7930205d659d7925dd0aac39041769b9f5a25b7f
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28 #include "util/u_math.h"
29
30 using namespace brw;
31 using namespace brw::surface_access;
32
33 void
34 fs_visitor::emit_nir_code()
35 {
36 /* emit the arrays used for inputs and outputs - load/store intrinsics will
37 * be converted to reads/writes of these arrays
38 */
39 nir_setup_outputs();
40 nir_setup_uniforms();
41 nir_emit_system_values();
42
43 /* get the main function and emit it */
44 nir_foreach_function(function, nir) {
45 assert(strcmp(function->name, "main") == 0);
46 assert(function->impl);
47 nir_emit_impl(function->impl);
48 }
49 }
50
51 void
52 fs_visitor::nir_setup_outputs()
53 {
54 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
55 return;
56
57 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
58
59 /* Calculate the size of output registers in a separate pass, before
60 * allocating them. With ARB_enhanced_layouts, multiple output variables
61 * may occupy the same slot, but have different type sizes.
62 */
63 nir_foreach_variable(var, &nir->outputs) {
64 const int loc = var->data.driver_location;
65 const unsigned var_vec4s =
66 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
67 : type_size_vec4(var->type);
68 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
69 }
70
71 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
72 if (vec4s[loc] == 0) {
73 loc++;
74 continue;
75 }
76
77 unsigned reg_size = vec4s[loc];
78
79 /* Check if there are any ranges that start within this range and extend
80 * past it. If so, include them in this allocation.
81 */
82 for (unsigned i = 1; i < reg_size; i++)
83 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
84
85 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
86 for (unsigned i = 0; i < reg_size; i++)
87 outputs[loc + i] = offset(reg, bld, 4 * i);
88
89 loc += reg_size;
90 }
91 }
92
93 void
94 fs_visitor::nir_setup_uniforms()
95 {
96 /* Only the first compile gets to set up uniforms. */
97 if (push_constant_loc) {
98 assert(pull_constant_loc);
99 return;
100 }
101
102 uniforms = nir->num_uniforms / 4;
103
104 if (stage == MESA_SHADER_COMPUTE) {
105 /* Add a uniform for the thread local id. It must be the last uniform
106 * on the list.
107 */
108 assert(uniforms == prog_data->nr_params);
109 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
110 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
111 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
112 }
113 }
114
115 static bool
116 emit_system_values_block(nir_block *block, fs_visitor *v)
117 {
118 fs_reg *reg;
119
120 nir_foreach_instr(instr, block) {
121 if (instr->type != nir_instr_type_intrinsic)
122 continue;
123
124 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
125 switch (intrin->intrinsic) {
126 case nir_intrinsic_load_vertex_id:
127 case nir_intrinsic_load_base_vertex:
128 unreachable("should be lowered by nir_lower_system_values().");
129
130 case nir_intrinsic_load_vertex_id_zero_base:
131 case nir_intrinsic_load_is_indexed_draw:
132 case nir_intrinsic_load_first_vertex:
133 case nir_intrinsic_load_instance_id:
134 case nir_intrinsic_load_base_instance:
135 case nir_intrinsic_load_draw_id:
136 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
137
138 case nir_intrinsic_load_invocation_id:
139 if (v->stage == MESA_SHADER_TESS_CTRL)
140 break;
141 assert(v->stage == MESA_SHADER_GEOMETRY);
142 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
143 if (reg->file == BAD_FILE) {
144 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
145 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
146 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
147 abld.SHR(iid, g1, brw_imm_ud(27u));
148 *reg = iid;
149 }
150 break;
151
152 case nir_intrinsic_load_sample_pos:
153 assert(v->stage == MESA_SHADER_FRAGMENT);
154 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
155 if (reg->file == BAD_FILE)
156 *reg = *v->emit_samplepos_setup();
157 break;
158
159 case nir_intrinsic_load_sample_id:
160 assert(v->stage == MESA_SHADER_FRAGMENT);
161 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
162 if (reg->file == BAD_FILE)
163 *reg = *v->emit_sampleid_setup();
164 break;
165
166 case nir_intrinsic_load_sample_mask_in:
167 assert(v->stage == MESA_SHADER_FRAGMENT);
168 assert(v->devinfo->gen >= 7);
169 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
170 if (reg->file == BAD_FILE)
171 *reg = *v->emit_samplemaskin_setup();
172 break;
173
174 case nir_intrinsic_load_work_group_id:
175 assert(v->stage == MESA_SHADER_COMPUTE);
176 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
177 if (reg->file == BAD_FILE)
178 *reg = *v->emit_cs_work_group_id_setup();
179 break;
180
181 case nir_intrinsic_load_helper_invocation:
182 assert(v->stage == MESA_SHADER_FRAGMENT);
183 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
184 if (reg->file == BAD_FILE) {
185 const fs_builder abld =
186 v->bld.annotate("gl_HelperInvocation", NULL);
187
188 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
189 * pixel mask is in g1.7 of the thread payload.
190 *
191 * We move the per-channel pixel enable bit to the low bit of each
192 * channel by shifting the byte containing the pixel mask by the
193 * vector immediate 0x76543210UV.
194 *
195 * The region of <1,8,0> reads only 1 byte (the pixel masks for
196 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
197 * masks for 2 and 3) in SIMD16.
198 */
199 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
200
201 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
202 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
203 hbld.SHR(offset(shifted, hbld, i),
204 stride(retype(brw_vec1_grf(1 + i, 7),
205 BRW_REGISTER_TYPE_UB),
206 1, 8, 0),
207 brw_imm_v(0x76543210));
208 }
209
210 /* A set bit in the pixel mask means the channel is enabled, but
211 * that is the opposite of gl_HelperInvocation so we need to invert
212 * the mask.
213 *
214 * The negate source-modifier bit of logical instructions on Gen8+
215 * performs 1's complement negation, so we can use that instead of
216 * a NOT instruction.
217 */
218 fs_reg inverted = negate(shifted);
219 if (v->devinfo->gen < 8) {
220 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
221 abld.NOT(inverted, shifted);
222 }
223
224 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
225 * with 1 and negating.
226 */
227 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
228 abld.AND(anded, inverted, brw_imm_uw(1));
229
230 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
231 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
232 *reg = dst;
233 }
234 break;
235
236 default:
237 break;
238 }
239 }
240
241 return true;
242 }
243
244 void
245 fs_visitor::nir_emit_system_values()
246 {
247 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
248 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
249 nir_system_values[i] = fs_reg();
250 }
251
252 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
253 * never end up using it.
254 */
255 {
256 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
257 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
258 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
259
260 const fs_builder allbld8 = abld.group(8, 0).exec_all();
261 allbld8.MOV(reg, brw_imm_v(0x76543210));
262 if (dispatch_width > 8)
263 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
264 if (dispatch_width > 16) {
265 const fs_builder allbld16 = abld.group(16, 0).exec_all();
266 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
267 }
268 }
269
270 nir_foreach_function(function, nir) {
271 assert(strcmp(function->name, "main") == 0);
272 assert(function->impl);
273 nir_foreach_block(block, function->impl) {
274 emit_system_values_block(block, this);
275 }
276 }
277 }
278
279 /*
280 * Returns a type based on a reference_type (word, float, half-float) and a
281 * given bit_size.
282 *
283 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
284 *
285 * @FIXME: 64-bit return types are always DF on integer types to maintain
286 * compability with uses of DF previously to the introduction of int64
287 * support.
288 */
289 static brw_reg_type
290 brw_reg_type_from_bit_size(const unsigned bit_size,
291 const brw_reg_type reference_type)
292 {
293 switch(reference_type) {
294 case BRW_REGISTER_TYPE_HF:
295 case BRW_REGISTER_TYPE_F:
296 case BRW_REGISTER_TYPE_DF:
297 switch(bit_size) {
298 case 16:
299 return BRW_REGISTER_TYPE_HF;
300 case 32:
301 return BRW_REGISTER_TYPE_F;
302 case 64:
303 return BRW_REGISTER_TYPE_DF;
304 default:
305 unreachable("Invalid bit size");
306 }
307 case BRW_REGISTER_TYPE_B:
308 case BRW_REGISTER_TYPE_W:
309 case BRW_REGISTER_TYPE_D:
310 case BRW_REGISTER_TYPE_Q:
311 switch(bit_size) {
312 case 8:
313 return BRW_REGISTER_TYPE_B;
314 case 16:
315 return BRW_REGISTER_TYPE_W;
316 case 32:
317 return BRW_REGISTER_TYPE_D;
318 case 64:
319 return BRW_REGISTER_TYPE_Q;
320 default:
321 unreachable("Invalid bit size");
322 }
323 case BRW_REGISTER_TYPE_UB:
324 case BRW_REGISTER_TYPE_UW:
325 case BRW_REGISTER_TYPE_UD:
326 case BRW_REGISTER_TYPE_UQ:
327 switch(bit_size) {
328 case 8:
329 return BRW_REGISTER_TYPE_UB;
330 case 16:
331 return BRW_REGISTER_TYPE_UW;
332 case 32:
333 return BRW_REGISTER_TYPE_UD;
334 case 64:
335 return BRW_REGISTER_TYPE_UQ;
336 default:
337 unreachable("Invalid bit size");
338 }
339 default:
340 unreachable("Unknown type");
341 }
342 }
343
344 void
345 fs_visitor::nir_emit_impl(nir_function_impl *impl)
346 {
347 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
348 for (unsigned i = 0; i < impl->reg_alloc; i++) {
349 nir_locals[i] = fs_reg();
350 }
351
352 foreach_list_typed(nir_register, reg, node, &impl->registers) {
353 unsigned array_elems =
354 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
355 unsigned size = array_elems * reg->num_components;
356 const brw_reg_type reg_type =
357 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
358 nir_locals[reg->index] = bld.vgrf(reg_type, size);
359 }
360
361 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
362 impl->ssa_alloc);
363
364 nir_emit_cf_list(&impl->body);
365 }
366
367 void
368 fs_visitor::nir_emit_cf_list(exec_list *list)
369 {
370 exec_list_validate(list);
371 foreach_list_typed(nir_cf_node, node, node, list) {
372 switch (node->type) {
373 case nir_cf_node_if:
374 nir_emit_if(nir_cf_node_as_if(node));
375 break;
376
377 case nir_cf_node_loop:
378 nir_emit_loop(nir_cf_node_as_loop(node));
379 break;
380
381 case nir_cf_node_block:
382 nir_emit_block(nir_cf_node_as_block(node));
383 break;
384
385 default:
386 unreachable("Invalid CFG node block");
387 }
388 }
389 }
390
391 void
392 fs_visitor::nir_emit_if(nir_if *if_stmt)
393 {
394 /* first, put the condition into f0 */
395 fs_inst *inst = bld.MOV(bld.null_reg_d(),
396 retype(get_nir_src(if_stmt->condition),
397 BRW_REGISTER_TYPE_D));
398 inst->conditional_mod = BRW_CONDITIONAL_NZ;
399
400 bld.IF(BRW_PREDICATE_NORMAL);
401
402 nir_emit_cf_list(&if_stmt->then_list);
403
404 /* note: if the else is empty, dead CF elimination will remove it */
405 bld.emit(BRW_OPCODE_ELSE);
406
407 nir_emit_cf_list(&if_stmt->else_list);
408
409 bld.emit(BRW_OPCODE_ENDIF);
410
411 if (devinfo->gen < 7)
412 limit_dispatch_width(16, "Non-uniform control flow unsupported "
413 "in SIMD32 mode.");
414 }
415
416 void
417 fs_visitor::nir_emit_loop(nir_loop *loop)
418 {
419 bld.emit(BRW_OPCODE_DO);
420
421 nir_emit_cf_list(&loop->body);
422
423 bld.emit(BRW_OPCODE_WHILE);
424
425 if (devinfo->gen < 7)
426 limit_dispatch_width(16, "Non-uniform control flow unsupported "
427 "in SIMD32 mode.");
428 }
429
430 void
431 fs_visitor::nir_emit_block(nir_block *block)
432 {
433 nir_foreach_instr(instr, block) {
434 nir_emit_instr(instr);
435 }
436 }
437
438 void
439 fs_visitor::nir_emit_instr(nir_instr *instr)
440 {
441 const fs_builder abld = bld.annotate(NULL, instr);
442
443 switch (instr->type) {
444 case nir_instr_type_alu:
445 nir_emit_alu(abld, nir_instr_as_alu(instr));
446 break;
447
448 case nir_instr_type_deref:
449 /* Derefs can exist for images but they do nothing */
450 break;
451
452 case nir_instr_type_intrinsic:
453 switch (stage) {
454 case MESA_SHADER_VERTEX:
455 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
456 break;
457 case MESA_SHADER_TESS_CTRL:
458 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
459 break;
460 case MESA_SHADER_TESS_EVAL:
461 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
462 break;
463 case MESA_SHADER_GEOMETRY:
464 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
465 break;
466 case MESA_SHADER_FRAGMENT:
467 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
468 break;
469 case MESA_SHADER_COMPUTE:
470 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
471 break;
472 default:
473 unreachable("unsupported shader stage");
474 }
475 break;
476
477 case nir_instr_type_tex:
478 nir_emit_texture(abld, nir_instr_as_tex(instr));
479 break;
480
481 case nir_instr_type_load_const:
482 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
483 break;
484
485 case nir_instr_type_ssa_undef:
486 /* We create a new VGRF for undefs on every use (by handling
487 * them in get_nir_src()), rather than for each definition.
488 * This helps register coalescing eliminate MOVs from undef.
489 */
490 break;
491
492 case nir_instr_type_jump:
493 nir_emit_jump(abld, nir_instr_as_jump(instr));
494 break;
495
496 default:
497 unreachable("unknown instruction type");
498 }
499 }
500
501 /**
502 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
503 * match instr.
504 */
505 bool
506 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
507 const fs_reg &result)
508 {
509 if (!instr->src[0].src.is_ssa ||
510 !instr->src[0].src.ssa->parent_instr)
511 return false;
512
513 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
514 return false;
515
516 nir_alu_instr *src0 =
517 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
518
519 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
520 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
521 return false;
522
523 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
524 assert(element != NULL);
525
526 /* Element type to extract.*/
527 const brw_reg_type type = brw_int_type(
528 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
529 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
530
531 fs_reg op0 = get_nir_src(src0->src[0].src);
532 op0.type = brw_type_for_nir_type(devinfo,
533 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
534 nir_src_bit_size(src0->src[0].src)));
535 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
536
537 set_saturate(instr->dest.saturate,
538 bld.MOV(result, subscript(op0, type, element->u32[0])));
539 return true;
540 }
541
542 bool
543 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
544 const fs_reg &result)
545 {
546 if (!instr->src[0].src.is_ssa ||
547 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
548 return false;
549
550 nir_intrinsic_instr *src0 =
551 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
552
553 if (src0->intrinsic != nir_intrinsic_load_front_face)
554 return false;
555
556 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
557 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
558 return false;
559
560 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
561 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
562 return false;
563
564 fs_reg tmp = vgrf(glsl_type::int_type);
565
566 if (devinfo->gen >= 6) {
567 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
568 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
569
570 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
571 *
572 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
573 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
574 *
575 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
576 *
577 * This negation looks like it's safe in practice, because bits 0:4 will
578 * surely be TRIANGLES
579 */
580
581 if (value1->f32[0] == -1.0f) {
582 g0.negate = true;
583 }
584
585 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
586 g0, brw_imm_uw(0x3f80));
587 } else {
588 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
589 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
590
591 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
592 *
593 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
594 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
595 *
596 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
597 *
598 * This negation looks like it's safe in practice, because bits 0:4 will
599 * surely be TRIANGLES
600 */
601
602 if (value1->f32[0] == -1.0f) {
603 g1_6.negate = true;
604 }
605
606 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
607 }
608 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
609
610 return true;
611 }
612
613 static void
614 emit_find_msb_using_lzd(const fs_builder &bld,
615 const fs_reg &result,
616 const fs_reg &src,
617 bool is_signed)
618 {
619 fs_inst *inst;
620 fs_reg temp = src;
621
622 if (is_signed) {
623 /* LZD of an absolute value source almost always does the right
624 * thing. There are two problem values:
625 *
626 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
627 * 0. However, findMSB(int(0x80000000)) == 30.
628 *
629 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
630 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
631 *
632 * For a value of zero or negative one, -1 will be returned.
633 *
634 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
635 * findMSB(-(1<<x)) should return x-1.
636 *
637 * For all negative number cases, including 0x80000000 and
638 * 0xffffffff, the correct value is obtained from LZD if instead of
639 * negating the (already negative) value the logical-not is used. A
640 * conditonal logical-not can be achieved in two instructions.
641 */
642 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
643
644 bld.ASR(temp, src, brw_imm_d(31));
645 bld.XOR(temp, temp, src);
646 }
647
648 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
649 retype(temp, BRW_REGISTER_TYPE_UD));
650
651 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
652 * from the LSB side. Subtract the result from 31 to convert the MSB
653 * count into an LSB count. If no bits are set, LZD will return 32.
654 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
655 */
656 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
657 inst->src[0].negate = true;
658 }
659
660 static brw_rnd_mode
661 brw_rnd_mode_from_nir_op (const nir_op op) {
662 switch (op) {
663 case nir_op_f2f16_rtz:
664 return BRW_RND_MODE_RTZ;
665 case nir_op_f2f16_rtne:
666 return BRW_RND_MODE_RTNE;
667 default:
668 unreachable("Operation doesn't support rounding mode");
669 }
670 }
671
672 void
673 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
674 {
675 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
676 fs_inst *inst;
677
678 fs_reg result = get_nir_dest(instr->dest.dest);
679 result.type = brw_type_for_nir_type(devinfo,
680 (nir_alu_type)(nir_op_infos[instr->op].output_type |
681 nir_dest_bit_size(instr->dest.dest)));
682
683 fs_reg op[4];
684 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
685 op[i] = get_nir_src(instr->src[i].src);
686 op[i].type = brw_type_for_nir_type(devinfo,
687 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
688 nir_src_bit_size(instr->src[i].src)));
689 op[i].abs = instr->src[i].abs;
690 op[i].negate = instr->src[i].negate;
691 }
692
693 /* We get a bunch of mov's out of the from_ssa pass and they may still
694 * be vectorized. We'll handle them as a special-case. We'll also
695 * handle vecN here because it's basically the same thing.
696 */
697 switch (instr->op) {
698 case nir_op_imov:
699 case nir_op_fmov:
700 case nir_op_vec2:
701 case nir_op_vec3:
702 case nir_op_vec4: {
703 fs_reg temp = result;
704 bool need_extra_copy = false;
705 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
706 if (!instr->src[i].src.is_ssa &&
707 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
708 need_extra_copy = true;
709 temp = bld.vgrf(result.type, 4);
710 break;
711 }
712 }
713
714 for (unsigned i = 0; i < 4; i++) {
715 if (!(instr->dest.write_mask & (1 << i)))
716 continue;
717
718 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
719 inst = bld.MOV(offset(temp, bld, i),
720 offset(op[0], bld, instr->src[0].swizzle[i]));
721 } else {
722 inst = bld.MOV(offset(temp, bld, i),
723 offset(op[i], bld, instr->src[i].swizzle[0]));
724 }
725 inst->saturate = instr->dest.saturate;
726 }
727
728 /* In this case the source and destination registers were the same,
729 * so we need to insert an extra set of moves in order to deal with
730 * any swizzling.
731 */
732 if (need_extra_copy) {
733 for (unsigned i = 0; i < 4; i++) {
734 if (!(instr->dest.write_mask & (1 << i)))
735 continue;
736
737 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
738 }
739 }
740 return;
741 }
742 default:
743 break;
744 }
745
746 /* At this point, we have dealt with any instruction that operates on
747 * more than a single channel. Therefore, we can just adjust the source
748 * and destination registers for that channel and emit the instruction.
749 */
750 unsigned channel = 0;
751 if (nir_op_infos[instr->op].output_size == 0) {
752 /* Since NIR is doing the scalarizing for us, we should only ever see
753 * vectorized operations with a single channel.
754 */
755 assert(util_bitcount(instr->dest.write_mask) == 1);
756 channel = ffs(instr->dest.write_mask) - 1;
757
758 result = offset(result, bld, channel);
759 }
760
761 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
762 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
763 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
764 }
765
766 switch (instr->op) {
767 case nir_op_i2f32:
768 case nir_op_u2f32:
769 if (optimize_extract_to_float(instr, result))
770 return;
771 inst = bld.MOV(result, op[0]);
772 inst->saturate = instr->dest.saturate;
773 break;
774
775 case nir_op_f2f16_rtne:
776 case nir_op_f2f16_rtz:
777 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
778 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
779 /* fallthrough */
780
781 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
782 * on the HW gen, it is a special hw opcode or just a MOV, and
783 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
784 *
785 * But if we want to use that opcode, we need to provide support on
786 * different optimizations and lowerings. As right now HF support is
787 * only for gen8+, it will be better to use directly the MOV, and use
788 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
789 */
790
791 case nir_op_f2f16:
792 inst = bld.MOV(result, op[0]);
793 inst->saturate = instr->dest.saturate;
794 break;
795
796 case nir_op_b2i:
797 case nir_op_b2f:
798 op[0].type = BRW_REGISTER_TYPE_D;
799 op[0].negate = !op[0].negate;
800 /* fallthrough */
801 case nir_op_f2f64:
802 case nir_op_f2i64:
803 case nir_op_f2u64:
804 case nir_op_i2f64:
805 case nir_op_i2i64:
806 case nir_op_u2f64:
807 case nir_op_u2u64:
808 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
809 *
810 * "When source or destination is 64b (...), regioning in Align1
811 * must follow these rules:
812 *
813 * 1. Source and destination horizontal stride must be aligned to
814 * the same qword.
815 * (...)"
816 *
817 * This means that conversions from bit-sizes smaller than 64-bit to
818 * 64-bit need to have the source data elements aligned to 64-bit.
819 * This restriction does not apply to BDW and later.
820 */
821 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
822 nir_src_bit_size(instr->src[0].src) < 64 &&
823 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
824 fs_reg tmp = bld.vgrf(result.type, 1);
825 tmp = subscript(tmp, op[0].type, 0);
826 inst = bld.MOV(tmp, op[0]);
827 inst = bld.MOV(result, tmp);
828 inst->saturate = instr->dest.saturate;
829 break;
830 }
831 /* fallthrough */
832 case nir_op_f2f32:
833 case nir_op_f2i32:
834 case nir_op_f2u32:
835 case nir_op_f2i16:
836 case nir_op_f2u16:
837 case nir_op_i2i32:
838 case nir_op_u2u32:
839 case nir_op_i2i16:
840 case nir_op_u2u16:
841 case nir_op_i2f16:
842 case nir_op_u2f16:
843 case nir_op_i2i8:
844 case nir_op_u2u8:
845 inst = bld.MOV(result, op[0]);
846 inst->saturate = instr->dest.saturate;
847 break;
848
849 case nir_op_fsign: {
850 assert(!instr->dest.saturate);
851 if (op[0].abs) {
852 /* Straightforward since the source can be assumed to be either
853 * strictly >= 0 or strictly <= 0 depending on the setting of the
854 * negate flag.
855 */
856 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
857
858 inst = (op[0].negate)
859 ? bld.MOV(result, brw_imm_f(-1.0f))
860 : bld.MOV(result, brw_imm_f(1.0f));
861
862 set_predicate(BRW_PREDICATE_NORMAL, inst);
863 } else if (type_sz(op[0].type) < 8) {
864 /* AND(val, 0x80000000) gives the sign bit.
865 *
866 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
867 * zero.
868 */
869 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
870
871 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
872 op[0].type = BRW_REGISTER_TYPE_UD;
873 result.type = BRW_REGISTER_TYPE_UD;
874 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
875
876 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
877 inst->predicate = BRW_PREDICATE_NORMAL;
878 } else {
879 /* For doubles we do the same but we need to consider:
880 *
881 * - 2-src instructions can't operate with 64-bit immediates
882 * - The sign is encoded in the high 32-bit of each DF
883 * - We need to produce a DF result.
884 */
885
886 fs_reg zero = vgrf(glsl_type::double_type);
887 bld.MOV(zero, setup_imm_df(bld, 0.0));
888 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
889
890 bld.MOV(result, zero);
891
892 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
893 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
894 brw_imm_ud(0x80000000u));
895
896 set_predicate(BRW_PREDICATE_NORMAL,
897 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
898 }
899 break;
900 }
901
902 case nir_op_isign: {
903 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
904 * -> non-negative val generates 0x00000000.
905 * Predicated OR sets 1 if val is positive.
906 */
907 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
908 assert(bit_size == 32 || bit_size == 16);
909
910 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
911 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
912 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
913
914 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
915 bld.ASR(result, op[0], shift);
916 inst = bld.OR(result, result, one);
917 inst->predicate = BRW_PREDICATE_NORMAL;
918 break;
919 }
920
921 case nir_op_frcp:
922 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
923 inst->saturate = instr->dest.saturate;
924 break;
925
926 case nir_op_fexp2:
927 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
928 inst->saturate = instr->dest.saturate;
929 break;
930
931 case nir_op_flog2:
932 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
933 inst->saturate = instr->dest.saturate;
934 break;
935
936 case nir_op_fsin:
937 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
938 inst->saturate = instr->dest.saturate;
939 break;
940
941 case nir_op_fcos:
942 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
943 inst->saturate = instr->dest.saturate;
944 break;
945
946 case nir_op_fddx:
947 if (fs_key->high_quality_derivatives) {
948 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
949 } else {
950 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
951 }
952 inst->saturate = instr->dest.saturate;
953 break;
954 case nir_op_fddx_fine:
955 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
956 inst->saturate = instr->dest.saturate;
957 break;
958 case nir_op_fddx_coarse:
959 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
960 inst->saturate = instr->dest.saturate;
961 break;
962 case nir_op_fddy:
963 if (fs_key->high_quality_derivatives) {
964 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
965 } else {
966 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
967 }
968 inst->saturate = instr->dest.saturate;
969 break;
970 case nir_op_fddy_fine:
971 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
972 inst->saturate = instr->dest.saturate;
973 break;
974 case nir_op_fddy_coarse:
975 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
976 inst->saturate = instr->dest.saturate;
977 break;
978
979 case nir_op_iadd:
980 case nir_op_fadd:
981 inst = bld.ADD(result, op[0], op[1]);
982 inst->saturate = instr->dest.saturate;
983 break;
984
985 case nir_op_fmul:
986 inst = bld.MUL(result, op[0], op[1]);
987 inst->saturate = instr->dest.saturate;
988 break;
989
990 case nir_op_imul:
991 assert(nir_dest_bit_size(instr->dest.dest) < 64);
992 bld.MUL(result, op[0], op[1]);
993 break;
994
995 case nir_op_imul_high:
996 case nir_op_umul_high:
997 assert(nir_dest_bit_size(instr->dest.dest) < 64);
998 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
999 break;
1000
1001 case nir_op_idiv:
1002 case nir_op_udiv:
1003 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1004 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1005 break;
1006
1007 case nir_op_uadd_carry:
1008 unreachable("Should have been lowered by carry_to_arith().");
1009
1010 case nir_op_usub_borrow:
1011 unreachable("Should have been lowered by borrow_to_arith().");
1012
1013 case nir_op_umod:
1014 case nir_op_irem:
1015 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1016 * appears that our hardware just does the right thing for signed
1017 * remainder.
1018 */
1019 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1020 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1021 break;
1022
1023 case nir_op_imod: {
1024 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1025 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1026
1027 /* Math instructions don't support conditional mod */
1028 inst = bld.MOV(bld.null_reg_d(), result);
1029 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1030
1031 /* Now, we need to determine if signs of the sources are different.
1032 * When we XOR the sources, the top bit is 0 if they are the same and 1
1033 * if they are different. We can then use a conditional modifier to
1034 * turn that into a predicate. This leads us to an XOR.l instruction.
1035 *
1036 * Technically, according to the PRM, you're not allowed to use .l on a
1037 * XOR instruction. However, emperical experiments and Curro's reading
1038 * of the simulator source both indicate that it's safe.
1039 */
1040 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1041 inst = bld.XOR(tmp, op[0], op[1]);
1042 inst->predicate = BRW_PREDICATE_NORMAL;
1043 inst->conditional_mod = BRW_CONDITIONAL_L;
1044
1045 /* If the result of the initial remainder operation is non-zero and the
1046 * two sources have different signs, add in a copy of op[1] to get the
1047 * final integer modulus value.
1048 */
1049 inst = bld.ADD(result, result, op[1]);
1050 inst->predicate = BRW_PREDICATE_NORMAL;
1051 break;
1052 }
1053
1054 case nir_op_flt:
1055 case nir_op_fge:
1056 case nir_op_feq:
1057 case nir_op_fne: {
1058 fs_reg dest = result;
1059
1060 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1061 if (bit_size != 32)
1062 dest = bld.vgrf(op[0].type, 1);
1063
1064 brw_conditional_mod cond;
1065 switch (instr->op) {
1066 case nir_op_flt:
1067 cond = BRW_CONDITIONAL_L;
1068 break;
1069 case nir_op_fge:
1070 cond = BRW_CONDITIONAL_GE;
1071 break;
1072 case nir_op_feq:
1073 cond = BRW_CONDITIONAL_Z;
1074 break;
1075 case nir_op_fne:
1076 cond = BRW_CONDITIONAL_NZ;
1077 break;
1078 default:
1079 unreachable("bad opcode");
1080 }
1081
1082 bld.CMP(dest, op[0], op[1], cond);
1083
1084 if (bit_size > 32) {
1085 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1086 } else if(bit_size < 32) {
1087 /* When we convert the result to 32-bit we need to be careful and do
1088 * it as a signed conversion to get sign extension (for 32-bit true)
1089 */
1090 const brw_reg_type src_type =
1091 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1092
1093 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1094 }
1095 break;
1096 }
1097
1098 case nir_op_ilt:
1099 case nir_op_ult:
1100 case nir_op_ige:
1101 case nir_op_uge:
1102 case nir_op_ieq:
1103 case nir_op_ine: {
1104 fs_reg dest = result;
1105
1106 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1107 if (bit_size != 32)
1108 dest = bld.vgrf(op[0].type, 1);
1109
1110 brw_conditional_mod cond;
1111 switch (instr->op) {
1112 case nir_op_ilt:
1113 case nir_op_ult:
1114 cond = BRW_CONDITIONAL_L;
1115 break;
1116 case nir_op_ige:
1117 case nir_op_uge:
1118 cond = BRW_CONDITIONAL_GE;
1119 break;
1120 case nir_op_ieq:
1121 cond = BRW_CONDITIONAL_Z;
1122 break;
1123 case nir_op_ine:
1124 cond = BRW_CONDITIONAL_NZ;
1125 break;
1126 default:
1127 unreachable("bad opcode");
1128 }
1129 bld.CMP(dest, op[0], op[1], cond);
1130
1131 if (bit_size > 32) {
1132 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1133 } else if (bit_size < 32) {
1134 /* When we convert the result to 32-bit we need to be careful and do
1135 * it as a signed conversion to get sign extension (for 32-bit true)
1136 */
1137 const brw_reg_type src_type =
1138 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1139
1140 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1141 }
1142 break;
1143 }
1144
1145 case nir_op_inot:
1146 if (devinfo->gen >= 8) {
1147 op[0] = resolve_source_modifiers(op[0]);
1148 }
1149 bld.NOT(result, op[0]);
1150 break;
1151 case nir_op_ixor:
1152 if (devinfo->gen >= 8) {
1153 op[0] = resolve_source_modifiers(op[0]);
1154 op[1] = resolve_source_modifiers(op[1]);
1155 }
1156 bld.XOR(result, op[0], op[1]);
1157 break;
1158 case nir_op_ior:
1159 if (devinfo->gen >= 8) {
1160 op[0] = resolve_source_modifiers(op[0]);
1161 op[1] = resolve_source_modifiers(op[1]);
1162 }
1163 bld.OR(result, op[0], op[1]);
1164 break;
1165 case nir_op_iand:
1166 if (devinfo->gen >= 8) {
1167 op[0] = resolve_source_modifiers(op[0]);
1168 op[1] = resolve_source_modifiers(op[1]);
1169 }
1170 bld.AND(result, op[0], op[1]);
1171 break;
1172
1173 case nir_op_fdot2:
1174 case nir_op_fdot3:
1175 case nir_op_fdot4:
1176 case nir_op_ball_fequal2:
1177 case nir_op_ball_iequal2:
1178 case nir_op_ball_fequal3:
1179 case nir_op_ball_iequal3:
1180 case nir_op_ball_fequal4:
1181 case nir_op_ball_iequal4:
1182 case nir_op_bany_fnequal2:
1183 case nir_op_bany_inequal2:
1184 case nir_op_bany_fnequal3:
1185 case nir_op_bany_inequal3:
1186 case nir_op_bany_fnequal4:
1187 case nir_op_bany_inequal4:
1188 unreachable("Lowered by nir_lower_alu_reductions");
1189
1190 case nir_op_fnoise1_1:
1191 case nir_op_fnoise1_2:
1192 case nir_op_fnoise1_3:
1193 case nir_op_fnoise1_4:
1194 case nir_op_fnoise2_1:
1195 case nir_op_fnoise2_2:
1196 case nir_op_fnoise2_3:
1197 case nir_op_fnoise2_4:
1198 case nir_op_fnoise3_1:
1199 case nir_op_fnoise3_2:
1200 case nir_op_fnoise3_3:
1201 case nir_op_fnoise3_4:
1202 case nir_op_fnoise4_1:
1203 case nir_op_fnoise4_2:
1204 case nir_op_fnoise4_3:
1205 case nir_op_fnoise4_4:
1206 unreachable("not reached: should be handled by lower_noise");
1207
1208 case nir_op_ldexp:
1209 unreachable("not reached: should be handled by ldexp_to_arith()");
1210
1211 case nir_op_fsqrt:
1212 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1213 inst->saturate = instr->dest.saturate;
1214 break;
1215
1216 case nir_op_frsq:
1217 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1218 inst->saturate = instr->dest.saturate;
1219 break;
1220
1221 case nir_op_i2b:
1222 case nir_op_f2b: {
1223 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1224 if (bit_size == 64) {
1225 /* two-argument instructions can't take 64-bit immediates */
1226 fs_reg zero;
1227 fs_reg tmp;
1228
1229 if (instr->op == nir_op_f2b) {
1230 zero = vgrf(glsl_type::double_type);
1231 tmp = vgrf(glsl_type::double_type);
1232 bld.MOV(zero, setup_imm_df(bld, 0.0));
1233 } else {
1234 zero = vgrf(glsl_type::int64_t_type);
1235 tmp = vgrf(glsl_type::int64_t_type);
1236 bld.MOV(zero, brw_imm_q(0));
1237 }
1238
1239 /* A SIMD16 execution needs to be split in two instructions, so use
1240 * a vgrf instead of the flag register as dst so instruction splitting
1241 * works
1242 */
1243 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1244 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1245 } else {
1246 fs_reg zero;
1247 if (bit_size == 32) {
1248 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1249 } else {
1250 assert(bit_size == 16);
1251 zero = instr->op == nir_op_f2b ?
1252 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1253 }
1254 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1255 }
1256 break;
1257 }
1258
1259 case nir_op_ftrunc:
1260 inst = bld.RNDZ(result, op[0]);
1261 inst->saturate = instr->dest.saturate;
1262 break;
1263
1264 case nir_op_fceil: {
1265 op[0].negate = !op[0].negate;
1266 fs_reg temp = vgrf(glsl_type::float_type);
1267 bld.RNDD(temp, op[0]);
1268 temp.negate = true;
1269 inst = bld.MOV(result, temp);
1270 inst->saturate = instr->dest.saturate;
1271 break;
1272 }
1273 case nir_op_ffloor:
1274 inst = bld.RNDD(result, op[0]);
1275 inst->saturate = instr->dest.saturate;
1276 break;
1277 case nir_op_ffract:
1278 inst = bld.FRC(result, op[0]);
1279 inst->saturate = instr->dest.saturate;
1280 break;
1281 case nir_op_fround_even:
1282 inst = bld.RNDE(result, op[0]);
1283 inst->saturate = instr->dest.saturate;
1284 break;
1285
1286 case nir_op_fquantize2f16: {
1287 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1288 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1289 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1290
1291 /* The destination stride must be at least as big as the source stride. */
1292 tmp16.type = BRW_REGISTER_TYPE_W;
1293 tmp16.stride = 2;
1294
1295 /* Check for denormal */
1296 fs_reg abs_src0 = op[0];
1297 abs_src0.abs = true;
1298 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1299 BRW_CONDITIONAL_L);
1300 /* Get the appropriately signed zero */
1301 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1302 retype(op[0], BRW_REGISTER_TYPE_UD),
1303 brw_imm_ud(0x80000000));
1304 /* Do the actual F32 -> F16 -> F32 conversion */
1305 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1306 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1307 /* Select that or zero based on normal status */
1308 inst = bld.SEL(result, zero, tmp32);
1309 inst->predicate = BRW_PREDICATE_NORMAL;
1310 inst->saturate = instr->dest.saturate;
1311 break;
1312 }
1313
1314 case nir_op_imin:
1315 case nir_op_umin:
1316 case nir_op_fmin:
1317 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1318 inst->saturate = instr->dest.saturate;
1319 break;
1320
1321 case nir_op_imax:
1322 case nir_op_umax:
1323 case nir_op_fmax:
1324 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1325 inst->saturate = instr->dest.saturate;
1326 break;
1327
1328 case nir_op_pack_snorm_2x16:
1329 case nir_op_pack_snorm_4x8:
1330 case nir_op_pack_unorm_2x16:
1331 case nir_op_pack_unorm_4x8:
1332 case nir_op_unpack_snorm_2x16:
1333 case nir_op_unpack_snorm_4x8:
1334 case nir_op_unpack_unorm_2x16:
1335 case nir_op_unpack_unorm_4x8:
1336 case nir_op_unpack_half_2x16:
1337 case nir_op_pack_half_2x16:
1338 unreachable("not reached: should be handled by lower_packing_builtins");
1339
1340 case nir_op_unpack_half_2x16_split_x:
1341 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1342 inst->saturate = instr->dest.saturate;
1343 break;
1344 case nir_op_unpack_half_2x16_split_y:
1345 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1346 inst->saturate = instr->dest.saturate;
1347 break;
1348
1349 case nir_op_pack_64_2x32_split:
1350 case nir_op_pack_32_2x16_split:
1351 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1352 break;
1353
1354 case nir_op_unpack_64_2x32_split_x:
1355 case nir_op_unpack_64_2x32_split_y: {
1356 if (instr->op == nir_op_unpack_64_2x32_split_x)
1357 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1358 else
1359 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1360 break;
1361 }
1362
1363 case nir_op_unpack_32_2x16_split_x:
1364 case nir_op_unpack_32_2x16_split_y: {
1365 if (instr->op == nir_op_unpack_32_2x16_split_x)
1366 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1367 else
1368 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1369 break;
1370 }
1371
1372 case nir_op_fpow:
1373 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1374 inst->saturate = instr->dest.saturate;
1375 break;
1376
1377 case nir_op_bitfield_reverse:
1378 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1379 bld.BFREV(result, op[0]);
1380 break;
1381
1382 case nir_op_bit_count:
1383 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1384 bld.CBIT(result, op[0]);
1385 break;
1386
1387 case nir_op_ufind_msb: {
1388 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1389 emit_find_msb_using_lzd(bld, result, op[0], false);
1390 break;
1391 }
1392
1393 case nir_op_ifind_msb: {
1394 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1395
1396 if (devinfo->gen < 7) {
1397 emit_find_msb_using_lzd(bld, result, op[0], true);
1398 } else {
1399 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1400
1401 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1402 * count from the LSB side. If FBH didn't return an error
1403 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1404 * count into an LSB count.
1405 */
1406 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1407
1408 inst = bld.ADD(result, result, brw_imm_d(31));
1409 inst->predicate = BRW_PREDICATE_NORMAL;
1410 inst->src[0].negate = true;
1411 }
1412 break;
1413 }
1414
1415 case nir_op_find_lsb:
1416 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1417
1418 if (devinfo->gen < 7) {
1419 fs_reg temp = vgrf(glsl_type::int_type);
1420
1421 /* (x & -x) generates a value that consists of only the LSB of x.
1422 * For all powers of 2, findMSB(y) == findLSB(y).
1423 */
1424 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1425 fs_reg negated_src = src;
1426
1427 /* One must be negated, and the other must be non-negated. It
1428 * doesn't matter which is which.
1429 */
1430 negated_src.negate = true;
1431 src.negate = false;
1432
1433 bld.AND(temp, src, negated_src);
1434 emit_find_msb_using_lzd(bld, result, temp, false);
1435 } else {
1436 bld.FBL(result, op[0]);
1437 }
1438 break;
1439
1440 case nir_op_ubitfield_extract:
1441 case nir_op_ibitfield_extract:
1442 unreachable("should have been lowered");
1443 case nir_op_ubfe:
1444 case nir_op_ibfe:
1445 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1446 bld.BFE(result, op[2], op[1], op[0]);
1447 break;
1448 case nir_op_bfm:
1449 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1450 bld.BFI1(result, op[0], op[1]);
1451 break;
1452 case nir_op_bfi:
1453 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1454 bld.BFI2(result, op[0], op[1], op[2]);
1455 break;
1456
1457 case nir_op_bitfield_insert:
1458 unreachable("not reached: should have been lowered");
1459
1460 case nir_op_ishl:
1461 case nir_op_ishr:
1462 case nir_op_ushr: {
1463 fs_reg shift_count = op[1];
1464
1465 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1466 if (op[1].file == VGRF &&
1467 (result.type == BRW_REGISTER_TYPE_Q ||
1468 result.type == BRW_REGISTER_TYPE_UQ)) {
1469 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1470 BRW_REGISTER_TYPE_UD);
1471 shift_count.stride = 2;
1472 bld.MOV(shift_count, op[1]);
1473 }
1474 }
1475
1476 switch (instr->op) {
1477 case nir_op_ishl:
1478 bld.SHL(result, op[0], shift_count);
1479 break;
1480 case nir_op_ishr:
1481 bld.ASR(result, op[0], shift_count);
1482 break;
1483 case nir_op_ushr:
1484 bld.SHR(result, op[0], shift_count);
1485 break;
1486 default:
1487 unreachable("not reached");
1488 }
1489 break;
1490 }
1491
1492 case nir_op_pack_half_2x16_split:
1493 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1494 break;
1495
1496 case nir_op_ffma:
1497 inst = bld.MAD(result, op[2], op[1], op[0]);
1498 inst->saturate = instr->dest.saturate;
1499 break;
1500
1501 case nir_op_flrp:
1502 inst = bld.LRP(result, op[0], op[1], op[2]);
1503 inst->saturate = instr->dest.saturate;
1504 break;
1505
1506 case nir_op_bcsel:
1507 if (optimize_frontfacing_ternary(instr, result))
1508 return;
1509
1510 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1511 inst = bld.SEL(result, op[1], op[2]);
1512 inst->predicate = BRW_PREDICATE_NORMAL;
1513 break;
1514
1515 case nir_op_extract_u8:
1516 case nir_op_extract_i8: {
1517 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1518 assert(byte != NULL);
1519
1520 /* The PRMs say:
1521 *
1522 * BDW+
1523 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1524 * Use two instructions and a word or DWord intermediate integer type.
1525 */
1526 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1527 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1528
1529 if (instr->op == nir_op_extract_i8) {
1530 /* If we need to sign extend, extract to a word first */
1531 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1532 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1533 bld.MOV(result, w_temp);
1534 } else {
1535 /* Otherwise use an AND with 0xff and a word type */
1536 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1537 }
1538 } else {
1539 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1540 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1541 }
1542 break;
1543 }
1544
1545 case nir_op_extract_u16:
1546 case nir_op_extract_i16: {
1547 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1548 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1549 assert(word != NULL);
1550 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1551 break;
1552 }
1553
1554 default:
1555 unreachable("unhandled instruction");
1556 }
1557
1558 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1559 * to sign extend the low bit to 0/~0
1560 */
1561 if (devinfo->gen <= 5 &&
1562 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1563 fs_reg masked = vgrf(glsl_type::int_type);
1564 bld.AND(masked, result, brw_imm_d(1));
1565 masked.negate = true;
1566 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1567 }
1568 }
1569
1570 void
1571 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1572 nir_load_const_instr *instr)
1573 {
1574 const brw_reg_type reg_type =
1575 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1576 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1577
1578 switch (instr->def.bit_size) {
1579 case 8:
1580 for (unsigned i = 0; i < instr->def.num_components; i++)
1581 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value.i8[i]));
1582 break;
1583
1584 case 16:
1585 for (unsigned i = 0; i < instr->def.num_components; i++)
1586 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1587 break;
1588
1589 case 32:
1590 for (unsigned i = 0; i < instr->def.num_components; i++)
1591 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1592 break;
1593
1594 case 64:
1595 assert(devinfo->gen >= 7);
1596 if (devinfo->gen == 7) {
1597 /* We don't get 64-bit integer types until gen8 */
1598 for (unsigned i = 0; i < instr->def.num_components; i++) {
1599 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1600 setup_imm_df(bld, instr->value.f64[i]));
1601 }
1602 } else {
1603 for (unsigned i = 0; i < instr->def.num_components; i++)
1604 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1605 }
1606 break;
1607
1608 default:
1609 unreachable("Invalid bit size");
1610 }
1611
1612 nir_ssa_values[instr->def.index] = reg;
1613 }
1614
1615 fs_reg
1616 fs_visitor::get_nir_src(const nir_src &src)
1617 {
1618 fs_reg reg;
1619 if (src.is_ssa) {
1620 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1621 const brw_reg_type reg_type =
1622 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1623 reg = bld.vgrf(reg_type, src.ssa->num_components);
1624 } else {
1625 reg = nir_ssa_values[src.ssa->index];
1626 }
1627 } else {
1628 /* We don't handle indirects on locals */
1629 assert(src.reg.indirect == NULL);
1630 reg = offset(nir_locals[src.reg.reg->index], bld,
1631 src.reg.base_offset * src.reg.reg->num_components);
1632 }
1633
1634 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1635 /* The only 64-bit type available on gen7 is DF, so use that. */
1636 reg.type = BRW_REGISTER_TYPE_DF;
1637 } else {
1638 /* To avoid floating-point denorm flushing problems, set the type by
1639 * default to an integer type - instructions that need floating point
1640 * semantics will set this to F if they need to
1641 */
1642 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1643 BRW_REGISTER_TYPE_D);
1644 }
1645
1646 return reg;
1647 }
1648
1649 /**
1650 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1651 *
1652 * This function should not be called on any value which may be 64 bits.
1653 * We could theoretically support 64-bit on gen8+ but we choose not to
1654 * because it wouldn't work in general (no gen7 support) and there are
1655 * enough restrictions in 64-bit immediates that you can't take the return
1656 * value and treat it the same as the result of get_nir_src().
1657 */
1658 fs_reg
1659 fs_visitor::get_nir_src_imm(const nir_src &src)
1660 {
1661 nir_const_value *val = nir_src_as_const_value(src);
1662 assert(nir_src_bit_size(src) == 32);
1663 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1664 }
1665
1666 fs_reg
1667 fs_visitor::get_nir_dest(const nir_dest &dest)
1668 {
1669 if (dest.is_ssa) {
1670 const brw_reg_type reg_type =
1671 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1672 dest.ssa.bit_size == 8 ?
1673 BRW_REGISTER_TYPE_D :
1674 BRW_REGISTER_TYPE_F);
1675 nir_ssa_values[dest.ssa.index] =
1676 bld.vgrf(reg_type, dest.ssa.num_components);
1677 return nir_ssa_values[dest.ssa.index];
1678 } else {
1679 /* We don't handle indirects on locals */
1680 assert(dest.reg.indirect == NULL);
1681 return offset(nir_locals[dest.reg.reg->index], bld,
1682 dest.reg.base_offset * dest.reg.reg->num_components);
1683 }
1684 }
1685
1686 void
1687 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1688 unsigned wr_mask)
1689 {
1690 for (unsigned i = 0; i < 4; i++) {
1691 if (!((wr_mask >> i) & 1))
1692 continue;
1693
1694 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1695 new_inst->dst = offset(new_inst->dst, bld, i);
1696 for (unsigned j = 0; j < new_inst->sources; j++)
1697 if (new_inst->src[j].file == VGRF)
1698 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1699
1700 bld.emit(new_inst);
1701 }
1702 }
1703
1704 static fs_inst *
1705 emit_pixel_interpolater_send(const fs_builder &bld,
1706 enum opcode opcode,
1707 const fs_reg &dst,
1708 const fs_reg &src,
1709 const fs_reg &desc,
1710 glsl_interp_mode interpolation)
1711 {
1712 struct brw_wm_prog_data *wm_prog_data =
1713 brw_wm_prog_data(bld.shader->stage_prog_data);
1714
1715 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1716 /* 2 floats per slot returned */
1717 inst->size_written = 2 * dst.component_size(inst->exec_size);
1718 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1719
1720 wm_prog_data->pulls_bary = true;
1721
1722 return inst;
1723 }
1724
1725 /**
1726 * Computes 1 << x, given a D/UD register containing some value x.
1727 */
1728 static fs_reg
1729 intexp2(const fs_builder &bld, const fs_reg &x)
1730 {
1731 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1732
1733 fs_reg result = bld.vgrf(x.type, 1);
1734 fs_reg one = bld.vgrf(x.type, 1);
1735
1736 bld.MOV(one, retype(brw_imm_d(1), one.type));
1737 bld.SHL(result, one, x);
1738 return result;
1739 }
1740
1741 void
1742 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1743 {
1744 assert(stage == MESA_SHADER_GEOMETRY);
1745
1746 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1747
1748 if (gs_compile->control_data_header_size_bits == 0)
1749 return;
1750
1751 /* We can only do EndPrimitive() functionality when the control data
1752 * consists of cut bits. Fortunately, the only time it isn't is when the
1753 * output type is points, in which case EndPrimitive() is a no-op.
1754 */
1755 if (gs_prog_data->control_data_format !=
1756 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1757 return;
1758 }
1759
1760 /* Cut bits use one bit per vertex. */
1761 assert(gs_compile->control_data_bits_per_vertex == 1);
1762
1763 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1764 vertex_count.type = BRW_REGISTER_TYPE_UD;
1765
1766 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1767 * vertex n, 0 otherwise. So all we need to do here is mark bit
1768 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1769 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1770 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1771 *
1772 * Note that if EndPrimitive() is called before emitting any vertices, this
1773 * will cause us to set bit 31 of the control_data_bits register to 1.
1774 * That's fine because:
1775 *
1776 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1777 * output, so the hardware will ignore cut bit 31.
1778 *
1779 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1780 * last vertex, so setting cut bit 31 has no effect (since the primitive
1781 * is automatically ended when the GS terminates).
1782 *
1783 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1784 * control_data_bits register to 0 when the first vertex is emitted.
1785 */
1786
1787 const fs_builder abld = bld.annotate("end primitive");
1788
1789 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1790 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1791 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1792 fs_reg mask = intexp2(abld, prev_count);
1793 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1794 * attention to the lower 5 bits of its second source argument, so on this
1795 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1796 * ((vertex_count - 1) % 32).
1797 */
1798 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1799 }
1800
1801 void
1802 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1803 {
1804 assert(stage == MESA_SHADER_GEOMETRY);
1805 assert(gs_compile->control_data_bits_per_vertex != 0);
1806
1807 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1808
1809 const fs_builder abld = bld.annotate("emit control data bits");
1810 const fs_builder fwa_bld = bld.exec_all();
1811
1812 /* We use a single UD register to accumulate control data bits (32 bits
1813 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1814 * at a time.
1815 *
1816 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1817 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1818 * use the Channel Mask phase to enable/disable which DWord within that
1819 * group to write. (Remember, different SIMD8 channels may have emitted
1820 * different numbers of vertices, so we may need per-slot offsets.)
1821 *
1822 * Channel masking presents an annoying problem: we may have to replicate
1823 * the data up to 4 times:
1824 *
1825 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1826 *
1827 * To avoid penalizing shaders that emit a small number of vertices, we
1828 * can avoid these sometimes: if the size of the control data header is
1829 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1830 * land in the same 128-bit group, so we can skip per-slot offsets.
1831 *
1832 * Similarly, if the control data header is <= 32 bits, there is only one
1833 * DWord, so we can skip channel masks.
1834 */
1835 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1836
1837 fs_reg channel_mask, per_slot_offset;
1838
1839 if (gs_compile->control_data_header_size_bits > 32) {
1840 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1841 channel_mask = vgrf(glsl_type::uint_type);
1842 }
1843
1844 if (gs_compile->control_data_header_size_bits > 128) {
1845 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1846 per_slot_offset = vgrf(glsl_type::uint_type);
1847 }
1848
1849 /* Figure out which DWord we're trying to write to using the formula:
1850 *
1851 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1852 *
1853 * Since bits_per_vertex is a power of two, and is known at compile
1854 * time, this can be optimized to:
1855 *
1856 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1857 */
1858 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1859 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1860 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1861 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1862 unsigned log2_bits_per_vertex =
1863 util_last_bit(gs_compile->control_data_bits_per_vertex);
1864 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1865
1866 if (per_slot_offset.file != BAD_FILE) {
1867 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1868 * the appropriate OWord within the control data header.
1869 */
1870 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1871 }
1872
1873 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1874 * write to the appropriate DWORD within the OWORD.
1875 */
1876 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1877 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1878 channel_mask = intexp2(fwa_bld, channel);
1879 /* Then the channel masks need to be in bits 23:16. */
1880 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1881 }
1882
1883 /* Store the control data bits in the message payload and send it. */
1884 int mlen = 2;
1885 if (channel_mask.file != BAD_FILE)
1886 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1887 if (per_slot_offset.file != BAD_FILE)
1888 mlen++;
1889
1890 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1891 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1892 int i = 0;
1893 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1894 if (per_slot_offset.file != BAD_FILE)
1895 sources[i++] = per_slot_offset;
1896 if (channel_mask.file != BAD_FILE)
1897 sources[i++] = channel_mask;
1898 while (i < mlen) {
1899 sources[i++] = this->control_data_bits;
1900 }
1901
1902 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1903 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1904 inst->mlen = mlen;
1905 /* We need to increment Global Offset by 256-bits to make room for
1906 * Broadwell's extra "Vertex Count" payload at the beginning of the
1907 * URB entry. Since this is an OWord message, Global Offset is counted
1908 * in 128-bit units, so we must set it to 2.
1909 */
1910 if (gs_prog_data->static_vertex_count == -1)
1911 inst->offset = 2;
1912 }
1913
1914 void
1915 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1916 unsigned stream_id)
1917 {
1918 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1919
1920 /* Note: we are calling this *before* increasing vertex_count, so
1921 * this->vertex_count == vertex_count - 1 in the formula above.
1922 */
1923
1924 /* Stream mode uses 2 bits per vertex */
1925 assert(gs_compile->control_data_bits_per_vertex == 2);
1926
1927 /* Must be a valid stream */
1928 assert(stream_id < MAX_VERTEX_STREAMS);
1929
1930 /* Control data bits are initialized to 0 so we don't have to set any
1931 * bits when sending vertices to stream 0.
1932 */
1933 if (stream_id == 0)
1934 return;
1935
1936 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1937
1938 /* reg::sid = stream_id */
1939 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1940 abld.MOV(sid, brw_imm_ud(stream_id));
1941
1942 /* reg:shift_count = 2 * (vertex_count - 1) */
1943 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1944 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1945
1946 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1947 * attention to the lower 5 bits of its second source argument, so on this
1948 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1949 * stream_id << ((2 * (vertex_count - 1)) % 32).
1950 */
1951 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1952 abld.SHL(mask, sid, shift_count);
1953 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1954 }
1955
1956 void
1957 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1958 unsigned stream_id)
1959 {
1960 assert(stage == MESA_SHADER_GEOMETRY);
1961
1962 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1963
1964 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1965 vertex_count.type = BRW_REGISTER_TYPE_UD;
1966
1967 /* Haswell and later hardware ignores the "Render Stream Select" bits
1968 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1969 * and instead sends all primitives down the pipeline for rasterization.
1970 * If the SOL stage is enabled, "Render Stream Select" is honored and
1971 * primitives bound to non-zero streams are discarded after stream output.
1972 *
1973 * Since the only purpose of primives sent to non-zero streams is to
1974 * be recorded by transform feedback, we can simply discard all geometry
1975 * bound to these streams when transform feedback is disabled.
1976 */
1977 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1978 return;
1979
1980 /* If we're outputting 32 control data bits or less, then we can wait
1981 * until the shader is over to output them all. Otherwise we need to
1982 * output them as we go. Now is the time to do it, since we're about to
1983 * output the vertex_count'th vertex, so it's guaranteed that the
1984 * control data bits associated with the (vertex_count - 1)th vertex are
1985 * correct.
1986 */
1987 if (gs_compile->control_data_header_size_bits > 32) {
1988 const fs_builder abld =
1989 bld.annotate("emit vertex: emit control data bits");
1990
1991 /* Only emit control data bits if we've finished accumulating a batch
1992 * of 32 bits. This is the case when:
1993 *
1994 * (vertex_count * bits_per_vertex) % 32 == 0
1995 *
1996 * (in other words, when the last 5 bits of vertex_count *
1997 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1998 * integer n (which is always the case, since bits_per_vertex is
1999 * always 1 or 2), this is equivalent to requiring that the last 5-n
2000 * bits of vertex_count are 0:
2001 *
2002 * vertex_count & (2^(5-n) - 1) == 0
2003 *
2004 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2005 * equivalent to:
2006 *
2007 * vertex_count & (32 / bits_per_vertex - 1) == 0
2008 *
2009 * TODO: If vertex_count is an immediate, we could do some of this math
2010 * at compile time...
2011 */
2012 fs_inst *inst =
2013 abld.AND(bld.null_reg_d(), vertex_count,
2014 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2015 inst->conditional_mod = BRW_CONDITIONAL_Z;
2016
2017 abld.IF(BRW_PREDICATE_NORMAL);
2018 /* If vertex_count is 0, then no control data bits have been
2019 * accumulated yet, so we can skip emitting them.
2020 */
2021 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2022 BRW_CONDITIONAL_NEQ);
2023 abld.IF(BRW_PREDICATE_NORMAL);
2024 emit_gs_control_data_bits(vertex_count);
2025 abld.emit(BRW_OPCODE_ENDIF);
2026
2027 /* Reset control_data_bits to 0 so we can start accumulating a new
2028 * batch.
2029 *
2030 * Note: in the case where vertex_count == 0, this neutralizes the
2031 * effect of any call to EndPrimitive() that the shader may have
2032 * made before outputting its first vertex.
2033 */
2034 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2035 inst->force_writemask_all = true;
2036 abld.emit(BRW_OPCODE_ENDIF);
2037 }
2038
2039 emit_urb_writes(vertex_count);
2040
2041 /* In stream mode we have to set control data bits for all vertices
2042 * unless we have disabled control data bits completely (which we do
2043 * do for GL_POINTS outputs that don't use streams).
2044 */
2045 if (gs_compile->control_data_header_size_bits > 0 &&
2046 gs_prog_data->control_data_format ==
2047 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2048 set_gs_stream_control_data_bits(vertex_count, stream_id);
2049 }
2050 }
2051
2052 void
2053 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2054 const nir_src &vertex_src,
2055 unsigned base_offset,
2056 const nir_src &offset_src,
2057 unsigned num_components,
2058 unsigned first_component)
2059 {
2060 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2061
2062 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2063 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2064 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2065
2066 /* TODO: figure out push input layout for invocations == 1 */
2067 /* TODO: make this work with 64-bit inputs */
2068 if (gs_prog_data->invocations == 1 &&
2069 type_sz(dst.type) <= 4 &&
2070 offset_const != NULL && vertex_const != NULL &&
2071 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2072 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2073 vertex_const->u32[0] * push_reg_count;
2074 for (unsigned i = 0; i < num_components; i++) {
2075 bld.MOV(offset(dst, bld, i),
2076 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2077 }
2078 return;
2079 }
2080
2081 /* Resort to the pull model. Ensure the VUE handles are provided. */
2082 assert(gs_prog_data->base.include_vue_handles);
2083
2084 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2085 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2086
2087 if (gs_prog_data->invocations == 1) {
2088 if (vertex_const) {
2089 /* The vertex index is constant; just select the proper URB handle. */
2090 icp_handle =
2091 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2092 BRW_REGISTER_TYPE_UD);
2093 } else {
2094 /* The vertex index is non-constant. We need to use indirect
2095 * addressing to fetch the proper URB handle.
2096 *
2097 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2098 * indicating that channel <n> should read the handle from
2099 * DWord <n>. We convert that to bytes by multiplying by 4.
2100 *
2101 * Next, we convert the vertex index to bytes by multiplying
2102 * by 32 (shifting by 5), and add the two together. This is
2103 * the final indirect byte offset.
2104 */
2105 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2106 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2107 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2108 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2109
2110 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2111 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2112 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2113 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2114 /* Convert vertex_index to bytes (multiply by 32) */
2115 bld.SHL(vertex_offset_bytes,
2116 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2117 brw_imm_ud(5u));
2118 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2119
2120 /* Use first_icp_handle as the base offset. There is one register
2121 * of URB handles per vertex, so inform the register allocator that
2122 * we might read up to nir->info.gs.vertices_in registers.
2123 */
2124 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2125 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2126 fs_reg(icp_offset_bytes),
2127 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2128 }
2129 } else {
2130 assert(gs_prog_data->invocations > 1);
2131
2132 if (vertex_const) {
2133 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2134 bld.MOV(icp_handle,
2135 retype(brw_vec1_grf(first_icp_handle +
2136 vertex_const->i32[0] / 8,
2137 vertex_const->i32[0] % 8),
2138 BRW_REGISTER_TYPE_UD));
2139 } else {
2140 /* The vertex index is non-constant. We need to use indirect
2141 * addressing to fetch the proper URB handle.
2142 *
2143 */
2144 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2145
2146 /* Convert vertex_index to bytes (multiply by 4) */
2147 bld.SHL(icp_offset_bytes,
2148 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2149 brw_imm_ud(2u));
2150
2151 /* Use first_icp_handle as the base offset. There is one DWord
2152 * of URB handles per vertex, so inform the register allocator that
2153 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2154 */
2155 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2156 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2157 fs_reg(icp_offset_bytes),
2158 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2159 REG_SIZE));
2160 }
2161 }
2162
2163 fs_inst *inst;
2164
2165 fs_reg tmp_dst = dst;
2166 fs_reg indirect_offset = get_nir_src(offset_src);
2167 unsigned num_iterations = 1;
2168 unsigned orig_num_components = num_components;
2169
2170 if (type_sz(dst.type) == 8) {
2171 if (num_components > 2) {
2172 num_iterations = 2;
2173 num_components = 2;
2174 }
2175 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2176 tmp_dst = tmp;
2177 first_component = first_component / 2;
2178 }
2179
2180 for (unsigned iter = 0; iter < num_iterations; iter++) {
2181 if (offset_const) {
2182 /* Constant indexing - use global offset. */
2183 if (first_component != 0) {
2184 unsigned read_components = num_components + first_component;
2185 fs_reg tmp = bld.vgrf(dst.type, read_components);
2186 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2187 inst->size_written = read_components *
2188 tmp.component_size(inst->exec_size);
2189 for (unsigned i = 0; i < num_components; i++) {
2190 bld.MOV(offset(tmp_dst, bld, i),
2191 offset(tmp, bld, i + first_component));
2192 }
2193 } else {
2194 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2195 icp_handle);
2196 inst->size_written = num_components *
2197 tmp_dst.component_size(inst->exec_size);
2198 }
2199 inst->offset = base_offset + offset_const->u32[0];
2200 inst->mlen = 1;
2201 } else {
2202 /* Indirect indexing - use per-slot offsets as well. */
2203 const fs_reg srcs[] = { icp_handle, indirect_offset };
2204 unsigned read_components = num_components + first_component;
2205 fs_reg tmp = bld.vgrf(dst.type, read_components);
2206 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2207 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2208 if (first_component != 0) {
2209 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2210 payload);
2211 inst->size_written = read_components *
2212 tmp.component_size(inst->exec_size);
2213 for (unsigned i = 0; i < num_components; i++) {
2214 bld.MOV(offset(tmp_dst, bld, i),
2215 offset(tmp, bld, i + first_component));
2216 }
2217 } else {
2218 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2219 payload);
2220 inst->size_written = num_components *
2221 tmp_dst.component_size(inst->exec_size);
2222 }
2223 inst->offset = base_offset;
2224 inst->mlen = 2;
2225 }
2226
2227 if (type_sz(dst.type) == 8) {
2228 shuffle_from_32bit_read(bld,
2229 offset(dst, bld, iter * 2),
2230 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2231 0,
2232 num_components);
2233 }
2234
2235 if (num_iterations > 1) {
2236 num_components = orig_num_components - 2;
2237 if(offset_const) {
2238 base_offset++;
2239 } else {
2240 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2241 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2242 indirect_offset = new_indirect;
2243 }
2244 }
2245 }
2246 }
2247
2248 fs_reg
2249 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2250 {
2251 nir_src *offset_src = nir_get_io_offset_src(instr);
2252 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2253
2254 if (const_value) {
2255 /* The only constant offset we should find is 0. brw_nir.c's
2256 * add_const_offset_to_base() will fold other constant offsets
2257 * into instr->const_index[0].
2258 */
2259 assert(const_value->u32[0] == 0);
2260 return fs_reg();
2261 }
2262
2263 return get_nir_src(*offset_src);
2264 }
2265
2266 static void
2267 do_untyped_vector_read(const fs_builder &bld,
2268 const fs_reg dest,
2269 const fs_reg surf_index,
2270 const fs_reg offset_reg,
2271 unsigned num_components)
2272 {
2273 if (type_sz(dest.type) <= 2) {
2274 assert(dest.stride == 1);
2275 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2276
2277 if (is_const_offset) {
2278 uint32_t start = offset_reg.ud & ~3;
2279 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2280 end = ALIGN(end, 4);
2281 assert (end - start <= 16);
2282
2283 /* At this point we have 16-bit component/s that have constant
2284 * offset aligned to 4-bytes that can be read with untyped_reads.
2285 * untyped_read message requires 32-bit aligned offsets.
2286 */
2287 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2288 unsigned num_components_32bit = (end - start) / 4;
2289
2290 fs_reg read_result =
2291 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2292 1 /* dims */,
2293 num_components_32bit,
2294 BRW_PREDICATE_NONE);
2295 shuffle_from_32bit_read(bld, dest, read_result, first_component,
2296 num_components);
2297 } else {
2298 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2299 for (unsigned i = 0; i < num_components; i++) {
2300 if (i == 0) {
2301 bld.MOV(read_offset, offset_reg);
2302 } else {
2303 bld.ADD(read_offset, offset_reg,
2304 brw_imm_ud(i * type_sz(dest.type)));
2305 }
2306 /* Non constant offsets are not guaranteed to be aligned 32-bits
2307 * so they are read using one byte_scattered_read message
2308 * for each component.
2309 */
2310 fs_reg read_result =
2311 emit_byte_scattered_read(bld, surf_index, read_offset,
2312 1 /* dims */, 1,
2313 type_sz(dest.type) * 8 /* bit_size */,
2314 BRW_PREDICATE_NONE);
2315 bld.MOV(offset(dest, bld, i),
2316 subscript (read_result, dest.type, 0));
2317 }
2318 }
2319 } else if (type_sz(dest.type) == 4) {
2320 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2321 1 /* dims */,
2322 num_components,
2323 BRW_PREDICATE_NONE);
2324 read_result.type = dest.type;
2325 for (unsigned i = 0; i < num_components; i++)
2326 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2327 } else if (type_sz(dest.type) == 8) {
2328 /* Reading a dvec, so we need to:
2329 *
2330 * 1. Multiply num_components by 2, to account for the fact that we
2331 * need to read 64-bit components.
2332 * 2. Shuffle the result of the load to form valid 64-bit elements
2333 * 3. Emit a second load (for components z/w) if needed.
2334 */
2335 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2336 bld.MOV(read_offset, offset_reg);
2337
2338 int iters = num_components <= 2 ? 1 : 2;
2339
2340 /* Load the dvec, the first iteration loads components x/y, the second
2341 * iteration, if needed, loads components z/w
2342 */
2343 for (int it = 0; it < iters; it++) {
2344 /* Compute number of components to read in this iteration */
2345 int iter_components = MIN2(2, num_components);
2346 num_components -= iter_components;
2347
2348 /* Read. Since this message reads 32-bit components, we need to
2349 * read twice as many components.
2350 */
2351 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2352 1 /* dims */,
2353 iter_components * 2,
2354 BRW_PREDICATE_NONE);
2355
2356 /* Shuffle the 32-bit load result into valid 64-bit data */
2357 shuffle_from_32bit_read(bld, offset(dest, bld, it * 2),
2358 read_result, 0, iter_components);
2359
2360 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2361 }
2362 } else {
2363 unreachable("Unsupported type");
2364 }
2365 }
2366
2367 void
2368 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2369 nir_intrinsic_instr *instr)
2370 {
2371 assert(stage == MESA_SHADER_VERTEX);
2372
2373 fs_reg dest;
2374 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2375 dest = get_nir_dest(instr->dest);
2376
2377 switch (instr->intrinsic) {
2378 case nir_intrinsic_load_vertex_id:
2379 case nir_intrinsic_load_base_vertex:
2380 unreachable("should be lowered by nir_lower_system_values()");
2381
2382 case nir_intrinsic_load_input: {
2383 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2384 unsigned first_component = nir_intrinsic_component(instr);
2385 unsigned num_components = instr->num_components;
2386
2387 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2388 assert(const_offset && "Indirect input loads not allowed");
2389 src = offset(src, bld, const_offset->u32[0]);
2390
2391 if (type_sz(dest.type) == 8)
2392 first_component /= 2;
2393
2394 /* For 16-bit support maybe a temporary will be needed to copy from
2395 * the ATTR file.
2396 */
2397 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2398 first_component, num_components);
2399 break;
2400 }
2401
2402 case nir_intrinsic_load_vertex_id_zero_base:
2403 case nir_intrinsic_load_instance_id:
2404 case nir_intrinsic_load_base_instance:
2405 case nir_intrinsic_load_draw_id:
2406 case nir_intrinsic_load_first_vertex:
2407 case nir_intrinsic_load_is_indexed_draw:
2408 unreachable("lowered by brw_nir_lower_vs_inputs");
2409
2410 default:
2411 nir_emit_intrinsic(bld, instr);
2412 break;
2413 }
2414 }
2415
2416 void
2417 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2418 nir_intrinsic_instr *instr)
2419 {
2420 assert(stage == MESA_SHADER_TESS_CTRL);
2421 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2422 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2423
2424 fs_reg dst;
2425 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2426 dst = get_nir_dest(instr->dest);
2427
2428 switch (instr->intrinsic) {
2429 case nir_intrinsic_load_primitive_id:
2430 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2431 break;
2432 case nir_intrinsic_load_invocation_id:
2433 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2434 break;
2435 case nir_intrinsic_load_patch_vertices_in:
2436 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2437 brw_imm_d(tcs_key->input_vertices));
2438 break;
2439
2440 case nir_intrinsic_barrier: {
2441 if (tcs_prog_data->instances == 1)
2442 break;
2443
2444 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2445 fs_reg m0_2 = component(m0, 2);
2446
2447 const fs_builder chanbld = bld.exec_all().group(1, 0);
2448
2449 /* Zero the message header */
2450 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2451
2452 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2453 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2454 brw_imm_ud(INTEL_MASK(16, 13)));
2455
2456 /* Shift it up to bits 27:24. */
2457 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2458
2459 /* Set the Barrier Count and the enable bit */
2460 chanbld.OR(m0_2, m0_2,
2461 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2462
2463 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2464 break;
2465 }
2466
2467 case nir_intrinsic_load_input:
2468 unreachable("nir_lower_io should never give us these.");
2469 break;
2470
2471 case nir_intrinsic_load_per_vertex_input: {
2472 fs_reg indirect_offset = get_indirect_offset(instr);
2473 unsigned imm_offset = instr->const_index[0];
2474
2475 const nir_src &vertex_src = instr->src[0];
2476 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2477
2478 fs_inst *inst;
2479
2480 fs_reg icp_handle;
2481
2482 if (vertex_const) {
2483 /* Emit a MOV to resolve <0,1,0> regioning. */
2484 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2485 bld.MOV(icp_handle,
2486 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2487 vertex_const->i32[0] & 7),
2488 BRW_REGISTER_TYPE_UD));
2489 } else if (tcs_prog_data->instances == 1 &&
2490 vertex_src.is_ssa &&
2491 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2492 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2493 /* For the common case of only 1 instance, an array index of
2494 * gl_InvocationID means reading g1. Skip all the indirect work.
2495 */
2496 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2497 } else {
2498 /* The vertex index is non-constant. We need to use indirect
2499 * addressing to fetch the proper URB handle.
2500 */
2501 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2502
2503 /* Each ICP handle is a single DWord (4 bytes) */
2504 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2505 bld.SHL(vertex_offset_bytes,
2506 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2507 brw_imm_ud(2u));
2508
2509 /* Start at g1. We might read up to 4 registers. */
2510 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2511 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2512 brw_imm_ud(4 * REG_SIZE));
2513 }
2514
2515 /* We can only read two double components with each URB read, so
2516 * we send two read messages in that case, each one loading up to
2517 * two double components.
2518 */
2519 unsigned num_iterations = 1;
2520 unsigned num_components = instr->num_components;
2521 unsigned first_component = nir_intrinsic_component(instr);
2522 fs_reg orig_dst = dst;
2523 if (type_sz(dst.type) == 8) {
2524 first_component = first_component / 2;
2525 if (instr->num_components > 2) {
2526 num_iterations = 2;
2527 num_components = 2;
2528 }
2529
2530 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2531 dst = tmp;
2532 }
2533
2534 for (unsigned iter = 0; iter < num_iterations; iter++) {
2535 if (indirect_offset.file == BAD_FILE) {
2536 /* Constant indexing - use global offset. */
2537 if (first_component != 0) {
2538 unsigned read_components = num_components + first_component;
2539 fs_reg tmp = bld.vgrf(dst.type, read_components);
2540 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2541 for (unsigned i = 0; i < num_components; i++) {
2542 bld.MOV(offset(dst, bld, i),
2543 offset(tmp, bld, i + first_component));
2544 }
2545 } else {
2546 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2547 }
2548 inst->offset = imm_offset;
2549 inst->mlen = 1;
2550 } else {
2551 /* Indirect indexing - use per-slot offsets as well. */
2552 const fs_reg srcs[] = { icp_handle, indirect_offset };
2553 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2554 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2555 if (first_component != 0) {
2556 unsigned read_components = num_components + first_component;
2557 fs_reg tmp = bld.vgrf(dst.type, read_components);
2558 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2559 payload);
2560 for (unsigned i = 0; i < num_components; i++) {
2561 bld.MOV(offset(dst, bld, i),
2562 offset(tmp, bld, i + first_component));
2563 }
2564 } else {
2565 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2566 payload);
2567 }
2568 inst->offset = imm_offset;
2569 inst->mlen = 2;
2570 }
2571 inst->size_written = (num_components + first_component) *
2572 inst->dst.component_size(inst->exec_size);
2573
2574 /* If we are reading 64-bit data using 32-bit read messages we need
2575 * build proper 64-bit data elements by shuffling the low and high
2576 * 32-bit components around like we do for other things like UBOs
2577 * or SSBOs.
2578 */
2579 if (type_sz(dst.type) == 8) {
2580 shuffle_from_32bit_read(bld,
2581 offset(orig_dst, bld, iter * 2),
2582 retype(dst, BRW_REGISTER_TYPE_D),
2583 0, num_components);
2584 }
2585
2586 /* Copy the temporary to the destination to deal with writemasking.
2587 *
2588 * Also attempt to deal with gl_PointSize being in the .w component.
2589 */
2590 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2591 assert(type_sz(dst.type) < 8);
2592 inst->dst = bld.vgrf(dst.type, 4);
2593 inst->size_written = 4 * REG_SIZE;
2594 bld.MOV(dst, offset(inst->dst, bld, 3));
2595 }
2596
2597 /* If we are loading double data and we need a second read message
2598 * adjust the write offset
2599 */
2600 if (num_iterations > 1) {
2601 num_components = instr->num_components - 2;
2602 imm_offset++;
2603 }
2604 }
2605 break;
2606 }
2607
2608 case nir_intrinsic_load_output:
2609 case nir_intrinsic_load_per_vertex_output: {
2610 fs_reg indirect_offset = get_indirect_offset(instr);
2611 unsigned imm_offset = instr->const_index[0];
2612 unsigned first_component = nir_intrinsic_component(instr);
2613
2614 fs_inst *inst;
2615 if (indirect_offset.file == BAD_FILE) {
2616 /* Replicate the patch handle to all enabled channels */
2617 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2618 bld.MOV(patch_handle,
2619 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2620
2621 {
2622 if (first_component != 0) {
2623 unsigned read_components =
2624 instr->num_components + first_component;
2625 fs_reg tmp = bld.vgrf(dst.type, read_components);
2626 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2627 patch_handle);
2628 inst->size_written = read_components * REG_SIZE;
2629 for (unsigned i = 0; i < instr->num_components; i++) {
2630 bld.MOV(offset(dst, bld, i),
2631 offset(tmp, bld, i + first_component));
2632 }
2633 } else {
2634 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2635 patch_handle);
2636 inst->size_written = instr->num_components * REG_SIZE;
2637 }
2638 inst->offset = imm_offset;
2639 inst->mlen = 1;
2640 }
2641 } else {
2642 /* Indirect indexing - use per-slot offsets as well. */
2643 const fs_reg srcs[] = {
2644 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2645 indirect_offset
2646 };
2647 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2648 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2649 if (first_component != 0) {
2650 unsigned read_components =
2651 instr->num_components + first_component;
2652 fs_reg tmp = bld.vgrf(dst.type, read_components);
2653 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2654 payload);
2655 inst->size_written = read_components * REG_SIZE;
2656 for (unsigned i = 0; i < instr->num_components; i++) {
2657 bld.MOV(offset(dst, bld, i),
2658 offset(tmp, bld, i + first_component));
2659 }
2660 } else {
2661 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2662 payload);
2663 inst->size_written = instr->num_components * REG_SIZE;
2664 }
2665 inst->offset = imm_offset;
2666 inst->mlen = 2;
2667 }
2668 break;
2669 }
2670
2671 case nir_intrinsic_store_output:
2672 case nir_intrinsic_store_per_vertex_output: {
2673 fs_reg value = get_nir_src(instr->src[0]);
2674 bool is_64bit = (instr->src[0].is_ssa ?
2675 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2676 fs_reg indirect_offset = get_indirect_offset(instr);
2677 unsigned imm_offset = instr->const_index[0];
2678 unsigned mask = instr->const_index[1];
2679 unsigned header_regs = 0;
2680 fs_reg srcs[7];
2681 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2682
2683 if (indirect_offset.file != BAD_FILE) {
2684 srcs[header_regs++] = indirect_offset;
2685 }
2686
2687 if (mask == 0)
2688 break;
2689
2690 unsigned num_components = util_last_bit(mask);
2691 enum opcode opcode;
2692
2693 /* We can only pack two 64-bit components in a single message, so send
2694 * 2 messages if we have more components
2695 */
2696 unsigned num_iterations = 1;
2697 unsigned iter_components = num_components;
2698 unsigned first_component = nir_intrinsic_component(instr);
2699 if (is_64bit) {
2700 first_component = first_component / 2;
2701 if (instr->num_components > 2) {
2702 num_iterations = 2;
2703 iter_components = 2;
2704 }
2705 }
2706
2707 mask = mask << first_component;
2708
2709 for (unsigned iter = 0; iter < num_iterations; iter++) {
2710 if (!is_64bit && mask != WRITEMASK_XYZW) {
2711 srcs[header_regs++] = brw_imm_ud(mask << 16);
2712 opcode = indirect_offset.file != BAD_FILE ?
2713 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2714 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2715 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2716 /* Expand the 64-bit mask to 32-bit channels. We only handle
2717 * two channels in each iteration, so we only care about X/Y.
2718 */
2719 unsigned mask32 = 0;
2720 if (mask & WRITEMASK_X)
2721 mask32 |= WRITEMASK_XY;
2722 if (mask & WRITEMASK_Y)
2723 mask32 |= WRITEMASK_ZW;
2724
2725 /* If the mask does not include any of the channels X or Y there
2726 * is nothing to do in this iteration. Move on to the next couple
2727 * of 64-bit channels.
2728 */
2729 if (!mask32) {
2730 mask >>= 2;
2731 imm_offset++;
2732 continue;
2733 }
2734
2735 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2736 opcode = indirect_offset.file != BAD_FILE ?
2737 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2738 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2739 } else {
2740 opcode = indirect_offset.file != BAD_FILE ?
2741 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2742 SHADER_OPCODE_URB_WRITE_SIMD8;
2743 }
2744
2745 for (unsigned i = 0; i < iter_components; i++) {
2746 if (!(mask & (1 << (i + first_component))))
2747 continue;
2748
2749 if (!is_64bit) {
2750 srcs[header_regs + i + first_component] = offset(value, bld, i);
2751 } else {
2752 /* We need to shuffle the 64-bit data to match the layout
2753 * expected by our 32-bit URB write messages. We use a temporary
2754 * for that.
2755 */
2756 unsigned channel = iter * 2 + i;
2757 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2758
2759 srcs[header_regs + (i + first_component) * 2] = dest;
2760 srcs[header_regs + (i + first_component) * 2 + 1] =
2761 offset(dest, bld, 1);
2762 }
2763 }
2764
2765 unsigned mlen =
2766 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2767 (is_64bit ? 2 * first_component : first_component);
2768 fs_reg payload =
2769 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2770 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2771
2772 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2773 inst->offset = imm_offset;
2774 inst->mlen = mlen;
2775
2776 /* If this is a 64-bit attribute, select the next two 64-bit channels
2777 * to be handled in the next iteration.
2778 */
2779 if (is_64bit) {
2780 mask >>= 2;
2781 imm_offset++;
2782 }
2783 }
2784 break;
2785 }
2786
2787 default:
2788 nir_emit_intrinsic(bld, instr);
2789 break;
2790 }
2791 }
2792
2793 void
2794 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2795 nir_intrinsic_instr *instr)
2796 {
2797 assert(stage == MESA_SHADER_TESS_EVAL);
2798 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2799
2800 fs_reg dest;
2801 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2802 dest = get_nir_dest(instr->dest);
2803
2804 switch (instr->intrinsic) {
2805 case nir_intrinsic_load_primitive_id:
2806 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2807 break;
2808 case nir_intrinsic_load_tess_coord:
2809 /* gl_TessCoord is part of the payload in g1-3 */
2810 for (unsigned i = 0; i < 3; i++) {
2811 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2812 }
2813 break;
2814
2815 case nir_intrinsic_load_input:
2816 case nir_intrinsic_load_per_vertex_input: {
2817 fs_reg indirect_offset = get_indirect_offset(instr);
2818 unsigned imm_offset = instr->const_index[0];
2819 unsigned first_component = nir_intrinsic_component(instr);
2820
2821 if (type_sz(dest.type) == 8) {
2822 first_component = first_component / 2;
2823 }
2824
2825 fs_inst *inst;
2826 if (indirect_offset.file == BAD_FILE) {
2827 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2828 * which is 16 registers (since each holds 2 vec4 slots).
2829 */
2830 unsigned slot_count = 1;
2831 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2832 slot_count++;
2833
2834 const unsigned max_push_slots = 32;
2835 if (imm_offset + slot_count <= max_push_slots) {
2836 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2837 for (int i = 0; i < instr->num_components; i++) {
2838 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2839 i + first_component;
2840 bld.MOV(offset(dest, bld, i), component(src, comp));
2841 }
2842
2843 tes_prog_data->base.urb_read_length =
2844 MAX2(tes_prog_data->base.urb_read_length,
2845 DIV_ROUND_UP(imm_offset + slot_count, 2));
2846 } else {
2847 /* Replicate the patch handle to all enabled channels */
2848 const fs_reg srcs[] = {
2849 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2850 };
2851 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2852 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2853
2854 if (first_component != 0) {
2855 unsigned read_components =
2856 instr->num_components + first_component;
2857 fs_reg tmp = bld.vgrf(dest.type, read_components);
2858 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2859 patch_handle);
2860 inst->size_written = read_components * REG_SIZE;
2861 for (unsigned i = 0; i < instr->num_components; i++) {
2862 bld.MOV(offset(dest, bld, i),
2863 offset(tmp, bld, i + first_component));
2864 }
2865 } else {
2866 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2867 patch_handle);
2868 inst->size_written = instr->num_components * REG_SIZE;
2869 }
2870 inst->mlen = 1;
2871 inst->offset = imm_offset;
2872 }
2873 } else {
2874 /* Indirect indexing - use per-slot offsets as well. */
2875
2876 /* We can only read two double components with each URB read, so
2877 * we send two read messages in that case, each one loading up to
2878 * two double components.
2879 */
2880 unsigned num_iterations = 1;
2881 unsigned num_components = instr->num_components;
2882 fs_reg orig_dest = dest;
2883 if (type_sz(dest.type) == 8) {
2884 if (instr->num_components > 2) {
2885 num_iterations = 2;
2886 num_components = 2;
2887 }
2888 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2889 dest = tmp;
2890 }
2891
2892 for (unsigned iter = 0; iter < num_iterations; iter++) {
2893 const fs_reg srcs[] = {
2894 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2895 indirect_offset
2896 };
2897 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2898 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2899
2900 if (first_component != 0) {
2901 unsigned read_components =
2902 num_components + first_component;
2903 fs_reg tmp = bld.vgrf(dest.type, read_components);
2904 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2905 payload);
2906 for (unsigned i = 0; i < num_components; i++) {
2907 bld.MOV(offset(dest, bld, i),
2908 offset(tmp, bld, i + first_component));
2909 }
2910 } else {
2911 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2912 payload);
2913 }
2914 inst->mlen = 2;
2915 inst->offset = imm_offset;
2916 inst->size_written = (num_components + first_component) *
2917 inst->dst.component_size(inst->exec_size);
2918
2919 /* If we are reading 64-bit data using 32-bit read messages we need
2920 * build proper 64-bit data elements by shuffling the low and high
2921 * 32-bit components around like we do for other things like UBOs
2922 * or SSBOs.
2923 */
2924 if (type_sz(dest.type) == 8) {
2925 shuffle_from_32bit_read(bld,
2926 offset(orig_dest, bld, iter * 2),
2927 retype(dest, BRW_REGISTER_TYPE_D),
2928 0, num_components);
2929 }
2930
2931 /* If we are loading double data and we need a second read message
2932 * adjust the offset
2933 */
2934 if (num_iterations > 1) {
2935 num_components = instr->num_components - 2;
2936 imm_offset++;
2937 }
2938 }
2939 }
2940 break;
2941 }
2942 default:
2943 nir_emit_intrinsic(bld, instr);
2944 break;
2945 }
2946 }
2947
2948 void
2949 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2950 nir_intrinsic_instr *instr)
2951 {
2952 assert(stage == MESA_SHADER_GEOMETRY);
2953 fs_reg indirect_offset;
2954
2955 fs_reg dest;
2956 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2957 dest = get_nir_dest(instr->dest);
2958
2959 switch (instr->intrinsic) {
2960 case nir_intrinsic_load_primitive_id:
2961 assert(stage == MESA_SHADER_GEOMETRY);
2962 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2963 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2964 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2965 break;
2966
2967 case nir_intrinsic_load_input:
2968 unreachable("load_input intrinsics are invalid for the GS stage");
2969
2970 case nir_intrinsic_load_per_vertex_input:
2971 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2972 instr->src[1], instr->num_components,
2973 nir_intrinsic_component(instr));
2974 break;
2975
2976 case nir_intrinsic_emit_vertex_with_counter:
2977 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2978 break;
2979
2980 case nir_intrinsic_end_primitive_with_counter:
2981 emit_gs_end_primitive(instr->src[0]);
2982 break;
2983
2984 case nir_intrinsic_set_vertex_count:
2985 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2986 break;
2987
2988 case nir_intrinsic_load_invocation_id: {
2989 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2990 assert(val.file != BAD_FILE);
2991 dest.type = val.type;
2992 bld.MOV(dest, val);
2993 break;
2994 }
2995
2996 default:
2997 nir_emit_intrinsic(bld, instr);
2998 break;
2999 }
3000 }
3001
3002 /**
3003 * Fetch the current render target layer index.
3004 */
3005 static fs_reg
3006 fetch_render_target_array_index(const fs_builder &bld)
3007 {
3008 if (bld.shader->devinfo->gen >= 6) {
3009 /* The render target array index is provided in the thread payload as
3010 * bits 26:16 of r0.0.
3011 */
3012 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3013 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3014 brw_imm_uw(0x7ff));
3015 return idx;
3016 } else {
3017 /* Pre-SNB we only ever render into the first layer of the framebuffer
3018 * since layered rendering is not implemented.
3019 */
3020 return brw_imm_ud(0);
3021 }
3022 }
3023
3024 /**
3025 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3026 * framebuffer at the current fragment coordinates and sample index.
3027 */
3028 fs_inst *
3029 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3030 unsigned target)
3031 {
3032 const struct gen_device_info *devinfo = bld.shader->devinfo;
3033
3034 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3035 const brw_wm_prog_key *wm_key =
3036 reinterpret_cast<const brw_wm_prog_key *>(key);
3037 assert(!wm_key->coherent_fb_fetch);
3038 const struct brw_wm_prog_data *wm_prog_data =
3039 brw_wm_prog_data(stage_prog_data);
3040
3041 /* Calculate the surface index relative to the start of the texture binding
3042 * table block, since that's what the texturing messages expect.
3043 */
3044 const unsigned surface = target +
3045 wm_prog_data->binding_table.render_target_read_start -
3046 wm_prog_data->base.binding_table.texture_start;
3047
3048 brw_mark_surface_used(
3049 bld.shader->stage_prog_data,
3050 wm_prog_data->binding_table.render_target_read_start + target);
3051
3052 /* Calculate the fragment coordinates. */
3053 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3054 bld.MOV(offset(coords, bld, 0), pixel_x);
3055 bld.MOV(offset(coords, bld, 1), pixel_y);
3056 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3057
3058 /* Calculate the sample index and MCS payload when multisampling. Luckily
3059 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3060 * shouldn't be necessary to recompile based on whether the framebuffer is
3061 * CMS or UMS.
3062 */
3063 if (wm_key->multisample_fbo &&
3064 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3065 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3066
3067 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3068 const fs_reg mcs = wm_key->multisample_fbo ?
3069 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3070
3071 /* Use either a normal or a CMS texel fetch message depending on whether
3072 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3073 * message just in case the framebuffer uses 16x multisampling, it should
3074 * be equivalent to the normal CMS fetch for lower multisampling modes.
3075 */
3076 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3077 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3078 SHADER_OPCODE_TXF_CMS_LOGICAL;
3079
3080 /* Emit the instruction. */
3081 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3082 sample, mcs,
3083 brw_imm_ud(surface), brw_imm_ud(0),
3084 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3085 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3086
3087 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3088 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3089
3090 return inst;
3091 }
3092
3093 /**
3094 * Actual coherent framebuffer read implemented using the native render target
3095 * read message. Requires SKL+.
3096 */
3097 static fs_inst *
3098 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3099 {
3100 assert(bld.shader->devinfo->gen >= 9);
3101 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3102 inst->target = target;
3103 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3104
3105 return inst;
3106 }
3107
3108 static fs_reg
3109 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3110 {
3111 if (n && regs[0].file != BAD_FILE) {
3112 return regs[0];
3113
3114 } else {
3115 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3116
3117 for (unsigned i = 0; i < n; i++)
3118 regs[i] = tmp;
3119
3120 return tmp;
3121 }
3122 }
3123
3124 static fs_reg
3125 alloc_frag_output(fs_visitor *v, unsigned location)
3126 {
3127 assert(v->stage == MESA_SHADER_FRAGMENT);
3128 const brw_wm_prog_key *const key =
3129 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3130 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3131 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3132
3133 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3134 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3135
3136 else if (l == FRAG_RESULT_COLOR)
3137 return alloc_temporary(v->bld, 4, v->outputs,
3138 MAX2(key->nr_color_regions, 1));
3139
3140 else if (l == FRAG_RESULT_DEPTH)
3141 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3142
3143 else if (l == FRAG_RESULT_STENCIL)
3144 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3145
3146 else if (l == FRAG_RESULT_SAMPLE_MASK)
3147 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3148
3149 else if (l >= FRAG_RESULT_DATA0 &&
3150 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3151 return alloc_temporary(v->bld, 4,
3152 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3153
3154 else
3155 unreachable("Invalid location");
3156 }
3157
3158 void
3159 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3160 nir_intrinsic_instr *instr)
3161 {
3162 assert(stage == MESA_SHADER_FRAGMENT);
3163
3164 fs_reg dest;
3165 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3166 dest = get_nir_dest(instr->dest);
3167
3168 switch (instr->intrinsic) {
3169 case nir_intrinsic_load_front_face:
3170 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3171 *emit_frontfacing_interpolation());
3172 break;
3173
3174 case nir_intrinsic_load_sample_pos: {
3175 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3176 assert(sample_pos.file != BAD_FILE);
3177 dest.type = sample_pos.type;
3178 bld.MOV(dest, sample_pos);
3179 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3180 break;
3181 }
3182
3183 case nir_intrinsic_load_layer_id:
3184 dest.type = BRW_REGISTER_TYPE_UD;
3185 bld.MOV(dest, fetch_render_target_array_index(bld));
3186 break;
3187
3188 case nir_intrinsic_load_helper_invocation:
3189 case nir_intrinsic_load_sample_mask_in:
3190 case nir_intrinsic_load_sample_id: {
3191 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3192 fs_reg val = nir_system_values[sv];
3193 assert(val.file != BAD_FILE);
3194 dest.type = val.type;
3195 bld.MOV(dest, val);
3196 break;
3197 }
3198
3199 case nir_intrinsic_store_output: {
3200 const fs_reg src = get_nir_src(instr->src[0]);
3201 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3202 assert(const_offset && "Indirect output stores not allowed");
3203 const unsigned location = nir_intrinsic_base(instr) +
3204 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3205 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3206 src.type);
3207
3208 for (unsigned j = 0; j < instr->num_components; j++)
3209 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3210 offset(src, bld, j));
3211
3212 break;
3213 }
3214
3215 case nir_intrinsic_load_output: {
3216 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3217 BRW_NIR_FRAG_OUTPUT_LOCATION);
3218 assert(l >= FRAG_RESULT_DATA0);
3219 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3220 assert(const_offset && "Indirect output loads not allowed");
3221 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3222 const fs_reg tmp = bld.vgrf(dest.type, 4);
3223
3224 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3225 emit_coherent_fb_read(bld, tmp, target);
3226 else
3227 emit_non_coherent_fb_read(bld, tmp, target);
3228
3229 for (unsigned j = 0; j < instr->num_components; j++) {
3230 bld.MOV(offset(dest, bld, j),
3231 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3232 }
3233
3234 break;
3235 }
3236
3237 case nir_intrinsic_discard:
3238 case nir_intrinsic_discard_if: {
3239 /* We track our discarded pixels in f0.1. By predicating on it, we can
3240 * update just the flag bits that aren't yet discarded. If there's no
3241 * condition, we emit a CMP of g0 != g0, so all currently executing
3242 * channels will get turned off.
3243 */
3244 fs_inst *cmp;
3245 if (instr->intrinsic == nir_intrinsic_discard_if) {
3246 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3247 brw_imm_d(0), BRW_CONDITIONAL_Z);
3248 } else {
3249 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3250 BRW_REGISTER_TYPE_UW));
3251 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3252 }
3253 cmp->predicate = BRW_PREDICATE_NORMAL;
3254 cmp->flag_subreg = 1;
3255
3256 if (devinfo->gen >= 6) {
3257 emit_discard_jump();
3258 }
3259
3260 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3261 break;
3262 }
3263
3264 case nir_intrinsic_load_input: {
3265 /* load_input is only used for flat inputs */
3266 unsigned base = nir_intrinsic_base(instr);
3267 unsigned comp = nir_intrinsic_component(instr);
3268 unsigned num_components = instr->num_components;
3269 fs_reg orig_dest = dest;
3270 enum brw_reg_type type = dest.type;
3271
3272 /* Special case fields in the VUE header */
3273 if (base == VARYING_SLOT_LAYER)
3274 comp = 1;
3275 else if (base == VARYING_SLOT_VIEWPORT)
3276 comp = 2;
3277
3278 if (nir_dest_bit_size(instr->dest) == 64) {
3279 /* const_index is in 32-bit type size units that could not be aligned
3280 * with DF. We need to read the double vector as if it was a float
3281 * vector of twice the number of components to fetch the right data.
3282 */
3283 type = BRW_REGISTER_TYPE_F;
3284 num_components *= 2;
3285 dest = bld.vgrf(type, num_components);
3286 }
3287
3288 for (unsigned int i = 0; i < num_components; i++) {
3289 bld.MOV(offset(retype(dest, type), bld, i),
3290 retype(component(interp_reg(base, comp + i), 3), type));
3291 }
3292
3293 if (nir_dest_bit_size(instr->dest) == 64) {
3294 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3295 instr->num_components);
3296 }
3297 break;
3298 }
3299
3300 case nir_intrinsic_load_barycentric_pixel:
3301 case nir_intrinsic_load_barycentric_centroid:
3302 case nir_intrinsic_load_barycentric_sample:
3303 /* Do nothing - load_interpolated_input handling will handle it later. */
3304 break;
3305
3306 case nir_intrinsic_load_barycentric_at_sample: {
3307 const glsl_interp_mode interpolation =
3308 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3309
3310 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3311
3312 if (const_sample) {
3313 unsigned msg_data = const_sample->i32[0] << 4;
3314
3315 emit_pixel_interpolater_send(bld,
3316 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3317 dest,
3318 fs_reg(), /* src */
3319 brw_imm_ud(msg_data),
3320 interpolation);
3321 } else {
3322 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3323 BRW_REGISTER_TYPE_UD);
3324
3325 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3326 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3327 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3328 bld.exec_all().group(1, 0)
3329 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3330 emit_pixel_interpolater_send(bld,
3331 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3332 dest,
3333 fs_reg(), /* src */
3334 msg_data,
3335 interpolation);
3336 } else {
3337 /* Make a loop that sends a message to the pixel interpolater
3338 * for the sample number in each live channel. If there are
3339 * multiple channels with the same sample number then these
3340 * will be handled simultaneously with a single interation of
3341 * the loop.
3342 */
3343 bld.emit(BRW_OPCODE_DO);
3344
3345 /* Get the next live sample number into sample_id_reg */
3346 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3347
3348 /* Set the flag register so that we can perform the send
3349 * message on all channels that have the same sample number
3350 */
3351 bld.CMP(bld.null_reg_ud(),
3352 sample_src, sample_id,
3353 BRW_CONDITIONAL_EQ);
3354 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3355 bld.exec_all().group(1, 0)
3356 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3357 fs_inst *inst =
3358 emit_pixel_interpolater_send(bld,
3359 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3360 dest,
3361 fs_reg(), /* src */
3362 component(msg_data, 0),
3363 interpolation);
3364 set_predicate(BRW_PREDICATE_NORMAL, inst);
3365
3366 /* Continue the loop if there are any live channels left */
3367 set_predicate_inv(BRW_PREDICATE_NORMAL,
3368 true, /* inverse */
3369 bld.emit(BRW_OPCODE_WHILE));
3370 }
3371 }
3372 break;
3373 }
3374
3375 case nir_intrinsic_load_barycentric_at_offset: {
3376 const glsl_interp_mode interpolation =
3377 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3378
3379 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3380
3381 if (const_offset) {
3382 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3383 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3384
3385 emit_pixel_interpolater_send(bld,
3386 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3387 dest,
3388 fs_reg(), /* src */
3389 brw_imm_ud(off_x | (off_y << 4)),
3390 interpolation);
3391 } else {
3392 fs_reg src = vgrf(glsl_type::ivec2_type);
3393 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3394 BRW_REGISTER_TYPE_F);
3395 for (int i = 0; i < 2; i++) {
3396 fs_reg temp = vgrf(glsl_type::float_type);
3397 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3398 fs_reg itemp = vgrf(glsl_type::int_type);
3399 /* float to int */
3400 bld.MOV(itemp, temp);
3401
3402 /* Clamp the upper end of the range to +7/16.
3403 * ARB_gpu_shader5 requires that we support a maximum offset
3404 * of +0.5, which isn't representable in a S0.4 value -- if
3405 * we didn't clamp it, we'd end up with -8/16, which is the
3406 * opposite of what the shader author wanted.
3407 *
3408 * This is legal due to ARB_gpu_shader5's quantization
3409 * rules:
3410 *
3411 * "Not all values of <offset> may be supported; x and y
3412 * offsets may be rounded to fixed-point values with the
3413 * number of fraction bits given by the
3414 * implementation-dependent constant
3415 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3416 */
3417 set_condmod(BRW_CONDITIONAL_L,
3418 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3419 }
3420
3421 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3422 emit_pixel_interpolater_send(bld,
3423 opcode,
3424 dest,
3425 src,
3426 brw_imm_ud(0u),
3427 interpolation);
3428 }
3429 break;
3430 }
3431
3432 case nir_intrinsic_load_interpolated_input: {
3433 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3434 emit_fragcoord_interpolation(dest);
3435 break;
3436 }
3437
3438 assert(instr->src[0].ssa &&
3439 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3440 nir_intrinsic_instr *bary_intrinsic =
3441 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3442 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3443 enum glsl_interp_mode interp_mode =
3444 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3445 fs_reg dst_xy;
3446
3447 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3448 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3449 /* Use the result of the PI message */
3450 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3451 } else {
3452 /* Use the delta_xy values computed from the payload */
3453 enum brw_barycentric_mode bary =
3454 brw_barycentric_mode(interp_mode, bary_intrin);
3455
3456 dst_xy = this->delta_xy[bary];
3457 }
3458
3459 for (unsigned int i = 0; i < instr->num_components; i++) {
3460 fs_reg interp =
3461 component(interp_reg(nir_intrinsic_base(instr),
3462 nir_intrinsic_component(instr) + i), 0);
3463 interp.type = BRW_REGISTER_TYPE_F;
3464 dest.type = BRW_REGISTER_TYPE_F;
3465
3466 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3467 fs_reg tmp = vgrf(glsl_type::float_type);
3468 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3469 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3470 } else {
3471 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3472 }
3473 }
3474 break;
3475 }
3476
3477 default:
3478 nir_emit_intrinsic(bld, instr);
3479 break;
3480 }
3481 }
3482
3483 static int
3484 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3485 {
3486 const nir_const_value *const val = nir_src_as_const_value(instr->src[src]);
3487
3488 if (val != NULL) {
3489 if (val->i32[0] == 1)
3490 return BRW_AOP_INC;
3491 else if (val->i32[0] == -1)
3492 return BRW_AOP_DEC;
3493 }
3494
3495 return BRW_AOP_ADD;
3496 }
3497
3498 void
3499 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3500 nir_intrinsic_instr *instr)
3501 {
3502 assert(stage == MESA_SHADER_COMPUTE);
3503 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3504
3505 fs_reg dest;
3506 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3507 dest = get_nir_dest(instr->dest);
3508
3509 switch (instr->intrinsic) {
3510 case nir_intrinsic_barrier:
3511 emit_barrier();
3512 cs_prog_data->uses_barrier = true;
3513 break;
3514
3515 case nir_intrinsic_load_subgroup_id:
3516 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3517 break;
3518
3519 case nir_intrinsic_load_local_invocation_id:
3520 case nir_intrinsic_load_work_group_id: {
3521 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3522 fs_reg val = nir_system_values[sv];
3523 assert(val.file != BAD_FILE);
3524 dest.type = val.type;
3525 for (unsigned i = 0; i < 3; i++)
3526 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3527 break;
3528 }
3529
3530 case nir_intrinsic_load_num_work_groups: {
3531 const unsigned surface =
3532 cs_prog_data->binding_table.work_groups_start;
3533
3534 cs_prog_data->uses_num_work_groups = true;
3535
3536 fs_reg surf_index = brw_imm_ud(surface);
3537 brw_mark_surface_used(prog_data, surface);
3538
3539 /* Read the 3 GLuint components of gl_NumWorkGroups */
3540 for (unsigned i = 0; i < 3; i++) {
3541 fs_reg read_result =
3542 emit_untyped_read(bld, surf_index,
3543 brw_imm_ud(i << 2),
3544 1 /* dims */, 1 /* size */,
3545 BRW_PREDICATE_NONE);
3546 read_result.type = dest.type;
3547 bld.MOV(dest, read_result);
3548 dest = offset(dest, bld, 1);
3549 }
3550 break;
3551 }
3552
3553 case nir_intrinsic_shared_atomic_add:
3554 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3555 break;
3556 case nir_intrinsic_shared_atomic_imin:
3557 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3558 break;
3559 case nir_intrinsic_shared_atomic_umin:
3560 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3561 break;
3562 case nir_intrinsic_shared_atomic_imax:
3563 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3564 break;
3565 case nir_intrinsic_shared_atomic_umax:
3566 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3567 break;
3568 case nir_intrinsic_shared_atomic_and:
3569 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3570 break;
3571 case nir_intrinsic_shared_atomic_or:
3572 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3573 break;
3574 case nir_intrinsic_shared_atomic_xor:
3575 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3576 break;
3577 case nir_intrinsic_shared_atomic_exchange:
3578 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3579 break;
3580 case nir_intrinsic_shared_atomic_comp_swap:
3581 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3582 break;
3583 case nir_intrinsic_shared_atomic_fmin:
3584 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3585 break;
3586 case nir_intrinsic_shared_atomic_fmax:
3587 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3588 break;
3589 case nir_intrinsic_shared_atomic_fcomp_swap:
3590 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3591 break;
3592
3593 case nir_intrinsic_load_shared: {
3594 assert(devinfo->gen >= 7);
3595
3596 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3597
3598 /* Get the offset to read from */
3599 fs_reg offset_reg;
3600 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3601 if (const_offset) {
3602 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3603 } else {
3604 offset_reg = vgrf(glsl_type::uint_type);
3605 bld.ADD(offset_reg,
3606 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3607 brw_imm_ud(instr->const_index[0]));
3608 }
3609
3610 /* Read the vector */
3611 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3612 instr->num_components);
3613 break;
3614 }
3615
3616 case nir_intrinsic_store_shared: {
3617 assert(devinfo->gen >= 7);
3618
3619 /* Block index */
3620 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3621
3622 /* Value */
3623 fs_reg val_reg = get_nir_src(instr->src[0]);
3624
3625 /* Writemask */
3626 unsigned writemask = instr->const_index[1];
3627
3628 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3629 * since the untyped writes below operate in units of 32-bits, which
3630 * means that we need to write twice as many components each time.
3631 * Also, we have to suffle 64-bit data to be in the appropriate layout
3632 * expected by our 32-bit write messages.
3633 */
3634 unsigned type_size = 4;
3635 if (nir_src_bit_size(instr->src[0]) == 64) {
3636 type_size = 8;
3637 val_reg = shuffle_for_32bit_write(bld, val_reg, 0,
3638 instr->num_components);
3639 }
3640
3641 unsigned type_slots = type_size / 4;
3642
3643 /* Combine groups of consecutive enabled channels in one write
3644 * message. We use ffs to find the first enabled channel and then ffs on
3645 * the bit-inverse, down-shifted writemask to determine the length of
3646 * the block of enabled bits.
3647 */
3648 while (writemask) {
3649 unsigned first_component = ffs(writemask) - 1;
3650 unsigned length = ffs(~(writemask >> first_component)) - 1;
3651
3652 /* We can't write more than 2 64-bit components at once. Limit the
3653 * length of the write to what we can do and let the next iteration
3654 * handle the rest
3655 */
3656 if (type_size > 4)
3657 length = MIN2(2, length);
3658
3659 fs_reg offset_reg;
3660 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3661 if (const_offset) {
3662 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3663 type_size * first_component);
3664 } else {
3665 offset_reg = vgrf(glsl_type::uint_type);
3666 bld.ADD(offset_reg,
3667 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3668 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3669 }
3670
3671 emit_untyped_write(bld, surf_index, offset_reg,
3672 offset(val_reg, bld, first_component * type_slots),
3673 1 /* dims */, length * type_slots,
3674 BRW_PREDICATE_NONE);
3675
3676 /* Clear the bits in the writemask that we just wrote, then try
3677 * again to see if more channels are left.
3678 */
3679 writemask &= (15 << (first_component + length));
3680 }
3681
3682 break;
3683 }
3684
3685 default:
3686 nir_emit_intrinsic(bld, instr);
3687 break;
3688 }
3689 }
3690
3691 static fs_reg
3692 brw_nir_reduction_op_identity(const fs_builder &bld,
3693 nir_op op, brw_reg_type type)
3694 {
3695 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3696 switch (type_sz(type)) {
3697 case 2:
3698 assert(type != BRW_REGISTER_TYPE_HF);
3699 return retype(brw_imm_uw(value.u16[0]), type);
3700 case 4:
3701 return retype(brw_imm_ud(value.u32[0]), type);
3702 case 8:
3703 if (type == BRW_REGISTER_TYPE_DF)
3704 return setup_imm_df(bld, value.f64[0]);
3705 else
3706 return retype(brw_imm_u64(value.u64[0]), type);
3707 default:
3708 unreachable("Invalid type size");
3709 }
3710 }
3711
3712 static opcode
3713 brw_op_for_nir_reduction_op(nir_op op)
3714 {
3715 switch (op) {
3716 case nir_op_iadd: return BRW_OPCODE_ADD;
3717 case nir_op_fadd: return BRW_OPCODE_ADD;
3718 case nir_op_imul: return BRW_OPCODE_MUL;
3719 case nir_op_fmul: return BRW_OPCODE_MUL;
3720 case nir_op_imin: return BRW_OPCODE_SEL;
3721 case nir_op_umin: return BRW_OPCODE_SEL;
3722 case nir_op_fmin: return BRW_OPCODE_SEL;
3723 case nir_op_imax: return BRW_OPCODE_SEL;
3724 case nir_op_umax: return BRW_OPCODE_SEL;
3725 case nir_op_fmax: return BRW_OPCODE_SEL;
3726 case nir_op_iand: return BRW_OPCODE_AND;
3727 case nir_op_ior: return BRW_OPCODE_OR;
3728 case nir_op_ixor: return BRW_OPCODE_XOR;
3729 default:
3730 unreachable("Invalid reduction operation");
3731 }
3732 }
3733
3734 static brw_conditional_mod
3735 brw_cond_mod_for_nir_reduction_op(nir_op op)
3736 {
3737 switch (op) {
3738 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3739 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3740 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3741 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3742 case nir_op_imin: return BRW_CONDITIONAL_L;
3743 case nir_op_umin: return BRW_CONDITIONAL_L;
3744 case nir_op_fmin: return BRW_CONDITIONAL_L;
3745 case nir_op_imax: return BRW_CONDITIONAL_GE;
3746 case nir_op_umax: return BRW_CONDITIONAL_GE;
3747 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3748 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3749 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3750 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3751 default:
3752 unreachable("Invalid reduction operation");
3753 }
3754 }
3755
3756 fs_reg
3757 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3758 nir_intrinsic_instr *instr)
3759 {
3760 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3761
3762 if (stage_prog_data->binding_table.image_start > 0) {
3763 if (image.file == BRW_IMMEDIATE_VALUE) {
3764 image.d += stage_prog_data->binding_table.image_start;
3765 } else {
3766 bld.ADD(image, image,
3767 brw_imm_d(stage_prog_data->binding_table.image_start));
3768 }
3769 }
3770
3771 return bld.emit_uniformize(image);
3772 }
3773
3774 static unsigned
3775 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3776 {
3777 switch (nir_intrinsic_image_dim(instr)) {
3778 case GLSL_SAMPLER_DIM_1D:
3779 return 1 + nir_intrinsic_image_array(instr);
3780 case GLSL_SAMPLER_DIM_2D:
3781 case GLSL_SAMPLER_DIM_RECT:
3782 return 2 + nir_intrinsic_image_array(instr);
3783 case GLSL_SAMPLER_DIM_3D:
3784 case GLSL_SAMPLER_DIM_CUBE:
3785 return 3;
3786 case GLSL_SAMPLER_DIM_BUF:
3787 return 1;
3788 case GLSL_SAMPLER_DIM_MS:
3789 return 2 + nir_intrinsic_image_array(instr);
3790 default:
3791 unreachable("Invalid image dimension");
3792 }
3793 }
3794
3795 void
3796 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3797 {
3798 fs_reg dest;
3799 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3800 dest = get_nir_dest(instr->dest);
3801
3802 switch (instr->intrinsic) {
3803 case nir_intrinsic_image_load:
3804 case nir_intrinsic_image_store:
3805 case nir_intrinsic_image_atomic_add:
3806 case nir_intrinsic_image_atomic_min:
3807 case nir_intrinsic_image_atomic_max:
3808 case nir_intrinsic_image_atomic_and:
3809 case nir_intrinsic_image_atomic_or:
3810 case nir_intrinsic_image_atomic_xor:
3811 case nir_intrinsic_image_atomic_exchange:
3812 case nir_intrinsic_image_atomic_comp_swap: {
3813 if (stage == MESA_SHADER_FRAGMENT &&
3814 instr->intrinsic != nir_intrinsic_image_load)
3815 brw_wm_prog_data(prog_data)->has_side_effects = true;
3816
3817 /* Get some metadata from the image intrinsic. */
3818 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3819 const unsigned dims = image_intrinsic_coord_components(instr);
3820 const GLenum format = nir_intrinsic_format(instr);
3821 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3822
3823 /* Get the arguments of the image intrinsic. */
3824 const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3825 const fs_reg coords = retype(get_nir_src(instr->src[1]),
3826 BRW_REGISTER_TYPE_UD);
3827 fs_reg tmp;
3828
3829 /* Emit an image load, store or atomic op. */
3830 if (instr->intrinsic == nir_intrinsic_image_load) {
3831 tmp = emit_typed_read(bld, image, coords, dims,
3832 instr->num_components);
3833 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3834 const fs_reg src0 = get_nir_src(instr->src[3]);
3835 emit_typed_write(bld, image, coords, src0, dims,
3836 instr->num_components);
3837 } else {
3838 int op;
3839 unsigned num_srcs = info->num_srcs;
3840
3841 switch (instr->intrinsic) {
3842 case nir_intrinsic_image_atomic_add:
3843 assert(num_srcs == 4);
3844
3845 op = get_op_for_atomic_add(instr, 3);
3846
3847 if (op != BRW_AOP_ADD)
3848 num_srcs = 3;
3849 break;
3850 case nir_intrinsic_image_atomic_min:
3851 assert(format == GL_R32UI || format == GL_R32I);
3852 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3853 break;
3854 case nir_intrinsic_image_atomic_max:
3855 assert(format == GL_R32UI || format == GL_R32I);
3856 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3857 break;
3858 case nir_intrinsic_image_atomic_and:
3859 op = BRW_AOP_AND;
3860 break;
3861 case nir_intrinsic_image_atomic_or:
3862 op = BRW_AOP_OR;
3863 break;
3864 case nir_intrinsic_image_atomic_xor:
3865 op = BRW_AOP_XOR;
3866 break;
3867 case nir_intrinsic_image_atomic_exchange:
3868 op = BRW_AOP_MOV;
3869 break;
3870 case nir_intrinsic_image_atomic_comp_swap:
3871 op = BRW_AOP_CMPWR;
3872 break;
3873 default:
3874 unreachable("Not reachable.");
3875 }
3876
3877 const fs_reg src0 = (num_srcs >= 4 ?
3878 get_nir_src(instr->src[3]) : fs_reg());
3879 const fs_reg src1 = (num_srcs >= 5 ?
3880 get_nir_src(instr->src[4]) : fs_reg());
3881
3882 tmp = emit_typed_atomic(bld, image, coords, src0, src1, dims, 1, op);
3883 }
3884
3885 /* Assign the result. */
3886 for (unsigned c = 0; c < dest_components; ++c) {
3887 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3888 offset(tmp, bld, c));
3889 }
3890 break;
3891 }
3892
3893 case nir_intrinsic_image_size: {
3894 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3895 * into will handle the binding table index for us in the geneerator.
3896 */
3897 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3898 BRW_REGISTER_TYPE_UD);
3899 image = bld.emit_uniformize(image);
3900
3901 /* Since the image size is always uniform, we can just emit a SIMD8
3902 * query instruction and splat the result out.
3903 */
3904 const fs_builder ubld = bld.exec_all().group(8, 0);
3905
3906 /* The LOD also serves as the message payload */
3907 fs_reg lod = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3908 ubld.MOV(lod, brw_imm_ud(0));
3909
3910 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3911 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE, tmp, lod, image);
3912 inst->mlen = 1;
3913 inst->size_written = 4 * REG_SIZE;
3914
3915 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3916 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3917 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3918 offset(retype(dest, tmp.type), bld, c),
3919 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3920 } else {
3921 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3922 component(offset(tmp, ubld, c), 0));
3923 }
3924 }
3925 break;
3926 }
3927
3928 case nir_intrinsic_image_load_raw_intel: {
3929 const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3930 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3931 BRW_REGISTER_TYPE_UD);
3932
3933 fs_reg tmp = emit_untyped_read(bld, image, addr, 1,
3934 instr->num_components);
3935
3936 for (unsigned c = 0; c < instr->num_components; ++c) {
3937 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3938 offset(tmp, bld, c));
3939 }
3940 break;
3941 }
3942
3943 case nir_intrinsic_image_store_raw_intel: {
3944 const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3945 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3946 BRW_REGISTER_TYPE_UD);
3947 const fs_reg data = retype(get_nir_src(instr->src[2]),
3948 BRW_REGISTER_TYPE_UD);
3949
3950 brw_wm_prog_data(prog_data)->has_side_effects = true;
3951
3952 emit_untyped_write(bld, image, addr, data, 1,
3953 instr->num_components);
3954 break;
3955 }
3956
3957 case nir_intrinsic_group_memory_barrier:
3958 case nir_intrinsic_memory_barrier_shared:
3959 case nir_intrinsic_memory_barrier_atomic_counter:
3960 case nir_intrinsic_memory_barrier_buffer:
3961 case nir_intrinsic_memory_barrier_image:
3962 case nir_intrinsic_memory_barrier: {
3963 const fs_builder ubld = bld.group(8, 0);
3964 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3965 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3966 ->size_written = 2 * REG_SIZE;
3967 break;
3968 }
3969
3970 case nir_intrinsic_shader_clock: {
3971 /* We cannot do anything if there is an event, so ignore it for now */
3972 const fs_reg shader_clock = get_timestamp(bld);
3973 const fs_reg srcs[] = { component(shader_clock, 0),
3974 component(shader_clock, 1) };
3975 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3976 break;
3977 }
3978
3979 case nir_intrinsic_image_samples:
3980 /* The driver does not support multi-sampled images. */
3981 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3982 break;
3983
3984 case nir_intrinsic_load_uniform: {
3985 /* Offsets are in bytes but they should always aligned to
3986 * the type size
3987 */
3988 assert(instr->const_index[0] % 4 == 0 ||
3989 instr->const_index[0] % type_sz(dest.type) == 0);
3990
3991 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3992
3993 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3994 if (const_offset) {
3995 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
3996 /* For 16-bit types we add the module of the const_index[0]
3997 * offset to access to not 32-bit aligned element
3998 */
3999 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
4000
4001 for (unsigned j = 0; j < instr->num_components; j++) {
4002 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4003 }
4004 } else {
4005 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4006 BRW_REGISTER_TYPE_UD);
4007
4008 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4009 * go past the end of the uniform. In order to keep the n'th
4010 * component from running past, we subtract off the size of all but
4011 * one component of the vector.
4012 */
4013 assert(instr->const_index[1] >=
4014 instr->num_components * (int) type_sz(dest.type));
4015 unsigned read_size = instr->const_index[1] -
4016 (instr->num_components - 1) * type_sz(dest.type);
4017
4018 bool supports_64bit_indirects =
4019 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4020
4021 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4022 for (unsigned j = 0; j < instr->num_components; j++) {
4023 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4024 offset(dest, bld, j), offset(src, bld, j),
4025 indirect, brw_imm_ud(read_size));
4026 }
4027 } else {
4028 const unsigned num_mov_indirects =
4029 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4030 /* We read a little bit less per MOV INDIRECT, as they are now
4031 * 32-bits ones instead of 64-bit. Fix read_size then.
4032 */
4033 const unsigned read_size_32bit = read_size -
4034 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4035 for (unsigned j = 0; j < instr->num_components; j++) {
4036 for (unsigned i = 0; i < num_mov_indirects; i++) {
4037 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4038 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4039 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4040 indirect, brw_imm_ud(read_size_32bit));
4041 }
4042 }
4043 }
4044 }
4045 break;
4046 }
4047
4048 case nir_intrinsic_load_ubo: {
4049 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4050 fs_reg surf_index;
4051
4052 if (const_index) {
4053 const unsigned index = stage_prog_data->binding_table.ubo_start +
4054 const_index->u32[0];
4055 surf_index = brw_imm_ud(index);
4056 brw_mark_surface_used(prog_data, index);
4057 } else {
4058 /* The block index is not a constant. Evaluate the index expression
4059 * per-channel and add the base UBO index; we have to select a value
4060 * from any live channel.
4061 */
4062 surf_index = vgrf(glsl_type::uint_type);
4063 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4064 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4065 surf_index = bld.emit_uniformize(surf_index);
4066
4067 /* Assume this may touch any UBO. It would be nice to provide
4068 * a tighter bound, but the array information is already lowered away.
4069 */
4070 brw_mark_surface_used(prog_data,
4071 stage_prog_data->binding_table.ubo_start +
4072 nir->info.num_ubos - 1);
4073 }
4074
4075 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4076 if (const_offset == NULL) {
4077 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4078 BRW_REGISTER_TYPE_UD);
4079
4080 for (int i = 0; i < instr->num_components; i++)
4081 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4082 base_offset, i * type_sz(dest.type));
4083 } else {
4084 /* Even if we are loading doubles, a pull constant load will load
4085 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4086 * need to load a full dvec4 we will have to emit 2 loads. This is
4087 * similar to demote_pull_constants(), except that in that case we
4088 * see individual accesses to each component of the vector and then
4089 * we let CSE deal with duplicate loads. Here we see a vector access
4090 * and we have to split it if necessary.
4091 */
4092 const unsigned type_size = type_sz(dest.type);
4093
4094 /* See if we've selected this as a push constant candidate */
4095 if (const_index) {
4096 const unsigned ubo_block = const_index->u32[0];
4097 const unsigned offset_256b = const_offset->u32[0] / 32;
4098
4099 fs_reg push_reg;
4100 for (int i = 0; i < 4; i++) {
4101 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4102 if (range->block == ubo_block &&
4103 offset_256b >= range->start &&
4104 offset_256b < range->start + range->length) {
4105
4106 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4107 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4108 break;
4109 }
4110 }
4111
4112 if (push_reg.file != BAD_FILE) {
4113 for (unsigned i = 0; i < instr->num_components; i++) {
4114 bld.MOV(offset(dest, bld, i),
4115 byte_offset(push_reg, i * type_size));
4116 }
4117 break;
4118 }
4119 }
4120
4121 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4122 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4123 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4124
4125 for (unsigned c = 0; c < instr->num_components;) {
4126 const unsigned base = const_offset->u32[0] + c * type_size;
4127 /* Number of usable components in the next block-aligned load. */
4128 const unsigned count = MIN2(instr->num_components - c,
4129 (block_sz - base % block_sz) / type_size);
4130
4131 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4132 packed_consts, surf_index,
4133 brw_imm_ud(base & ~(block_sz - 1)));
4134
4135 const fs_reg consts =
4136 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4137 dest.type);
4138
4139 for (unsigned d = 0; d < count; d++)
4140 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4141
4142 c += count;
4143 }
4144 }
4145 break;
4146 }
4147
4148 case nir_intrinsic_load_ssbo: {
4149 assert(devinfo->gen >= 7);
4150
4151 nir_const_value *const_uniform_block =
4152 nir_src_as_const_value(instr->src[0]);
4153
4154 fs_reg surf_index;
4155 if (const_uniform_block) {
4156 unsigned index = stage_prog_data->binding_table.ssbo_start +
4157 const_uniform_block->u32[0];
4158 surf_index = brw_imm_ud(index);
4159 brw_mark_surface_used(prog_data, index);
4160 } else {
4161 surf_index = vgrf(glsl_type::uint_type);
4162 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4163 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4164
4165 /* Assume this may touch any UBO. It would be nice to provide
4166 * a tighter bound, but the array information is already lowered away.
4167 */
4168 brw_mark_surface_used(prog_data,
4169 stage_prog_data->binding_table.ssbo_start +
4170 nir->info.num_ssbos - 1);
4171 }
4172
4173 fs_reg offset_reg;
4174 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4175 if (const_offset) {
4176 offset_reg = brw_imm_ud(const_offset->u32[0]);
4177 } else {
4178 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4179 }
4180
4181 /* Read the vector */
4182 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4183 instr->num_components);
4184
4185 break;
4186 }
4187
4188 case nir_intrinsic_store_ssbo: {
4189 assert(devinfo->gen >= 7);
4190
4191 if (stage == MESA_SHADER_FRAGMENT)
4192 brw_wm_prog_data(prog_data)->has_side_effects = true;
4193
4194 /* Block index */
4195 fs_reg surf_index;
4196 nir_const_value *const_uniform_block =
4197 nir_src_as_const_value(instr->src[1]);
4198 if (const_uniform_block) {
4199 unsigned index = stage_prog_data->binding_table.ssbo_start +
4200 const_uniform_block->u32[0];
4201 surf_index = brw_imm_ud(index);
4202 brw_mark_surface_used(prog_data, index);
4203 } else {
4204 surf_index = vgrf(glsl_type::uint_type);
4205 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4206 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4207
4208 brw_mark_surface_used(prog_data,
4209 stage_prog_data->binding_table.ssbo_start +
4210 nir->info.num_ssbos - 1);
4211 }
4212
4213 /* Value */
4214 fs_reg val_reg = get_nir_src(instr->src[0]);
4215
4216 /* Writemask */
4217 unsigned writemask = instr->const_index[0];
4218
4219 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4220 * since the untyped writes below operate in units of 32-bits, which
4221 * means that we need to write twice as many components each time.
4222 * Also, we have to suffle 64-bit data to be in the appropriate layout
4223 * expected by our 32-bit write messages.
4224 */
4225 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4226 unsigned type_size = bit_size / 8;
4227
4228 /* Combine groups of consecutive enabled channels in one write
4229 * message. We use ffs to find the first enabled channel and then ffs on
4230 * the bit-inverse, down-shifted writemask to determine the num_components
4231 * of the block of enabled bits.
4232 */
4233 while (writemask) {
4234 unsigned first_component = ffs(writemask) - 1;
4235 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4236 fs_reg write_src = offset(val_reg, bld, first_component);
4237
4238 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4239
4240 if (type_size > 4) {
4241 /* We can't write more than 2 64-bit components at once. Limit
4242 * the num_components of the write to what we can do and let the next
4243 * iteration handle the rest.
4244 */
4245 num_components = MIN2(2, num_components);
4246 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4247 num_components);
4248 } else if (type_size < 4) {
4249 /* For 16-bit types we pack two consecutive values into a 32-bit
4250 * word and use an untyped write message. For single values or not
4251 * 32-bit-aligned we need to use byte-scattered writes because
4252 * untyped writes works with 32-bit components with 32-bit
4253 * alignment. byte_scattered_write messages only support one
4254 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4255 * could be enabled we can not guarantee that not constant offsets
4256 * to be 32-bit aligned for 16-bit types. For example an array, of
4257 * 16-bit vec3 with array element stride of 6.
4258 *
4259 * In the case of 32-bit aligned constant offsets if there is
4260 * a 3-components vector we submit one untyped-write message
4261 * of 32-bit (first two components), and one byte-scattered
4262 * write message (the last component).
4263 */
4264
4265 if ( !const_offset || ((const_offset->u32[0] +
4266 type_size * first_component) % 4)) {
4267 /* If we use a .yz writemask we also need to emit 2
4268 * byte-scattered write messages because of y-component not
4269 * being aligned to 32-bit.
4270 */
4271 num_components = 1;
4272 } else if (num_components * type_size > 4 &&
4273 (num_components * type_size % 4)) {
4274 /* If the pending components size is not a multiple of 4 bytes
4275 * we left the not aligned components for following emits of
4276 * length == 1 with byte_scattered_write.
4277 */
4278 num_components -= (num_components * type_size % 4) / type_size;
4279 } else if (num_components * type_size < 4) {
4280 num_components = 1;
4281 }
4282 /* For num_components == 1 we are also shuffling the component
4283 * because byte scattered writes of 16-bit need values to be dword
4284 * aligned. Shuffling only one component would be the same as
4285 * striding it.
4286 */
4287 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4288 num_components);
4289 }
4290
4291 fs_reg offset_reg;
4292
4293 if (const_offset) {
4294 offset_reg = brw_imm_ud(const_offset->u32[0] +
4295 type_size * first_component);
4296 } else {
4297 offset_reg = vgrf(glsl_type::uint_type);
4298 bld.ADD(offset_reg,
4299 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4300 brw_imm_ud(type_size * first_component));
4301 }
4302
4303 if (type_size < 4 && num_components == 1) {
4304 /* Untyped Surface messages have a fixed 32-bit size, so we need
4305 * to rely on byte scattered in order to write 16-bit elements.
4306 * The byte_scattered_write message needs that every written 16-bit
4307 * type to be aligned 32-bits (stride=2).
4308 */
4309 emit_byte_scattered_write(bld, surf_index, offset_reg,
4310 write_src,
4311 1 /* dims */,
4312 bit_size,
4313 BRW_PREDICATE_NONE);
4314 } else {
4315 assert(num_components * type_size <= 16);
4316 assert((num_components * type_size) % 4 == 0);
4317 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4318 offset_reg.ud % 4 == 0);
4319 unsigned num_slots = (num_components * type_size) / 4;
4320
4321 emit_untyped_write(bld, surf_index, offset_reg,
4322 write_src,
4323 1 /* dims */, num_slots,
4324 BRW_PREDICATE_NONE);
4325 }
4326
4327 /* Clear the bits in the writemask that we just wrote, then try
4328 * again to see if more channels are left.
4329 */
4330 writemask &= (15 << (first_component + num_components));
4331 }
4332 break;
4333 }
4334
4335 case nir_intrinsic_store_output: {
4336 fs_reg src = get_nir_src(instr->src[0]);
4337
4338 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4339 assert(const_offset && "Indirect output stores not allowed");
4340
4341 unsigned num_components = instr->num_components;
4342 unsigned first_component = nir_intrinsic_component(instr);
4343 if (nir_src_bit_size(instr->src[0]) == 64) {
4344 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4345 num_components *= 2;
4346 }
4347
4348 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4349 4 * const_offset->u32[0]), src.type);
4350 for (unsigned j = 0; j < num_components; j++) {
4351 bld.MOV(offset(new_dest, bld, j + first_component),
4352 offset(src, bld, j));
4353 }
4354 break;
4355 }
4356
4357 case nir_intrinsic_ssbo_atomic_add:
4358 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4359 break;
4360 case nir_intrinsic_ssbo_atomic_imin:
4361 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4362 break;
4363 case nir_intrinsic_ssbo_atomic_umin:
4364 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4365 break;
4366 case nir_intrinsic_ssbo_atomic_imax:
4367 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4368 break;
4369 case nir_intrinsic_ssbo_atomic_umax:
4370 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4371 break;
4372 case nir_intrinsic_ssbo_atomic_and:
4373 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4374 break;
4375 case nir_intrinsic_ssbo_atomic_or:
4376 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4377 break;
4378 case nir_intrinsic_ssbo_atomic_xor:
4379 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4380 break;
4381 case nir_intrinsic_ssbo_atomic_exchange:
4382 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4383 break;
4384 case nir_intrinsic_ssbo_atomic_comp_swap:
4385 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4386 break;
4387 case nir_intrinsic_ssbo_atomic_fmin:
4388 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4389 break;
4390 case nir_intrinsic_ssbo_atomic_fmax:
4391 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4392 break;
4393 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4394 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4395 break;
4396
4397 case nir_intrinsic_get_buffer_size: {
4398 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4399 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4400
4401 /* A resinfo's sampler message is used to get the buffer size. The
4402 * SIMD8's writeback message consists of four registers and SIMD16's
4403 * writeback message consists of 8 destination registers (two per each
4404 * component). Because we are only interested on the first channel of
4405 * the first returned component, where resinfo returns the buffer size
4406 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4407 * the dispatch width.
4408 */
4409 const fs_builder ubld = bld.exec_all().group(8, 0);
4410 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4411 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4412
4413 /* Set LOD = 0 */
4414 ubld.MOV(src_payload, brw_imm_d(0));
4415
4416 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4417 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4418 src_payload, brw_imm_ud(index));
4419 inst->header_size = 0;
4420 inst->mlen = 1;
4421 inst->size_written = 4 * REG_SIZE;
4422
4423 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4424 *
4425 * "Out-of-bounds checking is always performed at a DWord granularity. If
4426 * any part of the DWord is out-of-bounds then the whole DWord is
4427 * considered out-of-bounds."
4428 *
4429 * This implies that types with size smaller than 4-bytes need to be
4430 * padded if they don't complete the last dword of the buffer. But as we
4431 * need to maintain the original size we need to reverse the padding
4432 * calculation to return the correct size to know the number of elements
4433 * of an unsized array. As we stored in the last two bits of the surface
4434 * size the needed padding for the buffer, we calculate here the
4435 * original buffer_size reversing the surface_size calculation:
4436 *
4437 * surface_size = isl_align(buffer_size, 4) +
4438 * (isl_align(buffer_size) - buffer_size)
4439 *
4440 * buffer_size = surface_size & ~3 - surface_size & 3
4441 */
4442
4443 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4444 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4445 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4446
4447 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4448 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4449 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4450
4451 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4452
4453 brw_mark_surface_used(prog_data, index);
4454 break;
4455 }
4456
4457 case nir_intrinsic_load_subgroup_invocation:
4458 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4459 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4460 break;
4461
4462 case nir_intrinsic_load_subgroup_eq_mask:
4463 case nir_intrinsic_load_subgroup_ge_mask:
4464 case nir_intrinsic_load_subgroup_gt_mask:
4465 case nir_intrinsic_load_subgroup_le_mask:
4466 case nir_intrinsic_load_subgroup_lt_mask:
4467 unreachable("not reached");
4468
4469 case nir_intrinsic_vote_any: {
4470 const fs_builder ubld = bld.exec_all().group(1, 0);
4471
4472 /* The any/all predicates do not consider channel enables. To prevent
4473 * dead channels from affecting the result, we initialize the flag with
4474 * with the identity value for the logical operation.
4475 */
4476 if (dispatch_width == 32) {
4477 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4478 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4479 brw_imm_ud(0));
4480 } else {
4481 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4482 }
4483 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4484
4485 /* For some reason, the any/all predicates don't work properly with
4486 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4487 * doesn't read the correct subset of the flag register and you end up
4488 * getting garbage in the second half. Work around this by using a pair
4489 * of 1-wide MOVs and scattering the result.
4490 */
4491 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4492 ubld.MOV(res1, brw_imm_d(0));
4493 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4494 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4495 BRW_PREDICATE_ALIGN1_ANY32H,
4496 ubld.MOV(res1, brw_imm_d(-1)));
4497
4498 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4499 break;
4500 }
4501 case nir_intrinsic_vote_all: {
4502 const fs_builder ubld = bld.exec_all().group(1, 0);
4503
4504 /* The any/all predicates do not consider channel enables. To prevent
4505 * dead channels from affecting the result, we initialize the flag with
4506 * with the identity value for the logical operation.
4507 */
4508 if (dispatch_width == 32) {
4509 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4510 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4511 brw_imm_ud(0xffffffff));
4512 } else {
4513 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4514 }
4515 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4516
4517 /* For some reason, the any/all predicates don't work properly with
4518 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4519 * doesn't read the correct subset of the flag register and you end up
4520 * getting garbage in the second half. Work around this by using a pair
4521 * of 1-wide MOVs and scattering the result.
4522 */
4523 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4524 ubld.MOV(res1, brw_imm_d(0));
4525 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4526 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4527 BRW_PREDICATE_ALIGN1_ALL32H,
4528 ubld.MOV(res1, brw_imm_d(-1)));
4529
4530 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4531 break;
4532 }
4533 case nir_intrinsic_vote_feq:
4534 case nir_intrinsic_vote_ieq: {
4535 fs_reg value = get_nir_src(instr->src[0]);
4536 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4537 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4538 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4539 }
4540
4541 fs_reg uniformized = bld.emit_uniformize(value);
4542 const fs_builder ubld = bld.exec_all().group(1, 0);
4543
4544 /* The any/all predicates do not consider channel enables. To prevent
4545 * dead channels from affecting the result, we initialize the flag with
4546 * with the identity value for the logical operation.
4547 */
4548 if (dispatch_width == 32) {
4549 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4550 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4551 brw_imm_ud(0xffffffff));
4552 } else {
4553 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4554 }
4555 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4556
4557 /* For some reason, the any/all predicates don't work properly with
4558 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4559 * doesn't read the correct subset of the flag register and you end up
4560 * getting garbage in the second half. Work around this by using a pair
4561 * of 1-wide MOVs and scattering the result.
4562 */
4563 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4564 ubld.MOV(res1, brw_imm_d(0));
4565 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4566 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4567 BRW_PREDICATE_ALIGN1_ALL32H,
4568 ubld.MOV(res1, brw_imm_d(-1)));
4569
4570 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4571 break;
4572 }
4573
4574 case nir_intrinsic_ballot: {
4575 const fs_reg value = retype(get_nir_src(instr->src[0]),
4576 BRW_REGISTER_TYPE_UD);
4577 struct brw_reg flag = brw_flag_reg(0, 0);
4578 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4579 * as f0.0. This is a problem for fragment programs as we currently use
4580 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4581 * programs yet so this isn't a problem. When we do, something will
4582 * have to change.
4583 */
4584 if (dispatch_width == 32)
4585 flag.type = BRW_REGISTER_TYPE_UD;
4586
4587 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4588 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4589
4590 if (instr->dest.ssa.bit_size > 32) {
4591 dest.type = BRW_REGISTER_TYPE_UQ;
4592 } else {
4593 dest.type = BRW_REGISTER_TYPE_UD;
4594 }
4595 bld.MOV(dest, flag);
4596 break;
4597 }
4598
4599 case nir_intrinsic_read_invocation: {
4600 const fs_reg value = get_nir_src(instr->src[0]);
4601 const fs_reg invocation = get_nir_src(instr->src[1]);
4602 fs_reg tmp = bld.vgrf(value.type);
4603
4604 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4605 bld.emit_uniformize(invocation));
4606
4607 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4608 break;
4609 }
4610
4611 case nir_intrinsic_read_first_invocation: {
4612 const fs_reg value = get_nir_src(instr->src[0]);
4613 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4614 break;
4615 }
4616
4617 case nir_intrinsic_shuffle: {
4618 const fs_reg value = get_nir_src(instr->src[0]);
4619 const fs_reg index = get_nir_src(instr->src[1]);
4620
4621 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4622 break;
4623 }
4624
4625 case nir_intrinsic_first_invocation: {
4626 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4627 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4628 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4629 fs_reg(component(tmp, 0)));
4630 break;
4631 }
4632
4633 case nir_intrinsic_quad_broadcast: {
4634 const fs_reg value = get_nir_src(instr->src[0]);
4635 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4636 assert(nir_src_bit_size(instr->src[1]) == 32);
4637
4638 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4639 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4640 break;
4641 }
4642
4643 case nir_intrinsic_quad_swap_horizontal: {
4644 const fs_reg value = get_nir_src(instr->src[0]);
4645 const fs_reg tmp = bld.vgrf(value.type);
4646 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4647
4648 const fs_reg src_left = horiz_stride(value, 2);
4649 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4650 const fs_reg tmp_left = horiz_stride(tmp, 2);
4651 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4652
4653 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4654 *
4655 * "When source or destination datatype is 64b or operation is
4656 * integer DWord multiply, regioning in Align1 must follow
4657 * these rules:
4658 *
4659 * [...]
4660 *
4661 * 3. Source and Destination offset must be the same, except
4662 * the case of scalar source."
4663 *
4664 * In order to work around this, we have to emit two 32-bit MOVs instead
4665 * of a single 64-bit MOV to do the shuffle.
4666 */
4667 if (type_sz(value.type) > 4 &&
4668 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4669 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4670 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4671 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4672 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4673 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4674 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4675 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4676 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4677 } else {
4678 ubld.MOV(tmp_left, src_right);
4679 ubld.MOV(tmp_right, src_left);
4680 }
4681 bld.MOV(retype(dest, value.type), tmp);
4682 break;
4683 }
4684
4685 case nir_intrinsic_quad_swap_vertical: {
4686 const fs_reg value = get_nir_src(instr->src[0]);
4687 if (nir_src_bit_size(instr->src[0]) == 32) {
4688 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4689 const fs_reg tmp = bld.vgrf(value.type);
4690 const fs_builder ubld = bld.exec_all();
4691 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4692 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4693 bld.MOV(retype(dest, value.type), tmp);
4694 } else {
4695 /* For larger data types, we have to either emit dispatch_width many
4696 * MOVs or else fall back to doing indirects.
4697 */
4698 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4699 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4700 brw_imm_w(0x2));
4701 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4702 }
4703 break;
4704 }
4705
4706 case nir_intrinsic_quad_swap_diagonal: {
4707 const fs_reg value = get_nir_src(instr->src[0]);
4708 if (nir_src_bit_size(instr->src[0]) == 32) {
4709 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4710 const fs_reg tmp = bld.vgrf(value.type);
4711 const fs_builder ubld = bld.exec_all();
4712 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4713 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4714 bld.MOV(retype(dest, value.type), tmp);
4715 } else {
4716 /* For larger data types, we have to either emit dispatch_width many
4717 * MOVs or else fall back to doing indirects.
4718 */
4719 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4720 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4721 brw_imm_w(0x3));
4722 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4723 }
4724 break;
4725 }
4726
4727 case nir_intrinsic_reduce: {
4728 fs_reg src = get_nir_src(instr->src[0]);
4729 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4730 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4731 if (cluster_size == 0 || cluster_size > dispatch_width)
4732 cluster_size = dispatch_width;
4733
4734 /* Figure out the source type */
4735 src.type = brw_type_for_nir_type(devinfo,
4736 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4737 nir_src_bit_size(instr->src[0])));
4738
4739 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4740 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4741 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4742
4743 /* Set up a register for all of our scratching around and initialize it
4744 * to reduction operation's identity value.
4745 */
4746 fs_reg scan = bld.vgrf(src.type);
4747 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4748
4749 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4750
4751 dest.type = src.type;
4752 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4753 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4754 * the distance between clusters is at least 2 GRFs. In this case,
4755 * we don't need the weird striding of the CLUSTER_BROADCAST
4756 * instruction and can just do regular MOVs.
4757 */
4758 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4759 const unsigned groups =
4760 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4761 const unsigned group_size = dispatch_width / groups;
4762 for (unsigned i = 0; i < groups; i++) {
4763 const unsigned cluster = (i * group_size) / cluster_size;
4764 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4765 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4766 component(scan, comp));
4767 }
4768 } else {
4769 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4770 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4771 }
4772 break;
4773 }
4774
4775 case nir_intrinsic_inclusive_scan:
4776 case nir_intrinsic_exclusive_scan: {
4777 fs_reg src = get_nir_src(instr->src[0]);
4778 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4779
4780 /* Figure out the source type */
4781 src.type = brw_type_for_nir_type(devinfo,
4782 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4783 nir_src_bit_size(instr->src[0])));
4784
4785 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4786 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4787 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4788
4789 /* Set up a register for all of our scratching around and initialize it
4790 * to reduction operation's identity value.
4791 */
4792 fs_reg scan = bld.vgrf(src.type);
4793 const fs_builder allbld = bld.exec_all();
4794 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4795
4796 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4797 /* Exclusive scan is a bit harder because we have to do an annoying
4798 * shift of the contents before we can begin. To make things worse,
4799 * we can't do this with a normal stride; we have to use indirects.
4800 */
4801 fs_reg shifted = bld.vgrf(src.type);
4802 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4803 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4804 brw_imm_w(-1));
4805 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4806 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4807 scan = shifted;
4808 }
4809
4810 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4811
4812 bld.MOV(retype(dest, src.type), scan);
4813 break;
4814 }
4815
4816 case nir_intrinsic_begin_fragment_shader_ordering:
4817 case nir_intrinsic_begin_invocation_interlock: {
4818 const fs_builder ubld = bld.group(8, 0);
4819 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4820
4821 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4822 REG_SIZE;
4823
4824 break;
4825 }
4826
4827 case nir_intrinsic_end_invocation_interlock: {
4828 /* We don't need to do anything here */
4829 break;
4830 }
4831
4832 default:
4833 unreachable("unknown intrinsic");
4834 }
4835 }
4836
4837 void
4838 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4839 int op, nir_intrinsic_instr *instr)
4840 {
4841 if (stage == MESA_SHADER_FRAGMENT)
4842 brw_wm_prog_data(prog_data)->has_side_effects = true;
4843
4844 fs_reg dest;
4845 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4846 dest = get_nir_dest(instr->dest);
4847
4848 fs_reg surface;
4849 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4850 if (const_surface) {
4851 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4852 const_surface->u32[0];
4853 surface = brw_imm_ud(surf_index);
4854 brw_mark_surface_used(prog_data, surf_index);
4855 } else {
4856 surface = vgrf(glsl_type::uint_type);
4857 bld.ADD(surface, get_nir_src(instr->src[0]),
4858 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4859
4860 /* Assume this may touch any SSBO. This is the same we do for other
4861 * UBO/SSBO accesses with non-constant surface.
4862 */
4863 brw_mark_surface_used(prog_data,
4864 stage_prog_data->binding_table.ssbo_start +
4865 nir->info.num_ssbos - 1);
4866 }
4867
4868 fs_reg offset = get_nir_src(instr->src[1]);
4869 fs_reg data1;
4870 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4871 data1 = get_nir_src(instr->src[2]);
4872 fs_reg data2;
4873 if (op == BRW_AOP_CMPWR)
4874 data2 = get_nir_src(instr->src[3]);
4875
4876 /* Emit the actual atomic operation */
4877
4878 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4879 data1, data2,
4880 1 /* dims */, 1 /* rsize */,
4881 op,
4882 BRW_PREDICATE_NONE);
4883 dest.type = atomic_result.type;
4884 bld.MOV(dest, atomic_result);
4885 }
4886
4887 void
4888 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4889 int op, nir_intrinsic_instr *instr)
4890 {
4891 if (stage == MESA_SHADER_FRAGMENT)
4892 brw_wm_prog_data(prog_data)->has_side_effects = true;
4893
4894 fs_reg dest;
4895 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4896 dest = get_nir_dest(instr->dest);
4897
4898 fs_reg surface;
4899 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4900 if (const_surface) {
4901 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4902 const_surface->u32[0];
4903 surface = brw_imm_ud(surf_index);
4904 brw_mark_surface_used(prog_data, surf_index);
4905 } else {
4906 surface = vgrf(glsl_type::uint_type);
4907 bld.ADD(surface, get_nir_src(instr->src[0]),
4908 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4909
4910 /* Assume this may touch any SSBO. This is the same we do for other
4911 * UBO/SSBO accesses with non-constant surface.
4912 */
4913 brw_mark_surface_used(prog_data,
4914 stage_prog_data->binding_table.ssbo_start +
4915 nir->info.num_ssbos - 1);
4916 }
4917
4918 fs_reg offset = get_nir_src(instr->src[1]);
4919 fs_reg data1 = get_nir_src(instr->src[2]);
4920 fs_reg data2;
4921 if (op == BRW_AOP_FCMPWR)
4922 data2 = get_nir_src(instr->src[3]);
4923
4924 /* Emit the actual atomic operation */
4925
4926 fs_reg atomic_result = emit_untyped_atomic_float(bld, surface, offset,
4927 data1, data2,
4928 1 /* dims */, 1 /* rsize */,
4929 op,
4930 BRW_PREDICATE_NONE);
4931 dest.type = atomic_result.type;
4932 bld.MOV(dest, atomic_result);
4933 }
4934
4935 void
4936 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4937 int op, nir_intrinsic_instr *instr)
4938 {
4939 fs_reg dest;
4940 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4941 dest = get_nir_dest(instr->dest);
4942
4943 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4944 fs_reg offset;
4945 fs_reg data1;
4946 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4947 data1 = get_nir_src(instr->src[1]);
4948 fs_reg data2;
4949 if (op == BRW_AOP_CMPWR)
4950 data2 = get_nir_src(instr->src[2]);
4951
4952 /* Get the offset */
4953 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4954 if (const_offset) {
4955 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4956 } else {
4957 offset = vgrf(glsl_type::uint_type);
4958 bld.ADD(offset,
4959 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4960 brw_imm_ud(instr->const_index[0]));
4961 }
4962
4963 /* Emit the actual atomic operation operation */
4964
4965 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4966 data1, data2,
4967 1 /* dims */, 1 /* rsize */,
4968 op,
4969 BRW_PREDICATE_NONE);
4970 dest.type = atomic_result.type;
4971 bld.MOV(dest, atomic_result);
4972 }
4973
4974 void
4975 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4976 int op, nir_intrinsic_instr *instr)
4977 {
4978 fs_reg dest;
4979 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4980 dest = get_nir_dest(instr->dest);
4981
4982 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4983 fs_reg offset;
4984 fs_reg data1 = get_nir_src(instr->src[1]);
4985 fs_reg data2;
4986 if (op == BRW_AOP_FCMPWR)
4987 data2 = get_nir_src(instr->src[2]);
4988
4989 /* Get the offset */
4990 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4991 if (const_offset) {
4992 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4993 } else {
4994 offset = vgrf(glsl_type::uint_type);
4995 bld.ADD(offset,
4996 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4997 brw_imm_ud(instr->const_index[0]));
4998 }
4999
5000 /* Emit the actual atomic operation operation */
5001
5002 fs_reg atomic_result = emit_untyped_atomic_float(bld, surface, offset,
5003 data1, data2,
5004 1 /* dims */, 1 /* rsize */,
5005 op,
5006 BRW_PREDICATE_NONE);
5007 dest.type = atomic_result.type;
5008 bld.MOV(dest, atomic_result);
5009 }
5010
5011 void
5012 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5013 {
5014 unsigned texture = instr->texture_index;
5015 unsigned sampler = instr->sampler_index;
5016
5017 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5018
5019 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5020 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5021
5022 int lod_components = 0;
5023
5024 /* The hardware requires a LOD for buffer textures */
5025 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5026 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5027
5028 uint32_t header_bits = 0;
5029 for (unsigned i = 0; i < instr->num_srcs; i++) {
5030 fs_reg src = get_nir_src(instr->src[i].src);
5031 switch (instr->src[i].src_type) {
5032 case nir_tex_src_bias:
5033 srcs[TEX_LOGICAL_SRC_LOD] =
5034 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5035 break;
5036 case nir_tex_src_comparator:
5037 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5038 break;
5039 case nir_tex_src_coord:
5040 switch (instr->op) {
5041 case nir_texop_txf:
5042 case nir_texop_txf_ms:
5043 case nir_texop_txf_ms_mcs:
5044 case nir_texop_samples_identical:
5045 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5046 break;
5047 default:
5048 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5049 break;
5050 }
5051 break;
5052 case nir_tex_src_ddx:
5053 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5054 lod_components = nir_tex_instr_src_size(instr, i);
5055 break;
5056 case nir_tex_src_ddy:
5057 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5058 break;
5059 case nir_tex_src_lod:
5060 switch (instr->op) {
5061 case nir_texop_txs:
5062 srcs[TEX_LOGICAL_SRC_LOD] =
5063 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5064 break;
5065 case nir_texop_txf:
5066 srcs[TEX_LOGICAL_SRC_LOD] =
5067 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5068 break;
5069 default:
5070 srcs[TEX_LOGICAL_SRC_LOD] =
5071 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5072 break;
5073 }
5074 break;
5075 case nir_tex_src_ms_index:
5076 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5077 break;
5078
5079 case nir_tex_src_offset: {
5080 nir_const_value *const_offset =
5081 nir_src_as_const_value(instr->src[i].src);
5082 unsigned offset_bits = 0;
5083 if (const_offset &&
5084 brw_texture_offset(const_offset->i32,
5085 nir_tex_instr_src_size(instr, i),
5086 &offset_bits)) {
5087 header_bits |= offset_bits;
5088 } else {
5089 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5090 retype(src, BRW_REGISTER_TYPE_D);
5091 }
5092 break;
5093 }
5094
5095 case nir_tex_src_projector:
5096 unreachable("should be lowered");
5097
5098 case nir_tex_src_texture_offset: {
5099 /* Figure out the highest possible texture index and mark it as used */
5100 uint32_t max_used = texture + instr->texture_array_size - 1;
5101 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5102 max_used += stage_prog_data->binding_table.gather_texture_start;
5103 } else {
5104 max_used += stage_prog_data->binding_table.texture_start;
5105 }
5106 brw_mark_surface_used(prog_data, max_used);
5107
5108 /* Emit code to evaluate the actual indexing expression */
5109 fs_reg tmp = vgrf(glsl_type::uint_type);
5110 bld.ADD(tmp, src, brw_imm_ud(texture));
5111 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5112 break;
5113 }
5114
5115 case nir_tex_src_sampler_offset: {
5116 /* Emit code to evaluate the actual indexing expression */
5117 fs_reg tmp = vgrf(glsl_type::uint_type);
5118 bld.ADD(tmp, src, brw_imm_ud(sampler));
5119 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5120 break;
5121 }
5122
5123 case nir_tex_src_ms_mcs:
5124 assert(instr->op == nir_texop_txf_ms);
5125 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5126 break;
5127
5128 case nir_tex_src_plane: {
5129 nir_const_value *const_plane =
5130 nir_src_as_const_value(instr->src[i].src);
5131 const uint32_t plane = const_plane->u32[0];
5132 const uint32_t texture_index =
5133 instr->texture_index +
5134 stage_prog_data->binding_table.plane_start[plane] -
5135 stage_prog_data->binding_table.texture_start;
5136
5137 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5138 break;
5139 }
5140
5141 default:
5142 unreachable("unknown texture source");
5143 }
5144 }
5145
5146 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5147 (instr->op == nir_texop_txf_ms ||
5148 instr->op == nir_texop_samples_identical)) {
5149 if (devinfo->gen >= 7 &&
5150 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5151 srcs[TEX_LOGICAL_SRC_MCS] =
5152 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5153 instr->coord_components,
5154 srcs[TEX_LOGICAL_SRC_SURFACE]);
5155 } else {
5156 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5157 }
5158 }
5159
5160 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5161 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5162
5163 enum opcode opcode;
5164 switch (instr->op) {
5165 case nir_texop_tex:
5166 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5167 SHADER_OPCODE_TXL_LOGICAL);
5168 break;
5169 case nir_texop_txb:
5170 opcode = FS_OPCODE_TXB_LOGICAL;
5171 break;
5172 case nir_texop_txl:
5173 opcode = SHADER_OPCODE_TXL_LOGICAL;
5174 break;
5175 case nir_texop_txd:
5176 opcode = SHADER_OPCODE_TXD_LOGICAL;
5177 break;
5178 case nir_texop_txf:
5179 opcode = SHADER_OPCODE_TXF_LOGICAL;
5180 break;
5181 case nir_texop_txf_ms:
5182 if ((key_tex->msaa_16 & (1 << sampler)))
5183 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5184 else
5185 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5186 break;
5187 case nir_texop_txf_ms_mcs:
5188 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5189 break;
5190 case nir_texop_query_levels:
5191 case nir_texop_txs:
5192 opcode = SHADER_OPCODE_TXS_LOGICAL;
5193 break;
5194 case nir_texop_lod:
5195 opcode = SHADER_OPCODE_LOD_LOGICAL;
5196 break;
5197 case nir_texop_tg4:
5198 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5199 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5200 else
5201 opcode = SHADER_OPCODE_TG4_LOGICAL;
5202 break;
5203 case nir_texop_texture_samples:
5204 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5205 break;
5206 case nir_texop_samples_identical: {
5207 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5208
5209 /* If mcs is an immediate value, it means there is no MCS. In that case
5210 * just return false.
5211 */
5212 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5213 bld.MOV(dst, brw_imm_ud(0u));
5214 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5215 fs_reg tmp = vgrf(glsl_type::uint_type);
5216 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5217 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5218 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5219 } else {
5220 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5221 BRW_CONDITIONAL_EQ);
5222 }
5223 return;
5224 }
5225 default:
5226 unreachable("unknown texture opcode");
5227 }
5228
5229 if (instr->op == nir_texop_tg4) {
5230 if (instr->component == 1 &&
5231 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5232 /* gather4 sampler is broken for green channel on RG32F --
5233 * we must ask for blue instead.
5234 */
5235 header_bits |= 2 << 16;
5236 } else {
5237 header_bits |= instr->component << 16;
5238 }
5239 }
5240
5241 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5242 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5243 inst->offset = header_bits;
5244
5245 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5246 if (devinfo->gen >= 9 &&
5247 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5248 unsigned write_mask = instr->dest.is_ssa ?
5249 nir_ssa_def_components_read(&instr->dest.ssa):
5250 (1 << dest_size) - 1;
5251 assert(write_mask != 0); /* dead code should have been eliminated */
5252 inst->size_written = util_last_bit(write_mask) *
5253 inst->dst.component_size(inst->exec_size);
5254 } else {
5255 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5256 }
5257
5258 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5259 inst->shadow_compare = true;
5260
5261 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5262 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5263
5264 fs_reg nir_dest[4];
5265 for (unsigned i = 0; i < dest_size; i++)
5266 nir_dest[i] = offset(dst, bld, i);
5267
5268 if (instr->op == nir_texop_query_levels) {
5269 /* # levels is in .w */
5270 nir_dest[0] = offset(dst, bld, 3);
5271 } else if (instr->op == nir_texop_txs &&
5272 dest_size >= 3 && devinfo->gen < 7) {
5273 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5274 fs_reg depth = offset(dst, bld, 2);
5275 nir_dest[2] = vgrf(glsl_type::int_type);
5276 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5277 }
5278
5279 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5280 }
5281
5282 void
5283 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5284 {
5285 switch (instr->type) {
5286 case nir_jump_break:
5287 bld.emit(BRW_OPCODE_BREAK);
5288 break;
5289 case nir_jump_continue:
5290 bld.emit(BRW_OPCODE_CONTINUE);
5291 break;
5292 case nir_jump_return:
5293 default:
5294 unreachable("unknown jump");
5295 }
5296 }
5297
5298 /*
5299 * This helper takes a source register and un/shuffles it into the destination
5300 * register.
5301 *
5302 * If source type size is smaller than destination type size the operation
5303 * needed is a component shuffle. The opposite case would be an unshuffle. If
5304 * source/destination type size is equal a shuffle is done that would be
5305 * equivalent to a simple MOV.
5306 *
5307 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5308 * components .xyz 16-bit vector on SIMD8 would be.
5309 *
5310 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5311 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5312 *
5313 * This helper will return the following 2 32-bit components with the 16-bit
5314 * values shuffled:
5315 *
5316 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5317 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5318 *
5319 * For unshuffle, the example would be the opposite, a 64-bit type source
5320 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5321 * would be:
5322 *
5323 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5324 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5325 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5326 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5327 *
5328 * The returned result would be the following 4 32-bit components unshuffled:
5329 *
5330 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5331 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5332 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5333 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5334 *
5335 * - Source and destination register must not be overlapped.
5336 * - components units are measured in terms of the smaller type between
5337 * source and destination because we are un/shuffling the smaller
5338 * components from/into the bigger ones.
5339 * - first_component parameter allows skipping source components.
5340 */
5341 void
5342 shuffle_src_to_dst(const fs_builder &bld,
5343 const fs_reg &dst,
5344 const fs_reg &src,
5345 uint32_t first_component,
5346 uint32_t components)
5347 {
5348 if (type_sz(src.type) == type_sz(dst.type)) {
5349 assert(!regions_overlap(dst,
5350 type_sz(dst.type) * bld.dispatch_width() * components,
5351 offset(src, bld, first_component),
5352 type_sz(src.type) * bld.dispatch_width() * components));
5353 for (unsigned i = 0; i < components; i++) {
5354 bld.MOV(retype(offset(dst, bld, i), src.type),
5355 offset(src, bld, i + first_component));
5356 }
5357 } else if (type_sz(src.type) < type_sz(dst.type)) {
5358 /* Source is shuffled into destination */
5359 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5360 assert(!regions_overlap(dst,
5361 type_sz(dst.type) * bld.dispatch_width() *
5362 DIV_ROUND_UP(components, size_ratio),
5363 offset(src, bld, first_component),
5364 type_sz(src.type) * bld.dispatch_width() * components));
5365
5366 brw_reg_type shuffle_type =
5367 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5368 BRW_REGISTER_TYPE_D);
5369 for (unsigned i = 0; i < components; i++) {
5370 fs_reg shuffle_component_i =
5371 subscript(offset(dst, bld, i / size_ratio),
5372 shuffle_type, i % size_ratio);
5373 bld.MOV(shuffle_component_i,
5374 retype(offset(src, bld, i + first_component), shuffle_type));
5375 }
5376 } else {
5377 /* Source is unshuffled into destination */
5378 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5379 assert(!regions_overlap(dst,
5380 type_sz(dst.type) * bld.dispatch_width() * components,
5381 offset(src, bld, first_component / size_ratio),
5382 type_sz(src.type) * bld.dispatch_width() *
5383 DIV_ROUND_UP(components + (first_component % size_ratio),
5384 size_ratio)));
5385
5386 brw_reg_type shuffle_type =
5387 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5388 BRW_REGISTER_TYPE_D);
5389 for (unsigned i = 0; i < components; i++) {
5390 fs_reg shuffle_component_i =
5391 subscript(offset(src, bld, (first_component + i) / size_ratio),
5392 shuffle_type, (first_component + i) % size_ratio);
5393 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5394 shuffle_component_i);
5395 }
5396 }
5397 }
5398
5399 void
5400 shuffle_from_32bit_read(const fs_builder &bld,
5401 const fs_reg &dst,
5402 const fs_reg &src,
5403 uint32_t first_component,
5404 uint32_t components)
5405 {
5406 assert(type_sz(src.type) == 4);
5407
5408 /* This function takes components in units of the destination type while
5409 * shuffle_src_to_dst takes components in units of the smallest type
5410 */
5411 if (type_sz(dst.type) > 4) {
5412 assert(type_sz(dst.type) == 8);
5413 first_component *= 2;
5414 components *= 2;
5415 }
5416
5417 shuffle_src_to_dst(bld, dst, src, first_component, components);
5418 }
5419
5420 fs_reg
5421 shuffle_for_32bit_write(const fs_builder &bld,
5422 const fs_reg &src,
5423 uint32_t first_component,
5424 uint32_t components)
5425 {
5426 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5427 DIV_ROUND_UP (components * type_sz(src.type), 4));
5428 /* This function takes components in units of the source type while
5429 * shuffle_src_to_dst takes components in units of the smallest type
5430 */
5431 if (type_sz(src.type) > 4) {
5432 assert(type_sz(src.type) == 8);
5433 first_component *= 2;
5434 components *= 2;
5435 }
5436
5437 shuffle_src_to_dst(bld, dst, src, first_component, components);
5438
5439 return dst;
5440 }
5441
5442 fs_reg
5443 setup_imm_df(const fs_builder &bld, double v)
5444 {
5445 const struct gen_device_info *devinfo = bld.shader->devinfo;
5446 assert(devinfo->gen >= 7);
5447
5448 if (devinfo->gen >= 8)
5449 return brw_imm_df(v);
5450
5451 /* gen7.5 does not support DF immediates straighforward but the DIM
5452 * instruction allows to set the 64-bit immediate value.
5453 */
5454 if (devinfo->is_haswell) {
5455 const fs_builder ubld = bld.exec_all().group(1, 0);
5456 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5457 ubld.DIM(dst, brw_imm_df(v));
5458 return component(dst, 0);
5459 }
5460
5461 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5462 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5463 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5464 *
5465 * Alternatively, we could also produce a normal VGRF (without stride 0)
5466 * by writing to all the channels in the VGRF, however, that would hit the
5467 * gen7 bug where we have to split writes that span more than 1 register
5468 * into instructions with a width of 4 (otherwise the write to the second
5469 * register written runs into an execmask hardware bug) which isn't very
5470 * nice.
5471 */
5472 union {
5473 double d;
5474 struct {
5475 uint32_t i1;
5476 uint32_t i2;
5477 };
5478 } di;
5479
5480 di.d = v;
5481
5482 const fs_builder ubld = bld.exec_all().group(1, 0);
5483 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5484 ubld.MOV(tmp, brw_imm_ud(di.i1));
5485 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5486
5487 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5488 }
5489
5490 fs_reg
5491 setup_imm_b(const fs_builder &bld, int8_t v)
5492 {
5493 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5494 bld.MOV(tmp, brw_imm_w(v));
5495 return tmp;
5496 }
5497
5498 fs_reg
5499 setup_imm_ub(const fs_builder &bld, uint8_t v)
5500 {
5501 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5502 bld.MOV(tmp, brw_imm_uw(v));
5503 return tmp;
5504 }