83ed9575f80658581dec0a78811ad6ba1d3d6383
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
71 if (vec4s[loc] == 0) {
72 loc++;
73 continue;
74 }
75
76 unsigned reg_size = vec4s[loc];
77
78 /* Check if there are any ranges that start within this range and extend
79 * past it. If so, include them in this allocation.
80 */
81 for (unsigned i = 1; i < reg_size; i++)
82 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
83
84 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
85 for (unsigned i = 0; i < reg_size; i++)
86 outputs[loc + i] = offset(reg, bld, 4 * i);
87
88 loc += reg_size;
89 }
90 }
91
92 void
93 fs_visitor::nir_setup_uniforms()
94 {
95 /* Only the first compile gets to set up uniforms. */
96 if (push_constant_loc) {
97 assert(pull_constant_loc);
98 return;
99 }
100
101 uniforms = nir->num_uniforms / 4;
102
103 if (stage == MESA_SHADER_COMPUTE) {
104 /* Add a uniform for the thread local id. It must be the last uniform
105 * on the list.
106 */
107 assert(uniforms == prog_data->nr_params);
108 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
109 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
110 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
111 }
112 }
113
114 static bool
115 emit_system_values_block(nir_block *block, fs_visitor *v)
116 {
117 fs_reg *reg;
118
119 nir_foreach_instr(instr, block) {
120 if (instr->type != nir_instr_type_intrinsic)
121 continue;
122
123 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
124 switch (intrin->intrinsic) {
125 case nir_intrinsic_load_vertex_id:
126 case nir_intrinsic_load_base_vertex:
127 unreachable("should be lowered by nir_lower_system_values().");
128
129 case nir_intrinsic_load_vertex_id_zero_base:
130 case nir_intrinsic_load_is_indexed_draw:
131 case nir_intrinsic_load_first_vertex:
132 case nir_intrinsic_load_instance_id:
133 case nir_intrinsic_load_base_instance:
134 case nir_intrinsic_load_draw_id:
135 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
136
137 case nir_intrinsic_load_invocation_id:
138 if (v->stage == MESA_SHADER_TESS_CTRL)
139 break;
140 assert(v->stage == MESA_SHADER_GEOMETRY);
141 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
142 if (reg->file == BAD_FILE) {
143 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
144 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
145 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
146 abld.SHR(iid, g1, brw_imm_ud(27u));
147 *reg = iid;
148 }
149 break;
150
151 case nir_intrinsic_load_sample_pos:
152 assert(v->stage == MESA_SHADER_FRAGMENT);
153 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
154 if (reg->file == BAD_FILE)
155 *reg = *v->emit_samplepos_setup();
156 break;
157
158 case nir_intrinsic_load_sample_id:
159 assert(v->stage == MESA_SHADER_FRAGMENT);
160 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
161 if (reg->file == BAD_FILE)
162 *reg = *v->emit_sampleid_setup();
163 break;
164
165 case nir_intrinsic_load_sample_mask_in:
166 assert(v->stage == MESA_SHADER_FRAGMENT);
167 assert(v->devinfo->gen >= 7);
168 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
169 if (reg->file == BAD_FILE)
170 *reg = *v->emit_samplemaskin_setup();
171 break;
172
173 case nir_intrinsic_load_work_group_id:
174 assert(v->stage == MESA_SHADER_COMPUTE);
175 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
176 if (reg->file == BAD_FILE)
177 *reg = *v->emit_cs_work_group_id_setup();
178 break;
179
180 case nir_intrinsic_load_helper_invocation:
181 assert(v->stage == MESA_SHADER_FRAGMENT);
182 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
183 if (reg->file == BAD_FILE) {
184 const fs_builder abld =
185 v->bld.annotate("gl_HelperInvocation", NULL);
186
187 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
188 * pixel mask is in g1.7 of the thread payload.
189 *
190 * We move the per-channel pixel enable bit to the low bit of each
191 * channel by shifting the byte containing the pixel mask by the
192 * vector immediate 0x76543210UV.
193 *
194 * The region of <1,8,0> reads only 1 byte (the pixel masks for
195 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
196 * masks for 2 and 3) in SIMD16.
197 */
198 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
199
200 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
201 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
202 hbld.SHR(offset(shifted, hbld, i),
203 stride(retype(brw_vec1_grf(1 + i, 7),
204 BRW_REGISTER_TYPE_UB),
205 1, 8, 0),
206 brw_imm_v(0x76543210));
207 }
208
209 /* A set bit in the pixel mask means the channel is enabled, but
210 * that is the opposite of gl_HelperInvocation so we need to invert
211 * the mask.
212 *
213 * The negate source-modifier bit of logical instructions on Gen8+
214 * performs 1's complement negation, so we can use that instead of
215 * a NOT instruction.
216 */
217 fs_reg inverted = negate(shifted);
218 if (v->devinfo->gen < 8) {
219 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
220 abld.NOT(inverted, shifted);
221 }
222
223 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
224 * with 1 and negating.
225 */
226 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
227 abld.AND(anded, inverted, brw_imm_uw(1));
228
229 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
230 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
231 *reg = dst;
232 }
233 break;
234
235 default:
236 break;
237 }
238 }
239
240 return true;
241 }
242
243 void
244 fs_visitor::nir_emit_system_values()
245 {
246 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
247 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
248 nir_system_values[i] = fs_reg();
249 }
250
251 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
252 * never end up using it.
253 */
254 {
255 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
256 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
257 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
258
259 const fs_builder allbld8 = abld.group(8, 0).exec_all();
260 allbld8.MOV(reg, brw_imm_v(0x76543210));
261 if (dispatch_width > 8)
262 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
263 if (dispatch_width > 16) {
264 const fs_builder allbld16 = abld.group(16, 0).exec_all();
265 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
266 }
267 }
268
269 nir_foreach_function(function, nir) {
270 assert(strcmp(function->name, "main") == 0);
271 assert(function->impl);
272 nir_foreach_block(block, function->impl) {
273 emit_system_values_block(block, this);
274 }
275 }
276 }
277
278 /*
279 * Returns a type based on a reference_type (word, float, half-float) and a
280 * given bit_size.
281 *
282 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
283 *
284 * @FIXME: 64-bit return types are always DF on integer types to maintain
285 * compability with uses of DF previously to the introduction of int64
286 * support.
287 */
288 static brw_reg_type
289 brw_reg_type_from_bit_size(const unsigned bit_size,
290 const brw_reg_type reference_type)
291 {
292 switch(reference_type) {
293 case BRW_REGISTER_TYPE_HF:
294 case BRW_REGISTER_TYPE_F:
295 case BRW_REGISTER_TYPE_DF:
296 switch(bit_size) {
297 case 16:
298 return BRW_REGISTER_TYPE_HF;
299 case 32:
300 return BRW_REGISTER_TYPE_F;
301 case 64:
302 return BRW_REGISTER_TYPE_DF;
303 default:
304 unreachable("Invalid bit size");
305 }
306 case BRW_REGISTER_TYPE_B:
307 case BRW_REGISTER_TYPE_W:
308 case BRW_REGISTER_TYPE_D:
309 case BRW_REGISTER_TYPE_Q:
310 switch(bit_size) {
311 case 8:
312 return BRW_REGISTER_TYPE_B;
313 case 16:
314 return BRW_REGISTER_TYPE_W;
315 case 32:
316 return BRW_REGISTER_TYPE_D;
317 case 64:
318 return BRW_REGISTER_TYPE_Q;
319 default:
320 unreachable("Invalid bit size");
321 }
322 case BRW_REGISTER_TYPE_UB:
323 case BRW_REGISTER_TYPE_UW:
324 case BRW_REGISTER_TYPE_UD:
325 case BRW_REGISTER_TYPE_UQ:
326 switch(bit_size) {
327 case 8:
328 return BRW_REGISTER_TYPE_UB;
329 case 16:
330 return BRW_REGISTER_TYPE_UW;
331 case 32:
332 return BRW_REGISTER_TYPE_UD;
333 case 64:
334 return BRW_REGISTER_TYPE_UQ;
335 default:
336 unreachable("Invalid bit size");
337 }
338 default:
339 unreachable("Unknown type");
340 }
341 }
342
343 void
344 fs_visitor::nir_emit_impl(nir_function_impl *impl)
345 {
346 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
347 for (unsigned i = 0; i < impl->reg_alloc; i++) {
348 nir_locals[i] = fs_reg();
349 }
350
351 foreach_list_typed(nir_register, reg, node, &impl->registers) {
352 unsigned array_elems =
353 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
354 unsigned size = array_elems * reg->num_components;
355 const brw_reg_type reg_type =
356 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
357 nir_locals[reg->index] = bld.vgrf(reg_type, size);
358 }
359
360 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
361 impl->ssa_alloc);
362
363 nir_emit_cf_list(&impl->body);
364 }
365
366 void
367 fs_visitor::nir_emit_cf_list(exec_list *list)
368 {
369 exec_list_validate(list);
370 foreach_list_typed(nir_cf_node, node, node, list) {
371 switch (node->type) {
372 case nir_cf_node_if:
373 nir_emit_if(nir_cf_node_as_if(node));
374 break;
375
376 case nir_cf_node_loop:
377 nir_emit_loop(nir_cf_node_as_loop(node));
378 break;
379
380 case nir_cf_node_block:
381 nir_emit_block(nir_cf_node_as_block(node));
382 break;
383
384 default:
385 unreachable("Invalid CFG node block");
386 }
387 }
388 }
389
390 void
391 fs_visitor::nir_emit_if(nir_if *if_stmt)
392 {
393 /* first, put the condition into f0 */
394 fs_inst *inst = bld.MOV(bld.null_reg_d(),
395 retype(get_nir_src(if_stmt->condition),
396 BRW_REGISTER_TYPE_D));
397 inst->conditional_mod = BRW_CONDITIONAL_NZ;
398
399 bld.IF(BRW_PREDICATE_NORMAL);
400
401 nir_emit_cf_list(&if_stmt->then_list);
402
403 /* note: if the else is empty, dead CF elimination will remove it */
404 bld.emit(BRW_OPCODE_ELSE);
405
406 nir_emit_cf_list(&if_stmt->else_list);
407
408 bld.emit(BRW_OPCODE_ENDIF);
409
410 if (devinfo->gen < 7)
411 limit_dispatch_width(16, "Non-uniform control flow unsupported "
412 "in SIMD32 mode.");
413 }
414
415 void
416 fs_visitor::nir_emit_loop(nir_loop *loop)
417 {
418 bld.emit(BRW_OPCODE_DO);
419
420 nir_emit_cf_list(&loop->body);
421
422 bld.emit(BRW_OPCODE_WHILE);
423
424 if (devinfo->gen < 7)
425 limit_dispatch_width(16, "Non-uniform control flow unsupported "
426 "in SIMD32 mode.");
427 }
428
429 void
430 fs_visitor::nir_emit_block(nir_block *block)
431 {
432 nir_foreach_instr(instr, block) {
433 nir_emit_instr(instr);
434 }
435 }
436
437 void
438 fs_visitor::nir_emit_instr(nir_instr *instr)
439 {
440 const fs_builder abld = bld.annotate(NULL, instr);
441
442 switch (instr->type) {
443 case nir_instr_type_alu:
444 nir_emit_alu(abld, nir_instr_as_alu(instr));
445 break;
446
447 case nir_instr_type_deref:
448 /* Derefs can exist for images but they do nothing */
449 break;
450
451 case nir_instr_type_intrinsic:
452 switch (stage) {
453 case MESA_SHADER_VERTEX:
454 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456 case MESA_SHADER_TESS_CTRL:
457 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
458 break;
459 case MESA_SHADER_TESS_EVAL:
460 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462 case MESA_SHADER_GEOMETRY:
463 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 case MESA_SHADER_FRAGMENT:
466 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_COMPUTE:
469 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 default:
472 unreachable("unsupported shader stage");
473 }
474 break;
475
476 case nir_instr_type_tex:
477 nir_emit_texture(abld, nir_instr_as_tex(instr));
478 break;
479
480 case nir_instr_type_load_const:
481 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
482 break;
483
484 case nir_instr_type_ssa_undef:
485 /* We create a new VGRF for undefs on every use (by handling
486 * them in get_nir_src()), rather than for each definition.
487 * This helps register coalescing eliminate MOVs from undef.
488 */
489 break;
490
491 case nir_instr_type_jump:
492 nir_emit_jump(abld, nir_instr_as_jump(instr));
493 break;
494
495 default:
496 unreachable("unknown instruction type");
497 }
498 }
499
500 /**
501 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
502 * match instr.
503 */
504 bool
505 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
506 const fs_reg &result)
507 {
508 if (!instr->src[0].src.is_ssa ||
509 !instr->src[0].src.ssa->parent_instr)
510 return false;
511
512 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
513 return false;
514
515 nir_alu_instr *src0 =
516 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
517
518 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
519 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
520 return false;
521
522 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
523 assert(element != NULL);
524
525 /* Element type to extract.*/
526 const brw_reg_type type = brw_int_type(
527 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
528 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
529
530 fs_reg op0 = get_nir_src(src0->src[0].src);
531 op0.type = brw_type_for_nir_type(devinfo,
532 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
533 nir_src_bit_size(src0->src[0].src)));
534 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
535
536 set_saturate(instr->dest.saturate,
537 bld.MOV(result, subscript(op0, type, element->u32[0])));
538 return true;
539 }
540
541 bool
542 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
543 const fs_reg &result)
544 {
545 if (!instr->src[0].src.is_ssa ||
546 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
547 return false;
548
549 nir_intrinsic_instr *src0 =
550 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
551
552 if (src0->intrinsic != nir_intrinsic_load_front_face)
553 return false;
554
555 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
556 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
557 return false;
558
559 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
560 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
561 return false;
562
563 fs_reg tmp = vgrf(glsl_type::int_type);
564
565 if (devinfo->gen >= 6) {
566 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
567 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
568
569 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
570 *
571 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
572 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
573 *
574 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
575 *
576 * This negation looks like it's safe in practice, because bits 0:4 will
577 * surely be TRIANGLES
578 */
579
580 if (value1->f32[0] == -1.0f) {
581 g0.negate = true;
582 }
583
584 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
585 g0, brw_imm_uw(0x3f80));
586 } else {
587 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
588 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
589
590 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
591 *
592 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
593 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
594 *
595 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
596 *
597 * This negation looks like it's safe in practice, because bits 0:4 will
598 * surely be TRIANGLES
599 */
600
601 if (value1->f32[0] == -1.0f) {
602 g1_6.negate = true;
603 }
604
605 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
606 }
607 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
608
609 return true;
610 }
611
612 static void
613 emit_find_msb_using_lzd(const fs_builder &bld,
614 const fs_reg &result,
615 const fs_reg &src,
616 bool is_signed)
617 {
618 fs_inst *inst;
619 fs_reg temp = src;
620
621 if (is_signed) {
622 /* LZD of an absolute value source almost always does the right
623 * thing. There are two problem values:
624 *
625 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
626 * 0. However, findMSB(int(0x80000000)) == 30.
627 *
628 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
629 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
630 *
631 * For a value of zero or negative one, -1 will be returned.
632 *
633 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
634 * findMSB(-(1<<x)) should return x-1.
635 *
636 * For all negative number cases, including 0x80000000 and
637 * 0xffffffff, the correct value is obtained from LZD if instead of
638 * negating the (already negative) value the logical-not is used. A
639 * conditonal logical-not can be achieved in two instructions.
640 */
641 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
642
643 bld.ASR(temp, src, brw_imm_d(31));
644 bld.XOR(temp, temp, src);
645 }
646
647 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
648 retype(temp, BRW_REGISTER_TYPE_UD));
649
650 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
651 * from the LSB side. Subtract the result from 31 to convert the MSB
652 * count into an LSB count. If no bits are set, LZD will return 32.
653 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
654 */
655 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
656 inst->src[0].negate = true;
657 }
658
659 static brw_rnd_mode
660 brw_rnd_mode_from_nir_op (const nir_op op) {
661 switch (op) {
662 case nir_op_f2f16_rtz:
663 return BRW_RND_MODE_RTZ;
664 case nir_op_f2f16_rtne:
665 return BRW_RND_MODE_RTNE;
666 default:
667 unreachable("Operation doesn't support rounding mode");
668 }
669 }
670
671 void
672 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
673 {
674 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
675 fs_inst *inst;
676
677 fs_reg result = get_nir_dest(instr->dest.dest);
678 result.type = brw_type_for_nir_type(devinfo,
679 (nir_alu_type)(nir_op_infos[instr->op].output_type |
680 nir_dest_bit_size(instr->dest.dest)));
681
682 fs_reg op[4];
683 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
684 op[i] = get_nir_src(instr->src[i].src);
685 op[i].type = brw_type_for_nir_type(devinfo,
686 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
687 nir_src_bit_size(instr->src[i].src)));
688 op[i].abs = instr->src[i].abs;
689 op[i].negate = instr->src[i].negate;
690 }
691
692 /* We get a bunch of mov's out of the from_ssa pass and they may still
693 * be vectorized. We'll handle them as a special-case. We'll also
694 * handle vecN here because it's basically the same thing.
695 */
696 switch (instr->op) {
697 case nir_op_imov:
698 case nir_op_fmov:
699 case nir_op_vec2:
700 case nir_op_vec3:
701 case nir_op_vec4: {
702 fs_reg temp = result;
703 bool need_extra_copy = false;
704 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
705 if (!instr->src[i].src.is_ssa &&
706 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
707 need_extra_copy = true;
708 temp = bld.vgrf(result.type, 4);
709 break;
710 }
711 }
712
713 for (unsigned i = 0; i < 4; i++) {
714 if (!(instr->dest.write_mask & (1 << i)))
715 continue;
716
717 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
718 inst = bld.MOV(offset(temp, bld, i),
719 offset(op[0], bld, instr->src[0].swizzle[i]));
720 } else {
721 inst = bld.MOV(offset(temp, bld, i),
722 offset(op[i], bld, instr->src[i].swizzle[0]));
723 }
724 inst->saturate = instr->dest.saturate;
725 }
726
727 /* In this case the source and destination registers were the same,
728 * so we need to insert an extra set of moves in order to deal with
729 * any swizzling.
730 */
731 if (need_extra_copy) {
732 for (unsigned i = 0; i < 4; i++) {
733 if (!(instr->dest.write_mask & (1 << i)))
734 continue;
735
736 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
737 }
738 }
739 return;
740 }
741 default:
742 break;
743 }
744
745 /* At this point, we have dealt with any instruction that operates on
746 * more than a single channel. Therefore, we can just adjust the source
747 * and destination registers for that channel and emit the instruction.
748 */
749 unsigned channel = 0;
750 if (nir_op_infos[instr->op].output_size == 0) {
751 /* Since NIR is doing the scalarizing for us, we should only ever see
752 * vectorized operations with a single channel.
753 */
754 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
755 channel = ffs(instr->dest.write_mask) - 1;
756
757 result = offset(result, bld, channel);
758 }
759
760 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
761 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
762 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
763 }
764
765 switch (instr->op) {
766 case nir_op_i2f32:
767 case nir_op_u2f32:
768 if (optimize_extract_to_float(instr, result))
769 return;
770 inst = bld.MOV(result, op[0]);
771 inst->saturate = instr->dest.saturate;
772 break;
773
774 case nir_op_f2f16_rtne:
775 case nir_op_f2f16_rtz:
776 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
777 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
778 /* fallthrough */
779
780 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
781 * on the HW gen, it is a special hw opcode or just a MOV, and
782 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
783 *
784 * But if we want to use that opcode, we need to provide support on
785 * different optimizations and lowerings. As right now HF support is
786 * only for gen8+, it will be better to use directly the MOV, and use
787 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
788 */
789
790 case nir_op_f2f16_undef:
791 inst = bld.MOV(result, op[0]);
792 inst->saturate = instr->dest.saturate;
793 break;
794
795 case nir_op_f2f64:
796 case nir_op_f2i64:
797 case nir_op_f2u64:
798 case nir_op_i2f64:
799 case nir_op_i2i64:
800 case nir_op_u2f64:
801 case nir_op_u2u64:
802 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
803 *
804 * "When source or destination is 64b (...), regioning in Align1
805 * must follow these rules:
806 *
807 * 1. Source and destination horizontal stride must be aligned to
808 * the same qword.
809 * (...)"
810 *
811 * This means that conversions from bit-sizes smaller than 64-bit to
812 * 64-bit need to have the source data elements aligned to 64-bit.
813 * This restriction does not apply to BDW and later.
814 */
815 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
816 nir_src_bit_size(instr->src[0].src) < 64 &&
817 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
818 fs_reg tmp = bld.vgrf(result.type, 1);
819 tmp = subscript(tmp, op[0].type, 0);
820 inst = bld.MOV(tmp, op[0]);
821 inst = bld.MOV(result, tmp);
822 inst->saturate = instr->dest.saturate;
823 break;
824 }
825 /* fallthrough */
826 case nir_op_f2f32:
827 case nir_op_f2i32:
828 case nir_op_f2u32:
829 case nir_op_f2i16:
830 case nir_op_f2u16:
831 case nir_op_i2i32:
832 case nir_op_u2u32:
833 case nir_op_i2i16:
834 case nir_op_u2u16:
835 case nir_op_i2f16:
836 case nir_op_u2f16:
837 inst = bld.MOV(result, op[0]);
838 inst->saturate = instr->dest.saturate;
839 break;
840
841 case nir_op_fsign: {
842 if (op[0].abs) {
843 /* Straightforward since the source can be assumed to be either
844 * strictly >= 0 or strictly <= 0 depending on the setting of the
845 * negate flag.
846 */
847 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
848
849 inst = (op[0].negate)
850 ? bld.MOV(result, brw_imm_f(-1.0f))
851 : bld.MOV(result, brw_imm_f(1.0f));
852
853 set_predicate(BRW_PREDICATE_NORMAL, inst);
854
855 if (instr->dest.saturate)
856 inst->saturate = true;
857
858 } else if (type_sz(op[0].type) < 8) {
859 /* AND(val, 0x80000000) gives the sign bit.
860 *
861 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
862 * zero.
863 */
864 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
865
866 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
867 op[0].type = BRW_REGISTER_TYPE_UD;
868 result.type = BRW_REGISTER_TYPE_UD;
869 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
870
871 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
872 inst->predicate = BRW_PREDICATE_NORMAL;
873 if (instr->dest.saturate) {
874 inst = bld.MOV(result, result);
875 inst->saturate = true;
876 }
877 } else {
878 /* For doubles we do the same but we need to consider:
879 *
880 * - 2-src instructions can't operate with 64-bit immediates
881 * - The sign is encoded in the high 32-bit of each DF
882 * - We need to produce a DF result.
883 */
884
885 fs_reg zero = vgrf(glsl_type::double_type);
886 bld.MOV(zero, setup_imm_df(bld, 0.0));
887 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
888
889 bld.MOV(result, zero);
890
891 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
892 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
893 brw_imm_ud(0x80000000u));
894
895 set_predicate(BRW_PREDICATE_NORMAL,
896 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
897
898 if (instr->dest.saturate) {
899 inst = bld.MOV(result, result);
900 inst->saturate = true;
901 }
902 }
903 break;
904 }
905
906 case nir_op_isign: {
907 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
908 * -> non-negative val generates 0x00000000.
909 * Predicated OR sets 1 if val is positive.
910 */
911 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
912 assert(bit_size == 32 || bit_size == 16);
913
914 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
915 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
916 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
917
918 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
919 bld.ASR(result, op[0], shift);
920 inst = bld.OR(result, result, one);
921 inst->predicate = BRW_PREDICATE_NORMAL;
922 break;
923 }
924
925 case nir_op_frcp:
926 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
927 inst->saturate = instr->dest.saturate;
928 break;
929
930 case nir_op_fexp2:
931 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
932 inst->saturate = instr->dest.saturate;
933 break;
934
935 case nir_op_flog2:
936 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
937 inst->saturate = instr->dest.saturate;
938 break;
939
940 case nir_op_fsin:
941 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
942 inst->saturate = instr->dest.saturate;
943 break;
944
945 case nir_op_fcos:
946 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
947 inst->saturate = instr->dest.saturate;
948 break;
949
950 case nir_op_fddx:
951 if (fs_key->high_quality_derivatives) {
952 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
953 } else {
954 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
955 }
956 inst->saturate = instr->dest.saturate;
957 break;
958 case nir_op_fddx_fine:
959 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
960 inst->saturate = instr->dest.saturate;
961 break;
962 case nir_op_fddx_coarse:
963 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
964 inst->saturate = instr->dest.saturate;
965 break;
966 case nir_op_fddy:
967 if (fs_key->high_quality_derivatives) {
968 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
969 } else {
970 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
971 }
972 inst->saturate = instr->dest.saturate;
973 break;
974 case nir_op_fddy_fine:
975 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
976 inst->saturate = instr->dest.saturate;
977 break;
978 case nir_op_fddy_coarse:
979 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
980 inst->saturate = instr->dest.saturate;
981 break;
982
983 case nir_op_iadd:
984 case nir_op_fadd:
985 inst = bld.ADD(result, op[0], op[1]);
986 inst->saturate = instr->dest.saturate;
987 break;
988
989 case nir_op_fmul:
990 inst = bld.MUL(result, op[0], op[1]);
991 inst->saturate = instr->dest.saturate;
992 break;
993
994 case nir_op_imul:
995 assert(nir_dest_bit_size(instr->dest.dest) < 64);
996 bld.MUL(result, op[0], op[1]);
997 break;
998
999 case nir_op_imul_high:
1000 case nir_op_umul_high:
1001 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1002 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1003 break;
1004
1005 case nir_op_idiv:
1006 case nir_op_udiv:
1007 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1008 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1009 break;
1010
1011 case nir_op_uadd_carry:
1012 unreachable("Should have been lowered by carry_to_arith().");
1013
1014 case nir_op_usub_borrow:
1015 unreachable("Should have been lowered by borrow_to_arith().");
1016
1017 case nir_op_umod:
1018 case nir_op_irem:
1019 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1020 * appears that our hardware just does the right thing for signed
1021 * remainder.
1022 */
1023 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1024 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1025 break;
1026
1027 case nir_op_imod: {
1028 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1029 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1030
1031 /* Math instructions don't support conditional mod */
1032 inst = bld.MOV(bld.null_reg_d(), result);
1033 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1034
1035 /* Now, we need to determine if signs of the sources are different.
1036 * When we XOR the sources, the top bit is 0 if they are the same and 1
1037 * if they are different. We can then use a conditional modifier to
1038 * turn that into a predicate. This leads us to an XOR.l instruction.
1039 *
1040 * Technically, according to the PRM, you're not allowed to use .l on a
1041 * XOR instruction. However, emperical experiments and Curro's reading
1042 * of the simulator source both indicate that it's safe.
1043 */
1044 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1045 inst = bld.XOR(tmp, op[0], op[1]);
1046 inst->predicate = BRW_PREDICATE_NORMAL;
1047 inst->conditional_mod = BRW_CONDITIONAL_L;
1048
1049 /* If the result of the initial remainder operation is non-zero and the
1050 * two sources have different signs, add in a copy of op[1] to get the
1051 * final integer modulus value.
1052 */
1053 inst = bld.ADD(result, result, op[1]);
1054 inst->predicate = BRW_PREDICATE_NORMAL;
1055 break;
1056 }
1057
1058 case nir_op_flt:
1059 case nir_op_fge:
1060 case nir_op_feq:
1061 case nir_op_fne: {
1062 fs_reg dest = result;
1063
1064 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1065 if (bit_size != 32)
1066 dest = bld.vgrf(op[0].type, 1);
1067
1068 brw_conditional_mod cond;
1069 switch (instr->op) {
1070 case nir_op_flt:
1071 cond = BRW_CONDITIONAL_L;
1072 break;
1073 case nir_op_fge:
1074 cond = BRW_CONDITIONAL_GE;
1075 break;
1076 case nir_op_feq:
1077 cond = BRW_CONDITIONAL_Z;
1078 break;
1079 case nir_op_fne:
1080 cond = BRW_CONDITIONAL_NZ;
1081 break;
1082 default:
1083 unreachable("bad opcode");
1084 }
1085
1086 bld.CMP(dest, op[0], op[1], cond);
1087
1088 if (bit_size > 32) {
1089 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1090 } else if(bit_size < 32) {
1091 /* When we convert the result to 32-bit we need to be careful and do
1092 * it as a signed conversion to get sign extension (for 32-bit true)
1093 */
1094 const brw_reg_type src_type =
1095 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1096
1097 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1098 }
1099 break;
1100 }
1101
1102 case nir_op_ilt:
1103 case nir_op_ult:
1104 case nir_op_ige:
1105 case nir_op_uge:
1106 case nir_op_ieq:
1107 case nir_op_ine: {
1108 fs_reg dest = result;
1109
1110 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1111 if (bit_size != 32)
1112 dest = bld.vgrf(op[0].type, 1);
1113
1114 brw_conditional_mod cond;
1115 switch (instr->op) {
1116 case nir_op_ilt:
1117 case nir_op_ult:
1118 cond = BRW_CONDITIONAL_L;
1119 break;
1120 case nir_op_ige:
1121 case nir_op_uge:
1122 cond = BRW_CONDITIONAL_GE;
1123 break;
1124 case nir_op_ieq:
1125 cond = BRW_CONDITIONAL_Z;
1126 break;
1127 case nir_op_ine:
1128 cond = BRW_CONDITIONAL_NZ;
1129 break;
1130 default:
1131 unreachable("bad opcode");
1132 }
1133 bld.CMP(dest, op[0], op[1], cond);
1134
1135 if (bit_size > 32) {
1136 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1137 } else if (bit_size < 32) {
1138 /* When we convert the result to 32-bit we need to be careful and do
1139 * it as a signed conversion to get sign extension (for 32-bit true)
1140 */
1141 const brw_reg_type src_type =
1142 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1143
1144 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1145 }
1146 break;
1147 }
1148
1149 case nir_op_inot:
1150 if (devinfo->gen >= 8) {
1151 op[0] = resolve_source_modifiers(op[0]);
1152 }
1153 bld.NOT(result, op[0]);
1154 break;
1155 case nir_op_ixor:
1156 if (devinfo->gen >= 8) {
1157 op[0] = resolve_source_modifiers(op[0]);
1158 op[1] = resolve_source_modifiers(op[1]);
1159 }
1160 bld.XOR(result, op[0], op[1]);
1161 break;
1162 case nir_op_ior:
1163 if (devinfo->gen >= 8) {
1164 op[0] = resolve_source_modifiers(op[0]);
1165 op[1] = resolve_source_modifiers(op[1]);
1166 }
1167 bld.OR(result, op[0], op[1]);
1168 break;
1169 case nir_op_iand:
1170 if (devinfo->gen >= 8) {
1171 op[0] = resolve_source_modifiers(op[0]);
1172 op[1] = resolve_source_modifiers(op[1]);
1173 }
1174 bld.AND(result, op[0], op[1]);
1175 break;
1176
1177 case nir_op_fdot2:
1178 case nir_op_fdot3:
1179 case nir_op_fdot4:
1180 case nir_op_ball_fequal2:
1181 case nir_op_ball_iequal2:
1182 case nir_op_ball_fequal3:
1183 case nir_op_ball_iequal3:
1184 case nir_op_ball_fequal4:
1185 case nir_op_ball_iequal4:
1186 case nir_op_bany_fnequal2:
1187 case nir_op_bany_inequal2:
1188 case nir_op_bany_fnequal3:
1189 case nir_op_bany_inequal3:
1190 case nir_op_bany_fnequal4:
1191 case nir_op_bany_inequal4:
1192 unreachable("Lowered by nir_lower_alu_reductions");
1193
1194 case nir_op_fnoise1_1:
1195 case nir_op_fnoise1_2:
1196 case nir_op_fnoise1_3:
1197 case nir_op_fnoise1_4:
1198 case nir_op_fnoise2_1:
1199 case nir_op_fnoise2_2:
1200 case nir_op_fnoise2_3:
1201 case nir_op_fnoise2_4:
1202 case nir_op_fnoise3_1:
1203 case nir_op_fnoise3_2:
1204 case nir_op_fnoise3_3:
1205 case nir_op_fnoise3_4:
1206 case nir_op_fnoise4_1:
1207 case nir_op_fnoise4_2:
1208 case nir_op_fnoise4_3:
1209 case nir_op_fnoise4_4:
1210 unreachable("not reached: should be handled by lower_noise");
1211
1212 case nir_op_ldexp:
1213 unreachable("not reached: should be handled by ldexp_to_arith()");
1214
1215 case nir_op_fsqrt:
1216 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1217 inst->saturate = instr->dest.saturate;
1218 break;
1219
1220 case nir_op_frsq:
1221 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1222 inst->saturate = instr->dest.saturate;
1223 break;
1224
1225 case nir_op_b2i:
1226 case nir_op_b2f:
1227 bld.MOV(result, negate(op[0]));
1228 break;
1229
1230 case nir_op_i2b:
1231 case nir_op_f2b: {
1232 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1233 if (bit_size == 64) {
1234 /* two-argument instructions can't take 64-bit immediates */
1235 fs_reg zero;
1236 fs_reg tmp;
1237
1238 if (instr->op == nir_op_f2b) {
1239 zero = vgrf(glsl_type::double_type);
1240 tmp = vgrf(glsl_type::double_type);
1241 bld.MOV(zero, setup_imm_df(bld, 0.0));
1242 } else {
1243 zero = vgrf(glsl_type::int64_t_type);
1244 tmp = vgrf(glsl_type::int64_t_type);
1245 bld.MOV(zero, brw_imm_q(0));
1246 }
1247
1248 /* A SIMD16 execution needs to be split in two instructions, so use
1249 * a vgrf instead of the flag register as dst so instruction splitting
1250 * works
1251 */
1252 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1253 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1254 } else {
1255 fs_reg zero;
1256 if (bit_size == 32) {
1257 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1258 } else {
1259 assert(bit_size == 16);
1260 zero = instr->op == nir_op_f2b ?
1261 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1262 }
1263 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1264 }
1265 break;
1266 }
1267
1268 case nir_op_ftrunc:
1269 inst = bld.RNDZ(result, op[0]);
1270 inst->saturate = instr->dest.saturate;
1271 break;
1272
1273 case nir_op_fceil: {
1274 op[0].negate = !op[0].negate;
1275 fs_reg temp = vgrf(glsl_type::float_type);
1276 bld.RNDD(temp, op[0]);
1277 temp.negate = true;
1278 inst = bld.MOV(result, temp);
1279 inst->saturate = instr->dest.saturate;
1280 break;
1281 }
1282 case nir_op_ffloor:
1283 inst = bld.RNDD(result, op[0]);
1284 inst->saturate = instr->dest.saturate;
1285 break;
1286 case nir_op_ffract:
1287 inst = bld.FRC(result, op[0]);
1288 inst->saturate = instr->dest.saturate;
1289 break;
1290 case nir_op_fround_even:
1291 inst = bld.RNDE(result, op[0]);
1292 inst->saturate = instr->dest.saturate;
1293 break;
1294
1295 case nir_op_fquantize2f16: {
1296 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1297 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1298 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1299
1300 /* The destination stride must be at least as big as the source stride. */
1301 tmp16.type = BRW_REGISTER_TYPE_W;
1302 tmp16.stride = 2;
1303
1304 /* Check for denormal */
1305 fs_reg abs_src0 = op[0];
1306 abs_src0.abs = true;
1307 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1308 BRW_CONDITIONAL_L);
1309 /* Get the appropriately signed zero */
1310 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1311 retype(op[0], BRW_REGISTER_TYPE_UD),
1312 brw_imm_ud(0x80000000));
1313 /* Do the actual F32 -> F16 -> F32 conversion */
1314 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1315 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1316 /* Select that or zero based on normal status */
1317 inst = bld.SEL(result, zero, tmp32);
1318 inst->predicate = BRW_PREDICATE_NORMAL;
1319 inst->saturate = instr->dest.saturate;
1320 break;
1321 }
1322
1323 case nir_op_imin:
1324 case nir_op_umin:
1325 case nir_op_fmin:
1326 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1327 inst->saturate = instr->dest.saturate;
1328 break;
1329
1330 case nir_op_imax:
1331 case nir_op_umax:
1332 case nir_op_fmax:
1333 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1334 inst->saturate = instr->dest.saturate;
1335 break;
1336
1337 case nir_op_pack_snorm_2x16:
1338 case nir_op_pack_snorm_4x8:
1339 case nir_op_pack_unorm_2x16:
1340 case nir_op_pack_unorm_4x8:
1341 case nir_op_unpack_snorm_2x16:
1342 case nir_op_unpack_snorm_4x8:
1343 case nir_op_unpack_unorm_2x16:
1344 case nir_op_unpack_unorm_4x8:
1345 case nir_op_unpack_half_2x16:
1346 case nir_op_pack_half_2x16:
1347 unreachable("not reached: should be handled by lower_packing_builtins");
1348
1349 case nir_op_unpack_half_2x16_split_x:
1350 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1351 inst->saturate = instr->dest.saturate;
1352 break;
1353 case nir_op_unpack_half_2x16_split_y:
1354 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1355 inst->saturate = instr->dest.saturate;
1356 break;
1357
1358 case nir_op_pack_64_2x32_split:
1359 case nir_op_pack_32_2x16_split:
1360 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1361 break;
1362
1363 case nir_op_unpack_64_2x32_split_x:
1364 case nir_op_unpack_64_2x32_split_y: {
1365 if (instr->op == nir_op_unpack_64_2x32_split_x)
1366 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1367 else
1368 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1369 break;
1370 }
1371
1372 case nir_op_unpack_32_2x16_split_x:
1373 case nir_op_unpack_32_2x16_split_y: {
1374 if (instr->op == nir_op_unpack_32_2x16_split_x)
1375 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1376 else
1377 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1378 break;
1379 }
1380
1381 case nir_op_fpow:
1382 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1383 inst->saturate = instr->dest.saturate;
1384 break;
1385
1386 case nir_op_bitfield_reverse:
1387 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1388 bld.BFREV(result, op[0]);
1389 break;
1390
1391 case nir_op_bit_count:
1392 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1393 bld.CBIT(result, op[0]);
1394 break;
1395
1396 case nir_op_ufind_msb: {
1397 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1398 emit_find_msb_using_lzd(bld, result, op[0], false);
1399 break;
1400 }
1401
1402 case nir_op_ifind_msb: {
1403 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1404
1405 if (devinfo->gen < 7) {
1406 emit_find_msb_using_lzd(bld, result, op[0], true);
1407 } else {
1408 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1409
1410 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1411 * count from the LSB side. If FBH didn't return an error
1412 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1413 * count into an LSB count.
1414 */
1415 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1416
1417 inst = bld.ADD(result, result, brw_imm_d(31));
1418 inst->predicate = BRW_PREDICATE_NORMAL;
1419 inst->src[0].negate = true;
1420 }
1421 break;
1422 }
1423
1424 case nir_op_find_lsb:
1425 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1426
1427 if (devinfo->gen < 7) {
1428 fs_reg temp = vgrf(glsl_type::int_type);
1429
1430 /* (x & -x) generates a value that consists of only the LSB of x.
1431 * For all powers of 2, findMSB(y) == findLSB(y).
1432 */
1433 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1434 fs_reg negated_src = src;
1435
1436 /* One must be negated, and the other must be non-negated. It
1437 * doesn't matter which is which.
1438 */
1439 negated_src.negate = true;
1440 src.negate = false;
1441
1442 bld.AND(temp, src, negated_src);
1443 emit_find_msb_using_lzd(bld, result, temp, false);
1444 } else {
1445 bld.FBL(result, op[0]);
1446 }
1447 break;
1448
1449 case nir_op_ubitfield_extract:
1450 case nir_op_ibitfield_extract:
1451 unreachable("should have been lowered");
1452 case nir_op_ubfe:
1453 case nir_op_ibfe:
1454 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1455 bld.BFE(result, op[2], op[1], op[0]);
1456 break;
1457 case nir_op_bfm:
1458 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1459 bld.BFI1(result, op[0], op[1]);
1460 break;
1461 case nir_op_bfi:
1462 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1463 bld.BFI2(result, op[0], op[1], op[2]);
1464 break;
1465
1466 case nir_op_bitfield_insert:
1467 unreachable("not reached: should have been lowered");
1468
1469 case nir_op_ishl:
1470 case nir_op_ishr:
1471 case nir_op_ushr: {
1472 fs_reg shift_count = op[1];
1473
1474 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1475 if (op[1].file == VGRF &&
1476 (result.type == BRW_REGISTER_TYPE_Q ||
1477 result.type == BRW_REGISTER_TYPE_UQ)) {
1478 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1479 BRW_REGISTER_TYPE_UD);
1480 shift_count.stride = 2;
1481 bld.MOV(shift_count, op[1]);
1482 }
1483 }
1484
1485 switch (instr->op) {
1486 case nir_op_ishl:
1487 bld.SHL(result, op[0], shift_count);
1488 break;
1489 case nir_op_ishr:
1490 bld.ASR(result, op[0], shift_count);
1491 break;
1492 case nir_op_ushr:
1493 bld.SHR(result, op[0], shift_count);
1494 break;
1495 default:
1496 unreachable("not reached");
1497 }
1498 break;
1499 }
1500
1501 case nir_op_pack_half_2x16_split:
1502 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1503 break;
1504
1505 case nir_op_ffma:
1506 inst = bld.MAD(result, op[2], op[1], op[0]);
1507 inst->saturate = instr->dest.saturate;
1508 break;
1509
1510 case nir_op_flrp:
1511 inst = bld.LRP(result, op[0], op[1], op[2]);
1512 inst->saturate = instr->dest.saturate;
1513 break;
1514
1515 case nir_op_bcsel:
1516 if (optimize_frontfacing_ternary(instr, result))
1517 return;
1518
1519 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1520 inst = bld.SEL(result, op[1], op[2]);
1521 inst->predicate = BRW_PREDICATE_NORMAL;
1522 break;
1523
1524 case nir_op_extract_u8:
1525 case nir_op_extract_i8: {
1526 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1527 assert(byte != NULL);
1528
1529 /* The PRMs say:
1530 *
1531 * BDW+
1532 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1533 * Use two instructions and a word or DWord intermediate integer type.
1534 */
1535 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1536 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1537
1538 if (instr->op == nir_op_extract_i8) {
1539 /* If we need to sign extend, extract to a word first */
1540 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1541 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1542 bld.MOV(result, w_temp);
1543 } else {
1544 /* Otherwise use an AND with 0xff and a word type */
1545 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1546 }
1547 } else {
1548 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1549 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1550 }
1551 break;
1552 }
1553
1554 case nir_op_extract_u16:
1555 case nir_op_extract_i16: {
1556 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1557 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1558 assert(word != NULL);
1559 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1560 break;
1561 }
1562
1563 default:
1564 unreachable("unhandled instruction");
1565 }
1566
1567 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1568 * to sign extend the low bit to 0/~0
1569 */
1570 if (devinfo->gen <= 5 &&
1571 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1572 fs_reg masked = vgrf(glsl_type::int_type);
1573 bld.AND(masked, result, brw_imm_d(1));
1574 masked.negate = true;
1575 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1576 }
1577 }
1578
1579 void
1580 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1581 nir_load_const_instr *instr)
1582 {
1583 const brw_reg_type reg_type =
1584 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1585 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1586
1587 switch (instr->def.bit_size) {
1588 case 16:
1589 for (unsigned i = 0; i < instr->def.num_components; i++)
1590 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1591 break;
1592
1593 case 32:
1594 for (unsigned i = 0; i < instr->def.num_components; i++)
1595 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1596 break;
1597
1598 case 64:
1599 assert(devinfo->gen >= 7);
1600 if (devinfo->gen == 7) {
1601 /* We don't get 64-bit integer types until gen8 */
1602 for (unsigned i = 0; i < instr->def.num_components; i++) {
1603 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1604 setup_imm_df(bld, instr->value.f64[i]));
1605 }
1606 } else {
1607 for (unsigned i = 0; i < instr->def.num_components; i++)
1608 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1609 }
1610 break;
1611
1612 default:
1613 unreachable("Invalid bit size");
1614 }
1615
1616 nir_ssa_values[instr->def.index] = reg;
1617 }
1618
1619 fs_reg
1620 fs_visitor::get_nir_src(const nir_src &src)
1621 {
1622 fs_reg reg;
1623 if (src.is_ssa) {
1624 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1625 const brw_reg_type reg_type =
1626 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1627 reg = bld.vgrf(reg_type, src.ssa->num_components);
1628 } else {
1629 reg = nir_ssa_values[src.ssa->index];
1630 }
1631 } else {
1632 /* We don't handle indirects on locals */
1633 assert(src.reg.indirect == NULL);
1634 reg = offset(nir_locals[src.reg.reg->index], bld,
1635 src.reg.base_offset * src.reg.reg->num_components);
1636 }
1637
1638 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1639 /* The only 64-bit type available on gen7 is DF, so use that. */
1640 reg.type = BRW_REGISTER_TYPE_DF;
1641 } else {
1642 /* To avoid floating-point denorm flushing problems, set the type by
1643 * default to an integer type - instructions that need floating point
1644 * semantics will set this to F if they need to
1645 */
1646 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1647 BRW_REGISTER_TYPE_D);
1648 }
1649
1650 return reg;
1651 }
1652
1653 /**
1654 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1655 *
1656 * This function should not be called on any value which may be 64 bits.
1657 * We could theoretically support 64-bit on gen8+ but we choose not to
1658 * because it wouldn't work in general (no gen7 support) and there are
1659 * enough restrictions in 64-bit immediates that you can't take the return
1660 * value and treat it the same as the result of get_nir_src().
1661 */
1662 fs_reg
1663 fs_visitor::get_nir_src_imm(const nir_src &src)
1664 {
1665 nir_const_value *val = nir_src_as_const_value(src);
1666 assert(nir_src_bit_size(src) == 32);
1667 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1668 }
1669
1670 fs_reg
1671 fs_visitor::get_nir_dest(const nir_dest &dest)
1672 {
1673 if (dest.is_ssa) {
1674 const brw_reg_type reg_type =
1675 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1676 dest.ssa.bit_size == 8 ?
1677 BRW_REGISTER_TYPE_D :
1678 BRW_REGISTER_TYPE_F);
1679 nir_ssa_values[dest.ssa.index] =
1680 bld.vgrf(reg_type, dest.ssa.num_components);
1681 return nir_ssa_values[dest.ssa.index];
1682 } else {
1683 /* We don't handle indirects on locals */
1684 assert(dest.reg.indirect == NULL);
1685 return offset(nir_locals[dest.reg.reg->index], bld,
1686 dest.reg.base_offset * dest.reg.reg->num_components);
1687 }
1688 }
1689
1690 fs_reg
1691 fs_visitor::get_nir_image_deref(nir_deref_instr *deref)
1692 {
1693 fs_reg arr_offset = brw_imm_ud(0);
1694 unsigned array_size = BRW_IMAGE_PARAM_SIZE * 4;
1695 nir_deref_instr *head = deref;
1696 while (head->deref_type != nir_deref_type_var) {
1697 assert(head->deref_type == nir_deref_type_array);
1698
1699 /* This level's element size is the previous level's array size */
1700 const unsigned elem_size = array_size;
1701
1702 fs_reg index = retype(get_nir_src_imm(head->arr.index),
1703 BRW_REGISTER_TYPE_UD);
1704 if (arr_offset.file == BRW_IMMEDIATE_VALUE &&
1705 index.file == BRW_IMMEDIATE_VALUE) {
1706 arr_offset.ud += index.ud * elem_size;
1707 } else if (index.file == BRW_IMMEDIATE_VALUE) {
1708 bld.ADD(arr_offset, arr_offset, brw_imm_ud(index.ud * elem_size));
1709 } else {
1710 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
1711 bld.MUL(tmp, index, brw_imm_ud(elem_size));
1712 bld.ADD(tmp, tmp, arr_offset);
1713 arr_offset = tmp;
1714 }
1715
1716 head = nir_deref_instr_parent(head);
1717 assert(glsl_type_is_array(head->type));
1718 array_size = elem_size * glsl_get_length(head->type);
1719 }
1720
1721 assert(head->deref_type == nir_deref_type_var);
1722 const unsigned max_arr_offset = array_size - (BRW_IMAGE_PARAM_SIZE * 4);
1723 fs_reg image(UNIFORM, head->var->data.driver_location / 4,
1724 BRW_REGISTER_TYPE_UD);
1725
1726 if (arr_offset.file == BRW_IMMEDIATE_VALUE) {
1727 /* The offset is in bytes but we want it in dwords */
1728 return offset(image, bld, MIN2(arr_offset.ud, max_arr_offset) / 4);
1729 } else {
1730 /* Accessing an invalid surface index with the dataport can result
1731 * in a hang. According to the spec "if the index used to
1732 * select an individual element is negative or greater than or
1733 * equal to the size of the array, the results of the operation
1734 * are undefined but may not lead to termination" -- which is one
1735 * of the possible outcomes of the hang. Clamp the index to
1736 * prevent access outside of the array bounds.
1737 */
1738 bld.emit_minmax(arr_offset, arr_offset, brw_imm_ud(max_arr_offset),
1739 BRW_CONDITIONAL_L);
1740
1741 /* Emit a pile of MOVs to load the uniform into a temporary. The
1742 * dead-code elimination pass will get rid of what we don't use.
1743 */
1744 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1745 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1746 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1747 offset(tmp, bld, j), offset(image, bld, j),
1748 arr_offset, brw_imm_ud(max_arr_offset + 4));
1749 }
1750 return tmp;
1751 }
1752 }
1753
1754 void
1755 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1756 unsigned wr_mask)
1757 {
1758 for (unsigned i = 0; i < 4; i++) {
1759 if (!((wr_mask >> i) & 1))
1760 continue;
1761
1762 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1763 new_inst->dst = offset(new_inst->dst, bld, i);
1764 for (unsigned j = 0; j < new_inst->sources; j++)
1765 if (new_inst->src[j].file == VGRF)
1766 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1767
1768 bld.emit(new_inst);
1769 }
1770 }
1771
1772 /**
1773 * Get the matching channel register datatype for an image intrinsic of the
1774 * specified GLSL image type.
1775 */
1776 static brw_reg_type
1777 get_image_base_type(const glsl_type *type)
1778 {
1779 switch ((glsl_base_type)type->sampled_type) {
1780 case GLSL_TYPE_UINT:
1781 return BRW_REGISTER_TYPE_UD;
1782 case GLSL_TYPE_INT:
1783 return BRW_REGISTER_TYPE_D;
1784 case GLSL_TYPE_FLOAT:
1785 return BRW_REGISTER_TYPE_F;
1786 default:
1787 unreachable("Not reached.");
1788 }
1789 }
1790
1791 /**
1792 * Get the appropriate atomic op for an image atomic intrinsic.
1793 */
1794 static unsigned
1795 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1796 {
1797 switch (op) {
1798 case nir_intrinsic_image_deref_atomic_add:
1799 return BRW_AOP_ADD;
1800 case nir_intrinsic_image_deref_atomic_min:
1801 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1802 BRW_AOP_IMIN : BRW_AOP_UMIN);
1803 case nir_intrinsic_image_deref_atomic_max:
1804 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1805 BRW_AOP_IMAX : BRW_AOP_UMAX);
1806 case nir_intrinsic_image_deref_atomic_and:
1807 return BRW_AOP_AND;
1808 case nir_intrinsic_image_deref_atomic_or:
1809 return BRW_AOP_OR;
1810 case nir_intrinsic_image_deref_atomic_xor:
1811 return BRW_AOP_XOR;
1812 case nir_intrinsic_image_deref_atomic_exchange:
1813 return BRW_AOP_MOV;
1814 case nir_intrinsic_image_deref_atomic_comp_swap:
1815 return BRW_AOP_CMPWR;
1816 default:
1817 unreachable("Not reachable.");
1818 }
1819 }
1820
1821 static fs_inst *
1822 emit_pixel_interpolater_send(const fs_builder &bld,
1823 enum opcode opcode,
1824 const fs_reg &dst,
1825 const fs_reg &src,
1826 const fs_reg &desc,
1827 glsl_interp_mode interpolation)
1828 {
1829 struct brw_wm_prog_data *wm_prog_data =
1830 brw_wm_prog_data(bld.shader->stage_prog_data);
1831
1832 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1833 /* 2 floats per slot returned */
1834 inst->size_written = 2 * dst.component_size(inst->exec_size);
1835 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1836
1837 wm_prog_data->pulls_bary = true;
1838
1839 return inst;
1840 }
1841
1842 /**
1843 * Computes 1 << x, given a D/UD register containing some value x.
1844 */
1845 static fs_reg
1846 intexp2(const fs_builder &bld, const fs_reg &x)
1847 {
1848 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1849
1850 fs_reg result = bld.vgrf(x.type, 1);
1851 fs_reg one = bld.vgrf(x.type, 1);
1852
1853 bld.MOV(one, retype(brw_imm_d(1), one.type));
1854 bld.SHL(result, one, x);
1855 return result;
1856 }
1857
1858 void
1859 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1860 {
1861 assert(stage == MESA_SHADER_GEOMETRY);
1862
1863 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1864
1865 if (gs_compile->control_data_header_size_bits == 0)
1866 return;
1867
1868 /* We can only do EndPrimitive() functionality when the control data
1869 * consists of cut bits. Fortunately, the only time it isn't is when the
1870 * output type is points, in which case EndPrimitive() is a no-op.
1871 */
1872 if (gs_prog_data->control_data_format !=
1873 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1874 return;
1875 }
1876
1877 /* Cut bits use one bit per vertex. */
1878 assert(gs_compile->control_data_bits_per_vertex == 1);
1879
1880 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1881 vertex_count.type = BRW_REGISTER_TYPE_UD;
1882
1883 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1884 * vertex n, 0 otherwise. So all we need to do here is mark bit
1885 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1886 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1887 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1888 *
1889 * Note that if EndPrimitive() is called before emitting any vertices, this
1890 * will cause us to set bit 31 of the control_data_bits register to 1.
1891 * That's fine because:
1892 *
1893 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1894 * output, so the hardware will ignore cut bit 31.
1895 *
1896 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1897 * last vertex, so setting cut bit 31 has no effect (since the primitive
1898 * is automatically ended when the GS terminates).
1899 *
1900 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1901 * control_data_bits register to 0 when the first vertex is emitted.
1902 */
1903
1904 const fs_builder abld = bld.annotate("end primitive");
1905
1906 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1907 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1908 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1909 fs_reg mask = intexp2(abld, prev_count);
1910 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1911 * attention to the lower 5 bits of its second source argument, so on this
1912 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1913 * ((vertex_count - 1) % 32).
1914 */
1915 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1916 }
1917
1918 void
1919 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1920 {
1921 assert(stage == MESA_SHADER_GEOMETRY);
1922 assert(gs_compile->control_data_bits_per_vertex != 0);
1923
1924 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1925
1926 const fs_builder abld = bld.annotate("emit control data bits");
1927 const fs_builder fwa_bld = bld.exec_all();
1928
1929 /* We use a single UD register to accumulate control data bits (32 bits
1930 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1931 * at a time.
1932 *
1933 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1934 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1935 * use the Channel Mask phase to enable/disable which DWord within that
1936 * group to write. (Remember, different SIMD8 channels may have emitted
1937 * different numbers of vertices, so we may need per-slot offsets.)
1938 *
1939 * Channel masking presents an annoying problem: we may have to replicate
1940 * the data up to 4 times:
1941 *
1942 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1943 *
1944 * To avoid penalizing shaders that emit a small number of vertices, we
1945 * can avoid these sometimes: if the size of the control data header is
1946 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1947 * land in the same 128-bit group, so we can skip per-slot offsets.
1948 *
1949 * Similarly, if the control data header is <= 32 bits, there is only one
1950 * DWord, so we can skip channel masks.
1951 */
1952 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1953
1954 fs_reg channel_mask, per_slot_offset;
1955
1956 if (gs_compile->control_data_header_size_bits > 32) {
1957 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1958 channel_mask = vgrf(glsl_type::uint_type);
1959 }
1960
1961 if (gs_compile->control_data_header_size_bits > 128) {
1962 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1963 per_slot_offset = vgrf(glsl_type::uint_type);
1964 }
1965
1966 /* Figure out which DWord we're trying to write to using the formula:
1967 *
1968 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1969 *
1970 * Since bits_per_vertex is a power of two, and is known at compile
1971 * time, this can be optimized to:
1972 *
1973 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1974 */
1975 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1976 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1977 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1978 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1979 unsigned log2_bits_per_vertex =
1980 util_last_bit(gs_compile->control_data_bits_per_vertex);
1981 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1982
1983 if (per_slot_offset.file != BAD_FILE) {
1984 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1985 * the appropriate OWord within the control data header.
1986 */
1987 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1988 }
1989
1990 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1991 * write to the appropriate DWORD within the OWORD.
1992 */
1993 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1994 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1995 channel_mask = intexp2(fwa_bld, channel);
1996 /* Then the channel masks need to be in bits 23:16. */
1997 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1998 }
1999
2000 /* Store the control data bits in the message payload and send it. */
2001 int mlen = 2;
2002 if (channel_mask.file != BAD_FILE)
2003 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2004 if (per_slot_offset.file != BAD_FILE)
2005 mlen++;
2006
2007 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2008 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2009 int i = 0;
2010 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2011 if (per_slot_offset.file != BAD_FILE)
2012 sources[i++] = per_slot_offset;
2013 if (channel_mask.file != BAD_FILE)
2014 sources[i++] = channel_mask;
2015 while (i < mlen) {
2016 sources[i++] = this->control_data_bits;
2017 }
2018
2019 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2020 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2021 inst->mlen = mlen;
2022 /* We need to increment Global Offset by 256-bits to make room for
2023 * Broadwell's extra "Vertex Count" payload at the beginning of the
2024 * URB entry. Since this is an OWord message, Global Offset is counted
2025 * in 128-bit units, so we must set it to 2.
2026 */
2027 if (gs_prog_data->static_vertex_count == -1)
2028 inst->offset = 2;
2029 }
2030
2031 void
2032 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2033 unsigned stream_id)
2034 {
2035 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2036
2037 /* Note: we are calling this *before* increasing vertex_count, so
2038 * this->vertex_count == vertex_count - 1 in the formula above.
2039 */
2040
2041 /* Stream mode uses 2 bits per vertex */
2042 assert(gs_compile->control_data_bits_per_vertex == 2);
2043
2044 /* Must be a valid stream */
2045 assert(stream_id < MAX_VERTEX_STREAMS);
2046
2047 /* Control data bits are initialized to 0 so we don't have to set any
2048 * bits when sending vertices to stream 0.
2049 */
2050 if (stream_id == 0)
2051 return;
2052
2053 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2054
2055 /* reg::sid = stream_id */
2056 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2057 abld.MOV(sid, brw_imm_ud(stream_id));
2058
2059 /* reg:shift_count = 2 * (vertex_count - 1) */
2060 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2061 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2062
2063 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2064 * attention to the lower 5 bits of its second source argument, so on this
2065 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2066 * stream_id << ((2 * (vertex_count - 1)) % 32).
2067 */
2068 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2069 abld.SHL(mask, sid, shift_count);
2070 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2071 }
2072
2073 void
2074 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2075 unsigned stream_id)
2076 {
2077 assert(stage == MESA_SHADER_GEOMETRY);
2078
2079 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2080
2081 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2082 vertex_count.type = BRW_REGISTER_TYPE_UD;
2083
2084 /* Haswell and later hardware ignores the "Render Stream Select" bits
2085 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2086 * and instead sends all primitives down the pipeline for rasterization.
2087 * If the SOL stage is enabled, "Render Stream Select" is honored and
2088 * primitives bound to non-zero streams are discarded after stream output.
2089 *
2090 * Since the only purpose of primives sent to non-zero streams is to
2091 * be recorded by transform feedback, we can simply discard all geometry
2092 * bound to these streams when transform feedback is disabled.
2093 */
2094 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2095 return;
2096
2097 /* If we're outputting 32 control data bits or less, then we can wait
2098 * until the shader is over to output them all. Otherwise we need to
2099 * output them as we go. Now is the time to do it, since we're about to
2100 * output the vertex_count'th vertex, so it's guaranteed that the
2101 * control data bits associated with the (vertex_count - 1)th vertex are
2102 * correct.
2103 */
2104 if (gs_compile->control_data_header_size_bits > 32) {
2105 const fs_builder abld =
2106 bld.annotate("emit vertex: emit control data bits");
2107
2108 /* Only emit control data bits if we've finished accumulating a batch
2109 * of 32 bits. This is the case when:
2110 *
2111 * (vertex_count * bits_per_vertex) % 32 == 0
2112 *
2113 * (in other words, when the last 5 bits of vertex_count *
2114 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2115 * integer n (which is always the case, since bits_per_vertex is
2116 * always 1 or 2), this is equivalent to requiring that the last 5-n
2117 * bits of vertex_count are 0:
2118 *
2119 * vertex_count & (2^(5-n) - 1) == 0
2120 *
2121 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2122 * equivalent to:
2123 *
2124 * vertex_count & (32 / bits_per_vertex - 1) == 0
2125 *
2126 * TODO: If vertex_count is an immediate, we could do some of this math
2127 * at compile time...
2128 */
2129 fs_inst *inst =
2130 abld.AND(bld.null_reg_d(), vertex_count,
2131 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2132 inst->conditional_mod = BRW_CONDITIONAL_Z;
2133
2134 abld.IF(BRW_PREDICATE_NORMAL);
2135 /* If vertex_count is 0, then no control data bits have been
2136 * accumulated yet, so we can skip emitting them.
2137 */
2138 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2139 BRW_CONDITIONAL_NEQ);
2140 abld.IF(BRW_PREDICATE_NORMAL);
2141 emit_gs_control_data_bits(vertex_count);
2142 abld.emit(BRW_OPCODE_ENDIF);
2143
2144 /* Reset control_data_bits to 0 so we can start accumulating a new
2145 * batch.
2146 *
2147 * Note: in the case where vertex_count == 0, this neutralizes the
2148 * effect of any call to EndPrimitive() that the shader may have
2149 * made before outputting its first vertex.
2150 */
2151 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2152 inst->force_writemask_all = true;
2153 abld.emit(BRW_OPCODE_ENDIF);
2154 }
2155
2156 emit_urb_writes(vertex_count);
2157
2158 /* In stream mode we have to set control data bits for all vertices
2159 * unless we have disabled control data bits completely (which we do
2160 * do for GL_POINTS outputs that don't use streams).
2161 */
2162 if (gs_compile->control_data_header_size_bits > 0 &&
2163 gs_prog_data->control_data_format ==
2164 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2165 set_gs_stream_control_data_bits(vertex_count, stream_id);
2166 }
2167 }
2168
2169 void
2170 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2171 const nir_src &vertex_src,
2172 unsigned base_offset,
2173 const nir_src &offset_src,
2174 unsigned num_components,
2175 unsigned first_component)
2176 {
2177 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2178
2179 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2180 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2181 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2182
2183 /* TODO: figure out push input layout for invocations == 1 */
2184 /* TODO: make this work with 64-bit inputs */
2185 if (gs_prog_data->invocations == 1 &&
2186 type_sz(dst.type) <= 4 &&
2187 offset_const != NULL && vertex_const != NULL &&
2188 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2189 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2190 vertex_const->u32[0] * push_reg_count;
2191 for (unsigned i = 0; i < num_components; i++) {
2192 bld.MOV(offset(dst, bld, i),
2193 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2194 }
2195 return;
2196 }
2197
2198 /* Resort to the pull model. Ensure the VUE handles are provided. */
2199 assert(gs_prog_data->base.include_vue_handles);
2200
2201 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2202 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2203
2204 if (gs_prog_data->invocations == 1) {
2205 if (vertex_const) {
2206 /* The vertex index is constant; just select the proper URB handle. */
2207 icp_handle =
2208 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2209 BRW_REGISTER_TYPE_UD);
2210 } else {
2211 /* The vertex index is non-constant. We need to use indirect
2212 * addressing to fetch the proper URB handle.
2213 *
2214 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2215 * indicating that channel <n> should read the handle from
2216 * DWord <n>. We convert that to bytes by multiplying by 4.
2217 *
2218 * Next, we convert the vertex index to bytes by multiplying
2219 * by 32 (shifting by 5), and add the two together. This is
2220 * the final indirect byte offset.
2221 */
2222 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2223 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2224 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2225 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2226
2227 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2228 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2229 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2230 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2231 /* Convert vertex_index to bytes (multiply by 32) */
2232 bld.SHL(vertex_offset_bytes,
2233 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2234 brw_imm_ud(5u));
2235 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2236
2237 /* Use first_icp_handle as the base offset. There is one register
2238 * of URB handles per vertex, so inform the register allocator that
2239 * we might read up to nir->info.gs.vertices_in registers.
2240 */
2241 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2242 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2243 fs_reg(icp_offset_bytes),
2244 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2245 }
2246 } else {
2247 assert(gs_prog_data->invocations > 1);
2248
2249 if (vertex_const) {
2250 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2251 bld.MOV(icp_handle,
2252 retype(brw_vec1_grf(first_icp_handle +
2253 vertex_const->i32[0] / 8,
2254 vertex_const->i32[0] % 8),
2255 BRW_REGISTER_TYPE_UD));
2256 } else {
2257 /* The vertex index is non-constant. We need to use indirect
2258 * addressing to fetch the proper URB handle.
2259 *
2260 */
2261 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2262
2263 /* Convert vertex_index to bytes (multiply by 4) */
2264 bld.SHL(icp_offset_bytes,
2265 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2266 brw_imm_ud(2u));
2267
2268 /* Use first_icp_handle as the base offset. There is one DWord
2269 * of URB handles per vertex, so inform the register allocator that
2270 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2271 */
2272 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2273 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2274 fs_reg(icp_offset_bytes),
2275 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2276 REG_SIZE));
2277 }
2278 }
2279
2280 fs_inst *inst;
2281
2282 fs_reg tmp_dst = dst;
2283 fs_reg indirect_offset = get_nir_src(offset_src);
2284 unsigned num_iterations = 1;
2285 unsigned orig_num_components = num_components;
2286
2287 if (type_sz(dst.type) == 8) {
2288 if (num_components > 2) {
2289 num_iterations = 2;
2290 num_components = 2;
2291 }
2292 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2293 tmp_dst = tmp;
2294 first_component = first_component / 2;
2295 }
2296
2297 for (unsigned iter = 0; iter < num_iterations; iter++) {
2298 if (offset_const) {
2299 /* Constant indexing - use global offset. */
2300 if (first_component != 0) {
2301 unsigned read_components = num_components + first_component;
2302 fs_reg tmp = bld.vgrf(dst.type, read_components);
2303 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2304 inst->size_written = read_components *
2305 tmp.component_size(inst->exec_size);
2306 for (unsigned i = 0; i < num_components; i++) {
2307 bld.MOV(offset(tmp_dst, bld, i),
2308 offset(tmp, bld, i + first_component));
2309 }
2310 } else {
2311 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2312 icp_handle);
2313 inst->size_written = num_components *
2314 tmp_dst.component_size(inst->exec_size);
2315 }
2316 inst->offset = base_offset + offset_const->u32[0];
2317 inst->mlen = 1;
2318 } else {
2319 /* Indirect indexing - use per-slot offsets as well. */
2320 const fs_reg srcs[] = { icp_handle, indirect_offset };
2321 unsigned read_components = num_components + first_component;
2322 fs_reg tmp = bld.vgrf(dst.type, read_components);
2323 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2324 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2325 if (first_component != 0) {
2326 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2327 payload);
2328 inst->size_written = read_components *
2329 tmp.component_size(inst->exec_size);
2330 for (unsigned i = 0; i < num_components; i++) {
2331 bld.MOV(offset(tmp_dst, bld, i),
2332 offset(tmp, bld, i + first_component));
2333 }
2334 } else {
2335 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2336 payload);
2337 inst->size_written = num_components *
2338 tmp_dst.component_size(inst->exec_size);
2339 }
2340 inst->offset = base_offset;
2341 inst->mlen = 2;
2342 }
2343
2344 if (type_sz(dst.type) == 8) {
2345 shuffle_from_32bit_read(bld,
2346 offset(dst, bld, iter * 2),
2347 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2348 0,
2349 num_components);
2350 }
2351
2352 if (num_iterations > 1) {
2353 num_components = orig_num_components - 2;
2354 if(offset_const) {
2355 base_offset++;
2356 } else {
2357 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2358 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2359 indirect_offset = new_indirect;
2360 }
2361 }
2362 }
2363 }
2364
2365 fs_reg
2366 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2367 {
2368 nir_src *offset_src = nir_get_io_offset_src(instr);
2369 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2370
2371 if (const_value) {
2372 /* The only constant offset we should find is 0. brw_nir.c's
2373 * add_const_offset_to_base() will fold other constant offsets
2374 * into instr->const_index[0].
2375 */
2376 assert(const_value->u32[0] == 0);
2377 return fs_reg();
2378 }
2379
2380 return get_nir_src(*offset_src);
2381 }
2382
2383 static void
2384 do_untyped_vector_read(const fs_builder &bld,
2385 const fs_reg dest,
2386 const fs_reg surf_index,
2387 const fs_reg offset_reg,
2388 unsigned num_components)
2389 {
2390 if (type_sz(dest.type) <= 2) {
2391 assert(dest.stride == 1);
2392 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2393
2394 if (is_const_offset) {
2395 uint32_t start = offset_reg.ud & ~3;
2396 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2397 end = ALIGN(end, 4);
2398 assert (end - start <= 16);
2399
2400 /* At this point we have 16-bit component/s that have constant
2401 * offset aligned to 4-bytes that can be read with untyped_reads.
2402 * untyped_read message requires 32-bit aligned offsets.
2403 */
2404 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2405 unsigned num_components_32bit = (end - start) / 4;
2406
2407 fs_reg read_result =
2408 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2409 1 /* dims */,
2410 num_components_32bit,
2411 BRW_PREDICATE_NONE);
2412 shuffle_from_32bit_read(bld, dest, read_result, first_component,
2413 num_components);
2414 } else {
2415 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2416 for (unsigned i = 0; i < num_components; i++) {
2417 if (i == 0) {
2418 bld.MOV(read_offset, offset_reg);
2419 } else {
2420 bld.ADD(read_offset, offset_reg,
2421 brw_imm_ud(i * type_sz(dest.type)));
2422 }
2423 /* Non constant offsets are not guaranteed to be aligned 32-bits
2424 * so they are read using one byte_scattered_read message
2425 * for each component.
2426 */
2427 fs_reg read_result =
2428 emit_byte_scattered_read(bld, surf_index, read_offset,
2429 1 /* dims */, 1,
2430 type_sz(dest.type) * 8 /* bit_size */,
2431 BRW_PREDICATE_NONE);
2432 bld.MOV(offset(dest, bld, i),
2433 subscript (read_result, dest.type, 0));
2434 }
2435 }
2436 } else if (type_sz(dest.type) == 4) {
2437 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2438 1 /* dims */,
2439 num_components,
2440 BRW_PREDICATE_NONE);
2441 read_result.type = dest.type;
2442 for (unsigned i = 0; i < num_components; i++)
2443 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2444 } else if (type_sz(dest.type) == 8) {
2445 /* Reading a dvec, so we need to:
2446 *
2447 * 1. Multiply num_components by 2, to account for the fact that we
2448 * need to read 64-bit components.
2449 * 2. Shuffle the result of the load to form valid 64-bit elements
2450 * 3. Emit a second load (for components z/w) if needed.
2451 */
2452 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2453 bld.MOV(read_offset, offset_reg);
2454
2455 int iters = num_components <= 2 ? 1 : 2;
2456
2457 /* Load the dvec, the first iteration loads components x/y, the second
2458 * iteration, if needed, loads components z/w
2459 */
2460 for (int it = 0; it < iters; it++) {
2461 /* Compute number of components to read in this iteration */
2462 int iter_components = MIN2(2, num_components);
2463 num_components -= iter_components;
2464
2465 /* Read. Since this message reads 32-bit components, we need to
2466 * read twice as many components.
2467 */
2468 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2469 1 /* dims */,
2470 iter_components * 2,
2471 BRW_PREDICATE_NONE);
2472
2473 /* Shuffle the 32-bit load result into valid 64-bit data */
2474 shuffle_from_32bit_read(bld, offset(dest, bld, it * 2),
2475 read_result, 0, iter_components);
2476
2477 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2478 }
2479 } else {
2480 unreachable("Unsupported type");
2481 }
2482 }
2483
2484 void
2485 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2486 nir_intrinsic_instr *instr)
2487 {
2488 assert(stage == MESA_SHADER_VERTEX);
2489
2490 fs_reg dest;
2491 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2492 dest = get_nir_dest(instr->dest);
2493
2494 switch (instr->intrinsic) {
2495 case nir_intrinsic_load_vertex_id:
2496 case nir_intrinsic_load_base_vertex:
2497 unreachable("should be lowered by nir_lower_system_values()");
2498
2499 case nir_intrinsic_load_vertex_id_zero_base:
2500 case nir_intrinsic_load_instance_id:
2501 case nir_intrinsic_load_base_instance:
2502 case nir_intrinsic_load_draw_id: {
2503 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2504 fs_reg val = nir_system_values[sv];
2505 assert(val.file != BAD_FILE);
2506 dest.type = val.type;
2507 bld.MOV(dest, val);
2508 break;
2509 }
2510
2511 case nir_intrinsic_load_input: {
2512 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2513 unsigned first_component = nir_intrinsic_component(instr);
2514 unsigned num_components = instr->num_components;
2515
2516 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2517 assert(const_offset && "Indirect input loads not allowed");
2518 src = offset(src, bld, const_offset->u32[0]);
2519
2520 if (type_sz(dest.type) == 8)
2521 first_component /= 2;
2522
2523 /* For 16-bit support maybe a temporary will be needed to copy from
2524 * the ATTR file.
2525 */
2526 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2527 first_component, num_components);
2528 break;
2529 }
2530
2531 case nir_intrinsic_load_first_vertex:
2532 case nir_intrinsic_load_is_indexed_draw:
2533 unreachable("lowered by brw_nir_lower_vs_inputs");
2534
2535 default:
2536 nir_emit_intrinsic(bld, instr);
2537 break;
2538 }
2539 }
2540
2541 void
2542 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2543 nir_intrinsic_instr *instr)
2544 {
2545 assert(stage == MESA_SHADER_TESS_CTRL);
2546 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2547 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2548
2549 fs_reg dst;
2550 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2551 dst = get_nir_dest(instr->dest);
2552
2553 switch (instr->intrinsic) {
2554 case nir_intrinsic_load_primitive_id:
2555 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2556 break;
2557 case nir_intrinsic_load_invocation_id:
2558 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2559 break;
2560 case nir_intrinsic_load_patch_vertices_in:
2561 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2562 brw_imm_d(tcs_key->input_vertices));
2563 break;
2564
2565 case nir_intrinsic_barrier: {
2566 if (tcs_prog_data->instances == 1)
2567 break;
2568
2569 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2570 fs_reg m0_2 = component(m0, 2);
2571
2572 const fs_builder chanbld = bld.exec_all().group(1, 0);
2573
2574 /* Zero the message header */
2575 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2576
2577 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2578 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2579 brw_imm_ud(INTEL_MASK(16, 13)));
2580
2581 /* Shift it up to bits 27:24. */
2582 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2583
2584 /* Set the Barrier Count and the enable bit */
2585 chanbld.OR(m0_2, m0_2,
2586 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2587
2588 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2589 break;
2590 }
2591
2592 case nir_intrinsic_load_input:
2593 unreachable("nir_lower_io should never give us these.");
2594 break;
2595
2596 case nir_intrinsic_load_per_vertex_input: {
2597 fs_reg indirect_offset = get_indirect_offset(instr);
2598 unsigned imm_offset = instr->const_index[0];
2599
2600 const nir_src &vertex_src = instr->src[0];
2601 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2602
2603 fs_inst *inst;
2604
2605 fs_reg icp_handle;
2606
2607 if (vertex_const) {
2608 /* Emit a MOV to resolve <0,1,0> regioning. */
2609 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2610 bld.MOV(icp_handle,
2611 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2612 vertex_const->i32[0] & 7),
2613 BRW_REGISTER_TYPE_UD));
2614 } else if (tcs_prog_data->instances == 1 &&
2615 vertex_src.is_ssa &&
2616 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2617 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2618 /* For the common case of only 1 instance, an array index of
2619 * gl_InvocationID means reading g1. Skip all the indirect work.
2620 */
2621 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2622 } else {
2623 /* The vertex index is non-constant. We need to use indirect
2624 * addressing to fetch the proper URB handle.
2625 */
2626 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2627
2628 /* Each ICP handle is a single DWord (4 bytes) */
2629 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2630 bld.SHL(vertex_offset_bytes,
2631 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2632 brw_imm_ud(2u));
2633
2634 /* Start at g1. We might read up to 4 registers. */
2635 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2636 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2637 brw_imm_ud(4 * REG_SIZE));
2638 }
2639
2640 /* We can only read two double components with each URB read, so
2641 * we send two read messages in that case, each one loading up to
2642 * two double components.
2643 */
2644 unsigned num_iterations = 1;
2645 unsigned num_components = instr->num_components;
2646 unsigned first_component = nir_intrinsic_component(instr);
2647 fs_reg orig_dst = dst;
2648 if (type_sz(dst.type) == 8) {
2649 first_component = first_component / 2;
2650 if (instr->num_components > 2) {
2651 num_iterations = 2;
2652 num_components = 2;
2653 }
2654
2655 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2656 dst = tmp;
2657 }
2658
2659 for (unsigned iter = 0; iter < num_iterations; iter++) {
2660 if (indirect_offset.file == BAD_FILE) {
2661 /* Constant indexing - use global offset. */
2662 if (first_component != 0) {
2663 unsigned read_components = num_components + first_component;
2664 fs_reg tmp = bld.vgrf(dst.type, read_components);
2665 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2666 for (unsigned i = 0; i < num_components; i++) {
2667 bld.MOV(offset(dst, bld, i),
2668 offset(tmp, bld, i + first_component));
2669 }
2670 } else {
2671 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2672 }
2673 inst->offset = imm_offset;
2674 inst->mlen = 1;
2675 } else {
2676 /* Indirect indexing - use per-slot offsets as well. */
2677 const fs_reg srcs[] = { icp_handle, indirect_offset };
2678 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2679 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2680 if (first_component != 0) {
2681 unsigned read_components = num_components + first_component;
2682 fs_reg tmp = bld.vgrf(dst.type, read_components);
2683 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2684 payload);
2685 for (unsigned i = 0; i < num_components; i++) {
2686 bld.MOV(offset(dst, bld, i),
2687 offset(tmp, bld, i + first_component));
2688 }
2689 } else {
2690 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2691 payload);
2692 }
2693 inst->offset = imm_offset;
2694 inst->mlen = 2;
2695 }
2696 inst->size_written = (num_components + first_component) *
2697 inst->dst.component_size(inst->exec_size);
2698
2699 /* If we are reading 64-bit data using 32-bit read messages we need
2700 * build proper 64-bit data elements by shuffling the low and high
2701 * 32-bit components around like we do for other things like UBOs
2702 * or SSBOs.
2703 */
2704 if (type_sz(dst.type) == 8) {
2705 shuffle_from_32bit_read(bld,
2706 offset(orig_dst, bld, iter * 2),
2707 retype(dst, BRW_REGISTER_TYPE_D),
2708 0, num_components);
2709 }
2710
2711 /* Copy the temporary to the destination to deal with writemasking.
2712 *
2713 * Also attempt to deal with gl_PointSize being in the .w component.
2714 */
2715 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2716 assert(type_sz(dst.type) < 8);
2717 inst->dst = bld.vgrf(dst.type, 4);
2718 inst->size_written = 4 * REG_SIZE;
2719 bld.MOV(dst, offset(inst->dst, bld, 3));
2720 }
2721
2722 /* If we are loading double data and we need a second read message
2723 * adjust the write offset
2724 */
2725 if (num_iterations > 1) {
2726 num_components = instr->num_components - 2;
2727 imm_offset++;
2728 }
2729 }
2730 break;
2731 }
2732
2733 case nir_intrinsic_load_output:
2734 case nir_intrinsic_load_per_vertex_output: {
2735 fs_reg indirect_offset = get_indirect_offset(instr);
2736 unsigned imm_offset = instr->const_index[0];
2737 unsigned first_component = nir_intrinsic_component(instr);
2738
2739 fs_inst *inst;
2740 if (indirect_offset.file == BAD_FILE) {
2741 /* Replicate the patch handle to all enabled channels */
2742 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2743 bld.MOV(patch_handle,
2744 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2745
2746 {
2747 if (first_component != 0) {
2748 unsigned read_components =
2749 instr->num_components + first_component;
2750 fs_reg tmp = bld.vgrf(dst.type, read_components);
2751 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2752 patch_handle);
2753 inst->size_written = read_components * REG_SIZE;
2754 for (unsigned i = 0; i < instr->num_components; i++) {
2755 bld.MOV(offset(dst, bld, i),
2756 offset(tmp, bld, i + first_component));
2757 }
2758 } else {
2759 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2760 patch_handle);
2761 inst->size_written = instr->num_components * REG_SIZE;
2762 }
2763 inst->offset = imm_offset;
2764 inst->mlen = 1;
2765 }
2766 } else {
2767 /* Indirect indexing - use per-slot offsets as well. */
2768 const fs_reg srcs[] = {
2769 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2770 indirect_offset
2771 };
2772 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2773 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2774 if (first_component != 0) {
2775 unsigned read_components =
2776 instr->num_components + first_component;
2777 fs_reg tmp = bld.vgrf(dst.type, read_components);
2778 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2779 payload);
2780 inst->size_written = read_components * REG_SIZE;
2781 for (unsigned i = 0; i < instr->num_components; i++) {
2782 bld.MOV(offset(dst, bld, i),
2783 offset(tmp, bld, i + first_component));
2784 }
2785 } else {
2786 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2787 payload);
2788 inst->size_written = instr->num_components * REG_SIZE;
2789 }
2790 inst->offset = imm_offset;
2791 inst->mlen = 2;
2792 }
2793 break;
2794 }
2795
2796 case nir_intrinsic_store_output:
2797 case nir_intrinsic_store_per_vertex_output: {
2798 fs_reg value = get_nir_src(instr->src[0]);
2799 bool is_64bit = (instr->src[0].is_ssa ?
2800 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2801 fs_reg indirect_offset = get_indirect_offset(instr);
2802 unsigned imm_offset = instr->const_index[0];
2803 unsigned mask = instr->const_index[1];
2804 unsigned header_regs = 0;
2805 fs_reg srcs[7];
2806 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2807
2808 if (indirect_offset.file != BAD_FILE) {
2809 srcs[header_regs++] = indirect_offset;
2810 }
2811
2812 if (mask == 0)
2813 break;
2814
2815 unsigned num_components = util_last_bit(mask);
2816 enum opcode opcode;
2817
2818 /* We can only pack two 64-bit components in a single message, so send
2819 * 2 messages if we have more components
2820 */
2821 unsigned num_iterations = 1;
2822 unsigned iter_components = num_components;
2823 unsigned first_component = nir_intrinsic_component(instr);
2824 if (is_64bit) {
2825 first_component = first_component / 2;
2826 if (instr->num_components > 2) {
2827 num_iterations = 2;
2828 iter_components = 2;
2829 }
2830 }
2831
2832 mask = mask << first_component;
2833
2834 for (unsigned iter = 0; iter < num_iterations; iter++) {
2835 if (!is_64bit && mask != WRITEMASK_XYZW) {
2836 srcs[header_regs++] = brw_imm_ud(mask << 16);
2837 opcode = indirect_offset.file != BAD_FILE ?
2838 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2839 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2840 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2841 /* Expand the 64-bit mask to 32-bit channels. We only handle
2842 * two channels in each iteration, so we only care about X/Y.
2843 */
2844 unsigned mask32 = 0;
2845 if (mask & WRITEMASK_X)
2846 mask32 |= WRITEMASK_XY;
2847 if (mask & WRITEMASK_Y)
2848 mask32 |= WRITEMASK_ZW;
2849
2850 /* If the mask does not include any of the channels X or Y there
2851 * is nothing to do in this iteration. Move on to the next couple
2852 * of 64-bit channels.
2853 */
2854 if (!mask32) {
2855 mask >>= 2;
2856 imm_offset++;
2857 continue;
2858 }
2859
2860 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2861 opcode = indirect_offset.file != BAD_FILE ?
2862 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2863 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2864 } else {
2865 opcode = indirect_offset.file != BAD_FILE ?
2866 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2867 SHADER_OPCODE_URB_WRITE_SIMD8;
2868 }
2869
2870 for (unsigned i = 0; i < iter_components; i++) {
2871 if (!(mask & (1 << (i + first_component))))
2872 continue;
2873
2874 if (!is_64bit) {
2875 srcs[header_regs + i + first_component] = offset(value, bld, i);
2876 } else {
2877 /* We need to shuffle the 64-bit data to match the layout
2878 * expected by our 32-bit URB write messages. We use a temporary
2879 * for that.
2880 */
2881 unsigned channel = iter * 2 + i;
2882 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2883
2884 srcs[header_regs + (i + first_component) * 2] = dest;
2885 srcs[header_regs + (i + first_component) * 2 + 1] =
2886 offset(dest, bld, 1);
2887 }
2888 }
2889
2890 unsigned mlen =
2891 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2892 (is_64bit ? 2 * first_component : first_component);
2893 fs_reg payload =
2894 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2895 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2896
2897 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2898 inst->offset = imm_offset;
2899 inst->mlen = mlen;
2900
2901 /* If this is a 64-bit attribute, select the next two 64-bit channels
2902 * to be handled in the next iteration.
2903 */
2904 if (is_64bit) {
2905 mask >>= 2;
2906 imm_offset++;
2907 }
2908 }
2909 break;
2910 }
2911
2912 default:
2913 nir_emit_intrinsic(bld, instr);
2914 break;
2915 }
2916 }
2917
2918 void
2919 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2920 nir_intrinsic_instr *instr)
2921 {
2922 assert(stage == MESA_SHADER_TESS_EVAL);
2923 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2924
2925 fs_reg dest;
2926 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2927 dest = get_nir_dest(instr->dest);
2928
2929 switch (instr->intrinsic) {
2930 case nir_intrinsic_load_primitive_id:
2931 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2932 break;
2933 case nir_intrinsic_load_tess_coord:
2934 /* gl_TessCoord is part of the payload in g1-3 */
2935 for (unsigned i = 0; i < 3; i++) {
2936 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2937 }
2938 break;
2939
2940 case nir_intrinsic_load_input:
2941 case nir_intrinsic_load_per_vertex_input: {
2942 fs_reg indirect_offset = get_indirect_offset(instr);
2943 unsigned imm_offset = instr->const_index[0];
2944 unsigned first_component = nir_intrinsic_component(instr);
2945
2946 if (type_sz(dest.type) == 8) {
2947 first_component = first_component / 2;
2948 }
2949
2950 fs_inst *inst;
2951 if (indirect_offset.file == BAD_FILE) {
2952 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2953 * which is 16 registers (since each holds 2 vec4 slots).
2954 */
2955 unsigned slot_count = 1;
2956 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2957 slot_count++;
2958
2959 const unsigned max_push_slots = 32;
2960 if (imm_offset + slot_count <= max_push_slots) {
2961 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2962 for (int i = 0; i < instr->num_components; i++) {
2963 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2964 i + first_component;
2965 bld.MOV(offset(dest, bld, i), component(src, comp));
2966 }
2967
2968 tes_prog_data->base.urb_read_length =
2969 MAX2(tes_prog_data->base.urb_read_length,
2970 DIV_ROUND_UP(imm_offset + slot_count, 2));
2971 } else {
2972 /* Replicate the patch handle to all enabled channels */
2973 const fs_reg srcs[] = {
2974 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2975 };
2976 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2977 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2978
2979 if (first_component != 0) {
2980 unsigned read_components =
2981 instr->num_components + first_component;
2982 fs_reg tmp = bld.vgrf(dest.type, read_components);
2983 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2984 patch_handle);
2985 inst->size_written = read_components * REG_SIZE;
2986 for (unsigned i = 0; i < instr->num_components; i++) {
2987 bld.MOV(offset(dest, bld, i),
2988 offset(tmp, bld, i + first_component));
2989 }
2990 } else {
2991 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2992 patch_handle);
2993 inst->size_written = instr->num_components * REG_SIZE;
2994 }
2995 inst->mlen = 1;
2996 inst->offset = imm_offset;
2997 }
2998 } else {
2999 /* Indirect indexing - use per-slot offsets as well. */
3000
3001 /* We can only read two double components with each URB read, so
3002 * we send two read messages in that case, each one loading up to
3003 * two double components.
3004 */
3005 unsigned num_iterations = 1;
3006 unsigned num_components = instr->num_components;
3007 fs_reg orig_dest = dest;
3008 if (type_sz(dest.type) == 8) {
3009 if (instr->num_components > 2) {
3010 num_iterations = 2;
3011 num_components = 2;
3012 }
3013 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
3014 dest = tmp;
3015 }
3016
3017 for (unsigned iter = 0; iter < num_iterations; iter++) {
3018 const fs_reg srcs[] = {
3019 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3020 indirect_offset
3021 };
3022 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3023 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3024
3025 if (first_component != 0) {
3026 unsigned read_components =
3027 num_components + first_component;
3028 fs_reg tmp = bld.vgrf(dest.type, read_components);
3029 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3030 payload);
3031 for (unsigned i = 0; i < num_components; i++) {
3032 bld.MOV(offset(dest, bld, i),
3033 offset(tmp, bld, i + first_component));
3034 }
3035 } else {
3036 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3037 payload);
3038 }
3039 inst->mlen = 2;
3040 inst->offset = imm_offset;
3041 inst->size_written = (num_components + first_component) *
3042 inst->dst.component_size(inst->exec_size);
3043
3044 /* If we are reading 64-bit data using 32-bit read messages we need
3045 * build proper 64-bit data elements by shuffling the low and high
3046 * 32-bit components around like we do for other things like UBOs
3047 * or SSBOs.
3048 */
3049 if (type_sz(dest.type) == 8) {
3050 shuffle_from_32bit_read(bld,
3051 offset(orig_dest, bld, iter * 2),
3052 retype(dest, BRW_REGISTER_TYPE_D),
3053 0, num_components);
3054 }
3055
3056 /* If we are loading double data and we need a second read message
3057 * adjust the offset
3058 */
3059 if (num_iterations > 1) {
3060 num_components = instr->num_components - 2;
3061 imm_offset++;
3062 }
3063 }
3064 }
3065 break;
3066 }
3067 default:
3068 nir_emit_intrinsic(bld, instr);
3069 break;
3070 }
3071 }
3072
3073 void
3074 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3075 nir_intrinsic_instr *instr)
3076 {
3077 assert(stage == MESA_SHADER_GEOMETRY);
3078 fs_reg indirect_offset;
3079
3080 fs_reg dest;
3081 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3082 dest = get_nir_dest(instr->dest);
3083
3084 switch (instr->intrinsic) {
3085 case nir_intrinsic_load_primitive_id:
3086 assert(stage == MESA_SHADER_GEOMETRY);
3087 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3088 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3089 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3090 break;
3091
3092 case nir_intrinsic_load_input:
3093 unreachable("load_input intrinsics are invalid for the GS stage");
3094
3095 case nir_intrinsic_load_per_vertex_input:
3096 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3097 instr->src[1], instr->num_components,
3098 nir_intrinsic_component(instr));
3099 break;
3100
3101 case nir_intrinsic_emit_vertex_with_counter:
3102 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3103 break;
3104
3105 case nir_intrinsic_end_primitive_with_counter:
3106 emit_gs_end_primitive(instr->src[0]);
3107 break;
3108
3109 case nir_intrinsic_set_vertex_count:
3110 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3111 break;
3112
3113 case nir_intrinsic_load_invocation_id: {
3114 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3115 assert(val.file != BAD_FILE);
3116 dest.type = val.type;
3117 bld.MOV(dest, val);
3118 break;
3119 }
3120
3121 default:
3122 nir_emit_intrinsic(bld, instr);
3123 break;
3124 }
3125 }
3126
3127 /**
3128 * Fetch the current render target layer index.
3129 */
3130 static fs_reg
3131 fetch_render_target_array_index(const fs_builder &bld)
3132 {
3133 if (bld.shader->devinfo->gen >= 6) {
3134 /* The render target array index is provided in the thread payload as
3135 * bits 26:16 of r0.0.
3136 */
3137 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3138 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3139 brw_imm_uw(0x7ff));
3140 return idx;
3141 } else {
3142 /* Pre-SNB we only ever render into the first layer of the framebuffer
3143 * since layered rendering is not implemented.
3144 */
3145 return brw_imm_ud(0);
3146 }
3147 }
3148
3149 /**
3150 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3151 * framebuffer at the current fragment coordinates and sample index.
3152 */
3153 fs_inst *
3154 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3155 unsigned target)
3156 {
3157 const struct gen_device_info *devinfo = bld.shader->devinfo;
3158
3159 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3160 const brw_wm_prog_key *wm_key =
3161 reinterpret_cast<const brw_wm_prog_key *>(key);
3162 assert(!wm_key->coherent_fb_fetch);
3163 const struct brw_wm_prog_data *wm_prog_data =
3164 brw_wm_prog_data(stage_prog_data);
3165
3166 /* Calculate the surface index relative to the start of the texture binding
3167 * table block, since that's what the texturing messages expect.
3168 */
3169 const unsigned surface = target +
3170 wm_prog_data->binding_table.render_target_read_start -
3171 wm_prog_data->base.binding_table.texture_start;
3172
3173 brw_mark_surface_used(
3174 bld.shader->stage_prog_data,
3175 wm_prog_data->binding_table.render_target_read_start + target);
3176
3177 /* Calculate the fragment coordinates. */
3178 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3179 bld.MOV(offset(coords, bld, 0), pixel_x);
3180 bld.MOV(offset(coords, bld, 1), pixel_y);
3181 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3182
3183 /* Calculate the sample index and MCS payload when multisampling. Luckily
3184 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3185 * shouldn't be necessary to recompile based on whether the framebuffer is
3186 * CMS or UMS.
3187 */
3188 if (wm_key->multisample_fbo &&
3189 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3190 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3191
3192 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3193 const fs_reg mcs = wm_key->multisample_fbo ?
3194 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3195
3196 /* Use either a normal or a CMS texel fetch message depending on whether
3197 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3198 * message just in case the framebuffer uses 16x multisampling, it should
3199 * be equivalent to the normal CMS fetch for lower multisampling modes.
3200 */
3201 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3202 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3203 SHADER_OPCODE_TXF_CMS_LOGICAL;
3204
3205 /* Emit the instruction. */
3206 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3207 sample, mcs,
3208 brw_imm_ud(surface), brw_imm_ud(0),
3209 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3210 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3211
3212 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3213 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3214
3215 return inst;
3216 }
3217
3218 /**
3219 * Actual coherent framebuffer read implemented using the native render target
3220 * read message. Requires SKL+.
3221 */
3222 static fs_inst *
3223 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3224 {
3225 assert(bld.shader->devinfo->gen >= 9);
3226 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3227 inst->target = target;
3228 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3229
3230 return inst;
3231 }
3232
3233 static fs_reg
3234 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3235 {
3236 if (n && regs[0].file != BAD_FILE) {
3237 return regs[0];
3238
3239 } else {
3240 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3241
3242 for (unsigned i = 0; i < n; i++)
3243 regs[i] = tmp;
3244
3245 return tmp;
3246 }
3247 }
3248
3249 static fs_reg
3250 alloc_frag_output(fs_visitor *v, unsigned location)
3251 {
3252 assert(v->stage == MESA_SHADER_FRAGMENT);
3253 const brw_wm_prog_key *const key =
3254 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3255 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3256 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3257
3258 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3259 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3260
3261 else if (l == FRAG_RESULT_COLOR)
3262 return alloc_temporary(v->bld, 4, v->outputs,
3263 MAX2(key->nr_color_regions, 1));
3264
3265 else if (l == FRAG_RESULT_DEPTH)
3266 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3267
3268 else if (l == FRAG_RESULT_STENCIL)
3269 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3270
3271 else if (l == FRAG_RESULT_SAMPLE_MASK)
3272 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3273
3274 else if (l >= FRAG_RESULT_DATA0 &&
3275 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3276 return alloc_temporary(v->bld, 4,
3277 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3278
3279 else
3280 unreachable("Invalid location");
3281 }
3282
3283 void
3284 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3285 nir_intrinsic_instr *instr)
3286 {
3287 assert(stage == MESA_SHADER_FRAGMENT);
3288
3289 fs_reg dest;
3290 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3291 dest = get_nir_dest(instr->dest);
3292
3293 switch (instr->intrinsic) {
3294 case nir_intrinsic_load_front_face:
3295 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3296 *emit_frontfacing_interpolation());
3297 break;
3298
3299 case nir_intrinsic_load_sample_pos: {
3300 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3301 assert(sample_pos.file != BAD_FILE);
3302 dest.type = sample_pos.type;
3303 bld.MOV(dest, sample_pos);
3304 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3305 break;
3306 }
3307
3308 case nir_intrinsic_load_layer_id:
3309 dest.type = BRW_REGISTER_TYPE_UD;
3310 bld.MOV(dest, fetch_render_target_array_index(bld));
3311 break;
3312
3313 case nir_intrinsic_load_helper_invocation:
3314 case nir_intrinsic_load_sample_mask_in:
3315 case nir_intrinsic_load_sample_id: {
3316 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3317 fs_reg val = nir_system_values[sv];
3318 assert(val.file != BAD_FILE);
3319 dest.type = val.type;
3320 bld.MOV(dest, val);
3321 break;
3322 }
3323
3324 case nir_intrinsic_store_output: {
3325 const fs_reg src = get_nir_src(instr->src[0]);
3326 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3327 assert(const_offset && "Indirect output stores not allowed");
3328 const unsigned location = nir_intrinsic_base(instr) +
3329 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3330 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3331 src.type);
3332
3333 for (unsigned j = 0; j < instr->num_components; j++)
3334 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3335 offset(src, bld, j));
3336
3337 break;
3338 }
3339
3340 case nir_intrinsic_load_output: {
3341 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3342 BRW_NIR_FRAG_OUTPUT_LOCATION);
3343 assert(l >= FRAG_RESULT_DATA0);
3344 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3345 assert(const_offset && "Indirect output loads not allowed");
3346 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3347 const fs_reg tmp = bld.vgrf(dest.type, 4);
3348
3349 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3350 emit_coherent_fb_read(bld, tmp, target);
3351 else
3352 emit_non_coherent_fb_read(bld, tmp, target);
3353
3354 for (unsigned j = 0; j < instr->num_components; j++) {
3355 bld.MOV(offset(dest, bld, j),
3356 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3357 }
3358
3359 break;
3360 }
3361
3362 case nir_intrinsic_discard:
3363 case nir_intrinsic_discard_if: {
3364 /* We track our discarded pixels in f0.1. By predicating on it, we can
3365 * update just the flag bits that aren't yet discarded. If there's no
3366 * condition, we emit a CMP of g0 != g0, so all currently executing
3367 * channels will get turned off.
3368 */
3369 fs_inst *cmp;
3370 if (instr->intrinsic == nir_intrinsic_discard_if) {
3371 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3372 brw_imm_d(0), BRW_CONDITIONAL_Z);
3373 } else {
3374 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3375 BRW_REGISTER_TYPE_UW));
3376 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3377 }
3378 cmp->predicate = BRW_PREDICATE_NORMAL;
3379 cmp->flag_subreg = 1;
3380
3381 if (devinfo->gen >= 6) {
3382 emit_discard_jump();
3383 }
3384
3385 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3386 break;
3387 }
3388
3389 case nir_intrinsic_load_input: {
3390 /* load_input is only used for flat inputs */
3391 unsigned base = nir_intrinsic_base(instr);
3392 unsigned comp = nir_intrinsic_component(instr);
3393 unsigned num_components = instr->num_components;
3394 fs_reg orig_dest = dest;
3395 enum brw_reg_type type = dest.type;
3396
3397 /* Special case fields in the VUE header */
3398 if (base == VARYING_SLOT_LAYER)
3399 comp = 1;
3400 else if (base == VARYING_SLOT_VIEWPORT)
3401 comp = 2;
3402
3403 if (nir_dest_bit_size(instr->dest) == 64) {
3404 /* const_index is in 32-bit type size units that could not be aligned
3405 * with DF. We need to read the double vector as if it was a float
3406 * vector of twice the number of components to fetch the right data.
3407 */
3408 type = BRW_REGISTER_TYPE_F;
3409 num_components *= 2;
3410 dest = bld.vgrf(type, num_components);
3411 }
3412
3413 for (unsigned int i = 0; i < num_components; i++) {
3414 bld.MOV(offset(retype(dest, type), bld, i),
3415 retype(component(interp_reg(base, comp + i), 3), type));
3416 }
3417
3418 if (nir_dest_bit_size(instr->dest) == 64) {
3419 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3420 instr->num_components);
3421 }
3422 break;
3423 }
3424
3425 case nir_intrinsic_load_barycentric_pixel:
3426 case nir_intrinsic_load_barycentric_centroid:
3427 case nir_intrinsic_load_barycentric_sample:
3428 /* Do nothing - load_interpolated_input handling will handle it later. */
3429 break;
3430
3431 case nir_intrinsic_load_barycentric_at_sample: {
3432 const glsl_interp_mode interpolation =
3433 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3434
3435 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3436
3437 if (const_sample) {
3438 unsigned msg_data = const_sample->i32[0] << 4;
3439
3440 emit_pixel_interpolater_send(bld,
3441 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3442 dest,
3443 fs_reg(), /* src */
3444 brw_imm_ud(msg_data),
3445 interpolation);
3446 } else {
3447 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3448 BRW_REGISTER_TYPE_UD);
3449
3450 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3451 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3452 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3453 bld.exec_all().group(1, 0)
3454 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3455 emit_pixel_interpolater_send(bld,
3456 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3457 dest,
3458 fs_reg(), /* src */
3459 msg_data,
3460 interpolation);
3461 } else {
3462 /* Make a loop that sends a message to the pixel interpolater
3463 * for the sample number in each live channel. If there are
3464 * multiple channels with the same sample number then these
3465 * will be handled simultaneously with a single interation of
3466 * the loop.
3467 */
3468 bld.emit(BRW_OPCODE_DO);
3469
3470 /* Get the next live sample number into sample_id_reg */
3471 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3472
3473 /* Set the flag register so that we can perform the send
3474 * message on all channels that have the same sample number
3475 */
3476 bld.CMP(bld.null_reg_ud(),
3477 sample_src, sample_id,
3478 BRW_CONDITIONAL_EQ);
3479 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3480 bld.exec_all().group(1, 0)
3481 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3482 fs_inst *inst =
3483 emit_pixel_interpolater_send(bld,
3484 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3485 dest,
3486 fs_reg(), /* src */
3487 component(msg_data, 0),
3488 interpolation);
3489 set_predicate(BRW_PREDICATE_NORMAL, inst);
3490
3491 /* Continue the loop if there are any live channels left */
3492 set_predicate_inv(BRW_PREDICATE_NORMAL,
3493 true, /* inverse */
3494 bld.emit(BRW_OPCODE_WHILE));
3495 }
3496 }
3497 break;
3498 }
3499
3500 case nir_intrinsic_load_barycentric_at_offset: {
3501 const glsl_interp_mode interpolation =
3502 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3503
3504 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3505
3506 if (const_offset) {
3507 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3508 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3509
3510 emit_pixel_interpolater_send(bld,
3511 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3512 dest,
3513 fs_reg(), /* src */
3514 brw_imm_ud(off_x | (off_y << 4)),
3515 interpolation);
3516 } else {
3517 fs_reg src = vgrf(glsl_type::ivec2_type);
3518 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3519 BRW_REGISTER_TYPE_F);
3520 for (int i = 0; i < 2; i++) {
3521 fs_reg temp = vgrf(glsl_type::float_type);
3522 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3523 fs_reg itemp = vgrf(glsl_type::int_type);
3524 /* float to int */
3525 bld.MOV(itemp, temp);
3526
3527 /* Clamp the upper end of the range to +7/16.
3528 * ARB_gpu_shader5 requires that we support a maximum offset
3529 * of +0.5, which isn't representable in a S0.4 value -- if
3530 * we didn't clamp it, we'd end up with -8/16, which is the
3531 * opposite of what the shader author wanted.
3532 *
3533 * This is legal due to ARB_gpu_shader5's quantization
3534 * rules:
3535 *
3536 * "Not all values of <offset> may be supported; x and y
3537 * offsets may be rounded to fixed-point values with the
3538 * number of fraction bits given by the
3539 * implementation-dependent constant
3540 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3541 */
3542 set_condmod(BRW_CONDITIONAL_L,
3543 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3544 }
3545
3546 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3547 emit_pixel_interpolater_send(bld,
3548 opcode,
3549 dest,
3550 src,
3551 brw_imm_ud(0u),
3552 interpolation);
3553 }
3554 break;
3555 }
3556
3557 case nir_intrinsic_load_interpolated_input: {
3558 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3559 emit_fragcoord_interpolation(dest);
3560 break;
3561 }
3562
3563 assert(instr->src[0].ssa &&
3564 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3565 nir_intrinsic_instr *bary_intrinsic =
3566 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3567 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3568 enum glsl_interp_mode interp_mode =
3569 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3570 fs_reg dst_xy;
3571
3572 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3573 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3574 /* Use the result of the PI message */
3575 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3576 } else {
3577 /* Use the delta_xy values computed from the payload */
3578 enum brw_barycentric_mode bary =
3579 brw_barycentric_mode(interp_mode, bary_intrin);
3580
3581 dst_xy = this->delta_xy[bary];
3582 }
3583
3584 for (unsigned int i = 0; i < instr->num_components; i++) {
3585 fs_reg interp =
3586 component(interp_reg(nir_intrinsic_base(instr),
3587 nir_intrinsic_component(instr) + i), 0);
3588 interp.type = BRW_REGISTER_TYPE_F;
3589 dest.type = BRW_REGISTER_TYPE_F;
3590
3591 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3592 fs_reg tmp = vgrf(glsl_type::float_type);
3593 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3594 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3595 } else {
3596 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3597 }
3598 }
3599 break;
3600 }
3601
3602 default:
3603 nir_emit_intrinsic(bld, instr);
3604 break;
3605 }
3606 }
3607
3608 void
3609 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3610 nir_intrinsic_instr *instr)
3611 {
3612 assert(stage == MESA_SHADER_COMPUTE);
3613 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3614
3615 fs_reg dest;
3616 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3617 dest = get_nir_dest(instr->dest);
3618
3619 switch (instr->intrinsic) {
3620 case nir_intrinsic_barrier:
3621 emit_barrier();
3622 cs_prog_data->uses_barrier = true;
3623 break;
3624
3625 case nir_intrinsic_load_subgroup_id:
3626 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3627 break;
3628
3629 case nir_intrinsic_load_local_invocation_id:
3630 case nir_intrinsic_load_work_group_id: {
3631 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3632 fs_reg val = nir_system_values[sv];
3633 assert(val.file != BAD_FILE);
3634 dest.type = val.type;
3635 for (unsigned i = 0; i < 3; i++)
3636 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3637 break;
3638 }
3639
3640 case nir_intrinsic_load_num_work_groups: {
3641 const unsigned surface =
3642 cs_prog_data->binding_table.work_groups_start;
3643
3644 cs_prog_data->uses_num_work_groups = true;
3645
3646 fs_reg surf_index = brw_imm_ud(surface);
3647 brw_mark_surface_used(prog_data, surface);
3648
3649 /* Read the 3 GLuint components of gl_NumWorkGroups */
3650 for (unsigned i = 0; i < 3; i++) {
3651 fs_reg read_result =
3652 emit_untyped_read(bld, surf_index,
3653 brw_imm_ud(i << 2),
3654 1 /* dims */, 1 /* size */,
3655 BRW_PREDICATE_NONE);
3656 read_result.type = dest.type;
3657 bld.MOV(dest, read_result);
3658 dest = offset(dest, bld, 1);
3659 }
3660 break;
3661 }
3662
3663 case nir_intrinsic_shared_atomic_add:
3664 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3665 break;
3666 case nir_intrinsic_shared_atomic_imin:
3667 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3668 break;
3669 case nir_intrinsic_shared_atomic_umin:
3670 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3671 break;
3672 case nir_intrinsic_shared_atomic_imax:
3673 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3674 break;
3675 case nir_intrinsic_shared_atomic_umax:
3676 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3677 break;
3678 case nir_intrinsic_shared_atomic_and:
3679 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3680 break;
3681 case nir_intrinsic_shared_atomic_or:
3682 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3683 break;
3684 case nir_intrinsic_shared_atomic_xor:
3685 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3686 break;
3687 case nir_intrinsic_shared_atomic_exchange:
3688 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3689 break;
3690 case nir_intrinsic_shared_atomic_comp_swap:
3691 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3692 break;
3693
3694 case nir_intrinsic_load_shared: {
3695 assert(devinfo->gen >= 7);
3696
3697 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3698
3699 /* Get the offset to read from */
3700 fs_reg offset_reg;
3701 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3702 if (const_offset) {
3703 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3704 } else {
3705 offset_reg = vgrf(glsl_type::uint_type);
3706 bld.ADD(offset_reg,
3707 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3708 brw_imm_ud(instr->const_index[0]));
3709 }
3710
3711 /* Read the vector */
3712 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3713 instr->num_components);
3714 break;
3715 }
3716
3717 case nir_intrinsic_store_shared: {
3718 assert(devinfo->gen >= 7);
3719
3720 /* Block index */
3721 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3722
3723 /* Value */
3724 fs_reg val_reg = get_nir_src(instr->src[0]);
3725
3726 /* Writemask */
3727 unsigned writemask = instr->const_index[1];
3728
3729 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3730 * since the untyped writes below operate in units of 32-bits, which
3731 * means that we need to write twice as many components each time.
3732 * Also, we have to suffle 64-bit data to be in the appropriate layout
3733 * expected by our 32-bit write messages.
3734 */
3735 unsigned type_size = 4;
3736 if (nir_src_bit_size(instr->src[0]) == 64) {
3737 type_size = 8;
3738 val_reg = shuffle_for_32bit_write(bld, val_reg, 0,
3739 instr->num_components);
3740 }
3741
3742 unsigned type_slots = type_size / 4;
3743
3744 /* Combine groups of consecutive enabled channels in one write
3745 * message. We use ffs to find the first enabled channel and then ffs on
3746 * the bit-inverse, down-shifted writemask to determine the length of
3747 * the block of enabled bits.
3748 */
3749 while (writemask) {
3750 unsigned first_component = ffs(writemask) - 1;
3751 unsigned length = ffs(~(writemask >> first_component)) - 1;
3752
3753 /* We can't write more than 2 64-bit components at once. Limit the
3754 * length of the write to what we can do and let the next iteration
3755 * handle the rest
3756 */
3757 if (type_size > 4)
3758 length = MIN2(2, length);
3759
3760 fs_reg offset_reg;
3761 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3762 if (const_offset) {
3763 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3764 type_size * first_component);
3765 } else {
3766 offset_reg = vgrf(glsl_type::uint_type);
3767 bld.ADD(offset_reg,
3768 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3769 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3770 }
3771
3772 emit_untyped_write(bld, surf_index, offset_reg,
3773 offset(val_reg, bld, first_component * type_slots),
3774 1 /* dims */, length * type_slots,
3775 BRW_PREDICATE_NONE);
3776
3777 /* Clear the bits in the writemask that we just wrote, then try
3778 * again to see if more channels are left.
3779 */
3780 writemask &= (15 << (first_component + length));
3781 }
3782
3783 break;
3784 }
3785
3786 default:
3787 nir_emit_intrinsic(bld, instr);
3788 break;
3789 }
3790 }
3791
3792 static fs_reg
3793 brw_nir_reduction_op_identity(const fs_builder &bld,
3794 nir_op op, brw_reg_type type)
3795 {
3796 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3797 switch (type_sz(type)) {
3798 case 2:
3799 assert(type != BRW_REGISTER_TYPE_HF);
3800 return retype(brw_imm_uw(value.u16[0]), type);
3801 case 4:
3802 return retype(brw_imm_ud(value.u32[0]), type);
3803 case 8:
3804 if (type == BRW_REGISTER_TYPE_DF)
3805 return setup_imm_df(bld, value.f64[0]);
3806 else
3807 return retype(brw_imm_u64(value.u64[0]), type);
3808 default:
3809 unreachable("Invalid type size");
3810 }
3811 }
3812
3813 static opcode
3814 brw_op_for_nir_reduction_op(nir_op op)
3815 {
3816 switch (op) {
3817 case nir_op_iadd: return BRW_OPCODE_ADD;
3818 case nir_op_fadd: return BRW_OPCODE_ADD;
3819 case nir_op_imul: return BRW_OPCODE_MUL;
3820 case nir_op_fmul: return BRW_OPCODE_MUL;
3821 case nir_op_imin: return BRW_OPCODE_SEL;
3822 case nir_op_umin: return BRW_OPCODE_SEL;
3823 case nir_op_fmin: return BRW_OPCODE_SEL;
3824 case nir_op_imax: return BRW_OPCODE_SEL;
3825 case nir_op_umax: return BRW_OPCODE_SEL;
3826 case nir_op_fmax: return BRW_OPCODE_SEL;
3827 case nir_op_iand: return BRW_OPCODE_AND;
3828 case nir_op_ior: return BRW_OPCODE_OR;
3829 case nir_op_ixor: return BRW_OPCODE_XOR;
3830 default:
3831 unreachable("Invalid reduction operation");
3832 }
3833 }
3834
3835 static brw_conditional_mod
3836 brw_cond_mod_for_nir_reduction_op(nir_op op)
3837 {
3838 switch (op) {
3839 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3840 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3841 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3842 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3843 case nir_op_imin: return BRW_CONDITIONAL_L;
3844 case nir_op_umin: return BRW_CONDITIONAL_L;
3845 case nir_op_fmin: return BRW_CONDITIONAL_L;
3846 case nir_op_imax: return BRW_CONDITIONAL_GE;
3847 case nir_op_umax: return BRW_CONDITIONAL_GE;
3848 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3849 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3850 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3851 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3852 default:
3853 unreachable("Invalid reduction operation");
3854 }
3855 }
3856
3857 void
3858 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3859 {
3860 fs_reg dest;
3861 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3862 dest = get_nir_dest(instr->dest);
3863
3864 switch (instr->intrinsic) {
3865 case nir_intrinsic_image_deref_load:
3866 case nir_intrinsic_image_deref_store:
3867 case nir_intrinsic_image_deref_atomic_add:
3868 case nir_intrinsic_image_deref_atomic_min:
3869 case nir_intrinsic_image_deref_atomic_max:
3870 case nir_intrinsic_image_deref_atomic_and:
3871 case nir_intrinsic_image_deref_atomic_or:
3872 case nir_intrinsic_image_deref_atomic_xor:
3873 case nir_intrinsic_image_deref_atomic_exchange:
3874 case nir_intrinsic_image_deref_atomic_comp_swap: {
3875 using namespace image_access;
3876
3877 if (stage == MESA_SHADER_FRAGMENT &&
3878 instr->intrinsic != nir_intrinsic_image_deref_load)
3879 brw_wm_prog_data(prog_data)->has_side_effects = true;
3880
3881 /* Get the referenced image variable and type. */
3882 nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
3883 const nir_variable *var = nir_deref_instr_get_variable(deref);
3884 const glsl_type *type = var->type->without_array();
3885 const brw_reg_type base_type = get_image_base_type(type);
3886
3887 /* Get some metadata from the image intrinsic. */
3888 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3889 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3890 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3891 const unsigned format = var->data.image.format;
3892 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3893
3894 /* Get the arguments of the image intrinsic. */
3895 const fs_reg image = get_nir_image_deref(deref);
3896 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3897 BRW_REGISTER_TYPE_UD);
3898 const fs_reg src0 = (info->num_srcs >= 4 ?
3899 retype(get_nir_src(instr->src[3]), base_type) :
3900 fs_reg());
3901 const fs_reg src1 = (info->num_srcs >= 5 ?
3902 retype(get_nir_src(instr->src[4]), base_type) :
3903 fs_reg());
3904 fs_reg tmp;
3905
3906 /* Emit an image load, store or atomic op. */
3907 if (instr->intrinsic == nir_intrinsic_image_deref_load)
3908 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3909
3910 else if (instr->intrinsic == nir_intrinsic_image_deref_store)
3911 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3912 var->data.image.write_only ? GL_NONE : format);
3913
3914 else
3915 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3916 surf_dims, arr_dims, dest_components,
3917 get_image_atomic_op(instr->intrinsic, type));
3918
3919 /* Assign the result. */
3920 for (unsigned c = 0; c < dest_components; ++c) {
3921 bld.MOV(offset(retype(dest, base_type), bld, c),
3922 offset(tmp, bld, c));
3923 }
3924 break;
3925 }
3926
3927 case nir_intrinsic_memory_barrier_atomic_counter:
3928 case nir_intrinsic_memory_barrier_buffer:
3929 case nir_intrinsic_memory_barrier_image:
3930 case nir_intrinsic_memory_barrier: {
3931 const fs_builder ubld = bld.group(8, 0);
3932 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3933 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3934 ->size_written = 2 * REG_SIZE;
3935 break;
3936 }
3937
3938 case nir_intrinsic_group_memory_barrier:
3939 case nir_intrinsic_memory_barrier_shared:
3940 /* We treat these workgroup-level barriers as no-ops. This should be
3941 * safe at present and as long as:
3942 *
3943 * - Memory access instructions are not subsequently reordered by the
3944 * compiler back-end.
3945 *
3946 * - All threads from a given compute shader workgroup fit within a
3947 * single subslice and therefore talk to the same HDC shared unit
3948 * what supposedly guarantees ordering and coherency between threads
3949 * from the same workgroup. This may change in the future when we
3950 * start splitting workgroups across multiple subslices.
3951 *
3952 * - The context is not in fault-and-stream mode, which could cause
3953 * memory transactions (including to SLM) prior to the barrier to be
3954 * replayed after the barrier if a pagefault occurs. This shouldn't
3955 * be a problem up to and including SKL because fault-and-stream is
3956 * not usable due to hardware issues, but that's likely to change in
3957 * the future.
3958 */
3959 break;
3960
3961 case nir_intrinsic_shader_clock: {
3962 /* We cannot do anything if there is an event, so ignore it for now */
3963 const fs_reg shader_clock = get_timestamp(bld);
3964 const fs_reg srcs[] = { component(shader_clock, 0),
3965 component(shader_clock, 1) };
3966 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3967 break;
3968 }
3969
3970 case nir_intrinsic_image_deref_size: {
3971 /* Get the referenced image variable and type. */
3972 nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
3973 const nir_variable *var = nir_deref_instr_get_variable(deref);
3974 const glsl_type *type = var->type->without_array();
3975
3976 /* Get the size of the image. */
3977 const fs_reg image = get_nir_image_deref(deref);
3978 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3979
3980 /* For 1DArray image types, the array index is stored in the Z component.
3981 * Fix this by swizzling the Z component to the Y component.
3982 */
3983 const bool is_1d_array_image =
3984 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3985 type->sampler_array;
3986
3987 /* For CubeArray images, we should count the number of cubes instead
3988 * of the number of faces. Fix it by dividing the (Z component) by 6.
3989 */
3990 const bool is_cube_array_image =
3991 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3992 type->sampler_array;
3993
3994 /* Copy all the components. */
3995 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3996 if ((int)c >= type->coordinate_components()) {
3997 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3998 brw_imm_d(1));
3999 } else if (c == 1 && is_1d_array_image) {
4000 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
4001 offset(size, bld, 2));
4002 } else if (c == 2 && is_cube_array_image) {
4003 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4004 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
4005 offset(size, bld, c), brw_imm_d(6));
4006 } else {
4007 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
4008 offset(size, bld, c));
4009 }
4010 }
4011
4012 break;
4013 }
4014
4015 case nir_intrinsic_image_deref_samples:
4016 /* The driver does not support multi-sampled images. */
4017 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4018 break;
4019
4020 case nir_intrinsic_load_uniform: {
4021 /* Offsets are in bytes but they should always aligned to
4022 * the type size
4023 */
4024 assert(instr->const_index[0] % 4 == 0 ||
4025 instr->const_index[0] % type_sz(dest.type) == 0);
4026
4027 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4028
4029 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4030 if (const_offset) {
4031 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
4032 /* For 16-bit types we add the module of the const_index[0]
4033 * offset to access to not 32-bit aligned element
4034 */
4035 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
4036
4037 for (unsigned j = 0; j < instr->num_components; j++) {
4038 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4039 }
4040 } else {
4041 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4042 BRW_REGISTER_TYPE_UD);
4043
4044 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4045 * go past the end of the uniform. In order to keep the n'th
4046 * component from running past, we subtract off the size of all but
4047 * one component of the vector.
4048 */
4049 assert(instr->const_index[1] >=
4050 instr->num_components * (int) type_sz(dest.type));
4051 unsigned read_size = instr->const_index[1] -
4052 (instr->num_components - 1) * type_sz(dest.type);
4053
4054 bool supports_64bit_indirects =
4055 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4056
4057 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4058 for (unsigned j = 0; j < instr->num_components; j++) {
4059 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4060 offset(dest, bld, j), offset(src, bld, j),
4061 indirect, brw_imm_ud(read_size));
4062 }
4063 } else {
4064 const unsigned num_mov_indirects =
4065 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4066 /* We read a little bit less per MOV INDIRECT, as they are now
4067 * 32-bits ones instead of 64-bit. Fix read_size then.
4068 */
4069 const unsigned read_size_32bit = read_size -
4070 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4071 for (unsigned j = 0; j < instr->num_components; j++) {
4072 for (unsigned i = 0; i < num_mov_indirects; i++) {
4073 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4074 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4075 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4076 indirect, brw_imm_ud(read_size_32bit));
4077 }
4078 }
4079 }
4080 }
4081 break;
4082 }
4083
4084 case nir_intrinsic_load_ubo: {
4085 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4086 fs_reg surf_index;
4087
4088 if (const_index) {
4089 const unsigned index = stage_prog_data->binding_table.ubo_start +
4090 const_index->u32[0];
4091 surf_index = brw_imm_ud(index);
4092 brw_mark_surface_used(prog_data, index);
4093 } else {
4094 /* The block index is not a constant. Evaluate the index expression
4095 * per-channel and add the base UBO index; we have to select a value
4096 * from any live channel.
4097 */
4098 surf_index = vgrf(glsl_type::uint_type);
4099 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4100 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4101 surf_index = bld.emit_uniformize(surf_index);
4102
4103 /* Assume this may touch any UBO. It would be nice to provide
4104 * a tighter bound, but the array information is already lowered away.
4105 */
4106 brw_mark_surface_used(prog_data,
4107 stage_prog_data->binding_table.ubo_start +
4108 nir->info.num_ubos - 1);
4109 }
4110
4111 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4112 if (const_offset == NULL) {
4113 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4114 BRW_REGISTER_TYPE_UD);
4115
4116 for (int i = 0; i < instr->num_components; i++)
4117 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4118 base_offset, i * type_sz(dest.type));
4119 } else {
4120 /* Even if we are loading doubles, a pull constant load will load
4121 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4122 * need to load a full dvec4 we will have to emit 2 loads. This is
4123 * similar to demote_pull_constants(), except that in that case we
4124 * see individual accesses to each component of the vector and then
4125 * we let CSE deal with duplicate loads. Here we see a vector access
4126 * and we have to split it if necessary.
4127 */
4128 const unsigned type_size = type_sz(dest.type);
4129
4130 /* See if we've selected this as a push constant candidate */
4131 if (const_index) {
4132 const unsigned ubo_block = const_index->u32[0];
4133 const unsigned offset_256b = const_offset->u32[0] / 32;
4134
4135 fs_reg push_reg;
4136 for (int i = 0; i < 4; i++) {
4137 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4138 if (range->block == ubo_block &&
4139 offset_256b >= range->start &&
4140 offset_256b < range->start + range->length) {
4141
4142 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4143 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4144 break;
4145 }
4146 }
4147
4148 if (push_reg.file != BAD_FILE) {
4149 for (unsigned i = 0; i < instr->num_components; i++) {
4150 bld.MOV(offset(dest, bld, i),
4151 byte_offset(push_reg, i * type_size));
4152 }
4153 break;
4154 }
4155 }
4156
4157 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4158 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4159 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4160
4161 for (unsigned c = 0; c < instr->num_components;) {
4162 const unsigned base = const_offset->u32[0] + c * type_size;
4163 /* Number of usable components in the next block-aligned load. */
4164 const unsigned count = MIN2(instr->num_components - c,
4165 (block_sz - base % block_sz) / type_size);
4166
4167 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4168 packed_consts, surf_index,
4169 brw_imm_ud(base & ~(block_sz - 1)));
4170
4171 const fs_reg consts =
4172 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4173 dest.type);
4174
4175 for (unsigned d = 0; d < count; d++)
4176 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4177
4178 c += count;
4179 }
4180 }
4181 break;
4182 }
4183
4184 case nir_intrinsic_load_ssbo: {
4185 assert(devinfo->gen >= 7);
4186
4187 nir_const_value *const_uniform_block =
4188 nir_src_as_const_value(instr->src[0]);
4189
4190 fs_reg surf_index;
4191 if (const_uniform_block) {
4192 unsigned index = stage_prog_data->binding_table.ssbo_start +
4193 const_uniform_block->u32[0];
4194 surf_index = brw_imm_ud(index);
4195 brw_mark_surface_used(prog_data, index);
4196 } else {
4197 surf_index = vgrf(glsl_type::uint_type);
4198 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4199 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4200
4201 /* Assume this may touch any UBO. It would be nice to provide
4202 * a tighter bound, but the array information is already lowered away.
4203 */
4204 brw_mark_surface_used(prog_data,
4205 stage_prog_data->binding_table.ssbo_start +
4206 nir->info.num_ssbos - 1);
4207 }
4208
4209 fs_reg offset_reg;
4210 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4211 if (const_offset) {
4212 offset_reg = brw_imm_ud(const_offset->u32[0]);
4213 } else {
4214 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4215 }
4216
4217 /* Read the vector */
4218 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4219 instr->num_components);
4220
4221 break;
4222 }
4223
4224 case nir_intrinsic_store_ssbo: {
4225 assert(devinfo->gen >= 7);
4226
4227 if (stage == MESA_SHADER_FRAGMENT)
4228 brw_wm_prog_data(prog_data)->has_side_effects = true;
4229
4230 /* Block index */
4231 fs_reg surf_index;
4232 nir_const_value *const_uniform_block =
4233 nir_src_as_const_value(instr->src[1]);
4234 if (const_uniform_block) {
4235 unsigned index = stage_prog_data->binding_table.ssbo_start +
4236 const_uniform_block->u32[0];
4237 surf_index = brw_imm_ud(index);
4238 brw_mark_surface_used(prog_data, index);
4239 } else {
4240 surf_index = vgrf(glsl_type::uint_type);
4241 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4242 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4243
4244 brw_mark_surface_used(prog_data,
4245 stage_prog_data->binding_table.ssbo_start +
4246 nir->info.num_ssbos - 1);
4247 }
4248
4249 /* Value */
4250 fs_reg val_reg = get_nir_src(instr->src[0]);
4251
4252 /* Writemask */
4253 unsigned writemask = instr->const_index[0];
4254
4255 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4256 * since the untyped writes below operate in units of 32-bits, which
4257 * means that we need to write twice as many components each time.
4258 * Also, we have to suffle 64-bit data to be in the appropriate layout
4259 * expected by our 32-bit write messages.
4260 */
4261 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4262 unsigned type_size = bit_size / 8;
4263
4264 /* Combine groups of consecutive enabled channels in one write
4265 * message. We use ffs to find the first enabled channel and then ffs on
4266 * the bit-inverse, down-shifted writemask to determine the num_components
4267 * of the block of enabled bits.
4268 */
4269 while (writemask) {
4270 unsigned first_component = ffs(writemask) - 1;
4271 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4272 fs_reg write_src = offset(val_reg, bld, first_component);
4273
4274 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4275
4276 if (type_size > 4) {
4277 /* We can't write more than 2 64-bit components at once. Limit
4278 * the num_components of the write to what we can do and let the next
4279 * iteration handle the rest.
4280 */
4281 num_components = MIN2(2, num_components);
4282 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4283 num_components);
4284 } else if (type_size < 4) {
4285 assert(type_size == 2);
4286 /* For 16-bit types we pack two consecutive values into a 32-bit
4287 * word and use an untyped write message. For single values or not
4288 * 32-bit-aligned we need to use byte-scattered writes because
4289 * untyped writes works with 32-bit components with 32-bit
4290 * alignment. byte_scattered_write messages only support one
4291 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4292 * could be enabled we can not guarantee that not constant offsets
4293 * to be 32-bit aligned for 16-bit types. For example an array, of
4294 * 16-bit vec3 with array element stride of 6.
4295 *
4296 * In the case of 32-bit aligned constant offsets if there is
4297 * a 3-components vector we submit one untyped-write message
4298 * of 32-bit (first two components), and one byte-scattered
4299 * write message (the last component).
4300 */
4301
4302 if ( !const_offset || ((const_offset->u32[0] +
4303 type_size * first_component) % 4)) {
4304 /* If we use a .yz writemask we also need to emit 2
4305 * byte-scattered write messages because of y-component not
4306 * being aligned to 32-bit.
4307 */
4308 num_components = 1;
4309 } else if (num_components > 2 && (num_components % 2)) {
4310 /* If there is an odd number of consecutive components we left
4311 * the not paired component for a following emit of length == 1
4312 * with byte_scattered_write.
4313 */
4314 num_components --;
4315 }
4316 /* For num_components == 1 we are also shuffling the component
4317 * because byte scattered writes of 16-bit need values to be dword
4318 * aligned. Shuffling only one component would be the same as
4319 * striding it.
4320 */
4321 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4322 num_components);
4323 }
4324
4325 fs_reg offset_reg;
4326
4327 if (const_offset) {
4328 offset_reg = brw_imm_ud(const_offset->u32[0] +
4329 type_size * first_component);
4330 } else {
4331 offset_reg = vgrf(glsl_type::uint_type);
4332 bld.ADD(offset_reg,
4333 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4334 brw_imm_ud(type_size * first_component));
4335 }
4336
4337 if (type_size < 4 && num_components == 1) {
4338 assert(type_size == 2);
4339 /* Untyped Surface messages have a fixed 32-bit size, so we need
4340 * to rely on byte scattered in order to write 16-bit elements.
4341 * The byte_scattered_write message needs that every written 16-bit
4342 * type to be aligned 32-bits (stride=2).
4343 */
4344 emit_byte_scattered_write(bld, surf_index, offset_reg,
4345 write_src,
4346 1 /* dims */, 1,
4347 bit_size,
4348 BRW_PREDICATE_NONE);
4349 } else {
4350 assert(num_components * type_size <= 16);
4351 assert((num_components * type_size) % 4 == 0);
4352 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4353 offset_reg.ud % 4 == 0);
4354 unsigned num_slots = (num_components * type_size) / 4;
4355
4356 emit_untyped_write(bld, surf_index, offset_reg,
4357 write_src,
4358 1 /* dims */, num_slots,
4359 BRW_PREDICATE_NONE);
4360 }
4361
4362 /* Clear the bits in the writemask that we just wrote, then try
4363 * again to see if more channels are left.
4364 */
4365 writemask &= (15 << (first_component + num_components));
4366 }
4367 break;
4368 }
4369
4370 case nir_intrinsic_store_output: {
4371 fs_reg src = get_nir_src(instr->src[0]);
4372
4373 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4374 assert(const_offset && "Indirect output stores not allowed");
4375
4376 unsigned num_components = instr->num_components;
4377 unsigned first_component = nir_intrinsic_component(instr);
4378 if (nir_src_bit_size(instr->src[0]) == 64) {
4379 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4380 num_components *= 2;
4381 }
4382
4383 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4384 4 * const_offset->u32[0]), src.type);
4385 for (unsigned j = 0; j < num_components; j++) {
4386 bld.MOV(offset(new_dest, bld, j + first_component),
4387 offset(src, bld, j));
4388 }
4389 break;
4390 }
4391
4392 case nir_intrinsic_ssbo_atomic_add:
4393 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4394 break;
4395 case nir_intrinsic_ssbo_atomic_imin:
4396 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4397 break;
4398 case nir_intrinsic_ssbo_atomic_umin:
4399 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4400 break;
4401 case nir_intrinsic_ssbo_atomic_imax:
4402 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4403 break;
4404 case nir_intrinsic_ssbo_atomic_umax:
4405 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4406 break;
4407 case nir_intrinsic_ssbo_atomic_and:
4408 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4409 break;
4410 case nir_intrinsic_ssbo_atomic_or:
4411 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4412 break;
4413 case nir_intrinsic_ssbo_atomic_xor:
4414 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4415 break;
4416 case nir_intrinsic_ssbo_atomic_exchange:
4417 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4418 break;
4419 case nir_intrinsic_ssbo_atomic_comp_swap:
4420 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4421 break;
4422
4423 case nir_intrinsic_get_buffer_size: {
4424 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4425 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4426
4427 /* A resinfo's sampler message is used to get the buffer size. The
4428 * SIMD8's writeback message consists of four registers and SIMD16's
4429 * writeback message consists of 8 destination registers (two per each
4430 * component). Because we are only interested on the first channel of
4431 * the first returned component, where resinfo returns the buffer size
4432 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4433 * the dispatch width.
4434 */
4435 const fs_builder ubld = bld.exec_all().group(8, 0);
4436 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4437 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4438
4439 /* Set LOD = 0 */
4440 ubld.MOV(src_payload, brw_imm_d(0));
4441
4442 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4443 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4444 src_payload, brw_imm_ud(index));
4445 inst->header_size = 0;
4446 inst->mlen = 1;
4447 inst->size_written = 4 * REG_SIZE;
4448
4449 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4450 *
4451 * "Out-of-bounds checking is always performed at a DWord granularity. If
4452 * any part of the DWord is out-of-bounds then the whole DWord is
4453 * considered out-of-bounds."
4454 *
4455 * This implies that types with size smaller than 4-bytes need to be
4456 * padded if they don't complete the last dword of the buffer. But as we
4457 * need to maintain the original size we need to reverse the padding
4458 * calculation to return the correct size to know the number of elements
4459 * of an unsized array. As we stored in the last two bits of the surface
4460 * size the needed padding for the buffer, we calculate here the
4461 * original buffer_size reversing the surface_size calculation:
4462 *
4463 * surface_size = isl_align(buffer_size, 4) +
4464 * (isl_align(buffer_size) - buffer_size)
4465 *
4466 * buffer_size = surface_size & ~3 - surface_size & 3
4467 */
4468
4469 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4470 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4471 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4472
4473 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4474 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4475 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4476
4477 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4478
4479 brw_mark_surface_used(prog_data, index);
4480 break;
4481 }
4482
4483 case nir_intrinsic_load_subgroup_invocation:
4484 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4485 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4486 break;
4487
4488 case nir_intrinsic_load_subgroup_eq_mask:
4489 case nir_intrinsic_load_subgroup_ge_mask:
4490 case nir_intrinsic_load_subgroup_gt_mask:
4491 case nir_intrinsic_load_subgroup_le_mask:
4492 case nir_intrinsic_load_subgroup_lt_mask:
4493 unreachable("not reached");
4494
4495 case nir_intrinsic_vote_any: {
4496 const fs_builder ubld = bld.exec_all().group(1, 0);
4497
4498 /* The any/all predicates do not consider channel enables. To prevent
4499 * dead channels from affecting the result, we initialize the flag with
4500 * with the identity value for the logical operation.
4501 */
4502 if (dispatch_width == 32) {
4503 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4504 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4505 brw_imm_ud(0));
4506 } else {
4507 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4508 }
4509 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4510
4511 /* For some reason, the any/all predicates don't work properly with
4512 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4513 * doesn't read the correct subset of the flag register and you end up
4514 * getting garbage in the second half. Work around this by using a pair
4515 * of 1-wide MOVs and scattering the result.
4516 */
4517 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4518 ubld.MOV(res1, brw_imm_d(0));
4519 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4520 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4521 BRW_PREDICATE_ALIGN1_ANY32H,
4522 ubld.MOV(res1, brw_imm_d(-1)));
4523
4524 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4525 break;
4526 }
4527 case nir_intrinsic_vote_all: {
4528 const fs_builder ubld = bld.exec_all().group(1, 0);
4529
4530 /* The any/all predicates do not consider channel enables. To prevent
4531 * dead channels from affecting the result, we initialize the flag with
4532 * with the identity value for the logical operation.
4533 */
4534 if (dispatch_width == 32) {
4535 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4536 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4537 brw_imm_ud(0xffffffff));
4538 } else {
4539 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4540 }
4541 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4542
4543 /* For some reason, the any/all predicates don't work properly with
4544 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4545 * doesn't read the correct subset of the flag register and you end up
4546 * getting garbage in the second half. Work around this by using a pair
4547 * of 1-wide MOVs and scattering the result.
4548 */
4549 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4550 ubld.MOV(res1, brw_imm_d(0));
4551 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4552 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4553 BRW_PREDICATE_ALIGN1_ALL32H,
4554 ubld.MOV(res1, brw_imm_d(-1)));
4555
4556 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4557 break;
4558 }
4559 case nir_intrinsic_vote_feq:
4560 case nir_intrinsic_vote_ieq: {
4561 fs_reg value = get_nir_src(instr->src[0]);
4562 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4563 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4564 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4565 }
4566
4567 fs_reg uniformized = bld.emit_uniformize(value);
4568 const fs_builder ubld = bld.exec_all().group(1, 0);
4569
4570 /* The any/all predicates do not consider channel enables. To prevent
4571 * dead channels from affecting the result, we initialize the flag with
4572 * with the identity value for the logical operation.
4573 */
4574 if (dispatch_width == 32) {
4575 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4576 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4577 brw_imm_ud(0xffffffff));
4578 } else {
4579 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4580 }
4581 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4582
4583 /* For some reason, the any/all predicates don't work properly with
4584 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4585 * doesn't read the correct subset of the flag register and you end up
4586 * getting garbage in the second half. Work around this by using a pair
4587 * of 1-wide MOVs and scattering the result.
4588 */
4589 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4590 ubld.MOV(res1, brw_imm_d(0));
4591 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4592 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4593 BRW_PREDICATE_ALIGN1_ALL32H,
4594 ubld.MOV(res1, brw_imm_d(-1)));
4595
4596 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4597 break;
4598 }
4599
4600 case nir_intrinsic_ballot: {
4601 const fs_reg value = retype(get_nir_src(instr->src[0]),
4602 BRW_REGISTER_TYPE_UD);
4603 struct brw_reg flag = brw_flag_reg(0, 0);
4604 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4605 * as f0.0. This is a problem for fragment programs as we currently use
4606 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4607 * programs yet so this isn't a problem. When we do, something will
4608 * have to change.
4609 */
4610 if (dispatch_width == 32)
4611 flag.type = BRW_REGISTER_TYPE_UD;
4612
4613 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4614 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4615
4616 if (instr->dest.ssa.bit_size > 32) {
4617 dest.type = BRW_REGISTER_TYPE_UQ;
4618 } else {
4619 dest.type = BRW_REGISTER_TYPE_UD;
4620 }
4621 bld.MOV(dest, flag);
4622 break;
4623 }
4624
4625 case nir_intrinsic_read_invocation: {
4626 const fs_reg value = get_nir_src(instr->src[0]);
4627 const fs_reg invocation = get_nir_src(instr->src[1]);
4628 fs_reg tmp = bld.vgrf(value.type);
4629
4630 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4631 bld.emit_uniformize(invocation));
4632
4633 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4634 break;
4635 }
4636
4637 case nir_intrinsic_read_first_invocation: {
4638 const fs_reg value = get_nir_src(instr->src[0]);
4639 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4640 break;
4641 }
4642
4643 case nir_intrinsic_shuffle: {
4644 const fs_reg value = get_nir_src(instr->src[0]);
4645 const fs_reg index = get_nir_src(instr->src[1]);
4646
4647 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4648 break;
4649 }
4650
4651 case nir_intrinsic_first_invocation: {
4652 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4653 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4654 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4655 fs_reg(component(tmp, 0)));
4656 break;
4657 }
4658
4659 case nir_intrinsic_quad_broadcast: {
4660 const fs_reg value = get_nir_src(instr->src[0]);
4661 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4662 assert(nir_src_bit_size(instr->src[1]) == 32);
4663
4664 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4665 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4666 break;
4667 }
4668
4669 case nir_intrinsic_quad_swap_horizontal: {
4670 const fs_reg value = get_nir_src(instr->src[0]);
4671 const fs_reg tmp = bld.vgrf(value.type);
4672 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4673
4674 const fs_reg src_left = horiz_stride(value, 2);
4675 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4676 const fs_reg tmp_left = horiz_stride(tmp, 2);
4677 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4678
4679 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4680 *
4681 * "When source or destination datatype is 64b or operation is
4682 * integer DWord multiply, regioning in Align1 must follow
4683 * these rules:
4684 *
4685 * [...]
4686 *
4687 * 3. Source and Destination offset must be the same, except
4688 * the case of scalar source."
4689 *
4690 * In order to work around this, we have to emit two 32-bit MOVs instead
4691 * of a single 64-bit MOV to do the shuffle.
4692 */
4693 if (type_sz(value.type) > 4 &&
4694 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4695 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4696 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4697 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4698 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4699 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4700 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4701 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4702 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4703 } else {
4704 ubld.MOV(tmp_left, src_right);
4705 ubld.MOV(tmp_right, src_left);
4706 }
4707 bld.MOV(retype(dest, value.type), tmp);
4708 break;
4709 }
4710
4711 case nir_intrinsic_quad_swap_vertical: {
4712 const fs_reg value = get_nir_src(instr->src[0]);
4713 if (nir_src_bit_size(instr->src[0]) == 32) {
4714 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4715 const fs_reg tmp = bld.vgrf(value.type);
4716 const fs_builder ubld = bld.exec_all();
4717 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4718 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4719 bld.MOV(retype(dest, value.type), tmp);
4720 } else {
4721 /* For larger data types, we have to either emit dispatch_width many
4722 * MOVs or else fall back to doing indirects.
4723 */
4724 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4725 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4726 brw_imm_w(0x2));
4727 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4728 }
4729 break;
4730 }
4731
4732 case nir_intrinsic_quad_swap_diagonal: {
4733 const fs_reg value = get_nir_src(instr->src[0]);
4734 if (nir_src_bit_size(instr->src[0]) == 32) {
4735 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4736 const fs_reg tmp = bld.vgrf(value.type);
4737 const fs_builder ubld = bld.exec_all();
4738 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4739 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4740 bld.MOV(retype(dest, value.type), tmp);
4741 } else {
4742 /* For larger data types, we have to either emit dispatch_width many
4743 * MOVs or else fall back to doing indirects.
4744 */
4745 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4746 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4747 brw_imm_w(0x3));
4748 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4749 }
4750 break;
4751 }
4752
4753 case nir_intrinsic_reduce: {
4754 fs_reg src = get_nir_src(instr->src[0]);
4755 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4756 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4757 if (cluster_size == 0 || cluster_size > dispatch_width)
4758 cluster_size = dispatch_width;
4759
4760 /* Figure out the source type */
4761 src.type = brw_type_for_nir_type(devinfo,
4762 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4763 nir_src_bit_size(instr->src[0])));
4764
4765 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4766 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4767 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4768
4769 /* Set up a register for all of our scratching around and initialize it
4770 * to reduction operation's identity value.
4771 */
4772 fs_reg scan = bld.vgrf(src.type);
4773 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4774
4775 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4776
4777 dest.type = src.type;
4778 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4779 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4780 * the distance between clusters is at least 2 GRFs. In this case,
4781 * we don't need the weird striding of the CLUSTER_BROADCAST
4782 * instruction and can just do regular MOVs.
4783 */
4784 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4785 const unsigned groups =
4786 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4787 const unsigned group_size = dispatch_width / groups;
4788 for (unsigned i = 0; i < groups; i++) {
4789 const unsigned cluster = (i * group_size) / cluster_size;
4790 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4791 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4792 component(scan, comp));
4793 }
4794 } else {
4795 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4796 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4797 }
4798 break;
4799 }
4800
4801 case nir_intrinsic_inclusive_scan:
4802 case nir_intrinsic_exclusive_scan: {
4803 fs_reg src = get_nir_src(instr->src[0]);
4804 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4805
4806 /* Figure out the source type */
4807 src.type = brw_type_for_nir_type(devinfo,
4808 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4809 nir_src_bit_size(instr->src[0])));
4810
4811 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4812 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4813 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4814
4815 /* Set up a register for all of our scratching around and initialize it
4816 * to reduction operation's identity value.
4817 */
4818 fs_reg scan = bld.vgrf(src.type);
4819 const fs_builder allbld = bld.exec_all();
4820 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4821
4822 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4823 /* Exclusive scan is a bit harder because we have to do an annoying
4824 * shift of the contents before we can begin. To make things worse,
4825 * we can't do this with a normal stride; we have to use indirects.
4826 */
4827 fs_reg shifted = bld.vgrf(src.type);
4828 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4829 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4830 brw_imm_w(-1));
4831 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4832 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4833 scan = shifted;
4834 }
4835
4836 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4837
4838 bld.MOV(retype(dest, src.type), scan);
4839 break;
4840 }
4841
4842 case nir_intrinsic_begin_invocation_interlock: {
4843 const fs_builder ubld = bld.group(8, 0);
4844 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4845
4846 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4847 REG_SIZE;
4848
4849 break;
4850 }
4851
4852 case nir_intrinsic_end_invocation_interlock: {
4853 /* We don't need to do anything here */
4854 break;
4855 }
4856
4857 default:
4858 unreachable("unknown intrinsic");
4859 }
4860 }
4861
4862 void
4863 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4864 int op, nir_intrinsic_instr *instr)
4865 {
4866 if (stage == MESA_SHADER_FRAGMENT)
4867 brw_wm_prog_data(prog_data)->has_side_effects = true;
4868
4869 fs_reg dest;
4870 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4871 dest = get_nir_dest(instr->dest);
4872
4873 fs_reg surface;
4874 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4875 if (const_surface) {
4876 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4877 const_surface->u32[0];
4878 surface = brw_imm_ud(surf_index);
4879 brw_mark_surface_used(prog_data, surf_index);
4880 } else {
4881 surface = vgrf(glsl_type::uint_type);
4882 bld.ADD(surface, get_nir_src(instr->src[0]),
4883 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4884
4885 /* Assume this may touch any SSBO. This is the same we do for other
4886 * UBO/SSBO accesses with non-constant surface.
4887 */
4888 brw_mark_surface_used(prog_data,
4889 stage_prog_data->binding_table.ssbo_start +
4890 nir->info.num_ssbos - 1);
4891 }
4892
4893 fs_reg offset = get_nir_src(instr->src[1]);
4894 fs_reg data1 = get_nir_src(instr->src[2]);
4895 fs_reg data2;
4896 if (op == BRW_AOP_CMPWR)
4897 data2 = get_nir_src(instr->src[3]);
4898
4899 /* Emit the actual atomic operation */
4900
4901 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4902 data1, data2,
4903 1 /* dims */, 1 /* rsize */,
4904 op,
4905 BRW_PREDICATE_NONE);
4906 dest.type = atomic_result.type;
4907 bld.MOV(dest, atomic_result);
4908 }
4909
4910 void
4911 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4912 int op, nir_intrinsic_instr *instr)
4913 {
4914 fs_reg dest;
4915 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4916 dest = get_nir_dest(instr->dest);
4917
4918 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4919 fs_reg offset;
4920 fs_reg data1 = get_nir_src(instr->src[1]);
4921 fs_reg data2;
4922 if (op == BRW_AOP_CMPWR)
4923 data2 = get_nir_src(instr->src[2]);
4924
4925 /* Get the offset */
4926 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4927 if (const_offset) {
4928 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4929 } else {
4930 offset = vgrf(glsl_type::uint_type);
4931 bld.ADD(offset,
4932 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4933 brw_imm_ud(instr->const_index[0]));
4934 }
4935
4936 /* Emit the actual atomic operation operation */
4937
4938 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4939 data1, data2,
4940 1 /* dims */, 1 /* rsize */,
4941 op,
4942 BRW_PREDICATE_NONE);
4943 dest.type = atomic_result.type;
4944 bld.MOV(dest, atomic_result);
4945 }
4946
4947 void
4948 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4949 {
4950 unsigned texture = instr->texture_index;
4951 unsigned sampler = instr->sampler_index;
4952
4953 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4954
4955 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4956 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4957
4958 int lod_components = 0;
4959
4960 /* The hardware requires a LOD for buffer textures */
4961 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4962 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4963
4964 uint32_t header_bits = 0;
4965 for (unsigned i = 0; i < instr->num_srcs; i++) {
4966 fs_reg src = get_nir_src(instr->src[i].src);
4967 switch (instr->src[i].src_type) {
4968 case nir_tex_src_bias:
4969 srcs[TEX_LOGICAL_SRC_LOD] =
4970 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4971 break;
4972 case nir_tex_src_comparator:
4973 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4974 break;
4975 case nir_tex_src_coord:
4976 switch (instr->op) {
4977 case nir_texop_txf:
4978 case nir_texop_txf_ms:
4979 case nir_texop_txf_ms_mcs:
4980 case nir_texop_samples_identical:
4981 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4982 break;
4983 default:
4984 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4985 break;
4986 }
4987 break;
4988 case nir_tex_src_ddx:
4989 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4990 lod_components = nir_tex_instr_src_size(instr, i);
4991 break;
4992 case nir_tex_src_ddy:
4993 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4994 break;
4995 case nir_tex_src_lod:
4996 switch (instr->op) {
4997 case nir_texop_txs:
4998 srcs[TEX_LOGICAL_SRC_LOD] =
4999 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5000 break;
5001 case nir_texop_txf:
5002 srcs[TEX_LOGICAL_SRC_LOD] =
5003 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5004 break;
5005 default:
5006 srcs[TEX_LOGICAL_SRC_LOD] =
5007 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5008 break;
5009 }
5010 break;
5011 case nir_tex_src_ms_index:
5012 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5013 break;
5014
5015 case nir_tex_src_offset: {
5016 nir_const_value *const_offset =
5017 nir_src_as_const_value(instr->src[i].src);
5018 unsigned offset_bits = 0;
5019 if (const_offset &&
5020 brw_texture_offset(const_offset->i32,
5021 nir_tex_instr_src_size(instr, i),
5022 &offset_bits)) {
5023 header_bits |= offset_bits;
5024 } else {
5025 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5026 retype(src, BRW_REGISTER_TYPE_D);
5027 }
5028 break;
5029 }
5030
5031 case nir_tex_src_projector:
5032 unreachable("should be lowered");
5033
5034 case nir_tex_src_texture_offset: {
5035 /* Figure out the highest possible texture index and mark it as used */
5036 uint32_t max_used = texture + instr->texture_array_size - 1;
5037 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5038 max_used += stage_prog_data->binding_table.gather_texture_start;
5039 } else {
5040 max_used += stage_prog_data->binding_table.texture_start;
5041 }
5042 brw_mark_surface_used(prog_data, max_used);
5043
5044 /* Emit code to evaluate the actual indexing expression */
5045 fs_reg tmp = vgrf(glsl_type::uint_type);
5046 bld.ADD(tmp, src, brw_imm_ud(texture));
5047 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5048 break;
5049 }
5050
5051 case nir_tex_src_sampler_offset: {
5052 /* Emit code to evaluate the actual indexing expression */
5053 fs_reg tmp = vgrf(glsl_type::uint_type);
5054 bld.ADD(tmp, src, brw_imm_ud(sampler));
5055 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5056 break;
5057 }
5058
5059 case nir_tex_src_ms_mcs:
5060 assert(instr->op == nir_texop_txf_ms);
5061 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5062 break;
5063
5064 case nir_tex_src_plane: {
5065 nir_const_value *const_plane =
5066 nir_src_as_const_value(instr->src[i].src);
5067 const uint32_t plane = const_plane->u32[0];
5068 const uint32_t texture_index =
5069 instr->texture_index +
5070 stage_prog_data->binding_table.plane_start[plane] -
5071 stage_prog_data->binding_table.texture_start;
5072
5073 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5074 break;
5075 }
5076
5077 default:
5078 unreachable("unknown texture source");
5079 }
5080 }
5081
5082 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5083 (instr->op == nir_texop_txf_ms ||
5084 instr->op == nir_texop_samples_identical)) {
5085 if (devinfo->gen >= 7 &&
5086 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5087 srcs[TEX_LOGICAL_SRC_MCS] =
5088 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5089 instr->coord_components,
5090 srcs[TEX_LOGICAL_SRC_SURFACE]);
5091 } else {
5092 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5093 }
5094 }
5095
5096 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5097 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5098
5099 enum opcode opcode;
5100 switch (instr->op) {
5101 case nir_texop_tex:
5102 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5103 SHADER_OPCODE_TXL_LOGICAL);
5104 break;
5105 case nir_texop_txb:
5106 opcode = FS_OPCODE_TXB_LOGICAL;
5107 break;
5108 case nir_texop_txl:
5109 opcode = SHADER_OPCODE_TXL_LOGICAL;
5110 break;
5111 case nir_texop_txd:
5112 opcode = SHADER_OPCODE_TXD_LOGICAL;
5113 break;
5114 case nir_texop_txf:
5115 opcode = SHADER_OPCODE_TXF_LOGICAL;
5116 break;
5117 case nir_texop_txf_ms:
5118 if ((key_tex->msaa_16 & (1 << sampler)))
5119 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5120 else
5121 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5122 break;
5123 case nir_texop_txf_ms_mcs:
5124 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5125 break;
5126 case nir_texop_query_levels:
5127 case nir_texop_txs:
5128 opcode = SHADER_OPCODE_TXS_LOGICAL;
5129 break;
5130 case nir_texop_lod:
5131 opcode = SHADER_OPCODE_LOD_LOGICAL;
5132 break;
5133 case nir_texop_tg4:
5134 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5135 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5136 else
5137 opcode = SHADER_OPCODE_TG4_LOGICAL;
5138 break;
5139 case nir_texop_texture_samples:
5140 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5141 break;
5142 case nir_texop_samples_identical: {
5143 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5144
5145 /* If mcs is an immediate value, it means there is no MCS. In that case
5146 * just return false.
5147 */
5148 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5149 bld.MOV(dst, brw_imm_ud(0u));
5150 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5151 fs_reg tmp = vgrf(glsl_type::uint_type);
5152 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5153 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5154 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5155 } else {
5156 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5157 BRW_CONDITIONAL_EQ);
5158 }
5159 return;
5160 }
5161 default:
5162 unreachable("unknown texture opcode");
5163 }
5164
5165 if (instr->op == nir_texop_tg4) {
5166 if (instr->component == 1 &&
5167 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5168 /* gather4 sampler is broken for green channel on RG32F --
5169 * we must ask for blue instead.
5170 */
5171 header_bits |= 2 << 16;
5172 } else {
5173 header_bits |= instr->component << 16;
5174 }
5175 }
5176
5177 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5178 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5179 inst->offset = header_bits;
5180
5181 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5182 if (devinfo->gen >= 9 &&
5183 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5184 unsigned write_mask = instr->dest.is_ssa ?
5185 nir_ssa_def_components_read(&instr->dest.ssa):
5186 (1 << dest_size) - 1;
5187 assert(write_mask != 0); /* dead code should have been eliminated */
5188 inst->size_written = util_last_bit(write_mask) *
5189 inst->dst.component_size(inst->exec_size);
5190 } else {
5191 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5192 }
5193
5194 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5195 inst->shadow_compare = true;
5196
5197 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5198 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5199
5200 fs_reg nir_dest[4];
5201 for (unsigned i = 0; i < dest_size; i++)
5202 nir_dest[i] = offset(dst, bld, i);
5203
5204 if (instr->op == nir_texop_query_levels) {
5205 /* # levels is in .w */
5206 nir_dest[0] = offset(dst, bld, 3);
5207 } else if (instr->op == nir_texop_txs &&
5208 dest_size >= 3 && devinfo->gen < 7) {
5209 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5210 fs_reg depth = offset(dst, bld, 2);
5211 nir_dest[2] = vgrf(glsl_type::int_type);
5212 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5213 }
5214
5215 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5216 }
5217
5218 void
5219 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5220 {
5221 switch (instr->type) {
5222 case nir_jump_break:
5223 bld.emit(BRW_OPCODE_BREAK);
5224 break;
5225 case nir_jump_continue:
5226 bld.emit(BRW_OPCODE_CONTINUE);
5227 break;
5228 case nir_jump_return:
5229 default:
5230 unreachable("unknown jump");
5231 }
5232 }
5233
5234 /*
5235 * This helper takes a source register and un/shuffles it into the destination
5236 * register.
5237 *
5238 * If source type size is smaller than destination type size the operation
5239 * needed is a component shuffle. The opposite case would be an unshuffle. If
5240 * source/destination type size is equal a shuffle is done that would be
5241 * equivalent to a simple MOV.
5242 *
5243 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5244 * components .xyz 16-bit vector on SIMD8 would be.
5245 *
5246 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5247 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5248 *
5249 * This helper will return the following 2 32-bit components with the 16-bit
5250 * values shuffled:
5251 *
5252 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5253 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5254 *
5255 * For unshuffle, the example would be the opposite, a 64-bit type source
5256 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5257 * would be:
5258 *
5259 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5260 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5261 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5262 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5263 *
5264 * The returned result would be the following 4 32-bit components unshuffled:
5265 *
5266 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5267 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5268 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5269 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5270 *
5271 * - Source and destination register must not be overlapped.
5272 * - components units are measured in terms of the smaller type between
5273 * source and destination because we are un/shuffling the smaller
5274 * components from/into the bigger ones.
5275 * - first_component parameter allows skipping source components.
5276 */
5277 void
5278 shuffle_src_to_dst(const fs_builder &bld,
5279 const fs_reg &dst,
5280 const fs_reg &src,
5281 uint32_t first_component,
5282 uint32_t components)
5283 {
5284 if (type_sz(src.type) == type_sz(dst.type)) {
5285 assert(!regions_overlap(dst,
5286 type_sz(dst.type) * bld.dispatch_width() * components,
5287 offset(src, bld, first_component),
5288 type_sz(src.type) * bld.dispatch_width() * components));
5289 for (unsigned i = 0; i < components; i++) {
5290 bld.MOV(retype(offset(dst, bld, i), src.type),
5291 offset(src, bld, i + first_component));
5292 }
5293 } else if (type_sz(src.type) < type_sz(dst.type)) {
5294 /* Source is shuffled into destination */
5295 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5296 assert(!regions_overlap(dst,
5297 type_sz(dst.type) * bld.dispatch_width() *
5298 DIV_ROUND_UP(components, size_ratio),
5299 offset(src, bld, first_component),
5300 type_sz(src.type) * bld.dispatch_width() * components));
5301
5302 brw_reg_type shuffle_type =
5303 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5304 BRW_REGISTER_TYPE_D);
5305 for (unsigned i = 0; i < components; i++) {
5306 fs_reg shuffle_component_i =
5307 subscript(offset(dst, bld, i / size_ratio),
5308 shuffle_type, i % size_ratio);
5309 bld.MOV(shuffle_component_i,
5310 retype(offset(src, bld, i + first_component), shuffle_type));
5311 }
5312 } else {
5313 /* Source is unshuffled into destination */
5314 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5315 assert(!regions_overlap(dst,
5316 type_sz(dst.type) * bld.dispatch_width() * components,
5317 offset(src, bld, first_component / size_ratio),
5318 type_sz(src.type) * bld.dispatch_width() *
5319 DIV_ROUND_UP(components + (first_component % size_ratio),
5320 size_ratio)));
5321
5322 brw_reg_type shuffle_type =
5323 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5324 BRW_REGISTER_TYPE_D);
5325 for (unsigned i = 0; i < components; i++) {
5326 fs_reg shuffle_component_i =
5327 subscript(offset(src, bld, (first_component + i) / size_ratio),
5328 shuffle_type, (first_component + i) % size_ratio);
5329 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5330 shuffle_component_i);
5331 }
5332 }
5333 }
5334
5335 void
5336 shuffle_from_32bit_read(const fs_builder &bld,
5337 const fs_reg &dst,
5338 const fs_reg &src,
5339 uint32_t first_component,
5340 uint32_t components)
5341 {
5342 assert(type_sz(src.type) == 4);
5343
5344 /* This function takes components in units of the destination type while
5345 * shuffle_src_to_dst takes components in units of the smallest type
5346 */
5347 if (type_sz(dst.type) > 4) {
5348 assert(type_sz(dst.type) == 8);
5349 first_component *= 2;
5350 components *= 2;
5351 }
5352
5353 shuffle_src_to_dst(bld, dst, src, first_component, components);
5354 }
5355
5356 fs_reg
5357 shuffle_for_32bit_write(const fs_builder &bld,
5358 const fs_reg &src,
5359 uint32_t first_component,
5360 uint32_t components)
5361 {
5362 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5363 DIV_ROUND_UP (components * type_sz(src.type), 4));
5364 /* This function takes components in units of the source type while
5365 * shuffle_src_to_dst takes components in units of the smallest type
5366 */
5367 if (type_sz(src.type) > 4) {
5368 assert(type_sz(src.type) == 8);
5369 first_component *= 2;
5370 components *= 2;
5371 }
5372
5373 shuffle_src_to_dst(bld, dst, src, first_component, components);
5374
5375 return dst;
5376 }
5377
5378 fs_reg
5379 setup_imm_df(const fs_builder &bld, double v)
5380 {
5381 const struct gen_device_info *devinfo = bld.shader->devinfo;
5382 assert(devinfo->gen >= 7);
5383
5384 if (devinfo->gen >= 8)
5385 return brw_imm_df(v);
5386
5387 /* gen7.5 does not support DF immediates straighforward but the DIM
5388 * instruction allows to set the 64-bit immediate value.
5389 */
5390 if (devinfo->is_haswell) {
5391 const fs_builder ubld = bld.exec_all().group(1, 0);
5392 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5393 ubld.DIM(dst, brw_imm_df(v));
5394 return component(dst, 0);
5395 }
5396
5397 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5398 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5399 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5400 *
5401 * Alternatively, we could also produce a normal VGRF (without stride 0)
5402 * by writing to all the channels in the VGRF, however, that would hit the
5403 * gen7 bug where we have to split writes that span more than 1 register
5404 * into instructions with a width of 4 (otherwise the write to the second
5405 * register written runs into an execmask hardware bug) which isn't very
5406 * nice.
5407 */
5408 union {
5409 double d;
5410 struct {
5411 uint32_t i1;
5412 uint32_t i2;
5413 };
5414 } di;
5415
5416 di.d = v;
5417
5418 const fs_builder ubld = bld.exec_all().group(1, 0);
5419 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5420 ubld.MOV(tmp, brw_imm_ud(di.i1));
5421 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5422
5423 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5424 }