5b37f4dc382806446e907e75b80eee2b8317c2ae
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "brw_eu.h"
28 #include "nir_search_helpers.h"
29 #include "util/u_math.h"
30 #include "util/bitscan.h"
31
32 using namespace brw;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 emit_shader_float_controls_execution_mode();
38
39 /* emit the arrays used for inputs and outputs - load/store intrinsics will
40 * be converted to reads/writes of these arrays
41 */
42 nir_setup_outputs();
43 nir_setup_uniforms();
44 nir_emit_system_values();
45
46 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
47 }
48
49 void
50 fs_visitor::nir_setup_outputs()
51 {
52 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
53 return;
54
55 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
56
57 /* Calculate the size of output registers in a separate pass, before
58 * allocating them. With ARB_enhanced_layouts, multiple output variables
59 * may occupy the same slot, but have different type sizes.
60 */
61 nir_foreach_variable(var, &nir->outputs) {
62 const int loc = var->data.driver_location;
63 const unsigned var_vec4s =
64 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
65 : type_size_vec4(var->type, true);
66 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
67 }
68
69 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
70 if (vec4s[loc] == 0) {
71 loc++;
72 continue;
73 }
74
75 unsigned reg_size = vec4s[loc];
76
77 /* Check if there are any ranges that start within this range and extend
78 * past it. If so, include them in this allocation.
79 */
80 for (unsigned i = 1; i < reg_size; i++)
81 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
82
83 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
84 for (unsigned i = 0; i < reg_size; i++)
85 outputs[loc + i] = offset(reg, bld, 4 * i);
86
87 loc += reg_size;
88 }
89 }
90
91 void
92 fs_visitor::nir_setup_uniforms()
93 {
94 /* Only the first compile gets to set up uniforms. */
95 if (push_constant_loc) {
96 assert(pull_constant_loc);
97 return;
98 }
99
100 uniforms = nir->num_uniforms / 4;
101
102 if (stage == MESA_SHADER_COMPUTE) {
103 /* Add a uniform for the thread local id. It must be the last uniform
104 * on the list.
105 */
106 assert(uniforms == prog_data->nr_params);
107 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
108 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
109 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
110 }
111 }
112
113 static bool
114 emit_system_values_block(nir_block *block, fs_visitor *v)
115 {
116 fs_reg *reg;
117
118 nir_foreach_instr(instr, block) {
119 if (instr->type != nir_instr_type_intrinsic)
120 continue;
121
122 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
123 switch (intrin->intrinsic) {
124 case nir_intrinsic_load_vertex_id:
125 case nir_intrinsic_load_base_vertex:
126 unreachable("should be lowered by nir_lower_system_values().");
127
128 case nir_intrinsic_load_vertex_id_zero_base:
129 case nir_intrinsic_load_is_indexed_draw:
130 case nir_intrinsic_load_first_vertex:
131 case nir_intrinsic_load_instance_id:
132 case nir_intrinsic_load_base_instance:
133 case nir_intrinsic_load_draw_id:
134 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
135
136 case nir_intrinsic_load_invocation_id:
137 if (v->stage == MESA_SHADER_TESS_CTRL)
138 break;
139 assert(v->stage == MESA_SHADER_GEOMETRY);
140 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
141 if (reg->file == BAD_FILE) {
142 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
143 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
144 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
145 abld.SHR(iid, g1, brw_imm_ud(27u));
146 *reg = iid;
147 }
148 break;
149
150 case nir_intrinsic_load_sample_pos:
151 assert(v->stage == MESA_SHADER_FRAGMENT);
152 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
153 if (reg->file == BAD_FILE)
154 *reg = *v->emit_samplepos_setup();
155 break;
156
157 case nir_intrinsic_load_sample_id:
158 assert(v->stage == MESA_SHADER_FRAGMENT);
159 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
160 if (reg->file == BAD_FILE)
161 *reg = *v->emit_sampleid_setup();
162 break;
163
164 case nir_intrinsic_load_sample_mask_in:
165 assert(v->stage == MESA_SHADER_FRAGMENT);
166 assert(v->devinfo->gen >= 7);
167 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
168 if (reg->file == BAD_FILE)
169 *reg = *v->emit_samplemaskin_setup();
170 break;
171
172 case nir_intrinsic_load_work_group_id:
173 assert(v->stage == MESA_SHADER_COMPUTE);
174 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
175 if (reg->file == BAD_FILE)
176 *reg = *v->emit_cs_work_group_id_setup();
177 break;
178
179 case nir_intrinsic_load_helper_invocation:
180 assert(v->stage == MESA_SHADER_FRAGMENT);
181 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
182 if (reg->file == BAD_FILE) {
183 const fs_builder abld =
184 v->bld.annotate("gl_HelperInvocation", NULL);
185
186 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
187 * pixel mask is in g1.7 of the thread payload.
188 *
189 * We move the per-channel pixel enable bit to the low bit of each
190 * channel by shifting the byte containing the pixel mask by the
191 * vector immediate 0x76543210UV.
192 *
193 * The region of <1,8,0> reads only 1 byte (the pixel masks for
194 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
195 * masks for 2 and 3) in SIMD16.
196 */
197 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
198
199 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
200 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
201 hbld.SHR(offset(shifted, hbld, i),
202 stride(retype(brw_vec1_grf(1 + i, 7),
203 BRW_REGISTER_TYPE_UB),
204 1, 8, 0),
205 brw_imm_v(0x76543210));
206 }
207
208 /* A set bit in the pixel mask means the channel is enabled, but
209 * that is the opposite of gl_HelperInvocation so we need to invert
210 * the mask.
211 *
212 * The negate source-modifier bit of logical instructions on Gen8+
213 * performs 1's complement negation, so we can use that instead of
214 * a NOT instruction.
215 */
216 fs_reg inverted = negate(shifted);
217 if (v->devinfo->gen < 8) {
218 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
219 abld.NOT(inverted, shifted);
220 }
221
222 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
223 * with 1 and negating.
224 */
225 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
226 abld.AND(anded, inverted, brw_imm_uw(1));
227
228 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
229 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
230 *reg = dst;
231 }
232 break;
233
234 default:
235 break;
236 }
237 }
238
239 return true;
240 }
241
242 void
243 fs_visitor::nir_emit_system_values()
244 {
245 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
246 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
247 nir_system_values[i] = fs_reg();
248 }
249
250 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
251 * never end up using it.
252 */
253 {
254 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
255 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
256 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
257
258 const fs_builder allbld8 = abld.group(8, 0).exec_all();
259 allbld8.MOV(reg, brw_imm_v(0x76543210));
260 if (dispatch_width > 8)
261 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
262 if (dispatch_width > 16) {
263 const fs_builder allbld16 = abld.group(16, 0).exec_all();
264 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
265 }
266 }
267
268 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
269 nir_foreach_block(block, impl)
270 emit_system_values_block(block, this);
271 }
272
273 /*
274 * Returns a type based on a reference_type (word, float, half-float) and a
275 * given bit_size.
276 *
277 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
278 *
279 * @FIXME: 64-bit return types are always DF on integer types to maintain
280 * compability with uses of DF previously to the introduction of int64
281 * support.
282 */
283 static brw_reg_type
284 brw_reg_type_from_bit_size(const unsigned bit_size,
285 const brw_reg_type reference_type)
286 {
287 switch(reference_type) {
288 case BRW_REGISTER_TYPE_HF:
289 case BRW_REGISTER_TYPE_F:
290 case BRW_REGISTER_TYPE_DF:
291 switch(bit_size) {
292 case 16:
293 return BRW_REGISTER_TYPE_HF;
294 case 32:
295 return BRW_REGISTER_TYPE_F;
296 case 64:
297 return BRW_REGISTER_TYPE_DF;
298 default:
299 unreachable("Invalid bit size");
300 }
301 case BRW_REGISTER_TYPE_B:
302 case BRW_REGISTER_TYPE_W:
303 case BRW_REGISTER_TYPE_D:
304 case BRW_REGISTER_TYPE_Q:
305 switch(bit_size) {
306 case 8:
307 return BRW_REGISTER_TYPE_B;
308 case 16:
309 return BRW_REGISTER_TYPE_W;
310 case 32:
311 return BRW_REGISTER_TYPE_D;
312 case 64:
313 return BRW_REGISTER_TYPE_Q;
314 default:
315 unreachable("Invalid bit size");
316 }
317 case BRW_REGISTER_TYPE_UB:
318 case BRW_REGISTER_TYPE_UW:
319 case BRW_REGISTER_TYPE_UD:
320 case BRW_REGISTER_TYPE_UQ:
321 switch(bit_size) {
322 case 8:
323 return BRW_REGISTER_TYPE_UB;
324 case 16:
325 return BRW_REGISTER_TYPE_UW;
326 case 32:
327 return BRW_REGISTER_TYPE_UD;
328 case 64:
329 return BRW_REGISTER_TYPE_UQ;
330 default:
331 unreachable("Invalid bit size");
332 }
333 default:
334 unreachable("Unknown type");
335 }
336 }
337
338 void
339 fs_visitor::nir_emit_impl(nir_function_impl *impl)
340 {
341 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
342 for (unsigned i = 0; i < impl->reg_alloc; i++) {
343 nir_locals[i] = fs_reg();
344 }
345
346 foreach_list_typed(nir_register, reg, node, &impl->registers) {
347 unsigned array_elems =
348 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
349 unsigned size = array_elems * reg->num_components;
350 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
351 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
352 nir_locals[reg->index] = bld.vgrf(reg_type, size);
353 }
354
355 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
356 impl->ssa_alloc);
357
358 nir_emit_cf_list(&impl->body);
359 }
360
361 void
362 fs_visitor::nir_emit_cf_list(exec_list *list)
363 {
364 exec_list_validate(list);
365 foreach_list_typed(nir_cf_node, node, node, list) {
366 switch (node->type) {
367 case nir_cf_node_if:
368 nir_emit_if(nir_cf_node_as_if(node));
369 break;
370
371 case nir_cf_node_loop:
372 nir_emit_loop(nir_cf_node_as_loop(node));
373 break;
374
375 case nir_cf_node_block:
376 nir_emit_block(nir_cf_node_as_block(node));
377 break;
378
379 default:
380 unreachable("Invalid CFG node block");
381 }
382 }
383 }
384
385 void
386 fs_visitor::nir_emit_if(nir_if *if_stmt)
387 {
388 bool invert;
389 fs_reg cond_reg;
390
391 /* If the condition has the form !other_condition, use other_condition as
392 * the source, but invert the predicate on the if instruction.
393 */
394 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
395 if (cond != NULL && cond->op == nir_op_inot) {
396 assert(!cond->src[0].negate);
397 assert(!cond->src[0].abs);
398
399 invert = true;
400 cond_reg = get_nir_src(cond->src[0].src);
401 } else {
402 invert = false;
403 cond_reg = get_nir_src(if_stmt->condition);
404 }
405
406 /* first, put the condition into f0 */
407 fs_inst *inst = bld.MOV(bld.null_reg_d(),
408 retype(cond_reg, BRW_REGISTER_TYPE_D));
409 inst->conditional_mod = BRW_CONDITIONAL_NZ;
410
411 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
412
413 nir_emit_cf_list(&if_stmt->then_list);
414
415 if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
416 bld.emit(BRW_OPCODE_ELSE);
417 nir_emit_cf_list(&if_stmt->else_list);
418 }
419
420 bld.emit(BRW_OPCODE_ENDIF);
421
422 if (devinfo->gen < 7)
423 limit_dispatch_width(16, "Non-uniform control flow unsupported "
424 "in SIMD32 mode.");
425 }
426
427 void
428 fs_visitor::nir_emit_loop(nir_loop *loop)
429 {
430 bld.emit(BRW_OPCODE_DO);
431
432 nir_emit_cf_list(&loop->body);
433
434 bld.emit(BRW_OPCODE_WHILE);
435
436 if (devinfo->gen < 7)
437 limit_dispatch_width(16, "Non-uniform control flow unsupported "
438 "in SIMD32 mode.");
439 }
440
441 void
442 fs_visitor::nir_emit_block(nir_block *block)
443 {
444 nir_foreach_instr(instr, block) {
445 nir_emit_instr(instr);
446 }
447 }
448
449 void
450 fs_visitor::nir_emit_instr(nir_instr *instr)
451 {
452 const fs_builder abld = bld.annotate(NULL, instr);
453
454 switch (instr->type) {
455 case nir_instr_type_alu:
456 nir_emit_alu(abld, nir_instr_as_alu(instr), true);
457 break;
458
459 case nir_instr_type_deref:
460 unreachable("All derefs should've been lowered");
461 break;
462
463 case nir_instr_type_intrinsic:
464 switch (stage) {
465 case MESA_SHADER_VERTEX:
466 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_TESS_CTRL:
469 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 case MESA_SHADER_TESS_EVAL:
472 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
473 break;
474 case MESA_SHADER_GEOMETRY:
475 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
476 break;
477 case MESA_SHADER_FRAGMENT:
478 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
479 break;
480 case MESA_SHADER_COMPUTE:
481 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
482 break;
483 default:
484 unreachable("unsupported shader stage");
485 }
486 break;
487
488 case nir_instr_type_tex:
489 nir_emit_texture(abld, nir_instr_as_tex(instr));
490 break;
491
492 case nir_instr_type_load_const:
493 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
494 break;
495
496 case nir_instr_type_ssa_undef:
497 /* We create a new VGRF for undefs on every use (by handling
498 * them in get_nir_src()), rather than for each definition.
499 * This helps register coalescing eliminate MOVs from undef.
500 */
501 break;
502
503 case nir_instr_type_jump:
504 nir_emit_jump(abld, nir_instr_as_jump(instr));
505 break;
506
507 default:
508 unreachable("unknown instruction type");
509 }
510 }
511
512 /**
513 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
514 * match instr.
515 */
516 bool
517 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
518 const fs_reg &result)
519 {
520 if (!instr->src[0].src.is_ssa ||
521 !instr->src[0].src.ssa->parent_instr)
522 return false;
523
524 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
525 return false;
526
527 nir_alu_instr *src0 =
528 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
529
530 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
531 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
532 return false;
533
534 /* If either opcode has source modifiers, bail.
535 *
536 * TODO: We can potentially handle source modifiers if both of the opcodes
537 * we're combining are signed integers.
538 */
539 if (instr->src[0].abs || instr->src[0].negate ||
540 src0->src[0].abs || src0->src[0].negate)
541 return false;
542
543 unsigned element = nir_src_as_uint(src0->src[1].src);
544
545 /* Element type to extract.*/
546 const brw_reg_type type = brw_int_type(
547 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
548 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
549
550 fs_reg op0 = get_nir_src(src0->src[0].src);
551 op0.type = brw_type_for_nir_type(devinfo,
552 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
553 nir_src_bit_size(src0->src[0].src)));
554 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
555
556 set_saturate(instr->dest.saturate,
557 bld.MOV(result, subscript(op0, type, element)));
558 return true;
559 }
560
561 bool
562 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
563 const fs_reg &result)
564 {
565 nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
566 if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
567 return false;
568
569 if (!nir_src_is_const(instr->src[1].src) ||
570 !nir_src_is_const(instr->src[2].src))
571 return false;
572
573 const float value1 = nir_src_as_float(instr->src[1].src);
574 const float value2 = nir_src_as_float(instr->src[2].src);
575 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
576 return false;
577
578 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
579 assert(value1 == -value2);
580
581 fs_reg tmp = vgrf(glsl_type::int_type);
582
583 if (devinfo->gen >= 6) {
584 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
585 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
586
587 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
588 *
589 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
590 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
591 *
592 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
593 *
594 * This negation looks like it's safe in practice, because bits 0:4 will
595 * surely be TRIANGLES
596 */
597
598 if (value1 == -1.0f) {
599 g0.negate = true;
600 }
601
602 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
603 g0, brw_imm_uw(0x3f80));
604 } else {
605 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
606 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
607
608 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
609 *
610 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
611 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
612 *
613 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
614 *
615 * This negation looks like it's safe in practice, because bits 0:4 will
616 * surely be TRIANGLES
617 */
618
619 if (value1 == -1.0f) {
620 g1_6.negate = true;
621 }
622
623 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
624 }
625 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
626
627 return true;
628 }
629
630 static void
631 emit_find_msb_using_lzd(const fs_builder &bld,
632 const fs_reg &result,
633 const fs_reg &src,
634 bool is_signed)
635 {
636 fs_inst *inst;
637 fs_reg temp = src;
638
639 if (is_signed) {
640 /* LZD of an absolute value source almost always does the right
641 * thing. There are two problem values:
642 *
643 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
644 * 0. However, findMSB(int(0x80000000)) == 30.
645 *
646 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
647 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
648 *
649 * For a value of zero or negative one, -1 will be returned.
650 *
651 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
652 * findMSB(-(1<<x)) should return x-1.
653 *
654 * For all negative number cases, including 0x80000000 and
655 * 0xffffffff, the correct value is obtained from LZD if instead of
656 * negating the (already negative) value the logical-not is used. A
657 * conditonal logical-not can be achieved in two instructions.
658 */
659 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
660
661 bld.ASR(temp, src, brw_imm_d(31));
662 bld.XOR(temp, temp, src);
663 }
664
665 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
666 retype(temp, BRW_REGISTER_TYPE_UD));
667
668 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
669 * from the LSB side. Subtract the result from 31 to convert the MSB
670 * count into an LSB count. If no bits are set, LZD will return 32.
671 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
672 */
673 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
674 inst->src[0].negate = true;
675 }
676
677 static brw_rnd_mode
678 brw_rnd_mode_from_nir_op (const nir_op op) {
679 switch (op) {
680 case nir_op_f2f16_rtz:
681 return BRW_RND_MODE_RTZ;
682 case nir_op_f2f16_rtne:
683 return BRW_RND_MODE_RTNE;
684 default:
685 unreachable("Operation doesn't support rounding mode");
686 }
687 }
688
689 static brw_rnd_mode
690 brw_rnd_mode_from_execution_mode(unsigned execution_mode)
691 {
692 if (nir_has_any_rounding_mode_rtne(execution_mode))
693 return BRW_RND_MODE_RTNE;
694 if (nir_has_any_rounding_mode_rtz(execution_mode))
695 return BRW_RND_MODE_RTZ;
696 return BRW_RND_MODE_UNSPECIFIED;
697 }
698
699 fs_reg
700 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
701 nir_alu_instr *instr,
702 fs_reg *op,
703 bool need_dest)
704 {
705 fs_reg result =
706 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
707
708 result.type = brw_type_for_nir_type(devinfo,
709 (nir_alu_type)(nir_op_infos[instr->op].output_type |
710 nir_dest_bit_size(instr->dest.dest)));
711
712 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
713 op[i] = get_nir_src(instr->src[i].src);
714 op[i].type = brw_type_for_nir_type(devinfo,
715 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
716 nir_src_bit_size(instr->src[i].src)));
717 op[i].abs = instr->src[i].abs;
718 op[i].negate = instr->src[i].negate;
719 }
720
721 /* Move and vecN instrutions may still be vectored. Return the raw,
722 * vectored source and destination so that fs_visitor::nir_emit_alu can
723 * handle it. Other callers should not have to handle these kinds of
724 * instructions.
725 */
726 switch (instr->op) {
727 case nir_op_mov:
728 case nir_op_vec2:
729 case nir_op_vec3:
730 case nir_op_vec4:
731 return result;
732 default:
733 break;
734 }
735
736 /* At this point, we have dealt with any instruction that operates on
737 * more than a single channel. Therefore, we can just adjust the source
738 * and destination registers for that channel and emit the instruction.
739 */
740 unsigned channel = 0;
741 if (nir_op_infos[instr->op].output_size == 0) {
742 /* Since NIR is doing the scalarizing for us, we should only ever see
743 * vectorized operations with a single channel.
744 */
745 assert(util_bitcount(instr->dest.write_mask) == 1);
746 channel = ffs(instr->dest.write_mask) - 1;
747
748 result = offset(result, bld, channel);
749 }
750
751 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
752 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
753 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
754 }
755
756 return result;
757 }
758
759 void
760 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
761 fs_reg *op)
762 {
763 for (unsigned i = 0; i < 2; i++) {
764 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
765
766 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
767 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
768 /* The source of the inot is now the source of instr. */
769 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
770
771 assert(!op[i].negate);
772 op[i].negate = true;
773 } else {
774 op[i] = resolve_source_modifiers(op[i]);
775 }
776 }
777 }
778
779 bool
780 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
781 fs_reg result,
782 nir_alu_instr *instr)
783 {
784 if (devinfo->gen < 6 || devinfo->gen >= 12)
785 return false;
786
787 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
788
789 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
790 return false;
791
792 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
793 * of valid size-changing combinations is a bit more complex.
794 *
795 * The source restriction is just because I was lazy about generating the
796 * constant below.
797 */
798 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
799 nir_src_bit_size(inot_instr->src[0].src) != 32)
800 return false;
801
802 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
803 * this is float(1 + a).
804 */
805 fs_reg op;
806
807 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
808
809 /* Ignore the saturate modifier, if there is one. The result of the
810 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
811 */
812 bld.ADD(result, op, brw_imm_d(1));
813
814 return true;
815 }
816
817 /**
818 * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
819 *
820 * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
821 * the source of \c instr that is a \c nir_op_fsign.
822 */
823 void
824 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
825 fs_reg result, fs_reg *op, unsigned fsign_src)
826 {
827 fs_inst *inst;
828
829 assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
830 assert(fsign_src < nir_op_infos[instr->op].num_inputs);
831
832 if (instr->op != nir_op_fsign) {
833 const nir_alu_instr *const fsign_instr =
834 nir_src_as_alu_instr(instr->src[fsign_src].src);
835
836 assert(!fsign_instr->dest.saturate);
837
838 /* op[fsign_src] has the nominal result of the fsign, and op[1 -
839 * fsign_src] has the other multiply source. This must be rearranged so
840 * that op[0] is the source of the fsign op[1] is the other multiply
841 * source.
842 */
843 if (fsign_src != 0)
844 op[1] = op[0];
845
846 op[0] = get_nir_src(fsign_instr->src[0].src);
847
848 const nir_alu_type t =
849 (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
850 nir_src_bit_size(fsign_instr->src[0].src));
851
852 op[0].type = brw_type_for_nir_type(devinfo, t);
853 op[0].abs = fsign_instr->src[0].abs;
854 op[0].negate = fsign_instr->src[0].negate;
855
856 unsigned channel = 0;
857 if (nir_op_infos[instr->op].output_size == 0) {
858 /* Since NIR is doing the scalarizing for us, we should only ever see
859 * vectorized operations with a single channel.
860 */
861 assert(util_bitcount(instr->dest.write_mask) == 1);
862 channel = ffs(instr->dest.write_mask) - 1;
863 }
864
865 op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
866 } else {
867 assert(!instr->dest.saturate);
868 }
869
870 if (op[0].abs) {
871 /* Straightforward since the source can be assumed to be either strictly
872 * >= 0 or strictly <= 0 depending on the setting of the negate flag.
873 */
874 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
875
876 if (instr->op == nir_op_fsign) {
877 inst = (op[0].negate)
878 ? bld.MOV(result, brw_imm_f(-1.0f))
879 : bld.MOV(result, brw_imm_f(1.0f));
880 } else {
881 op[1].negate = (op[0].negate != op[1].negate);
882 inst = bld.MOV(result, op[1]);
883 }
884
885 set_predicate(BRW_PREDICATE_NORMAL, inst);
886 } else if (type_sz(op[0].type) == 2) {
887 /* AND(val, 0x8000) gives the sign bit.
888 *
889 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
890 */
891 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
892 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
893
894 op[0].type = BRW_REGISTER_TYPE_UW;
895 result.type = BRW_REGISTER_TYPE_UW;
896 bld.AND(result, op[0], brw_imm_uw(0x8000u));
897
898 if (instr->op == nir_op_fsign)
899 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
900 else {
901 /* Use XOR here to get the result sign correct. */
902 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
903 }
904
905 inst->predicate = BRW_PREDICATE_NORMAL;
906 } else if (type_sz(op[0].type) == 4) {
907 /* AND(val, 0x80000000) gives the sign bit.
908 *
909 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
910 * zero.
911 */
912 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
913
914 op[0].type = BRW_REGISTER_TYPE_UD;
915 result.type = BRW_REGISTER_TYPE_UD;
916 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
917
918 if (instr->op == nir_op_fsign)
919 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
920 else {
921 /* Use XOR here to get the result sign correct. */
922 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
923 }
924
925 inst->predicate = BRW_PREDICATE_NORMAL;
926 } else {
927 /* For doubles we do the same but we need to consider:
928 *
929 * - 2-src instructions can't operate with 64-bit immediates
930 * - The sign is encoded in the high 32-bit of each DF
931 * - We need to produce a DF result.
932 */
933
934 fs_reg zero = vgrf(glsl_type::double_type);
935 bld.MOV(zero, setup_imm_df(bld, 0.0));
936 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
937
938 bld.MOV(result, zero);
939
940 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
941 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
942 brw_imm_ud(0x80000000u));
943
944 if (instr->op == nir_op_fsign) {
945 set_predicate(BRW_PREDICATE_NORMAL,
946 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
947 } else {
948 /* This could be done better in some cases. If the scale is an
949 * immediate with the low 32-bits all 0, emitting a separate XOR and
950 * OR would allow an algebraic optimization to remove the OR. There
951 * are currently zero instances of fsign(double(x))*IMM in shader-db
952 * or any test suite, so it is hard to care at this time.
953 */
954 fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
955 inst = bld.XOR(result_int64, result_int64,
956 retype(op[1], BRW_REGISTER_TYPE_UQ));
957 }
958 }
959 }
960
961 /**
962 * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
963 *
964 * Checks the operands of a \c nir_op_fmul to determine whether or not
965 * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
966 *
967 * \param instr The multiplication instruction
968 *
969 * \param fsign_src The source of \c instr that may or may not be a
970 * \c nir_op_fsign
971 */
972 static bool
973 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
974 {
975 assert(instr->op == nir_op_fmul);
976
977 nir_alu_instr *const fsign_instr =
978 nir_src_as_alu_instr(instr->src[fsign_src].src);
979
980 /* Rules:
981 *
982 * 1. instr->src[fsign_src] must be a nir_op_fsign.
983 * 2. The nir_op_fsign can only be used by this multiplication.
984 * 3. The source that is the nir_op_fsign does not have source modifiers.
985 * \c emit_fsign only examines the source modifiers of the source of the
986 * \c nir_op_fsign.
987 *
988 * The nir_op_fsign must also not have the saturate modifier, but steps
989 * have already been taken (in nir_opt_algebraic) to ensure that.
990 */
991 return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
992 is_used_once(fsign_instr) &&
993 !instr->src[fsign_src].abs && !instr->src[fsign_src].negate;
994 }
995
996 void
997 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
998 bool need_dest)
999 {
1000 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
1001 fs_inst *inst;
1002 unsigned execution_mode =
1003 bld.shader->nir->info.float_controls_execution_mode;
1004
1005 fs_reg op[4];
1006 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
1007
1008 switch (instr->op) {
1009 case nir_op_mov:
1010 case nir_op_vec2:
1011 case nir_op_vec3:
1012 case nir_op_vec4: {
1013 fs_reg temp = result;
1014 bool need_extra_copy = false;
1015 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1016 if (!instr->src[i].src.is_ssa &&
1017 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1018 need_extra_copy = true;
1019 temp = bld.vgrf(result.type, 4);
1020 break;
1021 }
1022 }
1023
1024 for (unsigned i = 0; i < 4; i++) {
1025 if (!(instr->dest.write_mask & (1 << i)))
1026 continue;
1027
1028 if (instr->op == nir_op_mov) {
1029 inst = bld.MOV(offset(temp, bld, i),
1030 offset(op[0], bld, instr->src[0].swizzle[i]));
1031 } else {
1032 inst = bld.MOV(offset(temp, bld, i),
1033 offset(op[i], bld, instr->src[i].swizzle[0]));
1034 }
1035 inst->saturate = instr->dest.saturate;
1036 }
1037
1038 /* In this case the source and destination registers were the same,
1039 * so we need to insert an extra set of moves in order to deal with
1040 * any swizzling.
1041 */
1042 if (need_extra_copy) {
1043 for (unsigned i = 0; i < 4; i++) {
1044 if (!(instr->dest.write_mask & (1 << i)))
1045 continue;
1046
1047 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1048 }
1049 }
1050 return;
1051 }
1052
1053 case nir_op_i2f32:
1054 case nir_op_u2f32:
1055 if (optimize_extract_to_float(instr, result))
1056 return;
1057 inst = bld.MOV(result, op[0]);
1058 inst->saturate = instr->dest.saturate;
1059 break;
1060
1061 case nir_op_f2f16_rtne:
1062 case nir_op_f2f16_rtz:
1063 case nir_op_f2f16: {
1064 brw_rnd_mode rnd = BRW_RND_MODE_UNSPECIFIED;
1065
1066 if (nir_op_f2f16 == instr->op)
1067 rnd = brw_rnd_mode_from_execution_mode(execution_mode);
1068 else
1069 rnd = brw_rnd_mode_from_nir_op(instr->op);
1070
1071 if (BRW_RND_MODE_UNSPECIFIED != rnd)
1072 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd));
1073
1074 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1075 * on the HW gen, it is a special hw opcode or just a MOV, and
1076 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1077 *
1078 * But if we want to use that opcode, we need to provide support on
1079 * different optimizations and lowerings. As right now HF support is
1080 * only for gen8+, it will be better to use directly the MOV, and use
1081 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
1082 */
1083 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1084 inst = bld.MOV(result, op[0]);
1085 inst->saturate = instr->dest.saturate;
1086 break;
1087 }
1088
1089 case nir_op_b2i8:
1090 case nir_op_b2i16:
1091 case nir_op_b2i32:
1092 case nir_op_b2i64:
1093 case nir_op_b2f16:
1094 case nir_op_b2f32:
1095 case nir_op_b2f64:
1096 if (try_emit_b2fi_of_inot(bld, result, instr))
1097 break;
1098 op[0].type = BRW_REGISTER_TYPE_D;
1099 op[0].negate = !op[0].negate;
1100 /* fallthrough */
1101 case nir_op_i2f64:
1102 case nir_op_i2i64:
1103 case nir_op_u2f64:
1104 case nir_op_u2u64:
1105 case nir_op_f2f64:
1106 case nir_op_f2i64:
1107 case nir_op_f2u64:
1108 case nir_op_i2i32:
1109 case nir_op_u2u32:
1110 case nir_op_f2i32:
1111 case nir_op_f2u32:
1112 case nir_op_i2f16:
1113 case nir_op_i2i16:
1114 case nir_op_u2f16:
1115 case nir_op_u2u16:
1116 case nir_op_f2i16:
1117 case nir_op_f2u16:
1118 case nir_op_i2i8:
1119 case nir_op_u2u8:
1120 case nir_op_f2i8:
1121 case nir_op_f2u8:
1122 if (result.type == BRW_REGISTER_TYPE_B ||
1123 result.type == BRW_REGISTER_TYPE_UB ||
1124 result.type == BRW_REGISTER_TYPE_HF)
1125 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1126
1127 if (op[0].type == BRW_REGISTER_TYPE_B ||
1128 op[0].type == BRW_REGISTER_TYPE_UB ||
1129 op[0].type == BRW_REGISTER_TYPE_HF)
1130 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1131
1132 inst = bld.MOV(result, op[0]);
1133 inst->saturate = instr->dest.saturate;
1134 break;
1135
1136 case nir_op_fsat:
1137 inst = bld.MOV(result, op[0]);
1138 inst->saturate = true;
1139 break;
1140
1141 case nir_op_fneg:
1142 case nir_op_ineg:
1143 op[0].negate = true;
1144 inst = bld.MOV(result, op[0]);
1145 if (instr->op == nir_op_fneg)
1146 inst->saturate = instr->dest.saturate;
1147 break;
1148
1149 case nir_op_fabs:
1150 case nir_op_iabs:
1151 op[0].negate = false;
1152 op[0].abs = true;
1153 inst = bld.MOV(result, op[0]);
1154 if (instr->op == nir_op_fabs)
1155 inst->saturate = instr->dest.saturate;
1156 break;
1157
1158 case nir_op_f2f32:
1159 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1160 brw_rnd_mode rnd =
1161 brw_rnd_mode_from_execution_mode(execution_mode);
1162 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1163 brw_imm_d(rnd));
1164 }
1165
1166 if (op[0].type == BRW_REGISTER_TYPE_HF)
1167 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1168
1169 inst = bld.MOV(result, op[0]);
1170 inst->saturate = instr->dest.saturate;
1171 break;
1172
1173 case nir_op_fsign:
1174 emit_fsign(bld, instr, result, op, 0);
1175 break;
1176
1177 case nir_op_frcp:
1178 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1179 inst->saturate = instr->dest.saturate;
1180 break;
1181
1182 case nir_op_fexp2:
1183 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1184 inst->saturate = instr->dest.saturate;
1185 break;
1186
1187 case nir_op_flog2:
1188 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1189 inst->saturate = instr->dest.saturate;
1190 break;
1191
1192 case nir_op_fsin:
1193 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1194 inst->saturate = instr->dest.saturate;
1195 break;
1196
1197 case nir_op_fcos:
1198 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1199 inst->saturate = instr->dest.saturate;
1200 break;
1201
1202 case nir_op_fddx:
1203 if (fs_key->high_quality_derivatives) {
1204 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1205 } else {
1206 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1207 }
1208 inst->saturate = instr->dest.saturate;
1209 break;
1210 case nir_op_fddx_fine:
1211 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1212 inst->saturate = instr->dest.saturate;
1213 break;
1214 case nir_op_fddx_coarse:
1215 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1216 inst->saturate = instr->dest.saturate;
1217 break;
1218 case nir_op_fddy:
1219 if (fs_key->high_quality_derivatives) {
1220 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1221 } else {
1222 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1223 }
1224 inst->saturate = instr->dest.saturate;
1225 break;
1226 case nir_op_fddy_fine:
1227 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1228 inst->saturate = instr->dest.saturate;
1229 break;
1230 case nir_op_fddy_coarse:
1231 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1232 inst->saturate = instr->dest.saturate;
1233 break;
1234
1235 case nir_op_fadd:
1236 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1237 brw_rnd_mode rnd =
1238 brw_rnd_mode_from_execution_mode(execution_mode);
1239 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1240 brw_imm_d(rnd));
1241 }
1242 /* fallthrough */
1243 case nir_op_iadd:
1244 inst = bld.ADD(result, op[0], op[1]);
1245 inst->saturate = instr->dest.saturate;
1246 break;
1247
1248 case nir_op_uadd_sat:
1249 inst = bld.ADD(result, op[0], op[1]);
1250 inst->saturate = true;
1251 break;
1252
1253 case nir_op_fmul:
1254 for (unsigned i = 0; i < 2; i++) {
1255 if (can_fuse_fmul_fsign(instr, i)) {
1256 emit_fsign(bld, instr, result, op, i);
1257 return;
1258 }
1259 }
1260
1261 /* We emit the rounding mode after the previous fsign optimization since
1262 * it won't result in a MUL, but will try to negate the value by other
1263 * means.
1264 */
1265 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1266 brw_rnd_mode rnd =
1267 brw_rnd_mode_from_execution_mode(execution_mode);
1268 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1269 brw_imm_d(rnd));
1270 }
1271
1272 inst = bld.MUL(result, op[0], op[1]);
1273 inst->saturate = instr->dest.saturate;
1274 break;
1275
1276 case nir_op_imul_2x32_64:
1277 case nir_op_umul_2x32_64:
1278 bld.MUL(result, op[0], op[1]);
1279 break;
1280
1281 case nir_op_imul:
1282 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1283 bld.MUL(result, op[0], op[1]);
1284 break;
1285
1286 case nir_op_imul_high:
1287 case nir_op_umul_high:
1288 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1289 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1290 break;
1291
1292 case nir_op_idiv:
1293 case nir_op_udiv:
1294 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1295 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1296 break;
1297
1298 case nir_op_uadd_carry:
1299 unreachable("Should have been lowered by carry_to_arith().");
1300
1301 case nir_op_usub_borrow:
1302 unreachable("Should have been lowered by borrow_to_arith().");
1303
1304 case nir_op_umod:
1305 case nir_op_irem:
1306 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1307 * appears that our hardware just does the right thing for signed
1308 * remainder.
1309 */
1310 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1311 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1312 break;
1313
1314 case nir_op_imod: {
1315 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1316 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1317
1318 /* Math instructions don't support conditional mod */
1319 inst = bld.MOV(bld.null_reg_d(), result);
1320 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1321
1322 /* Now, we need to determine if signs of the sources are different.
1323 * When we XOR the sources, the top bit is 0 if they are the same and 1
1324 * if they are different. We can then use a conditional modifier to
1325 * turn that into a predicate. This leads us to an XOR.l instruction.
1326 *
1327 * Technically, according to the PRM, you're not allowed to use .l on a
1328 * XOR instruction. However, emperical experiments and Curro's reading
1329 * of the simulator source both indicate that it's safe.
1330 */
1331 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1332 inst = bld.XOR(tmp, op[0], op[1]);
1333 inst->predicate = BRW_PREDICATE_NORMAL;
1334 inst->conditional_mod = BRW_CONDITIONAL_L;
1335
1336 /* If the result of the initial remainder operation is non-zero and the
1337 * two sources have different signs, add in a copy of op[1] to get the
1338 * final integer modulus value.
1339 */
1340 inst = bld.ADD(result, result, op[1]);
1341 inst->predicate = BRW_PREDICATE_NORMAL;
1342 break;
1343 }
1344
1345 case nir_op_flt32:
1346 case nir_op_fge32:
1347 case nir_op_feq32:
1348 case nir_op_fne32: {
1349 fs_reg dest = result;
1350
1351 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1352 if (bit_size != 32)
1353 dest = bld.vgrf(op[0].type, 1);
1354
1355 bld.CMP(dest, op[0], op[1], brw_cmod_for_nir_comparison(instr->op));
1356
1357 if (bit_size > 32) {
1358 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1359 } else if(bit_size < 32) {
1360 /* When we convert the result to 32-bit we need to be careful and do
1361 * it as a signed conversion to get sign extension (for 32-bit true)
1362 */
1363 const brw_reg_type src_type =
1364 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1365
1366 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1367 }
1368 break;
1369 }
1370
1371 case nir_op_ilt32:
1372 case nir_op_ult32:
1373 case nir_op_ige32:
1374 case nir_op_uge32:
1375 case nir_op_ieq32:
1376 case nir_op_ine32: {
1377 fs_reg dest = result;
1378
1379 /* On Gen11 we have an additional issue being that src1 cannot be a byte
1380 * type. So we convert both operands for the comparison.
1381 */
1382 fs_reg temp_op[2];
1383 temp_op[0] = bld.fix_byte_src(op[0]);
1384 temp_op[1] = bld.fix_byte_src(op[1]);
1385
1386 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1387 if (bit_size != 32)
1388 dest = bld.vgrf(temp_op[0].type, 1);
1389
1390 bld.CMP(dest, temp_op[0], temp_op[1],
1391 brw_cmod_for_nir_comparison(instr->op));
1392
1393 if (bit_size > 32) {
1394 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1395 } else if (bit_size < 32) {
1396 /* When we convert the result to 32-bit we need to be careful and do
1397 * it as a signed conversion to get sign extension (for 32-bit true)
1398 */
1399 const brw_reg_type src_type =
1400 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1401
1402 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1403 }
1404 break;
1405 }
1406
1407 case nir_op_inot:
1408 if (devinfo->gen >= 8) {
1409 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1410
1411 if (inot_src_instr != NULL &&
1412 (inot_src_instr->op == nir_op_ior ||
1413 inot_src_instr->op == nir_op_ixor ||
1414 inot_src_instr->op == nir_op_iand) &&
1415 !inot_src_instr->src[0].abs &&
1416 !inot_src_instr->src[0].negate &&
1417 !inot_src_instr->src[1].abs &&
1418 !inot_src_instr->src[1].negate) {
1419 /* The sources of the source logical instruction are now the
1420 * sources of the instruction that will be generated.
1421 */
1422 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1423 resolve_inot_sources(bld, inot_src_instr, op);
1424
1425 /* Smash all of the sources and destination to be signed. This
1426 * doesn't matter for the operation of the instruction, but cmod
1427 * propagation fails on unsigned sources with negation (due to
1428 * fs_inst::can_do_cmod returning false).
1429 */
1430 result.type =
1431 brw_type_for_nir_type(devinfo,
1432 (nir_alu_type)(nir_type_int |
1433 nir_dest_bit_size(instr->dest.dest)));
1434 op[0].type =
1435 brw_type_for_nir_type(devinfo,
1436 (nir_alu_type)(nir_type_int |
1437 nir_src_bit_size(inot_src_instr->src[0].src)));
1438 op[1].type =
1439 brw_type_for_nir_type(devinfo,
1440 (nir_alu_type)(nir_type_int |
1441 nir_src_bit_size(inot_src_instr->src[1].src)));
1442
1443 /* For XOR, only invert one of the sources. Arbitrarily choose
1444 * the first source.
1445 */
1446 op[0].negate = !op[0].negate;
1447 if (inot_src_instr->op != nir_op_ixor)
1448 op[1].negate = !op[1].negate;
1449
1450 switch (inot_src_instr->op) {
1451 case nir_op_ior:
1452 bld.AND(result, op[0], op[1]);
1453 return;
1454
1455 case nir_op_iand:
1456 bld.OR(result, op[0], op[1]);
1457 return;
1458
1459 case nir_op_ixor:
1460 bld.XOR(result, op[0], op[1]);
1461 return;
1462
1463 default:
1464 unreachable("impossible opcode");
1465 }
1466 }
1467 op[0] = resolve_source_modifiers(op[0]);
1468 }
1469 bld.NOT(result, op[0]);
1470 break;
1471 case nir_op_ixor:
1472 if (devinfo->gen >= 8) {
1473 resolve_inot_sources(bld, instr, op);
1474 }
1475 bld.XOR(result, op[0], op[1]);
1476 break;
1477 case nir_op_ior:
1478 if (devinfo->gen >= 8) {
1479 resolve_inot_sources(bld, instr, op);
1480 }
1481 bld.OR(result, op[0], op[1]);
1482 break;
1483 case nir_op_iand:
1484 if (devinfo->gen >= 8) {
1485 resolve_inot_sources(bld, instr, op);
1486 }
1487 bld.AND(result, op[0], op[1]);
1488 break;
1489
1490 case nir_op_fdot2:
1491 case nir_op_fdot3:
1492 case nir_op_fdot4:
1493 case nir_op_b32all_fequal2:
1494 case nir_op_b32all_iequal2:
1495 case nir_op_b32all_fequal3:
1496 case nir_op_b32all_iequal3:
1497 case nir_op_b32all_fequal4:
1498 case nir_op_b32all_iequal4:
1499 case nir_op_b32any_fnequal2:
1500 case nir_op_b32any_inequal2:
1501 case nir_op_b32any_fnequal3:
1502 case nir_op_b32any_inequal3:
1503 case nir_op_b32any_fnequal4:
1504 case nir_op_b32any_inequal4:
1505 unreachable("Lowered by nir_lower_alu_reductions");
1506
1507 case nir_op_fnoise1_1:
1508 case nir_op_fnoise1_2:
1509 case nir_op_fnoise1_3:
1510 case nir_op_fnoise1_4:
1511 case nir_op_fnoise2_1:
1512 case nir_op_fnoise2_2:
1513 case nir_op_fnoise2_3:
1514 case nir_op_fnoise2_4:
1515 case nir_op_fnoise3_1:
1516 case nir_op_fnoise3_2:
1517 case nir_op_fnoise3_3:
1518 case nir_op_fnoise3_4:
1519 case nir_op_fnoise4_1:
1520 case nir_op_fnoise4_2:
1521 case nir_op_fnoise4_3:
1522 case nir_op_fnoise4_4:
1523 unreachable("not reached: should be handled by lower_noise");
1524
1525 case nir_op_ldexp:
1526 unreachable("not reached: should be handled by ldexp_to_arith()");
1527
1528 case nir_op_fsqrt:
1529 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1530 inst->saturate = instr->dest.saturate;
1531 break;
1532
1533 case nir_op_frsq:
1534 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1535 inst->saturate = instr->dest.saturate;
1536 break;
1537
1538 case nir_op_i2b32:
1539 case nir_op_f2b32: {
1540 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1541 if (bit_size == 64) {
1542 /* two-argument instructions can't take 64-bit immediates */
1543 fs_reg zero;
1544 fs_reg tmp;
1545
1546 if (instr->op == nir_op_f2b32) {
1547 zero = vgrf(glsl_type::double_type);
1548 tmp = vgrf(glsl_type::double_type);
1549 bld.MOV(zero, setup_imm_df(bld, 0.0));
1550 } else {
1551 zero = vgrf(glsl_type::int64_t_type);
1552 tmp = vgrf(glsl_type::int64_t_type);
1553 bld.MOV(zero, brw_imm_q(0));
1554 }
1555
1556 /* A SIMD16 execution needs to be split in two instructions, so use
1557 * a vgrf instead of the flag register as dst so instruction splitting
1558 * works
1559 */
1560 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1561 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1562 } else {
1563 fs_reg zero;
1564 if (bit_size == 32) {
1565 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1566 } else {
1567 assert(bit_size == 16);
1568 zero = instr->op == nir_op_f2b32 ?
1569 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1570 }
1571 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1572 }
1573 break;
1574 }
1575
1576 case nir_op_ftrunc:
1577 inst = bld.RNDZ(result, op[0]);
1578 inst->saturate = instr->dest.saturate;
1579 break;
1580
1581 case nir_op_fceil: {
1582 op[0].negate = !op[0].negate;
1583 fs_reg temp = vgrf(glsl_type::float_type);
1584 bld.RNDD(temp, op[0]);
1585 temp.negate = true;
1586 inst = bld.MOV(result, temp);
1587 inst->saturate = instr->dest.saturate;
1588 break;
1589 }
1590 case nir_op_ffloor:
1591 inst = bld.RNDD(result, op[0]);
1592 inst->saturate = instr->dest.saturate;
1593 break;
1594 case nir_op_ffract:
1595 inst = bld.FRC(result, op[0]);
1596 inst->saturate = instr->dest.saturate;
1597 break;
1598 case nir_op_fround_even:
1599 inst = bld.RNDE(result, op[0]);
1600 inst->saturate = instr->dest.saturate;
1601 break;
1602
1603 case nir_op_fquantize2f16: {
1604 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1605 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1606 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1607
1608 /* The destination stride must be at least as big as the source stride. */
1609 tmp16.type = BRW_REGISTER_TYPE_W;
1610 tmp16.stride = 2;
1611
1612 /* Check for denormal */
1613 fs_reg abs_src0 = op[0];
1614 abs_src0.abs = true;
1615 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1616 BRW_CONDITIONAL_L);
1617 /* Get the appropriately signed zero */
1618 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1619 retype(op[0], BRW_REGISTER_TYPE_UD),
1620 brw_imm_ud(0x80000000));
1621 /* Do the actual F32 -> F16 -> F32 conversion */
1622 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1623 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1624 /* Select that or zero based on normal status */
1625 inst = bld.SEL(result, zero, tmp32);
1626 inst->predicate = BRW_PREDICATE_NORMAL;
1627 inst->saturate = instr->dest.saturate;
1628 break;
1629 }
1630
1631 case nir_op_imin:
1632 case nir_op_umin:
1633 case nir_op_fmin:
1634 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1635 inst->saturate = instr->dest.saturate;
1636 break;
1637
1638 case nir_op_imax:
1639 case nir_op_umax:
1640 case nir_op_fmax:
1641 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1642 inst->saturate = instr->dest.saturate;
1643 break;
1644
1645 case nir_op_pack_snorm_2x16:
1646 case nir_op_pack_snorm_4x8:
1647 case nir_op_pack_unorm_2x16:
1648 case nir_op_pack_unorm_4x8:
1649 case nir_op_unpack_snorm_2x16:
1650 case nir_op_unpack_snorm_4x8:
1651 case nir_op_unpack_unorm_2x16:
1652 case nir_op_unpack_unorm_4x8:
1653 case nir_op_unpack_half_2x16:
1654 case nir_op_pack_half_2x16:
1655 unreachable("not reached: should be handled by lower_packing_builtins");
1656
1657 case nir_op_unpack_half_2x16_split_x_flush_to_zero:
1658 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1659 /* Fall-through */
1660 case nir_op_unpack_half_2x16_split_x:
1661 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1662 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1663 inst->saturate = instr->dest.saturate;
1664 break;
1665
1666 case nir_op_unpack_half_2x16_split_y_flush_to_zero:
1667 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1668 /* Fall-through */
1669 case nir_op_unpack_half_2x16_split_y:
1670 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1671 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1672 inst->saturate = instr->dest.saturate;
1673 break;
1674
1675 case nir_op_pack_64_2x32_split:
1676 case nir_op_pack_32_2x16_split:
1677 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1678 break;
1679
1680 case nir_op_unpack_64_2x32_split_x:
1681 case nir_op_unpack_64_2x32_split_y: {
1682 if (instr->op == nir_op_unpack_64_2x32_split_x)
1683 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1684 else
1685 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1686 break;
1687 }
1688
1689 case nir_op_unpack_32_2x16_split_x:
1690 case nir_op_unpack_32_2x16_split_y: {
1691 if (instr->op == nir_op_unpack_32_2x16_split_x)
1692 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1693 else
1694 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1695 break;
1696 }
1697
1698 case nir_op_fpow:
1699 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1700 inst->saturate = instr->dest.saturate;
1701 break;
1702
1703 case nir_op_bitfield_reverse:
1704 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1705 bld.BFREV(result, op[0]);
1706 break;
1707
1708 case nir_op_bit_count:
1709 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1710 bld.CBIT(result, op[0]);
1711 break;
1712
1713 case nir_op_ufind_msb: {
1714 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1715 emit_find_msb_using_lzd(bld, result, op[0], false);
1716 break;
1717 }
1718
1719 case nir_op_ifind_msb: {
1720 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1721
1722 if (devinfo->gen < 7) {
1723 emit_find_msb_using_lzd(bld, result, op[0], true);
1724 } else {
1725 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1726
1727 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1728 * count from the LSB side. If FBH didn't return an error
1729 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1730 * count into an LSB count.
1731 */
1732 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1733
1734 inst = bld.ADD(result, result, brw_imm_d(31));
1735 inst->predicate = BRW_PREDICATE_NORMAL;
1736 inst->src[0].negate = true;
1737 }
1738 break;
1739 }
1740
1741 case nir_op_find_lsb:
1742 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1743
1744 if (devinfo->gen < 7) {
1745 fs_reg temp = vgrf(glsl_type::int_type);
1746
1747 /* (x & -x) generates a value that consists of only the LSB of x.
1748 * For all powers of 2, findMSB(y) == findLSB(y).
1749 */
1750 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1751 fs_reg negated_src = src;
1752
1753 /* One must be negated, and the other must be non-negated. It
1754 * doesn't matter which is which.
1755 */
1756 negated_src.negate = true;
1757 src.negate = false;
1758
1759 bld.AND(temp, src, negated_src);
1760 emit_find_msb_using_lzd(bld, result, temp, false);
1761 } else {
1762 bld.FBL(result, op[0]);
1763 }
1764 break;
1765
1766 case nir_op_ubitfield_extract:
1767 case nir_op_ibitfield_extract:
1768 unreachable("should have been lowered");
1769 case nir_op_ubfe:
1770 case nir_op_ibfe:
1771 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1772 bld.BFE(result, op[2], op[1], op[0]);
1773 break;
1774 case nir_op_bfm:
1775 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1776 bld.BFI1(result, op[0], op[1]);
1777 break;
1778 case nir_op_bfi:
1779 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1780 bld.BFI2(result, op[0], op[1], op[2]);
1781 break;
1782
1783 case nir_op_bitfield_insert:
1784 unreachable("not reached: should have been lowered");
1785
1786 case nir_op_ishl:
1787 bld.SHL(result, op[0], op[1]);
1788 break;
1789 case nir_op_ishr:
1790 bld.ASR(result, op[0], op[1]);
1791 break;
1792 case nir_op_ushr:
1793 bld.SHR(result, op[0], op[1]);
1794 break;
1795
1796 case nir_op_urol:
1797 bld.ROL(result, op[0], op[1]);
1798 break;
1799 case nir_op_uror:
1800 bld.ROR(result, op[0], op[1]);
1801 break;
1802
1803 case nir_op_pack_half_2x16_split:
1804 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1805 break;
1806
1807 case nir_op_ffma:
1808 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1809 brw_rnd_mode rnd =
1810 brw_rnd_mode_from_execution_mode(execution_mode);
1811 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1812 brw_imm_d(rnd));
1813 }
1814
1815 inst = bld.MAD(result, op[2], op[1], op[0]);
1816 inst->saturate = instr->dest.saturate;
1817 break;
1818
1819 case nir_op_flrp:
1820 inst = bld.LRP(result, op[0], op[1], op[2]);
1821 inst->saturate = instr->dest.saturate;
1822 break;
1823
1824 case nir_op_b32csel:
1825 if (optimize_frontfacing_ternary(instr, result))
1826 return;
1827
1828 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1829 inst = bld.SEL(result, op[1], op[2]);
1830 inst->predicate = BRW_PREDICATE_NORMAL;
1831 break;
1832
1833 case nir_op_extract_u8:
1834 case nir_op_extract_i8: {
1835 unsigned byte = nir_src_as_uint(instr->src[1].src);
1836
1837 /* The PRMs say:
1838 *
1839 * BDW+
1840 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1841 * Use two instructions and a word or DWord intermediate integer type.
1842 */
1843 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1844 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1845
1846 if (instr->op == nir_op_extract_i8) {
1847 /* If we need to sign extend, extract to a word first */
1848 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1849 bld.MOV(w_temp, subscript(op[0], type, byte));
1850 bld.MOV(result, w_temp);
1851 } else if (byte & 1) {
1852 /* Extract the high byte from the word containing the desired byte
1853 * offset.
1854 */
1855 bld.SHR(result,
1856 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1857 brw_imm_uw(8));
1858 } else {
1859 /* Otherwise use an AND with 0xff and a word type */
1860 bld.AND(result,
1861 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1862 brw_imm_uw(0xff));
1863 }
1864 } else {
1865 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1866 bld.MOV(result, subscript(op[0], type, byte));
1867 }
1868 break;
1869 }
1870
1871 case nir_op_extract_u16:
1872 case nir_op_extract_i16: {
1873 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1874 unsigned word = nir_src_as_uint(instr->src[1].src);
1875 bld.MOV(result, subscript(op[0], type, word));
1876 break;
1877 }
1878
1879 default:
1880 unreachable("unhandled instruction");
1881 }
1882
1883 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1884 * to sign extend the low bit to 0/~0
1885 */
1886 if (devinfo->gen <= 5 &&
1887 !result.is_null() &&
1888 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1889 fs_reg masked = vgrf(glsl_type::int_type);
1890 bld.AND(masked, result, brw_imm_d(1));
1891 masked.negate = true;
1892 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1893 }
1894 }
1895
1896 void
1897 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1898 nir_load_const_instr *instr)
1899 {
1900 const brw_reg_type reg_type =
1901 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1902 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1903
1904 switch (instr->def.bit_size) {
1905 case 8:
1906 for (unsigned i = 0; i < instr->def.num_components; i++)
1907 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1908 break;
1909
1910 case 16:
1911 for (unsigned i = 0; i < instr->def.num_components; i++)
1912 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1913 break;
1914
1915 case 32:
1916 for (unsigned i = 0; i < instr->def.num_components; i++)
1917 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1918 break;
1919
1920 case 64:
1921 assert(devinfo->gen >= 7);
1922 if (devinfo->gen == 7) {
1923 /* We don't get 64-bit integer types until gen8 */
1924 for (unsigned i = 0; i < instr->def.num_components; i++) {
1925 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1926 setup_imm_df(bld, instr->value[i].f64));
1927 }
1928 } else {
1929 for (unsigned i = 0; i < instr->def.num_components; i++)
1930 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1931 }
1932 break;
1933
1934 default:
1935 unreachable("Invalid bit size");
1936 }
1937
1938 nir_ssa_values[instr->def.index] = reg;
1939 }
1940
1941 fs_reg
1942 fs_visitor::get_nir_src(const nir_src &src)
1943 {
1944 fs_reg reg;
1945 if (src.is_ssa) {
1946 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1947 const brw_reg_type reg_type =
1948 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1949 reg = bld.vgrf(reg_type, src.ssa->num_components);
1950 } else {
1951 reg = nir_ssa_values[src.ssa->index];
1952 }
1953 } else {
1954 /* We don't handle indirects on locals */
1955 assert(src.reg.indirect == NULL);
1956 reg = offset(nir_locals[src.reg.reg->index], bld,
1957 src.reg.base_offset * src.reg.reg->num_components);
1958 }
1959
1960 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1961 /* The only 64-bit type available on gen7 is DF, so use that. */
1962 reg.type = BRW_REGISTER_TYPE_DF;
1963 } else {
1964 /* To avoid floating-point denorm flushing problems, set the type by
1965 * default to an integer type - instructions that need floating point
1966 * semantics will set this to F if they need to
1967 */
1968 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1969 BRW_REGISTER_TYPE_D);
1970 }
1971
1972 return reg;
1973 }
1974
1975 /**
1976 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1977 *
1978 * This function should not be called on any value which may be 64 bits.
1979 * We could theoretically support 64-bit on gen8+ but we choose not to
1980 * because it wouldn't work in general (no gen7 support) and there are
1981 * enough restrictions in 64-bit immediates that you can't take the return
1982 * value and treat it the same as the result of get_nir_src().
1983 */
1984 fs_reg
1985 fs_visitor::get_nir_src_imm(const nir_src &src)
1986 {
1987 assert(nir_src_bit_size(src) == 32);
1988 return nir_src_is_const(src) ?
1989 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1990 }
1991
1992 fs_reg
1993 fs_visitor::get_nir_dest(const nir_dest &dest)
1994 {
1995 if (dest.is_ssa) {
1996 const brw_reg_type reg_type =
1997 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1998 dest.ssa.bit_size == 8 ?
1999 BRW_REGISTER_TYPE_D :
2000 BRW_REGISTER_TYPE_F);
2001 nir_ssa_values[dest.ssa.index] =
2002 bld.vgrf(reg_type, dest.ssa.num_components);
2003 bld.UNDEF(nir_ssa_values[dest.ssa.index]);
2004 return nir_ssa_values[dest.ssa.index];
2005 } else {
2006 /* We don't handle indirects on locals */
2007 assert(dest.reg.indirect == NULL);
2008 return offset(nir_locals[dest.reg.reg->index], bld,
2009 dest.reg.base_offset * dest.reg.reg->num_components);
2010 }
2011 }
2012
2013 void
2014 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
2015 unsigned wr_mask)
2016 {
2017 for (unsigned i = 0; i < 4; i++) {
2018 if (!((wr_mask >> i) & 1))
2019 continue;
2020
2021 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
2022 new_inst->dst = offset(new_inst->dst, bld, i);
2023 for (unsigned j = 0; j < new_inst->sources; j++)
2024 if (new_inst->src[j].file == VGRF)
2025 new_inst->src[j] = offset(new_inst->src[j], bld, i);
2026
2027 bld.emit(new_inst);
2028 }
2029 }
2030
2031 static fs_inst *
2032 emit_pixel_interpolater_send(const fs_builder &bld,
2033 enum opcode opcode,
2034 const fs_reg &dst,
2035 const fs_reg &src,
2036 const fs_reg &desc,
2037 glsl_interp_mode interpolation)
2038 {
2039 struct brw_wm_prog_data *wm_prog_data =
2040 brw_wm_prog_data(bld.shader->stage_prog_data);
2041
2042 fs_inst *inst = bld.emit(opcode, dst, src, desc);
2043 /* 2 floats per slot returned */
2044 inst->size_written = 2 * dst.component_size(inst->exec_size);
2045 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
2046
2047 wm_prog_data->pulls_bary = true;
2048
2049 return inst;
2050 }
2051
2052 /**
2053 * Computes 1 << x, given a D/UD register containing some value x.
2054 */
2055 static fs_reg
2056 intexp2(const fs_builder &bld, const fs_reg &x)
2057 {
2058 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
2059
2060 fs_reg result = bld.vgrf(x.type, 1);
2061 fs_reg one = bld.vgrf(x.type, 1);
2062
2063 bld.MOV(one, retype(brw_imm_d(1), one.type));
2064 bld.SHL(result, one, x);
2065 return result;
2066 }
2067
2068 void
2069 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2070 {
2071 assert(stage == MESA_SHADER_GEOMETRY);
2072
2073 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2074
2075 if (gs_compile->control_data_header_size_bits == 0)
2076 return;
2077
2078 /* We can only do EndPrimitive() functionality when the control data
2079 * consists of cut bits. Fortunately, the only time it isn't is when the
2080 * output type is points, in which case EndPrimitive() is a no-op.
2081 */
2082 if (gs_prog_data->control_data_format !=
2083 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2084 return;
2085 }
2086
2087 /* Cut bits use one bit per vertex. */
2088 assert(gs_compile->control_data_bits_per_vertex == 1);
2089
2090 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2091 vertex_count.type = BRW_REGISTER_TYPE_UD;
2092
2093 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2094 * vertex n, 0 otherwise. So all we need to do here is mark bit
2095 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2096 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2097 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2098 *
2099 * Note that if EndPrimitive() is called before emitting any vertices, this
2100 * will cause us to set bit 31 of the control_data_bits register to 1.
2101 * That's fine because:
2102 *
2103 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2104 * output, so the hardware will ignore cut bit 31.
2105 *
2106 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2107 * last vertex, so setting cut bit 31 has no effect (since the primitive
2108 * is automatically ended when the GS terminates).
2109 *
2110 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2111 * control_data_bits register to 0 when the first vertex is emitted.
2112 */
2113
2114 const fs_builder abld = bld.annotate("end primitive");
2115
2116 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2117 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2118 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2119 fs_reg mask = intexp2(abld, prev_count);
2120 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2121 * attention to the lower 5 bits of its second source argument, so on this
2122 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2123 * ((vertex_count - 1) % 32).
2124 */
2125 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2126 }
2127
2128 void
2129 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2130 {
2131 assert(stage == MESA_SHADER_GEOMETRY);
2132 assert(gs_compile->control_data_bits_per_vertex != 0);
2133
2134 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2135
2136 const fs_builder abld = bld.annotate("emit control data bits");
2137 const fs_builder fwa_bld = bld.exec_all();
2138
2139 /* We use a single UD register to accumulate control data bits (32 bits
2140 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
2141 * at a time.
2142 *
2143 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2144 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2145 * use the Channel Mask phase to enable/disable which DWord within that
2146 * group to write. (Remember, different SIMD8 channels may have emitted
2147 * different numbers of vertices, so we may need per-slot offsets.)
2148 *
2149 * Channel masking presents an annoying problem: we may have to replicate
2150 * the data up to 4 times:
2151 *
2152 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2153 *
2154 * To avoid penalizing shaders that emit a small number of vertices, we
2155 * can avoid these sometimes: if the size of the control data header is
2156 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
2157 * land in the same 128-bit group, so we can skip per-slot offsets.
2158 *
2159 * Similarly, if the control data header is <= 32 bits, there is only one
2160 * DWord, so we can skip channel masks.
2161 */
2162 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2163
2164 fs_reg channel_mask, per_slot_offset;
2165
2166 if (gs_compile->control_data_header_size_bits > 32) {
2167 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2168 channel_mask = vgrf(glsl_type::uint_type);
2169 }
2170
2171 if (gs_compile->control_data_header_size_bits > 128) {
2172 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2173 per_slot_offset = vgrf(glsl_type::uint_type);
2174 }
2175
2176 /* Figure out which DWord we're trying to write to using the formula:
2177 *
2178 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
2179 *
2180 * Since bits_per_vertex is a power of two, and is known at compile
2181 * time, this can be optimized to:
2182 *
2183 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2184 */
2185 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2186 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2187 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2188 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2189 unsigned log2_bits_per_vertex =
2190 util_last_bit(gs_compile->control_data_bits_per_vertex);
2191 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2192
2193 if (per_slot_offset.file != BAD_FILE) {
2194 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2195 * the appropriate OWord within the control data header.
2196 */
2197 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2198 }
2199
2200 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2201 * write to the appropriate DWORD within the OWORD.
2202 */
2203 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2204 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2205 channel_mask = intexp2(fwa_bld, channel);
2206 /* Then the channel masks need to be in bits 23:16. */
2207 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2208 }
2209
2210 /* Store the control data bits in the message payload and send it. */
2211 unsigned mlen = 2;
2212 if (channel_mask.file != BAD_FILE)
2213 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2214 if (per_slot_offset.file != BAD_FILE)
2215 mlen++;
2216
2217 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2218 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2219 unsigned i = 0;
2220 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2221 if (per_slot_offset.file != BAD_FILE)
2222 sources[i++] = per_slot_offset;
2223 if (channel_mask.file != BAD_FILE)
2224 sources[i++] = channel_mask;
2225 while (i < mlen) {
2226 sources[i++] = this->control_data_bits;
2227 }
2228
2229 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2230 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2231 inst->mlen = mlen;
2232 /* We need to increment Global Offset by 256-bits to make room for
2233 * Broadwell's extra "Vertex Count" payload at the beginning of the
2234 * URB entry. Since this is an OWord message, Global Offset is counted
2235 * in 128-bit units, so we must set it to 2.
2236 */
2237 if (gs_prog_data->static_vertex_count == -1)
2238 inst->offset = 2;
2239 }
2240
2241 void
2242 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2243 unsigned stream_id)
2244 {
2245 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2246
2247 /* Note: we are calling this *before* increasing vertex_count, so
2248 * this->vertex_count == vertex_count - 1 in the formula above.
2249 */
2250
2251 /* Stream mode uses 2 bits per vertex */
2252 assert(gs_compile->control_data_bits_per_vertex == 2);
2253
2254 /* Must be a valid stream */
2255 assert(stream_id < MAX_VERTEX_STREAMS);
2256
2257 /* Control data bits are initialized to 0 so we don't have to set any
2258 * bits when sending vertices to stream 0.
2259 */
2260 if (stream_id == 0)
2261 return;
2262
2263 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2264
2265 /* reg::sid = stream_id */
2266 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2267 abld.MOV(sid, brw_imm_ud(stream_id));
2268
2269 /* reg:shift_count = 2 * (vertex_count - 1) */
2270 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2271 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2272
2273 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2274 * attention to the lower 5 bits of its second source argument, so on this
2275 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2276 * stream_id << ((2 * (vertex_count - 1)) % 32).
2277 */
2278 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2279 abld.SHL(mask, sid, shift_count);
2280 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2281 }
2282
2283 void
2284 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2285 unsigned stream_id)
2286 {
2287 assert(stage == MESA_SHADER_GEOMETRY);
2288
2289 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2290
2291 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2292 vertex_count.type = BRW_REGISTER_TYPE_UD;
2293
2294 /* Haswell and later hardware ignores the "Render Stream Select" bits
2295 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2296 * and instead sends all primitives down the pipeline for rasterization.
2297 * If the SOL stage is enabled, "Render Stream Select" is honored and
2298 * primitives bound to non-zero streams are discarded after stream output.
2299 *
2300 * Since the only purpose of primives sent to non-zero streams is to
2301 * be recorded by transform feedback, we can simply discard all geometry
2302 * bound to these streams when transform feedback is disabled.
2303 */
2304 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2305 return;
2306
2307 /* If we're outputting 32 control data bits or less, then we can wait
2308 * until the shader is over to output them all. Otherwise we need to
2309 * output them as we go. Now is the time to do it, since we're about to
2310 * output the vertex_count'th vertex, so it's guaranteed that the
2311 * control data bits associated with the (vertex_count - 1)th vertex are
2312 * correct.
2313 */
2314 if (gs_compile->control_data_header_size_bits > 32) {
2315 const fs_builder abld =
2316 bld.annotate("emit vertex: emit control data bits");
2317
2318 /* Only emit control data bits if we've finished accumulating a batch
2319 * of 32 bits. This is the case when:
2320 *
2321 * (vertex_count * bits_per_vertex) % 32 == 0
2322 *
2323 * (in other words, when the last 5 bits of vertex_count *
2324 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2325 * integer n (which is always the case, since bits_per_vertex is
2326 * always 1 or 2), this is equivalent to requiring that the last 5-n
2327 * bits of vertex_count are 0:
2328 *
2329 * vertex_count & (2^(5-n) - 1) == 0
2330 *
2331 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2332 * equivalent to:
2333 *
2334 * vertex_count & (32 / bits_per_vertex - 1) == 0
2335 *
2336 * TODO: If vertex_count is an immediate, we could do some of this math
2337 * at compile time...
2338 */
2339 fs_inst *inst =
2340 abld.AND(bld.null_reg_d(), vertex_count,
2341 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2342 inst->conditional_mod = BRW_CONDITIONAL_Z;
2343
2344 abld.IF(BRW_PREDICATE_NORMAL);
2345 /* If vertex_count is 0, then no control data bits have been
2346 * accumulated yet, so we can skip emitting them.
2347 */
2348 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2349 BRW_CONDITIONAL_NEQ);
2350 abld.IF(BRW_PREDICATE_NORMAL);
2351 emit_gs_control_data_bits(vertex_count);
2352 abld.emit(BRW_OPCODE_ENDIF);
2353
2354 /* Reset control_data_bits to 0 so we can start accumulating a new
2355 * batch.
2356 *
2357 * Note: in the case where vertex_count == 0, this neutralizes the
2358 * effect of any call to EndPrimitive() that the shader may have
2359 * made before outputting its first vertex.
2360 */
2361 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2362 inst->force_writemask_all = true;
2363 abld.emit(BRW_OPCODE_ENDIF);
2364 }
2365
2366 emit_urb_writes(vertex_count);
2367
2368 /* In stream mode we have to set control data bits for all vertices
2369 * unless we have disabled control data bits completely (which we do
2370 * do for GL_POINTS outputs that don't use streams).
2371 */
2372 if (gs_compile->control_data_header_size_bits > 0 &&
2373 gs_prog_data->control_data_format ==
2374 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2375 set_gs_stream_control_data_bits(vertex_count, stream_id);
2376 }
2377 }
2378
2379 void
2380 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2381 const nir_src &vertex_src,
2382 unsigned base_offset,
2383 const nir_src &offset_src,
2384 unsigned num_components,
2385 unsigned first_component)
2386 {
2387 assert(type_sz(dst.type) == 4);
2388 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2389 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2390
2391 /* TODO: figure out push input layout for invocations == 1 */
2392 if (gs_prog_data->invocations == 1 &&
2393 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2394 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2395 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2396 nir_src_as_uint(vertex_src) * push_reg_count;
2397 for (unsigned i = 0; i < num_components; i++) {
2398 bld.MOV(offset(dst, bld, i),
2399 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2400 }
2401 return;
2402 }
2403
2404 /* Resort to the pull model. Ensure the VUE handles are provided. */
2405 assert(gs_prog_data->base.include_vue_handles);
2406
2407 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2408 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2409
2410 if (gs_prog_data->invocations == 1) {
2411 if (nir_src_is_const(vertex_src)) {
2412 /* The vertex index is constant; just select the proper URB handle. */
2413 icp_handle =
2414 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2415 BRW_REGISTER_TYPE_UD);
2416 } else {
2417 /* The vertex index is non-constant. We need to use indirect
2418 * addressing to fetch the proper URB handle.
2419 *
2420 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2421 * indicating that channel <n> should read the handle from
2422 * DWord <n>. We convert that to bytes by multiplying by 4.
2423 *
2424 * Next, we convert the vertex index to bytes by multiplying
2425 * by 32 (shifting by 5), and add the two together. This is
2426 * the final indirect byte offset.
2427 */
2428 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2429 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2430 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2431 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2432
2433 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2434 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2435 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2436 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2437 /* Convert vertex_index to bytes (multiply by 32) */
2438 bld.SHL(vertex_offset_bytes,
2439 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2440 brw_imm_ud(5u));
2441 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2442
2443 /* Use first_icp_handle as the base offset. There is one register
2444 * of URB handles per vertex, so inform the register allocator that
2445 * we might read up to nir->info.gs.vertices_in registers.
2446 */
2447 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2448 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2449 fs_reg(icp_offset_bytes),
2450 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2451 }
2452 } else {
2453 assert(gs_prog_data->invocations > 1);
2454
2455 if (nir_src_is_const(vertex_src)) {
2456 unsigned vertex = nir_src_as_uint(vertex_src);
2457 assert(devinfo->gen >= 9 || vertex <= 5);
2458 bld.MOV(icp_handle,
2459 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2460 BRW_REGISTER_TYPE_UD));
2461 } else {
2462 /* The vertex index is non-constant. We need to use indirect
2463 * addressing to fetch the proper URB handle.
2464 *
2465 */
2466 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2467
2468 /* Convert vertex_index to bytes (multiply by 4) */
2469 bld.SHL(icp_offset_bytes,
2470 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2471 brw_imm_ud(2u));
2472
2473 /* Use first_icp_handle as the base offset. There is one DWord
2474 * of URB handles per vertex, so inform the register allocator that
2475 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2476 */
2477 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2478 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2479 fs_reg(icp_offset_bytes),
2480 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2481 REG_SIZE));
2482 }
2483 }
2484
2485 fs_inst *inst;
2486 fs_reg indirect_offset = get_nir_src(offset_src);
2487
2488 if (nir_src_is_const(offset_src)) {
2489 /* Constant indexing - use global offset. */
2490 if (first_component != 0) {
2491 unsigned read_components = num_components + first_component;
2492 fs_reg tmp = bld.vgrf(dst.type, read_components);
2493 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2494 inst->size_written = read_components *
2495 tmp.component_size(inst->exec_size);
2496 for (unsigned i = 0; i < num_components; i++) {
2497 bld.MOV(offset(dst, bld, i),
2498 offset(tmp, bld, i + first_component));
2499 }
2500 } else {
2501 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2502 inst->size_written = num_components *
2503 dst.component_size(inst->exec_size);
2504 }
2505 inst->offset = base_offset + nir_src_as_uint(offset_src);
2506 inst->mlen = 1;
2507 } else {
2508 /* Indirect indexing - use per-slot offsets as well. */
2509 const fs_reg srcs[] = { icp_handle, indirect_offset };
2510 unsigned read_components = num_components + first_component;
2511 fs_reg tmp = bld.vgrf(dst.type, read_components);
2512 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2513 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2514 if (first_component != 0) {
2515 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2516 payload);
2517 inst->size_written = read_components *
2518 tmp.component_size(inst->exec_size);
2519 for (unsigned i = 0; i < num_components; i++) {
2520 bld.MOV(offset(dst, bld, i),
2521 offset(tmp, bld, i + first_component));
2522 }
2523 } else {
2524 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2525 inst->size_written = num_components *
2526 dst.component_size(inst->exec_size);
2527 }
2528 inst->offset = base_offset;
2529 inst->mlen = 2;
2530 }
2531 }
2532
2533 fs_reg
2534 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2535 {
2536 nir_src *offset_src = nir_get_io_offset_src(instr);
2537
2538 if (nir_src_is_const(*offset_src)) {
2539 /* The only constant offset we should find is 0. brw_nir.c's
2540 * add_const_offset_to_base() will fold other constant offsets
2541 * into instr->const_index[0].
2542 */
2543 assert(nir_src_as_uint(*offset_src) == 0);
2544 return fs_reg();
2545 }
2546
2547 return get_nir_src(*offset_src);
2548 }
2549
2550 void
2551 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2552 nir_intrinsic_instr *instr)
2553 {
2554 assert(stage == MESA_SHADER_VERTEX);
2555
2556 fs_reg dest;
2557 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2558 dest = get_nir_dest(instr->dest);
2559
2560 switch (instr->intrinsic) {
2561 case nir_intrinsic_load_vertex_id:
2562 case nir_intrinsic_load_base_vertex:
2563 unreachable("should be lowered by nir_lower_system_values()");
2564
2565 case nir_intrinsic_load_input: {
2566 assert(nir_dest_bit_size(instr->dest) == 32);
2567 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2568 src = offset(src, bld, nir_intrinsic_component(instr));
2569 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2570
2571 for (unsigned i = 0; i < instr->num_components; i++)
2572 bld.MOV(offset(dest, bld, i), offset(src, bld, i));
2573 break;
2574 }
2575
2576 case nir_intrinsic_load_vertex_id_zero_base:
2577 case nir_intrinsic_load_instance_id:
2578 case nir_intrinsic_load_base_instance:
2579 case nir_intrinsic_load_draw_id:
2580 case nir_intrinsic_load_first_vertex:
2581 case nir_intrinsic_load_is_indexed_draw:
2582 unreachable("lowered by brw_nir_lower_vs_inputs");
2583
2584 default:
2585 nir_emit_intrinsic(bld, instr);
2586 break;
2587 }
2588 }
2589
2590 fs_reg
2591 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2592 nir_intrinsic_instr *instr)
2593 {
2594 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2595 const nir_src &vertex_src = instr->src[0];
2596 nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2597 fs_reg icp_handle;
2598
2599 if (nir_src_is_const(vertex_src)) {
2600 /* Emit a MOV to resolve <0,1,0> regioning. */
2601 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2602 unsigned vertex = nir_src_as_uint(vertex_src);
2603 bld.MOV(icp_handle,
2604 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2605 BRW_REGISTER_TYPE_UD));
2606 } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2607 vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2608 /* For the common case of only 1 instance, an array index of
2609 * gl_InvocationID means reading g1. Skip all the indirect work.
2610 */
2611 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2612 } else {
2613 /* The vertex index is non-constant. We need to use indirect
2614 * addressing to fetch the proper URB handle.
2615 */
2616 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2617
2618 /* Each ICP handle is a single DWord (4 bytes) */
2619 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2620 bld.SHL(vertex_offset_bytes,
2621 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2622 brw_imm_ud(2u));
2623
2624 /* Start at g1. We might read up to 4 registers. */
2625 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2626 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2627 brw_imm_ud(4 * REG_SIZE));
2628 }
2629
2630 return icp_handle;
2631 }
2632
2633 fs_reg
2634 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2635 nir_intrinsic_instr *instr)
2636 {
2637 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2638 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2639 const nir_src &vertex_src = instr->src[0];
2640
2641 unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2642
2643 if (nir_src_is_const(vertex_src)) {
2644 return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2645 nir_src_as_uint(vertex_src), 0),
2646 BRW_REGISTER_TYPE_UD));
2647 }
2648
2649 /* The vertex index is non-constant. We need to use indirect
2650 * addressing to fetch the proper URB handle.
2651 *
2652 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2653 * indicating that channel <n> should read the handle from
2654 * DWord <n>. We convert that to bytes by multiplying by 4.
2655 *
2656 * Next, we convert the vertex index to bytes by multiplying
2657 * by 32 (shifting by 5), and add the two together. This is
2658 * the final indirect byte offset.
2659 */
2660 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2661 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2662 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2663 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2664 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2665
2666 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2667 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2668 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2669 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2670 /* Convert vertex_index to bytes (multiply by 32) */
2671 bld.SHL(vertex_offset_bytes,
2672 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2673 brw_imm_ud(5u));
2674 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2675
2676 /* Use first_icp_handle as the base offset. There is one register
2677 * of URB handles per vertex, so inform the register allocator that
2678 * we might read up to nir->info.gs.vertices_in registers.
2679 */
2680 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2681 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2682 icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2683
2684 return icp_handle;
2685 }
2686
2687 struct brw_reg
2688 fs_visitor::get_tcs_output_urb_handle()
2689 {
2690 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2691
2692 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2693 return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2694 } else {
2695 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2696 return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2697 }
2698 }
2699
2700 void
2701 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2702 nir_intrinsic_instr *instr)
2703 {
2704 assert(stage == MESA_SHADER_TESS_CTRL);
2705 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2706 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2707 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2708
2709 bool eight_patch =
2710 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2711
2712 fs_reg dst;
2713 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2714 dst = get_nir_dest(instr->dest);
2715
2716 switch (instr->intrinsic) {
2717 case nir_intrinsic_load_primitive_id:
2718 bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2719 : brw_vec1_grf(0, 1)));
2720 break;
2721 case nir_intrinsic_load_invocation_id:
2722 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2723 break;
2724 case nir_intrinsic_load_patch_vertices_in:
2725 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2726 brw_imm_d(tcs_key->input_vertices));
2727 break;
2728
2729 case nir_intrinsic_barrier: {
2730 if (tcs_prog_data->instances == 1)
2731 break;
2732
2733 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2734 fs_reg m0_2 = component(m0, 2);
2735
2736 const fs_builder chanbld = bld.exec_all().group(1, 0);
2737
2738 /* Zero the message header */
2739 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2740
2741 if (devinfo->gen < 11) {
2742 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2743 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2744 brw_imm_ud(INTEL_MASK(16, 13)));
2745
2746 /* Shift it up to bits 27:24. */
2747 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2748 } else {
2749 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2750 brw_imm_ud(INTEL_MASK(30, 24)));
2751 }
2752
2753 /* Set the Barrier Count and the enable bit */
2754 if (devinfo->gen < 11) {
2755 chanbld.OR(m0_2, m0_2,
2756 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2757 } else {
2758 chanbld.OR(m0_2, m0_2,
2759 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2760 }
2761
2762 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2763 break;
2764 }
2765
2766 case nir_intrinsic_load_input:
2767 unreachable("nir_lower_io should never give us these.");
2768 break;
2769
2770 case nir_intrinsic_load_per_vertex_input: {
2771 assert(nir_dest_bit_size(instr->dest) == 32);
2772 fs_reg indirect_offset = get_indirect_offset(instr);
2773 unsigned imm_offset = instr->const_index[0];
2774 fs_inst *inst;
2775
2776 fs_reg icp_handle =
2777 eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2778 : get_tcs_single_patch_icp_handle(bld, instr);
2779
2780 /* We can only read two double components with each URB read, so
2781 * we send two read messages in that case, each one loading up to
2782 * two double components.
2783 */
2784 unsigned num_components = instr->num_components;
2785 unsigned first_component = nir_intrinsic_component(instr);
2786
2787 if (indirect_offset.file == BAD_FILE) {
2788 /* Constant indexing - use global offset. */
2789 if (first_component != 0) {
2790 unsigned read_components = num_components + first_component;
2791 fs_reg tmp = bld.vgrf(dst.type, read_components);
2792 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2793 for (unsigned i = 0; i < num_components; i++) {
2794 bld.MOV(offset(dst, bld, i),
2795 offset(tmp, bld, i + first_component));
2796 }
2797 } else {
2798 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2799 }
2800 inst->offset = imm_offset;
2801 inst->mlen = 1;
2802 } else {
2803 /* Indirect indexing - use per-slot offsets as well. */
2804 const fs_reg srcs[] = { icp_handle, indirect_offset };
2805 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2806 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2807 if (first_component != 0) {
2808 unsigned read_components = num_components + first_component;
2809 fs_reg tmp = bld.vgrf(dst.type, read_components);
2810 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2811 payload);
2812 for (unsigned i = 0; i < num_components; i++) {
2813 bld.MOV(offset(dst, bld, i),
2814 offset(tmp, bld, i + first_component));
2815 }
2816 } else {
2817 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2818 payload);
2819 }
2820 inst->offset = imm_offset;
2821 inst->mlen = 2;
2822 }
2823 inst->size_written = (num_components + first_component) *
2824 inst->dst.component_size(inst->exec_size);
2825
2826 /* Copy the temporary to the destination to deal with writemasking.
2827 *
2828 * Also attempt to deal with gl_PointSize being in the .w component.
2829 */
2830 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2831 assert(type_sz(dst.type) == 4);
2832 inst->dst = bld.vgrf(dst.type, 4);
2833 inst->size_written = 4 * REG_SIZE;
2834 bld.MOV(dst, offset(inst->dst, bld, 3));
2835 }
2836 break;
2837 }
2838
2839 case nir_intrinsic_load_output:
2840 case nir_intrinsic_load_per_vertex_output: {
2841 assert(nir_dest_bit_size(instr->dest) == 32);
2842 fs_reg indirect_offset = get_indirect_offset(instr);
2843 unsigned imm_offset = instr->const_index[0];
2844 unsigned first_component = nir_intrinsic_component(instr);
2845
2846 struct brw_reg output_handles = get_tcs_output_urb_handle();
2847
2848 fs_inst *inst;
2849 if (indirect_offset.file == BAD_FILE) {
2850 /* This MOV replicates the output handle to all enabled channels
2851 * is SINGLE_PATCH mode.
2852 */
2853 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2854 bld.MOV(patch_handle, output_handles);
2855
2856 {
2857 if (first_component != 0) {
2858 unsigned read_components =
2859 instr->num_components + first_component;
2860 fs_reg tmp = bld.vgrf(dst.type, read_components);
2861 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2862 patch_handle);
2863 inst->size_written = read_components * REG_SIZE;
2864 for (unsigned i = 0; i < instr->num_components; i++) {
2865 bld.MOV(offset(dst, bld, i),
2866 offset(tmp, bld, i + first_component));
2867 }
2868 } else {
2869 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2870 patch_handle);
2871 inst->size_written = instr->num_components * REG_SIZE;
2872 }
2873 inst->offset = imm_offset;
2874 inst->mlen = 1;
2875 }
2876 } else {
2877 /* Indirect indexing - use per-slot offsets as well. */
2878 const fs_reg srcs[] = { output_handles, indirect_offset };
2879 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2880 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2881 if (first_component != 0) {
2882 unsigned read_components =
2883 instr->num_components + first_component;
2884 fs_reg tmp = bld.vgrf(dst.type, read_components);
2885 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2886 payload);
2887 inst->size_written = read_components * REG_SIZE;
2888 for (unsigned i = 0; i < instr->num_components; i++) {
2889 bld.MOV(offset(dst, bld, i),
2890 offset(tmp, bld, i + first_component));
2891 }
2892 } else {
2893 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2894 payload);
2895 inst->size_written = instr->num_components * REG_SIZE;
2896 }
2897 inst->offset = imm_offset;
2898 inst->mlen = 2;
2899 }
2900 break;
2901 }
2902
2903 case nir_intrinsic_store_output:
2904 case nir_intrinsic_store_per_vertex_output: {
2905 assert(nir_src_bit_size(instr->src[0]) == 32);
2906 fs_reg value = get_nir_src(instr->src[0]);
2907 fs_reg indirect_offset = get_indirect_offset(instr);
2908 unsigned imm_offset = instr->const_index[0];
2909 unsigned mask = instr->const_index[1];
2910 unsigned header_regs = 0;
2911 struct brw_reg output_handles = get_tcs_output_urb_handle();
2912
2913 fs_reg srcs[7];
2914 srcs[header_regs++] = output_handles;
2915
2916 if (indirect_offset.file != BAD_FILE) {
2917 srcs[header_regs++] = indirect_offset;
2918 }
2919
2920 if (mask == 0)
2921 break;
2922
2923 unsigned num_components = util_last_bit(mask);
2924 enum opcode opcode;
2925
2926 /* We can only pack two 64-bit components in a single message, so send
2927 * 2 messages if we have more components
2928 */
2929 unsigned first_component = nir_intrinsic_component(instr);
2930 mask = mask << first_component;
2931
2932 if (mask != WRITEMASK_XYZW) {
2933 srcs[header_regs++] = brw_imm_ud(mask << 16);
2934 opcode = indirect_offset.file != BAD_FILE ?
2935 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2936 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2937 } else {
2938 opcode = indirect_offset.file != BAD_FILE ?
2939 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2940 SHADER_OPCODE_URB_WRITE_SIMD8;
2941 }
2942
2943 for (unsigned i = 0; i < num_components; i++) {
2944 if (!(mask & (1 << (i + first_component))))
2945 continue;
2946
2947 srcs[header_regs + i + first_component] = offset(value, bld, i);
2948 }
2949
2950 unsigned mlen = header_regs + num_components + first_component;
2951 fs_reg payload =
2952 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2953 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2954
2955 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2956 inst->offset = imm_offset;
2957 inst->mlen = mlen;
2958 break;
2959 }
2960
2961 default:
2962 nir_emit_intrinsic(bld, instr);
2963 break;
2964 }
2965 }
2966
2967 void
2968 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2969 nir_intrinsic_instr *instr)
2970 {
2971 assert(stage == MESA_SHADER_TESS_EVAL);
2972 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2973
2974 fs_reg dest;
2975 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2976 dest = get_nir_dest(instr->dest);
2977
2978 switch (instr->intrinsic) {
2979 case nir_intrinsic_load_primitive_id:
2980 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2981 break;
2982 case nir_intrinsic_load_tess_coord:
2983 /* gl_TessCoord is part of the payload in g1-3 */
2984 for (unsigned i = 0; i < 3; i++) {
2985 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2986 }
2987 break;
2988
2989 case nir_intrinsic_load_input:
2990 case nir_intrinsic_load_per_vertex_input: {
2991 assert(nir_dest_bit_size(instr->dest) == 32);
2992 fs_reg indirect_offset = get_indirect_offset(instr);
2993 unsigned imm_offset = instr->const_index[0];
2994 unsigned first_component = nir_intrinsic_component(instr);
2995
2996 fs_inst *inst;
2997 if (indirect_offset.file == BAD_FILE) {
2998 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2999 * which is 16 registers (since each holds 2 vec4 slots).
3000 */
3001 const unsigned max_push_slots = 32;
3002 if (imm_offset < max_push_slots) {
3003 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
3004 for (int i = 0; i < instr->num_components; i++) {
3005 unsigned comp = 4 * (imm_offset % 2) + i + first_component;
3006 bld.MOV(offset(dest, bld, i), component(src, comp));
3007 }
3008
3009 tes_prog_data->base.urb_read_length =
3010 MAX2(tes_prog_data->base.urb_read_length,
3011 (imm_offset / 2) + 1);
3012 } else {
3013 /* Replicate the patch handle to all enabled channels */
3014 const fs_reg srcs[] = {
3015 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
3016 };
3017 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
3018 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
3019
3020 if (first_component != 0) {
3021 unsigned read_components =
3022 instr->num_components + first_component;
3023 fs_reg tmp = bld.vgrf(dest.type, read_components);
3024 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
3025 patch_handle);
3026 inst->size_written = read_components * REG_SIZE;
3027 for (unsigned i = 0; i < instr->num_components; i++) {
3028 bld.MOV(offset(dest, bld, i),
3029 offset(tmp, bld, i + first_component));
3030 }
3031 } else {
3032 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3033 patch_handle);
3034 inst->size_written = instr->num_components * REG_SIZE;
3035 }
3036 inst->mlen = 1;
3037 inst->offset = imm_offset;
3038 }
3039 } else {
3040 /* Indirect indexing - use per-slot offsets as well. */
3041
3042 /* We can only read two double components with each URB read, so
3043 * we send two read messages in that case, each one loading up to
3044 * two double components.
3045 */
3046 unsigned num_components = instr->num_components;
3047 const fs_reg srcs[] = {
3048 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3049 indirect_offset
3050 };
3051 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3052 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3053
3054 if (first_component != 0) {
3055 unsigned read_components =
3056 num_components + first_component;
3057 fs_reg tmp = bld.vgrf(dest.type, read_components);
3058 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3059 payload);
3060 for (unsigned i = 0; i < num_components; i++) {
3061 bld.MOV(offset(dest, bld, i),
3062 offset(tmp, bld, i + first_component));
3063 }
3064 } else {
3065 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3066 payload);
3067 }
3068 inst->mlen = 2;
3069 inst->offset = imm_offset;
3070 inst->size_written = (num_components + first_component) *
3071 inst->dst.component_size(inst->exec_size);
3072 }
3073 break;
3074 }
3075 default:
3076 nir_emit_intrinsic(bld, instr);
3077 break;
3078 }
3079 }
3080
3081 void
3082 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3083 nir_intrinsic_instr *instr)
3084 {
3085 assert(stage == MESA_SHADER_GEOMETRY);
3086 fs_reg indirect_offset;
3087
3088 fs_reg dest;
3089 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3090 dest = get_nir_dest(instr->dest);
3091
3092 switch (instr->intrinsic) {
3093 case nir_intrinsic_load_primitive_id:
3094 assert(stage == MESA_SHADER_GEOMETRY);
3095 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3096 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3097 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3098 break;
3099
3100 case nir_intrinsic_load_input:
3101 unreachable("load_input intrinsics are invalid for the GS stage");
3102
3103 case nir_intrinsic_load_per_vertex_input:
3104 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3105 instr->src[1], instr->num_components,
3106 nir_intrinsic_component(instr));
3107 break;
3108
3109 case nir_intrinsic_emit_vertex_with_counter:
3110 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3111 break;
3112
3113 case nir_intrinsic_end_primitive_with_counter:
3114 emit_gs_end_primitive(instr->src[0]);
3115 break;
3116
3117 case nir_intrinsic_set_vertex_count:
3118 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3119 break;
3120
3121 case nir_intrinsic_load_invocation_id: {
3122 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3123 assert(val.file != BAD_FILE);
3124 dest.type = val.type;
3125 bld.MOV(dest, val);
3126 break;
3127 }
3128
3129 default:
3130 nir_emit_intrinsic(bld, instr);
3131 break;
3132 }
3133 }
3134
3135 /**
3136 * Fetch the current render target layer index.
3137 */
3138 static fs_reg
3139 fetch_render_target_array_index(const fs_builder &bld)
3140 {
3141 if (bld.shader->devinfo->gen >= 6) {
3142 /* The render target array index is provided in the thread payload as
3143 * bits 26:16 of r0.0.
3144 */
3145 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3146 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3147 brw_imm_uw(0x7ff));
3148 return idx;
3149 } else {
3150 /* Pre-SNB we only ever render into the first layer of the framebuffer
3151 * since layered rendering is not implemented.
3152 */
3153 return brw_imm_ud(0);
3154 }
3155 }
3156
3157 /**
3158 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3159 * framebuffer at the current fragment coordinates and sample index.
3160 */
3161 fs_inst *
3162 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3163 unsigned target)
3164 {
3165 const struct gen_device_info *devinfo = bld.shader->devinfo;
3166
3167 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3168 const brw_wm_prog_key *wm_key =
3169 reinterpret_cast<const brw_wm_prog_key *>(key);
3170 assert(!wm_key->coherent_fb_fetch);
3171 const struct brw_wm_prog_data *wm_prog_data =
3172 brw_wm_prog_data(stage_prog_data);
3173
3174 /* Calculate the surface index relative to the start of the texture binding
3175 * table block, since that's what the texturing messages expect.
3176 */
3177 const unsigned surface = target +
3178 wm_prog_data->binding_table.render_target_read_start -
3179 wm_prog_data->base.binding_table.texture_start;
3180
3181 /* Calculate the fragment coordinates. */
3182 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3183 bld.MOV(offset(coords, bld, 0), pixel_x);
3184 bld.MOV(offset(coords, bld, 1), pixel_y);
3185 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3186
3187 /* Calculate the sample index and MCS payload when multisampling. Luckily
3188 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3189 * shouldn't be necessary to recompile based on whether the framebuffer is
3190 * CMS or UMS.
3191 */
3192 if (wm_key->multisample_fbo &&
3193 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3194 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3195
3196 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3197 const fs_reg mcs = wm_key->multisample_fbo ?
3198 emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3199
3200 /* Use either a normal or a CMS texel fetch message depending on whether
3201 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3202 * message just in case the framebuffer uses 16x multisampling, it should
3203 * be equivalent to the normal CMS fetch for lower multisampling modes.
3204 */
3205 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3206 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3207 SHADER_OPCODE_TXF_CMS_LOGICAL;
3208
3209 /* Emit the instruction. */
3210 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3211 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3212 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3213 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3214 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3215 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3216 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3217 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3218 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3219
3220 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3221 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3222
3223 return inst;
3224 }
3225
3226 /**
3227 * Actual coherent framebuffer read implemented using the native render target
3228 * read message. Requires SKL+.
3229 */
3230 static fs_inst *
3231 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3232 {
3233 assert(bld.shader->devinfo->gen >= 9);
3234 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3235 inst->target = target;
3236 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3237
3238 return inst;
3239 }
3240
3241 static fs_reg
3242 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3243 {
3244 if (n && regs[0].file != BAD_FILE) {
3245 return regs[0];
3246
3247 } else {
3248 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3249
3250 for (unsigned i = 0; i < n; i++)
3251 regs[i] = tmp;
3252
3253 return tmp;
3254 }
3255 }
3256
3257 static fs_reg
3258 alloc_frag_output(fs_visitor *v, unsigned location)
3259 {
3260 assert(v->stage == MESA_SHADER_FRAGMENT);
3261 const brw_wm_prog_key *const key =
3262 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3263 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3264 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3265
3266 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3267 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3268
3269 else if (l == FRAG_RESULT_COLOR)
3270 return alloc_temporary(v->bld, 4, v->outputs,
3271 MAX2(key->nr_color_regions, 1));
3272
3273 else if (l == FRAG_RESULT_DEPTH)
3274 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3275
3276 else if (l == FRAG_RESULT_STENCIL)
3277 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3278
3279 else if (l == FRAG_RESULT_SAMPLE_MASK)
3280 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3281
3282 else if (l >= FRAG_RESULT_DATA0 &&
3283 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3284 return alloc_temporary(v->bld, 4,
3285 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3286
3287 else
3288 unreachable("Invalid location");
3289 }
3290
3291 /* Annoyingly, we get the barycentrics into the shader in a layout that's
3292 * optimized for PLN but it doesn't work nearly as well as one would like for
3293 * manual interpolation.
3294 */
3295 static void
3296 shuffle_from_pln_layout(const fs_builder &bld, fs_reg dest, fs_reg pln_data)
3297 {
3298 dest.type = BRW_REGISTER_TYPE_F;
3299 pln_data.type = BRW_REGISTER_TYPE_F;
3300 const fs_reg dest_u = offset(dest, bld, 0);
3301 const fs_reg dest_v = offset(dest, bld, 1);
3302
3303 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3304 const fs_builder gbld = bld.group(8, g);
3305 gbld.MOV(horiz_offset(dest_u, g * 8),
3306 byte_offset(pln_data, (g * 2 + 0) * REG_SIZE));
3307 gbld.MOV(horiz_offset(dest_v, g * 8),
3308 byte_offset(pln_data, (g * 2 + 1) * REG_SIZE));
3309 }
3310 }
3311
3312 static void
3313 shuffle_to_pln_layout(const fs_builder &bld, fs_reg pln_data, fs_reg src)
3314 {
3315 pln_data.type = BRW_REGISTER_TYPE_F;
3316 src.type = BRW_REGISTER_TYPE_F;
3317 const fs_reg src_u = offset(src, bld, 0);
3318 const fs_reg src_v = offset(src, bld, 1);
3319
3320 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3321 const fs_builder gbld = bld.group(8, g);
3322 gbld.MOV(byte_offset(pln_data, (g * 2 + 0) * REG_SIZE),
3323 horiz_offset(src_u, g * 8));
3324 gbld.MOV(byte_offset(pln_data, (g * 2 + 1) * REG_SIZE),
3325 horiz_offset(src_v, g * 8));
3326 }
3327 }
3328
3329 void
3330 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3331 nir_intrinsic_instr *instr)
3332 {
3333 assert(stage == MESA_SHADER_FRAGMENT);
3334
3335 fs_reg dest;
3336 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3337 dest = get_nir_dest(instr->dest);
3338
3339 switch (instr->intrinsic) {
3340 case nir_intrinsic_load_front_face:
3341 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3342 *emit_frontfacing_interpolation());
3343 break;
3344
3345 case nir_intrinsic_load_sample_pos: {
3346 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3347 assert(sample_pos.file != BAD_FILE);
3348 dest.type = sample_pos.type;
3349 bld.MOV(dest, sample_pos);
3350 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3351 break;
3352 }
3353
3354 case nir_intrinsic_load_layer_id:
3355 dest.type = BRW_REGISTER_TYPE_UD;
3356 bld.MOV(dest, fetch_render_target_array_index(bld));
3357 break;
3358
3359 case nir_intrinsic_is_helper_invocation: {
3360 /* Unlike the regular gl_HelperInvocation, that is defined at dispatch,
3361 * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into
3362 * consideration demoted invocations. That information is stored in
3363 * f0.1.
3364 */
3365 dest.type = BRW_REGISTER_TYPE_UD;
3366
3367 bld.MOV(dest, brw_imm_ud(0));
3368
3369 fs_inst *mov = bld.MOV(dest, brw_imm_ud(~0));
3370 mov->predicate = BRW_PREDICATE_NORMAL;
3371 mov->predicate_inverse = true;
3372 mov->flag_subreg = 1;
3373 break;
3374 }
3375
3376 case nir_intrinsic_load_helper_invocation:
3377 case nir_intrinsic_load_sample_mask_in:
3378 case nir_intrinsic_load_sample_id: {
3379 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3380 fs_reg val = nir_system_values[sv];
3381 assert(val.file != BAD_FILE);
3382 dest.type = val.type;
3383 bld.MOV(dest, val);
3384 break;
3385 }
3386
3387 case nir_intrinsic_store_output: {
3388 const fs_reg src = get_nir_src(instr->src[0]);
3389 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3390 const unsigned location = nir_intrinsic_base(instr) +
3391 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3392 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3393 src.type);
3394
3395 for (unsigned j = 0; j < instr->num_components; j++)
3396 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3397 offset(src, bld, j));
3398
3399 break;
3400 }
3401
3402 case nir_intrinsic_load_output: {
3403 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3404 BRW_NIR_FRAG_OUTPUT_LOCATION);
3405 assert(l >= FRAG_RESULT_DATA0);
3406 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3407 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3408 const fs_reg tmp = bld.vgrf(dest.type, 4);
3409
3410 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3411 emit_coherent_fb_read(bld, tmp, target);
3412 else
3413 emit_non_coherent_fb_read(bld, tmp, target);
3414
3415 for (unsigned j = 0; j < instr->num_components; j++) {
3416 bld.MOV(offset(dest, bld, j),
3417 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3418 }
3419
3420 break;
3421 }
3422
3423 case nir_intrinsic_demote:
3424 case nir_intrinsic_discard:
3425 case nir_intrinsic_demote_if:
3426 case nir_intrinsic_discard_if: {
3427 /* We track our discarded pixels in f0.1. By predicating on it, we can
3428 * update just the flag bits that aren't yet discarded. If there's no
3429 * condition, we emit a CMP of g0 != g0, so all currently executing
3430 * channels will get turned off.
3431 */
3432 fs_inst *cmp = NULL;
3433 if (instr->intrinsic == nir_intrinsic_demote_if ||
3434 instr->intrinsic == nir_intrinsic_discard_if) {
3435 nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]);
3436
3437 if (alu != NULL &&
3438 alu->op != nir_op_bcsel &&
3439 alu->op != nir_op_inot) {
3440 /* Re-emit the instruction that generated the Boolean value, but
3441 * do not store it. Since this instruction will be conditional,
3442 * other instructions that want to use the real Boolean value may
3443 * get garbage. This was a problem for piglit's fs-discard-exit-2
3444 * test.
3445 *
3446 * Ideally we'd detect that the instruction cannot have a
3447 * conditional modifier before emitting the instructions. Alas,
3448 * that is nigh impossible. Instead, we're going to assume the
3449 * instruction (or last instruction) generated can have a
3450 * conditional modifier. If it cannot, fallback to the old-style
3451 * compare, and hope dead code elimination will clean up the
3452 * extra instructions generated.
3453 */
3454 nir_emit_alu(bld, alu, false);
3455
3456 cmp = (fs_inst *) instructions.get_tail();
3457 if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) {
3458 if (cmp->can_do_cmod())
3459 cmp->conditional_mod = BRW_CONDITIONAL_Z;
3460 else
3461 cmp = NULL;
3462 } else {
3463 /* The old sequence that would have been generated is,
3464 * basically, bool_result == false. This is equivalent to
3465 * !bool_result, so negate the old modifier.
3466 */
3467 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
3468 }
3469 }
3470
3471 if (cmp == NULL) {
3472 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3473 brw_imm_d(0), BRW_CONDITIONAL_Z);
3474 }
3475 } else {
3476 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3477 BRW_REGISTER_TYPE_UW));
3478 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3479 }
3480
3481 cmp->predicate = BRW_PREDICATE_NORMAL;
3482 cmp->flag_subreg = 1;
3483
3484 if (devinfo->gen >= 6) {
3485 /* Due to the way we implement discard, the jump will only happen
3486 * when the whole quad is discarded. So we can do this even for
3487 * demote as it won't break its uniformity promises.
3488 */
3489 emit_discard_jump();
3490 }
3491
3492 limit_dispatch_width(16, "Fragment discard/demote not implemented in SIMD32 mode.");
3493 break;
3494 }
3495
3496 case nir_intrinsic_load_input: {
3497 /* load_input is only used for flat inputs */
3498 assert(nir_dest_bit_size(instr->dest) == 32);
3499 unsigned base = nir_intrinsic_base(instr);
3500 unsigned comp = nir_intrinsic_component(instr);
3501 unsigned num_components = instr->num_components;
3502
3503 /* Special case fields in the VUE header */
3504 if (base == VARYING_SLOT_LAYER)
3505 comp = 1;
3506 else if (base == VARYING_SLOT_VIEWPORT)
3507 comp = 2;
3508
3509 for (unsigned int i = 0; i < num_components; i++) {
3510 bld.MOV(offset(dest, bld, i),
3511 retype(component(interp_reg(base, comp + i), 3), dest.type));
3512 }
3513 break;
3514 }
3515
3516 case nir_intrinsic_load_fs_input_interp_deltas: {
3517 assert(stage == MESA_SHADER_FRAGMENT);
3518 assert(nir_src_as_uint(instr->src[0]) == 0);
3519 fs_reg interp = interp_reg(nir_intrinsic_base(instr),
3520 nir_intrinsic_component(instr));
3521 dest.type = BRW_REGISTER_TYPE_F;
3522 bld.MOV(offset(dest, bld, 0), component(interp, 3));
3523 bld.MOV(offset(dest, bld, 1), component(interp, 1));
3524 bld.MOV(offset(dest, bld, 2), component(interp, 0));
3525 break;
3526 }
3527
3528 case nir_intrinsic_load_barycentric_pixel:
3529 case nir_intrinsic_load_barycentric_centroid:
3530 case nir_intrinsic_load_barycentric_sample: {
3531 /* Use the delta_xy values computed from the payload */
3532 const glsl_interp_mode interp_mode =
3533 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3534 enum brw_barycentric_mode bary =
3535 brw_barycentric_mode(interp_mode, instr->intrinsic);
3536
3537 shuffle_from_pln_layout(bld, dest, this->delta_xy[bary]);
3538 break;
3539 }
3540
3541 case nir_intrinsic_load_barycentric_at_sample: {
3542 const glsl_interp_mode interpolation =
3543 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3544
3545 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3546 if (nir_src_is_const(instr->src[0])) {
3547 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3548
3549 emit_pixel_interpolater_send(bld,
3550 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3551 tmp,
3552 fs_reg(), /* src */
3553 brw_imm_ud(msg_data),
3554 interpolation);
3555 } else {
3556 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3557 BRW_REGISTER_TYPE_UD);
3558
3559 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3560 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3561 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3562 bld.exec_all().group(1, 0)
3563 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3564 emit_pixel_interpolater_send(bld,
3565 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3566 tmp,
3567 fs_reg(), /* src */
3568 msg_data,
3569 interpolation);
3570 } else {
3571 /* Make a loop that sends a message to the pixel interpolater
3572 * for the sample number in each live channel. If there are
3573 * multiple channels with the same sample number then these
3574 * will be handled simultaneously with a single interation of
3575 * the loop.
3576 */
3577 bld.emit(BRW_OPCODE_DO);
3578
3579 /* Get the next live sample number into sample_id_reg */
3580 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3581
3582 /* Set the flag register so that we can perform the send
3583 * message on all channels that have the same sample number
3584 */
3585 bld.CMP(bld.null_reg_ud(),
3586 sample_src, sample_id,
3587 BRW_CONDITIONAL_EQ);
3588 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3589 bld.exec_all().group(1, 0)
3590 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3591 fs_inst *inst =
3592 emit_pixel_interpolater_send(bld,
3593 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3594 tmp,
3595 fs_reg(), /* src */
3596 component(msg_data, 0),
3597 interpolation);
3598 set_predicate(BRW_PREDICATE_NORMAL, inst);
3599
3600 /* Continue the loop if there are any live channels left */
3601 set_predicate_inv(BRW_PREDICATE_NORMAL,
3602 true, /* inverse */
3603 bld.emit(BRW_OPCODE_WHILE));
3604 }
3605 }
3606 shuffle_from_pln_layout(bld, dest, tmp);
3607 break;
3608 }
3609
3610 case nir_intrinsic_load_barycentric_at_offset: {
3611 const glsl_interp_mode interpolation =
3612 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3613
3614 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3615
3616 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3617 if (const_offset) {
3618 assert(nir_src_bit_size(instr->src[0]) == 32);
3619 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3620 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3621
3622 emit_pixel_interpolater_send(bld,
3623 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3624 tmp,
3625 fs_reg(), /* src */
3626 brw_imm_ud(off_x | (off_y << 4)),
3627 interpolation);
3628 } else {
3629 fs_reg src = vgrf(glsl_type::ivec2_type);
3630 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3631 BRW_REGISTER_TYPE_F);
3632 for (int i = 0; i < 2; i++) {
3633 fs_reg temp = vgrf(glsl_type::float_type);
3634 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3635 fs_reg itemp = vgrf(glsl_type::int_type);
3636 /* float to int */
3637 bld.MOV(itemp, temp);
3638
3639 /* Clamp the upper end of the range to +7/16.
3640 * ARB_gpu_shader5 requires that we support a maximum offset
3641 * of +0.5, which isn't representable in a S0.4 value -- if
3642 * we didn't clamp it, we'd end up with -8/16, which is the
3643 * opposite of what the shader author wanted.
3644 *
3645 * This is legal due to ARB_gpu_shader5's quantization
3646 * rules:
3647 *
3648 * "Not all values of <offset> may be supported; x and y
3649 * offsets may be rounded to fixed-point values with the
3650 * number of fraction bits given by the
3651 * implementation-dependent constant
3652 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3653 */
3654 set_condmod(BRW_CONDITIONAL_L,
3655 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3656 }
3657
3658 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3659 emit_pixel_interpolater_send(bld,
3660 opcode,
3661 tmp,
3662 src,
3663 brw_imm_ud(0u),
3664 interpolation);
3665 }
3666 shuffle_from_pln_layout(bld, dest, tmp);
3667 break;
3668 }
3669
3670 case nir_intrinsic_load_frag_coord:
3671 emit_fragcoord_interpolation(dest);
3672 break;
3673
3674 case nir_intrinsic_load_interpolated_input: {
3675 assert(instr->src[0].ssa &&
3676 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3677 nir_intrinsic_instr *bary_intrinsic =
3678 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3679 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3680 enum glsl_interp_mode interp_mode =
3681 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3682 fs_reg dst_xy;
3683
3684 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3685 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3686 /* Use the result of the PI message. Because the load_barycentric
3687 * intrinsics return a regular vec2 and we need it in PLN layout, we
3688 * have to do a translation. Fortunately, copy-prop cleans this up
3689 * reliably.
3690 */
3691 dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3692 shuffle_to_pln_layout(bld, dst_xy, get_nir_src(instr->src[0]));
3693 } else {
3694 /* Use the delta_xy values computed from the payload */
3695 enum brw_barycentric_mode bary =
3696 brw_barycentric_mode(interp_mode, bary_intrin);
3697
3698 dst_xy = this->delta_xy[bary];
3699 }
3700
3701 for (unsigned int i = 0; i < instr->num_components; i++) {
3702 fs_reg interp =
3703 component(interp_reg(nir_intrinsic_base(instr),
3704 nir_intrinsic_component(instr) + i), 0);
3705 interp.type = BRW_REGISTER_TYPE_F;
3706 dest.type = BRW_REGISTER_TYPE_F;
3707
3708 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3709 fs_reg tmp = vgrf(glsl_type::float_type);
3710 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3711 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3712 } else {
3713 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3714 }
3715 }
3716 break;
3717 }
3718
3719 default:
3720 nir_emit_intrinsic(bld, instr);
3721 break;
3722 }
3723 }
3724
3725 void
3726 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3727 nir_intrinsic_instr *instr)
3728 {
3729 assert(stage == MESA_SHADER_COMPUTE);
3730 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3731
3732 fs_reg dest;
3733 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3734 dest = get_nir_dest(instr->dest);
3735
3736 switch (instr->intrinsic) {
3737 case nir_intrinsic_barrier:
3738 emit_barrier();
3739 cs_prog_data->uses_barrier = true;
3740 break;
3741
3742 case nir_intrinsic_load_subgroup_id:
3743 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3744 break;
3745
3746 case nir_intrinsic_load_local_invocation_id:
3747 case nir_intrinsic_load_work_group_id: {
3748 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3749 fs_reg val = nir_system_values[sv];
3750 assert(val.file != BAD_FILE);
3751 dest.type = val.type;
3752 for (unsigned i = 0; i < 3; i++)
3753 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3754 break;
3755 }
3756
3757 case nir_intrinsic_load_num_work_groups: {
3758 const unsigned surface =
3759 cs_prog_data->binding_table.work_groups_start;
3760
3761 cs_prog_data->uses_num_work_groups = true;
3762
3763 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3764 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3765 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3766 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3767
3768 /* Read the 3 GLuint components of gl_NumWorkGroups */
3769 for (unsigned i = 0; i < 3; i++) {
3770 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3771 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3772 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3773 }
3774 break;
3775 }
3776
3777 case nir_intrinsic_shared_atomic_add:
3778 case nir_intrinsic_shared_atomic_imin:
3779 case nir_intrinsic_shared_atomic_umin:
3780 case nir_intrinsic_shared_atomic_imax:
3781 case nir_intrinsic_shared_atomic_umax:
3782 case nir_intrinsic_shared_atomic_and:
3783 case nir_intrinsic_shared_atomic_or:
3784 case nir_intrinsic_shared_atomic_xor:
3785 case nir_intrinsic_shared_atomic_exchange:
3786 case nir_intrinsic_shared_atomic_comp_swap:
3787 nir_emit_shared_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
3788 break;
3789 case nir_intrinsic_shared_atomic_fmin:
3790 case nir_intrinsic_shared_atomic_fmax:
3791 case nir_intrinsic_shared_atomic_fcomp_swap:
3792 nir_emit_shared_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
3793 break;
3794
3795 case nir_intrinsic_load_shared: {
3796 assert(devinfo->gen >= 7);
3797 assert(stage == MESA_SHADER_COMPUTE);
3798
3799 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3800 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3801 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3802 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3803 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3804
3805 /* Make dest unsigned because that's what the temporary will be */
3806 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3807
3808 /* Read the vector */
3809 if (nir_intrinsic_align(instr) >= 4) {
3810 assert(nir_dest_bit_size(instr->dest) == 32);
3811 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3812 fs_inst *inst =
3813 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3814 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3815 inst->size_written = instr->num_components * dispatch_width * 4;
3816 } else {
3817 assert(nir_dest_bit_size(instr->dest) <= 32);
3818 assert(nir_dest_num_components(instr->dest) == 1);
3819 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3820
3821 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3822 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3823 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3824 bld.MOV(dest, subscript(read_result, dest.type, 0));
3825 }
3826 break;
3827 }
3828
3829 case nir_intrinsic_store_shared: {
3830 assert(devinfo->gen >= 7);
3831 assert(stage == MESA_SHADER_COMPUTE);
3832
3833 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3834 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3835 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3836 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3837 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3838
3839 fs_reg data = get_nir_src(instr->src[0]);
3840 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3841
3842 assert(nir_intrinsic_write_mask(instr) ==
3843 (1u << instr->num_components) - 1);
3844 if (nir_intrinsic_align(instr) >= 4) {
3845 assert(nir_src_bit_size(instr->src[0]) == 32);
3846 assert(nir_src_num_components(instr->src[0]) <= 4);
3847 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3848 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3849 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3850 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3851 } else {
3852 assert(nir_src_bit_size(instr->src[0]) <= 32);
3853 assert(nir_src_num_components(instr->src[0]) == 1);
3854 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3855
3856 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3857 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3858
3859 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3860 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3861 }
3862 break;
3863 }
3864
3865 default:
3866 nir_emit_intrinsic(bld, instr);
3867 break;
3868 }
3869 }
3870
3871 static fs_reg
3872 brw_nir_reduction_op_identity(const fs_builder &bld,
3873 nir_op op, brw_reg_type type)
3874 {
3875 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3876 switch (type_sz(type)) {
3877 case 1:
3878 if (type == BRW_REGISTER_TYPE_UB) {
3879 return brw_imm_uw(value.u8);
3880 } else {
3881 assert(type == BRW_REGISTER_TYPE_B);
3882 return brw_imm_w(value.i8);
3883 }
3884 case 2:
3885 return retype(brw_imm_uw(value.u16), type);
3886 case 4:
3887 return retype(brw_imm_ud(value.u32), type);
3888 case 8:
3889 if (type == BRW_REGISTER_TYPE_DF)
3890 return setup_imm_df(bld, value.f64);
3891 else
3892 return retype(brw_imm_u64(value.u64), type);
3893 default:
3894 unreachable("Invalid type size");
3895 }
3896 }
3897
3898 static opcode
3899 brw_op_for_nir_reduction_op(nir_op op)
3900 {
3901 switch (op) {
3902 case nir_op_iadd: return BRW_OPCODE_ADD;
3903 case nir_op_fadd: return BRW_OPCODE_ADD;
3904 case nir_op_imul: return BRW_OPCODE_MUL;
3905 case nir_op_fmul: return BRW_OPCODE_MUL;
3906 case nir_op_imin: return BRW_OPCODE_SEL;
3907 case nir_op_umin: return BRW_OPCODE_SEL;
3908 case nir_op_fmin: return BRW_OPCODE_SEL;
3909 case nir_op_imax: return BRW_OPCODE_SEL;
3910 case nir_op_umax: return BRW_OPCODE_SEL;
3911 case nir_op_fmax: return BRW_OPCODE_SEL;
3912 case nir_op_iand: return BRW_OPCODE_AND;
3913 case nir_op_ior: return BRW_OPCODE_OR;
3914 case nir_op_ixor: return BRW_OPCODE_XOR;
3915 default:
3916 unreachable("Invalid reduction operation");
3917 }
3918 }
3919
3920 static brw_conditional_mod
3921 brw_cond_mod_for_nir_reduction_op(nir_op op)
3922 {
3923 switch (op) {
3924 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3925 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3926 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3927 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3928 case nir_op_imin: return BRW_CONDITIONAL_L;
3929 case nir_op_umin: return BRW_CONDITIONAL_L;
3930 case nir_op_fmin: return BRW_CONDITIONAL_L;
3931 case nir_op_imax: return BRW_CONDITIONAL_GE;
3932 case nir_op_umax: return BRW_CONDITIONAL_GE;
3933 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3934 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3935 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3936 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3937 default:
3938 unreachable("Invalid reduction operation");
3939 }
3940 }
3941
3942 fs_reg
3943 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3944 nir_intrinsic_instr *instr)
3945 {
3946 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3947
3948 if (stage_prog_data->binding_table.image_start > 0) {
3949 if (image.file == BRW_IMMEDIATE_VALUE) {
3950 image.d += stage_prog_data->binding_table.image_start;
3951 } else {
3952 bld.ADD(image, image,
3953 brw_imm_d(stage_prog_data->binding_table.image_start));
3954 }
3955 }
3956
3957 return bld.emit_uniformize(image);
3958 }
3959
3960 fs_reg
3961 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3962 nir_intrinsic_instr *instr)
3963 {
3964 /* SSBO stores are weird in that their index is in src[1] */
3965 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3966
3967 fs_reg surf_index;
3968 if (nir_src_is_const(instr->src[src])) {
3969 unsigned index = stage_prog_data->binding_table.ssbo_start +
3970 nir_src_as_uint(instr->src[src]);
3971 surf_index = brw_imm_ud(index);
3972 } else {
3973 surf_index = vgrf(glsl_type::uint_type);
3974 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3975 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3976 }
3977
3978 return bld.emit_uniformize(surf_index);
3979 }
3980
3981 static unsigned
3982 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3983 {
3984 switch (nir_intrinsic_image_dim(instr)) {
3985 case GLSL_SAMPLER_DIM_1D:
3986 return 1 + nir_intrinsic_image_array(instr);
3987 case GLSL_SAMPLER_DIM_2D:
3988 case GLSL_SAMPLER_DIM_RECT:
3989 return 2 + nir_intrinsic_image_array(instr);
3990 case GLSL_SAMPLER_DIM_3D:
3991 case GLSL_SAMPLER_DIM_CUBE:
3992 return 3;
3993 case GLSL_SAMPLER_DIM_BUF:
3994 return 1;
3995 case GLSL_SAMPLER_DIM_MS:
3996 return 2 + nir_intrinsic_image_array(instr);
3997 default:
3998 unreachable("Invalid image dimension");
3999 }
4000 }
4001
4002 void
4003 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
4004 {
4005 fs_reg dest;
4006 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4007 dest = get_nir_dest(instr->dest);
4008
4009 switch (instr->intrinsic) {
4010 case nir_intrinsic_image_load:
4011 case nir_intrinsic_image_store:
4012 case nir_intrinsic_image_atomic_add:
4013 case nir_intrinsic_image_atomic_imin:
4014 case nir_intrinsic_image_atomic_umin:
4015 case nir_intrinsic_image_atomic_imax:
4016 case nir_intrinsic_image_atomic_umax:
4017 case nir_intrinsic_image_atomic_and:
4018 case nir_intrinsic_image_atomic_or:
4019 case nir_intrinsic_image_atomic_xor:
4020 case nir_intrinsic_image_atomic_exchange:
4021 case nir_intrinsic_image_atomic_comp_swap:
4022 case nir_intrinsic_bindless_image_load:
4023 case nir_intrinsic_bindless_image_store:
4024 case nir_intrinsic_bindless_image_atomic_add:
4025 case nir_intrinsic_bindless_image_atomic_imin:
4026 case nir_intrinsic_bindless_image_atomic_umin:
4027 case nir_intrinsic_bindless_image_atomic_imax:
4028 case nir_intrinsic_bindless_image_atomic_umax:
4029 case nir_intrinsic_bindless_image_atomic_and:
4030 case nir_intrinsic_bindless_image_atomic_or:
4031 case nir_intrinsic_bindless_image_atomic_xor:
4032 case nir_intrinsic_bindless_image_atomic_exchange:
4033 case nir_intrinsic_bindless_image_atomic_comp_swap: {
4034 if (stage == MESA_SHADER_FRAGMENT &&
4035 instr->intrinsic != nir_intrinsic_image_load)
4036 brw_wm_prog_data(prog_data)->has_side_effects = true;
4037
4038 /* Get some metadata from the image intrinsic. */
4039 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
4040
4041 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4042
4043 switch (instr->intrinsic) {
4044 case nir_intrinsic_image_load:
4045 case nir_intrinsic_image_store:
4046 case nir_intrinsic_image_atomic_add:
4047 case nir_intrinsic_image_atomic_imin:
4048 case nir_intrinsic_image_atomic_umin:
4049 case nir_intrinsic_image_atomic_imax:
4050 case nir_intrinsic_image_atomic_umax:
4051 case nir_intrinsic_image_atomic_and:
4052 case nir_intrinsic_image_atomic_or:
4053 case nir_intrinsic_image_atomic_xor:
4054 case nir_intrinsic_image_atomic_exchange:
4055 case nir_intrinsic_image_atomic_comp_swap:
4056 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4057 get_nir_image_intrinsic_image(bld, instr);
4058 break;
4059
4060 default:
4061 /* Bindless */
4062 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4063 bld.emit_uniformize(get_nir_src(instr->src[0]));
4064 break;
4065 }
4066
4067 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4068 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4069 brw_imm_ud(image_intrinsic_coord_components(instr));
4070
4071 /* Emit an image load, store or atomic op. */
4072 if (instr->intrinsic == nir_intrinsic_image_load ||
4073 instr->intrinsic == nir_intrinsic_bindless_image_load) {
4074 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4075 fs_inst *inst =
4076 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4077 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4078 inst->size_written = instr->num_components * dispatch_width * 4;
4079 } else if (instr->intrinsic == nir_intrinsic_image_store ||
4080 instr->intrinsic == nir_intrinsic_bindless_image_store) {
4081 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4082 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4083 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4084 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4085 } else {
4086 unsigned num_srcs = info->num_srcs;
4087 int op = brw_aop_for_nir_intrinsic(instr);
4088 if (op == BRW_AOP_INC || op == BRW_AOP_DEC) {
4089 assert(num_srcs == 4);
4090 num_srcs = 3;
4091 }
4092
4093 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4094
4095 fs_reg data;
4096 if (num_srcs >= 4)
4097 data = get_nir_src(instr->src[3]);
4098 if (num_srcs >= 5) {
4099 fs_reg tmp = bld.vgrf(data.type, 2);
4100 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4101 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4102 data = tmp;
4103 }
4104 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4105
4106 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4107 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4108 }
4109 break;
4110 }
4111
4112 case nir_intrinsic_image_size:
4113 case nir_intrinsic_bindless_image_size: {
4114 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4115 * into will handle the binding table index for us in the geneerator.
4116 * Incidentally, this means that we can handle bindless with exactly the
4117 * same code.
4118 */
4119 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4120 BRW_REGISTER_TYPE_UD);
4121 image = bld.emit_uniformize(image);
4122
4123 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4124 if (instr->intrinsic == nir_intrinsic_image_size)
4125 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4126 else
4127 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4128 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4129 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4130 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4131
4132 /* Since the image size is always uniform, we can just emit a SIMD8
4133 * query instruction and splat the result out.
4134 */
4135 const fs_builder ubld = bld.exec_all().group(8, 0);
4136
4137 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4138 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4139 tmp, srcs, ARRAY_SIZE(srcs));
4140 inst->size_written = 4 * REG_SIZE;
4141
4142 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4143 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
4144 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4145 offset(retype(dest, tmp.type), bld, c),
4146 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
4147 } else {
4148 bld.MOV(offset(retype(dest, tmp.type), bld, c),
4149 component(offset(tmp, ubld, c), 0));
4150 }
4151 }
4152 break;
4153 }
4154
4155 case nir_intrinsic_image_load_raw_intel: {
4156 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4157 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4158 get_nir_image_intrinsic_image(bld, instr);
4159 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4160 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4161 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4162
4163 fs_inst *inst =
4164 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4165 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4166 inst->size_written = instr->num_components * dispatch_width * 4;
4167 break;
4168 }
4169
4170 case nir_intrinsic_image_store_raw_intel: {
4171 if (stage == MESA_SHADER_FRAGMENT)
4172 brw_wm_prog_data(prog_data)->has_side_effects = true;
4173
4174 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4175 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4176 get_nir_image_intrinsic_image(bld, instr);
4177 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4178 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4179 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4180 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4181
4182 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4183 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4184 break;
4185 }
4186
4187 case nir_intrinsic_group_memory_barrier:
4188 case nir_intrinsic_memory_barrier_shared:
4189 case nir_intrinsic_memory_barrier_atomic_counter:
4190 case nir_intrinsic_memory_barrier_buffer:
4191 case nir_intrinsic_memory_barrier_image:
4192 case nir_intrinsic_memory_barrier: {
4193 bool l3_fence, slm_fence;
4194 if (devinfo->gen >= 11) {
4195 l3_fence = instr->intrinsic != nir_intrinsic_memory_barrier_shared;
4196 slm_fence = instr->intrinsic == nir_intrinsic_group_memory_barrier ||
4197 instr->intrinsic == nir_intrinsic_memory_barrier ||
4198 instr->intrinsic == nir_intrinsic_memory_barrier_shared;
4199 } else {
4200 /* Prior to gen11, we only have one kind of fence. */
4201 l3_fence = true;
4202 slm_fence = false;
4203 }
4204
4205 /* Be conservative in Gen11+ and always stall in a fence. Since there
4206 * are two different fences, and shader might want to synchronize
4207 * between them.
4208 *
4209 * TODO: Improve NIR so that scope and visibility information for the
4210 * barriers is available here to make a better decision.
4211 *
4212 * TODO: When emitting more than one fence, it might help emit all
4213 * the fences first and then generate the stall moves.
4214 */
4215 const bool stall = devinfo->gen >= 11;
4216
4217 const fs_builder ubld = bld.group(8, 0);
4218 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4219
4220 if (l3_fence) {
4221 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4222 brw_vec8_grf(0, 0), brw_imm_ud(stall),
4223 /* bti */ brw_imm_ud(0))
4224 ->size_written = 2 * REG_SIZE;
4225 }
4226
4227 if (slm_fence) {
4228 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4229 brw_vec8_grf(0, 0), brw_imm_ud(stall),
4230 brw_imm_ud(GEN7_BTI_SLM))
4231 ->size_written = 2 * REG_SIZE;
4232 }
4233
4234 break;
4235 }
4236
4237 case nir_intrinsic_shader_clock: {
4238 /* We cannot do anything if there is an event, so ignore it for now */
4239 const fs_reg shader_clock = get_timestamp(bld);
4240 const fs_reg srcs[] = { component(shader_clock, 0),
4241 component(shader_clock, 1) };
4242 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4243 break;
4244 }
4245
4246 case nir_intrinsic_image_samples:
4247 /* The driver does not support multi-sampled images. */
4248 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4249 break;
4250
4251 case nir_intrinsic_load_uniform: {
4252 /* Offsets are in bytes but they should always aligned to
4253 * the type size
4254 */
4255 assert(instr->const_index[0] % 4 == 0 ||
4256 instr->const_index[0] % type_sz(dest.type) == 0);
4257
4258 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4259
4260 if (nir_src_is_const(instr->src[0])) {
4261 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4262 assert(load_offset % type_sz(dest.type) == 0);
4263 /* For 16-bit types we add the module of the const_index[0]
4264 * offset to access to not 32-bit aligned element
4265 */
4266 src.offset = load_offset + instr->const_index[0] % 4;
4267
4268 for (unsigned j = 0; j < instr->num_components; j++) {
4269 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4270 }
4271 } else {
4272 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4273 BRW_REGISTER_TYPE_UD);
4274
4275 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4276 * go past the end of the uniform. In order to keep the n'th
4277 * component from running past, we subtract off the size of all but
4278 * one component of the vector.
4279 */
4280 assert(instr->const_index[1] >=
4281 instr->num_components * (int) type_sz(dest.type));
4282 unsigned read_size = instr->const_index[1] -
4283 (instr->num_components - 1) * type_sz(dest.type);
4284
4285 bool supports_64bit_indirects =
4286 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4287
4288 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4289 for (unsigned j = 0; j < instr->num_components; j++) {
4290 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4291 offset(dest, bld, j), offset(src, bld, j),
4292 indirect, brw_imm_ud(read_size));
4293 }
4294 } else {
4295 const unsigned num_mov_indirects =
4296 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4297 /* We read a little bit less per MOV INDIRECT, as they are now
4298 * 32-bits ones instead of 64-bit. Fix read_size then.
4299 */
4300 const unsigned read_size_32bit = read_size -
4301 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4302 for (unsigned j = 0; j < instr->num_components; j++) {
4303 for (unsigned i = 0; i < num_mov_indirects; i++) {
4304 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4305 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4306 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4307 indirect, brw_imm_ud(read_size_32bit));
4308 }
4309 }
4310 }
4311 }
4312 break;
4313 }
4314
4315 case nir_intrinsic_load_ubo: {
4316 fs_reg surf_index;
4317 if (nir_src_is_const(instr->src[0])) {
4318 const unsigned index = stage_prog_data->binding_table.ubo_start +
4319 nir_src_as_uint(instr->src[0]);
4320 surf_index = brw_imm_ud(index);
4321 } else {
4322 /* The block index is not a constant. Evaluate the index expression
4323 * per-channel and add the base UBO index; we have to select a value
4324 * from any live channel.
4325 */
4326 surf_index = vgrf(glsl_type::uint_type);
4327 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4328 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4329 surf_index = bld.emit_uniformize(surf_index);
4330 }
4331
4332 if (!nir_src_is_const(instr->src[1])) {
4333 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4334 BRW_REGISTER_TYPE_UD);
4335
4336 for (int i = 0; i < instr->num_components; i++)
4337 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4338 base_offset, i * type_sz(dest.type));
4339
4340 prog_data->has_ubo_pull = true;
4341 } else {
4342 /* Even if we are loading doubles, a pull constant load will load
4343 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4344 * need to load a full dvec4 we will have to emit 2 loads. This is
4345 * similar to demote_pull_constants(), except that in that case we
4346 * see individual accesses to each component of the vector and then
4347 * we let CSE deal with duplicate loads. Here we see a vector access
4348 * and we have to split it if necessary.
4349 */
4350 const unsigned type_size = type_sz(dest.type);
4351 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4352
4353 /* See if we've selected this as a push constant candidate */
4354 if (nir_src_is_const(instr->src[0])) {
4355 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4356 const unsigned offset_256b = load_offset / 32;
4357
4358 fs_reg push_reg;
4359 for (int i = 0; i < 4; i++) {
4360 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4361 if (range->block == ubo_block &&
4362 offset_256b >= range->start &&
4363 offset_256b < range->start + range->length) {
4364
4365 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4366 push_reg.offset = load_offset - 32 * range->start;
4367 break;
4368 }
4369 }
4370
4371 if (push_reg.file != BAD_FILE) {
4372 for (unsigned i = 0; i < instr->num_components; i++) {
4373 bld.MOV(offset(dest, bld, i),
4374 byte_offset(push_reg, i * type_size));
4375 }
4376 break;
4377 }
4378 }
4379
4380 prog_data->has_ubo_pull = true;
4381
4382 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4383 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4384 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4385
4386 for (unsigned c = 0; c < instr->num_components;) {
4387 const unsigned base = load_offset + c * type_size;
4388 /* Number of usable components in the next block-aligned load. */
4389 const unsigned count = MIN2(instr->num_components - c,
4390 (block_sz - base % block_sz) / type_size);
4391
4392 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4393 packed_consts, surf_index,
4394 brw_imm_ud(base & ~(block_sz - 1)));
4395
4396 const fs_reg consts =
4397 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4398 dest.type);
4399
4400 for (unsigned d = 0; d < count; d++)
4401 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4402
4403 c += count;
4404 }
4405 }
4406 break;
4407 }
4408
4409 case nir_intrinsic_load_global: {
4410 assert(devinfo->gen >= 8);
4411
4412 if (nir_intrinsic_align(instr) >= 4) {
4413 assert(nir_dest_bit_size(instr->dest) == 32);
4414 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4415 dest,
4416 get_nir_src(instr->src[0]), /* Address */
4417 fs_reg(), /* No source data */
4418 brw_imm_ud(instr->num_components));
4419 inst->size_written = instr->num_components *
4420 inst->dst.component_size(inst->exec_size);
4421 } else {
4422 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4423 assert(bit_size <= 32);
4424 assert(nir_dest_num_components(instr->dest) == 1);
4425 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4426 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4427 tmp,
4428 get_nir_src(instr->src[0]), /* Address */
4429 fs_reg(), /* No source data */
4430 brw_imm_ud(bit_size));
4431 bld.MOV(dest, subscript(tmp, dest.type, 0));
4432 }
4433 break;
4434 }
4435
4436 case nir_intrinsic_store_global:
4437 assert(devinfo->gen >= 8);
4438
4439 if (stage == MESA_SHADER_FRAGMENT)
4440 brw_wm_prog_data(prog_data)->has_side_effects = true;
4441
4442 if (nir_intrinsic_align(instr) >= 4) {
4443 assert(nir_src_bit_size(instr->src[0]) == 32);
4444 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4445 fs_reg(),
4446 get_nir_src(instr->src[1]), /* Address */
4447 get_nir_src(instr->src[0]), /* Data */
4448 brw_imm_ud(instr->num_components));
4449 } else {
4450 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4451 assert(bit_size <= 32);
4452 assert(nir_src_num_components(instr->src[0]) == 1);
4453 brw_reg_type data_type =
4454 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4455 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4456 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4457 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4458 fs_reg(),
4459 get_nir_src(instr->src[1]), /* Address */
4460 tmp, /* Data */
4461 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4462 }
4463 break;
4464
4465 case nir_intrinsic_global_atomic_add:
4466 case nir_intrinsic_global_atomic_imin:
4467 case nir_intrinsic_global_atomic_umin:
4468 case nir_intrinsic_global_atomic_imax:
4469 case nir_intrinsic_global_atomic_umax:
4470 case nir_intrinsic_global_atomic_and:
4471 case nir_intrinsic_global_atomic_or:
4472 case nir_intrinsic_global_atomic_xor:
4473 case nir_intrinsic_global_atomic_exchange:
4474 case nir_intrinsic_global_atomic_comp_swap:
4475 nir_emit_global_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4476 break;
4477 case nir_intrinsic_global_atomic_fmin:
4478 case nir_intrinsic_global_atomic_fmax:
4479 case nir_intrinsic_global_atomic_fcomp_swap:
4480 nir_emit_global_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4481 break;
4482
4483 case nir_intrinsic_load_ssbo: {
4484 assert(devinfo->gen >= 7);
4485
4486 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4487 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4488 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4489 get_nir_ssbo_intrinsic_index(bld, instr);
4490 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4491 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4492
4493 /* Make dest unsigned because that's what the temporary will be */
4494 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4495
4496 /* Read the vector */
4497 if (nir_intrinsic_align(instr) >= 4) {
4498 assert(nir_dest_bit_size(instr->dest) == 32);
4499 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4500 fs_inst *inst =
4501 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4502 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4503 inst->size_written = instr->num_components * dispatch_width * 4;
4504 } else {
4505 assert(nir_dest_bit_size(instr->dest) <= 32);
4506 assert(nir_dest_num_components(instr->dest) == 1);
4507 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4508
4509 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4510 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4511 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4512 bld.MOV(dest, subscript(read_result, dest.type, 0));
4513 }
4514 break;
4515 }
4516
4517 case nir_intrinsic_store_ssbo: {
4518 assert(devinfo->gen >= 7);
4519
4520 if (stage == MESA_SHADER_FRAGMENT)
4521 brw_wm_prog_data(prog_data)->has_side_effects = true;
4522
4523 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4524 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4525 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4526 get_nir_ssbo_intrinsic_index(bld, instr);
4527 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4528 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4529
4530 fs_reg data = get_nir_src(instr->src[0]);
4531 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4532
4533 assert(nir_intrinsic_write_mask(instr) ==
4534 (1u << instr->num_components) - 1);
4535 if (nir_intrinsic_align(instr) >= 4) {
4536 assert(nir_src_bit_size(instr->src[0]) == 32);
4537 assert(nir_src_num_components(instr->src[0]) <= 4);
4538 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4539 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4540 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4541 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4542 } else {
4543 assert(nir_src_bit_size(instr->src[0]) <= 32);
4544 assert(nir_src_num_components(instr->src[0]) == 1);
4545 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4546
4547 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4548 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4549
4550 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4551 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4552 }
4553 break;
4554 }
4555
4556 case nir_intrinsic_store_output: {
4557 assert(nir_src_bit_size(instr->src[0]) == 32);
4558 fs_reg src = get_nir_src(instr->src[0]);
4559
4560 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4561 unsigned num_components = instr->num_components;
4562 unsigned first_component = nir_intrinsic_component(instr);
4563
4564 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4565 4 * store_offset), src.type);
4566 for (unsigned j = 0; j < num_components; j++) {
4567 bld.MOV(offset(new_dest, bld, j + first_component),
4568 offset(src, bld, j));
4569 }
4570 break;
4571 }
4572
4573 case nir_intrinsic_ssbo_atomic_add:
4574 case nir_intrinsic_ssbo_atomic_imin:
4575 case nir_intrinsic_ssbo_atomic_umin:
4576 case nir_intrinsic_ssbo_atomic_imax:
4577 case nir_intrinsic_ssbo_atomic_umax:
4578 case nir_intrinsic_ssbo_atomic_and:
4579 case nir_intrinsic_ssbo_atomic_or:
4580 case nir_intrinsic_ssbo_atomic_xor:
4581 case nir_intrinsic_ssbo_atomic_exchange:
4582 case nir_intrinsic_ssbo_atomic_comp_swap:
4583 nir_emit_ssbo_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4584 break;
4585 case nir_intrinsic_ssbo_atomic_fmin:
4586 case nir_intrinsic_ssbo_atomic_fmax:
4587 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4588 nir_emit_ssbo_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4589 break;
4590
4591 case nir_intrinsic_get_buffer_size: {
4592 assert(nir_src_num_components(instr->src[0]) == 1);
4593 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4594 nir_src_as_uint(instr->src[0]) : 0;
4595
4596 /* A resinfo's sampler message is used to get the buffer size. The
4597 * SIMD8's writeback message consists of four registers and SIMD16's
4598 * writeback message consists of 8 destination registers (two per each
4599 * component). Because we are only interested on the first channel of
4600 * the first returned component, where resinfo returns the buffer size
4601 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4602 * the dispatch width.
4603 */
4604 const fs_builder ubld = bld.exec_all().group(8, 0);
4605 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4606 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4607
4608 /* Set LOD = 0 */
4609 ubld.MOV(src_payload, brw_imm_d(0));
4610
4611 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4612 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4613 src_payload, brw_imm_ud(index));
4614 inst->header_size = 0;
4615 inst->mlen = 1;
4616 inst->size_written = 4 * REG_SIZE;
4617
4618 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4619 *
4620 * "Out-of-bounds checking is always performed at a DWord granularity. If
4621 * any part of the DWord is out-of-bounds then the whole DWord is
4622 * considered out-of-bounds."
4623 *
4624 * This implies that types with size smaller than 4-bytes need to be
4625 * padded if they don't complete the last dword of the buffer. But as we
4626 * need to maintain the original size we need to reverse the padding
4627 * calculation to return the correct size to know the number of elements
4628 * of an unsized array. As we stored in the last two bits of the surface
4629 * size the needed padding for the buffer, we calculate here the
4630 * original buffer_size reversing the surface_size calculation:
4631 *
4632 * surface_size = isl_align(buffer_size, 4) +
4633 * (isl_align(buffer_size) - buffer_size)
4634 *
4635 * buffer_size = surface_size & ~3 - surface_size & 3
4636 */
4637
4638 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4639 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4640 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4641
4642 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4643 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4644 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4645
4646 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4647 break;
4648 }
4649
4650 case nir_intrinsic_load_subgroup_size:
4651 /* This should only happen for fragment shaders because every other case
4652 * is lowered in NIR so we can optimize on it.
4653 */
4654 assert(stage == MESA_SHADER_FRAGMENT);
4655 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(dispatch_width));
4656 break;
4657
4658 case nir_intrinsic_load_subgroup_invocation:
4659 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4660 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4661 break;
4662
4663 case nir_intrinsic_load_subgroup_eq_mask:
4664 case nir_intrinsic_load_subgroup_ge_mask:
4665 case nir_intrinsic_load_subgroup_gt_mask:
4666 case nir_intrinsic_load_subgroup_le_mask:
4667 case nir_intrinsic_load_subgroup_lt_mask:
4668 unreachable("not reached");
4669
4670 case nir_intrinsic_vote_any: {
4671 const fs_builder ubld = bld.exec_all().group(1, 0);
4672
4673 /* The any/all predicates do not consider channel enables. To prevent
4674 * dead channels from affecting the result, we initialize the flag with
4675 * with the identity value for the logical operation.
4676 */
4677 if (dispatch_width == 32) {
4678 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4679 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4680 brw_imm_ud(0));
4681 } else {
4682 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4683 }
4684 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4685
4686 /* For some reason, the any/all predicates don't work properly with
4687 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4688 * doesn't read the correct subset of the flag register and you end up
4689 * getting garbage in the second half. Work around this by using a pair
4690 * of 1-wide MOVs and scattering the result.
4691 */
4692 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4693 ubld.MOV(res1, brw_imm_d(0));
4694 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4695 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4696 BRW_PREDICATE_ALIGN1_ANY32H,
4697 ubld.MOV(res1, brw_imm_d(-1)));
4698
4699 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4700 break;
4701 }
4702 case nir_intrinsic_vote_all: {
4703 const fs_builder ubld = bld.exec_all().group(1, 0);
4704
4705 /* The any/all predicates do not consider channel enables. To prevent
4706 * dead channels from affecting the result, we initialize the flag with
4707 * with the identity value for the logical operation.
4708 */
4709 if (dispatch_width == 32) {
4710 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4711 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4712 brw_imm_ud(0xffffffff));
4713 } else {
4714 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4715 }
4716 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4717
4718 /* For some reason, the any/all predicates don't work properly with
4719 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4720 * doesn't read the correct subset of the flag register and you end up
4721 * getting garbage in the second half. Work around this by using a pair
4722 * of 1-wide MOVs and scattering the result.
4723 */
4724 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4725 ubld.MOV(res1, brw_imm_d(0));
4726 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4727 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4728 BRW_PREDICATE_ALIGN1_ALL32H,
4729 ubld.MOV(res1, brw_imm_d(-1)));
4730
4731 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4732 break;
4733 }
4734 case nir_intrinsic_vote_feq:
4735 case nir_intrinsic_vote_ieq: {
4736 fs_reg value = get_nir_src(instr->src[0]);
4737 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4738 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4739 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
4740 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4741 }
4742
4743 fs_reg uniformized = bld.emit_uniformize(value);
4744 const fs_builder ubld = bld.exec_all().group(1, 0);
4745
4746 /* The any/all predicates do not consider channel enables. To prevent
4747 * dead channels from affecting the result, we initialize the flag with
4748 * with the identity value for the logical operation.
4749 */
4750 if (dispatch_width == 32) {
4751 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4752 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4753 brw_imm_ud(0xffffffff));
4754 } else {
4755 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4756 }
4757 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4758
4759 /* For some reason, the any/all predicates don't work properly with
4760 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4761 * doesn't read the correct subset of the flag register and you end up
4762 * getting garbage in the second half. Work around this by using a pair
4763 * of 1-wide MOVs and scattering the result.
4764 */
4765 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4766 ubld.MOV(res1, brw_imm_d(0));
4767 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4768 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4769 BRW_PREDICATE_ALIGN1_ALL32H,
4770 ubld.MOV(res1, brw_imm_d(-1)));
4771
4772 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4773 break;
4774 }
4775
4776 case nir_intrinsic_ballot: {
4777 const fs_reg value = retype(get_nir_src(instr->src[0]),
4778 BRW_REGISTER_TYPE_UD);
4779 struct brw_reg flag = brw_flag_reg(0, 0);
4780 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4781 * as f0.0. This is a problem for fragment programs as we currently use
4782 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4783 * programs yet so this isn't a problem. When we do, something will
4784 * have to change.
4785 */
4786 if (dispatch_width == 32)
4787 flag.type = BRW_REGISTER_TYPE_UD;
4788
4789 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4790 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4791
4792 if (instr->dest.ssa.bit_size > 32) {
4793 dest.type = BRW_REGISTER_TYPE_UQ;
4794 } else {
4795 dest.type = BRW_REGISTER_TYPE_UD;
4796 }
4797 bld.MOV(dest, flag);
4798 break;
4799 }
4800
4801 case nir_intrinsic_read_invocation: {
4802 const fs_reg value = get_nir_src(instr->src[0]);
4803 const fs_reg invocation = get_nir_src(instr->src[1]);
4804 fs_reg tmp = bld.vgrf(value.type);
4805
4806 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4807 bld.emit_uniformize(invocation));
4808
4809 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4810 break;
4811 }
4812
4813 case nir_intrinsic_read_first_invocation: {
4814 const fs_reg value = get_nir_src(instr->src[0]);
4815 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4816 break;
4817 }
4818
4819 case nir_intrinsic_shuffle: {
4820 const fs_reg value = get_nir_src(instr->src[0]);
4821 const fs_reg index = get_nir_src(instr->src[1]);
4822
4823 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4824 break;
4825 }
4826
4827 case nir_intrinsic_first_invocation: {
4828 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4829 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4830 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4831 fs_reg(component(tmp, 0)));
4832 break;
4833 }
4834
4835 case nir_intrinsic_quad_broadcast: {
4836 const fs_reg value = get_nir_src(instr->src[0]);
4837 const unsigned index = nir_src_as_uint(instr->src[1]);
4838
4839 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4840 value, brw_imm_ud(index), brw_imm_ud(4));
4841 break;
4842 }
4843
4844 case nir_intrinsic_quad_swap_horizontal: {
4845 const fs_reg value = get_nir_src(instr->src[0]);
4846 const fs_reg tmp = bld.vgrf(value.type);
4847 if (devinfo->gen <= 7) {
4848 /* The hardware doesn't seem to support these crazy regions with
4849 * compressed instructions on gen7 and earlier so we fall back to
4850 * using quad swizzles. Fortunately, we don't support 64-bit
4851 * anything in Vulkan on gen7.
4852 */
4853 assert(nir_src_bit_size(instr->src[0]) == 32);
4854 const fs_builder ubld = bld.exec_all();
4855 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4856 brw_imm_ud(BRW_SWIZZLE4(1,0,3,2)));
4857 bld.MOV(retype(dest, value.type), tmp);
4858 } else {
4859 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4860
4861 const fs_reg src_left = horiz_stride(value, 2);
4862 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4863 const fs_reg tmp_left = horiz_stride(tmp, 2);
4864 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4865
4866 ubld.MOV(tmp_left, src_right);
4867 ubld.MOV(tmp_right, src_left);
4868
4869 }
4870 bld.MOV(retype(dest, value.type), tmp);
4871 break;
4872 }
4873
4874 case nir_intrinsic_quad_swap_vertical: {
4875 const fs_reg value = get_nir_src(instr->src[0]);
4876 if (nir_src_bit_size(instr->src[0]) == 32) {
4877 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4878 const fs_reg tmp = bld.vgrf(value.type);
4879 const fs_builder ubld = bld.exec_all();
4880 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4881 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4882 bld.MOV(retype(dest, value.type), tmp);
4883 } else {
4884 /* For larger data types, we have to either emit dispatch_width many
4885 * MOVs or else fall back to doing indirects.
4886 */
4887 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4888 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4889 brw_imm_w(0x2));
4890 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4891 }
4892 break;
4893 }
4894
4895 case nir_intrinsic_quad_swap_diagonal: {
4896 const fs_reg value = get_nir_src(instr->src[0]);
4897 if (nir_src_bit_size(instr->src[0]) == 32) {
4898 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4899 const fs_reg tmp = bld.vgrf(value.type);
4900 const fs_builder ubld = bld.exec_all();
4901 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4902 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4903 bld.MOV(retype(dest, value.type), tmp);
4904 } else {
4905 /* For larger data types, we have to either emit dispatch_width many
4906 * MOVs or else fall back to doing indirects.
4907 */
4908 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4909 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4910 brw_imm_w(0x3));
4911 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4912 }
4913 break;
4914 }
4915
4916 case nir_intrinsic_reduce: {
4917 fs_reg src = get_nir_src(instr->src[0]);
4918 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4919 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4920 if (cluster_size == 0 || cluster_size > dispatch_width)
4921 cluster_size = dispatch_width;
4922
4923 /* Figure out the source type */
4924 src.type = brw_type_for_nir_type(devinfo,
4925 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4926 nir_src_bit_size(instr->src[0])));
4927
4928 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4929 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4930 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4931
4932 /* There are a couple of register region issues that make things
4933 * complicated for 8-bit types:
4934 *
4935 * 1. Only raw moves are allowed to write to a packed 8-bit
4936 * destination.
4937 * 2. If we use a strided destination, the efficient way to do scan
4938 * operations ends up using strides that are too big to encode in
4939 * an instruction.
4940 *
4941 * To get around these issues, we just do all 8-bit scan operations in
4942 * 16 bits. It's actually fewer instructions than what we'd have to do
4943 * if we were trying to do it in native 8-bit types and the results are
4944 * the same once we truncate to 8 bits at the end.
4945 */
4946 brw_reg_type scan_type = src.type;
4947 if (type_sz(scan_type) == 1)
4948 scan_type = brw_reg_type_from_bit_size(16, src.type);
4949
4950 /* Set up a register for all of our scratching around and initialize it
4951 * to reduction operation's identity value.
4952 */
4953 fs_reg scan = bld.vgrf(scan_type);
4954 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4955
4956 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4957
4958 dest.type = src.type;
4959 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4960 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4961 * the distance between clusters is at least 2 GRFs. In this case,
4962 * we don't need the weird striding of the CLUSTER_BROADCAST
4963 * instruction and can just do regular MOVs.
4964 */
4965 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4966 const unsigned groups =
4967 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4968 const unsigned group_size = dispatch_width / groups;
4969 for (unsigned i = 0; i < groups; i++) {
4970 const unsigned cluster = (i * group_size) / cluster_size;
4971 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4972 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4973 component(scan, comp));
4974 }
4975 } else {
4976 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4977 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4978 }
4979 break;
4980 }
4981
4982 case nir_intrinsic_inclusive_scan:
4983 case nir_intrinsic_exclusive_scan: {
4984 fs_reg src = get_nir_src(instr->src[0]);
4985 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4986
4987 /* Figure out the source type */
4988 src.type = brw_type_for_nir_type(devinfo,
4989 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4990 nir_src_bit_size(instr->src[0])));
4991
4992 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4993 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4994 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4995
4996 /* There are a couple of register region issues that make things
4997 * complicated for 8-bit types:
4998 *
4999 * 1. Only raw moves are allowed to write to a packed 8-bit
5000 * destination.
5001 * 2. If we use a strided destination, the efficient way to do scan
5002 * operations ends up using strides that are too big to encode in
5003 * an instruction.
5004 *
5005 * To get around these issues, we just do all 8-bit scan operations in
5006 * 16 bits. It's actually fewer instructions than what we'd have to do
5007 * if we were trying to do it in native 8-bit types and the results are
5008 * the same once we truncate to 8 bits at the end.
5009 */
5010 brw_reg_type scan_type = src.type;
5011 if (type_sz(scan_type) == 1)
5012 scan_type = brw_reg_type_from_bit_size(16, src.type);
5013
5014 /* Set up a register for all of our scratching around and initialize it
5015 * to reduction operation's identity value.
5016 */
5017 fs_reg scan = bld.vgrf(scan_type);
5018 const fs_builder allbld = bld.exec_all();
5019 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5020
5021 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
5022 /* Exclusive scan is a bit harder because we have to do an annoying
5023 * shift of the contents before we can begin. To make things worse,
5024 * we can't do this with a normal stride; we have to use indirects.
5025 */
5026 fs_reg shifted = bld.vgrf(scan_type);
5027 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5028 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5029 brw_imm_w(-1));
5030 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
5031 allbld.group(1, 0).MOV(component(shifted, 0), identity);
5032 scan = shifted;
5033 }
5034
5035 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
5036
5037 bld.MOV(retype(dest, src.type), scan);
5038 break;
5039 }
5040
5041 case nir_intrinsic_begin_invocation_interlock: {
5042 const fs_builder ubld = bld.group(8, 0);
5043 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5044
5045 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp, brw_vec8_grf(0, 0))
5046 ->size_written = 2 * REG_SIZE;
5047 break;
5048 }
5049
5050 case nir_intrinsic_end_invocation_interlock: {
5051 /* For endInvocationInterlock(), we need to insert a memory fence which
5052 * stalls in the shader until the memory transactions prior to that
5053 * fence are complete. This ensures that the shader does not end before
5054 * any writes from its critical section have landed. Otherwise, you can
5055 * end up with a case where the next invocation on that pixel properly
5056 * stalls for previous FS invocation on its pixel to complete but
5057 * doesn't actually wait for the dataport memory transactions from that
5058 * thread to land before submitting its own.
5059 */
5060 const fs_builder ubld = bld.group(8, 0);
5061 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5062 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
5063 brw_vec8_grf(0, 0), brw_imm_ud(1), brw_imm_ud(0))
5064 ->size_written = 2 * REG_SIZE;
5065 break;
5066 }
5067
5068 default:
5069 unreachable("unknown intrinsic");
5070 }
5071 }
5072
5073 void
5074 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
5075 int op, nir_intrinsic_instr *instr)
5076 {
5077 if (stage == MESA_SHADER_FRAGMENT)
5078 brw_wm_prog_data(prog_data)->has_side_effects = true;
5079
5080 /* The BTI untyped atomic messages only support 32-bit atomics. If you
5081 * just look at the big table of messages in the Vol 7 of the SKL PRM, they
5082 * appear to exist. However, if you look at Vol 2a, there are no message
5083 * descriptors provided for Qword atomic ops except for A64 messages.
5084 */
5085 assert(nir_dest_bit_size(instr->dest) == 32);
5086
5087 fs_reg dest;
5088 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5089 dest = get_nir_dest(instr->dest);
5090
5091 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5092 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5093 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5094 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5095 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5096
5097 fs_reg data;
5098 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5099 data = get_nir_src(instr->src[2]);
5100
5101 if (op == BRW_AOP_CMPWR) {
5102 fs_reg tmp = bld.vgrf(data.type, 2);
5103 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5104 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5105 data = tmp;
5106 }
5107 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5108
5109 /* Emit the actual atomic operation */
5110
5111 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5112 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5113 }
5114
5115 void
5116 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5117 int op, nir_intrinsic_instr *instr)
5118 {
5119 if (stage == MESA_SHADER_FRAGMENT)
5120 brw_wm_prog_data(prog_data)->has_side_effects = true;
5121
5122 fs_reg dest;
5123 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5124 dest = get_nir_dest(instr->dest);
5125
5126 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5127 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5128 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5129 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5130 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5131
5132 fs_reg data = get_nir_src(instr->src[2]);
5133 if (op == BRW_AOP_FCMPWR) {
5134 fs_reg tmp = bld.vgrf(data.type, 2);
5135 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5136 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5137 data = tmp;
5138 }
5139 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5140
5141 /* Emit the actual atomic operation */
5142
5143 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5144 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5145 }
5146
5147 void
5148 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5149 int op, nir_intrinsic_instr *instr)
5150 {
5151 fs_reg dest;
5152 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5153 dest = get_nir_dest(instr->dest);
5154
5155 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5156 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5157 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5158 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5159
5160 fs_reg data;
5161 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5162 data = get_nir_src(instr->src[1]);
5163 if (op == BRW_AOP_CMPWR) {
5164 fs_reg tmp = bld.vgrf(data.type, 2);
5165 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5166 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5167 data = tmp;
5168 }
5169 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5170
5171 /* Get the offset */
5172 if (nir_src_is_const(instr->src[0])) {
5173 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5174 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5175 } else {
5176 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5177 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5178 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5179 brw_imm_ud(instr->const_index[0]));
5180 }
5181
5182 /* Emit the actual atomic operation operation */
5183
5184 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5185 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5186 }
5187
5188 void
5189 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5190 int op, nir_intrinsic_instr *instr)
5191 {
5192 fs_reg dest;
5193 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5194 dest = get_nir_dest(instr->dest);
5195
5196 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5197 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5198 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5199 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5200
5201 fs_reg data = get_nir_src(instr->src[1]);
5202 if (op == BRW_AOP_FCMPWR) {
5203 fs_reg tmp = bld.vgrf(data.type, 2);
5204 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5205 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5206 data = tmp;
5207 }
5208 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5209
5210 /* Get the offset */
5211 if (nir_src_is_const(instr->src[0])) {
5212 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5213 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5214 } else {
5215 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5216 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5217 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5218 brw_imm_ud(instr->const_index[0]));
5219 }
5220
5221 /* Emit the actual atomic operation operation */
5222
5223 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5224 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5225 }
5226
5227 void
5228 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5229 int op, nir_intrinsic_instr *instr)
5230 {
5231 if (stage == MESA_SHADER_FRAGMENT)
5232 brw_wm_prog_data(prog_data)->has_side_effects = true;
5233
5234 fs_reg dest;
5235 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5236 dest = get_nir_dest(instr->dest);
5237
5238 fs_reg addr = get_nir_src(instr->src[0]);
5239
5240 fs_reg data;
5241 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5242 data = get_nir_src(instr->src[1]);
5243
5244 if (op == BRW_AOP_CMPWR) {
5245 fs_reg tmp = bld.vgrf(data.type, 2);
5246 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5247 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5248 data = tmp;
5249 }
5250
5251 if (nir_dest_bit_size(instr->dest) == 64) {
5252 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5253 dest, addr, data, brw_imm_ud(op));
5254 } else {
5255 assert(nir_dest_bit_size(instr->dest) == 32);
5256 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5257 dest, addr, data, brw_imm_ud(op));
5258 }
5259 }
5260
5261 void
5262 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5263 int op, nir_intrinsic_instr *instr)
5264 {
5265 if (stage == MESA_SHADER_FRAGMENT)
5266 brw_wm_prog_data(prog_data)->has_side_effects = true;
5267
5268 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5269 fs_reg dest = get_nir_dest(instr->dest);
5270
5271 fs_reg addr = get_nir_src(instr->src[0]);
5272
5273 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5274 fs_reg data = get_nir_src(instr->src[1]);
5275
5276 if (op == BRW_AOP_FCMPWR) {
5277 fs_reg tmp = bld.vgrf(data.type, 2);
5278 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5279 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5280 data = tmp;
5281 }
5282
5283 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5284 dest, addr, data, brw_imm_ud(op));
5285 }
5286
5287 void
5288 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5289 {
5290 unsigned texture = instr->texture_index;
5291 unsigned sampler = instr->sampler_index;
5292
5293 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5294
5295 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5296 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5297
5298 int lod_components = 0;
5299
5300 /* The hardware requires a LOD for buffer textures */
5301 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5302 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5303
5304 uint32_t header_bits = 0;
5305 for (unsigned i = 0; i < instr->num_srcs; i++) {
5306 fs_reg src = get_nir_src(instr->src[i].src);
5307 switch (instr->src[i].src_type) {
5308 case nir_tex_src_bias:
5309 srcs[TEX_LOGICAL_SRC_LOD] =
5310 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5311 break;
5312 case nir_tex_src_comparator:
5313 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5314 break;
5315 case nir_tex_src_coord:
5316 switch (instr->op) {
5317 case nir_texop_txf:
5318 case nir_texop_txf_ms:
5319 case nir_texop_txf_ms_mcs:
5320 case nir_texop_samples_identical:
5321 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5322 break;
5323 default:
5324 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5325 break;
5326 }
5327 break;
5328 case nir_tex_src_ddx:
5329 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5330 lod_components = nir_tex_instr_src_size(instr, i);
5331 break;
5332 case nir_tex_src_ddy:
5333 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5334 break;
5335 case nir_tex_src_lod:
5336 switch (instr->op) {
5337 case nir_texop_txs:
5338 srcs[TEX_LOGICAL_SRC_LOD] =
5339 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5340 break;
5341 case nir_texop_txf:
5342 srcs[TEX_LOGICAL_SRC_LOD] =
5343 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5344 break;
5345 default:
5346 srcs[TEX_LOGICAL_SRC_LOD] =
5347 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5348 break;
5349 }
5350 break;
5351 case nir_tex_src_min_lod:
5352 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5353 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5354 break;
5355 case nir_tex_src_ms_index:
5356 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5357 break;
5358
5359 case nir_tex_src_offset: {
5360 uint32_t offset_bits = 0;
5361 if (brw_texture_offset(instr, i, &offset_bits)) {
5362 header_bits |= offset_bits;
5363 } else {
5364 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5365 retype(src, BRW_REGISTER_TYPE_D);
5366 }
5367 break;
5368 }
5369
5370 case nir_tex_src_projector:
5371 unreachable("should be lowered");
5372
5373 case nir_tex_src_texture_offset: {
5374 /* Emit code to evaluate the actual indexing expression */
5375 fs_reg tmp = vgrf(glsl_type::uint_type);
5376 bld.ADD(tmp, src, brw_imm_ud(texture));
5377 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5378 break;
5379 }
5380
5381 case nir_tex_src_sampler_offset: {
5382 /* Emit code to evaluate the actual indexing expression */
5383 fs_reg tmp = vgrf(glsl_type::uint_type);
5384 bld.ADD(tmp, src, brw_imm_ud(sampler));
5385 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5386 break;
5387 }
5388
5389 case nir_tex_src_texture_handle:
5390 assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
5391 srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
5392 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
5393 break;
5394
5395 case nir_tex_src_sampler_handle:
5396 assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
5397 srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
5398 srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
5399 break;
5400
5401 case nir_tex_src_ms_mcs:
5402 assert(instr->op == nir_texop_txf_ms);
5403 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5404 break;
5405
5406 case nir_tex_src_plane: {
5407 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5408 const uint32_t texture_index =
5409 instr->texture_index +
5410 stage_prog_data->binding_table.plane_start[plane] -
5411 stage_prog_data->binding_table.texture_start;
5412
5413 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5414 break;
5415 }
5416
5417 default:
5418 unreachable("unknown texture source");
5419 }
5420 }
5421
5422 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5423 (instr->op == nir_texop_txf_ms ||
5424 instr->op == nir_texop_samples_identical)) {
5425 if (devinfo->gen >= 7 &&
5426 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5427 srcs[TEX_LOGICAL_SRC_MCS] =
5428 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5429 instr->coord_components,
5430 srcs[TEX_LOGICAL_SRC_SURFACE],
5431 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
5432 } else {
5433 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5434 }
5435 }
5436
5437 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5438 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5439
5440 enum opcode opcode;
5441 switch (instr->op) {
5442 case nir_texop_tex:
5443 opcode = SHADER_OPCODE_TEX_LOGICAL;
5444 break;
5445 case nir_texop_txb:
5446 opcode = FS_OPCODE_TXB_LOGICAL;
5447 break;
5448 case nir_texop_txl:
5449 opcode = SHADER_OPCODE_TXL_LOGICAL;
5450 break;
5451 case nir_texop_txd:
5452 opcode = SHADER_OPCODE_TXD_LOGICAL;
5453 break;
5454 case nir_texop_txf:
5455 opcode = SHADER_OPCODE_TXF_LOGICAL;
5456 break;
5457 case nir_texop_txf_ms:
5458 if ((key_tex->msaa_16 & (1 << sampler)))
5459 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5460 else
5461 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5462 break;
5463 case nir_texop_txf_ms_mcs:
5464 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5465 break;
5466 case nir_texop_query_levels:
5467 case nir_texop_txs:
5468 opcode = SHADER_OPCODE_TXS_LOGICAL;
5469 break;
5470 case nir_texop_lod:
5471 opcode = SHADER_OPCODE_LOD_LOGICAL;
5472 break;
5473 case nir_texop_tg4:
5474 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5475 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5476 else
5477 opcode = SHADER_OPCODE_TG4_LOGICAL;
5478 break;
5479 case nir_texop_texture_samples:
5480 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5481 break;
5482 case nir_texop_samples_identical: {
5483 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5484
5485 /* If mcs is an immediate value, it means there is no MCS. In that case
5486 * just return false.
5487 */
5488 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5489 bld.MOV(dst, brw_imm_ud(0u));
5490 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5491 fs_reg tmp = vgrf(glsl_type::uint_type);
5492 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5493 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5494 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5495 } else {
5496 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5497 BRW_CONDITIONAL_EQ);
5498 }
5499 return;
5500 }
5501 default:
5502 unreachable("unknown texture opcode");
5503 }
5504
5505 if (instr->op == nir_texop_tg4) {
5506 if (instr->component == 1 &&
5507 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5508 /* gather4 sampler is broken for green channel on RG32F --
5509 * we must ask for blue instead.
5510 */
5511 header_bits |= 2 << 16;
5512 } else {
5513 header_bits |= instr->component << 16;
5514 }
5515 }
5516
5517 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5518 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5519 inst->offset = header_bits;
5520
5521 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5522 if (devinfo->gen >= 9 &&
5523 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5524 unsigned write_mask = instr->dest.is_ssa ?
5525 nir_ssa_def_components_read(&instr->dest.ssa):
5526 (1 << dest_size) - 1;
5527 assert(write_mask != 0); /* dead code should have been eliminated */
5528 inst->size_written = util_last_bit(write_mask) *
5529 inst->dst.component_size(inst->exec_size);
5530 } else {
5531 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5532 }
5533
5534 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5535 inst->shadow_compare = true;
5536
5537 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5538 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5539
5540 fs_reg nir_dest[4];
5541 for (unsigned i = 0; i < dest_size; i++)
5542 nir_dest[i] = offset(dst, bld, i);
5543
5544 if (instr->op == nir_texop_query_levels) {
5545 /* # levels is in .w */
5546 nir_dest[0] = offset(dst, bld, 3);
5547 } else if (instr->op == nir_texop_txs &&
5548 dest_size >= 3 && devinfo->gen < 7) {
5549 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5550 fs_reg depth = offset(dst, bld, 2);
5551 nir_dest[2] = vgrf(glsl_type::int_type);
5552 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5553 }
5554
5555 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5556 }
5557
5558 void
5559 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5560 {
5561 switch (instr->type) {
5562 case nir_jump_break:
5563 bld.emit(BRW_OPCODE_BREAK);
5564 break;
5565 case nir_jump_continue:
5566 bld.emit(BRW_OPCODE_CONTINUE);
5567 break;
5568 case nir_jump_return:
5569 default:
5570 unreachable("unknown jump");
5571 }
5572 }
5573
5574 /*
5575 * This helper takes a source register and un/shuffles it into the destination
5576 * register.
5577 *
5578 * If source type size is smaller than destination type size the operation
5579 * needed is a component shuffle. The opposite case would be an unshuffle. If
5580 * source/destination type size is equal a shuffle is done that would be
5581 * equivalent to a simple MOV.
5582 *
5583 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5584 * components .xyz 16-bit vector on SIMD8 would be.
5585 *
5586 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5587 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5588 *
5589 * This helper will return the following 2 32-bit components with the 16-bit
5590 * values shuffled:
5591 *
5592 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5593 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5594 *
5595 * For unshuffle, the example would be the opposite, a 64-bit type source
5596 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5597 * would be:
5598 *
5599 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5600 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5601 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5602 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5603 *
5604 * The returned result would be the following 4 32-bit components unshuffled:
5605 *
5606 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5607 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5608 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5609 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5610 *
5611 * - Source and destination register must not be overlapped.
5612 * - components units are measured in terms of the smaller type between
5613 * source and destination because we are un/shuffling the smaller
5614 * components from/into the bigger ones.
5615 * - first_component parameter allows skipping source components.
5616 */
5617 void
5618 shuffle_src_to_dst(const fs_builder &bld,
5619 const fs_reg &dst,
5620 const fs_reg &src,
5621 uint32_t first_component,
5622 uint32_t components)
5623 {
5624 if (type_sz(src.type) == type_sz(dst.type)) {
5625 assert(!regions_overlap(dst,
5626 type_sz(dst.type) * bld.dispatch_width() * components,
5627 offset(src, bld, first_component),
5628 type_sz(src.type) * bld.dispatch_width() * components));
5629 for (unsigned i = 0; i < components; i++) {
5630 bld.MOV(retype(offset(dst, bld, i), src.type),
5631 offset(src, bld, i + first_component));
5632 }
5633 } else if (type_sz(src.type) < type_sz(dst.type)) {
5634 /* Source is shuffled into destination */
5635 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5636 assert(!regions_overlap(dst,
5637 type_sz(dst.type) * bld.dispatch_width() *
5638 DIV_ROUND_UP(components, size_ratio),
5639 offset(src, bld, first_component),
5640 type_sz(src.type) * bld.dispatch_width() * components));
5641
5642 brw_reg_type shuffle_type =
5643 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5644 BRW_REGISTER_TYPE_D);
5645 for (unsigned i = 0; i < components; i++) {
5646 fs_reg shuffle_component_i =
5647 subscript(offset(dst, bld, i / size_ratio),
5648 shuffle_type, i % size_ratio);
5649 bld.MOV(shuffle_component_i,
5650 retype(offset(src, bld, i + first_component), shuffle_type));
5651 }
5652 } else {
5653 /* Source is unshuffled into destination */
5654 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5655 assert(!regions_overlap(dst,
5656 type_sz(dst.type) * bld.dispatch_width() * components,
5657 offset(src, bld, first_component / size_ratio),
5658 type_sz(src.type) * bld.dispatch_width() *
5659 DIV_ROUND_UP(components + (first_component % size_ratio),
5660 size_ratio)));
5661
5662 brw_reg_type shuffle_type =
5663 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5664 BRW_REGISTER_TYPE_D);
5665 for (unsigned i = 0; i < components; i++) {
5666 fs_reg shuffle_component_i =
5667 subscript(offset(src, bld, (first_component + i) / size_ratio),
5668 shuffle_type, (first_component + i) % size_ratio);
5669 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5670 shuffle_component_i);
5671 }
5672 }
5673 }
5674
5675 void
5676 shuffle_from_32bit_read(const fs_builder &bld,
5677 const fs_reg &dst,
5678 const fs_reg &src,
5679 uint32_t first_component,
5680 uint32_t components)
5681 {
5682 assert(type_sz(src.type) == 4);
5683
5684 /* This function takes components in units of the destination type while
5685 * shuffle_src_to_dst takes components in units of the smallest type
5686 */
5687 if (type_sz(dst.type) > 4) {
5688 assert(type_sz(dst.type) == 8);
5689 first_component *= 2;
5690 components *= 2;
5691 }
5692
5693 shuffle_src_to_dst(bld, dst, src, first_component, components);
5694 }
5695
5696 fs_reg
5697 setup_imm_df(const fs_builder &bld, double v)
5698 {
5699 const struct gen_device_info *devinfo = bld.shader->devinfo;
5700 assert(devinfo->gen >= 7);
5701
5702 if (devinfo->gen >= 8)
5703 return brw_imm_df(v);
5704
5705 /* gen7.5 does not support DF immediates straighforward but the DIM
5706 * instruction allows to set the 64-bit immediate value.
5707 */
5708 if (devinfo->is_haswell) {
5709 const fs_builder ubld = bld.exec_all().group(1, 0);
5710 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5711 ubld.DIM(dst, brw_imm_df(v));
5712 return component(dst, 0);
5713 }
5714
5715 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5716 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5717 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5718 *
5719 * Alternatively, we could also produce a normal VGRF (without stride 0)
5720 * by writing to all the channels in the VGRF, however, that would hit the
5721 * gen7 bug where we have to split writes that span more than 1 register
5722 * into instructions with a width of 4 (otherwise the write to the second
5723 * register written runs into an execmask hardware bug) which isn't very
5724 * nice.
5725 */
5726 union {
5727 double d;
5728 struct {
5729 uint32_t i1;
5730 uint32_t i2;
5731 };
5732 } di;
5733
5734 di.d = v;
5735
5736 const fs_builder ubld = bld.exec_all().group(1, 0);
5737 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5738 ubld.MOV(tmp, brw_imm_ud(di.i1));
5739 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5740
5741 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5742 }
5743
5744 fs_reg
5745 setup_imm_b(const fs_builder &bld, int8_t v)
5746 {
5747 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5748 bld.MOV(tmp, brw_imm_w(v));
5749 return tmp;
5750 }
5751
5752 fs_reg
5753 setup_imm_ub(const fs_builder &bld, uint8_t v)
5754 {
5755 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5756 bld.MOV(tmp, brw_imm_uw(v));
5757 return tmp;
5758 }