned byte = nir_src_as_uint(instr->src[1].src);
1634
1635 /* The PRMs say:
1636 *
1637 * BDW+
1638 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1639 * Use two instructions and a word or DWord intermediate integer type.
1640 */
1641 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1642 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1643
1644 if (instr->op == nir_op_extract_i8) {
1645 /* If we need to sign extend, extract to a word first */
1646 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1647 bld.MOV(w_temp, subscript(op[0], type, byte));
1648 bld.MOV(result, w_temp);
1649 } else if (byte & 1) {
1650 /* Extract the high byte from the word containing the desired byte
1651 * offset.
1652 */
1653 bld.SHR(result,
1654 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1655 brw_imm_uw(8));
1656 } else {
1657 /* Otherwise use an AND with 0xff and a word type */
1658 bld.AND(result,
1659 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1660 brw_imm_uw(0xff));
1661 }
1662 } else {
1663 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1664 bld.MOV(result, subscript(op[0], type, byte));
1665 }
1666 break;
1667 }
1668
1669 case nir_op_extract_u16:
1670 case nir_op_extract_i16: {
1671 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1672 unsigned word = nir_src_as_uint(instr->src[1].src);
1673 bld.MOV(result, subscript(op[0], type, word));
1674 break;
1675 }
1676
1677 default:
1678 unreachable("unhandled instruction");
1679 }
1680
1681 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1682 * to sign extend the low bit to 0/~0
1683 */
1684 if (devinfo->gen <= 5 &&
1685 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1686 fs_reg masked = vgrf(glsl_type::int_type);
1687 bld.AND(masked, result, brw_imm_d(1));
1688 masked.negate = true;
1689 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1690 }
1691 }
1692
1693 void
1694 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1695 nir_load_const_instr *instr)
1696 {
1697 const brw_reg_type reg_type =
1698 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1699 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1700
1701 switch (instr->def.bit_size) {
1702 case 8:
1703 for (unsigned i = 0; i < instr->def.num_components; i++)
1704 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1705 break;
1706
1707 case 16:
1708 for (unsigned i = 0; i < instr->def.num_components; i++)
1709 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1710 break;
1711
1712 case 32:
1713 for (unsigned i = 0; i < instr->def.num_components; i++)
1714 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1715 break;
1716
1717 case 64:
1718 assert(devinfo->gen >= 7);
1719 if (devinfo->gen == 7) {
1720 /* We don't get 64-bit integer types until gen8 */
1721 for (unsigned i = 0; i < instr->def.num_components; i++) {
1722 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1723 setup_imm_df(bld, instr->value[i].f64));
1724 }
1725 } else {
1726 for (unsigned i = 0; i < instr->def.num_components; i++)
1727 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1728 }
1729 break;
1730
1731 default:
1732 unreachable("Invalid bit size");
1733 }
1734
1735 nir_ssa_values[instr->def.index] = reg;
1736 }
1737
1738 fs_reg
1739 fs_visitor::get_nir_src(const nir_src &src)
1740 {
1741 fs_reg reg;
1742 if (src.is_ssa) {
1743 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1744 const brw_reg_type reg_type =
1745 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1746 reg = bld.vgrf(reg_type, src.ssa->num_components);
1747 } else {
1748 reg = nir_ssa_values[src.ssa->index];
1749 }
1750 } else {
1751 /* We don't handle indirects on locals */
1752 assert(src.reg.indirect == NULL);
1753 reg = offset(nir_locals[src.reg.reg->index], bld,
1754 src.reg.base_offset * src.reg.reg->num_components);
1755 }
1756
1757 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1758 /* The only 64-bit type available on gen7 is DF, so use that. */
1759 reg.type = BRW_REGISTER_TYPE_DF;
1760 } else {
1761 /* To avoid floating-point denorm flushing problems, set the type by
1762 * default to an integer type - instructions that need floating point
1763 * semantics will set this to F if they need to
1764 */
1765 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1766 BRW_REGISTER_TYPE_D);
1767 }
1768
1769 return reg;
1770 }
1771
1772 /**
1773 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1774 *
1775 * This function should not be called on any value which may be 64 bits.
1776 * We could theoretically support 64-bit on gen8+ but we choose not to
1777 * because it wouldn't work in general (no gen7 support) and there are
1778 * enough restrictions in 64-bit immediates that you can't take the return
1779 * value and treat it the same as the result of get_nir_src().
1780 */
1781 fs_reg
1782 fs_visitor::get_nir_src_imm(const nir_src &src)
1783 {
1784 assert(nir_src_bit_size(src) == 32);
1785 return nir_src_is_const(src) ?
1786 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1787 }
1788
1789 fs_reg
1790 fs_visitor::get_nir_dest(const nir_dest &dest)
1791 {
1792 if (dest.is_ssa) {
1793 const brw_reg_type reg_type =
1794 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1795 dest.ssa.bit_size == 8 ?
1796 BRW_REGISTER_TYPE_D :
1797 BRW_REGISTER_TYPE_F);
1798 nir_ssa_values[dest.ssa.index] =
1799 bld.vgrf(reg_type, dest.ssa.num_components);
1800 return nir_ssa_values[dest.ssa.index];
1801 } else {
1802 /* We don't handle indirects on locals */
1803 assert(dest.reg.indirect == NULL);
1804 return offset(nir_locals[dest.reg.reg->index], bld,
1805 dest.reg.base_offset * dest.reg.reg->num_components);
1806 }
1807 }
1808
1809 void
1810 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1811 unsigned wr_mask)
1812 {
1813 for (unsigned i = 0; i < 4; i++) {
1814 if (!((wr_mask >> i) & 1))
1815 continue;
1816
1817 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1818 new_inst->dst = offset(new_inst->dst, bld, i);
1819 for (unsigned j = 0; j < new_inst->sources; j++)
1820 if (new_inst->src[j].file == VGRF)
1821 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1822
1823 bld.emit(new_inst);
1824 }
1825 }
1826
1827 static fs_inst *
1828 emit_pixel_interpolater_send(const fs_builder &bld,
1829 enum opcode opcode,
1830 const fs_reg &dst,
1831 const fs_reg &src,
1832 const fs_reg &desc,
1833 glsl_interp_mode interpolation)
1834 {
1835 struct brw_wm_prog_data *wm_prog_data =
1836 brw_wm_prog_data(bld.shader->stage_prog_data);
1837
1838 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1839 /* 2 floats per slot returned */
1840 inst->size_written = 2 * dst.component_size(inst->exec_size);
1841 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1842
1843 wm_prog_data->pulls_bary = true;
1844
1845 return inst;
1846 }
1847
1848 /**
1849 * Computes 1 << x, given a D/UD register containing some value x.
1850 */
1851 static fs_reg
1852 intexp2(const fs_builder &bld, const fs_reg &x)
1853 {
1854 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1855
1856 fs_reg result = bld.vgrf(x.type, 1);
1857 fs_reg one = bld.vgrf(x.type, 1);
1858
1859 bld.MOV(one, retype(brw_imm_d(1), one.type));
1860 bld.SHL(result, one, x);
1861 return result;
1862 }
1863
1864 void
1865 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1866 {
1867 assert(stage == MESA_SHADER_GEOMETRY);
1868
1869 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1870
1871 if (gs_compile->control_data_header_size_bits == 0)
1872 return;
1873
1874 /* We can only do EndPrimitive() functionality when the control data
1875 * consists of cut bits. Fortunately, the only time it isn't is when the
1876 * output type is points, in which case EndPrimitive() is a no-op.
1877 */
1878 if (gs_prog_data->control_data_format !=
1879 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1880 return;
1881 }
1882
1883 /* Cut bits use one bit per vertex. */
1884 assert(gs_compile->control_data_bits_per_vertex == 1);
1885
1886 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1887 vertex_count.type = BRW_REGISTER_TYPE_UD;
1888
1889 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1890 * vertex n, 0 otherwise. So all we need to do here is mark bit
1891 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1892 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1893 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1894 *
1895 * Note that if EndPrimitive() is called before emitting any vertices, this
1896 * will cause us to set bit 31 of the control_data_bits register to 1.
1897 * That's fine because:
1898 *
1899 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1900 * output, so the hardware will ignore cut bit 31.
1901 *
1902 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1903 * last vertex, so setting cut bit 31 has no effect (since the primitive
1904 * is automatically ended when the GS terminates).
1905 *
1906 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1907 * control_data_bits register to 0 when the first vertex is emitted.
1908 */
1909
1910 const fs_builder abld = bld.annotate("end primitive");
1911
1912 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1913 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1914 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1915 fs_reg mask = intexp2(abld, prev_count);
1916 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1917 * attention to the lower 5 bits of its second source argument, so on this
1918 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1919 * ((vertex_count - 1) % 32).
1920 */
1921 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1922 }
1923
1924 void
1925 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1926 {
1927 assert(stage == MESA_SHADER_GEOMETRY);
1928 assert(gs_compile->control_data_bits_per_vertex != 0);
1929
1930 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1931
1932 const fs_builder abld = bld.annotate("emit control data bits");
1933 const fs_builder fwa_bld = bld.exec_all();
1934
1935 /* We use a single UD register to accumulate control data bits (32 bits
1936 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1937 * at a time.
1938 *
1939 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1940 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1941 * use the Channel Mask phase to enable/disable which DWord within that
1942 * group to write. (Remember, different SIMD8 channels may have emitted
1943 * different numbers of vertices, so we may need per-slot offsets.)
1944 *
1945 * Channel masking presents an annoying problem: we may have to replicate
1946 * the data up to 4 times:
1947 *
1948 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1949 *
1950 * To avoid penalizing shaders that emit a small number of vertices, we
1951 * can avoid these sometimes: if the size of the control data header is
1952 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1953 * land in the same 128-bit group, so we can skip per-slot offsets.
1954 *
1955 * Similarly, if the control data header is <= 32 bits, there is only one
1956 * DWord, so we can skip channel masks.
1957 */
1958 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1959
1960 fs_reg channel_mask, per_slot_offset;
1961
1962 if (gs_compile->control_data_header_size_bits > 32) {
1963 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1964 channel_mask = vgrf(glsl_type::uint_type);
1965 }
1966
1967 if (gs_compile->control_data_header_size_bits > 128) {
1968 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1969 per_slot_offset = vgrf(glsl_type::uint_type);
1970 }
1971
1972 /* Figure out which DWord we're trying to write to using the formula:
1973 *
1974 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1975 *
1976 * Since bits_per_vertex is a power of two, and is known at compile
1977 * time, this can be optimized to:
1978 *
1979 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1980 */
1981 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1982 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1983 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1984 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1985 unsigned log2_bits_per_vertex =
1986 util_last_bit(gs_compile->control_data_bits_per_vertex);
1987 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1988
1989 if (per_slot_offset.file != BAD_FILE) {
1990 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1991 * the appropriate OWord within the control data header.
1992 */
1993 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1994 }
1995
1996 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1997 * write to the appropriate DWORD within the OWORD.
1998 */
1999 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2000 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2001 channel_mask = intexp2(fwa_bld, channel);
2002 /* Then the channel masks need to be in bits 23:16. */
2003 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2004 }
2005
2006 /* Store the control data bits in the message payload and send it. */
2007 unsigned mlen = 2;
2008 if (channel_mask.file != BAD_FILE)
2009 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2010 if (per_slot_offset.file != BAD_FILE)
2011 mlen++;
2012
2013 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2014 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2015 unsigned i = 0;
2016 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2017 if (per_slot_offset.file != BAD_FILE)
2018 sources[i++] = per_slot_offset;
2019 if (channel_mask.file != BAD_FILE)
2020 sources[i++] = channel_mask;
2021 while (i < mlen) {
2022 sources[i++] = this->control_data_bits;
2023 }
2024
2025 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2026 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2027 inst->mlen = mlen;
2028 /* We need to increment Global Offset by 256-bits to make room for
2029 * Broadwell's extra "Vertex Count" payload at the beginning of the
2030 * URB entry. Since this is an OWord message, Global Offset is counted
2031 * in 128-bit units, so we must set it to 2.
2032 */
2033 if (gs_prog_data->static_vertex_count == -1)
2034 inst->offset = 2;
2035 }
2036
2037 void
2038 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2039 unsigned stream_id)
2040 {
2041 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2042
2043 /* Note: we are calling this *before* increasing vertex_count, so
2044 * this->vertex_count == vertex_count - 1 in the formula above.
2045 */
2046
2047 /* Stream mode uses 2 bits per vertex */
2048 assert(gs_compile->control_data_bits_per_vertex == 2);
2049
2050 /* Must be a valid stream */
2051 assert(stream_id < MAX_VERTEX_STREAMS);
2052
2053 /* Control data bits are initialized to 0 so we don't have to set any
2054 * bits when sending vertices to stream 0.
2055 */
2056 if (stream_id == 0)
2057 return;
2058
2059 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2060
2061 /* reg::sid = stream_id */
2062 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2063 abld.MOV(sid, brw_imm_ud(stream_id));
2064
2065 /* reg:shift_count = 2 * (vertex_count - 1) */
2066 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2067 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2068
2069 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2070 * attention to the lower 5 bits of its second source argument, so on this
2071 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2072 * stream_id << ((2 * (vertex_count - 1)) % 32).
2073 */
2074 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2075 abld.SHL(mask, sid, shift_count);
2076 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2077 }
2078
2079 void
2080 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2081 unsigned stream_id)
2082 {
2083 assert(stage == MESA_SHADER_GEOMETRY);
2084
2085 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2086
2087 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2088 vertex_count.type = BRW_REGISTER_TYPE_UD;
2089
2090 /* Haswell and later hardware ignores the "Render Stream Select" bits
2091 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2092 * and instead sends all primitives down the pipeline for rasterization.
2093 * If the SOL stage is enabled, "Render Stream Select" is honored and
2094 * primitives bound to non-zero streams are discarded after stream output.
2095 *
2096 * Since the only purpose of primives sent to non-zero streams is to
2097 * be recorded by transform feedback, we can simply discard all geometry
2098 * bound to these streams when transform feedback is disabled.
2099 */
2100 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2101 return;
2102
2103 /* If we're outputting 32 control data bits or less, then we can wait
2104 * until the shader is over to output them all. Otherwise we need to
2105 * output them as we go. Now is the time to do it, since we're about to
2106 * output the vertex_count'th vertex, so it's guaranteed that the
2107 * control data bits associated with the (vertex_count - 1)th vertex are
2108 * correct.
2109 */
2110 if (gs_compile->control_data_header_size_bits > 32) {
2111 const fs_builder abld =
2112 bld.annotate("emit vertex: emit control data bits");
2113
2114 /* Only emit control data bits if we've finished accumulating a batch
2115 * of 32 bits. This is the case when:
2116 *
2117 * (vertex_count * bits_per_vertex) % 32 == 0
2118 *
2119 * (in other words, when the last 5 bits of vertex_count *
2120 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2121 * integer n (which is always the case, since bits_per_vertex is
2122 * always 1 or 2), this is equivalent to requiring that the last 5-n
2123 * bits of vertex_count are 0:
2124 *
2125 * vertex_count & (2^(5-n) - 1) == 0
2126 *
2127 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2128 * equivalent to:
2129 *
2130 * vertex_count & (32 / bits_per_vertex - 1) == 0
2131 *
2132 * TODO: If vertex_count is an immediate, we could do some of this math
2133 * at compile time...
2134 */
2135 fs_inst *inst =
2136 abld.AND(bld.null_reg_d(), vertex_count,
2137 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2138 inst->conditional_mod = BRW_CONDITIONAL_Z;
2139
2140 abld.IF(BRW_PREDICATE_NORMAL);
2141 /* If vertex_count is 0, then no control data bits have been
2142 * accumulated yet, so we can skip emitting them.
2143 */
2144 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2145 BRW_CONDITIONAL_NEQ);
2146 abld.IF(BRW_PREDICATE_NORMAL);
2147 emit_gs_control_data_bits(vertex_count);
2148 abld.emit(BRW_OPCODE_ENDIF);
2149
2150 /* Reset control_data_bits to 0 so we can start accumulating a new
2151 * batch.
2152 *
2153 * Note: in the case where vertex_count == 0, this neutralizes the
2154 * effect of any call to EndPrimitive() that the shader may have
2155 * made before outputting its first vertex.
2156 */
2157 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2158 inst->force_writemask_all = true;
2159 abld.emit(BRW_OPCODE_ENDIF);
2160 }
2161
2162 emit_urb_writes(vertex_count);
2163
2164 /* In stream mode we have to set control data bits for all vertices
2165 * unless we have disabled control data bits completely (which we do
2166 * do for GL_POINTS outputs that don't use streams).
2167 */
2168 if (gs_compile->control_data_header_size_bits > 0 &&
2169 gs_prog_data->control_data_format ==
2170 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2171 set_gs_stream_control_data_bits(vertex_count, stream_id);
2172 }
2173 }
2174
2175 void
2176 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2177 const nir_src &vertex_src,
2178 unsigned base_offset,
2179 const nir_src &offset_src,
2180 unsigned num_components,
2181 unsigned first_component)
2182 {
2183 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2184 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2185
2186 /* TODO: figure out push input layout for invocations == 1 */
2187 /* TODO: make this work with 64-bit inputs */
2188 if (gs_prog_data->invocations == 1 &&
2189 type_sz(dst.type) <= 4 &&
2190 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2191 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2192 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2193 nir_src_as_uint(vertex_src) * push_reg_count;
2194 for (unsigned i = 0; i < num_components; i++) {
2195 bld.MOV(offset(dst, bld, i),
2196 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2197 }
2198 return;
2199 }
2200
2201 /* Resort to the pull model. Ensure the VUE handles are provided. */
2202 assert(gs_prog_data->base.include_vue_handles);
2203
2204 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2205 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2206
2207 if (gs_prog_data->invocations == 1) {
2208 if (nir_src_is_const(vertex_src)) {
2209 /* The vertex index is constant; just select the proper URB handle. */
2210 icp_handle =
2211 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2212 BRW_REGISTER_TYPE_UD);
2213 } else {
2214 /* The vertex index is non-constant. We need to use indirect
2215 * addressing to fetch the proper URB handle.
2216 *
2217 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2218 * indicating that channel <n> should read the handle from
2219 * DWord <n>. We convert that to bytes by multiplying by 4.
2220 *
2221 * Next, we convert the vertex index to bytes by multiplying
2222 * by 32 (shifting by 5), and add the two together. This is
2223 * the final indirect byte offset.
2224 */
2225 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2226 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2227 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2228 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2229
2230 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2231 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2232 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2233 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2234 /* Convert vertex_index to bytes (multiply by 32) */
2235 bld.SHL(vertex_offset_bytes,
2236 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2237 brw_imm_ud(5u));
2238 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2239
2240 /* Use first_icp_handle as the base offset. There is one register
2241 * of URB handles per vertex, so inform the register allocator that
2242 * we might read up to nir->info.gs.vertices_in registers.
2243 */
2244 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2245 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2246 fs_reg(icp_offset_bytes),
2247 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2248 }
2249 } else {
2250 assert(gs_prog_data->invocations > 1);
2251
2252 if (nir_src_is_const(vertex_src)) {
2253 unsigned vertex = nir_src_as_uint(vertex_src);
2254 assert(devinfo->gen >= 9 || vertex <= 5);
2255 bld.MOV(icp_handle,
2256 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2257 BRW_REGISTER_TYPE_UD));
2258 } else {
2259 /* The vertex index is non-constant. We need to use indirect
2260 * addressing to fetch the proper URB handle.
2261 *
2262 */
2263 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2264
2265 /* Convert vertex_index to bytes (multiply by 4) */
2266 bld.SHL(icp_offset_bytes,
2267 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2268 brw_imm_ud(2u));
2269
2270 /* Use first_icp_handle as the base offset. There is one DWord
2271 * of URB handles per vertex, so inform the register allocator that
2272 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2273 */
2274 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2275 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2276 fs_reg(icp_offset_bytes),
2277 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2278 REG_SIZE));
2279 }
2280 }
2281
2282 fs_inst *inst;
2283
2284 fs_reg tmp_dst = dst;
2285 fs_reg indirect_offset = get_nir_src(offset_src);
2286 unsigned num_iterations = 1;
2287 unsigned orig_num_components = num_components;
2288
2289 if (type_sz(dst.type) == 8) {
2290 if (num_components > 2) {
2291 num_iterations = 2;
2292 num_components = 2;
2293 }
2294 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2295 tmp_dst = tmp;
2296 first_component = first_component / 2;
2297 }
2298
2299 for (unsigned iter = 0; iter < num_iterations; iter++) {
2300 if (nir_src_is_const(offset_src)) {
2301 /* Constant indexing - use global offset. */
2302 if (first_component != 0) {
2303 unsigned read_components = num_components + first_component;
2304 fs_reg tmp = bld.vgrf(dst.type, read_components);
2305 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2306 inst->size_written = read_components *
2307 tmp.component_size(inst->exec_size);
2308 for (unsigned i = 0; i < num_components; i++) {
2309 bld.MOV(offset(tmp_dst, bld, i),
2310 offset(tmp, bld, i + first_component));
2311 }
2312 } else {
2313 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2314 icp_handle);
2315 inst->size_written = num_components *
2316 tmp_dst.component_size(inst->exec_size);
2317 }
2318 inst->offset = base_offset + nir_src_as_uint(offset_src);
2319 inst->mlen = 1;
2320 } else {
2321 /* Indirect indexing - use per-slot offsets as well. */
2322 const fs_reg srcs[] = { icp_handle, indirect_offset };
2323 unsigned read_components = num_components + first_component;
2324 fs_reg tmp = bld.vgrf(dst.type, read_components);
2325 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2326 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2327 if (first_component != 0) {
2328 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2329 payload);
2330 inst->size_written = read_components *
2331 tmp.component_size(inst->exec_size);
2332 for (unsigned i = 0; i < num_components; i++) {
2333 bld.MOV(offset(tmp_dst, bld, i),
2334 offset(tmp, bld, i + first_component));
2335 }
2336 } else {
2337 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2338 payload);
2339 inst->size_written = num_components *
2340 tmp_dst.component_size(inst->exec_size);
2341 }
2342 inst->offset = base_offset;
2343 inst->mlen = 2;
2344 }
2345
2346 if (type_sz(dst.type) == 8) {
2347 shuffle_from_32bit_read(bld,
2348 offset(dst, bld, iter * 2),
2349 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2350 0,
2351 num_components);
2352 }
2353
2354 if (num_iterations > 1) {
2355 num_components = orig_num_components - 2;
2356 if(nir_src_is_const(offset_src)) {
2357 base_offset++;
2358 } else {
2359 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2360 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2361 indirect_offset = new_indirect;
2362 }
2363 }
2364 }
2365 }
2366
2367 fs_reg
2368 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2369 {
2370 nir_src *offset_src = nir_get_io_offset_src(instr);
2371
2372 if (nir_src_is_const(*offset_src)) {
2373 /* The only constant offset we should find is 0. brw_nir.c's
2374 * add_const_offset_to_base() will fold other constant offsets
2375 * into instr->const_index[0].
2376 */
2377 assert(nir_src_as_uint(*offset_src) == 0);
2378 return fs_reg();
2379 }
2380
2381 return get_nir_src(*offset_src);
2382 }
2383
2384 void
2385 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2386 nir_intrinsic_instr *instr)
2387 {
2388 assert(stage == MESA_SHADER_VERTEX);
2389
2390 fs_reg dest;
2391 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2392 dest = get_nir_dest(instr->dest);
2393
2394 switch (instr->intrinsic) {
2395 case nir_intrinsic_load_vertex_id:
2396 case nir_intrinsic_load_base_vertex:
2397 unreachable("should be lowered by nir_lower_system_values()");
2398
2399 case nir_intrinsic_load_input: {
2400 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2401 unsigned first_component = nir_intrinsic_component(instr);
2402 unsigned num_components = instr->num_components;
2403
2404 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2405
2406 if (type_sz(dest.type) == 8)
2407 first_component /= 2;
2408
2409 /* For 16-bit support maybe a temporary will be needed to copy from
2410 * the ATTR file.
2411 */
2412 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2413 first_component, num_components);
2414 break;
2415 }
2416
2417 case nir_intrinsic_load_vertex_id_zero_base:
2418 case nir_intrinsic_load_instance_id:
2419 case nir_intrinsic_load_base_instance:
2420 case nir_intrinsic_load_draw_id:
2421 case nir_intrinsic_load_first_vertex:
2422 case nir_intrinsic_load_is_indexed_draw:
2423 unreachable("lowered by brw_nir_lower_vs_inputs");
2424
2425 default:
2426 nir_emit_intrinsic(bld, instr);
2427 break;
2428 }
2429 }
2430
2431 void
2432 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2433 nir_intrinsic_instr *instr)
2434 {
2435 assert(stage == MESA_SHADER_TESS_CTRL);
2436 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2437 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2438
2439 fs_reg dst;
2440 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2441 dst = get_nir_dest(instr->dest);
2442
2443 switch (instr->intrinsic) {
2444 case nir_intrinsic_load_primitive_id:
2445 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2446 break;
2447 case nir_intrinsic_load_invocation_id:
2448 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2449 break;
2450 case nir_intrinsic_load_patch_vertices_in:
2451 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2452 brw_imm_d(tcs_key->input_vertices));
2453 break;
2454
2455 case nir_intrinsic_barrier: {
2456 if (tcs_prog_data->instances == 1)
2457 break;
2458
2459 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2460 fs_reg m0_2 = component(m0, 2);
2461
2462 const fs_builder chanbld = bld.exec_all().group(1, 0);
2463
2464 /* Zero the message header */
2465 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2466
2467 if (devinfo->gen < 11) {
2468 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2469 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2470 brw_imm_ud(INTEL_MASK(16, 13)));
2471
2472 /* Shift it up to bits 27:24. */
2473 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2474 } else {
2475 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2476 brw_imm_ud(INTEL_MASK(30, 24)));
2477 }
2478
2479 /* Set the Barrier Count and the enable bit */
2480 if (devinfo->gen < 11) {
2481 chanbld.OR(m0_2, m0_2,
2482 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2483 } else {
2484 chanbld.OR(m0_2, m0_2,
2485 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2486 }
2487
2488 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2489 break;
2490 }
2491
2492 case nir_intrinsic_load_input:
2493 unreachable("nir_lower_io should never give us these.");
2494 break;
2495
2496 case nir_intrinsic_load_per_vertex_input: {
2497 fs_reg indirect_offset = get_indirect_offset(instr);
2498 unsigned imm_offset = instr->const_index[0];
2499
2500 const nir_src &vertex_src = instr->src[0];
2501
2502 fs_inst *inst;
2503
2504 fs_reg icp_handle;
2505
2506 if (nir_src_is_const(vertex_src)) {
2507 /* Emit a MOV to resolve <0,1,0> regioning. */
2508 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2509 unsigned vertex = nir_src_as_uint(vertex_src);
2510 bld.MOV(icp_handle,
2511 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2512 BRW_REGISTER_TYPE_UD));
2513 } else if (tcs_prog_data->instances == 1 &&
2514 vertex_src.is_ssa &&
2515 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2516 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2517 /* For the common case of only 1 instance, an array index of
2518 * gl_InvocationID means reading g1. Skip all the indirect work.
2519 */
2520 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2521 } else {
2522 /* The vertex index is non-constant. We need to use indirect
2523 * addressing to fetch the proper URB handle.
2524 */
2525 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2526
2527 /* Each ICP handle is a single DWord (4 bytes) */
2528 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2529 bld.SHL(vertex_offset_bytes,
2530 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2531 brw_imm_ud(2u));
2532
2533 /* Start at g1. We might read up to 4 registers. */
2534 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2535 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2536 brw_imm_ud(4 * REG_SIZE));
2537 }
2538
2539 /* We can only read two double components with each URB read, so
2540 * we send two read messages in that case, each one loading up to
2541 * two double components.
2542 */
2543 unsigned num_iterations = 1;
2544 unsigned num_components = instr->num_components;
2545 unsigned first_component = nir_intrinsic_component(instr);
2546 fs_reg orig_dst = dst;
2547 if (type_sz(dst.type) == 8) {
2548 first_component = first_component / 2;
2549 if (instr->num_components > 2) {
2550 num_iterations = 2;
2551 num_components = 2;
2552 }
2553
2554 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2555 dst = tmp;
2556 }
2557
2558 for (unsigned iter = 0; iter < num_iterations; iter++) {
2559 if (indirect_offset.file == BAD_FILE) {
2560 /* Constant indexing - use global offset. */
2561 if (first_component != 0) {
2562 unsigned read_components = num_components + first_component;
2563 fs_reg tmp = bld.vgrf(dst.type, read_components);
2564 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2565 for (unsigned i = 0; i < num_components; i++) {
2566 bld.MOV(offset(dst, bld, i),
2567 offset(tmp, bld, i + first_component));
2568 }
2569 } else {
2570 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2571 }
2572 inst->offset = imm_offset;
2573 inst->mlen = 1;
2574 } else {
2575 /* Indirect indexing - use per-slot offsets as well. */
2576 const fs_reg srcs[] = { icp_handle, indirect_offset };
2577 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2578 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2579 if (first_component != 0) {
2580 unsigned read_components = num_components + first_component;
2581 fs_reg tmp = bld.vgrf(dst.type, read_components);
2582 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2583 payload);
2584 for (unsigned i = 0; i < num_components; i++) {
2585 bld.MOV(offset(dst, bld, i),
2586 offset(tmp, bld, i + first_component));
2587 }
2588 } else {
2589 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2590 payload);
2591 }
2592 inst->offset = imm_offset;
2593 inst->mlen = 2;
2594 }
2595 inst->size_written = (num_components + first_component) *
2596 inst->dst.component_size(inst->exec_size);
2597
2598 /* If we are reading 64-bit data using 32-bit read messages we need
2599 * build proper 64-bit data elements by shuffling the low and high
2600 * 32-bit components around like we do for other things like UBOs
2601 * or SSBOs.
2602 */
2603 if (type_sz(dst.type) == 8) {
2604 shuffle_from_32bit_read(bld,
2605 offset(orig_dst, bld, iter * 2),
2606 retype(dst, BRW_REGISTER_TYPE_D),
2607 0, num_components);
2608 }
2609
2610 /* Copy the temporary to the destination to deal with writemasking.
2611 *
2612 * Also attempt to deal with gl_PointSize being in the .w component.
2613 */
2614 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2615 assert(type_sz(dst.type) < 8);
2616 inst->dst = bld.vgrf(dst.type, 4);
2617 inst->size_written = 4 * REG_SIZE;
2618 bld.MOV(dst, offset(inst->dst, bld, 3));
2619 }
2620
2621 /* If we are loading double data and we need a second read message
2622 * adjust the write offset
2623 */
2624 if (num_iterations > 1) {
2625 num_components = instr->num_components - 2;
2626 imm_offset++;
2627 }
2628 }
2629 break;
2630 }
2631
2632 case nir_intrinsic_load_output:
2633 case nir_intrinsic_load_per_vertex_output: {
2634 fs_reg indirect_offset = get_indirect_offset(instr);
2635 unsigned imm_offset = instr->const_index[0];
2636 unsigned first_component = nir_intrinsic_component(instr);
2637
2638 fs_inst *inst;
2639 if (indirect_offset.file == BAD_FILE) {
2640 /* Replicate the patch handle to all enabled channels */
2641 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2642 bld.MOV(patch_handle,
2643 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2644
2645 {
2646 if (first_component != 0) {
2647 unsigned read_components =
2648 instr->num_components + first_component;
2649 fs_reg tmp = bld.vgrf(dst.type, read_components);
2650 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2651 patch_handle);
2652 inst->size_written = read_components * REG_SIZE;
2653 for (unsigned i = 0; i < instr->num_components; i++) {
2654 bld.MOV(offset(dst, bld, i),
2655 offset(tmp, bld, i + first_component));
2656 }
2657 } else {
2658 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2659 patch_handle);
2660 inst->size_written = instr->num_components * REG_SIZE;
2661 }
2662 inst->offset = imm_offset;
2663 inst->mlen = 1;
2664 }
2665 } else {
2666 /* Indirect indexing - use per-slot offsets as well. */
2667 const fs_reg srcs[] = {
2668 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2669 indirect_offset
2670 };
2671 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2672 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2673 if (first_component != 0) {
2674 unsigned read_components =
2675 instr->num_components + first_component;
2676 fs_reg tmp = bld.vgrf(dst.type, read_components);
2677 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2678 payload);
2679 inst->size_written = read_components * REG_SIZE;
2680 for (unsigned i = 0; i < instr->num_components; i++) {
2681 bld.MOV(offset(dst, bld, i),
2682 offset(tmp, bld, i + first_component));
2683 }
2684 } else {
2685 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2686 payload);
2687 inst->size_written = instr->num_components * REG_SIZE;
2688 }
2689 inst->offset = imm_offset;
2690 inst->mlen = 2;
2691 }
2692 break;
2693 }
2694
2695 case nir_intrinsic_store_output:
2696 case nir_intrinsic_store_per_vertex_output: {
2697 fs_reg value = get_nir_src(instr->src[0]);
2698 bool is_64bit = (instr->src[0].is_ssa ?
2699 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2700 fs_reg indirect_offset = get_indirect_offset(instr);
2701 unsigned imm_offset = instr->const_index[0];
2702 unsigned mask = instr->const_index[1];
2703 unsigned header_regs = 0;
2704 fs_reg srcs[7];
2705 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2706
2707 if (indirect_offset.file != BAD_FILE) {
2708 srcs[header_regs++] = indirect_offset;
2709 }
2710
2711 if (mask == 0)
2712 break;
2713
2714 unsigned num_components = util_last_bit(mask);
2715 enum opcode opcode;
2716
2717 /* We can only pack two 64-bit components in a single message, so send
2718 * 2 messages if we have more components
2719 */
2720 unsigned num_iterations = 1;
2721 unsigned iter_components = num_components;
2722 unsigned first_component = nir_intrinsic_component(instr);
2723 if (is_64bit) {
2724 first_component = first_component / 2;
2725 if (instr->num_components > 2) {
2726 num_iterations = 2;
2727 iter_components = 2;
2728 }
2729 }
2730
2731 mask = mask << first_component;
2732
2733 for (unsigned iter = 0; iter < num_iterations; iter++) {
2734 if (!is_64bit && mask != WRITEMASK_XYZW) {
2735 srcs[header_regs++] = brw_imm_ud(mask << 16);
2736 opcode = indirect_offset.file != BAD_FILE ?
2737 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2738 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2739 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2740 /* Expand the 64-bit mask to 32-bit channels. We only handle
2741 * two channels in each iteration, so we only care about X/Y.
2742 */
2743 unsigned mask32 = 0;
2744 if (mask & WRITEMASK_X)
2745 mask32 |= WRITEMASK_XY;
2746 if (mask & WRITEMASK_Y)
2747 mask32 |= WRITEMASK_ZW;
2748
2749 /* If the mask does not include any of the channels X or Y there
2750 * is nothing to do in this iteration. Move on to the next couple
2751 * of 64-bit channels.
2752 */
2753 if (!mask32) {
2754 mask >>= 2;
2755 imm_offset++;
2756 continue;
2757 }
2758
2759 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2760 opcode = indirect_offset.file != BAD_FILE ?
2761 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2762 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2763 } else {
2764 opcode = indirect_offset.file != BAD_FILE ?
2765 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2766 SHADER_OPCODE_URB_WRITE_SIMD8;
2767 }
2768
2769 for (unsigned i = 0; i < iter_components; i++) {
2770 if (!(mask & (1 << (i + first_component))))
2771 continue;
2772
2773 if (!is_64bit) {
2774 srcs[header_regs + i + first_component] = offset(value, bld, i);
2775 } else {
2776 /* We need to shuffle the 64-bit data to match the layout
2777 * expected by our 32-bit URB write messages. We use a temporary
2778 * for that.
2779 */
2780 unsigned channel = iter * 2 + i;
2781 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2782
2783 srcs[header_regs + (i + first_component) * 2] = dest;
2784 srcs[header_regs + (i + first_component) * 2 + 1] =
2785 offset(dest, bld, 1);
2786 }
2787 }
2788
2789 unsigned mlen =
2790 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2791 (is_64bit ? 2 * first_component : first_component);
2792 fs_reg payload =
2793 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2794 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2795
2796 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2797 inst->offset = imm_offset;
2798 inst->mlen = mlen;
2799
2800 /* If this is a 64-bit attribute, select the next two 64-bit channels
2801 * to be handled in the next iteration.
2802 */
2803 if (is_64bit) {
2804 mask >>= 2;
2805 imm_offset++;
2806 }
2807 }
2808 break;
2809 }
2810
2811 default:
2812 nir_emit_intrinsic(bld, instr);
2813 break;
2814 }
2815 }
2816
2817 void
2818 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2819 nir_intrinsic_instr *instr)
2820 {
2821 assert(stage == MESA_SHADER_TESS_EVAL);
2822 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2823
2824 fs_reg dest;
2825 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2826 dest = get_nir_dest(instr->dest);
2827
2828 switch (instr->intrinsic) {
2829 case nir_intrinsic_load_primitive_id:
2830 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2831 break;
2832 case nir_intrinsic_load_tess_coord:
2833 /* gl_TessCoord is part of the payload in g1-3 */
2834 for (unsigned i = 0; i < 3; i++) {
2835 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2836 }
2837 break;
2838
2839 case nir_intrinsic_load_input:
2840 case nir_intrinsic_load_per_vertex_input: {
2841 fs_reg indirect_offset = get_indirect_offset(instr);
2842 unsigned imm_offset = instr->const_index[0];
2843 unsigned first_component = nir_intrinsic_component(instr);
2844
2845 if (type_sz(dest.type) == 8) {
2846 first_component = first_component / 2;
2847 }
2848
2849 fs_inst *inst;
2850 if (indirect_offset.file == BAD_FILE) {
2851 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2852 * which is 16 registers (since each holds 2 vec4 slots).
2853 */
2854 unsigned slot_count = 1;
2855 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2856 slot_count++;
2857
2858 const unsigned max_push_slots = 32;
2859 if (imm_offset + slot_count <= max_push_slots) {
2860 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2861 for (int i = 0; i < instr->num_components; i++) {
2862 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2863 i + first_component;
2864 bld.MOV(offset(dest, bld, i), component(src, comp));
2865 }
2866
2867 tes_prog_data->base.urb_read_length =
2868 MAX2(tes_prog_data->base.urb_read_length,
2869 DIV_ROUND_UP(imm_offset + slot_count, 2));
2870 } else {
2871 /* Replicate the patch handle to all enabled channels */
2872 const fs_reg srcs[] = {
2873 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2874 };
2875 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2876 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2877
2878 if (first_component != 0) {
2879 unsigned read_components =
2880 instr->num_components + first_component;
2881 fs_reg tmp = bld.vgrf(dest.type, read_components);
2882 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2883 patch_handle);
2884 inst->size_written = read_components * REG_SIZE;
2885 for (unsigned i = 0; i < instr->num_components; i++) {
2886 bld.MOV(offset(dest, bld, i),
2887 offset(tmp, bld, i + first_component));
2888 }
2889 } else {
2890 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2891 patch_handle);
2892 inst->size_written = instr->num_components * REG_SIZE;
2893 }
2894 inst->mlen = 1;
2895 inst->offset = imm_offset;
2896 }
2897 } else {
2898 /* Indirect indexing - use per-slot offsets as well. */
2899
2900 /* We can only read two double components with each URB read, so
2901 * we send two read messages in that case, each one loading up to
2902 * two double components.
2903 */
2904 unsigned num_iterations = 1;
2905 unsigned num_components = instr->num_components;
2906 fs_reg orig_dest = dest;
2907 if (type_sz(dest.type) == 8) {
2908 if (instr->num_components > 2) {
2909 num_iterations = 2;
2910 num_components = 2;
2911 }
2912 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2913 dest = tmp;
2914 }
2915
2916 for (unsigned iter = 0; iter < num_iterations; iter++) {
2917 const fs_reg srcs[] = {
2918 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2919 indirect_offset
2920 };
2921 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2922 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2923
2924 if (first_component != 0) {
2925 unsigned read_components =
2926 num_components + first_component;
2927 fs_reg tmp = bld.vgrf(dest.type, read_components);
2928 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2929 payload);
2930 for (unsigned i = 0; i < num_components; i++) {
2931 bld.MOV(offset(dest, bld, i),
2932 offset(tmp, bld, i + first_component));
2933 }
2934 } else {
2935 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2936 payload);
2937 }
2938 inst->mlen = 2;
2939 inst->offset = imm_offset;
2940 inst->size_written = (num_components + first_component) *
2941 inst->dst.component_size(inst->exec_size);
2942
2943 /* If we are reading 64-bit data using 32-bit read messages we need
2944 * build proper 64-bit data elements by shuffling the low and high
2945 * 32-bit components around like we do for other things like UBOs
2946 * or SSBOs.
2947 */
2948 if (type_sz(dest.type) == 8) {
2949 shuffle_from_32bit_read(bld,
2950 offset(orig_dest, bld, iter * 2),
2951 retype(dest, BRW_REGISTER_TYPE_D),
2952 0, num_components);
2953 }
2954
2955 /* If we are loading double data and we need a second read message
2956 * adjust the offset
2957 */
2958 if (num_iterations > 1) {
2959 num_components = instr->num_components - 2;
2960 imm_offset++;
2961 }
2962 }
2963 }
2964 break;
2965 }
2966 default:
2967 nir_emit_intrinsic(bld, instr);
2968 break;
2969 }
2970 }
2971
2972 void
2973 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2974 nir_intrinsic_instr *instr)
2975 {
2976 assert(stage == MESA_SHADER_GEOMETRY);
2977 fs_reg indirect_offset;
2978
2979 fs_reg dest;
2980 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2981 dest = get_nir_dest(instr->dest);
2982
2983 switch (instr->intrinsic) {
2984 case nir_intrinsic_load_primitive_id:
2985 assert(stage == MESA_SHADER_GEOMETRY);
2986 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2987 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2988 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2989 break;
2990
2991 case nir_intrinsic_load_input:
2992 unreachable("load_input intrinsics are invalid for the GS stage");
2993
2994 case nir_intrinsic_load_per_vertex_input:
2995 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2996 instr->src[1], instr->num_components,
2997 nir_intrinsic_component(instr));
2998 break;
2999
3000 case nir_intrinsic_emit_vertex_with_counter:
3001 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3002 break;
3003
3004 case nir_intrinsic_end_primitive_with_counter:
3005 emit_gs_end_primitive(instr->src[0]);
3006 break;
3007
3008 case nir_intrinsic_set_vertex_count:
3009 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3010 break;
3011
3012 case nir_intrinsic_load_invocation_id: {
3013 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3014 assert(val.file != BAD_FILE);
3015 dest.type = val.type;
3016 bld.MOV(dest, val);
3017 break;
3018 }
3019
3020 default:
3021 nir_emit_intrinsic(bld, instr);
3022 break;
3023 }
3024 }
3025
3026 /**
3027 * Fetch the current render target layer index.
3028 */
3029 static fs_reg
3030 fetch_render_target_array_index(const fs_builder &bld)
3031 {
3032 if (bld.shader->devinfo->gen >= 6) {
3033 /* The render target array index is provided in the thread payload as
3034 * bits 26:16 of r0.0.
3035 */
3036 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3037 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3038 brw_imm_uw(0x7ff));
3039 return idx;
3040 } else {
3041 /* Pre-SNB we only ever render into the first layer of the framebuffer
3042 * since layered rendering is not implemented.
3043 */
3044 return brw_imm_ud(0);
3045 }
3046 }
3047
3048 /**
3049 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3050 * framebuffer at the current fragment coordinates and sample index.
3051 */
3052 fs_inst *
3053 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3054 unsigned target)
3055 {
3056 const struct gen_device_info *devinfo = bld.shader->devinfo;
3057
3058 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3059 const brw_wm_prog_key *wm_key =
3060 reinterpret_cast<const brw_wm_prog_key *>(key);
3061 assert(!wm_key->coherent_fb_fetch);
3062 const struct brw_wm_prog_data *wm_prog_data =
3063 brw_wm_prog_data(stage_prog_data);
3064
3065 /* Calculate the surface index relative to the start of the texture binding
3066 * table block, since that's what the texturing messages expect.
3067 */
3068 const unsigned surface = target +
3069 wm_prog_data->binding_table.render_target_read_start -
3070 wm_prog_data->base.binding_table.texture_start;
3071
3072 /* Calculate the fragment coordinates. */
3073 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3074 bld.MOV(offset(coords, bld, 0), pixel_x);
3075 bld.MOV(offset(coords, bld, 1), pixel_y);
3076 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3077
3078 /* Calculate the sample index and MCS payload when multisampling. Luckily
3079 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3080 * shouldn't be necessary to recompile based on whether the framebuffer is
3081 * CMS or UMS.
3082 */
3083 if (wm_key->multisample_fbo &&
3084 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3085 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3086
3087 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3088 const fs_reg mcs = wm_key->multisample_fbo ?
3089 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3090
3091 /* Use either a normal or a CMS texel fetch message depending on whether
3092 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3093 * message just in case the framebuffer uses 16x multisampling, it should
3094 * be equivalent to the normal CMS fetch for lower multisampling modes.
3095 */
3096 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3097 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3098 SHADER_OPCODE_TXF_CMS_LOGICAL;
3099
3100 /* Emit the instruction. */
3101 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3102 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3103 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3104 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3105 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3106 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3107 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3108 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3109 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3110
3111 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3112 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3113
3114 return inst;
3115 }
3116
3117 /**
3118 * Actual coherent framebuffer read implemented using the native render target
3119 * read message. Requires SKL+.
3120 */
3121 static fs_inst *
3122 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3123 {
3124 assert(bld.shader->devinfo->gen >= 9);
3125 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3126 inst->target = target;
3127 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3128
3129 return inst;
3130 }
3131
3132 static fs_reg
3133 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3134 {
3135 if (n && regs[0].file != BAD_FILE) {
3136 return regs[0];
3137
3138 } else {
3139 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3140
3141 for (unsigned i = 0; i < n; i++)
3142 regs[i] = tmp;
3143
3144 return tmp;
3145 }
3146 }
3147
3148 static fs_reg
3149 alloc_frag_output(fs_visitor *v, unsigned location)
3150 {
3151 assert(v->stage == MESA_SHADER_FRAGMENT);
3152 const brw_wm_prog_key *const key =
3153 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3154 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3155 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3156
3157 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3158 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3159
3160 else if (l == FRAG_RESULT_COLOR)
3161 return alloc_temporary(v->bld, 4, v->outputs,
3162 MAX2(key->nr_color_regions, 1));
3163
3164 else if (l == FRAG_RESULT_DEPTH)
3165 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3166
3167 else if (l == FRAG_RESULT_STENCIL)
3168 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3169
3170 else if (l == FRAG_RESULT_SAMPLE_MASK)
3171 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3172
3173 else if (l >= FRAG_RESULT_DATA0 &&
3174 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3175 return alloc_temporary(v->bld, 4,
3176 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3177
3178 else
3179 unreachable("Invalid location");
3180 }
3181
3182 void
3183 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3184 nir_intrinsic_instr *instr)
3185 {
3186 assert(stage == MESA_SHADER_FRAGMENT);
3187
3188 fs_reg dest;
3189 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3190 dest = get_nir_dest(instr->dest);
3191
3192 switch (instr->intrinsic) {
3193 case nir_intrinsic_load_front_face:
3194 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3195 *emit_frontfacing_interpolation());
3196 break;
3197
3198 case nir_intrinsic_load_sample_pos: {
3199 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3200 assert(sample_pos.file != BAD_FILE);
3201 dest.type = sample_pos.type;
3202 bld.MOV(dest, sample_pos);
3203 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3204 break;
3205 }
3206
3207 case nir_intrinsic_load_layer_id:
3208 dest.type = BRW_REGISTER_TYPE_UD;
3209 bld.MOV(dest, fetch_render_target_array_index(bld));
3210 break;
3211
3212 case nir_intrinsic_load_helper_invocation:
3213 case nir_intrinsic_load_sample_mask_in:
3214 case nir_intrinsic_load_sample_id: {
3215 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3216 fs_reg val = nir_system_values[sv];
3217 assert(val.file != BAD_FILE);
3218 dest.type = val.type;
3219 bld.MOV(dest, val);
3220 break;
3221 }
3222
3223 case nir_intrinsic_store_output: {
3224 const fs_reg src = get_nir_src(instr->src[0]);
3225 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3226 const unsigned location = nir_intrinsic_base(instr) +
3227 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3228 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3229 src.type);
3230
3231 for (unsigned j = 0; j < instr->num_components; j++)
3232 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3233 offset(src, bld, j));
3234
3235 break;
3236 }
3237
3238 case nir_intrinsic_load_output: {
3239 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3240 BRW_NIR_FRAG_OUTPUT_LOCATION);
3241 assert(l >= FRAG_RESULT_DATA0);
3242 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3243 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3244 const fs_reg tmp = bld.vgrf(dest.type, 4);
3245
3246 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3247 emit_coherent_fb_read(bld, tmp, target);
3248 else
3249 emit_non_coherent_fb_read(bld, tmp, target);
3250
3251 for (unsigned j = 0; j < instr->num_components; j++) {
3252 bld.MOV(offset(dest, bld, j),
3253 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3254 }
3255
3256 break;
3257 }
3258
3259 case nir_intrinsic_discard:
3260 case nir_intrinsic_discard_if: {
3261 /* We track our discarded pixels in f0.1. By predicating on it, we can
3262 * update just the flag bits that aren't yet discarded. If there's no
3263 * condition, we emit a CMP of g0 != g0, so all currently executing
3264 * channels will get turned off.
3265 */
3266 fs_inst *cmp;
3267 if (instr->intrinsic == nir_intrinsic_discard_if) {
3268 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3269 brw_imm_d(0), BRW_CONDITIONAL_Z);
3270 } else {
3271 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3272 BRW_REGISTER_TYPE_UW));
3273 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3274 }
3275 cmp->predicate = BRW_PREDICATE_NORMAL;
3276 cmp->flag_subreg = 1;
3277
3278 if (devinfo->gen >= 6) {
3279 emit_discard_jump();
3280 }
3281
3282 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3283 break;
3284 }
3285
3286 case nir_intrinsic_load_input: {
3287 /* load_input is only used for flat inputs */
3288 unsigned base = nir_intrinsic_base(instr);
3289 unsigned comp = nir_intrinsic_component(instr);
3290 unsigned num_components = instr->num_components;
3291 fs_reg orig_dest = dest;
3292 enum brw_reg_type type = dest.type;
3293
3294 /* Special case fields in the VUE header */
3295 if (base == VARYING_SLOT_LAYER)
3296 comp = 1;
3297 else if (base == VARYING_SLOT_VIEWPORT)
3298 comp = 2;
3299
3300 if (nir_dest_bit_size(instr->dest) == 64) {
3301 /* const_index is in 32-bit type size units that could not be aligned
3302 * with DF. We need to read the double vector as if it was a float
3303 * vector of twice the number of components to fetch the right data.
3304 */
3305 type = BRW_REGISTER_TYPE_F;
3306 num_components *= 2;
3307 dest = bld.vgrf(type, num_components);
3308 }
3309
3310 for (unsigned int i = 0; i < num_components; i++) {
3311 bld.MOV(offset(retype(dest, type), bld, i),
3312 retype(component(interp_reg(base, comp + i), 3), type));
3313 }
3314
3315 if (nir_dest_bit_size(instr->dest) == 64) {
3316 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3317 instr->num_components);
3318 }
3319 break;
3320 }
3321
3322 case nir_intrinsic_load_barycentric_pixel:
3323 case nir_intrinsic_load_barycentric_centroid:
3324 case nir_intrinsic_load_barycentric_sample:
3325 /* Do nothing - load_interpolated_input handling will handle it later. */
3326 break;
3327
3328 case nir_intrinsic_load_barycentric_at_sample: {
3329 const glsl_interp_mode interpolation =
3330 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3331
3332 if (nir_src_is_const(instr->src[0])) {
3333 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3334
3335 emit_pixel_interpolater_send(bld,
3336 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3337 dest,
3338 fs_reg(), /* src */
3339 brw_imm_ud(msg_data),
3340 interpolation);
3341 } else {
3342 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3343 BRW_REGISTER_TYPE_UD);
3344
3345 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3346 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3347 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3348 bld.exec_all().group(1, 0)
3349 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3350 emit_pixel_interpolater_send(bld,
3351 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3352 dest,
3353 fs_reg(), /* src */
3354 msg_data,
3355 interpolation);
3356 } else {
3357 /* Make a loop that sends a message to the pixel interpolater
3358 * for the sample number in each live channel. If there are
3359 * multiple channels with the same sample number then these
3360 * will be handled simultaneously with a single interation of
3361 * the loop.
3362 */
3363 bld.emit(BRW_OPCODE_DO);
3364
3365 /* Get the next live sample number into sample_id_reg */
3366 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3367
3368 /* Set the flag register so that we can perform the send
3369 * message on all channels that have the same sample number
3370 */
3371 bld.CMP(bld.null_reg_ud(),
3372 sample_src, sample_id,
3373 BRW_CONDITIONAL_EQ);
3374 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3375 bld.exec_all().group(1, 0)
3376 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3377 fs_inst *inst =
3378 emit_pixel_interpolater_send(bld,
3379 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3380 dest,
3381 fs_reg(), /* src */
3382 component(msg_data, 0),
3383 interpolation);
3384 set_predicate(BRW_PREDICATE_NORMAL, inst);
3385
3386 /* Continue the loop if there are any live channels left */
3387 set_predicate_inv(BRW_PREDICATE_NORMAL,
3388 true, /* inverse */
3389 bld.emit(BRW_OPCODE_WHILE));
3390 }
3391 }
3392 break;
3393 }
3394
3395 case nir_intrinsic_load_barycentric_at_offset: {
3396 const glsl_interp_mode interpolation =
3397 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3398
3399 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3400
3401 if (const_offset) {
3402 assert(nir_src_bit_size(instr->src[0]) == 32);
3403 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3404 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3405
3406 emit_pixel_interpolater_send(bld,
3407 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3408 dest,
3409 fs_reg(), /* src */
3410 brw_imm_ud(off_x | (off_y << 4)),
3411 interpolation);
3412 } else {
3413 fs_reg src = vgrf(glsl_type::ivec2_type);
3414 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3415 BRW_REGISTER_TYPE_F);
3416 for (int i = 0; i < 2; i++) {
3417 fs_reg temp = vgrf(glsl_type::float_type);
3418 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3419 fs_reg itemp = vgrf(glsl_type::int_type);
3420 /* float to int */
3421 bld.MOV(itemp, temp);
3422
3423 /* Clamp the upper end of the range to +7/16.
3424 * ARB_gpu_shader5 requires that we support a maximum offset
3425 * of +0.5, which isn't representable in a S0.4 value -- if
3426 * we didn't clamp it, we'd end up with -8/16, which is the
3427 * opposite of what the shader author wanted.
3428 *
3429 * This is legal due to ARB_gpu_shader5's quantization
3430 * rules:
3431 *
3432 * "Not all values of <offset> may be supported; x and y
3433 * offsets may be rounded to fixed-point values with the
3434 * number of fraction bits given by the
3435 * implementation-dependent constant
3436 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3437 */
3438 set_condmod(BRW_CONDITIONAL_L,
3439 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3440 }
3441
3442 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3443 emit_pixel_interpolater_send(bld,
3444 opcode,
3445 dest,
3446 src,
3447 brw_imm_ud(0u),
3448 interpolation);
3449 }
3450 break;
3451 }
3452
3453 case nir_intrinsic_load_interpolated_input: {
3454 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3455 emit_fragcoord_interpolation(dest);
3456 break;
3457 }
3458
3459 assert(instr->src[0].ssa &&
3460 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3461 nir_intrinsic_instr *bary_intrinsic =
3462 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3463 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3464 enum glsl_interp_mode interp_mode =
3465 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3466 fs_reg dst_xy;
3467
3468 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3469 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3470 /* Use the result of the PI message */
3471 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3472 } else {
3473 /* Use the delta_xy values computed from the payload */
3474 enum brw_barycentric_mode bary =
3475 brw_barycentric_mode(interp_mode, bary_intrin);
3476
3477 dst_xy = this->delta_xy[bary];
3478 }
3479
3480 for (unsigned int i = 0; i < instr->num_components; i++) {
3481 fs_reg interp =
3482 component(interp_reg(nir_intrinsic_base(instr),
3483 nir_intrinsic_component(instr) + i), 0);
3484 interp.type = BRW_REGISTER_TYPE_F;
3485 dest.type = BRW_REGISTER_TYPE_F;
3486
3487 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3488 fs_reg tmp = vgrf(glsl_type::float_type);
3489 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3490 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3491 } else {
3492 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3493 }
3494 }
3495 break;
3496 }
3497
3498 default:
3499 nir_emit_intrinsic(bld, instr);
3500 break;
3501 }
3502 }
3503
3504 static int
3505 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3506 {
3507 if (nir_src_is_const(instr->src[src])) {
3508 int64_t add_val = nir_src_as_int(instr->src[src]);
3509 if (add_val == 1)
3510 return BRW_AOP_INC;
3511 else if (add_val == -1)
3512 return BRW_AOP_DEC;
3513 }
3514
3515 return BRW_AOP_ADD;
3516 }
3517
3518 void
3519 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3520 nir_intrinsic_instr *instr)
3521 {
3522 assert(stage == MESA_SHADER_COMPUTE);
3523 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3524
3525 fs_reg dest;
3526 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3527 dest = get_nir_dest(instr->dest);
3528
3529 switch (instr->intrinsic) {
3530 case nir_intrinsic_barrier:
3531 emit_barrier();
3532 cs_prog_data->uses_barrier = true;
3533 break;
3534
3535 case nir_intrinsic_load_subgroup_id:
3536 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3537 break;
3538
3539 case nir_intrinsic_load_local_invocation_id:
3540 case nir_intrinsic_load_work_group_id: {
3541 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3542 fs_reg val = nir_system_values[sv];
3543 assert(val.file != BAD_FILE);
3544 dest.type = val.type;
3545 for (unsigned i = 0; i < 3; i++)
3546 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3547 break;
3548 }
3549
3550 case nir_intrinsic_load_num_work_groups: {
3551 const unsigned surface =
3552 cs_prog_data->binding_table.work_groups_start;
3553
3554 cs_prog_data->uses_num_work_groups = true;
3555
3556 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3557 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3558 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3559 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3560
3561 /* Read the 3 GLuint components of gl_NumWorkGroups */
3562 for (unsigned i = 0; i < 3; i++) {
3563 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3564 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3565 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3566 }
3567 break;
3568 }
3569
3570 case nir_intrinsic_shared_atomic_add:
3571 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3572 break;
3573 case nir_intrinsic_shared_atomic_imin:
3574 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3575 break;
3576 case nir_intrinsic_shared_atomic_umin:
3577 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3578 break;
3579 case nir_intrinsic_shared_atomic_imax:
3580 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3581 break;
3582 case nir_intrinsic_shared_atomic_umax:
3583 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3584 break;
3585 case nir_intrinsic_shared_atomic_and:
3586 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3587 break;
3588 case nir_intrinsic_shared_atomic_or:
3589 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3590 break;
3591 case nir_intrinsic_shared_atomic_xor:
3592 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3593 break;
3594 case nir_intrinsic_shared_atomic_exchange:
3595 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3596 break;
3597 case nir_intrinsic_shared_atomic_comp_swap:
3598 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3599 break;
3600 case nir_intrinsic_shared_atomic_fmin:
3601 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3602 break;
3603 case nir_intrinsic_shared_atomic_fmax:
3604 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3605 break;
3606 case nir_intrinsic_shared_atomic_fcomp_swap:
3607 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3608 break;
3609
3610 case nir_intrinsic_load_shared: {
3611 assert(devinfo->gen >= 7);
3612 assert(stage == MESA_SHADER_COMPUTE);
3613
3614 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3615 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3616 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3617 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3618 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3619
3620 /* Make dest unsigned because that's what the temporary will be */
3621 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3622
3623 /* Read the vector */
3624 if (nir_intrinsic_align(instr) >= 4) {
3625 assert(nir_dest_bit_size(instr->dest) == 32);
3626 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3627 fs_inst *inst =
3628 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3629 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3630 inst->size_written = instr->num_components * dispatch_width * 4;
3631 } else {
3632 assert(nir_dest_bit_size(instr->dest) <= 32);
3633 assert(nir_dest_num_components(instr->dest) == 1);
3634 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3635
3636 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3637 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3638 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3639 bld.MOV(dest, read_result);
3640 }
3641 break;
3642 }
3643
3644 case nir_intrinsic_store_shared: {
3645 assert(devinfo->gen >= 7);
3646 assert(stage == MESA_SHADER_COMPUTE);
3647
3648 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3649 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3650 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3651 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3652 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3653
3654 fs_reg data = get_nir_src(instr->src[0]);
3655 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3656
3657 assert(nir_intrinsic_write_mask(instr) ==
3658 (1u << instr->num_components) - 1);
3659 if (nir_intrinsic_align(instr) >= 4) {
3660 assert(nir_src_bit_size(instr->src[0]) == 32);
3661 assert(nir_src_num_components(instr->src[0]) <= 4);
3662 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3663 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3664 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3665 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3666 } else {
3667 assert(nir_src_bit_size(instr->src[0]) <= 32);
3668 assert(nir_src_num_components(instr->src[0]) == 1);
3669 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3670
3671 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3672 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3673
3674 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3675 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3676 }
3677 break;
3678 }
3679
3680 default:
3681 nir_emit_intrinsic(bld, instr);
3682 break;
3683 }
3684 }
3685
3686 static fs_reg
3687 brw_nir_reduction_op_identity(const fs_builder &bld,
3688 nir_op op, brw_reg_type type)
3689 {
3690 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3691 switch (type_sz(type)) {
3692 case 2:
3693 assert(type != BRW_REGISTER_TYPE_HF);
3694 return retype(brw_imm_uw(value.u16), type);
3695 case 4:
3696 return retype(brw_imm_ud(value.u32), type);
3697 case 8:
3698 if (type == BRW_REGISTER_TYPE_DF)
3699 return setup_imm_df(bld, value.f64);
3700 else
3701 return retype(brw_imm_u64(value.u64), type);
3702 default:
3703 unreachable("Invalid type size");
3704 }
3705 }
3706
3707 static opcode
3708 brw_op_for_nir_reduction_op(nir_op op)
3709 {
3710 switch (op) {
3711 case nir_op_iadd: return BRW_OPCODE_ADD;
3712 case nir_op_fadd: return BRW_OPCODE_ADD;
3713 case nir_op_imul: return BRW_OPCODE_MUL;
3714 case nir_op_fmul: return BRW_OPCODE_MUL;
3715 case nir_op_imin: return BRW_OPCODE_SEL;
3716 case nir_op_umin: return BRW_OPCODE_SEL;
3717 case nir_op_fmin: return BRW_OPCODE_SEL;
3718 case nir_op_imax: return BRW_OPCODE_SEL;
3719 case nir_op_umax: return BRW_OPCODE_SEL;
3720 case nir_op_fmax: return BRW_OPCODE_SEL;
3721 case nir_op_iand: return BRW_OPCODE_AND;
3722 case nir_op_ior: return BRW_OPCODE_OR;
3723 case nir_op_ixor: return BRW_OPCODE_XOR;
3724 default:
3725 unreachable("Invalid reduction operation");
3726 }
3727 }
3728
3729 static brw_conditional_mod
3730 brw_cond_mod_for_nir_reduction_op(nir_op op)
3731 {
3732 switch (op) {
3733 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3734 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3735 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3736 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3737 case nir_op_imin: return BRW_CONDITIONAL_L;
3738 case nir_op_umin: return BRW_CONDITIONAL_L;
3739 case nir_op_fmin: return BRW_CONDITIONAL_L;
3740 case nir_op_imax: return BRW_CONDITIONAL_GE;
3741 case nir_op_umax: return BRW_CONDITIONAL_GE;
3742 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3743 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3744 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3745 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3746 default:
3747 unreachable("Invalid reduction operation");
3748 }
3749 }
3750
3751 fs_reg
3752 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3753 nir_intrinsic_instr *instr)
3754 {
3755 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3756
3757 if (stage_prog_data->binding_table.image_start > 0) {
3758 if (image.file == BRW_IMMEDIATE_VALUE) {
3759 image.d += stage_prog_data->binding_table.image_start;
3760 } else {
3761 bld.ADD(image, image,
3762 brw_imm_d(stage_prog_data->binding_table.image_start));
3763 }
3764 }
3765
3766 return bld.emit_uniformize(image);
3767 }
3768
3769 fs_reg
3770 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3771 nir_intrinsic_instr *instr)
3772 {
3773 /* SSBO stores are weird in that their index is in src[1] */
3774 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3775
3776 fs_reg surf_index;
3777 if (nir_src_is_const(instr->src[src])) {
3778 unsigned index = stage_prog_data->binding_table.ssbo_start +
3779 nir_src_as_uint(instr->src[src]);
3780 surf_index = brw_imm_ud(index);
3781 } else {
3782 surf_index = vgrf(glsl_type::uint_type);
3783 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3784 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3785 }
3786
3787 return bld.emit_uniformize(surf_index);
3788 }
3789
3790 static unsigned
3791 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3792 {
3793 switch (nir_intrinsic_image_dim(instr)) {
3794 case GLSL_SAMPLER_DIM_1D:
3795 return 1 + nir_intrinsic_image_array(instr);
3796 case GLSL_SAMPLER_DIM_2D:
3797 case GLSL_SAMPLER_DIM_RECT:
3798 return 2 + nir_intrinsic_image_array(instr);
3799 case GLSL_SAMPLER_DIM_3D:
3800 case GLSL_SAMPLER_DIM_CUBE:
3801 return 3;
3802 case GLSL_SAMPLER_DIM_BUF:
3803 return 1;
3804 case GLSL_SAMPLER_DIM_MS:
3805 return 2 + nir_intrinsic_image_array(instr);
3806 default:
3807 unreachable("Invalid image dimension");
3808 }
3809 }
3810
3811 void
3812 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3813 {
3814 fs_reg dest;
3815 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3816 dest = get_nir_dest(instr->dest);
3817
3818 switch (instr->intrinsic) {
3819 case nir_intrinsic_image_load:
3820 case nir_intrinsic_image_store:
3821 case nir_intrinsic_image_atomic_add:
3822 case nir_intrinsic_image_atomic_min:
3823 case nir_intrinsic_image_atomic_max:
3824 case nir_intrinsic_image_atomic_and:
3825 case nir_intrinsic_image_atomic_or:
3826 case nir_intrinsic_image_atomic_xor:
3827 case nir_intrinsic_image_atomic_exchange:
3828 case nir_intrinsic_image_atomic_comp_swap: {
3829 if (stage == MESA_SHADER_FRAGMENT &&
3830 instr->intrinsic != nir_intrinsic_image_load)
3831 brw_wm_prog_data(prog_data)->has_side_effects = true;
3832
3833 /* Get some metadata from the image intrinsic. */
3834 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3835 const GLenum format = nir_intrinsic_format(instr);
3836
3837 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3838 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3839 get_nir_image_intrinsic_image(bld, instr);
3840 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3841 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
3842 brw_imm_ud(image_intrinsic_coord_components(instr));
3843
3844 /* Emit an image load, store or atomic op. */
3845 if (instr->intrinsic == nir_intrinsic_image_load) {
3846 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3847 fs_inst *inst =
3848 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
3849 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3850 inst->size_written = instr->num_components * dispatch_width * 4;
3851 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3852 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3853 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
3854 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
3855 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3856 } else {
3857 int op;
3858 unsigned num_srcs = info->num_srcs;
3859
3860 switch (instr->intrinsic) {
3861 case nir_intrinsic_image_atomic_add:
3862 assert(num_srcs == 4);
3863
3864 op = get_op_for_atomic_add(instr, 3);
3865
3866 if (op != BRW_AOP_ADD)
3867 num_srcs = 3;
3868 break;
3869 case nir_intrinsic_image_atomic_min:
3870 assert(format == GL_R32UI || format == GL_R32I);
3871 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3872 break;
3873 case nir_intrinsic_image_atomic_max:
3874 assert(format == GL_R32UI || format == GL_R32I);
3875 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3876 break;
3877 case nir_intrinsic_image_atomic_and:
3878 op = BRW_AOP_AND;
3879 break;
3880 case nir_intrinsic_image_atomic_or:
3881 op = BRW_AOP_OR;
3882 break;
3883 case nir_intrinsic_image_atomic_xor:
3884 op = BRW_AOP_XOR;
3885 break;
3886 case nir_intrinsic_image_atomic_exchange:
3887 op = BRW_AOP_MOV;
3888 break;
3889 case nir_intrinsic_image_atomic_comp_swap:
3890 op = BRW_AOP_CMPWR;
3891 break;
3892 default:
3893 unreachable("Not reachable.");
3894 }
3895
3896 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
3897
3898 fs_reg data;
3899 if (num_srcs >= 4)
3900 data = get_nir_src(instr->src[3]);
3901 if (num_srcs >= 5) {
3902 fs_reg tmp = bld.vgrf(data.type, 2);
3903 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
3904 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
3905 data = tmp;
3906 }
3907 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3908
3909 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
3910 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3911 }
3912 break;
3913 }
3914
3915 case nir_intrinsic_image_size: {
3916 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3917 * into will handle the binding table index for us in the geneerator.
3918 */
3919 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3920 BRW_REGISTER_TYPE_UD);
3921 image = bld.emit_uniformize(image);
3922
3923 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3924 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
3925 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
3926 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
3927 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
3928
3929 /* Since the image size is always uniform, we can just emit a SIMD8
3930 * query instruction and splat the result out.
3931 */
3932 const fs_builder ubld = bld.exec_all().group(8, 0);
3933
3934 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3935 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
3936 tmp, srcs, ARRAY_SIZE(srcs));
3937 inst->size_written = 4 * REG_SIZE;
3938
3939 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3940 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3941 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3942 offset(retype(dest, tmp.type), bld, c),
3943 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3944 } else {
3945 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3946 component(offset(tmp, ubld, c), 0));
3947 }
3948 }
3949 break;
3950 }
3951
3952 case nir_intrinsic_image_load_raw_intel: {
3953 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3954 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3955 get_nir_image_intrinsic_image(bld, instr);
3956 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3957 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3958 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3959
3960 fs_inst *inst =
3961 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3962 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3963 inst->size_written = instr->num_components * dispatch_width * 4;
3964 break;
3965 }
3966
3967 case nir_intrinsic_image_store_raw_intel: {
3968 if (stage == MESA_SHADER_FRAGMENT)
3969 brw_wm_prog_data(prog_data)->has_side_effects = true;
3970
3971 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3972 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3973 get_nir_image_intrinsic_image(bld, instr);
3974 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3975 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
3976 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3977 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3978
3979 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3980 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3981 break;
3982 }
3983
3984 case nir_intrinsic_group_memory_barrier:
3985 case nir_intrinsic_memory_barrier_shared:
3986 case nir_intrinsic_memory_barrier_atomic_counter:
3987 case nir_intrinsic_memory_barrier_buffer:
3988 case nir_intrinsic_memory_barrier_image:
3989 case nir_intrinsic_memory_barrier: {
3990 const fs_builder ubld = bld.group(8, 0);
3991 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3992 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3993 ->size_written = 2 * REG_SIZE;
3994 break;
3995 }
3996
3997 case nir_intrinsic_shader_clock: {
3998 /* We cannot do anything if there is an event, so ignore it for now */
3999 const fs_reg shader_clock = get_timestamp(bld);
4000 const fs_reg srcs[] = { component(shader_clock, 0),
4001 component(shader_clock, 1) };
4002 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4003 break;
4004 }
4005
4006 case nir_intrinsic_image_samples:
4007 /* The driver does not support multi-sampled images. */
4008 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4009 break;
4010
4011 case nir_intrinsic_load_uniform: {
4012 /* Offsets are in bytes but they should always aligned to
4013 * the type size
4014 */
4015 assert(instr->const_index[0] % 4 == 0 ||
4016 instr->const_index[0] % type_sz(dest.type) == 0);
4017
4018 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4019
4020 if (nir_src_is_const(instr->src[0])) {
4021 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4022 assert(load_offset % type_sz(dest.type) == 0);
4023 /* For 16-bit types we add the module of the const_index[0]
4024 * offset to access to not 32-bit aligned element
4025 */
4026 src.offset = load_offset + instr->const_index[0] % 4;
4027
4028 for (unsigned j = 0; j < instr->num_components; j++) {
4029 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4030 }
4031 } else {
4032 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4033 BRW_REGISTER_TYPE_UD);
4034
4035 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4036 * go past the end of the uniform. In order to keep the n'th
4037 * component from running past, we subtract off the size of all but
4038 * one component of the vector.
4039 */
4040 assert(instr->const_index[1] >=
4041 instr->num_components * (int) type_sz(dest.type));
4042 unsigned read_size = instr->const_index[1] -
4043 (instr->num_components - 1) * type_sz(dest.type);
4044
4045 bool supports_64bit_indirects =
4046 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4047
4048 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4049 for (unsigned j = 0; j < instr->num_components; j++) {
4050 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4051 offset(dest, bld, j), offset(src, bld, j),
4052 indirect, brw_imm_ud(read_size));
4053 }
4054 } else {
4055 const unsigned num_mov_indirects =
4056 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4057 /* We read a little bit less per MOV INDIRECT, as they are now
4058 * 32-bits ones instead of 64-bit. Fix read_size then.
4059 */
4060 const unsigned read_size_32bit = read_size -
4061 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4062 for (unsigned j = 0; j < instr->num_components; j++) {
4063 for (unsigned i = 0; i < num_mov_indirects; i++) {
4064 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4065 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4066 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4067 indirect, brw_imm_ud(read_size_32bit));
4068 }
4069 }
4070 }
4071 }
4072 break;
4073 }
4074
4075 case nir_intrinsic_load_ubo: {
4076 fs_reg surf_index;
4077 if (nir_src_is_const(instr->src[0])) {
4078 const unsigned index = stage_prog_data->binding_table.ubo_start +
4079 nir_src_as_uint(instr->src[0]);
4080 surf_index = brw_imm_ud(index);
4081 } else {
4082 /* The block index is not a constant. Evaluate the index expression
4083 * per-channel and add the base UBO index; we have to select a value
4084 * from any live channel.
4085 */
4086 surf_index = vgrf(glsl_type::uint_type);
4087 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4088 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4089 surf_index = bld.emit_uniformize(surf_index);
4090 }
4091
4092 if (!nir_src_is_const(instr->src[1])) {
4093 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4094 BRW_REGISTER_TYPE_UD);
4095
4096 for (int i = 0; i < instr->num_components; i++)
4097 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4098 base_offset, i * type_sz(dest.type));
4099 } else {
4100 /* Even if we are loading doubles, a pull constant load will load
4101 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4102 * need to load a full dvec4 we will have to emit 2 loads. This is
4103 * similar to demote_pull_constants(), except that in that case we
4104 * see individual accesses to each component of the vector and then
4105 * we let CSE deal with duplicate loads. Here we see a vector access
4106 * and we have to split it if necessary.
4107 */
4108 const unsigned type_size = type_sz(dest.type);
4109 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4110
4111 /* See if we've selected this as a push constant candidate */
4112 if (nir_src_is_const(instr->src[0])) {
4113 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4114 const unsigned offset_256b = load_offset / 32;
4115
4116 fs_reg push_reg;
4117 for (int i = 0; i < 4; i++) {
4118 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4119 if (range->block == ubo_block &&
4120 offset_256b >= range->start &&
4121 offset_256b < range->start + range->length) {
4122
4123 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4124 push_reg.offset = load_offset - 32 * range->start;
4125 break;
4126 }
4127 }
4128
4129 if (push_reg.file != BAD_FILE) {
4130 for (unsigned i = 0; i < instr->num_components; i++) {
4131 bld.MOV(offset(dest, bld, i),
4132 byte_offset(push_reg, i * type_size));
4133 }
4134 break;
4135 }
4136 }
4137
4138 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4139 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4140 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4141
4142 for (unsigned c = 0; c < instr->num_components;) {
4143 const unsigned base = load_offset + c * type_size;
4144 /* Number of usable components in the next block-aligned load. */
4145 const unsigned count = MIN2(instr->num_components - c,
4146 (block_sz - base % block_sz) / type_size);
4147
4148 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4149 packed_consts, surf_index,
4150 brw_imm_ud(base & ~(block_sz - 1)));
4151
4152 const fs_reg consts =
4153 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4154 dest.type);
4155
4156 for (unsigned d = 0; d < count; d++)
4157 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4158
4159 c += count;
4160 }
4161 }
4162 break;
4163 }
4164
4165 case nir_intrinsic_load_global: {
4166 assert(devinfo->gen >= 8);
4167
4168 if (nir_intrinsic_align(instr) >= 4) {
4169 assert(nir_dest_bit_size(instr->dest) == 32);
4170 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4171 dest,
4172 get_nir_src(instr->src[0]), /* Address */
4173 fs_reg(), /* No source data */
4174 brw_imm_ud(instr->num_components));
4175 inst->size_written = instr->num_components *
4176 inst->dst.component_size(inst->exec_size);
4177 } else {
4178 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4179 assert(bit_size <= 32);
4180 assert(nir_dest_num_components(instr->dest) == 1);
4181 brw_reg_type data_type =
4182 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4183 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4184 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4185 tmp,
4186 get_nir_src(instr->src[0]), /* Address */
4187 fs_reg(), /* No source data */
4188 brw_imm_ud(bit_size));
4189 bld.MOV(retype(dest, data_type), tmp);
4190 }
4191 break;
4192 }
4193
4194 case nir_intrinsic_store_global:
4195 assert(devinfo->gen >= 8);
4196
4197 if (stage == MESA_SHADER_FRAGMENT)
4198 brw_wm_prog_data(prog_data)->has_side_effects = true;
4199
4200 if (nir_intrinsic_align(instr) >= 4) {
4201 assert(nir_src_bit_size(instr->src[0]) == 32);
4202 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4203 fs_reg(),
4204 get_nir_src(instr->src[1]), /* Address */
4205 get_nir_src(instr->src[0]), /* Data */
4206 brw_imm_ud(instr->num_components));
4207 } else {
4208 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4209 assert(bit_size <= 32);
4210 assert(nir_src_num_components(instr->src[0]) == 1);
4211 brw_reg_type data_type =
4212 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4213 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4214 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4215 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4216 fs_reg(),
4217 get_nir_src(instr->src[1]), /* Address */
4218 tmp, /* Data */
4219 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4220 }
4221 break;
4222
4223 case nir_intrinsic_global_atomic_add:
4224 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4225 break;
4226 case nir_intrinsic_global_atomic_imin:
4227 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4228 break;
4229 case nir_intrinsic_global_atomic_umin:
4230 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4231 break;
4232 case nir_intrinsic_global_atomic_imax:
4233 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4234 break;
4235 case nir_intrinsic_global_atomic_umax:
4236 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4237 break;
4238 case nir_intrinsic_global_atomic_and:
4239 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4240 break;
4241 case nir_intrinsic_global_atomic_or:
4242 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4243 break;
4244 case nir_intrinsic_global_atomic_xor:
4245 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4246 break;
4247 case nir_intrinsic_global_atomic_exchange:
4248 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4249 break;
4250 case nir_intrinsic_global_atomic_comp_swap:
4251 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4252 break;
4253 case nir_intrinsic_global_atomic_fmin:
4254 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4255 break;
4256 case nir_intrinsic_global_atomic_fmax:
4257 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4258 break;
4259 case nir_intrinsic_global_atomic_fcomp_swap:
4260 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4261 break;
4262
4263 case nir_intrinsic_load_ssbo: {
4264 assert(devinfo->gen >= 7);
4265
4266 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4267 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4268 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4269 get_nir_ssbo_intrinsic_index(bld, instr);
4270 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4271 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4272
4273 /* Make dest unsigned because that's what the temporary will be */
4274 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4275
4276 /* Read the vector */
4277 if (nir_intrinsic_align(instr) >= 4) {
4278 assert(nir_dest_bit_size(instr->dest) == 32);
4279 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4280 fs_inst *inst =
4281 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4282 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4283 inst->size_written = instr->num_components * dispatch_width * 4;
4284 } else {
4285 assert(nir_dest_bit_size(instr->dest) <= 32);
4286 assert(nir_dest_num_components(instr->dest) == 1);
4287 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4288
4289 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4290 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4291 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4292 bld.MOV(dest, read_result);
4293 }
4294 break;
4295 }
4296
4297 case nir_intrinsic_store_ssbo: {
4298 assert(devinfo->gen >= 7);
4299
4300 if (stage == MESA_SHADER_FRAGMENT)
4301 brw_wm_prog_data(prog_data)->has_side_effects = true;
4302
4303 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4304 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4305 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4306 get_nir_ssbo_intrinsic_index(bld, instr);
4307 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4308 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4309
4310 fs_reg data = get_nir_src(instr->src[0]);
4311 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4312
4313 assert(nir_intrinsic_write_mask(instr) ==
4314 (1u << instr->num_components) - 1);
4315 if (nir_intrinsic_align(instr) >= 4) {
4316 assert(nir_src_bit_size(instr->src[0]) == 32);
4317 assert(nir_src_num_components(instr->src[0]) <= 4);
4318 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4319 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4320 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4321 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4322 } else {
4323 assert(nir_src_bit_size(instr->src[0]) <= 32);
4324 assert(nir_src_num_components(instr->src[0]) == 1);
4325 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4326
4327 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4328 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4329
4330 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4331 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4332 }
4333 break;
4334 }
4335
4336 case nir_intrinsic_store_output: {
4337 fs_reg src = get_nir_src(instr->src[0]);
4338
4339 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4340 unsigned num_components = instr->num_components;
4341 unsigned first_component = nir_intrinsic_component(instr);
4342 if (nir_src_bit_size(instr->src[0]) == 64) {
4343 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4344 num_components *= 2;
4345 }
4346
4347 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4348 4 * store_offset), src.type);
4349 for (unsigned j = 0; j < num_components; j++) {
4350 bld.MOV(offset(new_dest, bld, j + first_component),
4351 offset(src, bld, j));
4352 }
4353 break;
4354 }
4355
4356 case nir_intrinsic_ssbo_atomic_add:
4357 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4358 break;
4359 case nir_intrinsic_ssbo_atomic_imin:
4360 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4361 break;
4362 case nir_intrinsic_ssbo_atomic_umin:
4363 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4364 break;
4365 case nir_intrinsic_ssbo_atomic_imax:
4366 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4367 break;
4368 case nir_intrinsic_ssbo_atomic_umax:
4369 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4370 break;
4371 case nir_intrinsic_ssbo_atomic_and:
4372 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4373 break;
4374 case nir_intrinsic_ssbo_atomic_or:
4375 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4376 break;
4377 case nir_intrinsic_ssbo_atomic_xor:
4378 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4379 break;
4380 case nir_intrinsic_ssbo_atomic_exchange:
4381 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4382 break;
4383 case nir_intrinsic_ssbo_atomic_comp_swap:
4384 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4385 break;
4386 case nir_intrinsic_ssbo_atomic_fmin:
4387 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4388 break;
4389 case nir_intrinsic_ssbo_atomic_fmax:
4390 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4391 break;
4392 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4393 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4394 break;
4395
4396 case nir_intrinsic_get_buffer_size: {
4397 assert(nir_src_num_components(instr->src[0]) == 1);
4398 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4399 nir_src_as_uint(instr->src[0]) : 0;
4400
4401 /* A resinfo's sampler message is used to get the buffer size. The
4402 * SIMD8's writeback message consists of four registers and SIMD16's
4403 * writeback message consists of 8 destination registers (two per each
4404 * component). Because we are only interested on the first channel of
4405 * the first returned component, where resinfo returns the buffer size
4406 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4407 * the dispatch width.
4408 */
4409 const fs_builder ubld = bld.exec_all().group(8, 0);
4410 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4411 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4412
4413 /* Set LOD = 0 */
4414 ubld.MOV(src_payload, brw_imm_d(0));
4415
4416 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4417 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4418 src_payload, brw_imm_ud(index));
4419 inst->header_size = 0;
4420 inst->mlen = 1;
4421 inst->size_written = 4 * REG_SIZE;
4422
4423 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4424 *
4425 * "Out-of-bounds checking is always performed at a DWord granularity. If
4426 * any part of the DWord is out-of-bounds then the whole DWord is
4427 * considered out-of-bounds."
4428 *
4429 * This implies that types with size smaller than 4-bytes need to be
4430 * padded if they don't complete the last dword of the buffer. But as we
4431 * need to maintain the original size we need to reverse the padding
4432 * calculation to return the correct size to know the number of elements
4433 * of an unsized array. As we stored in the last two bits of the surface
4434 * size the needed padding for the buffer, we calculate here the
4435 * original buffer_size reversing the surface_size calculation:
4436 *
4437 * surface_size = isl_align(buffer_size, 4) +
4438 * (isl_align(buffer_size) - buffer_size)
4439 *
4440 * buffer_size = surface_size & ~3 - surface_size & 3
4441 */
4442
4443 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4444 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4445 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4446
4447 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4448 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4449 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4450
4451 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4452 break;
4453 }
4454
4455 case nir_intrinsic_load_subgroup_invocation:
4456 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4457 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4458 break;
4459
4460 case nir_intrinsic_load_subgroup_eq_mask:
4461 case nir_intrinsic_load_subgroup_ge_mask:
4462 case nir_intrinsic_load_subgroup_gt_mask:
4463 case nir_intrinsic_load_subgroup_le_mask:
4464 case nir_intrinsic_load_subgroup_lt_mask:
4465 unreachable("not reached");
4466
4467 case nir_intrinsic_vote_any: {
4468 const fs_builder ubld = bld.exec_all().group(1, 0);
4469
4470 /* The any/all predicates do not consider channel enables. To prevent
4471 * dead channels from affecting the result, we initialize the flag with
4472 * with the identity value for the logical operation.
4473 */
4474 if (dispatch_width == 32) {
4475 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4476 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4477 brw_imm_ud(0));
4478 } else {
4479 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4480 }
4481 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4482
4483 /* For some reason, the any/all predicates don't work properly with
4484 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4485 * doesn't read the correct subset of the flag register and you end up
4486 * getting garbage in the second half. Work around this by using a pair
4487 * of 1-wide MOVs and scattering the result.
4488 */
4489 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4490 ubld.MOV(res1, brw_imm_d(0));
4491 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4492 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4493 BRW_PREDICATE_ALIGN1_ANY32H,
4494 ubld.MOV(res1, brw_imm_d(-1)));
4495
4496 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4497 break;
4498 }
4499 case nir_intrinsic_vote_all: {
4500 const fs_builder ubld = bld.exec_all().group(1, 0);
4501
4502 /* The any/all predicates do not consider channel enables. To prevent
4503 * dead channels from affecting the result, we initialize the flag with
4504 * with the identity value for the logical operation.
4505 */
4506 if (dispatch_width == 32) {
4507 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4508 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4509 brw_imm_ud(0xffffffff));
4510 } else {
4511 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4512 }
4513 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4514
4515 /* For some reason, the any/all predicates don't work properly with
4516 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4517 * doesn't read the correct subset of the flag register and you end up
4518 * getting garbage in the second half. Work around this by using a pair
4519 * of 1-wide MOVs and scattering the result.
4520 */
4521 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4522 ubld.MOV(res1, brw_imm_d(0));
4523 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4524 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4525 BRW_PREDICATE_ALIGN1_ALL32H,
4526 ubld.MOV(res1, brw_imm_d(-1)));
4527
4528 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4529 break;
4530 }
4531 case nir_intrinsic_vote_feq:
4532 case nir_intrinsic_vote_ieq: {
4533 fs_reg value = get_nir_src(instr->src[0]);
4534 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4535 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4536 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4537 }
4538
4539 fs_reg uniformized = bld.emit_uniformize(value);
4540 const fs_builder ubld = bld.exec_all().group(1, 0);
4541
4542 /* The any/all predicates do not consider channel enables. To prevent
4543 * dead channels from affecting the result, we initialize the flag with
4544 * with the identity value for the logical operation.
4545 */
4546 if (dispatch_width == 32) {
4547 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4548 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4549 brw_imm_ud(0xffffffff));
4550 } else {
4551 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4552 }
4553 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4554
4555 /* For some reason, the any/all predicates don't work properly with
4556 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4557 * doesn't read the correct subset of the flag register and you end up
4558 * getting garbage in the second half. Work around this by using a pair
4559 * of 1-wide MOVs and scattering the result.
4560 */
4561 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4562 ubld.MOV(res1, brw_imm_d(0));
4563 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4564 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4565 BRW_PREDICATE_ALIGN1_ALL32H,
4566 ubld.MOV(res1, brw_imm_d(-1)));
4567
4568 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4569 break;
4570 }
4571
4572 case nir_intrinsic_ballot: {
4573 const fs_reg value = retype(get_nir_src(instr->src[0]),
4574 BRW_REGISTER_TYPE_UD);
4575 struct brw_reg flag = brw_flag_reg(0, 0);
4576 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4577 * as f0.0. This is a problem for fragment programs as we currently use
4578 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4579 * programs yet so this isn't a problem. When we do, something will
4580 * have to change.
4581 */
4582 if (dispatch_width == 32)
4583 flag.type = BRW_REGISTER_TYPE_UD;
4584
4585 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4586 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4587
4588 if (instr->dest.ssa.bit_size > 32) {
4589 dest.type = BRW_REGISTER_TYPE_UQ;
4590 } else {
4591 dest.type = BRW_REGISTER_TYPE_UD;
4592 }
4593 bld.MOV(dest, flag);
4594 break;
4595 }
4596
4597 case nir_intrinsic_read_invocation: {
4598 const fs_reg value = get_nir_src(instr->src[0]);
4599 const fs_reg invocation = get_nir_src(instr->src[1]);
4600 fs_reg tmp = bld.vgrf(value.type);
4601
4602 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4603 bld.emit_uniformize(invocation));
4604
4605 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4606 break;
4607 }
4608
4609 case nir_intrinsic_read_first_invocation: {
4610 const fs_reg value = get_nir_src(instr->src[0]);
4611 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4612 break;
4613 }
4614
4615 case nir_intrinsic_shuffle: {
4616 const fs_reg value = get_nir_src(instr->src[0]);
4617 const fs_reg index = get_nir_src(instr->src[1]);
4618
4619 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4620 break;
4621 }
4622
4623 case nir_intrinsic_first_invocation: {
4624 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4625 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4626 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4627 fs_reg(component(tmp, 0)));
4628 break;
4629 }
4630
4631 case nir_intrinsic_quad_broadcast: {
4632 const fs_reg value = get_nir_src(instr->src[0]);
4633 const unsigned index = nir_src_as_uint(instr->src[1]);
4634
4635 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4636 value, brw_imm_ud(index), brw_imm_ud(4));
4637 break;
4638 }
4639
4640 case nir_intrinsic_quad_swap_horizontal: {
4641 const fs_reg value = get_nir_src(instr->src[0]);
4642 const fs_reg tmp = bld.vgrf(value.type);
4643 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4644
4645 const fs_reg src_left = horiz_stride(value, 2);
4646 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4647 const fs_reg tmp_left = horiz_stride(tmp, 2);
4648 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4649
4650 ubld.MOV(tmp_left, src_right);
4651 ubld.MOV(tmp_right, src_left);
4652
4653 bld.MOV(retype(dest, value.type), tmp);
4654 break;
4655 }
4656
4657 case nir_intrinsic_quad_swap_vertical: {
4658 const fs_reg value = get_nir_src(instr->src[0]);
4659 if (nir_src_bit_size(instr->src[0]) == 32) {
4660 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4661 const fs_reg tmp = bld.vgrf(value.type);
4662 const fs_builder ubld = bld.exec_all();
4663 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4664 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4665 bld.MOV(retype(dest, value.type), tmp);
4666 } else {
4667 /* For larger data types, we have to either emit dispatch_width many
4668 * MOVs or else fall back to doing indirects.
4669 */
4670 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4671 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4672 brw_imm_w(0x2));
4673 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4674 }
4675 break;
4676 }
4677
4678 case nir_intrinsic_quad_swap_diagonal: {
4679 const fs_reg value = get_nir_src(instr->src[0]);
4680 if (nir_src_bit_size(instr->src[0]) == 32) {
4681 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4682 const fs_reg tmp = bld.vgrf(value.type);
4683 const fs_builder ubld = bld.exec_all();
4684 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4685 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4686 bld.MOV(retype(dest, value.type), tmp);
4687 } else {
4688 /* For larger data types, we have to either emit dispatch_width many
4689 * MOVs or else fall back to doing indirects.
4690 */
4691 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4692 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4693 brw_imm_w(0x3));
4694 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4695 }
4696 break;
4697 }
4698
4699 case nir_intrinsic_reduce: {
4700 fs_reg src = get_nir_src(instr->src[0]);
4701 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4702 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4703 if (cluster_size == 0 || cluster_size > dispatch_width)
4704 cluster_size = dispatch_width;
4705
4706 /* Figure out the source type */
4707 src.type = brw_type_for_nir_type(devinfo,
4708 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4709 nir_src_bit_size(instr->src[0])));
4710
4711 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4712 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4713 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4714
4715 /* Set up a register for all of our scratching around and initialize it
4716 * to reduction operation's identity value.
4717 */
4718 fs_reg scan = bld.vgrf(src.type);
4719 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4720
4721 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4722
4723 dest.type = src.type;
4724 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4725 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4726 * the distance between clusters is at least 2 GRFs. In this case,
4727 * we don't need the weird striding of the CLUSTER_BROADCAST
4728 * instruction and can just do regular MOVs.
4729 */
4730 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4731 const unsigned groups =
4732 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4733 const unsigned group_size = dispatch_width / groups;
4734 for (unsigned i = 0; i < groups; i++) {
4735 const unsigned cluster = (i * group_size) / cluster_size;
4736 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4737 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4738 component(scan, comp));
4739 }
4740 } else {
4741 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4742 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4743 }
4744 break;
4745 }
4746
4747 case nir_intrinsic_inclusive_scan:
4748 case nir_intrinsic_exclusive_scan: {
4749 fs_reg src = get_nir_src(instr->src[0]);
4750 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4751
4752 /* Figure out the source type */
4753 src.type = brw_type_for_nir_type(devinfo,
4754 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4755 nir_src_bit_size(instr->src[0])));
4756
4757 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4758 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4759 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4760
4761 /* Set up a register for all of our scratching around and initialize it
4762 * to reduction operation's identity value.
4763 */
4764 fs_reg scan = bld.vgrf(src.type);
4765 const fs_builder allbld = bld.exec_all();
4766 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4767
4768 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4769 /* Exclusive scan is a bit harder because we have to do an annoying
4770 * shift of the contents before we can begin. To make things worse,
4771 * we can't do this with a normal stride; we have to use indirects.
4772 */
4773 fs_reg shifted = bld.vgrf(src.type);
4774 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4775 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4776 brw_imm_w(-1));
4777 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4778 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4779 scan = shifted;
4780 }
4781
4782 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4783
4784 bld.MOV(retype(dest, src.type), scan);
4785 break;
4786 }
4787
4788 case nir_intrinsic_begin_invocation_interlock: {
4789 const fs_builder ubld = bld.group(8, 0);
4790 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4791
4792 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4793 REG_SIZE;
4794
4795 break;
4796 }
4797
4798 case nir_intrinsic_end_invocation_interlock: {
4799 /* We don't need to do anything here */
4800 break;
4801 }
4802
4803 default:
4804 unreachable("unknown intrinsic");
4805 }
4806 }
4807
4808 void
4809 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4810 int op, nir_intrinsic_instr *instr)
4811 {
4812 if (stage == MESA_SHADER_FRAGMENT)
4813 brw_wm_prog_data(prog_data)->has_side_effects = true;
4814
4815 fs_reg dest;
4816 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4817 dest = get_nir_dest(instr->dest);
4818
4819 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4820 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4821 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4822 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4823 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4824
4825 fs_reg data;
4826 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4827 data = get_nir_src(instr->src[2]);
4828
4829 if (op == BRW_AOP_CMPWR) {
4830 fs_reg tmp = bld.vgrf(data.type, 2);
4831 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4832 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4833 data = tmp;
4834 }
4835 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4836
4837 /* Emit the actual atomic operation */
4838
4839 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4840 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4841 }
4842
4843 void
4844 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4845 int op, nir_intrinsic_instr *instr)
4846 {
4847 if (stage == MESA_SHADER_FRAGMENT)
4848 brw_wm_prog_data(prog_data)->has_side_effects = true;
4849
4850 fs_reg dest;
4851 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4852 dest = get_nir_dest(instr->dest);
4853
4854 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4855 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4856 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4857 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4858 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4859
4860 fs_reg data = get_nir_src(instr->src[2]);
4861 if (op == BRW_AOP_FCMPWR) {
4862 fs_reg tmp = bld.vgrf(data.type, 2);
4863 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4864 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4865 data = tmp;
4866 }
4867 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4868
4869 /* Emit the actual atomic operation */
4870
4871 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4872 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4873 }
4874
4875 void
4876 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4877 int op, nir_intrinsic_instr *instr)
4878 {
4879 fs_reg dest;
4880 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4881 dest = get_nir_dest(instr->dest);
4882
4883 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4884 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4885 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4886 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4887
4888 fs_reg data;
4889 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4890 data = get_nir_src(instr->src[1]);
4891 if (op == BRW_AOP_CMPWR) {
4892 fs_reg tmp = bld.vgrf(data.type, 2);
4893 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4894 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4895 data = tmp;
4896 }
4897 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4898
4899 /* Get the offset */
4900 if (nir_src_is_const(instr->src[0])) {
4901 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4902 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4903 } else {
4904 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4905 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4906 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4907 brw_imm_ud(instr->const_index[0]));
4908 }
4909
4910 /* Emit the actual atomic operation operation */
4911
4912 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4913 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4914 }
4915
4916 void
4917 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4918 int op, nir_intrinsic_instr *instr)
4919 {
4920 fs_reg dest;
4921 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4922 dest = get_nir_dest(instr->dest);
4923
4924 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4925 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4926 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4927 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4928
4929 fs_reg data = get_nir_src(instr->src[1]);
4930 if (op == BRW_AOP_FCMPWR) {
4931 fs_reg tmp = bld.vgrf(data.type, 2);
4932 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4933 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4934 data = tmp;
4935 }
4936 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4937
4938 /* Get the offset */
4939 if (nir_src_is_const(instr->src[0])) {
4940 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4941 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4942 } else {
4943 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4944 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4945 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4946 brw_imm_ud(instr->const_index[0]));
4947 }
4948
4949 /* Emit the actual atomic operation operation */
4950
4951 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4952 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4953 }
4954
4955 void
4956 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
4957 int op, nir_intrinsic_instr *instr)
4958 {
4959 if (stage == MESA_SHADER_FRAGMENT)
4960 brw_wm_prog_data(prog_data)->has_side_effects = true;
4961
4962 fs_reg dest;
4963 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4964 dest = get_nir_dest(instr->dest);
4965
4966 fs_reg addr = get_nir_src(instr->src[0]);
4967
4968 fs_reg data;
4969 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4970 data = get_nir_src(instr->src[1]);
4971
4972 if (op == BRW_AOP_CMPWR) {
4973 fs_reg tmp = bld.vgrf(data.type, 2);
4974 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4975 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4976 data = tmp;
4977 }
4978
4979 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4980 dest, addr, data, brw_imm_ud(op));
4981 }
4982
4983 void
4984 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
4985 int op, nir_intrinsic_instr *instr)
4986 {
4987 if (stage == MESA_SHADER_FRAGMENT)
4988 brw_wm_prog_data(prog_data)->has_side_effects = true;
4989
4990 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
4991 fs_reg dest = get_nir_dest(instr->dest);
4992
4993 fs_reg addr = get_nir_src(instr->src[0]);
4994
4995 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
4996 fs_reg data = get_nir_src(instr->src[1]);
4997
4998 if (op == BRW_AOP_FCMPWR) {
4999 fs_reg tmp = bld.vgrf(data.type, 2);
5000 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5001 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5002 data = tmp;
5003 }
5004
5005 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5006 dest, addr, data, brw_imm_ud(op));
5007 }
5008
5009 void
5010 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5011 {
5012 unsigned texture = instr->texture_index;
5013 unsigned sampler = instr->sampler_index;
5014
5015 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5016
5017 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5018 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5019
5020 int lod_components = 0;
5021
5022 /* The hardware requires a LOD for buffer textures */
5023 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5024 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5025
5026 uint32_t header_bits = 0;
5027 for (unsigned i = 0; i < instr->num_srcs; i++) {
5028 fs_reg src = get_nir_src(instr->src[i].src);
5029 switch (instr->src[i].src_type) {
5030 case nir_tex_src_bias:
5031 srcs[TEX_LOGICAL_SRC_LOD] =
5032 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5033 break;
5034 case nir_tex_src_comparator:
5035 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5036 break;
5037 case nir_tex_src_coord:
5038 switch (instr->op) {
5039 case nir_texop_txf:
5040 case nir_texop_txf_ms:
5041 case nir_texop_txf_ms_mcs:
5042 case nir_texop_samples_identical:
5043 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5044 break;
5045 default:
5046 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5047 break;
5048 }
5049 break;
5050 case nir_tex_src_ddx:
5051 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5052 lod_components = nir_tex_instr_src_size(instr, i);
5053 break;
5054 case nir_tex_src_ddy:
5055 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5056 break;
5057 case nir_tex_src_lod:
5058 switch (instr->op) {
5059 case nir_texop_txs:
5060 srcs[TEX_LOGICAL_SRC_LOD] =
5061 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5062 break;
5063 case nir_texop_txf:
5064 srcs[TEX_LOGICAL_SRC_LOD] =
5065 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5066 break;
5067 default:
5068 srcs[TEX_LOGICAL_SRC_LOD] =
5069 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5070 break;
5071 }
5072 break;
5073 case nir_tex_src_min_lod:
5074 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5075 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5076 break;
5077 case nir_tex_src_ms_index:
5078 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5079 break;
5080
5081 case nir_tex_src_offset: {
5082 uint32_t offset_bits = 0;
5083 if (brw_texture_offset(instr, i, &offset_bits)) {
5084 header_bits |= offset_bits;
5085 } else {
5086 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5087 retype(src, BRW_REGISTER_TYPE_D);
5088 }
5089 break;
5090 }
5091
5092 case nir_tex_src_projector:
5093 unreachable("should be lowered");
5094
5095 case nir_tex_src_texture_offset: {
5096 /* Emit code to evaluate the actual indexing expression */
5097 fs_reg tmp = vgrf(glsl_type::uint_type);
5098 bld.ADD(tmp, src, brw_imm_ud(texture));
5099 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5100 break;
5101 }
5102
5103 case nir_tex_src_sampler_offset: {
5104 /* Emit code to evaluate the actual indexing expression */
5105 fs_reg tmp = vgrf(glsl_type::uint_type);
5106 bld.ADD(tmp, src, brw_imm_ud(sampler));
5107 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5108 break;
5109 }
5110
5111 case nir_tex_src_ms_mcs:
5112 assert(instr->op == nir_texop_txf_ms);
5113 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5114 break;
5115
5116 case nir_tex_src_plane: {
5117 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5118 const uint32_t texture_index =
5119 instr->texture_index +
5120 stage_prog_data->binding_table.plane_start[plane] -
5121 stage_prog_data->binding_table.texture_start;
5122
5123 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5124 break;
5125 }
5126
5127 default:
5128 unreachable("unknown texture source");
5129 }
5130 }
5131
5132 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5133 (instr->op == nir_texop_txf_ms ||
5134 instr->op == nir_texop_samples_identical)) {
5135 if (devinfo->gen >= 7 &&
5136 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5137 srcs[TEX_LOGICAL_SRC_MCS] =
5138 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5139 instr->coord_components,
5140 srcs[TEX_LOGICAL_SRC_SURFACE]);
5141 } else {
5142 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5143 }
5144 }
5145
5146 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5147 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5148
5149 bool shader_supports_implicit_lod = stage == MESA_SHADER_FRAGMENT ||
5150 (stage == MESA_SHADER_COMPUTE &&
5151 nir->info.cs.derivative_group != DERIVATIVE_GROUP_NONE);
5152
5153 enum opcode opcode;
5154 switch (instr->op) {
5155 case nir_texop_tex:
5156 opcode = shader_supports_implicit_lod ?
5157 SHADER_OPCODE_TEX_LOGICAL : SHADER_OPCODE_TXL_LOGICAL;
5158 break;
5159 case nir_texop_txb:
5160 opcode = FS_OPCODE_TXB_LOGICAL;
5161 break;
5162 case nir_texop_txl:
5163 opcode = SHADER_OPCODE_TXL_LOGICAL;
5164 break;
5165 case nir_texop_txd:
5166 opcode = SHADER_OPCODE_TXD_LOGICAL;
5167 break;
5168 case nir_texop_txf:
5169 opcode = SHADER_OPCODE_TXF_LOGICAL;
5170 break;
5171 case nir_texop_txf_ms:
5172 if ((key_tex->msaa_16 & (1 << sampler)))
5173 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5174 else
5175 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5176 break;
5177 case nir_texop_txf_ms_mcs:
5178 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5179 break;
5180 case nir_texop_query_levels:
5181 case nir_texop_txs:
5182 opcode = SHADER_OPCODE_TXS_LOGICAL;
5183 break;
5184 case nir_texop_lod:
5185 opcode = SHADER_OPCODE_LOD_LOGICAL;
5186 break;
5187 case nir_texop_tg4:
5188 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5189 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5190 else
5191 opcode = SHADER_OPCODE_TG4_LOGICAL;
5192 break;
5193 case nir_texop_texture_samples:
5194 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5195 break;
5196 case nir_texop_samples_identical: {
5197 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5198
5199 /* If mcs is an immediate value, it means there is no MCS. In that case
5200 * just return false.
5201 */
5202 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5203 bld.MOV(dst, brw_imm_ud(0u));
5204 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5205 fs_reg tmp = vgrf(glsl_type::uint_type);
5206 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5207 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5208 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5209 } else {
5210 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5211 BRW_CONDITIONAL_EQ);
5212 }
5213 return;
5214 }
5215 default:
5216 unreachable("unknown texture opcode");
5217 }
5218
5219 if (instr->op == nir_texop_tg4) {
5220 if (instr->component == 1 &&
5221 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5222 /* gather4 sampler is broken for green channel on RG32F --
5223 * we must ask for blue instead.
5224 */
5225 header_bits |= 2 << 16;
5226 } else {
5227 header_bits |= instr->component << 16;
5228 }
5229 }
5230
5231 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5232 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5233 inst->offset = header_bits;
5234
5235 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5236 if (devinfo->gen >= 9 &&
5237 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5238 unsigned write_mask = instr->dest.is_ssa ?
5239 nir_ssa_def_components_read(&instr->dest.ssa):
5240 (1 << dest_size) - 1;
5241 assert(write_mask != 0); /* dead code should have been eliminated */
5242 inst->size_written = util_last_bit(write_mask) *
5243 inst->dst.component_size(inst->exec_size);
5244 } else {
5245 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5246 }
5247
5248 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5249 inst->shadow_compare = true;
5250
5251 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5252 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5253
5254 fs_reg nir_dest[4];
5255 for (unsigned i = 0; i < dest_size; i++)
5256 nir_dest[i] = offset(dst, bld, i);
5257
5258 if (instr->op == nir_texop_query_levels) {
5259 /* # levels is in .w */
5260 nir_dest[0] = offset(dst, bld, 3);
5261 } else if (instr->op == nir_texop_txs &&
5262 dest_size >= 3 && devinfo->gen < 7) {
5263 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5264 fs_reg depth = offset(dst, bld, 2);
5265 nir_dest[2] = vgrf(glsl_type::int_type);
5266 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5267 }
5268
5269 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5270 }
5271
5272 void
5273 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5274 {
5275 switch (instr->type) {
5276 case nir_jump_break:
5277 bld.emit(BRW_OPCODE_BREAK);
5278 break;
5279 case nir_jump_continue:
5280 bld.emit(BRW_OPCODE_CONTINUE);
5281 break;
5282 case nir_jump_return:
5283 default:
5284 unreachable("unknown jump");
5285 }
5286 }
5287
5288 /*
5289 * This helper takes a source register and un/shuffles it into the destination
5290 * register.
5291 *
5292 * If source type size is smaller than destination type size the operation
5293 * needed is a component shuffle. The opposite case would be an unshuffle. If
5294 * source/destination type size is equal a shuffle is done that would be
5295 * equivalent to a simple MOV.
5296 *
5297 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5298 * components .xyz 16-bit vector on SIMD8 would be.
5299 *
5300 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5301 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5302 *
5303 * This helper will return the following 2 32-bit components with the 16-bit
5304 * values shuffled:
5305 *
5306 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5307 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5308 *
5309 * For unshuffle, the example would be the opposite, a 64-bit type source
5310 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5311 * would be:
5312 *
5313 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5314 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5315 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5316 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5317 *
5318 * The returned result would be the following 4 32-bit components unshuffled:
5319 *
5320 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5321 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5322 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5323 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5324 *
5325 * - Source and destination register must not be overlapped.
5326 * - components units are measured in terms of the smaller type between
5327 * source and destination because we are un/shuffling the smaller
5328 * components from/into the bigger ones.
5329 * - first_component parameter allows skipping source components.
5330 */
5331 void
5332 shuffle_src_to_dst(const fs_builder &bld,
5333 const fs_reg &dst,
5334 const fs_reg &src,
5335 uint32_t first_component,
5336 uint32_t components)
5337 {
5338 if (type_sz(src.type) == type_sz(dst.type)) {
5339 assert(!regions_overlap(dst,
5340 type_sz(dst.type) * bld.dispatch_width() * components,
5341 offset(src, bld, first_component),
5342 type_sz(src.type) * bld.dispatch_width() * components));
5343 for (unsigned i = 0; i < components; i++) {
5344 bld.MOV(retype(offset(dst, bld, i), src.type),
5345 offset(src, bld, i + first_component));
5346 }
5347 } else if (type_sz(src.type) < type_sz(dst.type)) {
5348 /* Source is shuffled into destination */
5349 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5350 assert(!regions_overlap(dst,
5351 type_sz(dst.type) * bld.dispatch_width() *
5352 DIV_ROUND_UP(components, size_ratio),
5353 offset(src, bld, first_component),
5354 type_sz(src.type) * bld.dispatch_width() * components));
5355
5356 brw_reg_type shuffle_type =
5357 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5358 BRW_REGISTER_TYPE_D);
5359 for (unsigned i = 0; i < components; i++) {
5360 fs_reg shuffle_component_i =
5361 subscript(offset(dst, bld, i / size_ratio),
5362 shuffle_type, i % size_ratio);
5363 bld.MOV(shuffle_component_i,
5364 retype(offset(src, bld, i + first_component), shuffle_type));
5365 }
5366 } else {
5367 /* Source is unshuffled into destination */
5368 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5369 assert(!regions_overlap(dst,
5370 type_sz(dst.type) * bld.dispatch_width() * components,
5371 offset(src, bld, first_component / size_ratio),
5372 type_sz(src.type) * bld.dispatch_width() *
5373 DIV_ROUND_UP(components + (first_component % size_ratio),
5374 size_ratio)));
5375
5376 brw_reg_type shuffle_type =
5377 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5378 BRW_REGISTER_TYPE_D);
5379 for (unsigned i = 0; i < components; i++) {
5380 fs_reg shuffle_component_i =
5381 subscript(offset(src, bld, (first_component + i) / size_ratio),
5382 shuffle_type, (first_component + i) % size_ratio);
5383 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5384 shuffle_component_i);
5385 }
5386 }
5387 }
5388
5389 void
5390 shuffle_from_32bit_read(const fs_builder &bld,
5391 const fs_reg &dst,
5392 const fs_reg &src,
5393 uint32_t first_component,
5394 uint32_t components)
5395 {
5396 assert(type_sz(src.type) == 4);
5397
5398 /* This function takes components in units of the destination type while
5399 * shuffle_src_to_dst takes components in units of the smallest type
5400 */
5401 if (type_sz(dst.type) > 4) {
5402 assert(type_sz(dst.type) == 8);
5403 first_component *= 2;
5404 components *= 2;
5405 }
5406
5407 shuffle_src_to_dst(bld, dst, src, first_component, components);
5408 }
5409
5410 fs_reg
5411 shuffle_for_32bit_write(const fs_builder &bld,
5412 const fs_reg &src,
5413 uint32_t first_component,
5414 uint32_t components)
5415 {
5416 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5417 DIV_ROUND_UP (components * type_sz(src.type), 4));
5418 /* This function takes components in units of the source type while
5419 * shuffle_src_to_dst takes components in units of the smallest type
5420 */
5421 if (type_sz(src.type) > 4) {
5422 assert(type_sz(src.type) == 8);
5423 first_component *= 2;
5424 components *= 2;
5425 }
5426
5427 shuffle_src_to_dst(bld, dst, src, first_component, components);
5428
5429 return dst;
5430 }
5431
5432 fs_reg
5433 setup_imm_df(const fs_builder &bld, double v)
5434 {
5435 const struct gen_device_info *devinfo = bld.shader->devinfo;
5436 assert(devinfo->gen >= 7);
5437
5438 if (devinfo->gen >= 8)
5439 return brw_imm_df(v);
5440
5441 /* gen7.5 does not support DF immediates straighforward but the DIM
5442 * instruction allows to set the 64-bit immediate value.
5443 */
5444 if (devinfo->is_haswell) {
5445 const fs_builder ubld = bld.exec_all().group(1, 0);
5446 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5447 ubld.DIM(dst, brw_imm_df(v));
5448 return component(dst, 0);
5449 }
5450
5451 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5452 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5453 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5454 *
5455 * Alternatively, we could also produce a normal VGRF (without stride 0)
5456 * by writing to all the channels in the VGRF, however, that would hit the
5457 * gen7 bug where we have to split writes that span more than 1 register
5458 * into instructions with a width of 4 (otherwise the write to the second
5459 * register written runs into an execmask hardware bug) which isn't very
5460 * nice.
5461 */
5462 union {
5463 double d;
5464 struct {
5465 uint32_t i1;
5466 uint32_t i2;
5467 };
5468 } di;
5469
5470 di.d = v;
5471
5472 const fs_builder ubld = bld.exec_all().group(1, 0);
5473 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5474 ubld.MOV(tmp, brw_imm_ud(di.i1));
5475 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5476
5477 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5478 }
5479
5480 fs_reg
5481 setup_imm_b(const fs_builder &bld, int8_t v)
5482 {
5483 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5484 bld.MOV(tmp, brw_imm_w(v));
5485 return tmp;
5486 }
5487
5488 fs_reg
5489 setup_imm_ub(const fs_builder &bld, uint8_t v)
5490 {
5491 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5492 bld.MOV(tmp, brw_imm_uw(v));
5493 return tmp;
5494 }