intel/compiler: fix first_component for 64-bit types on vertex inputs
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 nir_foreach_variable(var, &nir->outputs) {
71 const int loc = var->data.driver_location;
72 if (outputs[loc].file == BAD_FILE) {
73 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s[loc]);
74 for (unsigned i = 0; i < vec4s[loc]; i++) {
75 outputs[loc + i] = offset(reg, bld, 4 * i);
76 }
77 }
78 }
79 }
80
81 void
82 fs_visitor::nir_setup_uniforms()
83 {
84 /* Only the first compile gets to set up uniforms. */
85 if (push_constant_loc) {
86 assert(pull_constant_loc);
87 return;
88 }
89
90 uniforms = nir->num_uniforms / 4;
91
92 if (stage == MESA_SHADER_COMPUTE) {
93 /* Add a uniform for the thread local id. It must be the last uniform
94 * on the list.
95 */
96 assert(uniforms == prog_data->nr_params);
97 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
98 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
99 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
100 }
101 }
102
103 static bool
104 emit_system_values_block(nir_block *block, fs_visitor *v)
105 {
106 fs_reg *reg;
107
108 nir_foreach_instr(instr, block) {
109 if (instr->type != nir_instr_type_intrinsic)
110 continue;
111
112 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
113 switch (intrin->intrinsic) {
114 case nir_intrinsic_load_vertex_id:
115 unreachable("should be lowered by lower_vertex_id().");
116
117 case nir_intrinsic_load_vertex_id_zero_base:
118 case nir_intrinsic_load_base_vertex:
119 case nir_intrinsic_load_instance_id:
120 case nir_intrinsic_load_base_instance:
121 case nir_intrinsic_load_draw_id:
122 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
123
124 case nir_intrinsic_load_invocation_id:
125 if (v->stage == MESA_SHADER_TESS_CTRL)
126 break;
127 assert(v->stage == MESA_SHADER_GEOMETRY);
128 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
129 if (reg->file == BAD_FILE) {
130 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
131 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
132 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
133 abld.SHR(iid, g1, brw_imm_ud(27u));
134 *reg = iid;
135 }
136 break;
137
138 case nir_intrinsic_load_sample_pos:
139 assert(v->stage == MESA_SHADER_FRAGMENT);
140 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
141 if (reg->file == BAD_FILE)
142 *reg = *v->emit_samplepos_setup();
143 break;
144
145 case nir_intrinsic_load_sample_id:
146 assert(v->stage == MESA_SHADER_FRAGMENT);
147 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
148 if (reg->file == BAD_FILE)
149 *reg = *v->emit_sampleid_setup();
150 break;
151
152 case nir_intrinsic_load_sample_mask_in:
153 assert(v->stage == MESA_SHADER_FRAGMENT);
154 assert(v->devinfo->gen >= 7);
155 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
156 if (reg->file == BAD_FILE)
157 *reg = *v->emit_samplemaskin_setup();
158 break;
159
160 case nir_intrinsic_load_work_group_id:
161 assert(v->stage == MESA_SHADER_COMPUTE);
162 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
163 if (reg->file == BAD_FILE)
164 *reg = *v->emit_cs_work_group_id_setup();
165 break;
166
167 case nir_intrinsic_load_helper_invocation:
168 assert(v->stage == MESA_SHADER_FRAGMENT);
169 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
170 if (reg->file == BAD_FILE) {
171 const fs_builder abld =
172 v->bld.annotate("gl_HelperInvocation", NULL);
173
174 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
175 * pixel mask is in g1.7 of the thread payload.
176 *
177 * We move the per-channel pixel enable bit to the low bit of each
178 * channel by shifting the byte containing the pixel mask by the
179 * vector immediate 0x76543210UV.
180 *
181 * The region of <1,8,0> reads only 1 byte (the pixel masks for
182 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
183 * masks for 2 and 3) in SIMD16.
184 */
185 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
186 abld.SHR(shifted,
187 stride(byte_offset(retype(brw_vec1_grf(1, 0),
188 BRW_REGISTER_TYPE_UB), 28),
189 1, 8, 0),
190 brw_imm_v(0x76543210));
191
192 /* A set bit in the pixel mask means the channel is enabled, but
193 * that is the opposite of gl_HelperInvocation so we need to invert
194 * the mask.
195 *
196 * The negate source-modifier bit of logical instructions on Gen8+
197 * performs 1's complement negation, so we can use that instead of
198 * a NOT instruction.
199 */
200 fs_reg inverted = negate(shifted);
201 if (v->devinfo->gen < 8) {
202 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
203 abld.NOT(inverted, shifted);
204 }
205
206 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
207 * with 1 and negating.
208 */
209 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
210 abld.AND(anded, inverted, brw_imm_uw(1));
211
212 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
213 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
214 *reg = dst;
215 }
216 break;
217
218 default:
219 break;
220 }
221 }
222
223 return true;
224 }
225
226 void
227 fs_visitor::nir_emit_system_values()
228 {
229 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
230 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
231 nir_system_values[i] = fs_reg();
232 }
233
234 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
235 * never end up using it.
236 */
237 {
238 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
239 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
240 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
241
242 const fs_builder allbld8 = abld.group(8, 0).exec_all();
243 allbld8.MOV(reg, brw_imm_v(0x76543210));
244 if (dispatch_width > 8)
245 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
246 if (dispatch_width > 16) {
247 const fs_builder allbld16 = abld.group(16, 0).exec_all();
248 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
249 }
250 }
251
252 nir_foreach_function(function, nir) {
253 assert(strcmp(function->name, "main") == 0);
254 assert(function->impl);
255 nir_foreach_block(block, function->impl) {
256 emit_system_values_block(block, this);
257 }
258 }
259 }
260
261 /*
262 * Returns a type based on a reference_type (word, float, half-float) and a
263 * given bit_size.
264 *
265 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
266 *
267 * @FIXME: 64-bit return types are always DF on integer types to maintain
268 * compability with uses of DF previously to the introduction of int64
269 * support.
270 */
271 static brw_reg_type
272 brw_reg_type_from_bit_size(const unsigned bit_size,
273 const brw_reg_type reference_type)
274 {
275 switch(reference_type) {
276 case BRW_REGISTER_TYPE_HF:
277 case BRW_REGISTER_TYPE_F:
278 case BRW_REGISTER_TYPE_DF:
279 switch(bit_size) {
280 case 16:
281 return BRW_REGISTER_TYPE_HF;
282 case 32:
283 return BRW_REGISTER_TYPE_F;
284 case 64:
285 return BRW_REGISTER_TYPE_DF;
286 default:
287 unreachable("Invalid bit size");
288 }
289 case BRW_REGISTER_TYPE_W:
290 case BRW_REGISTER_TYPE_D:
291 case BRW_REGISTER_TYPE_Q:
292 switch(bit_size) {
293 case 16:
294 return BRW_REGISTER_TYPE_W;
295 case 32:
296 return BRW_REGISTER_TYPE_D;
297 case 64:
298 return BRW_REGISTER_TYPE_Q;
299 default:
300 unreachable("Invalid bit size");
301 }
302 case BRW_REGISTER_TYPE_UW:
303 case BRW_REGISTER_TYPE_UD:
304 case BRW_REGISTER_TYPE_UQ:
305 switch(bit_size) {
306 case 16:
307 return BRW_REGISTER_TYPE_UW;
308 case 32:
309 return BRW_REGISTER_TYPE_UD;
310 case 64:
311 return BRW_REGISTER_TYPE_UQ;
312 default:
313 unreachable("Invalid bit size");
314 }
315 default:
316 unreachable("Unknown type");
317 }
318 }
319
320 void
321 fs_visitor::nir_emit_impl(nir_function_impl *impl)
322 {
323 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
324 for (unsigned i = 0; i < impl->reg_alloc; i++) {
325 nir_locals[i] = fs_reg();
326 }
327
328 foreach_list_typed(nir_register, reg, node, &impl->registers) {
329 unsigned array_elems =
330 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
331 unsigned size = array_elems * reg->num_components;
332 const brw_reg_type reg_type =
333 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
334 nir_locals[reg->index] = bld.vgrf(reg_type, size);
335 }
336
337 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
338 impl->ssa_alloc);
339
340 nir_emit_cf_list(&impl->body);
341 }
342
343 void
344 fs_visitor::nir_emit_cf_list(exec_list *list)
345 {
346 exec_list_validate(list);
347 foreach_list_typed(nir_cf_node, node, node, list) {
348 switch (node->type) {
349 case nir_cf_node_if:
350 nir_emit_if(nir_cf_node_as_if(node));
351 break;
352
353 case nir_cf_node_loop:
354 nir_emit_loop(nir_cf_node_as_loop(node));
355 break;
356
357 case nir_cf_node_block:
358 nir_emit_block(nir_cf_node_as_block(node));
359 break;
360
361 default:
362 unreachable("Invalid CFG node block");
363 }
364 }
365 }
366
367 void
368 fs_visitor::nir_emit_if(nir_if *if_stmt)
369 {
370 /* first, put the condition into f0 */
371 fs_inst *inst = bld.MOV(bld.null_reg_d(),
372 retype(get_nir_src(if_stmt->condition),
373 BRW_REGISTER_TYPE_D));
374 inst->conditional_mod = BRW_CONDITIONAL_NZ;
375
376 bld.IF(BRW_PREDICATE_NORMAL);
377
378 nir_emit_cf_list(&if_stmt->then_list);
379
380 /* note: if the else is empty, dead CF elimination will remove it */
381 bld.emit(BRW_OPCODE_ELSE);
382
383 nir_emit_cf_list(&if_stmt->else_list);
384
385 bld.emit(BRW_OPCODE_ENDIF);
386 }
387
388 void
389 fs_visitor::nir_emit_loop(nir_loop *loop)
390 {
391 bld.emit(BRW_OPCODE_DO);
392
393 nir_emit_cf_list(&loop->body);
394
395 bld.emit(BRW_OPCODE_WHILE);
396 }
397
398 void
399 fs_visitor::nir_emit_block(nir_block *block)
400 {
401 nir_foreach_instr(instr, block) {
402 nir_emit_instr(instr);
403 }
404 }
405
406 void
407 fs_visitor::nir_emit_instr(nir_instr *instr)
408 {
409 const fs_builder abld = bld.annotate(NULL, instr);
410
411 switch (instr->type) {
412 case nir_instr_type_alu:
413 nir_emit_alu(abld, nir_instr_as_alu(instr));
414 break;
415
416 case nir_instr_type_intrinsic:
417 switch (stage) {
418 case MESA_SHADER_VERTEX:
419 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
420 break;
421 case MESA_SHADER_TESS_CTRL:
422 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
423 break;
424 case MESA_SHADER_TESS_EVAL:
425 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
426 break;
427 case MESA_SHADER_GEOMETRY:
428 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
429 break;
430 case MESA_SHADER_FRAGMENT:
431 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
432 break;
433 case MESA_SHADER_COMPUTE:
434 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
435 break;
436 default:
437 unreachable("unsupported shader stage");
438 }
439 break;
440
441 case nir_instr_type_tex:
442 nir_emit_texture(abld, nir_instr_as_tex(instr));
443 break;
444
445 case nir_instr_type_load_const:
446 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
447 break;
448
449 case nir_instr_type_ssa_undef:
450 /* We create a new VGRF for undefs on every use (by handling
451 * them in get_nir_src()), rather than for each definition.
452 * This helps register coalescing eliminate MOVs from undef.
453 */
454 break;
455
456 case nir_instr_type_jump:
457 nir_emit_jump(abld, nir_instr_as_jump(instr));
458 break;
459
460 default:
461 unreachable("unknown instruction type");
462 }
463 }
464
465 /**
466 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
467 * match instr.
468 */
469 bool
470 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
471 const fs_reg &result)
472 {
473 if (!instr->src[0].src.is_ssa ||
474 !instr->src[0].src.ssa->parent_instr)
475 return false;
476
477 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
478 return false;
479
480 nir_alu_instr *src0 =
481 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
482
483 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
484 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
485 return false;
486
487 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
488 assert(element != NULL);
489
490 /* Element type to extract.*/
491 const brw_reg_type type = brw_int_type(
492 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
493 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
494
495 fs_reg op0 = get_nir_src(src0->src[0].src);
496 op0.type = brw_type_for_nir_type(devinfo,
497 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
498 nir_src_bit_size(src0->src[0].src)));
499 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
500
501 set_saturate(instr->dest.saturate,
502 bld.MOV(result, subscript(op0, type, element->u32[0])));
503 return true;
504 }
505
506 bool
507 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
508 const fs_reg &result)
509 {
510 if (!instr->src[0].src.is_ssa ||
511 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
512 return false;
513
514 nir_intrinsic_instr *src0 =
515 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
516
517 if (src0->intrinsic != nir_intrinsic_load_front_face)
518 return false;
519
520 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
521 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
522 return false;
523
524 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
525 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
526 return false;
527
528 fs_reg tmp = vgrf(glsl_type::int_type);
529
530 if (devinfo->gen >= 6) {
531 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
532 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
533
534 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
535 *
536 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
537 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
538 *
539 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
540 *
541 * This negation looks like it's safe in practice, because bits 0:4 will
542 * surely be TRIANGLES
543 */
544
545 if (value1->f32[0] == -1.0f) {
546 g0.negate = true;
547 }
548
549 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
550 g0, brw_imm_uw(0x3f80));
551 } else {
552 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
553 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
554
555 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
556 *
557 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
558 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
559 *
560 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
561 *
562 * This negation looks like it's safe in practice, because bits 0:4 will
563 * surely be TRIANGLES
564 */
565
566 if (value1->f32[0] == -1.0f) {
567 g1_6.negate = true;
568 }
569
570 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
571 }
572 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
573
574 return true;
575 }
576
577 static void
578 emit_find_msb_using_lzd(const fs_builder &bld,
579 const fs_reg &result,
580 const fs_reg &src,
581 bool is_signed)
582 {
583 fs_inst *inst;
584 fs_reg temp = src;
585
586 if (is_signed) {
587 /* LZD of an absolute value source almost always does the right
588 * thing. There are two problem values:
589 *
590 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
591 * 0. However, findMSB(int(0x80000000)) == 30.
592 *
593 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
594 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
595 *
596 * For a value of zero or negative one, -1 will be returned.
597 *
598 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
599 * findMSB(-(1<<x)) should return x-1.
600 *
601 * For all negative number cases, including 0x80000000 and
602 * 0xffffffff, the correct value is obtained from LZD if instead of
603 * negating the (already negative) value the logical-not is used. A
604 * conditonal logical-not can be achieved in two instructions.
605 */
606 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
607
608 bld.ASR(temp, src, brw_imm_d(31));
609 bld.XOR(temp, temp, src);
610 }
611
612 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
613 retype(temp, BRW_REGISTER_TYPE_UD));
614
615 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
616 * from the LSB side. Subtract the result from 31 to convert the MSB
617 * count into an LSB count. If no bits are set, LZD will return 32.
618 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
619 */
620 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
621 inst->src[0].negate = true;
622 }
623
624 static brw_rnd_mode
625 brw_rnd_mode_from_nir_op (const nir_op op) {
626 switch (op) {
627 case nir_op_f2f16_rtz:
628 return BRW_RND_MODE_RTZ;
629 case nir_op_f2f16_rtne:
630 return BRW_RND_MODE_RTNE;
631 default:
632 unreachable("Operation doesn't support rounding mode");
633 }
634 }
635
636 void
637 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
638 {
639 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
640 fs_inst *inst;
641
642 fs_reg result = get_nir_dest(instr->dest.dest);
643 result.type = brw_type_for_nir_type(devinfo,
644 (nir_alu_type)(nir_op_infos[instr->op].output_type |
645 nir_dest_bit_size(instr->dest.dest)));
646
647 fs_reg op[4];
648 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
649 op[i] = get_nir_src(instr->src[i].src);
650 op[i].type = brw_type_for_nir_type(devinfo,
651 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
652 nir_src_bit_size(instr->src[i].src)));
653 op[i].abs = instr->src[i].abs;
654 op[i].negate = instr->src[i].negate;
655 }
656
657 /* We get a bunch of mov's out of the from_ssa pass and they may still
658 * be vectorized. We'll handle them as a special-case. We'll also
659 * handle vecN here because it's basically the same thing.
660 */
661 switch (instr->op) {
662 case nir_op_imov:
663 case nir_op_fmov:
664 case nir_op_vec2:
665 case nir_op_vec3:
666 case nir_op_vec4: {
667 fs_reg temp = result;
668 bool need_extra_copy = false;
669 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
670 if (!instr->src[i].src.is_ssa &&
671 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
672 need_extra_copy = true;
673 temp = bld.vgrf(result.type, 4);
674 break;
675 }
676 }
677
678 for (unsigned i = 0; i < 4; i++) {
679 if (!(instr->dest.write_mask & (1 << i)))
680 continue;
681
682 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
683 inst = bld.MOV(offset(temp, bld, i),
684 offset(op[0], bld, instr->src[0].swizzle[i]));
685 } else {
686 inst = bld.MOV(offset(temp, bld, i),
687 offset(op[i], bld, instr->src[i].swizzle[0]));
688 }
689 inst->saturate = instr->dest.saturate;
690 }
691
692 /* In this case the source and destination registers were the same,
693 * so we need to insert an extra set of moves in order to deal with
694 * any swizzling.
695 */
696 if (need_extra_copy) {
697 for (unsigned i = 0; i < 4; i++) {
698 if (!(instr->dest.write_mask & (1 << i)))
699 continue;
700
701 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
702 }
703 }
704 return;
705 }
706 default:
707 break;
708 }
709
710 /* At this point, we have dealt with any instruction that operates on
711 * more than a single channel. Therefore, we can just adjust the source
712 * and destination registers for that channel and emit the instruction.
713 */
714 unsigned channel = 0;
715 if (nir_op_infos[instr->op].output_size == 0) {
716 /* Since NIR is doing the scalarizing for us, we should only ever see
717 * vectorized operations with a single channel.
718 */
719 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
720 channel = ffs(instr->dest.write_mask) - 1;
721
722 result = offset(result, bld, channel);
723 }
724
725 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
726 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
727 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
728 }
729
730 switch (instr->op) {
731 case nir_op_i2f32:
732 case nir_op_u2f32:
733 if (optimize_extract_to_float(instr, result))
734 return;
735 inst = bld.MOV(result, op[0]);
736 inst->saturate = instr->dest.saturate;
737 break;
738
739 case nir_op_f2f16_rtne:
740 case nir_op_f2f16_rtz:
741 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
742 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
743 /* fallthrough */
744
745 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
746 * on the HW gen, it is a special hw opcode or just a MOV, and
747 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
748 *
749 * But if we want to use that opcode, we need to provide support on
750 * different optimizations and lowerings. As right now HF support is
751 * only for gen8+, it will be better to use directly the MOV, and use
752 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
753 */
754
755 case nir_op_f2f16_undef:
756 case nir_op_i2i16:
757 case nir_op_u2u16: {
758 /* TODO: Fixing aligment rules for conversions from 32-bits to
759 * 16-bit types should be moved to lower_conversions
760 */
761 fs_reg tmp = bld.vgrf(op[0].type, 1);
762 tmp = subscript(tmp, result.type, 0);
763 inst = bld.MOV(tmp, op[0]);
764 inst->saturate = instr->dest.saturate;
765 inst = bld.MOV(result, tmp);
766 inst->saturate = instr->dest.saturate;
767 break;
768 }
769
770 case nir_op_f2f64:
771 case nir_op_f2i64:
772 case nir_op_f2u64:
773 case nir_op_i2f64:
774 case nir_op_i2i64:
775 case nir_op_u2f64:
776 case nir_op_u2u64:
777 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
778 *
779 * "When source or destination is 64b (...), regioning in Align1
780 * must follow these rules:
781 *
782 * 1. Source and destination horizontal stride must be aligned to
783 * the same qword.
784 * (...)"
785 *
786 * This means that 32-bit to 64-bit conversions need to have the 32-bit
787 * data elements aligned to 64-bit. This restriction does not apply to
788 * BDW and later.
789 */
790 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
791 nir_src_bit_size(instr->src[0].src) == 32 &&
792 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
793 fs_reg tmp = bld.vgrf(result.type, 1);
794 tmp = subscript(tmp, op[0].type, 0);
795 inst = bld.MOV(tmp, op[0]);
796 inst = bld.MOV(result, tmp);
797 inst->saturate = instr->dest.saturate;
798 break;
799 }
800 /* fallthrough */
801 case nir_op_f2f32:
802 case nir_op_f2i32:
803 case nir_op_f2u32:
804 case nir_op_i2i32:
805 case nir_op_u2u32:
806 inst = bld.MOV(result, op[0]);
807 inst->saturate = instr->dest.saturate;
808 break;
809
810 case nir_op_fsign: {
811 if (op[0].abs) {
812 /* Straightforward since the source can be assumed to be
813 * non-negative.
814 */
815 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
816 set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
817
818 } else if (type_sz(op[0].type) < 8) {
819 /* AND(val, 0x80000000) gives the sign bit.
820 *
821 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
822 * zero.
823 */
824 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
825
826 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
827 op[0].type = BRW_REGISTER_TYPE_UD;
828 result.type = BRW_REGISTER_TYPE_UD;
829 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
830
831 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
832 inst->predicate = BRW_PREDICATE_NORMAL;
833 if (instr->dest.saturate) {
834 inst = bld.MOV(result, result);
835 inst->saturate = true;
836 }
837 } else {
838 /* For doubles we do the same but we need to consider:
839 *
840 * - 2-src instructions can't operate with 64-bit immediates
841 * - The sign is encoded in the high 32-bit of each DF
842 * - We need to produce a DF result.
843 */
844
845 fs_reg zero = vgrf(glsl_type::double_type);
846 bld.MOV(zero, setup_imm_df(bld, 0.0));
847 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
848
849 bld.MOV(result, zero);
850
851 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
852 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
853 brw_imm_ud(0x80000000u));
854
855 set_predicate(BRW_PREDICATE_NORMAL,
856 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
857
858 if (instr->dest.saturate) {
859 inst = bld.MOV(result, result);
860 inst->saturate = true;
861 }
862 }
863 break;
864 }
865
866 case nir_op_isign:
867 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
868 * -> non-negative val generates 0x00000000.
869 * Predicated OR sets 1 if val is positive.
870 */
871 assert(nir_dest_bit_size(instr->dest.dest) < 64);
872 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
873 bld.ASR(result, op[0], brw_imm_d(31));
874 inst = bld.OR(result, result, brw_imm_d(1));
875 inst->predicate = BRW_PREDICATE_NORMAL;
876 break;
877
878 case nir_op_frcp:
879 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
880 inst->saturate = instr->dest.saturate;
881 break;
882
883 case nir_op_fexp2:
884 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
885 inst->saturate = instr->dest.saturate;
886 break;
887
888 case nir_op_flog2:
889 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
890 inst->saturate = instr->dest.saturate;
891 break;
892
893 case nir_op_fsin:
894 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
895 inst->saturate = instr->dest.saturate;
896 break;
897
898 case nir_op_fcos:
899 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
900 inst->saturate = instr->dest.saturate;
901 break;
902
903 case nir_op_fddx:
904 if (fs_key->high_quality_derivatives) {
905 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
906 } else {
907 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
908 }
909 inst->saturate = instr->dest.saturate;
910 break;
911 case nir_op_fddx_fine:
912 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
913 inst->saturate = instr->dest.saturate;
914 break;
915 case nir_op_fddx_coarse:
916 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
917 inst->saturate = instr->dest.saturate;
918 break;
919 case nir_op_fddy:
920 if (fs_key->high_quality_derivatives) {
921 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
922 } else {
923 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
924 }
925 inst->saturate = instr->dest.saturate;
926 break;
927 case nir_op_fddy_fine:
928 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
929 inst->saturate = instr->dest.saturate;
930 break;
931 case nir_op_fddy_coarse:
932 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
933 inst->saturate = instr->dest.saturate;
934 break;
935
936 case nir_op_iadd:
937 case nir_op_fadd:
938 inst = bld.ADD(result, op[0], op[1]);
939 inst->saturate = instr->dest.saturate;
940 break;
941
942 case nir_op_fmul:
943 inst = bld.MUL(result, op[0], op[1]);
944 inst->saturate = instr->dest.saturate;
945 break;
946
947 case nir_op_imul:
948 assert(nir_dest_bit_size(instr->dest.dest) < 64);
949 bld.MUL(result, op[0], op[1]);
950 break;
951
952 case nir_op_imul_high:
953 case nir_op_umul_high:
954 assert(nir_dest_bit_size(instr->dest.dest) < 64);
955 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
956 break;
957
958 case nir_op_idiv:
959 case nir_op_udiv:
960 assert(nir_dest_bit_size(instr->dest.dest) < 64);
961 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
962 break;
963
964 case nir_op_uadd_carry:
965 unreachable("Should have been lowered by carry_to_arith().");
966
967 case nir_op_usub_borrow:
968 unreachable("Should have been lowered by borrow_to_arith().");
969
970 case nir_op_umod:
971 case nir_op_irem:
972 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
973 * appears that our hardware just does the right thing for signed
974 * remainder.
975 */
976 assert(nir_dest_bit_size(instr->dest.dest) < 64);
977 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
978 break;
979
980 case nir_op_imod: {
981 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
982 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
983
984 /* Math instructions don't support conditional mod */
985 inst = bld.MOV(bld.null_reg_d(), result);
986 inst->conditional_mod = BRW_CONDITIONAL_NZ;
987
988 /* Now, we need to determine if signs of the sources are different.
989 * When we XOR the sources, the top bit is 0 if they are the same and 1
990 * if they are different. We can then use a conditional modifier to
991 * turn that into a predicate. This leads us to an XOR.l instruction.
992 *
993 * Technically, according to the PRM, you're not allowed to use .l on a
994 * XOR instruction. However, emperical experiments and Curro's reading
995 * of the simulator source both indicate that it's safe.
996 */
997 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
998 inst = bld.XOR(tmp, op[0], op[1]);
999 inst->predicate = BRW_PREDICATE_NORMAL;
1000 inst->conditional_mod = BRW_CONDITIONAL_L;
1001
1002 /* If the result of the initial remainder operation is non-zero and the
1003 * two sources have different signs, add in a copy of op[1] to get the
1004 * final integer modulus value.
1005 */
1006 inst = bld.ADD(result, result, op[1]);
1007 inst->predicate = BRW_PREDICATE_NORMAL;
1008 break;
1009 }
1010
1011 case nir_op_flt:
1012 case nir_op_fge:
1013 case nir_op_feq:
1014 case nir_op_fne: {
1015 fs_reg dest = result;
1016 if (nir_src_bit_size(instr->src[0].src) > 32) {
1017 dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
1018 }
1019 brw_conditional_mod cond;
1020 switch (instr->op) {
1021 case nir_op_flt:
1022 cond = BRW_CONDITIONAL_L;
1023 break;
1024 case nir_op_fge:
1025 cond = BRW_CONDITIONAL_GE;
1026 break;
1027 case nir_op_feq:
1028 cond = BRW_CONDITIONAL_Z;
1029 break;
1030 case nir_op_fne:
1031 cond = BRW_CONDITIONAL_NZ;
1032 break;
1033 default:
1034 unreachable("bad opcode");
1035 }
1036 bld.CMP(dest, op[0], op[1], cond);
1037 if (nir_src_bit_size(instr->src[0].src) > 32) {
1038 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1039 }
1040 break;
1041 }
1042
1043 case nir_op_ilt:
1044 case nir_op_ult:
1045 case nir_op_ige:
1046 case nir_op_uge:
1047 case nir_op_ieq:
1048 case nir_op_ine: {
1049 fs_reg dest = result;
1050 if (nir_src_bit_size(instr->src[0].src) > 32) {
1051 dest = bld.vgrf(BRW_REGISTER_TYPE_UQ, 1);
1052 }
1053
1054 brw_conditional_mod cond;
1055 switch (instr->op) {
1056 case nir_op_ilt:
1057 case nir_op_ult:
1058 cond = BRW_CONDITIONAL_L;
1059 break;
1060 case nir_op_ige:
1061 case nir_op_uge:
1062 cond = BRW_CONDITIONAL_GE;
1063 break;
1064 case nir_op_ieq:
1065 cond = BRW_CONDITIONAL_Z;
1066 break;
1067 case nir_op_ine:
1068 cond = BRW_CONDITIONAL_NZ;
1069 break;
1070 default:
1071 unreachable("bad opcode");
1072 }
1073 bld.CMP(dest, op[0], op[1], cond);
1074 if (nir_src_bit_size(instr->src[0].src) > 32) {
1075 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1076 }
1077 break;
1078 }
1079
1080 case nir_op_inot:
1081 if (devinfo->gen >= 8) {
1082 op[0] = resolve_source_modifiers(op[0]);
1083 }
1084 bld.NOT(result, op[0]);
1085 break;
1086 case nir_op_ixor:
1087 if (devinfo->gen >= 8) {
1088 op[0] = resolve_source_modifiers(op[0]);
1089 op[1] = resolve_source_modifiers(op[1]);
1090 }
1091 bld.XOR(result, op[0], op[1]);
1092 break;
1093 case nir_op_ior:
1094 if (devinfo->gen >= 8) {
1095 op[0] = resolve_source_modifiers(op[0]);
1096 op[1] = resolve_source_modifiers(op[1]);
1097 }
1098 bld.OR(result, op[0], op[1]);
1099 break;
1100 case nir_op_iand:
1101 if (devinfo->gen >= 8) {
1102 op[0] = resolve_source_modifiers(op[0]);
1103 op[1] = resolve_source_modifiers(op[1]);
1104 }
1105 bld.AND(result, op[0], op[1]);
1106 break;
1107
1108 case nir_op_fdot2:
1109 case nir_op_fdot3:
1110 case nir_op_fdot4:
1111 case nir_op_ball_fequal2:
1112 case nir_op_ball_iequal2:
1113 case nir_op_ball_fequal3:
1114 case nir_op_ball_iequal3:
1115 case nir_op_ball_fequal4:
1116 case nir_op_ball_iequal4:
1117 case nir_op_bany_fnequal2:
1118 case nir_op_bany_inequal2:
1119 case nir_op_bany_fnequal3:
1120 case nir_op_bany_inequal3:
1121 case nir_op_bany_fnequal4:
1122 case nir_op_bany_inequal4:
1123 unreachable("Lowered by nir_lower_alu_reductions");
1124
1125 case nir_op_fnoise1_1:
1126 case nir_op_fnoise1_2:
1127 case nir_op_fnoise1_3:
1128 case nir_op_fnoise1_4:
1129 case nir_op_fnoise2_1:
1130 case nir_op_fnoise2_2:
1131 case nir_op_fnoise2_3:
1132 case nir_op_fnoise2_4:
1133 case nir_op_fnoise3_1:
1134 case nir_op_fnoise3_2:
1135 case nir_op_fnoise3_3:
1136 case nir_op_fnoise3_4:
1137 case nir_op_fnoise4_1:
1138 case nir_op_fnoise4_2:
1139 case nir_op_fnoise4_3:
1140 case nir_op_fnoise4_4:
1141 unreachable("not reached: should be handled by lower_noise");
1142
1143 case nir_op_ldexp:
1144 unreachable("not reached: should be handled by ldexp_to_arith()");
1145
1146 case nir_op_fsqrt:
1147 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1148 inst->saturate = instr->dest.saturate;
1149 break;
1150
1151 case nir_op_frsq:
1152 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1153 inst->saturate = instr->dest.saturate;
1154 break;
1155
1156 case nir_op_b2i:
1157 case nir_op_b2f:
1158 bld.MOV(result, negate(op[0]));
1159 break;
1160
1161 case nir_op_i2b:
1162 case nir_op_f2b:
1163 if (nir_src_bit_size(instr->src[0].src) == 64) {
1164 /* two-argument instructions can't take 64-bit immediates */
1165 fs_reg zero;
1166 fs_reg tmp;
1167
1168 if (instr->op == nir_op_f2b) {
1169 zero = vgrf(glsl_type::double_type);
1170 tmp = vgrf(glsl_type::double_type);
1171 bld.MOV(zero, setup_imm_df(bld, 0.0));
1172 } else {
1173 zero = vgrf(glsl_type::int64_t_type);
1174 tmp = vgrf(glsl_type::int64_t_type);
1175 bld.MOV(zero, brw_imm_q(0));
1176 }
1177
1178 /* A SIMD16 execution needs to be split in two instructions, so use
1179 * a vgrf instead of the flag register as dst so instruction splitting
1180 * works
1181 */
1182 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1183 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1184 } else {
1185 if (instr->op == nir_op_f2b) {
1186 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
1187 } else {
1188 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1189 }
1190 }
1191 break;
1192
1193 case nir_op_ftrunc:
1194 inst = bld.RNDZ(result, op[0]);
1195 inst->saturate = instr->dest.saturate;
1196 break;
1197
1198 case nir_op_fceil: {
1199 op[0].negate = !op[0].negate;
1200 fs_reg temp = vgrf(glsl_type::float_type);
1201 bld.RNDD(temp, op[0]);
1202 temp.negate = true;
1203 inst = bld.MOV(result, temp);
1204 inst->saturate = instr->dest.saturate;
1205 break;
1206 }
1207 case nir_op_ffloor:
1208 inst = bld.RNDD(result, op[0]);
1209 inst->saturate = instr->dest.saturate;
1210 break;
1211 case nir_op_ffract:
1212 inst = bld.FRC(result, op[0]);
1213 inst->saturate = instr->dest.saturate;
1214 break;
1215 case nir_op_fround_even:
1216 inst = bld.RNDE(result, op[0]);
1217 inst->saturate = instr->dest.saturate;
1218 break;
1219
1220 case nir_op_fquantize2f16: {
1221 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1222 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1223 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1224
1225 /* The destination stride must be at least as big as the source stride. */
1226 tmp16.type = BRW_REGISTER_TYPE_W;
1227 tmp16.stride = 2;
1228
1229 /* Check for denormal */
1230 fs_reg abs_src0 = op[0];
1231 abs_src0.abs = true;
1232 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1233 BRW_CONDITIONAL_L);
1234 /* Get the appropriately signed zero */
1235 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1236 retype(op[0], BRW_REGISTER_TYPE_UD),
1237 brw_imm_ud(0x80000000));
1238 /* Do the actual F32 -> F16 -> F32 conversion */
1239 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1240 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1241 /* Select that or zero based on normal status */
1242 inst = bld.SEL(result, zero, tmp32);
1243 inst->predicate = BRW_PREDICATE_NORMAL;
1244 inst->saturate = instr->dest.saturate;
1245 break;
1246 }
1247
1248 case nir_op_imin:
1249 case nir_op_umin:
1250 case nir_op_fmin:
1251 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1252 inst->saturate = instr->dest.saturate;
1253 break;
1254
1255 case nir_op_imax:
1256 case nir_op_umax:
1257 case nir_op_fmax:
1258 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1259 inst->saturate = instr->dest.saturate;
1260 break;
1261
1262 case nir_op_pack_snorm_2x16:
1263 case nir_op_pack_snorm_4x8:
1264 case nir_op_pack_unorm_2x16:
1265 case nir_op_pack_unorm_4x8:
1266 case nir_op_unpack_snorm_2x16:
1267 case nir_op_unpack_snorm_4x8:
1268 case nir_op_unpack_unorm_2x16:
1269 case nir_op_unpack_unorm_4x8:
1270 case nir_op_unpack_half_2x16:
1271 case nir_op_pack_half_2x16:
1272 unreachable("not reached: should be handled by lower_packing_builtins");
1273
1274 case nir_op_unpack_half_2x16_split_x:
1275 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1276 inst->saturate = instr->dest.saturate;
1277 break;
1278 case nir_op_unpack_half_2x16_split_y:
1279 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1280 inst->saturate = instr->dest.saturate;
1281 break;
1282
1283 case nir_op_pack_64_2x32_split:
1284 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1285 break;
1286
1287 case nir_op_unpack_64_2x32_split_x:
1288 case nir_op_unpack_64_2x32_split_y: {
1289 if (instr->op == nir_op_unpack_64_2x32_split_x)
1290 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1291 else
1292 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1293 break;
1294 }
1295
1296 case nir_op_fpow:
1297 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1298 inst->saturate = instr->dest.saturate;
1299 break;
1300
1301 case nir_op_bitfield_reverse:
1302 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1303 bld.BFREV(result, op[0]);
1304 break;
1305
1306 case nir_op_bit_count:
1307 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1308 bld.CBIT(result, op[0]);
1309 break;
1310
1311 case nir_op_ufind_msb: {
1312 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1313 emit_find_msb_using_lzd(bld, result, op[0], false);
1314 break;
1315 }
1316
1317 case nir_op_ifind_msb: {
1318 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1319
1320 if (devinfo->gen < 7) {
1321 emit_find_msb_using_lzd(bld, result, op[0], true);
1322 } else {
1323 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1324
1325 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1326 * count from the LSB side. If FBH didn't return an error
1327 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1328 * count into an LSB count.
1329 */
1330 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1331
1332 inst = bld.ADD(result, result, brw_imm_d(31));
1333 inst->predicate = BRW_PREDICATE_NORMAL;
1334 inst->src[0].negate = true;
1335 }
1336 break;
1337 }
1338
1339 case nir_op_find_lsb:
1340 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1341
1342 if (devinfo->gen < 7) {
1343 fs_reg temp = vgrf(glsl_type::int_type);
1344
1345 /* (x & -x) generates a value that consists of only the LSB of x.
1346 * For all powers of 2, findMSB(y) == findLSB(y).
1347 */
1348 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1349 fs_reg negated_src = src;
1350
1351 /* One must be negated, and the other must be non-negated. It
1352 * doesn't matter which is which.
1353 */
1354 negated_src.negate = true;
1355 src.negate = false;
1356
1357 bld.AND(temp, src, negated_src);
1358 emit_find_msb_using_lzd(bld, result, temp, false);
1359 } else {
1360 bld.FBL(result, op[0]);
1361 }
1362 break;
1363
1364 case nir_op_ubitfield_extract:
1365 case nir_op_ibitfield_extract:
1366 unreachable("should have been lowered");
1367 case nir_op_ubfe:
1368 case nir_op_ibfe:
1369 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1370 bld.BFE(result, op[2], op[1], op[0]);
1371 break;
1372 case nir_op_bfm:
1373 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1374 bld.BFI1(result, op[0], op[1]);
1375 break;
1376 case nir_op_bfi:
1377 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1378 bld.BFI2(result, op[0], op[1], op[2]);
1379 break;
1380
1381 case nir_op_bitfield_insert:
1382 unreachable("not reached: should have been lowered");
1383
1384 case nir_op_ishl:
1385 case nir_op_ishr:
1386 case nir_op_ushr: {
1387 fs_reg shift_count = op[1];
1388
1389 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1390 if (op[1].file == VGRF &&
1391 (result.type == BRW_REGISTER_TYPE_Q ||
1392 result.type == BRW_REGISTER_TYPE_UQ)) {
1393 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1394 BRW_REGISTER_TYPE_UD);
1395 shift_count.stride = 2;
1396 bld.MOV(shift_count, op[1]);
1397 }
1398 }
1399
1400 switch (instr->op) {
1401 case nir_op_ishl:
1402 bld.SHL(result, op[0], shift_count);
1403 break;
1404 case nir_op_ishr:
1405 bld.ASR(result, op[0], shift_count);
1406 break;
1407 case nir_op_ushr:
1408 bld.SHR(result, op[0], shift_count);
1409 break;
1410 default:
1411 unreachable("not reached");
1412 }
1413 break;
1414 }
1415
1416 case nir_op_pack_half_2x16_split:
1417 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1418 break;
1419
1420 case nir_op_ffma:
1421 inst = bld.MAD(result, op[2], op[1], op[0]);
1422 inst->saturate = instr->dest.saturate;
1423 break;
1424
1425 case nir_op_flrp:
1426 inst = bld.LRP(result, op[0], op[1], op[2]);
1427 inst->saturate = instr->dest.saturate;
1428 break;
1429
1430 case nir_op_bcsel:
1431 if (optimize_frontfacing_ternary(instr, result))
1432 return;
1433
1434 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1435 inst = bld.SEL(result, op[1], op[2]);
1436 inst->predicate = BRW_PREDICATE_NORMAL;
1437 break;
1438
1439 case nir_op_extract_u8:
1440 case nir_op_extract_i8: {
1441 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1442 assert(byte != NULL);
1443
1444 /* The PRMs say:
1445 *
1446 * BDW+
1447 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1448 * Use two instructions and a word or DWord intermediate integer type.
1449 */
1450 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1451 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1452
1453 if (instr->op == nir_op_extract_i8) {
1454 /* If we need to sign extend, extract to a word first */
1455 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1456 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1457 bld.MOV(result, w_temp);
1458 } else {
1459 /* Otherwise use an AND with 0xff and a word type */
1460 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1461 }
1462 } else {
1463 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1464 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1465 }
1466 break;
1467 }
1468
1469 case nir_op_extract_u16:
1470 case nir_op_extract_i16: {
1471 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1472 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1473 assert(word != NULL);
1474 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1475 break;
1476 }
1477
1478 default:
1479 unreachable("unhandled instruction");
1480 }
1481
1482 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1483 * to sign extend the low bit to 0/~0
1484 */
1485 if (devinfo->gen <= 5 &&
1486 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1487 fs_reg masked = vgrf(glsl_type::int_type);
1488 bld.AND(masked, result, brw_imm_d(1));
1489 masked.negate = true;
1490 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1491 }
1492 }
1493
1494 void
1495 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1496 nir_load_const_instr *instr)
1497 {
1498 const brw_reg_type reg_type =
1499 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1500 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1501
1502 switch (instr->def.bit_size) {
1503 case 32:
1504 for (unsigned i = 0; i < instr->def.num_components; i++)
1505 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1506 break;
1507
1508 case 64:
1509 assert(devinfo->gen >= 7);
1510 if (devinfo->gen == 7) {
1511 /* We don't get 64-bit integer types until gen8 */
1512 for (unsigned i = 0; i < instr->def.num_components; i++) {
1513 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1514 setup_imm_df(bld, instr->value.f64[i]));
1515 }
1516 } else {
1517 for (unsigned i = 0; i < instr->def.num_components; i++)
1518 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1519 }
1520 break;
1521
1522 default:
1523 unreachable("Invalid bit size");
1524 }
1525
1526 nir_ssa_values[instr->def.index] = reg;
1527 }
1528
1529 fs_reg
1530 fs_visitor::get_nir_src(const nir_src &src)
1531 {
1532 fs_reg reg;
1533 if (src.is_ssa) {
1534 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1535 const brw_reg_type reg_type =
1536 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1537 reg = bld.vgrf(reg_type, src.ssa->num_components);
1538 } else {
1539 reg = nir_ssa_values[src.ssa->index];
1540 }
1541 } else {
1542 /* We don't handle indirects on locals */
1543 assert(src.reg.indirect == NULL);
1544 reg = offset(nir_locals[src.reg.reg->index], bld,
1545 src.reg.base_offset * src.reg.reg->num_components);
1546 }
1547
1548 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1549 /* The only 64-bit type available on gen7 is DF, so use that. */
1550 reg.type = BRW_REGISTER_TYPE_DF;
1551 } else {
1552 /* To avoid floating-point denorm flushing problems, set the type by
1553 * default to an integer type - instructions that need floating point
1554 * semantics will set this to F if they need to
1555 */
1556 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1557 BRW_REGISTER_TYPE_D);
1558 }
1559
1560 return reg;
1561 }
1562
1563 /**
1564 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1565 *
1566 * This function should not be called on any value which may be 64 bits.
1567 * We could theoretically support 64-bit on gen8+ but we choose not to
1568 * because it wouldn't work in general (no gen7 support) and there are
1569 * enough restrictions in 64-bit immediates that you can't take the return
1570 * value and treat it the same as the result of get_nir_src().
1571 */
1572 fs_reg
1573 fs_visitor::get_nir_src_imm(const nir_src &src)
1574 {
1575 nir_const_value *val = nir_src_as_const_value(src);
1576 assert(nir_src_bit_size(src) == 32);
1577 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1578 }
1579
1580 fs_reg
1581 fs_visitor::get_nir_dest(const nir_dest &dest)
1582 {
1583 if (dest.is_ssa) {
1584 const brw_reg_type reg_type =
1585 brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
1586 nir_ssa_values[dest.ssa.index] =
1587 bld.vgrf(reg_type, dest.ssa.num_components);
1588 return nir_ssa_values[dest.ssa.index];
1589 } else {
1590 /* We don't handle indirects on locals */
1591 assert(dest.reg.indirect == NULL);
1592 return offset(nir_locals[dest.reg.reg->index], bld,
1593 dest.reg.base_offset * dest.reg.reg->num_components);
1594 }
1595 }
1596
1597 fs_reg
1598 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1599 {
1600 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1601 BRW_REGISTER_TYPE_UD);
1602 fs_reg indirect;
1603 unsigned indirect_max = 0;
1604
1605 for (const nir_deref *tail = &deref->deref; tail->child;
1606 tail = tail->child) {
1607 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1608 assert(tail->child->deref_type == nir_deref_type_array);
1609 const unsigned size = glsl_get_length(tail->type);
1610 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1611 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1612 image = offset(image, bld, base * element_size);
1613
1614 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1615 fs_reg tmp = vgrf(glsl_type::uint_type);
1616
1617 /* Accessing an invalid surface index with the dataport can result
1618 * in a hang. According to the spec "if the index used to
1619 * select an individual element is negative or greater than or
1620 * equal to the size of the array, the results of the operation
1621 * are undefined but may not lead to termination" -- which is one
1622 * of the possible outcomes of the hang. Clamp the index to
1623 * prevent access outside of the array bounds.
1624 */
1625 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1626 BRW_REGISTER_TYPE_UD),
1627 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1628
1629 indirect_max += element_size * (tail->type->length - 1);
1630
1631 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1632 if (indirect.file == BAD_FILE) {
1633 indirect = tmp;
1634 } else {
1635 bld.ADD(indirect, indirect, tmp);
1636 }
1637 }
1638 }
1639
1640 if (indirect.file == BAD_FILE) {
1641 return image;
1642 } else {
1643 /* Emit a pile of MOVs to load the uniform into a temporary. The
1644 * dead-code elimination pass will get rid of what we don't use.
1645 */
1646 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1647 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1648 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1649 offset(tmp, bld, j), offset(image, bld, j),
1650 indirect, brw_imm_ud((indirect_max + 1) * 4));
1651 }
1652 return tmp;
1653 }
1654 }
1655
1656 void
1657 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1658 unsigned wr_mask)
1659 {
1660 for (unsigned i = 0; i < 4; i++) {
1661 if (!((wr_mask >> i) & 1))
1662 continue;
1663
1664 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1665 new_inst->dst = offset(new_inst->dst, bld, i);
1666 for (unsigned j = 0; j < new_inst->sources; j++)
1667 if (new_inst->src[j].file == VGRF)
1668 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1669
1670 bld.emit(new_inst);
1671 }
1672 }
1673
1674 /**
1675 * Get the matching channel register datatype for an image intrinsic of the
1676 * specified GLSL image type.
1677 */
1678 static brw_reg_type
1679 get_image_base_type(const glsl_type *type)
1680 {
1681 switch ((glsl_base_type)type->sampled_type) {
1682 case GLSL_TYPE_UINT:
1683 return BRW_REGISTER_TYPE_UD;
1684 case GLSL_TYPE_INT:
1685 return BRW_REGISTER_TYPE_D;
1686 case GLSL_TYPE_FLOAT:
1687 return BRW_REGISTER_TYPE_F;
1688 default:
1689 unreachable("Not reached.");
1690 }
1691 }
1692
1693 /**
1694 * Get the appropriate atomic op for an image atomic intrinsic.
1695 */
1696 static unsigned
1697 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1698 {
1699 switch (op) {
1700 case nir_intrinsic_image_atomic_add:
1701 return BRW_AOP_ADD;
1702 case nir_intrinsic_image_atomic_min:
1703 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1704 BRW_AOP_IMIN : BRW_AOP_UMIN);
1705 case nir_intrinsic_image_atomic_max:
1706 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1707 BRW_AOP_IMAX : BRW_AOP_UMAX);
1708 case nir_intrinsic_image_atomic_and:
1709 return BRW_AOP_AND;
1710 case nir_intrinsic_image_atomic_or:
1711 return BRW_AOP_OR;
1712 case nir_intrinsic_image_atomic_xor:
1713 return BRW_AOP_XOR;
1714 case nir_intrinsic_image_atomic_exchange:
1715 return BRW_AOP_MOV;
1716 case nir_intrinsic_image_atomic_comp_swap:
1717 return BRW_AOP_CMPWR;
1718 default:
1719 unreachable("Not reachable.");
1720 }
1721 }
1722
1723 static fs_inst *
1724 emit_pixel_interpolater_send(const fs_builder &bld,
1725 enum opcode opcode,
1726 const fs_reg &dst,
1727 const fs_reg &src,
1728 const fs_reg &desc,
1729 glsl_interp_mode interpolation)
1730 {
1731 struct brw_wm_prog_data *wm_prog_data =
1732 brw_wm_prog_data(bld.shader->stage_prog_data);
1733 fs_inst *inst;
1734 fs_reg payload;
1735 int mlen;
1736
1737 if (src.file == BAD_FILE) {
1738 /* Dummy payload */
1739 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1740 mlen = 1;
1741 } else {
1742 payload = src;
1743 mlen = 2 * bld.dispatch_width() / 8;
1744 }
1745
1746 inst = bld.emit(opcode, dst, payload, desc);
1747 inst->mlen = mlen;
1748 /* 2 floats per slot returned */
1749 inst->size_written = 2 * dst.component_size(inst->exec_size);
1750 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1751
1752 wm_prog_data->pulls_bary = true;
1753
1754 return inst;
1755 }
1756
1757 /**
1758 * Computes 1 << x, given a D/UD register containing some value x.
1759 */
1760 static fs_reg
1761 intexp2(const fs_builder &bld, const fs_reg &x)
1762 {
1763 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1764
1765 fs_reg result = bld.vgrf(x.type, 1);
1766 fs_reg one = bld.vgrf(x.type, 1);
1767
1768 bld.MOV(one, retype(brw_imm_d(1), one.type));
1769 bld.SHL(result, one, x);
1770 return result;
1771 }
1772
1773 void
1774 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1775 {
1776 assert(stage == MESA_SHADER_GEOMETRY);
1777
1778 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1779
1780 if (gs_compile->control_data_header_size_bits == 0)
1781 return;
1782
1783 /* We can only do EndPrimitive() functionality when the control data
1784 * consists of cut bits. Fortunately, the only time it isn't is when the
1785 * output type is points, in which case EndPrimitive() is a no-op.
1786 */
1787 if (gs_prog_data->control_data_format !=
1788 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1789 return;
1790 }
1791
1792 /* Cut bits use one bit per vertex. */
1793 assert(gs_compile->control_data_bits_per_vertex == 1);
1794
1795 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1796 vertex_count.type = BRW_REGISTER_TYPE_UD;
1797
1798 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1799 * vertex n, 0 otherwise. So all we need to do here is mark bit
1800 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1801 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1802 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1803 *
1804 * Note that if EndPrimitive() is called before emitting any vertices, this
1805 * will cause us to set bit 31 of the control_data_bits register to 1.
1806 * That's fine because:
1807 *
1808 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1809 * output, so the hardware will ignore cut bit 31.
1810 *
1811 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1812 * last vertex, so setting cut bit 31 has no effect (since the primitive
1813 * is automatically ended when the GS terminates).
1814 *
1815 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1816 * control_data_bits register to 0 when the first vertex is emitted.
1817 */
1818
1819 const fs_builder abld = bld.annotate("end primitive");
1820
1821 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1822 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1823 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1824 fs_reg mask = intexp2(abld, prev_count);
1825 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1826 * attention to the lower 5 bits of its second source argument, so on this
1827 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1828 * ((vertex_count - 1) % 32).
1829 */
1830 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1831 }
1832
1833 void
1834 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1835 {
1836 assert(stage == MESA_SHADER_GEOMETRY);
1837 assert(gs_compile->control_data_bits_per_vertex != 0);
1838
1839 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1840
1841 const fs_builder abld = bld.annotate("emit control data bits");
1842 const fs_builder fwa_bld = bld.exec_all();
1843
1844 /* We use a single UD register to accumulate control data bits (32 bits
1845 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1846 * at a time.
1847 *
1848 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1849 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1850 * use the Channel Mask phase to enable/disable which DWord within that
1851 * group to write. (Remember, different SIMD8 channels may have emitted
1852 * different numbers of vertices, so we may need per-slot offsets.)
1853 *
1854 * Channel masking presents an annoying problem: we may have to replicate
1855 * the data up to 4 times:
1856 *
1857 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1858 *
1859 * To avoid penalizing shaders that emit a small number of vertices, we
1860 * can avoid these sometimes: if the size of the control data header is
1861 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1862 * land in the same 128-bit group, so we can skip per-slot offsets.
1863 *
1864 * Similarly, if the control data header is <= 32 bits, there is only one
1865 * DWord, so we can skip channel masks.
1866 */
1867 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1868
1869 fs_reg channel_mask, per_slot_offset;
1870
1871 if (gs_compile->control_data_header_size_bits > 32) {
1872 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1873 channel_mask = vgrf(glsl_type::uint_type);
1874 }
1875
1876 if (gs_compile->control_data_header_size_bits > 128) {
1877 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1878 per_slot_offset = vgrf(glsl_type::uint_type);
1879 }
1880
1881 /* Figure out which DWord we're trying to write to using the formula:
1882 *
1883 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1884 *
1885 * Since bits_per_vertex is a power of two, and is known at compile
1886 * time, this can be optimized to:
1887 *
1888 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1889 */
1890 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1891 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1892 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1893 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1894 unsigned log2_bits_per_vertex =
1895 util_last_bit(gs_compile->control_data_bits_per_vertex);
1896 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1897
1898 if (per_slot_offset.file != BAD_FILE) {
1899 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1900 * the appropriate OWord within the control data header.
1901 */
1902 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1903 }
1904
1905 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1906 * write to the appropriate DWORD within the OWORD.
1907 */
1908 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1909 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1910 channel_mask = intexp2(fwa_bld, channel);
1911 /* Then the channel masks need to be in bits 23:16. */
1912 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1913 }
1914
1915 /* Store the control data bits in the message payload and send it. */
1916 int mlen = 2;
1917 if (channel_mask.file != BAD_FILE)
1918 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1919 if (per_slot_offset.file != BAD_FILE)
1920 mlen++;
1921
1922 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1923 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1924 int i = 0;
1925 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1926 if (per_slot_offset.file != BAD_FILE)
1927 sources[i++] = per_slot_offset;
1928 if (channel_mask.file != BAD_FILE)
1929 sources[i++] = channel_mask;
1930 while (i < mlen) {
1931 sources[i++] = this->control_data_bits;
1932 }
1933
1934 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1935 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1936 inst->mlen = mlen;
1937 /* We need to increment Global Offset by 256-bits to make room for
1938 * Broadwell's extra "Vertex Count" payload at the beginning of the
1939 * URB entry. Since this is an OWord message, Global Offset is counted
1940 * in 128-bit units, so we must set it to 2.
1941 */
1942 if (gs_prog_data->static_vertex_count == -1)
1943 inst->offset = 2;
1944 }
1945
1946 void
1947 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1948 unsigned stream_id)
1949 {
1950 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1951
1952 /* Note: we are calling this *before* increasing vertex_count, so
1953 * this->vertex_count == vertex_count - 1 in the formula above.
1954 */
1955
1956 /* Stream mode uses 2 bits per vertex */
1957 assert(gs_compile->control_data_bits_per_vertex == 2);
1958
1959 /* Must be a valid stream */
1960 assert(stream_id < MAX_VERTEX_STREAMS);
1961
1962 /* Control data bits are initialized to 0 so we don't have to set any
1963 * bits when sending vertices to stream 0.
1964 */
1965 if (stream_id == 0)
1966 return;
1967
1968 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1969
1970 /* reg::sid = stream_id */
1971 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1972 abld.MOV(sid, brw_imm_ud(stream_id));
1973
1974 /* reg:shift_count = 2 * (vertex_count - 1) */
1975 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1976 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1977
1978 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1979 * attention to the lower 5 bits of its second source argument, so on this
1980 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1981 * stream_id << ((2 * (vertex_count - 1)) % 32).
1982 */
1983 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1984 abld.SHL(mask, sid, shift_count);
1985 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1986 }
1987
1988 void
1989 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1990 unsigned stream_id)
1991 {
1992 assert(stage == MESA_SHADER_GEOMETRY);
1993
1994 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1995
1996 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1997 vertex_count.type = BRW_REGISTER_TYPE_UD;
1998
1999 /* Haswell and later hardware ignores the "Render Stream Select" bits
2000 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2001 * and instead sends all primitives down the pipeline for rasterization.
2002 * If the SOL stage is enabled, "Render Stream Select" is honored and
2003 * primitives bound to non-zero streams are discarded after stream output.
2004 *
2005 * Since the only purpose of primives sent to non-zero streams is to
2006 * be recorded by transform feedback, we can simply discard all geometry
2007 * bound to these streams when transform feedback is disabled.
2008 */
2009 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2010 return;
2011
2012 /* If we're outputting 32 control data bits or less, then we can wait
2013 * until the shader is over to output them all. Otherwise we need to
2014 * output them as we go. Now is the time to do it, since we're about to
2015 * output the vertex_count'th vertex, so it's guaranteed that the
2016 * control data bits associated with the (vertex_count - 1)th vertex are
2017 * correct.
2018 */
2019 if (gs_compile->control_data_header_size_bits > 32) {
2020 const fs_builder abld =
2021 bld.annotate("emit vertex: emit control data bits");
2022
2023 /* Only emit control data bits if we've finished accumulating a batch
2024 * of 32 bits. This is the case when:
2025 *
2026 * (vertex_count * bits_per_vertex) % 32 == 0
2027 *
2028 * (in other words, when the last 5 bits of vertex_count *
2029 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2030 * integer n (which is always the case, since bits_per_vertex is
2031 * always 1 or 2), this is equivalent to requiring that the last 5-n
2032 * bits of vertex_count are 0:
2033 *
2034 * vertex_count & (2^(5-n) - 1) == 0
2035 *
2036 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2037 * equivalent to:
2038 *
2039 * vertex_count & (32 / bits_per_vertex - 1) == 0
2040 *
2041 * TODO: If vertex_count is an immediate, we could do some of this math
2042 * at compile time...
2043 */
2044 fs_inst *inst =
2045 abld.AND(bld.null_reg_d(), vertex_count,
2046 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2047 inst->conditional_mod = BRW_CONDITIONAL_Z;
2048
2049 abld.IF(BRW_PREDICATE_NORMAL);
2050 /* If vertex_count is 0, then no control data bits have been
2051 * accumulated yet, so we can skip emitting them.
2052 */
2053 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2054 BRW_CONDITIONAL_NEQ);
2055 abld.IF(BRW_PREDICATE_NORMAL);
2056 emit_gs_control_data_bits(vertex_count);
2057 abld.emit(BRW_OPCODE_ENDIF);
2058
2059 /* Reset control_data_bits to 0 so we can start accumulating a new
2060 * batch.
2061 *
2062 * Note: in the case where vertex_count == 0, this neutralizes the
2063 * effect of any call to EndPrimitive() that the shader may have
2064 * made before outputting its first vertex.
2065 */
2066 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2067 inst->force_writemask_all = true;
2068 abld.emit(BRW_OPCODE_ENDIF);
2069 }
2070
2071 emit_urb_writes(vertex_count);
2072
2073 /* In stream mode we have to set control data bits for all vertices
2074 * unless we have disabled control data bits completely (which we do
2075 * do for GL_POINTS outputs that don't use streams).
2076 */
2077 if (gs_compile->control_data_header_size_bits > 0 &&
2078 gs_prog_data->control_data_format ==
2079 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2080 set_gs_stream_control_data_bits(vertex_count, stream_id);
2081 }
2082 }
2083
2084 void
2085 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2086 const nir_src &vertex_src,
2087 unsigned base_offset,
2088 const nir_src &offset_src,
2089 unsigned num_components,
2090 unsigned first_component)
2091 {
2092 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2093
2094 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2095 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2096 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2097
2098 /* TODO: figure out push input layout for invocations == 1 */
2099 /* TODO: make this work with 64-bit inputs */
2100 if (gs_prog_data->invocations == 1 &&
2101 type_sz(dst.type) <= 4 &&
2102 offset_const != NULL && vertex_const != NULL &&
2103 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2104 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2105 vertex_const->u32[0] * push_reg_count;
2106 for (unsigned i = 0; i < num_components; i++) {
2107 bld.MOV(offset(dst, bld, i),
2108 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2109 }
2110 return;
2111 }
2112
2113 /* Resort to the pull model. Ensure the VUE handles are provided. */
2114 assert(gs_prog_data->base.include_vue_handles);
2115
2116 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2117 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2118
2119 if (gs_prog_data->invocations == 1) {
2120 if (vertex_const) {
2121 /* The vertex index is constant; just select the proper URB handle. */
2122 icp_handle =
2123 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2124 BRW_REGISTER_TYPE_UD);
2125 } else {
2126 /* The vertex index is non-constant. We need to use indirect
2127 * addressing to fetch the proper URB handle.
2128 *
2129 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2130 * indicating that channel <n> should read the handle from
2131 * DWord <n>. We convert that to bytes by multiplying by 4.
2132 *
2133 * Next, we convert the vertex index to bytes by multiplying
2134 * by 32 (shifting by 5), and add the two together. This is
2135 * the final indirect byte offset.
2136 */
2137 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2138 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2139 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2140 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2141
2142 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2143 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2144 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2145 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2146 /* Convert vertex_index to bytes (multiply by 32) */
2147 bld.SHL(vertex_offset_bytes,
2148 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2149 brw_imm_ud(5u));
2150 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2151
2152 /* Use first_icp_handle as the base offset. There is one register
2153 * of URB handles per vertex, so inform the register allocator that
2154 * we might read up to nir->info.gs.vertices_in registers.
2155 */
2156 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2157 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2158 fs_reg(icp_offset_bytes),
2159 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2160 }
2161 } else {
2162 assert(gs_prog_data->invocations > 1);
2163
2164 if (vertex_const) {
2165 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2166 bld.MOV(icp_handle,
2167 retype(brw_vec1_grf(first_icp_handle +
2168 vertex_const->i32[0] / 8,
2169 vertex_const->i32[0] % 8),
2170 BRW_REGISTER_TYPE_UD));
2171 } else {
2172 /* The vertex index is non-constant. We need to use indirect
2173 * addressing to fetch the proper URB handle.
2174 *
2175 */
2176 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2177
2178 /* Convert vertex_index to bytes (multiply by 4) */
2179 bld.SHL(icp_offset_bytes,
2180 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2181 brw_imm_ud(2u));
2182
2183 /* Use first_icp_handle as the base offset. There is one DWord
2184 * of URB handles per vertex, so inform the register allocator that
2185 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2186 */
2187 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2188 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2189 fs_reg(icp_offset_bytes),
2190 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2191 REG_SIZE));
2192 }
2193 }
2194
2195 fs_inst *inst;
2196
2197 fs_reg tmp_dst = dst;
2198 fs_reg indirect_offset = get_nir_src(offset_src);
2199 unsigned num_iterations = 1;
2200 unsigned orig_num_components = num_components;
2201
2202 if (type_sz(dst.type) == 8) {
2203 if (num_components > 2) {
2204 num_iterations = 2;
2205 num_components = 2;
2206 }
2207 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2208 tmp_dst = tmp;
2209 first_component = first_component / 2;
2210 }
2211
2212 for (unsigned iter = 0; iter < num_iterations; iter++) {
2213 if (offset_const) {
2214 /* Constant indexing - use global offset. */
2215 if (first_component != 0) {
2216 unsigned read_components = num_components + first_component;
2217 fs_reg tmp = bld.vgrf(dst.type, read_components);
2218 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2219 inst->size_written = read_components *
2220 tmp.component_size(inst->exec_size);
2221 for (unsigned i = 0; i < num_components; i++) {
2222 bld.MOV(offset(tmp_dst, bld, i),
2223 offset(tmp, bld, i + first_component));
2224 }
2225 } else {
2226 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2227 icp_handle);
2228 inst->size_written = num_components *
2229 tmp_dst.component_size(inst->exec_size);
2230 }
2231 inst->offset = base_offset + offset_const->u32[0];
2232 inst->mlen = 1;
2233 } else {
2234 /* Indirect indexing - use per-slot offsets as well. */
2235 const fs_reg srcs[] = { icp_handle, indirect_offset };
2236 unsigned read_components = num_components + first_component;
2237 fs_reg tmp = bld.vgrf(dst.type, read_components);
2238 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2239 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2240 if (first_component != 0) {
2241 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2242 payload);
2243 inst->size_written = read_components *
2244 tmp.component_size(inst->exec_size);
2245 for (unsigned i = 0; i < num_components; i++) {
2246 bld.MOV(offset(tmp_dst, bld, i),
2247 offset(tmp, bld, i + first_component));
2248 }
2249 } else {
2250 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2251 payload);
2252 inst->size_written = num_components *
2253 tmp_dst.component_size(inst->exec_size);
2254 }
2255 inst->offset = base_offset;
2256 inst->mlen = 2;
2257 }
2258
2259 if (type_sz(dst.type) == 8) {
2260 shuffle_32bit_load_result_to_64bit_data(
2261 bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
2262
2263 for (unsigned c = 0; c < num_components; c++)
2264 bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
2265 }
2266
2267 if (num_iterations > 1) {
2268 num_components = orig_num_components - 2;
2269 if(offset_const) {
2270 base_offset++;
2271 } else {
2272 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2273 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2274 indirect_offset = new_indirect;
2275 }
2276 }
2277 }
2278 }
2279
2280 fs_reg
2281 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2282 {
2283 nir_src *offset_src = nir_get_io_offset_src(instr);
2284 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2285
2286 if (const_value) {
2287 /* The only constant offset we should find is 0. brw_nir.c's
2288 * add_const_offset_to_base() will fold other constant offsets
2289 * into instr->const_index[0].
2290 */
2291 assert(const_value->u32[0] == 0);
2292 return fs_reg();
2293 }
2294
2295 return get_nir_src(*offset_src);
2296 }
2297
2298 static void
2299 do_untyped_vector_read(const fs_builder &bld,
2300 const fs_reg dest,
2301 const fs_reg surf_index,
2302 const fs_reg offset_reg,
2303 unsigned num_components)
2304 {
2305 if (type_sz(dest.type) <= 2) {
2306 assert(dest.stride == 1);
2307
2308 if (num_components > 1) {
2309 /* Pairs of 16-bit components can be read with untyped read, for 16-bit
2310 * vec3 4th component is ignored.
2311 */
2312 fs_reg read_result =
2313 emit_untyped_read(bld, surf_index, offset_reg,
2314 1 /* dims */, DIV_ROUND_UP(num_components, 2),
2315 BRW_PREDICATE_NONE);
2316 shuffle_32bit_load_result_to_16bit_data(bld,
2317 retype(dest, BRW_REGISTER_TYPE_W),
2318 retype(read_result, BRW_REGISTER_TYPE_D),
2319 num_components);
2320 } else {
2321 assert(num_components == 1);
2322 /* scalar 16-bit are read using one byte_scattered_read message */
2323 fs_reg read_result =
2324 emit_byte_scattered_read(bld, surf_index, offset_reg,
2325 1 /* dims */, 1,
2326 type_sz(dest.type) * 8 /* bit_size */,
2327 BRW_PREDICATE_NONE);
2328 bld.MOV(dest, subscript(read_result, dest.type, 0));
2329 }
2330 } else if (type_sz(dest.type) == 4) {
2331 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2332 1 /* dims */,
2333 num_components,
2334 BRW_PREDICATE_NONE);
2335 read_result.type = dest.type;
2336 for (unsigned i = 0; i < num_components; i++)
2337 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2338 } else if (type_sz(dest.type) == 8) {
2339 /* Reading a dvec, so we need to:
2340 *
2341 * 1. Multiply num_components by 2, to account for the fact that we
2342 * need to read 64-bit components.
2343 * 2. Shuffle the result of the load to form valid 64-bit elements
2344 * 3. Emit a second load (for components z/w) if needed.
2345 */
2346 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2347 bld.MOV(read_offset, offset_reg);
2348
2349 int iters = num_components <= 2 ? 1 : 2;
2350
2351 /* Load the dvec, the first iteration loads components x/y, the second
2352 * iteration, if needed, loads components z/w
2353 */
2354 for (int it = 0; it < iters; it++) {
2355 /* Compute number of components to read in this iteration */
2356 int iter_components = MIN2(2, num_components);
2357 num_components -= iter_components;
2358
2359 /* Read. Since this message reads 32-bit components, we need to
2360 * read twice as many components.
2361 */
2362 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2363 1 /* dims */,
2364 iter_components * 2,
2365 BRW_PREDICATE_NONE);
2366
2367 /* Shuffle the 32-bit load result into valid 64-bit data */
2368 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2369 shuffle_32bit_load_result_to_64bit_data(
2370 bld, packed_result, read_result, iter_components);
2371
2372 /* Move each component to its destination */
2373 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2374 for (int c = 0; c < iter_components; c++) {
2375 bld.MOV(offset(dest, bld, it * 2 + c),
2376 offset(packed_result, bld, c));
2377 }
2378
2379 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2380 }
2381 } else {
2382 unreachable("Unsupported type");
2383 }
2384 }
2385
2386 void
2387 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2388 nir_intrinsic_instr *instr)
2389 {
2390 assert(stage == MESA_SHADER_VERTEX);
2391
2392 fs_reg dest;
2393 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2394 dest = get_nir_dest(instr->dest);
2395
2396 switch (instr->intrinsic) {
2397 case nir_intrinsic_load_vertex_id:
2398 unreachable("should be lowered by lower_vertex_id()");
2399
2400 case nir_intrinsic_load_vertex_id_zero_base:
2401 case nir_intrinsic_load_base_vertex:
2402 case nir_intrinsic_load_instance_id:
2403 case nir_intrinsic_load_base_instance:
2404 case nir_intrinsic_load_draw_id: {
2405 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2406 fs_reg val = nir_system_values[sv];
2407 assert(val.file != BAD_FILE);
2408 dest.type = val.type;
2409 bld.MOV(dest, val);
2410 break;
2411 }
2412
2413 case nir_intrinsic_load_input: {
2414 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2415 unsigned first_component = nir_intrinsic_component(instr);
2416 unsigned num_components = instr->num_components;
2417 enum brw_reg_type type = dest.type;
2418
2419 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2420 assert(const_offset && "Indirect input loads not allowed");
2421 src = offset(src, bld, const_offset->u32[0]);
2422
2423 if (type_sz(type) == 8)
2424 first_component /= 2;
2425
2426 for (unsigned j = 0; j < num_components; j++) {
2427 bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
2428 }
2429
2430 if (type == BRW_REGISTER_TYPE_DF) {
2431 /* Once the double vector is read, set again its original register
2432 * type to continue with normal execution.
2433 */
2434 src = retype(src, type);
2435 dest = retype(dest, type);
2436 }
2437
2438 if (type_sz(src.type) == 8) {
2439 shuffle_32bit_load_result_to_64bit_data(bld,
2440 dest,
2441 retype(dest, BRW_REGISTER_TYPE_F),
2442 instr->num_components);
2443 }
2444 break;
2445 }
2446
2447 default:
2448 nir_emit_intrinsic(bld, instr);
2449 break;
2450 }
2451 }
2452
2453 void
2454 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2455 nir_intrinsic_instr *instr)
2456 {
2457 assert(stage == MESA_SHADER_TESS_CTRL);
2458 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2459 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2460
2461 fs_reg dst;
2462 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2463 dst = get_nir_dest(instr->dest);
2464
2465 switch (instr->intrinsic) {
2466 case nir_intrinsic_load_primitive_id:
2467 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2468 break;
2469 case nir_intrinsic_load_invocation_id:
2470 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2471 break;
2472 case nir_intrinsic_load_patch_vertices_in:
2473 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2474 brw_imm_d(tcs_key->input_vertices));
2475 break;
2476
2477 case nir_intrinsic_barrier: {
2478 if (tcs_prog_data->instances == 1)
2479 break;
2480
2481 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2482 fs_reg m0_2 = component(m0, 2);
2483
2484 const fs_builder chanbld = bld.exec_all().group(1, 0);
2485
2486 /* Zero the message header */
2487 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2488
2489 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2490 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2491 brw_imm_ud(INTEL_MASK(16, 13)));
2492
2493 /* Shift it up to bits 27:24. */
2494 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2495
2496 /* Set the Barrier Count and the enable bit */
2497 chanbld.OR(m0_2, m0_2,
2498 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2499
2500 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2501 break;
2502 }
2503
2504 case nir_intrinsic_load_input:
2505 unreachable("nir_lower_io should never give us these.");
2506 break;
2507
2508 case nir_intrinsic_load_per_vertex_input: {
2509 fs_reg indirect_offset = get_indirect_offset(instr);
2510 unsigned imm_offset = instr->const_index[0];
2511
2512 const nir_src &vertex_src = instr->src[0];
2513 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2514
2515 fs_inst *inst;
2516
2517 fs_reg icp_handle;
2518
2519 if (vertex_const) {
2520 /* Emit a MOV to resolve <0,1,0> regioning. */
2521 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2522 bld.MOV(icp_handle,
2523 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2524 vertex_const->i32[0] & 7),
2525 BRW_REGISTER_TYPE_UD));
2526 } else if (tcs_prog_data->instances == 1 &&
2527 vertex_src.is_ssa &&
2528 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2529 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2530 /* For the common case of only 1 instance, an array index of
2531 * gl_InvocationID means reading g1. Skip all the indirect work.
2532 */
2533 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2534 } else {
2535 /* The vertex index is non-constant. We need to use indirect
2536 * addressing to fetch the proper URB handle.
2537 */
2538 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2539
2540 /* Each ICP handle is a single DWord (4 bytes) */
2541 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2542 bld.SHL(vertex_offset_bytes,
2543 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2544 brw_imm_ud(2u));
2545
2546 /* Start at g1. We might read up to 4 registers. */
2547 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2548 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2549 brw_imm_ud(4 * REG_SIZE));
2550 }
2551
2552 /* We can only read two double components with each URB read, so
2553 * we send two read messages in that case, each one loading up to
2554 * two double components.
2555 */
2556 unsigned num_iterations = 1;
2557 unsigned num_components = instr->num_components;
2558 unsigned first_component = nir_intrinsic_component(instr);
2559 fs_reg orig_dst = dst;
2560 if (type_sz(dst.type) == 8) {
2561 first_component = first_component / 2;
2562 if (instr->num_components > 2) {
2563 num_iterations = 2;
2564 num_components = 2;
2565 }
2566
2567 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2568 dst = tmp;
2569 }
2570
2571 for (unsigned iter = 0; iter < num_iterations; iter++) {
2572 if (indirect_offset.file == BAD_FILE) {
2573 /* Constant indexing - use global offset. */
2574 if (first_component != 0) {
2575 unsigned read_components = num_components + first_component;
2576 fs_reg tmp = bld.vgrf(dst.type, read_components);
2577 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2578 for (unsigned i = 0; i < num_components; i++) {
2579 bld.MOV(offset(dst, bld, i),
2580 offset(tmp, bld, i + first_component));
2581 }
2582 } else {
2583 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2584 }
2585 inst->offset = imm_offset;
2586 inst->mlen = 1;
2587 } else {
2588 /* Indirect indexing - use per-slot offsets as well. */
2589 const fs_reg srcs[] = { icp_handle, indirect_offset };
2590 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2591 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2592 if (first_component != 0) {
2593 unsigned read_components = num_components + first_component;
2594 fs_reg tmp = bld.vgrf(dst.type, read_components);
2595 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2596 payload);
2597 for (unsigned i = 0; i < num_components; i++) {
2598 bld.MOV(offset(dst, bld, i),
2599 offset(tmp, bld, i + first_component));
2600 }
2601 } else {
2602 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2603 payload);
2604 }
2605 inst->offset = imm_offset;
2606 inst->mlen = 2;
2607 }
2608 inst->size_written = (num_components + first_component) *
2609 inst->dst.component_size(inst->exec_size);
2610
2611 /* If we are reading 64-bit data using 32-bit read messages we need
2612 * build proper 64-bit data elements by shuffling the low and high
2613 * 32-bit components around like we do for other things like UBOs
2614 * or SSBOs.
2615 */
2616 if (type_sz(dst.type) == 8) {
2617 shuffle_32bit_load_result_to_64bit_data(
2618 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2619
2620 for (unsigned c = 0; c < num_components; c++) {
2621 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2622 offset(dst, bld, c));
2623 }
2624 }
2625
2626 /* Copy the temporary to the destination to deal with writemasking.
2627 *
2628 * Also attempt to deal with gl_PointSize being in the .w component.
2629 */
2630 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2631 assert(type_sz(dst.type) < 8);
2632 inst->dst = bld.vgrf(dst.type, 4);
2633 inst->size_written = 4 * REG_SIZE;
2634 bld.MOV(dst, offset(inst->dst, bld, 3));
2635 }
2636
2637 /* If we are loading double data and we need a second read message
2638 * adjust the write offset
2639 */
2640 if (num_iterations > 1) {
2641 num_components = instr->num_components - 2;
2642 imm_offset++;
2643 }
2644 }
2645 break;
2646 }
2647
2648 case nir_intrinsic_load_output:
2649 case nir_intrinsic_load_per_vertex_output: {
2650 fs_reg indirect_offset = get_indirect_offset(instr);
2651 unsigned imm_offset = instr->const_index[0];
2652 unsigned first_component = nir_intrinsic_component(instr);
2653
2654 fs_inst *inst;
2655 if (indirect_offset.file == BAD_FILE) {
2656 /* Replicate the patch handle to all enabled channels */
2657 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2658 bld.MOV(patch_handle,
2659 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2660
2661 {
2662 if (first_component != 0) {
2663 unsigned read_components =
2664 instr->num_components + first_component;
2665 fs_reg tmp = bld.vgrf(dst.type, read_components);
2666 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2667 patch_handle);
2668 inst->size_written = read_components * REG_SIZE;
2669 for (unsigned i = 0; i < instr->num_components; i++) {
2670 bld.MOV(offset(dst, bld, i),
2671 offset(tmp, bld, i + first_component));
2672 }
2673 } else {
2674 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2675 patch_handle);
2676 inst->size_written = instr->num_components * REG_SIZE;
2677 }
2678 inst->offset = imm_offset;
2679 inst->mlen = 1;
2680 }
2681 } else {
2682 /* Indirect indexing - use per-slot offsets as well. */
2683 const fs_reg srcs[] = {
2684 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2685 indirect_offset
2686 };
2687 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2688 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2689 if (first_component != 0) {
2690 unsigned read_components =
2691 instr->num_components + first_component;
2692 fs_reg tmp = bld.vgrf(dst.type, read_components);
2693 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2694 payload);
2695 inst->size_written = read_components * REG_SIZE;
2696 for (unsigned i = 0; i < instr->num_components; i++) {
2697 bld.MOV(offset(dst, bld, i),
2698 offset(tmp, bld, i + first_component));
2699 }
2700 } else {
2701 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2702 payload);
2703 inst->size_written = instr->num_components * REG_SIZE;
2704 }
2705 inst->offset = imm_offset;
2706 inst->mlen = 2;
2707 }
2708 break;
2709 }
2710
2711 case nir_intrinsic_store_output:
2712 case nir_intrinsic_store_per_vertex_output: {
2713 fs_reg value = get_nir_src(instr->src[0]);
2714 bool is_64bit = (instr->src[0].is_ssa ?
2715 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2716 fs_reg indirect_offset = get_indirect_offset(instr);
2717 unsigned imm_offset = instr->const_index[0];
2718 unsigned mask = instr->const_index[1];
2719 unsigned header_regs = 0;
2720 fs_reg srcs[7];
2721 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2722
2723 if (indirect_offset.file != BAD_FILE) {
2724 srcs[header_regs++] = indirect_offset;
2725 }
2726
2727 if (mask == 0)
2728 break;
2729
2730 unsigned num_components = util_last_bit(mask);
2731 enum opcode opcode;
2732
2733 /* We can only pack two 64-bit components in a single message, so send
2734 * 2 messages if we have more components
2735 */
2736 unsigned num_iterations = 1;
2737 unsigned iter_components = num_components;
2738 unsigned first_component = nir_intrinsic_component(instr);
2739 if (is_64bit) {
2740 first_component = first_component / 2;
2741 if (instr->num_components > 2) {
2742 num_iterations = 2;
2743 iter_components = 2;
2744 }
2745 }
2746
2747 mask = mask << first_component;
2748
2749 for (unsigned iter = 0; iter < num_iterations; iter++) {
2750 if (!is_64bit && mask != WRITEMASK_XYZW) {
2751 srcs[header_regs++] = brw_imm_ud(mask << 16);
2752 opcode = indirect_offset.file != BAD_FILE ?
2753 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2754 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2755 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2756 /* Expand the 64-bit mask to 32-bit channels. We only handle
2757 * two channels in each iteration, so we only care about X/Y.
2758 */
2759 unsigned mask32 = 0;
2760 if (mask & WRITEMASK_X)
2761 mask32 |= WRITEMASK_XY;
2762 if (mask & WRITEMASK_Y)
2763 mask32 |= WRITEMASK_ZW;
2764
2765 /* If the mask does not include any of the channels X or Y there
2766 * is nothing to do in this iteration. Move on to the next couple
2767 * of 64-bit channels.
2768 */
2769 if (!mask32) {
2770 mask >>= 2;
2771 imm_offset++;
2772 continue;
2773 }
2774
2775 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2776 opcode = indirect_offset.file != BAD_FILE ?
2777 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2778 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2779 } else {
2780 opcode = indirect_offset.file != BAD_FILE ?
2781 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2782 SHADER_OPCODE_URB_WRITE_SIMD8;
2783 }
2784
2785 for (unsigned i = 0; i < iter_components; i++) {
2786 if (!(mask & (1 << (i + first_component))))
2787 continue;
2788
2789 if (!is_64bit) {
2790 srcs[header_regs + i + first_component] = offset(value, bld, i);
2791 } else {
2792 /* We need to shuffle the 64-bit data to match the layout
2793 * expected by our 32-bit URB write messages. We use a temporary
2794 * for that.
2795 */
2796 unsigned channel = iter * 2 + i;
2797 fs_reg dest = shuffle_64bit_data_for_32bit_write(bld,
2798 offset(value, bld, channel), 1);
2799
2800 srcs[header_regs + (i + first_component) * 2] = dest;
2801 srcs[header_regs + (i + first_component) * 2 + 1] =
2802 offset(dest, bld, 1);
2803 }
2804 }
2805
2806 unsigned mlen =
2807 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2808 (is_64bit ? 2 * first_component : first_component);
2809 fs_reg payload =
2810 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2811 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2812
2813 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2814 inst->offset = imm_offset;
2815 inst->mlen = mlen;
2816
2817 /* If this is a 64-bit attribute, select the next two 64-bit channels
2818 * to be handled in the next iteration.
2819 */
2820 if (is_64bit) {
2821 mask >>= 2;
2822 imm_offset++;
2823 }
2824 }
2825 break;
2826 }
2827
2828 default:
2829 nir_emit_intrinsic(bld, instr);
2830 break;
2831 }
2832 }
2833
2834 void
2835 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2836 nir_intrinsic_instr *instr)
2837 {
2838 assert(stage == MESA_SHADER_TESS_EVAL);
2839 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2840
2841 fs_reg dest;
2842 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2843 dest = get_nir_dest(instr->dest);
2844
2845 switch (instr->intrinsic) {
2846 case nir_intrinsic_load_primitive_id:
2847 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2848 break;
2849 case nir_intrinsic_load_tess_coord:
2850 /* gl_TessCoord is part of the payload in g1-3 */
2851 for (unsigned i = 0; i < 3; i++) {
2852 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2853 }
2854 break;
2855
2856 case nir_intrinsic_load_input:
2857 case nir_intrinsic_load_per_vertex_input: {
2858 fs_reg indirect_offset = get_indirect_offset(instr);
2859 unsigned imm_offset = instr->const_index[0];
2860 unsigned first_component = nir_intrinsic_component(instr);
2861
2862 if (type_sz(dest.type) == 8) {
2863 first_component = first_component / 2;
2864 }
2865
2866 fs_inst *inst;
2867 if (indirect_offset.file == BAD_FILE) {
2868 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2869 * which is 16 registers (since each holds 2 vec4 slots).
2870 */
2871 unsigned slot_count = 1;
2872 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2873 slot_count++;
2874
2875 const unsigned max_push_slots = 32;
2876 if (imm_offset + slot_count <= max_push_slots) {
2877 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2878 for (int i = 0; i < instr->num_components; i++) {
2879 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2880 i + first_component;
2881 bld.MOV(offset(dest, bld, i), component(src, comp));
2882 }
2883
2884 tes_prog_data->base.urb_read_length =
2885 MAX2(tes_prog_data->base.urb_read_length,
2886 DIV_ROUND_UP(imm_offset + slot_count, 2));
2887 } else {
2888 /* Replicate the patch handle to all enabled channels */
2889 const fs_reg srcs[] = {
2890 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2891 };
2892 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2893 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2894
2895 if (first_component != 0) {
2896 unsigned read_components =
2897 instr->num_components + first_component;
2898 fs_reg tmp = bld.vgrf(dest.type, read_components);
2899 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2900 patch_handle);
2901 inst->size_written = read_components * REG_SIZE;
2902 for (unsigned i = 0; i < instr->num_components; i++) {
2903 bld.MOV(offset(dest, bld, i),
2904 offset(tmp, bld, i + first_component));
2905 }
2906 } else {
2907 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2908 patch_handle);
2909 inst->size_written = instr->num_components * REG_SIZE;
2910 }
2911 inst->mlen = 1;
2912 inst->offset = imm_offset;
2913 }
2914 } else {
2915 /* Indirect indexing - use per-slot offsets as well. */
2916
2917 /* We can only read two double components with each URB read, so
2918 * we send two read messages in that case, each one loading up to
2919 * two double components.
2920 */
2921 unsigned num_iterations = 1;
2922 unsigned num_components = instr->num_components;
2923 fs_reg orig_dest = dest;
2924 if (type_sz(dest.type) == 8) {
2925 if (instr->num_components > 2) {
2926 num_iterations = 2;
2927 num_components = 2;
2928 }
2929 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2930 dest = tmp;
2931 }
2932
2933 for (unsigned iter = 0; iter < num_iterations; iter++) {
2934 const fs_reg srcs[] = {
2935 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2936 indirect_offset
2937 };
2938 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2939 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2940
2941 if (first_component != 0) {
2942 unsigned read_components =
2943 num_components + first_component;
2944 fs_reg tmp = bld.vgrf(dest.type, read_components);
2945 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2946 payload);
2947 for (unsigned i = 0; i < num_components; i++) {
2948 bld.MOV(offset(dest, bld, i),
2949 offset(tmp, bld, i + first_component));
2950 }
2951 } else {
2952 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2953 payload);
2954 }
2955 inst->mlen = 2;
2956 inst->offset = imm_offset;
2957 inst->size_written = (num_components + first_component) *
2958 inst->dst.component_size(inst->exec_size);
2959
2960 /* If we are reading 64-bit data using 32-bit read messages we need
2961 * build proper 64-bit data elements by shuffling the low and high
2962 * 32-bit components around like we do for other things like UBOs
2963 * or SSBOs.
2964 */
2965 if (type_sz(dest.type) == 8) {
2966 shuffle_32bit_load_result_to_64bit_data(
2967 bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
2968
2969 for (unsigned c = 0; c < num_components; c++) {
2970 bld.MOV(offset(orig_dest, bld, iter * 2 + c),
2971 offset(dest, bld, c));
2972 }
2973 }
2974
2975 /* If we are loading double data and we need a second read message
2976 * adjust the offset
2977 */
2978 if (num_iterations > 1) {
2979 num_components = instr->num_components - 2;
2980 imm_offset++;
2981 }
2982 }
2983 }
2984 break;
2985 }
2986 default:
2987 nir_emit_intrinsic(bld, instr);
2988 break;
2989 }
2990 }
2991
2992 void
2993 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2994 nir_intrinsic_instr *instr)
2995 {
2996 assert(stage == MESA_SHADER_GEOMETRY);
2997 fs_reg indirect_offset;
2998
2999 fs_reg dest;
3000 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3001 dest = get_nir_dest(instr->dest);
3002
3003 switch (instr->intrinsic) {
3004 case nir_intrinsic_load_primitive_id:
3005 assert(stage == MESA_SHADER_GEOMETRY);
3006 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3007 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3008 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3009 break;
3010
3011 case nir_intrinsic_load_input:
3012 unreachable("load_input intrinsics are invalid for the GS stage");
3013
3014 case nir_intrinsic_load_per_vertex_input:
3015 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3016 instr->src[1], instr->num_components,
3017 nir_intrinsic_component(instr));
3018 break;
3019
3020 case nir_intrinsic_emit_vertex_with_counter:
3021 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3022 break;
3023
3024 case nir_intrinsic_end_primitive_with_counter:
3025 emit_gs_end_primitive(instr->src[0]);
3026 break;
3027
3028 case nir_intrinsic_set_vertex_count:
3029 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3030 break;
3031
3032 case nir_intrinsic_load_invocation_id: {
3033 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3034 assert(val.file != BAD_FILE);
3035 dest.type = val.type;
3036 bld.MOV(dest, val);
3037 break;
3038 }
3039
3040 default:
3041 nir_emit_intrinsic(bld, instr);
3042 break;
3043 }
3044 }
3045
3046 /**
3047 * Fetch the current render target layer index.
3048 */
3049 static fs_reg
3050 fetch_render_target_array_index(const fs_builder &bld)
3051 {
3052 if (bld.shader->devinfo->gen >= 6) {
3053 /* The render target array index is provided in the thread payload as
3054 * bits 26:16 of r0.0.
3055 */
3056 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3057 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3058 brw_imm_uw(0x7ff));
3059 return idx;
3060 } else {
3061 /* Pre-SNB we only ever render into the first layer of the framebuffer
3062 * since layered rendering is not implemented.
3063 */
3064 return brw_imm_ud(0);
3065 }
3066 }
3067
3068 /**
3069 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3070 * framebuffer at the current fragment coordinates and sample index.
3071 */
3072 fs_inst *
3073 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3074 unsigned target)
3075 {
3076 const struct gen_device_info *devinfo = bld.shader->devinfo;
3077
3078 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3079 const brw_wm_prog_key *wm_key =
3080 reinterpret_cast<const brw_wm_prog_key *>(key);
3081 assert(!wm_key->coherent_fb_fetch);
3082 const struct brw_wm_prog_data *wm_prog_data =
3083 brw_wm_prog_data(stage_prog_data);
3084
3085 /* Calculate the surface index relative to the start of the texture binding
3086 * table block, since that's what the texturing messages expect.
3087 */
3088 const unsigned surface = target +
3089 wm_prog_data->binding_table.render_target_read_start -
3090 wm_prog_data->base.binding_table.texture_start;
3091
3092 brw_mark_surface_used(
3093 bld.shader->stage_prog_data,
3094 wm_prog_data->binding_table.render_target_read_start + target);
3095
3096 /* Calculate the fragment coordinates. */
3097 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3098 bld.MOV(offset(coords, bld, 0), pixel_x);
3099 bld.MOV(offset(coords, bld, 1), pixel_y);
3100 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3101
3102 /* Calculate the sample index and MCS payload when multisampling. Luckily
3103 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3104 * shouldn't be necessary to recompile based on whether the framebuffer is
3105 * CMS or UMS.
3106 */
3107 if (wm_key->multisample_fbo &&
3108 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3109 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3110
3111 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3112 const fs_reg mcs = wm_key->multisample_fbo ?
3113 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3114
3115 /* Use either a normal or a CMS texel fetch message depending on whether
3116 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3117 * message just in case the framebuffer uses 16x multisampling, it should
3118 * be equivalent to the normal CMS fetch for lower multisampling modes.
3119 */
3120 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3121 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3122 SHADER_OPCODE_TXF_CMS_LOGICAL;
3123
3124 /* Emit the instruction. */
3125 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3126 sample, mcs,
3127 brw_imm_ud(surface), brw_imm_ud(0),
3128 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3129 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3130
3131 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3132 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3133
3134 return inst;
3135 }
3136
3137 /**
3138 * Actual coherent framebuffer read implemented using the native render target
3139 * read message. Requires SKL+.
3140 */
3141 static fs_inst *
3142 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3143 {
3144 assert(bld.shader->devinfo->gen >= 9);
3145 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3146 inst->target = target;
3147 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3148
3149 return inst;
3150 }
3151
3152 static fs_reg
3153 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3154 {
3155 if (n && regs[0].file != BAD_FILE) {
3156 return regs[0];
3157
3158 } else {
3159 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3160
3161 for (unsigned i = 0; i < n; i++)
3162 regs[i] = tmp;
3163
3164 return tmp;
3165 }
3166 }
3167
3168 static fs_reg
3169 alloc_frag_output(fs_visitor *v, unsigned location)
3170 {
3171 assert(v->stage == MESA_SHADER_FRAGMENT);
3172 const brw_wm_prog_key *const key =
3173 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3174 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3175 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3176
3177 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3178 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3179
3180 else if (l == FRAG_RESULT_COLOR)
3181 return alloc_temporary(v->bld, 4, v->outputs,
3182 MAX2(key->nr_color_regions, 1));
3183
3184 else if (l == FRAG_RESULT_DEPTH)
3185 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3186
3187 else if (l == FRAG_RESULT_STENCIL)
3188 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3189
3190 else if (l == FRAG_RESULT_SAMPLE_MASK)
3191 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3192
3193 else if (l >= FRAG_RESULT_DATA0 &&
3194 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3195 return alloc_temporary(v->bld, 4,
3196 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3197
3198 else
3199 unreachable("Invalid location");
3200 }
3201
3202 void
3203 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3204 nir_intrinsic_instr *instr)
3205 {
3206 assert(stage == MESA_SHADER_FRAGMENT);
3207
3208 fs_reg dest;
3209 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3210 dest = get_nir_dest(instr->dest);
3211
3212 switch (instr->intrinsic) {
3213 case nir_intrinsic_load_front_face:
3214 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3215 *emit_frontfacing_interpolation());
3216 break;
3217
3218 case nir_intrinsic_load_sample_pos: {
3219 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3220 assert(sample_pos.file != BAD_FILE);
3221 dest.type = sample_pos.type;
3222 bld.MOV(dest, sample_pos);
3223 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3224 break;
3225 }
3226
3227 case nir_intrinsic_load_layer_id:
3228 dest.type = BRW_REGISTER_TYPE_UD;
3229 bld.MOV(dest, fetch_render_target_array_index(bld));
3230 break;
3231
3232 case nir_intrinsic_load_helper_invocation:
3233 case nir_intrinsic_load_sample_mask_in:
3234 case nir_intrinsic_load_sample_id: {
3235 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3236 fs_reg val = nir_system_values[sv];
3237 assert(val.file != BAD_FILE);
3238 dest.type = val.type;
3239 bld.MOV(dest, val);
3240 break;
3241 }
3242
3243 case nir_intrinsic_store_output: {
3244 const fs_reg src = get_nir_src(instr->src[0]);
3245 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3246 assert(const_offset && "Indirect output stores not allowed");
3247 const unsigned location = nir_intrinsic_base(instr) +
3248 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3249 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3250 src.type);
3251
3252 for (unsigned j = 0; j < instr->num_components; j++)
3253 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3254 offset(src, bld, j));
3255
3256 break;
3257 }
3258
3259 case nir_intrinsic_load_output: {
3260 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3261 BRW_NIR_FRAG_OUTPUT_LOCATION);
3262 assert(l >= FRAG_RESULT_DATA0);
3263 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3264 assert(const_offset && "Indirect output loads not allowed");
3265 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3266 const fs_reg tmp = bld.vgrf(dest.type, 4);
3267
3268 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3269 emit_coherent_fb_read(bld, tmp, target);
3270 else
3271 emit_non_coherent_fb_read(bld, tmp, target);
3272
3273 for (unsigned j = 0; j < instr->num_components; j++) {
3274 bld.MOV(offset(dest, bld, j),
3275 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3276 }
3277
3278 break;
3279 }
3280
3281 case nir_intrinsic_discard:
3282 case nir_intrinsic_discard_if: {
3283 /* We track our discarded pixels in f0.1. By predicating on it, we can
3284 * update just the flag bits that aren't yet discarded. If there's no
3285 * condition, we emit a CMP of g0 != g0, so all currently executing
3286 * channels will get turned off.
3287 */
3288 fs_inst *cmp;
3289 if (instr->intrinsic == nir_intrinsic_discard_if) {
3290 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3291 brw_imm_d(0), BRW_CONDITIONAL_Z);
3292 } else {
3293 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3294 BRW_REGISTER_TYPE_UW));
3295 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3296 }
3297 cmp->predicate = BRW_PREDICATE_NORMAL;
3298 cmp->flag_subreg = 1;
3299
3300 if (devinfo->gen >= 6) {
3301 emit_discard_jump();
3302 }
3303 break;
3304 }
3305
3306 case nir_intrinsic_load_input: {
3307 /* load_input is only used for flat inputs */
3308 unsigned base = nir_intrinsic_base(instr);
3309 unsigned component = nir_intrinsic_component(instr);
3310 unsigned num_components = instr->num_components;
3311 enum brw_reg_type type = dest.type;
3312
3313 /* Special case fields in the VUE header */
3314 if (base == VARYING_SLOT_LAYER)
3315 component = 1;
3316 else if (base == VARYING_SLOT_VIEWPORT)
3317 component = 2;
3318
3319 if (nir_dest_bit_size(instr->dest) == 64) {
3320 /* const_index is in 32-bit type size units that could not be aligned
3321 * with DF. We need to read the double vector as if it was a float
3322 * vector of twice the number of components to fetch the right data.
3323 */
3324 type = BRW_REGISTER_TYPE_F;
3325 num_components *= 2;
3326 }
3327
3328 for (unsigned int i = 0; i < num_components; i++) {
3329 struct brw_reg interp = interp_reg(base, component + i);
3330 interp = suboffset(interp, 3);
3331 bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i),
3332 retype(fs_reg(interp), type));
3333 }
3334
3335 if (nir_dest_bit_size(instr->dest) == 64) {
3336 shuffle_32bit_load_result_to_64bit_data(bld,
3337 dest,
3338 retype(dest, type),
3339 instr->num_components);
3340 }
3341 break;
3342 }
3343
3344 case nir_intrinsic_load_barycentric_pixel:
3345 case nir_intrinsic_load_barycentric_centroid:
3346 case nir_intrinsic_load_barycentric_sample:
3347 /* Do nothing - load_interpolated_input handling will handle it later. */
3348 break;
3349
3350 case nir_intrinsic_load_barycentric_at_sample: {
3351 const glsl_interp_mode interpolation =
3352 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3353
3354 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3355
3356 if (const_sample) {
3357 unsigned msg_data = const_sample->i32[0] << 4;
3358
3359 emit_pixel_interpolater_send(bld,
3360 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3361 dest,
3362 fs_reg(), /* src */
3363 brw_imm_ud(msg_data),
3364 interpolation);
3365 } else {
3366 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3367 BRW_REGISTER_TYPE_UD);
3368
3369 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3370 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3371 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3372 bld.exec_all().group(1, 0)
3373 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3374 emit_pixel_interpolater_send(bld,
3375 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3376 dest,
3377 fs_reg(), /* src */
3378 msg_data,
3379 interpolation);
3380 } else {
3381 /* Make a loop that sends a message to the pixel interpolater
3382 * for the sample number in each live channel. If there are
3383 * multiple channels with the same sample number then these
3384 * will be handled simultaneously with a single interation of
3385 * the loop.
3386 */
3387 bld.emit(BRW_OPCODE_DO);
3388
3389 /* Get the next live sample number into sample_id_reg */
3390 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3391
3392 /* Set the flag register so that we can perform the send
3393 * message on all channels that have the same sample number
3394 */
3395 bld.CMP(bld.null_reg_ud(),
3396 sample_src, sample_id,
3397 BRW_CONDITIONAL_EQ);
3398 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3399 bld.exec_all().group(1, 0)
3400 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3401 fs_inst *inst =
3402 emit_pixel_interpolater_send(bld,
3403 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3404 dest,
3405 fs_reg(), /* src */
3406 msg_data,
3407 interpolation);
3408 set_predicate(BRW_PREDICATE_NORMAL, inst);
3409
3410 /* Continue the loop if there are any live channels left */
3411 set_predicate_inv(BRW_PREDICATE_NORMAL,
3412 true, /* inverse */
3413 bld.emit(BRW_OPCODE_WHILE));
3414 }
3415 }
3416 break;
3417 }
3418
3419 case nir_intrinsic_load_barycentric_at_offset: {
3420 const glsl_interp_mode interpolation =
3421 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3422
3423 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3424
3425 if (const_offset) {
3426 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3427 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3428
3429 emit_pixel_interpolater_send(bld,
3430 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3431 dest,
3432 fs_reg(), /* src */
3433 brw_imm_ud(off_x | (off_y << 4)),
3434 interpolation);
3435 } else {
3436 fs_reg src = vgrf(glsl_type::ivec2_type);
3437 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3438 BRW_REGISTER_TYPE_F);
3439 for (int i = 0; i < 2; i++) {
3440 fs_reg temp = vgrf(glsl_type::float_type);
3441 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3442 fs_reg itemp = vgrf(glsl_type::int_type);
3443 /* float to int */
3444 bld.MOV(itemp, temp);
3445
3446 /* Clamp the upper end of the range to +7/16.
3447 * ARB_gpu_shader5 requires that we support a maximum offset
3448 * of +0.5, which isn't representable in a S0.4 value -- if
3449 * we didn't clamp it, we'd end up with -8/16, which is the
3450 * opposite of what the shader author wanted.
3451 *
3452 * This is legal due to ARB_gpu_shader5's quantization
3453 * rules:
3454 *
3455 * "Not all values of <offset> may be supported; x and y
3456 * offsets may be rounded to fixed-point values with the
3457 * number of fraction bits given by the
3458 * implementation-dependent constant
3459 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3460 */
3461 set_condmod(BRW_CONDITIONAL_L,
3462 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3463 }
3464
3465 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3466 emit_pixel_interpolater_send(bld,
3467 opcode,
3468 dest,
3469 src,
3470 brw_imm_ud(0u),
3471 interpolation);
3472 }
3473 break;
3474 }
3475
3476 case nir_intrinsic_load_interpolated_input: {
3477 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3478 emit_fragcoord_interpolation(dest);
3479 break;
3480 }
3481
3482 assert(instr->src[0].ssa &&
3483 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3484 nir_intrinsic_instr *bary_intrinsic =
3485 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3486 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3487 enum glsl_interp_mode interp_mode =
3488 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3489 fs_reg dst_xy;
3490
3491 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3492 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3493 /* Use the result of the PI message */
3494 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3495 } else {
3496 /* Use the delta_xy values computed from the payload */
3497 enum brw_barycentric_mode bary =
3498 brw_barycentric_mode(interp_mode, bary_intrin);
3499
3500 dst_xy = this->delta_xy[bary];
3501 }
3502
3503 for (unsigned int i = 0; i < instr->num_components; i++) {
3504 fs_reg interp =
3505 fs_reg(interp_reg(nir_intrinsic_base(instr),
3506 nir_intrinsic_component(instr) + i));
3507 interp.type = BRW_REGISTER_TYPE_F;
3508 dest.type = BRW_REGISTER_TYPE_F;
3509
3510 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3511 fs_reg tmp = vgrf(glsl_type::float_type);
3512 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3513 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3514 } else {
3515 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3516 }
3517 }
3518 break;
3519 }
3520
3521 default:
3522 nir_emit_intrinsic(bld, instr);
3523 break;
3524 }
3525 }
3526
3527 void
3528 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3529 nir_intrinsic_instr *instr)
3530 {
3531 assert(stage == MESA_SHADER_COMPUTE);
3532 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3533
3534 fs_reg dest;
3535 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3536 dest = get_nir_dest(instr->dest);
3537
3538 switch (instr->intrinsic) {
3539 case nir_intrinsic_barrier:
3540 emit_barrier();
3541 cs_prog_data->uses_barrier = true;
3542 break;
3543
3544 case nir_intrinsic_load_subgroup_id:
3545 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3546 break;
3547
3548 case nir_intrinsic_load_local_invocation_id:
3549 case nir_intrinsic_load_work_group_id: {
3550 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3551 fs_reg val = nir_system_values[sv];
3552 assert(val.file != BAD_FILE);
3553 dest.type = val.type;
3554 for (unsigned i = 0; i < 3; i++)
3555 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3556 break;
3557 }
3558
3559 case nir_intrinsic_load_num_work_groups: {
3560 const unsigned surface =
3561 cs_prog_data->binding_table.work_groups_start;
3562
3563 cs_prog_data->uses_num_work_groups = true;
3564
3565 fs_reg surf_index = brw_imm_ud(surface);
3566 brw_mark_surface_used(prog_data, surface);
3567
3568 /* Read the 3 GLuint components of gl_NumWorkGroups */
3569 for (unsigned i = 0; i < 3; i++) {
3570 fs_reg read_result =
3571 emit_untyped_read(bld, surf_index,
3572 brw_imm_ud(i << 2),
3573 1 /* dims */, 1 /* size */,
3574 BRW_PREDICATE_NONE);
3575 read_result.type = dest.type;
3576 bld.MOV(dest, read_result);
3577 dest = offset(dest, bld, 1);
3578 }
3579 break;
3580 }
3581
3582 case nir_intrinsic_shared_atomic_add:
3583 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3584 break;
3585 case nir_intrinsic_shared_atomic_imin:
3586 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3587 break;
3588 case nir_intrinsic_shared_atomic_umin:
3589 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3590 break;
3591 case nir_intrinsic_shared_atomic_imax:
3592 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3593 break;
3594 case nir_intrinsic_shared_atomic_umax:
3595 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3596 break;
3597 case nir_intrinsic_shared_atomic_and:
3598 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3599 break;
3600 case nir_intrinsic_shared_atomic_or:
3601 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3602 break;
3603 case nir_intrinsic_shared_atomic_xor:
3604 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3605 break;
3606 case nir_intrinsic_shared_atomic_exchange:
3607 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3608 break;
3609 case nir_intrinsic_shared_atomic_comp_swap:
3610 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3611 break;
3612
3613 case nir_intrinsic_load_shared: {
3614 assert(devinfo->gen >= 7);
3615
3616 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3617
3618 /* Get the offset to read from */
3619 fs_reg offset_reg;
3620 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3621 if (const_offset) {
3622 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3623 } else {
3624 offset_reg = vgrf(glsl_type::uint_type);
3625 bld.ADD(offset_reg,
3626 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3627 brw_imm_ud(instr->const_index[0]));
3628 }
3629
3630 /* Read the vector */
3631 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3632 instr->num_components);
3633 break;
3634 }
3635
3636 case nir_intrinsic_store_shared: {
3637 assert(devinfo->gen >= 7);
3638
3639 /* Block index */
3640 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3641
3642 /* Value */
3643 fs_reg val_reg = get_nir_src(instr->src[0]);
3644
3645 /* Writemask */
3646 unsigned writemask = instr->const_index[1];
3647
3648 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3649 * since the untyped writes below operate in units of 32-bits, which
3650 * means that we need to write twice as many components each time.
3651 * Also, we have to suffle 64-bit data to be in the appropriate layout
3652 * expected by our 32-bit write messages.
3653 */
3654 unsigned type_size = 4;
3655 if (nir_src_bit_size(instr->src[0]) == 64) {
3656 type_size = 8;
3657 val_reg = shuffle_64bit_data_for_32bit_write(bld,
3658 val_reg, instr->num_components);
3659 }
3660
3661 unsigned type_slots = type_size / 4;
3662
3663 /* Combine groups of consecutive enabled channels in one write
3664 * message. We use ffs to find the first enabled channel and then ffs on
3665 * the bit-inverse, down-shifted writemask to determine the length of
3666 * the block of enabled bits.
3667 */
3668 while (writemask) {
3669 unsigned first_component = ffs(writemask) - 1;
3670 unsigned length = ffs(~(writemask >> first_component)) - 1;
3671
3672 /* We can't write more than 2 64-bit components at once. Limit the
3673 * length of the write to what we can do and let the next iteration
3674 * handle the rest
3675 */
3676 if (type_size > 4)
3677 length = MIN2(2, length);
3678
3679 fs_reg offset_reg;
3680 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3681 if (const_offset) {
3682 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3683 type_size * first_component);
3684 } else {
3685 offset_reg = vgrf(glsl_type::uint_type);
3686 bld.ADD(offset_reg,
3687 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3688 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3689 }
3690
3691 emit_untyped_write(bld, surf_index, offset_reg,
3692 offset(val_reg, bld, first_component * type_slots),
3693 1 /* dims */, length * type_slots,
3694 BRW_PREDICATE_NONE);
3695
3696 /* Clear the bits in the writemask that we just wrote, then try
3697 * again to see if more channels are left.
3698 */
3699 writemask &= (15 << (first_component + length));
3700 }
3701
3702 break;
3703 }
3704
3705 default:
3706 nir_emit_intrinsic(bld, instr);
3707 break;
3708 }
3709 }
3710
3711 void
3712 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3713 {
3714 fs_reg dest;
3715 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3716 dest = get_nir_dest(instr->dest);
3717
3718 switch (instr->intrinsic) {
3719 case nir_intrinsic_image_load:
3720 case nir_intrinsic_image_store:
3721 case nir_intrinsic_image_atomic_add:
3722 case nir_intrinsic_image_atomic_min:
3723 case nir_intrinsic_image_atomic_max:
3724 case nir_intrinsic_image_atomic_and:
3725 case nir_intrinsic_image_atomic_or:
3726 case nir_intrinsic_image_atomic_xor:
3727 case nir_intrinsic_image_atomic_exchange:
3728 case nir_intrinsic_image_atomic_comp_swap: {
3729 using namespace image_access;
3730
3731 if (stage == MESA_SHADER_FRAGMENT &&
3732 instr->intrinsic != nir_intrinsic_image_load)
3733 brw_wm_prog_data(prog_data)->has_side_effects = true;
3734
3735 /* Get the referenced image variable and type. */
3736 const nir_variable *var = instr->variables[0]->var;
3737 const glsl_type *type = var->type->without_array();
3738 const brw_reg_type base_type = get_image_base_type(type);
3739
3740 /* Get some metadata from the image intrinsic. */
3741 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3742 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3743 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3744 const unsigned format = var->data.image.format;
3745
3746 /* Get the arguments of the image intrinsic. */
3747 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3748 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3749 BRW_REGISTER_TYPE_UD);
3750 const fs_reg src0 = (info->num_srcs >= 3 ?
3751 retype(get_nir_src(instr->src[2]), base_type) :
3752 fs_reg());
3753 const fs_reg src1 = (info->num_srcs >= 4 ?
3754 retype(get_nir_src(instr->src[3]), base_type) :
3755 fs_reg());
3756 fs_reg tmp;
3757
3758 /* Emit an image load, store or atomic op. */
3759 if (instr->intrinsic == nir_intrinsic_image_load)
3760 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3761
3762 else if (instr->intrinsic == nir_intrinsic_image_store)
3763 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3764 var->data.image.write_only ? GL_NONE : format);
3765
3766 else
3767 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3768 surf_dims, arr_dims, info->dest_components,
3769 get_image_atomic_op(instr->intrinsic, type));
3770
3771 /* Assign the result. */
3772 for (unsigned c = 0; c < info->dest_components; ++c)
3773 bld.MOV(offset(retype(dest, base_type), bld, c),
3774 offset(tmp, bld, c));
3775 break;
3776 }
3777
3778 case nir_intrinsic_memory_barrier_atomic_counter:
3779 case nir_intrinsic_memory_barrier_buffer:
3780 case nir_intrinsic_memory_barrier_image:
3781 case nir_intrinsic_memory_barrier: {
3782 const fs_builder ubld = bld.group(8, 0);
3783 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3784 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3785 ->size_written = 2 * REG_SIZE;
3786 break;
3787 }
3788
3789 case nir_intrinsic_group_memory_barrier:
3790 case nir_intrinsic_memory_barrier_shared:
3791 /* We treat these workgroup-level barriers as no-ops. This should be
3792 * safe at present and as long as:
3793 *
3794 * - Memory access instructions are not subsequently reordered by the
3795 * compiler back-end.
3796 *
3797 * - All threads from a given compute shader workgroup fit within a
3798 * single subslice and therefore talk to the same HDC shared unit
3799 * what supposedly guarantees ordering and coherency between threads
3800 * from the same workgroup. This may change in the future when we
3801 * start splitting workgroups across multiple subslices.
3802 *
3803 * - The context is not in fault-and-stream mode, which could cause
3804 * memory transactions (including to SLM) prior to the barrier to be
3805 * replayed after the barrier if a pagefault occurs. This shouldn't
3806 * be a problem up to and including SKL because fault-and-stream is
3807 * not usable due to hardware issues, but that's likely to change in
3808 * the future.
3809 */
3810 break;
3811
3812 case nir_intrinsic_shader_clock: {
3813 /* We cannot do anything if there is an event, so ignore it for now */
3814 const fs_reg shader_clock = get_timestamp(bld);
3815 const fs_reg srcs[] = { component(shader_clock, 0),
3816 component(shader_clock, 1) };
3817 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3818 break;
3819 }
3820
3821 case nir_intrinsic_image_size: {
3822 /* Get the referenced image variable and type. */
3823 const nir_variable *var = instr->variables[0]->var;
3824 const glsl_type *type = var->type->without_array();
3825
3826 /* Get the size of the image. */
3827 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3828 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3829
3830 /* For 1DArray image types, the array index is stored in the Z component.
3831 * Fix this by swizzling the Z component to the Y component.
3832 */
3833 const bool is_1d_array_image =
3834 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3835 type->sampler_array;
3836
3837 /* For CubeArray images, we should count the number of cubes instead
3838 * of the number of faces. Fix it by dividing the (Z component) by 6.
3839 */
3840 const bool is_cube_array_image =
3841 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3842 type->sampler_array;
3843
3844 /* Copy all the components. */
3845 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3846 if ((int)c >= type->coordinate_components()) {
3847 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3848 brw_imm_d(1));
3849 } else if (c == 1 && is_1d_array_image) {
3850 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3851 offset(size, bld, 2));
3852 } else if (c == 2 && is_cube_array_image) {
3853 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3854 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3855 offset(size, bld, c), brw_imm_d(6));
3856 } else {
3857 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3858 offset(size, bld, c));
3859 }
3860 }
3861
3862 break;
3863 }
3864
3865 case nir_intrinsic_image_samples:
3866 /* The driver does not support multi-sampled images. */
3867 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3868 break;
3869
3870 case nir_intrinsic_load_uniform: {
3871 /* Offsets are in bytes but they should always be multiples of 4 */
3872 assert(instr->const_index[0] % 4 == 0);
3873
3874 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3875
3876 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3877 if (const_offset) {
3878 /* Offsets are in bytes but they should always be multiples of 4 */
3879 assert(const_offset->u32[0] % 4 == 0);
3880 src.offset = const_offset->u32[0];
3881
3882 for (unsigned j = 0; j < instr->num_components; j++) {
3883 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3884 }
3885 } else {
3886 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3887 BRW_REGISTER_TYPE_UD);
3888
3889 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3890 * go past the end of the uniform. In order to keep the n'th
3891 * component from running past, we subtract off the size of all but
3892 * one component of the vector.
3893 */
3894 assert(instr->const_index[1] >=
3895 instr->num_components * (int) type_sz(dest.type));
3896 unsigned read_size = instr->const_index[1] -
3897 (instr->num_components - 1) * type_sz(dest.type);
3898
3899 bool supports_64bit_indirects =
3900 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
3901
3902 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
3903 for (unsigned j = 0; j < instr->num_components; j++) {
3904 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3905 offset(dest, bld, j), offset(src, bld, j),
3906 indirect, brw_imm_ud(read_size));
3907 }
3908 } else {
3909 const unsigned num_mov_indirects =
3910 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
3911 /* We read a little bit less per MOV INDIRECT, as they are now
3912 * 32-bits ones instead of 64-bit. Fix read_size then.
3913 */
3914 const unsigned read_size_32bit = read_size -
3915 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
3916 for (unsigned j = 0; j < instr->num_components; j++) {
3917 for (unsigned i = 0; i < num_mov_indirects; i++) {
3918 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3919 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
3920 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
3921 indirect, brw_imm_ud(read_size_32bit));
3922 }
3923 }
3924 }
3925 }
3926 break;
3927 }
3928
3929 case nir_intrinsic_load_ubo: {
3930 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
3931 fs_reg surf_index;
3932
3933 if (const_index) {
3934 const unsigned index = stage_prog_data->binding_table.ubo_start +
3935 const_index->u32[0];
3936 surf_index = brw_imm_ud(index);
3937 brw_mark_surface_used(prog_data, index);
3938 } else {
3939 /* The block index is not a constant. Evaluate the index expression
3940 * per-channel and add the base UBO index; we have to select a value
3941 * from any live channel.
3942 */
3943 surf_index = vgrf(glsl_type::uint_type);
3944 bld.ADD(surf_index, get_nir_src(instr->src[0]),
3945 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
3946 surf_index = bld.emit_uniformize(surf_index);
3947
3948 /* Assume this may touch any UBO. It would be nice to provide
3949 * a tighter bound, but the array information is already lowered away.
3950 */
3951 brw_mark_surface_used(prog_data,
3952 stage_prog_data->binding_table.ubo_start +
3953 nir->info.num_ubos - 1);
3954 }
3955
3956 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3957 if (const_offset == NULL) {
3958 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
3959 BRW_REGISTER_TYPE_UD);
3960
3961 for (int i = 0; i < instr->num_components; i++)
3962 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
3963 base_offset, i * type_sz(dest.type));
3964 } else {
3965 /* Even if we are loading doubles, a pull constant load will load
3966 * a 32-bit vec4, so should only reserve vgrf space for that. If we
3967 * need to load a full dvec4 we will have to emit 2 loads. This is
3968 * similar to demote_pull_constants(), except that in that case we
3969 * see individual accesses to each component of the vector and then
3970 * we let CSE deal with duplicate loads. Here we see a vector access
3971 * and we have to split it if necessary.
3972 */
3973 const unsigned type_size = type_sz(dest.type);
3974
3975 /* See if we've selected this as a push constant candidate */
3976 if (const_index) {
3977 const unsigned ubo_block = const_index->u32[0];
3978 const unsigned offset_256b = const_offset->u32[0] / 32;
3979
3980 fs_reg push_reg;
3981 for (int i = 0; i < 4; i++) {
3982 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3983 if (range->block == ubo_block &&
3984 offset_256b >= range->start &&
3985 offset_256b < range->start + range->length) {
3986
3987 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
3988 push_reg.offset = const_offset->u32[0] - 32 * range->start;
3989 break;
3990 }
3991 }
3992
3993 if (push_reg.file != BAD_FILE) {
3994 for (unsigned i = 0; i < instr->num_components; i++) {
3995 bld.MOV(offset(dest, bld, i),
3996 byte_offset(push_reg, i * type_size));
3997 }
3998 break;
3999 }
4000 }
4001
4002 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4003 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4004 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4005
4006 for (unsigned c = 0; c < instr->num_components;) {
4007 const unsigned base = const_offset->u32[0] + c * type_size;
4008 /* Number of usable components in the next block-aligned load. */
4009 const unsigned count = MIN2(instr->num_components - c,
4010 (block_sz - base % block_sz) / type_size);
4011
4012 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4013 packed_consts, surf_index,
4014 brw_imm_ud(base & ~(block_sz - 1)));
4015
4016 const fs_reg consts =
4017 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4018 dest.type);
4019
4020 for (unsigned d = 0; d < count; d++)
4021 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4022
4023 c += count;
4024 }
4025 }
4026 break;
4027 }
4028
4029 case nir_intrinsic_load_ssbo: {
4030 assert(devinfo->gen >= 7);
4031
4032 nir_const_value *const_uniform_block =
4033 nir_src_as_const_value(instr->src[0]);
4034
4035 fs_reg surf_index;
4036 if (const_uniform_block) {
4037 unsigned index = stage_prog_data->binding_table.ssbo_start +
4038 const_uniform_block->u32[0];
4039 surf_index = brw_imm_ud(index);
4040 brw_mark_surface_used(prog_data, index);
4041 } else {
4042 surf_index = vgrf(glsl_type::uint_type);
4043 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4044 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4045
4046 /* Assume this may touch any UBO. It would be nice to provide
4047 * a tighter bound, but the array information is already lowered away.
4048 */
4049 brw_mark_surface_used(prog_data,
4050 stage_prog_data->binding_table.ssbo_start +
4051 nir->info.num_ssbos - 1);
4052 }
4053
4054 fs_reg offset_reg;
4055 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4056 if (const_offset) {
4057 offset_reg = brw_imm_ud(const_offset->u32[0]);
4058 } else {
4059 offset_reg = get_nir_src(instr->src[1]);
4060 }
4061
4062 /* Read the vector */
4063 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4064 instr->num_components);
4065
4066 break;
4067 }
4068
4069 case nir_intrinsic_store_ssbo: {
4070 assert(devinfo->gen >= 7);
4071
4072 if (stage == MESA_SHADER_FRAGMENT)
4073 brw_wm_prog_data(prog_data)->has_side_effects = true;
4074
4075 /* Block index */
4076 fs_reg surf_index;
4077 nir_const_value *const_uniform_block =
4078 nir_src_as_const_value(instr->src[1]);
4079 if (const_uniform_block) {
4080 unsigned index = stage_prog_data->binding_table.ssbo_start +
4081 const_uniform_block->u32[0];
4082 surf_index = brw_imm_ud(index);
4083 brw_mark_surface_used(prog_data, index);
4084 } else {
4085 surf_index = vgrf(glsl_type::uint_type);
4086 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4087 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4088
4089 brw_mark_surface_used(prog_data,
4090 stage_prog_data->binding_table.ssbo_start +
4091 nir->info.num_ssbos - 1);
4092 }
4093
4094 /* Value */
4095 fs_reg val_reg = get_nir_src(instr->src[0]);
4096
4097 /* Writemask */
4098 unsigned writemask = instr->const_index[0];
4099
4100 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4101 * since the untyped writes below operate in units of 32-bits, which
4102 * means that we need to write twice as many components each time.
4103 * Also, we have to suffle 64-bit data to be in the appropriate layout
4104 * expected by our 32-bit write messages.
4105 */
4106 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4107 unsigned type_size = bit_size / 8;
4108
4109 /* Combine groups of consecutive enabled channels in one write
4110 * message. We use ffs to find the first enabled channel and then ffs on
4111 * the bit-inverse, down-shifted writemask to determine the num_components
4112 * of the block of enabled bits.
4113 */
4114 while (writemask) {
4115 unsigned first_component = ffs(writemask) - 1;
4116 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4117 fs_reg write_src = offset(val_reg, bld, first_component);
4118
4119 if (type_size > 4) {
4120 /* We can't write more than 2 64-bit components at once. Limit
4121 * the num_components of the write to what we can do and let the next
4122 * iteration handle the rest.
4123 */
4124 num_components = MIN2(2, num_components);
4125 write_src = shuffle_64bit_data_for_32bit_write(bld, write_src,
4126 num_components);
4127 } else if (type_size < 4) {
4128 assert(type_size == 2);
4129 /* For 16-bit types we pack two consecutive values into a 32-bit
4130 * word and use an untyped write message. For single values or not
4131 * 32-bit-aligned we need to use byte-scattered writes because
4132 * untyped writes works with 32-bit components with 32-bit
4133 * alignment. byte_scattered_write messages only support one
4134 * 16-bit component at a time.
4135 *
4136 * For example, if there is a 3-components vector we submit one
4137 * untyped-write message of 32-bit (first two components), and one
4138 * byte-scattered write message (the last component).
4139 */
4140
4141 if (first_component % 2) {
4142 /* If we use a .yz writemask we also need to emit 2
4143 * byte-scattered write messages because of y-component not
4144 * being aligned to 32-bit.
4145 */
4146 num_components = 1;
4147 } else if (num_components > 2 && (num_components % 2)) {
4148 /* If there is an odd number of consecutive components we left
4149 * the not paired component for a following emit of length == 1
4150 * with byte_scattered_write.
4151 */
4152 num_components --;
4153 }
4154 /* For num_components == 1 we are also shuffling the component
4155 * because byte scattered writes of 16-bit need values to be dword
4156 * aligned. Shuffling only one component would be the same as
4157 * striding it.
4158 */
4159 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D,
4160 DIV_ROUND_UP(num_components, 2));
4161 shuffle_16bit_data_for_32bit_write(bld, tmp, write_src,
4162 num_components);
4163 write_src = tmp;
4164 }
4165
4166 fs_reg offset_reg;
4167 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4168 if (const_offset) {
4169 offset_reg = brw_imm_ud(const_offset->u32[0] +
4170 type_size * first_component);
4171 } else {
4172 offset_reg = vgrf(glsl_type::uint_type);
4173 bld.ADD(offset_reg,
4174 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4175 brw_imm_ud(type_size * first_component));
4176 }
4177
4178 if (type_size < 4 && num_components == 1) {
4179 assert(type_size == 2);
4180 /* Untyped Surface messages have a fixed 32-bit size, so we need
4181 * to rely on byte scattered in order to write 16-bit elements.
4182 * The byte_scattered_write message needs that every written 16-bit
4183 * type to be aligned 32-bits (stride=2).
4184 * Additionally, while on Untyped Surface messages the
4185 * bits of the execution mask are ANDed with the corresponding
4186 * bits of the Pixel/Sample Mask, that is not the case for byte
4187 * scattered writes. That is needed to avoid ssbo stores writing
4188 * on helper invocations. So when that can affect, we load the
4189 * sample mask, and predicate the send message.
4190 */
4191 brw_predicate pred = BRW_PREDICATE_NONE;
4192
4193 if (stage == MESA_SHADER_FRAGMENT) {
4194 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
4195 pred = BRW_PREDICATE_NORMAL;
4196 }
4197
4198 emit_byte_scattered_write(bld, surf_index, offset_reg,
4199 write_src,
4200 1 /* dims */, 1,
4201 bit_size,
4202 pred);
4203 } else {
4204 assert(num_components * type_size <= 16);
4205 assert((num_components * type_size) % 4 == 0);
4206 assert((first_component * type_size) % 4 == 0);
4207 unsigned num_slots = (num_components * type_size) / 4;
4208
4209 emit_untyped_write(bld, surf_index, offset_reg,
4210 write_src,
4211 1 /* dims */, num_slots,
4212 BRW_PREDICATE_NONE);
4213 }
4214
4215 /* Clear the bits in the writemask that we just wrote, then try
4216 * again to see if more channels are left.
4217 */
4218 writemask &= (15 << (first_component + num_components));
4219 }
4220 break;
4221 }
4222
4223 case nir_intrinsic_store_output: {
4224 fs_reg src = get_nir_src(instr->src[0]);
4225
4226 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4227 assert(const_offset && "Indirect output stores not allowed");
4228
4229 unsigned num_components = instr->num_components;
4230 unsigned first_component = nir_intrinsic_component(instr);
4231 if (nir_src_bit_size(instr->src[0]) == 64) {
4232 src = shuffle_64bit_data_for_32bit_write(bld, src, num_components);
4233 num_components *= 2;
4234 }
4235
4236 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4237 4 * const_offset->u32[0]), src.type);
4238 for (unsigned j = 0; j < num_components; j++) {
4239 bld.MOV(offset(new_dest, bld, j + first_component),
4240 offset(src, bld, j));
4241 }
4242 break;
4243 }
4244
4245 case nir_intrinsic_ssbo_atomic_add:
4246 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4247 break;
4248 case nir_intrinsic_ssbo_atomic_imin:
4249 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4250 break;
4251 case nir_intrinsic_ssbo_atomic_umin:
4252 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4253 break;
4254 case nir_intrinsic_ssbo_atomic_imax:
4255 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4256 break;
4257 case nir_intrinsic_ssbo_atomic_umax:
4258 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4259 break;
4260 case nir_intrinsic_ssbo_atomic_and:
4261 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4262 break;
4263 case nir_intrinsic_ssbo_atomic_or:
4264 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4265 break;
4266 case nir_intrinsic_ssbo_atomic_xor:
4267 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4268 break;
4269 case nir_intrinsic_ssbo_atomic_exchange:
4270 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4271 break;
4272 case nir_intrinsic_ssbo_atomic_comp_swap:
4273 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4274 break;
4275
4276 case nir_intrinsic_get_buffer_size: {
4277 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4278 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4279
4280 /* A resinfo's sampler message is used to get the buffer size. The
4281 * SIMD8's writeback message consists of four registers and SIMD16's
4282 * writeback message consists of 8 destination registers (two per each
4283 * component). Because we are only interested on the first channel of
4284 * the first returned component, where resinfo returns the buffer size
4285 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4286 * the dispatch width.
4287 */
4288 const fs_builder ubld = bld.exec_all().group(8, 0);
4289 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4290 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4291
4292 /* Set LOD = 0 */
4293 ubld.MOV(src_payload, brw_imm_d(0));
4294
4295 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4296 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4297 src_payload, brw_imm_ud(index));
4298 inst->header_size = 0;
4299 inst->mlen = 1;
4300 inst->size_written = 4 * REG_SIZE;
4301
4302 bld.MOV(retype(dest, ret_payload.type), component(ret_payload, 0));
4303 brw_mark_surface_used(prog_data, index);
4304 break;
4305 }
4306
4307 case nir_intrinsic_load_subgroup_invocation:
4308 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4309 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4310 break;
4311
4312 case nir_intrinsic_load_subgroup_eq_mask:
4313 case nir_intrinsic_load_subgroup_ge_mask:
4314 case nir_intrinsic_load_subgroup_gt_mask:
4315 case nir_intrinsic_load_subgroup_le_mask:
4316 case nir_intrinsic_load_subgroup_lt_mask:
4317 unreachable("not reached");
4318
4319 case nir_intrinsic_vote_any: {
4320 const fs_builder ubld = bld.exec_all().group(1, 0);
4321
4322 /* The any/all predicates do not consider channel enables. To prevent
4323 * dead channels from affecting the result, we initialize the flag with
4324 * with the identity value for the logical operation.
4325 */
4326 if (dispatch_width == 32) {
4327 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4328 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4329 brw_imm_ud(0));
4330 } else {
4331 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4332 }
4333 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4334
4335 /* For some reason, the any/all predicates don't work properly with
4336 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4337 * doesn't read the correct subset of the flag register and you end up
4338 * getting garbage in the second half. Work around this by using a pair
4339 * of 1-wide MOVs and scattering the result.
4340 */
4341 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4342 ubld.MOV(res1, brw_imm_d(0));
4343 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4344 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4345 BRW_PREDICATE_ALIGN1_ANY32H,
4346 ubld.MOV(res1, brw_imm_d(-1)));
4347
4348 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4349 break;
4350 }
4351 case nir_intrinsic_vote_all: {
4352 const fs_builder ubld = bld.exec_all().group(1, 0);
4353
4354 /* The any/all predicates do not consider channel enables. To prevent
4355 * dead channels from affecting the result, we initialize the flag with
4356 * with the identity value for the logical operation.
4357 */
4358 if (dispatch_width == 32) {
4359 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4360 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4361 brw_imm_ud(0xffffffff));
4362 } else {
4363 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4364 }
4365 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4366
4367 /* For some reason, the any/all predicates don't work properly with
4368 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4369 * doesn't read the correct subset of the flag register and you end up
4370 * getting garbage in the second half. Work around this by using a pair
4371 * of 1-wide MOVs and scattering the result.
4372 */
4373 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4374 ubld.MOV(res1, brw_imm_d(0));
4375 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4376 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4377 BRW_PREDICATE_ALIGN1_ALL32H,
4378 ubld.MOV(res1, brw_imm_d(-1)));
4379
4380 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4381 break;
4382 }
4383 case nir_intrinsic_vote_eq: {
4384 fs_reg value = get_nir_src(instr->src[0]);
4385 fs_reg uniformized = bld.emit_uniformize(value);
4386 const fs_builder ubld = bld.exec_all().group(1, 0);
4387
4388 /* The any/all predicates do not consider channel enables. To prevent
4389 * dead channels from affecting the result, we initialize the flag with
4390 * with the identity value for the logical operation.
4391 */
4392 if (dispatch_width == 32) {
4393 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4394 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4395 brw_imm_ud(0xffffffff));
4396 } else {
4397 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4398 }
4399 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4400
4401 /* For some reason, the any/all predicates don't work properly with
4402 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4403 * doesn't read the correct subset of the flag register and you end up
4404 * getting garbage in the second half. Work around this by using a pair
4405 * of 1-wide MOVs and scattering the result.
4406 */
4407 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4408 ubld.MOV(res1, brw_imm_d(0));
4409 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4410 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4411 BRW_PREDICATE_ALIGN1_ALL32H,
4412 ubld.MOV(res1, brw_imm_d(-1)));
4413
4414 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4415 break;
4416 }
4417
4418 case nir_intrinsic_ballot: {
4419 const fs_reg value = retype(get_nir_src(instr->src[0]),
4420 BRW_REGISTER_TYPE_UD);
4421 struct brw_reg flag = brw_flag_reg(0, 0);
4422 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4423 * as f0.0. This is a problem for fragment programs as we currently use
4424 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4425 * programs yet so this isn't a problem. When we do, something will
4426 * have to change.
4427 */
4428 if (dispatch_width == 32)
4429 flag.type = BRW_REGISTER_TYPE_UD;
4430
4431 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4432 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4433
4434 if (instr->dest.ssa.bit_size > 32) {
4435 dest.type = BRW_REGISTER_TYPE_UQ;
4436 } else {
4437 dest.type = BRW_REGISTER_TYPE_UD;
4438 }
4439 bld.MOV(dest, flag);
4440 break;
4441 }
4442
4443 case nir_intrinsic_read_invocation: {
4444 const fs_reg value = get_nir_src(instr->src[0]);
4445 const fs_reg invocation = get_nir_src(instr->src[1]);
4446 fs_reg tmp = bld.vgrf(value.type);
4447
4448 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4449 bld.emit_uniformize(invocation));
4450
4451 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4452 break;
4453 }
4454
4455 case nir_intrinsic_read_first_invocation: {
4456 const fs_reg value = get_nir_src(instr->src[0]);
4457 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4458 break;
4459 }
4460
4461 default:
4462 unreachable("unknown intrinsic");
4463 }
4464 }
4465
4466 void
4467 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4468 int op, nir_intrinsic_instr *instr)
4469 {
4470 if (stage == MESA_SHADER_FRAGMENT)
4471 brw_wm_prog_data(prog_data)->has_side_effects = true;
4472
4473 fs_reg dest;
4474 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4475 dest = get_nir_dest(instr->dest);
4476
4477 fs_reg surface;
4478 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4479 if (const_surface) {
4480 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4481 const_surface->u32[0];
4482 surface = brw_imm_ud(surf_index);
4483 brw_mark_surface_used(prog_data, surf_index);
4484 } else {
4485 surface = vgrf(glsl_type::uint_type);
4486 bld.ADD(surface, get_nir_src(instr->src[0]),
4487 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4488
4489 /* Assume this may touch any SSBO. This is the same we do for other
4490 * UBO/SSBO accesses with non-constant surface.
4491 */
4492 brw_mark_surface_used(prog_data,
4493 stage_prog_data->binding_table.ssbo_start +
4494 nir->info.num_ssbos - 1);
4495 }
4496
4497 fs_reg offset = get_nir_src(instr->src[1]);
4498 fs_reg data1 = get_nir_src(instr->src[2]);
4499 fs_reg data2;
4500 if (op == BRW_AOP_CMPWR)
4501 data2 = get_nir_src(instr->src[3]);
4502
4503 /* Emit the actual atomic operation */
4504
4505 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4506 data1, data2,
4507 1 /* dims */, 1 /* rsize */,
4508 op,
4509 BRW_PREDICATE_NONE);
4510 dest.type = atomic_result.type;
4511 bld.MOV(dest, atomic_result);
4512 }
4513
4514 void
4515 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4516 int op, nir_intrinsic_instr *instr)
4517 {
4518 fs_reg dest;
4519 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4520 dest = get_nir_dest(instr->dest);
4521
4522 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4523 fs_reg offset;
4524 fs_reg data1 = get_nir_src(instr->src[1]);
4525 fs_reg data2;
4526 if (op == BRW_AOP_CMPWR)
4527 data2 = get_nir_src(instr->src[2]);
4528
4529 /* Get the offset */
4530 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4531 if (const_offset) {
4532 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4533 } else {
4534 offset = vgrf(glsl_type::uint_type);
4535 bld.ADD(offset,
4536 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4537 brw_imm_ud(instr->const_index[0]));
4538 }
4539
4540 /* Emit the actual atomic operation operation */
4541
4542 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4543 data1, data2,
4544 1 /* dims */, 1 /* rsize */,
4545 op,
4546 BRW_PREDICATE_NONE);
4547 dest.type = atomic_result.type;
4548 bld.MOV(dest, atomic_result);
4549 }
4550
4551 void
4552 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4553 {
4554 unsigned texture = instr->texture_index;
4555 unsigned sampler = instr->sampler_index;
4556
4557 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4558
4559 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4560 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4561
4562 int lod_components = 0;
4563
4564 /* The hardware requires a LOD for buffer textures */
4565 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4566 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4567
4568 uint32_t header_bits = 0;
4569 for (unsigned i = 0; i < instr->num_srcs; i++) {
4570 fs_reg src = get_nir_src(instr->src[i].src);
4571 switch (instr->src[i].src_type) {
4572 case nir_tex_src_bias:
4573 srcs[TEX_LOGICAL_SRC_LOD] =
4574 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4575 break;
4576 case nir_tex_src_comparator:
4577 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4578 break;
4579 case nir_tex_src_coord:
4580 switch (instr->op) {
4581 case nir_texop_txf:
4582 case nir_texop_txf_ms:
4583 case nir_texop_txf_ms_mcs:
4584 case nir_texop_samples_identical:
4585 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4586 break;
4587 default:
4588 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4589 break;
4590 }
4591 break;
4592 case nir_tex_src_ddx:
4593 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4594 lod_components = nir_tex_instr_src_size(instr, i);
4595 break;
4596 case nir_tex_src_ddy:
4597 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4598 break;
4599 case nir_tex_src_lod:
4600 switch (instr->op) {
4601 case nir_texop_txs:
4602 srcs[TEX_LOGICAL_SRC_LOD] =
4603 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4604 break;
4605 case nir_texop_txf:
4606 srcs[TEX_LOGICAL_SRC_LOD] =
4607 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4608 break;
4609 default:
4610 srcs[TEX_LOGICAL_SRC_LOD] =
4611 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4612 break;
4613 }
4614 break;
4615 case nir_tex_src_ms_index:
4616 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4617 break;
4618
4619 case nir_tex_src_offset: {
4620 nir_const_value *const_offset =
4621 nir_src_as_const_value(instr->src[i].src);
4622 unsigned offset_bits = 0;
4623 if (const_offset &&
4624 brw_texture_offset(const_offset->i32,
4625 nir_tex_instr_src_size(instr, i),
4626 &offset_bits)) {
4627 header_bits |= offset_bits;
4628 } else {
4629 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
4630 retype(src, BRW_REGISTER_TYPE_D);
4631 }
4632 break;
4633 }
4634
4635 case nir_tex_src_projector:
4636 unreachable("should be lowered");
4637
4638 case nir_tex_src_texture_offset: {
4639 /* Figure out the highest possible texture index and mark it as used */
4640 uint32_t max_used = texture + instr->texture_array_size - 1;
4641 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
4642 max_used += stage_prog_data->binding_table.gather_texture_start;
4643 } else {
4644 max_used += stage_prog_data->binding_table.texture_start;
4645 }
4646 brw_mark_surface_used(prog_data, max_used);
4647
4648 /* Emit code to evaluate the actual indexing expression */
4649 fs_reg tmp = vgrf(glsl_type::uint_type);
4650 bld.ADD(tmp, src, brw_imm_ud(texture));
4651 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4652 break;
4653 }
4654
4655 case nir_tex_src_sampler_offset: {
4656 /* Emit code to evaluate the actual indexing expression */
4657 fs_reg tmp = vgrf(glsl_type::uint_type);
4658 bld.ADD(tmp, src, brw_imm_ud(sampler));
4659 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4660 break;
4661 }
4662
4663 case nir_tex_src_ms_mcs:
4664 assert(instr->op == nir_texop_txf_ms);
4665 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
4666 break;
4667
4668 case nir_tex_src_plane: {
4669 nir_const_value *const_plane =
4670 nir_src_as_const_value(instr->src[i].src);
4671 const uint32_t plane = const_plane->u32[0];
4672 const uint32_t texture_index =
4673 instr->texture_index +
4674 stage_prog_data->binding_table.plane_start[plane] -
4675 stage_prog_data->binding_table.texture_start;
4676
4677 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
4678 break;
4679 }
4680
4681 default:
4682 unreachable("unknown texture source");
4683 }
4684 }
4685
4686 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
4687 (instr->op == nir_texop_txf_ms ||
4688 instr->op == nir_texop_samples_identical)) {
4689 if (devinfo->gen >= 7 &&
4690 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
4691 srcs[TEX_LOGICAL_SRC_MCS] =
4692 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
4693 instr->coord_components,
4694 srcs[TEX_LOGICAL_SRC_SURFACE]);
4695 } else {
4696 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
4697 }
4698 }
4699
4700 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
4701 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
4702
4703 enum opcode opcode;
4704 switch (instr->op) {
4705 case nir_texop_tex:
4706 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
4707 SHADER_OPCODE_TXL_LOGICAL);
4708 break;
4709 case nir_texop_txb:
4710 opcode = FS_OPCODE_TXB_LOGICAL;
4711 break;
4712 case nir_texop_txl:
4713 opcode = SHADER_OPCODE_TXL_LOGICAL;
4714 break;
4715 case nir_texop_txd:
4716 opcode = SHADER_OPCODE_TXD_LOGICAL;
4717 break;
4718 case nir_texop_txf:
4719 opcode = SHADER_OPCODE_TXF_LOGICAL;
4720 break;
4721 case nir_texop_txf_ms:
4722 if ((key_tex->msaa_16 & (1 << sampler)))
4723 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
4724 else
4725 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
4726 break;
4727 case nir_texop_txf_ms_mcs:
4728 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
4729 break;
4730 case nir_texop_query_levels:
4731 case nir_texop_txs:
4732 opcode = SHADER_OPCODE_TXS_LOGICAL;
4733 break;
4734 case nir_texop_lod:
4735 opcode = SHADER_OPCODE_LOD_LOGICAL;
4736 break;
4737 case nir_texop_tg4:
4738 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
4739 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
4740 else
4741 opcode = SHADER_OPCODE_TG4_LOGICAL;
4742 break;
4743 case nir_texop_texture_samples:
4744 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
4745 break;
4746 case nir_texop_samples_identical: {
4747 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
4748
4749 /* If mcs is an immediate value, it means there is no MCS. In that case
4750 * just return false.
4751 */
4752 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
4753 bld.MOV(dst, brw_imm_ud(0u));
4754 } else if ((key_tex->msaa_16 & (1 << sampler))) {
4755 fs_reg tmp = vgrf(glsl_type::uint_type);
4756 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
4757 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
4758 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
4759 } else {
4760 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
4761 BRW_CONDITIONAL_EQ);
4762 }
4763 return;
4764 }
4765 default:
4766 unreachable("unknown texture opcode");
4767 }
4768
4769 if (instr->op == nir_texop_tg4) {
4770 if (instr->component == 1 &&
4771 key_tex->gather_channel_quirk_mask & (1 << texture)) {
4772 /* gather4 sampler is broken for green channel on RG32F --
4773 * we must ask for blue instead.
4774 */
4775 header_bits |= 2 << 16;
4776 } else {
4777 header_bits |= instr->component << 16;
4778 }
4779 }
4780
4781 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
4782 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
4783 inst->offset = header_bits;
4784
4785 const unsigned dest_size = nir_tex_instr_dest_size(instr);
4786 if (devinfo->gen >= 9 &&
4787 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
4788 unsigned write_mask = instr->dest.is_ssa ?
4789 nir_ssa_def_components_read(&instr->dest.ssa):
4790 (1 << dest_size) - 1;
4791 assert(write_mask != 0); /* dead code should have been eliminated */
4792 inst->size_written = util_last_bit(write_mask) *
4793 inst->dst.component_size(inst->exec_size);
4794 } else {
4795 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
4796 }
4797
4798 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
4799 inst->shadow_compare = true;
4800
4801 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
4802 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
4803
4804 fs_reg nir_dest[4];
4805 for (unsigned i = 0; i < dest_size; i++)
4806 nir_dest[i] = offset(dst, bld, i);
4807
4808 if (instr->op == nir_texop_query_levels) {
4809 /* # levels is in .w */
4810 nir_dest[0] = offset(dst, bld, 3);
4811 } else if (instr->op == nir_texop_txs &&
4812 dest_size >= 3 && devinfo->gen < 7) {
4813 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
4814 fs_reg depth = offset(dst, bld, 2);
4815 nir_dest[2] = vgrf(glsl_type::int_type);
4816 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
4817 }
4818
4819 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
4820 }
4821
4822 void
4823 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
4824 {
4825 switch (instr->type) {
4826 case nir_jump_break:
4827 bld.emit(BRW_OPCODE_BREAK);
4828 break;
4829 case nir_jump_continue:
4830 bld.emit(BRW_OPCODE_CONTINUE);
4831 break;
4832 case nir_jump_return:
4833 default:
4834 unreachable("unknown jump");
4835 }
4836 }
4837
4838 /**
4839 * This helper takes the result of a load operation that reads 32-bit elements
4840 * in this format:
4841 *
4842 * x x x x x x x x
4843 * y y y y y y y y
4844 * z z z z z z z z
4845 * w w w w w w w w
4846 *
4847 * and shuffles the data to get this:
4848 *
4849 * x y x y x y x y
4850 * x y x y x y x y
4851 * z w z w z w z w
4852 * z w z w z w z w
4853 *
4854 * Which is exactly what we want if the load is reading 64-bit components
4855 * like doubles, where x represents the low 32-bit of the x double component
4856 * and y represents the high 32-bit of the x double component (likewise with
4857 * z and w for double component y). The parameter @components represents
4858 * the number of 64-bit components present in @src. This would typically be
4859 * 2 at most, since we can only fit 2 double elements in the result of a
4860 * vec4 load.
4861 *
4862 * Notice that @dst and @src can be the same register.
4863 */
4864 void
4865 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
4866 const fs_reg &dst,
4867 const fs_reg &src,
4868 uint32_t components)
4869 {
4870 assert(type_sz(src.type) == 4);
4871 assert(type_sz(dst.type) == 8);
4872
4873 /* A temporary that we will use to shuffle the 32-bit data of each
4874 * component in the vector into valid 64-bit data. We can't write directly
4875 * to dst because dst can be (and would usually be) the same as src
4876 * and in that case the first MOV in the loop below would overwrite the
4877 * data read in the second MOV.
4878 */
4879 fs_reg tmp = bld.vgrf(dst.type);
4880
4881 for (unsigned i = 0; i < components; i++) {
4882 const fs_reg component_i = offset(src, bld, 2 * i);
4883
4884 bld.MOV(subscript(tmp, src.type, 0), component_i);
4885 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
4886
4887 bld.MOV(offset(dst, bld, i), tmp);
4888 }
4889 }
4890
4891 void
4892 shuffle_32bit_load_result_to_16bit_data(const fs_builder &bld,
4893 const fs_reg &dst,
4894 const fs_reg &src,
4895 uint32_t components)
4896 {
4897 assert(type_sz(src.type) == 4);
4898 assert(type_sz(dst.type) == 2);
4899
4900 /* A temporary is used to un-shuffle the 32-bit data of each component in
4901 * into a valid 16-bit vector. We can't write directly to dst because it
4902 * can be the same register as src and in that case the first MOV in the
4903 * loop below would overwrite the data read in the second MOV.
4904 */
4905 fs_reg tmp = retype(bld.vgrf(src.type), dst.type);
4906
4907 for (unsigned i = 0; i < components; i++) {
4908 const fs_reg component_i =
4909 subscript(offset(src, bld, i / 2), dst.type, i % 2);
4910
4911 bld.MOV(offset(tmp, bld, i % 2), component_i);
4912
4913 if (i % 2) {
4914 bld.MOV(offset(dst, bld, i -1), offset(tmp, bld, 0));
4915 bld.MOV(offset(dst, bld, i), offset(tmp, bld, 1));
4916 }
4917 }
4918 if (components % 2) {
4919 bld.MOV(offset(dst, bld, components - 1), tmp);
4920 }
4921 }
4922
4923 /**
4924 * This helper does the inverse operation of
4925 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
4926 *
4927 * We need to do this when we are going to use untyped write messsages that
4928 * operate with 32-bit components in order to arrange our 64-bit data to be
4929 * in the expected layout.
4930 *
4931 * Notice that callers of this function, unlike in the case of the inverse
4932 * operation, would typically need to call this with dst and src being
4933 * different registers, since they would otherwise corrupt the original
4934 * 64-bit data they are about to write. Because of this the function checks
4935 * that the src and dst regions involved in the operation do not overlap.
4936 */
4937 fs_reg
4938 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
4939 const fs_reg &src,
4940 uint32_t components)
4941 {
4942 assert(type_sz(src.type) == 8);
4943
4944 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D, 2 * components);
4945
4946 for (unsigned i = 0; i < components; i++) {
4947 const fs_reg component_i = offset(src, bld, i);
4948 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
4949 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
4950 }
4951
4952 return dst;
4953 }
4954
4955 void
4956 shuffle_16bit_data_for_32bit_write(const fs_builder &bld,
4957 const fs_reg &dst,
4958 const fs_reg &src,
4959 uint32_t components)
4960 {
4961 assert(type_sz(src.type) == 2);
4962 assert(type_sz(dst.type) == 4);
4963
4964 /* A temporary is used to shuffle the 16-bit data of each component in the
4965 * 32-bit data vector. We can't write directly to dst because it can be the
4966 * same register as src and in that case the first MOV in the loop below
4967 * would overwrite the data read in the second MOV.
4968 */
4969 fs_reg tmp = bld.vgrf(dst.type);
4970
4971 for (unsigned i = 0; i < components; i++) {
4972 const fs_reg component_i = offset(src, bld, i);
4973 bld.MOV(subscript(tmp, src.type, i % 2), component_i);
4974 if (i % 2) {
4975 bld.MOV(offset(dst, bld, i / 2), tmp);
4976 }
4977 }
4978 if (components % 2) {
4979 bld.MOV(offset(dst, bld, components / 2), tmp);
4980 }
4981 }
4982
4983 fs_reg
4984 setup_imm_df(const fs_builder &bld, double v)
4985 {
4986 const struct gen_device_info *devinfo = bld.shader->devinfo;
4987 assert(devinfo->gen >= 7);
4988
4989 if (devinfo->gen >= 8)
4990 return brw_imm_df(v);
4991
4992 /* gen7.5 does not support DF immediates straighforward but the DIM
4993 * instruction allows to set the 64-bit immediate value.
4994 */
4995 if (devinfo->is_haswell) {
4996 const fs_builder ubld = bld.exec_all().group(1, 0);
4997 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
4998 ubld.DIM(dst, brw_imm_df(v));
4999 return component(dst, 0);
5000 }
5001
5002 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5003 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5004 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5005 *
5006 * Alternatively, we could also produce a normal VGRF (without stride 0)
5007 * by writing to all the channels in the VGRF, however, that would hit the
5008 * gen7 bug where we have to split writes that span more than 1 register
5009 * into instructions with a width of 4 (otherwise the write to the second
5010 * register written runs into an execmask hardware bug) which isn't very
5011 * nice.
5012 */
5013 union {
5014 double d;
5015 struct {
5016 uint32_t i1;
5017 uint32_t i2;
5018 };
5019 } di;
5020
5021 di.d = v;
5022
5023 const fs_builder ubld = bld.exec_all().group(1, 0);
5024 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5025 ubld.MOV(tmp, brw_imm_ud(di.i1));
5026 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5027
5028 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5029 }