95c45e4c9c3b95fe9e4f3f5c234add8f734a47be
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "util/u_math.h"
28 #include "util/bitscan.h"
29
30 using namespace brw;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
43 }
44
45 void
46 fs_visitor::nir_setup_outputs()
47 {
48 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
49 return;
50
51 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
52
53 /* Calculate the size of output registers in a separate pass, before
54 * allocating them. With ARB_enhanced_layouts, multiple output variables
55 * may occupy the same slot, but have different type sizes.
56 */
57 nir_foreach_variable(var, &nir->outputs) {
58 const int loc = var->data.driver_location;
59 const unsigned var_vec4s =
60 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
61 : type_size_vec4(var->type);
62 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
63 }
64
65 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
66 if (vec4s[loc] == 0) {
67 loc++;
68 continue;
69 }
70
71 unsigned reg_size = vec4s[loc];
72
73 /* Check if there are any ranges that start within this range and extend
74 * past it. If so, include them in this allocation.
75 */
76 for (unsigned i = 1; i < reg_size; i++)
77 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
78
79 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
80 for (unsigned i = 0; i < reg_size; i++)
81 outputs[loc + i] = offset(reg, bld, 4 * i);
82
83 loc += reg_size;
84 }
85 }
86
87 void
88 fs_visitor::nir_setup_uniforms()
89 {
90 /* Only the first compile gets to set up uniforms. */
91 if (push_constant_loc) {
92 assert(pull_constant_loc);
93 return;
94 }
95
96 uniforms = nir->num_uniforms / 4;
97
98 if (stage == MESA_SHADER_COMPUTE) {
99 /* Add a uniform for the thread local id. It must be the last uniform
100 * on the list.
101 */
102 assert(uniforms == prog_data->nr_params);
103 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
104 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
105 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
106 }
107 }
108
109 static bool
110 emit_system_values_block(nir_block *block, fs_visitor *v)
111 {
112 fs_reg *reg;
113
114 nir_foreach_instr(instr, block) {
115 if (instr->type != nir_instr_type_intrinsic)
116 continue;
117
118 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
119 switch (intrin->intrinsic) {
120 case nir_intrinsic_load_vertex_id:
121 case nir_intrinsic_load_base_vertex:
122 unreachable("should be lowered by nir_lower_system_values().");
123
124 case nir_intrinsic_load_vertex_id_zero_base:
125 case nir_intrinsic_load_is_indexed_draw:
126 case nir_intrinsic_load_first_vertex:
127 case nir_intrinsic_load_instance_id:
128 case nir_intrinsic_load_base_instance:
129 case nir_intrinsic_load_draw_id:
130 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
131
132 case nir_intrinsic_load_invocation_id:
133 if (v->stage == MESA_SHADER_TESS_CTRL)
134 break;
135 assert(v->stage == MESA_SHADER_GEOMETRY);
136 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
137 if (reg->file == BAD_FILE) {
138 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
139 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
140 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
141 abld.SHR(iid, g1, brw_imm_ud(27u));
142 *reg = iid;
143 }
144 break;
145
146 case nir_intrinsic_load_sample_pos:
147 assert(v->stage == MESA_SHADER_FRAGMENT);
148 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
149 if (reg->file == BAD_FILE)
150 *reg = *v->emit_samplepos_setup();
151 break;
152
153 case nir_intrinsic_load_sample_id:
154 assert(v->stage == MESA_SHADER_FRAGMENT);
155 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
156 if (reg->file == BAD_FILE)
157 *reg = *v->emit_sampleid_setup();
158 break;
159
160 case nir_intrinsic_load_sample_mask_in:
161 assert(v->stage == MESA_SHADER_FRAGMENT);
162 assert(v->devinfo->gen >= 7);
163 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
164 if (reg->file == BAD_FILE)
165 *reg = *v->emit_samplemaskin_setup();
166 break;
167
168 case nir_intrinsic_load_work_group_id:
169 assert(v->stage == MESA_SHADER_COMPUTE);
170 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
171 if (reg->file == BAD_FILE)
172 *reg = *v->emit_cs_work_group_id_setup();
173 break;
174
175 case nir_intrinsic_load_helper_invocation:
176 assert(v->stage == MESA_SHADER_FRAGMENT);
177 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
178 if (reg->file == BAD_FILE) {
179 const fs_builder abld =
180 v->bld.annotate("gl_HelperInvocation", NULL);
181
182 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
183 * pixel mask is in g1.7 of the thread payload.
184 *
185 * We move the per-channel pixel enable bit to the low bit of each
186 * channel by shifting the byte containing the pixel mask by the
187 * vector immediate 0x76543210UV.
188 *
189 * The region of <1,8,0> reads only 1 byte (the pixel masks for
190 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
191 * masks for 2 and 3) in SIMD16.
192 */
193 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
194
195 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
196 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
197 hbld.SHR(offset(shifted, hbld, i),
198 stride(retype(brw_vec1_grf(1 + i, 7),
199 BRW_REGISTER_TYPE_UB),
200 1, 8, 0),
201 brw_imm_v(0x76543210));
202 }
203
204 /* A set bit in the pixel mask means the channel is enabled, but
205 * that is the opposite of gl_HelperInvocation so we need to invert
206 * the mask.
207 *
208 * The negate source-modifier bit of logical instructions on Gen8+
209 * performs 1's complement negation, so we can use that instead of
210 * a NOT instruction.
211 */
212 fs_reg inverted = negate(shifted);
213 if (v->devinfo->gen < 8) {
214 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
215 abld.NOT(inverted, shifted);
216 }
217
218 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
219 * with 1 and negating.
220 */
221 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
222 abld.AND(anded, inverted, brw_imm_uw(1));
223
224 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
225 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
226 *reg = dst;
227 }
228 break;
229
230 default:
231 break;
232 }
233 }
234
235 return true;
236 }
237
238 void
239 fs_visitor::nir_emit_system_values()
240 {
241 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
242 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
243 nir_system_values[i] = fs_reg();
244 }
245
246 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
247 * never end up using it.
248 */
249 {
250 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
251 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
252 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
253
254 const fs_builder allbld8 = abld.group(8, 0).exec_all();
255 allbld8.MOV(reg, brw_imm_v(0x76543210));
256 if (dispatch_width > 8)
257 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
258 if (dispatch_width > 16) {
259 const fs_builder allbld16 = abld.group(16, 0).exec_all();
260 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
261 }
262 }
263
264 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
265 nir_foreach_block(block, impl)
266 emit_system_values_block(block, this);
267 }
268
269 /*
270 * Returns a type based on a reference_type (word, float, half-float) and a
271 * given bit_size.
272 *
273 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
274 *
275 * @FIXME: 64-bit return types are always DF on integer types to maintain
276 * compability with uses of DF previously to the introduction of int64
277 * support.
278 */
279 static brw_reg_type
280 brw_reg_type_from_bit_size(const unsigned bit_size,
281 const brw_reg_type reference_type)
282 {
283 switch(reference_type) {
284 case BRW_REGISTER_TYPE_HF:
285 case BRW_REGISTER_TYPE_F:
286 case BRW_REGISTER_TYPE_DF:
287 switch(bit_size) {
288 case 16:
289 return BRW_REGISTER_TYPE_HF;
290 case 32:
291 return BRW_REGISTER_TYPE_F;
292 case 64:
293 return BRW_REGISTER_TYPE_DF;
294 default:
295 unreachable("Invalid bit size");
296 }
297 case BRW_REGISTER_TYPE_B:
298 case BRW_REGISTER_TYPE_W:
299 case BRW_REGISTER_TYPE_D:
300 case BRW_REGISTER_TYPE_Q:
301 switch(bit_size) {
302 case 8:
303 return BRW_REGISTER_TYPE_B;
304 case 16:
305 return BRW_REGISTER_TYPE_W;
306 case 32:
307 return BRW_REGISTER_TYPE_D;
308 case 64:
309 return BRW_REGISTER_TYPE_Q;
310 default:
311 unreachable("Invalid bit size");
312 }
313 case BRW_REGISTER_TYPE_UB:
314 case BRW_REGISTER_TYPE_UW:
315 case BRW_REGISTER_TYPE_UD:
316 case BRW_REGISTER_TYPE_UQ:
317 switch(bit_size) {
318 case 8:
319 return BRW_REGISTER_TYPE_UB;
320 case 16:
321 return BRW_REGISTER_TYPE_UW;
322 case 32:
323 return BRW_REGISTER_TYPE_UD;
324 case 64:
325 return BRW_REGISTER_TYPE_UQ;
326 default:
327 unreachable("Invalid bit size");
328 }
329 default:
330 unreachable("Unknown type");
331 }
332 }
333
334 void
335 fs_visitor::nir_emit_impl(nir_function_impl *impl)
336 {
337 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
338 for (unsigned i = 0; i < impl->reg_alloc; i++) {
339 nir_locals[i] = fs_reg();
340 }
341
342 foreach_list_typed(nir_register, reg, node, &impl->registers) {
343 unsigned array_elems =
344 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
345 unsigned size = array_elems * reg->num_components;
346 const brw_reg_type reg_type =
347 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
348 nir_locals[reg->index] = bld.vgrf(reg_type, size);
349 }
350
351 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
352 impl->ssa_alloc);
353
354 nir_emit_cf_list(&impl->body);
355 }
356
357 void
358 fs_visitor::nir_emit_cf_list(exec_list *list)
359 {
360 exec_list_validate(list);
361 foreach_list_typed(nir_cf_node, node, node, list) {
362 switch (node->type) {
363 case nir_cf_node_if:
364 nir_emit_if(nir_cf_node_as_if(node));
365 break;
366
367 case nir_cf_node_loop:
368 nir_emit_loop(nir_cf_node_as_loop(node));
369 break;
370
371 case nir_cf_node_block:
372 nir_emit_block(nir_cf_node_as_block(node));
373 break;
374
375 default:
376 unreachable("Invalid CFG node block");
377 }
378 }
379 }
380
381 void
382 fs_visitor::nir_emit_if(nir_if *if_stmt)
383 {
384 /* first, put the condition into f0 */
385 fs_inst *inst = bld.MOV(bld.null_reg_d(),
386 retype(get_nir_src(if_stmt->condition),
387 BRW_REGISTER_TYPE_D));
388 inst->conditional_mod = BRW_CONDITIONAL_NZ;
389
390 bld.IF(BRW_PREDICATE_NORMAL);
391
392 nir_emit_cf_list(&if_stmt->then_list);
393
394 /* note: if the else is empty, dead CF elimination will remove it */
395 bld.emit(BRW_OPCODE_ELSE);
396
397 nir_emit_cf_list(&if_stmt->else_list);
398
399 bld.emit(BRW_OPCODE_ENDIF);
400
401 if (devinfo->gen < 7)
402 limit_dispatch_width(16, "Non-uniform control flow unsupported "
403 "in SIMD32 mode.");
404 }
405
406 void
407 fs_visitor::nir_emit_loop(nir_loop *loop)
408 {
409 bld.emit(BRW_OPCODE_DO);
410
411 nir_emit_cf_list(&loop->body);
412
413 bld.emit(BRW_OPCODE_WHILE);
414
415 if (devinfo->gen < 7)
416 limit_dispatch_width(16, "Non-uniform control flow unsupported "
417 "in SIMD32 mode.");
418 }
419
420 void
421 fs_visitor::nir_emit_block(nir_block *block)
422 {
423 nir_foreach_instr(instr, block) {
424 nir_emit_instr(instr);
425 }
426 }
427
428 void
429 fs_visitor::nir_emit_instr(nir_instr *instr)
430 {
431 const fs_builder abld = bld.annotate(NULL, instr);
432
433 switch (instr->type) {
434 case nir_instr_type_alu:
435 nir_emit_alu(abld, nir_instr_as_alu(instr));
436 break;
437
438 case nir_instr_type_deref:
439 /* Derefs can exist for images but they do nothing */
440 break;
441
442 case nir_instr_type_intrinsic:
443 switch (stage) {
444 case MESA_SHADER_VERTEX:
445 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
446 break;
447 case MESA_SHADER_TESS_CTRL:
448 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
449 break;
450 case MESA_SHADER_TESS_EVAL:
451 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
452 break;
453 case MESA_SHADER_GEOMETRY:
454 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456 case MESA_SHADER_FRAGMENT:
457 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
458 break;
459 case MESA_SHADER_COMPUTE:
460 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462 default:
463 unreachable("unsupported shader stage");
464 }
465 break;
466
467 case nir_instr_type_tex:
468 nir_emit_texture(abld, nir_instr_as_tex(instr));
469 break;
470
471 case nir_instr_type_load_const:
472 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
473 break;
474
475 case nir_instr_type_ssa_undef:
476 /* We create a new VGRF for undefs on every use (by handling
477 * them in get_nir_src()), rather than for each definition.
478 * This helps register coalescing eliminate MOVs from undef.
479 */
480 break;
481
482 case nir_instr_type_jump:
483 nir_emit_jump(abld, nir_instr_as_jump(instr));
484 break;
485
486 default:
487 unreachable("unknown instruction type");
488 }
489 }
490
491 /**
492 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
493 * match instr.
494 */
495 bool
496 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
497 const fs_reg &result)
498 {
499 if (!instr->src[0].src.is_ssa ||
500 !instr->src[0].src.ssa->parent_instr)
501 return false;
502
503 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
504 return false;
505
506 nir_alu_instr *src0 =
507 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
508
509 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
510 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
511 return false;
512
513 /* If either opcode has source modifiers, bail.
514 *
515 * TODO: We can potentially handle source modifiers if both of the opcodes
516 * we're combining are signed integers.
517 */
518 if (instr->src[0].abs || instr->src[0].negate ||
519 src0->src[0].abs || src0->src[0].negate)
520 return false;
521
522 unsigned element = nir_src_as_uint(src0->src[1].src);
523
524 /* Element type to extract.*/
525 const brw_reg_type type = brw_int_type(
526 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
527 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
528
529 fs_reg op0 = get_nir_src(src0->src[0].src);
530 op0.type = brw_type_for_nir_type(devinfo,
531 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
532 nir_src_bit_size(src0->src[0].src)));
533 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
534
535 set_saturate(instr->dest.saturate,
536 bld.MOV(result, subscript(op0, type, element)));
537 return true;
538 }
539
540 bool
541 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
542 const fs_reg &result)
543 {
544 if (!instr->src[0].src.is_ssa ||
545 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
546 return false;
547
548 nir_intrinsic_instr *src0 =
549 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
550
551 if (src0->intrinsic != nir_intrinsic_load_front_face)
552 return false;
553
554 if (!nir_src_is_const(instr->src[1].src) ||
555 !nir_src_is_const(instr->src[2].src))
556 return false;
557
558 const float value1 = nir_src_as_float(instr->src[1].src);
559 const float value2 = nir_src_as_float(instr->src[2].src);
560 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
561 return false;
562
563 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
564 assert(value1 == -value2);
565
566 fs_reg tmp = vgrf(glsl_type::int_type);
567
568 if (devinfo->gen >= 6) {
569 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
570 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
571
572 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
573 *
574 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
575 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
576 *
577 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
578 *
579 * This negation looks like it's safe in practice, because bits 0:4 will
580 * surely be TRIANGLES
581 */
582
583 if (value1 == -1.0f) {
584 g0.negate = true;
585 }
586
587 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
588 g0, brw_imm_uw(0x3f80));
589 } else {
590 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
591 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
592
593 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
594 *
595 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
596 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
597 *
598 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
599 *
600 * This negation looks like it's safe in practice, because bits 0:4 will
601 * surely be TRIANGLES
602 */
603
604 if (value1 == -1.0f) {
605 g1_6.negate = true;
606 }
607
608 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
609 }
610 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
611
612 return true;
613 }
614
615 static void
616 emit_find_msb_using_lzd(const fs_builder &bld,
617 const fs_reg &result,
618 const fs_reg &src,
619 bool is_signed)
620 {
621 fs_inst *inst;
622 fs_reg temp = src;
623
624 if (is_signed) {
625 /* LZD of an absolute value source almost always does the right
626 * thing. There are two problem values:
627 *
628 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
629 * 0. However, findMSB(int(0x80000000)) == 30.
630 *
631 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
632 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
633 *
634 * For a value of zero or negative one, -1 will be returned.
635 *
636 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
637 * findMSB(-(1<<x)) should return x-1.
638 *
639 * For all negative number cases, including 0x80000000 and
640 * 0xffffffff, the correct value is obtained from LZD if instead of
641 * negating the (already negative) value the logical-not is used. A
642 * conditonal logical-not can be achieved in two instructions.
643 */
644 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
645
646 bld.ASR(temp, src, brw_imm_d(31));
647 bld.XOR(temp, temp, src);
648 }
649
650 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
651 retype(temp, BRW_REGISTER_TYPE_UD));
652
653 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
654 * from the LSB side. Subtract the result from 31 to convert the MSB
655 * count into an LSB count. If no bits are set, LZD will return 32.
656 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
657 */
658 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
659 inst->src[0].negate = true;
660 }
661
662 static brw_rnd_mode
663 brw_rnd_mode_from_nir_op (const nir_op op) {
664 switch (op) {
665 case nir_op_f2f16_rtz:
666 return BRW_RND_MODE_RTZ;
667 case nir_op_f2f16_rtne:
668 return BRW_RND_MODE_RTNE;
669 default:
670 unreachable("Operation doesn't support rounding mode");
671 }
672 }
673
674 void
675 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
676 {
677 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
678 fs_inst *inst;
679
680 fs_reg result = get_nir_dest(instr->dest.dest);
681 result.type = brw_type_for_nir_type(devinfo,
682 (nir_alu_type)(nir_op_infos[instr->op].output_type |
683 nir_dest_bit_size(instr->dest.dest)));
684
685 fs_reg op[4];
686 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
687 op[i] = get_nir_src(instr->src[i].src);
688 op[i].type = brw_type_for_nir_type(devinfo,
689 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
690 nir_src_bit_size(instr->src[i].src)));
691 op[i].abs = instr->src[i].abs;
692 op[i].negate = instr->src[i].negate;
693 }
694
695 /* We get a bunch of mov's out of the from_ssa pass and they may still
696 * be vectorized. We'll handle them as a special-case. We'll also
697 * handle vecN here because it's basically the same thing.
698 */
699 switch (instr->op) {
700 case nir_op_imov:
701 case nir_op_fmov:
702 case nir_op_vec2:
703 case nir_op_vec3:
704 case nir_op_vec4: {
705 fs_reg temp = result;
706 bool need_extra_copy = false;
707 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
708 if (!instr->src[i].src.is_ssa &&
709 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
710 need_extra_copy = true;
711 temp = bld.vgrf(result.type, 4);
712 break;
713 }
714 }
715
716 for (unsigned i = 0; i < 4; i++) {
717 if (!(instr->dest.write_mask & (1 << i)))
718 continue;
719
720 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
721 inst = bld.MOV(offset(temp, bld, i),
722 offset(op[0], bld, instr->src[0].swizzle[i]));
723 } else {
724 inst = bld.MOV(offset(temp, bld, i),
725 offset(op[i], bld, instr->src[i].swizzle[0]));
726 }
727 inst->saturate = instr->dest.saturate;
728 }
729
730 /* In this case the source and destination registers were the same,
731 * so we need to insert an extra set of moves in order to deal with
732 * any swizzling.
733 */
734 if (need_extra_copy) {
735 for (unsigned i = 0; i < 4; i++) {
736 if (!(instr->dest.write_mask & (1 << i)))
737 continue;
738
739 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
740 }
741 }
742 return;
743 }
744 default:
745 break;
746 }
747
748 /* At this point, we have dealt with any instruction that operates on
749 * more than a single channel. Therefore, we can just adjust the source
750 * and destination registers for that channel and emit the instruction.
751 */
752 unsigned channel = 0;
753 if (nir_op_infos[instr->op].output_size == 0) {
754 /* Since NIR is doing the scalarizing for us, we should only ever see
755 * vectorized operations with a single channel.
756 */
757 assert(util_bitcount(instr->dest.write_mask) == 1);
758 channel = ffs(instr->dest.write_mask) - 1;
759
760 result = offset(result, bld, channel);
761 }
762
763 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
764 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
765 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
766 }
767
768 switch (instr->op) {
769 case nir_op_i2f32:
770 case nir_op_u2f32:
771 if (optimize_extract_to_float(instr, result))
772 return;
773 inst = bld.MOV(result, op[0]);
774 inst->saturate = instr->dest.saturate;
775 break;
776
777 case nir_op_f2f16_rtne:
778 case nir_op_f2f16_rtz:
779 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
780 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
781 /* fallthrough */
782
783 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
784 * on the HW gen, it is a special hw opcode or just a MOV, and
785 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
786 *
787 * But if we want to use that opcode, we need to provide support on
788 * different optimizations and lowerings. As right now HF support is
789 * only for gen8+, it will be better to use directly the MOV, and use
790 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
791 */
792
793 case nir_op_f2f16:
794 inst = bld.MOV(result, op[0]);
795 inst->saturate = instr->dest.saturate;
796 break;
797
798 case nir_op_b2i8:
799 case nir_op_b2i16:
800 case nir_op_b2i32:
801 case nir_op_b2i64:
802 case nir_op_b2f16:
803 case nir_op_b2f32:
804 case nir_op_b2f64:
805 op[0].type = BRW_REGISTER_TYPE_D;
806 op[0].negate = !op[0].negate;
807 /* fallthrough */
808 case nir_op_f2f64:
809 case nir_op_f2i64:
810 case nir_op_f2u64:
811 case nir_op_i2f64:
812 case nir_op_i2i64:
813 case nir_op_u2f64:
814 case nir_op_u2u64:
815 case nir_op_f2f32:
816 case nir_op_f2i32:
817 case nir_op_f2u32:
818 case nir_op_f2i16:
819 case nir_op_f2u16:
820 case nir_op_i2i32:
821 case nir_op_u2u32:
822 case nir_op_i2i16:
823 case nir_op_u2u16:
824 case nir_op_i2f16:
825 case nir_op_u2f16:
826 case nir_op_i2i8:
827 case nir_op_u2u8:
828 inst = bld.MOV(result, op[0]);
829 inst->saturate = instr->dest.saturate;
830 break;
831
832 case nir_op_fsign: {
833 assert(!instr->dest.saturate);
834 if (op[0].abs) {
835 /* Straightforward since the source can be assumed to be either
836 * strictly >= 0 or strictly <= 0 depending on the setting of the
837 * negate flag.
838 */
839 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
840
841 inst = (op[0].negate)
842 ? bld.MOV(result, brw_imm_f(-1.0f))
843 : bld.MOV(result, brw_imm_f(1.0f));
844
845 set_predicate(BRW_PREDICATE_NORMAL, inst);
846 } else if (type_sz(op[0].type) < 8) {
847 /* AND(val, 0x80000000) gives the sign bit.
848 *
849 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
850 * zero.
851 */
852 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
853
854 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
855 op[0].type = BRW_REGISTER_TYPE_UD;
856 result.type = BRW_REGISTER_TYPE_UD;
857 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
858
859 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
860 inst->predicate = BRW_PREDICATE_NORMAL;
861 } else {
862 /* For doubles we do the same but we need to consider:
863 *
864 * - 2-src instructions can't operate with 64-bit immediates
865 * - The sign is encoded in the high 32-bit of each DF
866 * - We need to produce a DF result.
867 */
868
869 fs_reg zero = vgrf(glsl_type::double_type);
870 bld.MOV(zero, setup_imm_df(bld, 0.0));
871 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
872
873 bld.MOV(result, zero);
874
875 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
876 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
877 brw_imm_ud(0x80000000u));
878
879 set_predicate(BRW_PREDICATE_NORMAL,
880 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
881 }
882 break;
883 }
884
885 case nir_op_frcp:
886 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
887 inst->saturate = instr->dest.saturate;
888 break;
889
890 case nir_op_fexp2:
891 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
892 inst->saturate = instr->dest.saturate;
893 break;
894
895 case nir_op_flog2:
896 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
897 inst->saturate = instr->dest.saturate;
898 break;
899
900 case nir_op_fsin:
901 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
902 inst->saturate = instr->dest.saturate;
903 break;
904
905 case nir_op_fcos:
906 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
907 inst->saturate = instr->dest.saturate;
908 break;
909
910 case nir_op_fddx:
911 if (fs_key->high_quality_derivatives) {
912 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
913 } else {
914 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
915 }
916 inst->saturate = instr->dest.saturate;
917 break;
918 case nir_op_fddx_fine:
919 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
920 inst->saturate = instr->dest.saturate;
921 break;
922 case nir_op_fddx_coarse:
923 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
924 inst->saturate = instr->dest.saturate;
925 break;
926 case nir_op_fddy:
927 if (fs_key->high_quality_derivatives) {
928 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
929 } else {
930 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
931 }
932 inst->saturate = instr->dest.saturate;
933 break;
934 case nir_op_fddy_fine:
935 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
936 inst->saturate = instr->dest.saturate;
937 break;
938 case nir_op_fddy_coarse:
939 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
940 inst->saturate = instr->dest.saturate;
941 break;
942
943 case nir_op_iadd:
944 case nir_op_fadd:
945 inst = bld.ADD(result, op[0], op[1]);
946 inst->saturate = instr->dest.saturate;
947 break;
948
949 case nir_op_uadd_sat:
950 inst = bld.ADD(result, op[0], op[1]);
951 inst->saturate = true;
952 break;
953
954 case nir_op_fmul:
955 inst = bld.MUL(result, op[0], op[1]);
956 inst->saturate = instr->dest.saturate;
957 break;
958
959 case nir_op_imul:
960 assert(nir_dest_bit_size(instr->dest.dest) < 64);
961 bld.MUL(result, op[0], op[1]);
962 break;
963
964 case nir_op_imul_high:
965 case nir_op_umul_high:
966 assert(nir_dest_bit_size(instr->dest.dest) < 64);
967 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
968 break;
969
970 case nir_op_idiv:
971 case nir_op_udiv:
972 assert(nir_dest_bit_size(instr->dest.dest) < 64);
973 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
974 break;
975
976 case nir_op_uadd_carry:
977 unreachable("Should have been lowered by carry_to_arith().");
978
979 case nir_op_usub_borrow:
980 unreachable("Should have been lowered by borrow_to_arith().");
981
982 case nir_op_umod:
983 case nir_op_irem:
984 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
985 * appears that our hardware just does the right thing for signed
986 * remainder.
987 */
988 assert(nir_dest_bit_size(instr->dest.dest) < 64);
989 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
990 break;
991
992 case nir_op_imod: {
993 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
994 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
995
996 /* Math instructions don't support conditional mod */
997 inst = bld.MOV(bld.null_reg_d(), result);
998 inst->conditional_mod = BRW_CONDITIONAL_NZ;
999
1000 /* Now, we need to determine if signs of the sources are different.
1001 * When we XOR the sources, the top bit is 0 if they are the same and 1
1002 * if they are different. We can then use a conditional modifier to
1003 * turn that into a predicate. This leads us to an XOR.l instruction.
1004 *
1005 * Technically, according to the PRM, you're not allowed to use .l on a
1006 * XOR instruction. However, emperical experiments and Curro's reading
1007 * of the simulator source both indicate that it's safe.
1008 */
1009 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1010 inst = bld.XOR(tmp, op[0], op[1]);
1011 inst->predicate = BRW_PREDICATE_NORMAL;
1012 inst->conditional_mod = BRW_CONDITIONAL_L;
1013
1014 /* If the result of the initial remainder operation is non-zero and the
1015 * two sources have different signs, add in a copy of op[1] to get the
1016 * final integer modulus value.
1017 */
1018 inst = bld.ADD(result, result, op[1]);
1019 inst->predicate = BRW_PREDICATE_NORMAL;
1020 break;
1021 }
1022
1023 case nir_op_flt32:
1024 case nir_op_fge32:
1025 case nir_op_feq32:
1026 case nir_op_fne32: {
1027 fs_reg dest = result;
1028
1029 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1030 if (bit_size != 32)
1031 dest = bld.vgrf(op[0].type, 1);
1032
1033 brw_conditional_mod cond;
1034 switch (instr->op) {
1035 case nir_op_flt32:
1036 cond = BRW_CONDITIONAL_L;
1037 break;
1038 case nir_op_fge32:
1039 cond = BRW_CONDITIONAL_GE;
1040 break;
1041 case nir_op_feq32:
1042 cond = BRW_CONDITIONAL_Z;
1043 break;
1044 case nir_op_fne32:
1045 cond = BRW_CONDITIONAL_NZ;
1046 break;
1047 default:
1048 unreachable("bad opcode");
1049 }
1050
1051 bld.CMP(dest, op[0], op[1], cond);
1052
1053 if (bit_size > 32) {
1054 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1055 } else if(bit_size < 32) {
1056 /* When we convert the result to 32-bit we need to be careful and do
1057 * it as a signed conversion to get sign extension (for 32-bit true)
1058 */
1059 const brw_reg_type src_type =
1060 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1061
1062 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1063 }
1064 break;
1065 }
1066
1067 case nir_op_ilt32:
1068 case nir_op_ult32:
1069 case nir_op_ige32:
1070 case nir_op_uge32:
1071 case nir_op_ieq32:
1072 case nir_op_ine32: {
1073 fs_reg dest = result;
1074
1075 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1076 if (bit_size != 32)
1077 dest = bld.vgrf(op[0].type, 1);
1078
1079 brw_conditional_mod cond;
1080 switch (instr->op) {
1081 case nir_op_ilt32:
1082 case nir_op_ult32:
1083 cond = BRW_CONDITIONAL_L;
1084 break;
1085 case nir_op_ige32:
1086 case nir_op_uge32:
1087 cond = BRW_CONDITIONAL_GE;
1088 break;
1089 case nir_op_ieq32:
1090 cond = BRW_CONDITIONAL_Z;
1091 break;
1092 case nir_op_ine32:
1093 cond = BRW_CONDITIONAL_NZ;
1094 break;
1095 default:
1096 unreachable("bad opcode");
1097 }
1098 bld.CMP(dest, op[0], op[1], cond);
1099
1100 if (bit_size > 32) {
1101 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1102 } else if (bit_size < 32) {
1103 /* When we convert the result to 32-bit we need to be careful and do
1104 * it as a signed conversion to get sign extension (for 32-bit true)
1105 */
1106 const brw_reg_type src_type =
1107 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1108
1109 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1110 }
1111 break;
1112 }
1113
1114 case nir_op_inot:
1115 if (devinfo->gen >= 8) {
1116 op[0] = resolve_source_modifiers(op[0]);
1117 }
1118 bld.NOT(result, op[0]);
1119 break;
1120 case nir_op_ixor:
1121 if (devinfo->gen >= 8) {
1122 op[0] = resolve_source_modifiers(op[0]);
1123 op[1] = resolve_source_modifiers(op[1]);
1124 }
1125 bld.XOR(result, op[0], op[1]);
1126 break;
1127 case nir_op_ior:
1128 if (devinfo->gen >= 8) {
1129 op[0] = resolve_source_modifiers(op[0]);
1130 op[1] = resolve_source_modifiers(op[1]);
1131 }
1132 bld.OR(result, op[0], op[1]);
1133 break;
1134 case nir_op_iand:
1135 if (devinfo->gen >= 8) {
1136 op[0] = resolve_source_modifiers(op[0]);
1137 op[1] = resolve_source_modifiers(op[1]);
1138 }
1139 bld.AND(result, op[0], op[1]);
1140 break;
1141
1142 case nir_op_fdot2:
1143 case nir_op_fdot3:
1144 case nir_op_fdot4:
1145 case nir_op_b32all_fequal2:
1146 case nir_op_b32all_iequal2:
1147 case nir_op_b32all_fequal3:
1148 case nir_op_b32all_iequal3:
1149 case nir_op_b32all_fequal4:
1150 case nir_op_b32all_iequal4:
1151 case nir_op_b32any_fnequal2:
1152 case nir_op_b32any_inequal2:
1153 case nir_op_b32any_fnequal3:
1154 case nir_op_b32any_inequal3:
1155 case nir_op_b32any_fnequal4:
1156 case nir_op_b32any_inequal4:
1157 unreachable("Lowered by nir_lower_alu_reductions");
1158
1159 case nir_op_fnoise1_1:
1160 case nir_op_fnoise1_2:
1161 case nir_op_fnoise1_3:
1162 case nir_op_fnoise1_4:
1163 case nir_op_fnoise2_1:
1164 case nir_op_fnoise2_2:
1165 case nir_op_fnoise2_3:
1166 case nir_op_fnoise2_4:
1167 case nir_op_fnoise3_1:
1168 case nir_op_fnoise3_2:
1169 case nir_op_fnoise3_3:
1170 case nir_op_fnoise3_4:
1171 case nir_op_fnoise4_1:
1172 case nir_op_fnoise4_2:
1173 case nir_op_fnoise4_3:
1174 case nir_op_fnoise4_4:
1175 unreachable("not reached: should be handled by lower_noise");
1176
1177 case nir_op_ldexp:
1178 unreachable("not reached: should be handled by ldexp_to_arith()");
1179
1180 case nir_op_fsqrt:
1181 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1182 inst->saturate = instr->dest.saturate;
1183 break;
1184
1185 case nir_op_frsq:
1186 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1187 inst->saturate = instr->dest.saturate;
1188 break;
1189
1190 case nir_op_i2b32:
1191 case nir_op_f2b32: {
1192 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1193 if (bit_size == 64) {
1194 /* two-argument instructions can't take 64-bit immediates */
1195 fs_reg zero;
1196 fs_reg tmp;
1197
1198 if (instr->op == nir_op_f2b32) {
1199 zero = vgrf(glsl_type::double_type);
1200 tmp = vgrf(glsl_type::double_type);
1201 bld.MOV(zero, setup_imm_df(bld, 0.0));
1202 } else {
1203 zero = vgrf(glsl_type::int64_t_type);
1204 tmp = vgrf(glsl_type::int64_t_type);
1205 bld.MOV(zero, brw_imm_q(0));
1206 }
1207
1208 /* A SIMD16 execution needs to be split in two instructions, so use
1209 * a vgrf instead of the flag register as dst so instruction splitting
1210 * works
1211 */
1212 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1213 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1214 } else {
1215 fs_reg zero;
1216 if (bit_size == 32) {
1217 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1218 } else {
1219 assert(bit_size == 16);
1220 zero = instr->op == nir_op_f2b32 ?
1221 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1222 }
1223 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1224 }
1225 break;
1226 }
1227
1228 case nir_op_ftrunc:
1229 inst = bld.RNDZ(result, op[0]);
1230 inst->saturate = instr->dest.saturate;
1231 break;
1232
1233 case nir_op_fceil: {
1234 op[0].negate = !op[0].negate;
1235 fs_reg temp = vgrf(glsl_type::float_type);
1236 bld.RNDD(temp, op[0]);
1237 temp.negate = true;
1238 inst = bld.MOV(result, temp);
1239 inst->saturate = instr->dest.saturate;
1240 break;
1241 }
1242 case nir_op_ffloor:
1243 inst = bld.RNDD(result, op[0]);
1244 inst->saturate = instr->dest.saturate;
1245 break;
1246 case nir_op_ffract:
1247 inst = bld.FRC(result, op[0]);
1248 inst->saturate = instr->dest.saturate;
1249 break;
1250 case nir_op_fround_even:
1251 inst = bld.RNDE(result, op[0]);
1252 inst->saturate = instr->dest.saturate;
1253 break;
1254
1255 case nir_op_fquantize2f16: {
1256 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1257 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1258 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1259
1260 /* The destination stride must be at least as big as the source stride. */
1261 tmp16.type = BRW_REGISTER_TYPE_W;
1262 tmp16.stride = 2;
1263
1264 /* Check for denormal */
1265 fs_reg abs_src0 = op[0];
1266 abs_src0.abs = true;
1267 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1268 BRW_CONDITIONAL_L);
1269 /* Get the appropriately signed zero */
1270 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1271 retype(op[0], BRW_REGISTER_TYPE_UD),
1272 brw_imm_ud(0x80000000));
1273 /* Do the actual F32 -> F16 -> F32 conversion */
1274 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1275 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1276 /* Select that or zero based on normal status */
1277 inst = bld.SEL(result, zero, tmp32);
1278 inst->predicate = BRW_PREDICATE_NORMAL;
1279 inst->saturate = instr->dest.saturate;
1280 break;
1281 }
1282
1283 case nir_op_imin:
1284 case nir_op_umin:
1285 case nir_op_fmin:
1286 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1287 inst->saturate = instr->dest.saturate;
1288 break;
1289
1290 case nir_op_imax:
1291 case nir_op_umax:
1292 case nir_op_fmax:
1293 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1294 inst->saturate = instr->dest.saturate;
1295 break;
1296
1297 case nir_op_pack_snorm_2x16:
1298 case nir_op_pack_snorm_4x8:
1299 case nir_op_pack_unorm_2x16:
1300 case nir_op_pack_unorm_4x8:
1301 case nir_op_unpack_snorm_2x16:
1302 case nir_op_unpack_snorm_4x8:
1303 case nir_op_unpack_unorm_2x16:
1304 case nir_op_unpack_unorm_4x8:
1305 case nir_op_unpack_half_2x16:
1306 case nir_op_pack_half_2x16:
1307 unreachable("not reached: should be handled by lower_packing_builtins");
1308
1309 case nir_op_unpack_half_2x16_split_x:
1310 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1311 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1312 inst->saturate = instr->dest.saturate;
1313 break;
1314 case nir_op_unpack_half_2x16_split_y:
1315 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1316 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1317 inst->saturate = instr->dest.saturate;
1318 break;
1319
1320 case nir_op_pack_64_2x32_split:
1321 case nir_op_pack_32_2x16_split:
1322 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1323 break;
1324
1325 case nir_op_unpack_64_2x32_split_x:
1326 case nir_op_unpack_64_2x32_split_y: {
1327 if (instr->op == nir_op_unpack_64_2x32_split_x)
1328 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1329 else
1330 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1331 break;
1332 }
1333
1334 case nir_op_unpack_32_2x16_split_x:
1335 case nir_op_unpack_32_2x16_split_y: {
1336 if (instr->op == nir_op_unpack_32_2x16_split_x)
1337 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1338 else
1339 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1340 break;
1341 }
1342
1343 case nir_op_fpow:
1344 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1345 inst->saturate = instr->dest.saturate;
1346 break;
1347
1348 case nir_op_bitfield_reverse:
1349 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1350 bld.BFREV(result, op[0]);
1351 break;
1352
1353 case nir_op_bit_count:
1354 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1355 bld.CBIT(result, op[0]);
1356 break;
1357
1358 case nir_op_ufind_msb: {
1359 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1360 emit_find_msb_using_lzd(bld, result, op[0], false);
1361 break;
1362 }
1363
1364 case nir_op_ifind_msb: {
1365 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1366
1367 if (devinfo->gen < 7) {
1368 emit_find_msb_using_lzd(bld, result, op[0], true);
1369 } else {
1370 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1371
1372 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1373 * count from the LSB side. If FBH didn't return an error
1374 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1375 * count into an LSB count.
1376 */
1377 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1378
1379 inst = bld.ADD(result, result, brw_imm_d(31));
1380 inst->predicate = BRW_PREDICATE_NORMAL;
1381 inst->src[0].negate = true;
1382 }
1383 break;
1384 }
1385
1386 case nir_op_find_lsb:
1387 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1388
1389 if (devinfo->gen < 7) {
1390 fs_reg temp = vgrf(glsl_type::int_type);
1391
1392 /* (x & -x) generates a value that consists of only the LSB of x.
1393 * For all powers of 2, findMSB(y) == findLSB(y).
1394 */
1395 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1396 fs_reg negated_src = src;
1397
1398 /* One must be negated, and the other must be non-negated. It
1399 * doesn't matter which is which.
1400 */
1401 negated_src.negate = true;
1402 src.negate = false;
1403
1404 bld.AND(temp, src, negated_src);
1405 emit_find_msb_using_lzd(bld, result, temp, false);
1406 } else {
1407 bld.FBL(result, op[0]);
1408 }
1409 break;
1410
1411 case nir_op_ubitfield_extract:
1412 case nir_op_ibitfield_extract:
1413 unreachable("should have been lowered");
1414 case nir_op_ubfe:
1415 case nir_op_ibfe:
1416 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1417 bld.BFE(result, op[2], op[1], op[0]);
1418 break;
1419 case nir_op_bfm:
1420 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1421 bld.BFI1(result, op[0], op[1]);
1422 break;
1423 case nir_op_bfi:
1424 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1425 bld.BFI2(result, op[0], op[1], op[2]);
1426 break;
1427
1428 case nir_op_bitfield_insert:
1429 unreachable("not reached: should have been lowered");
1430
1431 case nir_op_ishl:
1432 bld.SHL(result, op[0], op[1]);
1433 break;
1434 case nir_op_ishr:
1435 bld.ASR(result, op[0], op[1]);
1436 break;
1437 case nir_op_ushr:
1438 bld.SHR(result, op[0], op[1]);
1439 break;
1440
1441 case nir_op_pack_half_2x16_split:
1442 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1443 break;
1444
1445 case nir_op_ffma:
1446 inst = bld.MAD(result, op[2], op[1], op[0]);
1447 inst->saturate = instr->dest.saturate;
1448 break;
1449
1450 case nir_op_flrp:
1451 inst = bld.LRP(result, op[0], op[1], op[2]);
1452 inst->saturate = instr->dest.saturate;
1453 break;
1454
1455 case nir_op_b32csel:
1456 if (optimize_frontfacing_ternary(instr, result))
1457 return;
1458
1459 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1460 inst = bld.SEL(result, op[1], op[2]);
1461 inst->predicate = BRW_PREDICATE_NORMAL;
1462 break;
1463
1464 case nir_op_extract_u8:
1465 case nir_op_extract_i8: {
1466 unsigned byte = nir_src_as_uint(instr->src[1].src);
1467
1468 /* The PRMs say:
1469 *
1470 * BDW+
1471 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1472 * Use two instructions and a word or DWord intermediate integer type.
1473 */
1474 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1475 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1476
1477 if (instr->op == nir_op_extract_i8) {
1478 /* If we need to sign extend, extract to a word first */
1479 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1480 bld.MOV(w_temp, subscript(op[0], type, byte));
1481 bld.MOV(result, w_temp);
1482 } else {
1483 /* Otherwise use an AND with 0xff and a word type */
1484 bld.AND(result, subscript(op[0], type, byte / 2), brw_imm_uw(0xff));
1485 }
1486 } else {
1487 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1488 bld.MOV(result, subscript(op[0], type, byte));
1489 }
1490 break;
1491 }
1492
1493 case nir_op_extract_u16:
1494 case nir_op_extract_i16: {
1495 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1496 unsigned word = nir_src_as_uint(instr->src[1].src);
1497 bld.MOV(result, subscript(op[0], type, word));
1498 break;
1499 }
1500
1501 default:
1502 unreachable("unhandled instruction");
1503 }
1504
1505 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1506 * to sign extend the low bit to 0/~0
1507 */
1508 if (devinfo->gen <= 5 &&
1509 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1510 fs_reg masked = vgrf(glsl_type::int_type);
1511 bld.AND(masked, result, brw_imm_d(1));
1512 masked.negate = true;
1513 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1514 }
1515 }
1516
1517 void
1518 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1519 nir_load_const_instr *instr)
1520 {
1521 const brw_reg_type reg_type =
1522 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1523 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1524
1525 switch (instr->def.bit_size) {
1526 case 8:
1527 for (unsigned i = 0; i < instr->def.num_components; i++)
1528 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value.i8[i]));
1529 break;
1530
1531 case 16:
1532 for (unsigned i = 0; i < instr->def.num_components; i++)
1533 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1534 break;
1535
1536 case 32:
1537 for (unsigned i = 0; i < instr->def.num_components; i++)
1538 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1539 break;
1540
1541 case 64:
1542 assert(devinfo->gen >= 7);
1543 if (devinfo->gen == 7) {
1544 /* We don't get 64-bit integer types until gen8 */
1545 for (unsigned i = 0; i < instr->def.num_components; i++) {
1546 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1547 setup_imm_df(bld, instr->value.f64[i]));
1548 }
1549 } else {
1550 for (unsigned i = 0; i < instr->def.num_components; i++)
1551 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1552 }
1553 break;
1554
1555 default:
1556 unreachable("Invalid bit size");
1557 }
1558
1559 nir_ssa_values[instr->def.index] = reg;
1560 }
1561
1562 fs_reg
1563 fs_visitor::get_nir_src(const nir_src &src)
1564 {
1565 fs_reg reg;
1566 if (src.is_ssa) {
1567 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1568 const brw_reg_type reg_type =
1569 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1570 reg = bld.vgrf(reg_type, src.ssa->num_components);
1571 } else {
1572 reg = nir_ssa_values[src.ssa->index];
1573 }
1574 } else {
1575 /* We don't handle indirects on locals */
1576 assert(src.reg.indirect == NULL);
1577 reg = offset(nir_locals[src.reg.reg->index], bld,
1578 src.reg.base_offset * src.reg.reg->num_components);
1579 }
1580
1581 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1582 /* The only 64-bit type available on gen7 is DF, so use that. */
1583 reg.type = BRW_REGISTER_TYPE_DF;
1584 } else {
1585 /* To avoid floating-point denorm flushing problems, set the type by
1586 * default to an integer type - instructions that need floating point
1587 * semantics will set this to F if they need to
1588 */
1589 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1590 BRW_REGISTER_TYPE_D);
1591 }
1592
1593 return reg;
1594 }
1595
1596 /**
1597 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1598 *
1599 * This function should not be called on any value which may be 64 bits.
1600 * We could theoretically support 64-bit on gen8+ but we choose not to
1601 * because it wouldn't work in general (no gen7 support) and there are
1602 * enough restrictions in 64-bit immediates that you can't take the return
1603 * value and treat it the same as the result of get_nir_src().
1604 */
1605 fs_reg
1606 fs_visitor::get_nir_src_imm(const nir_src &src)
1607 {
1608 assert(nir_src_bit_size(src) == 32);
1609 return nir_src_is_const(src) ?
1610 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1611 }
1612
1613 fs_reg
1614 fs_visitor::get_nir_dest(const nir_dest &dest)
1615 {
1616 if (dest.is_ssa) {
1617 const brw_reg_type reg_type =
1618 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1619 dest.ssa.bit_size == 8 ?
1620 BRW_REGISTER_TYPE_D :
1621 BRW_REGISTER_TYPE_F);
1622 nir_ssa_values[dest.ssa.index] =
1623 bld.vgrf(reg_type, dest.ssa.num_components);
1624 return nir_ssa_values[dest.ssa.index];
1625 } else {
1626 /* We don't handle indirects on locals */
1627 assert(dest.reg.indirect == NULL);
1628 return offset(nir_locals[dest.reg.reg->index], bld,
1629 dest.reg.base_offset * dest.reg.reg->num_components);
1630 }
1631 }
1632
1633 void
1634 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1635 unsigned wr_mask)
1636 {
1637 for (unsigned i = 0; i < 4; i++) {
1638 if (!((wr_mask >> i) & 1))
1639 continue;
1640
1641 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1642 new_inst->dst = offset(new_inst->dst, bld, i);
1643 for (unsigned j = 0; j < new_inst->sources; j++)
1644 if (new_inst->src[j].file == VGRF)
1645 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1646
1647 bld.emit(new_inst);
1648 }
1649 }
1650
1651 static fs_inst *
1652 emit_pixel_interpolater_send(const fs_builder &bld,
1653 enum opcode opcode,
1654 const fs_reg &dst,
1655 const fs_reg &src,
1656 const fs_reg &desc,
1657 glsl_interp_mode interpolation)
1658 {
1659 struct brw_wm_prog_data *wm_prog_data =
1660 brw_wm_prog_data(bld.shader->stage_prog_data);
1661
1662 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1663 /* 2 floats per slot returned */
1664 inst->size_written = 2 * dst.component_size(inst->exec_size);
1665 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1666
1667 wm_prog_data->pulls_bary = true;
1668
1669 return inst;
1670 }
1671
1672 /**
1673 * Computes 1 << x, given a D/UD register containing some value x.
1674 */
1675 static fs_reg
1676 intexp2(const fs_builder &bld, const fs_reg &x)
1677 {
1678 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1679
1680 fs_reg result = bld.vgrf(x.type, 1);
1681 fs_reg one = bld.vgrf(x.type, 1);
1682
1683 bld.MOV(one, retype(brw_imm_d(1), one.type));
1684 bld.SHL(result, one, x);
1685 return result;
1686 }
1687
1688 void
1689 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1690 {
1691 assert(stage == MESA_SHADER_GEOMETRY);
1692
1693 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1694
1695 if (gs_compile->control_data_header_size_bits == 0)
1696 return;
1697
1698 /* We can only do EndPrimitive() functionality when the control data
1699 * consists of cut bits. Fortunately, the only time it isn't is when the
1700 * output type is points, in which case EndPrimitive() is a no-op.
1701 */
1702 if (gs_prog_data->control_data_format !=
1703 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1704 return;
1705 }
1706
1707 /* Cut bits use one bit per vertex. */
1708 assert(gs_compile->control_data_bits_per_vertex == 1);
1709
1710 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1711 vertex_count.type = BRW_REGISTER_TYPE_UD;
1712
1713 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1714 * vertex n, 0 otherwise. So all we need to do here is mark bit
1715 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1716 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1717 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1718 *
1719 * Note that if EndPrimitive() is called before emitting any vertices, this
1720 * will cause us to set bit 31 of the control_data_bits register to 1.
1721 * That's fine because:
1722 *
1723 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1724 * output, so the hardware will ignore cut bit 31.
1725 *
1726 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1727 * last vertex, so setting cut bit 31 has no effect (since the primitive
1728 * is automatically ended when the GS terminates).
1729 *
1730 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1731 * control_data_bits register to 0 when the first vertex is emitted.
1732 */
1733
1734 const fs_builder abld = bld.annotate("end primitive");
1735
1736 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1737 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1738 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1739 fs_reg mask = intexp2(abld, prev_count);
1740 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1741 * attention to the lower 5 bits of its second source argument, so on this
1742 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1743 * ((vertex_count - 1) % 32).
1744 */
1745 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1746 }
1747
1748 void
1749 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1750 {
1751 assert(stage == MESA_SHADER_GEOMETRY);
1752 assert(gs_compile->control_data_bits_per_vertex != 0);
1753
1754 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1755
1756 const fs_builder abld = bld.annotate("emit control data bits");
1757 const fs_builder fwa_bld = bld.exec_all();
1758
1759 /* We use a single UD register to accumulate control data bits (32 bits
1760 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1761 * at a time.
1762 *
1763 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1764 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1765 * use the Channel Mask phase to enable/disable which DWord within that
1766 * group to write. (Remember, different SIMD8 channels may have emitted
1767 * different numbers of vertices, so we may need per-slot offsets.)
1768 *
1769 * Channel masking presents an annoying problem: we may have to replicate
1770 * the data up to 4 times:
1771 *
1772 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1773 *
1774 * To avoid penalizing shaders that emit a small number of vertices, we
1775 * can avoid these sometimes: if the size of the control data header is
1776 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1777 * land in the same 128-bit group, so we can skip per-slot offsets.
1778 *
1779 * Similarly, if the control data header is <= 32 bits, there is only one
1780 * DWord, so we can skip channel masks.
1781 */
1782 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1783
1784 fs_reg channel_mask, per_slot_offset;
1785
1786 if (gs_compile->control_data_header_size_bits > 32) {
1787 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1788 channel_mask = vgrf(glsl_type::uint_type);
1789 }
1790
1791 if (gs_compile->control_data_header_size_bits > 128) {
1792 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1793 per_slot_offset = vgrf(glsl_type::uint_type);
1794 }
1795
1796 /* Figure out which DWord we're trying to write to using the formula:
1797 *
1798 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1799 *
1800 * Since bits_per_vertex is a power of two, and is known at compile
1801 * time, this can be optimized to:
1802 *
1803 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1804 */
1805 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1806 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1807 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1808 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1809 unsigned log2_bits_per_vertex =
1810 util_last_bit(gs_compile->control_data_bits_per_vertex);
1811 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1812
1813 if (per_slot_offset.file != BAD_FILE) {
1814 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1815 * the appropriate OWord within the control data header.
1816 */
1817 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1818 }
1819
1820 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1821 * write to the appropriate DWORD within the OWORD.
1822 */
1823 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1824 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1825 channel_mask = intexp2(fwa_bld, channel);
1826 /* Then the channel masks need to be in bits 23:16. */
1827 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1828 }
1829
1830 /* Store the control data bits in the message payload and send it. */
1831 unsigned mlen = 2;
1832 if (channel_mask.file != BAD_FILE)
1833 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1834 if (per_slot_offset.file != BAD_FILE)
1835 mlen++;
1836
1837 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1838 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1839 unsigned i = 0;
1840 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1841 if (per_slot_offset.file != BAD_FILE)
1842 sources[i++] = per_slot_offset;
1843 if (channel_mask.file != BAD_FILE)
1844 sources[i++] = channel_mask;
1845 while (i < mlen) {
1846 sources[i++] = this->control_data_bits;
1847 }
1848
1849 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1850 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1851 inst->mlen = mlen;
1852 /* We need to increment Global Offset by 256-bits to make room for
1853 * Broadwell's extra "Vertex Count" payload at the beginning of the
1854 * URB entry. Since this is an OWord message, Global Offset is counted
1855 * in 128-bit units, so we must set it to 2.
1856 */
1857 if (gs_prog_data->static_vertex_count == -1)
1858 inst->offset = 2;
1859 }
1860
1861 void
1862 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1863 unsigned stream_id)
1864 {
1865 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1866
1867 /* Note: we are calling this *before* increasing vertex_count, so
1868 * this->vertex_count == vertex_count - 1 in the formula above.
1869 */
1870
1871 /* Stream mode uses 2 bits per vertex */
1872 assert(gs_compile->control_data_bits_per_vertex == 2);
1873
1874 /* Must be a valid stream */
1875 assert(stream_id < MAX_VERTEX_STREAMS);
1876
1877 /* Control data bits are initialized to 0 so we don't have to set any
1878 * bits when sending vertices to stream 0.
1879 */
1880 if (stream_id == 0)
1881 return;
1882
1883 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1884
1885 /* reg::sid = stream_id */
1886 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1887 abld.MOV(sid, brw_imm_ud(stream_id));
1888
1889 /* reg:shift_count = 2 * (vertex_count - 1) */
1890 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1891 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1892
1893 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1894 * attention to the lower 5 bits of its second source argument, so on this
1895 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1896 * stream_id << ((2 * (vertex_count - 1)) % 32).
1897 */
1898 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1899 abld.SHL(mask, sid, shift_count);
1900 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1901 }
1902
1903 void
1904 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1905 unsigned stream_id)
1906 {
1907 assert(stage == MESA_SHADER_GEOMETRY);
1908
1909 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1910
1911 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1912 vertex_count.type = BRW_REGISTER_TYPE_UD;
1913
1914 /* Haswell and later hardware ignores the "Render Stream Select" bits
1915 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1916 * and instead sends all primitives down the pipeline for rasterization.
1917 * If the SOL stage is enabled, "Render Stream Select" is honored and
1918 * primitives bound to non-zero streams are discarded after stream output.
1919 *
1920 * Since the only purpose of primives sent to non-zero streams is to
1921 * be recorded by transform feedback, we can simply discard all geometry
1922 * bound to these streams when transform feedback is disabled.
1923 */
1924 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1925 return;
1926
1927 /* If we're outputting 32 control data bits or less, then we can wait
1928 * until the shader is over to output them all. Otherwise we need to
1929 * output them as we go. Now is the time to do it, since we're about to
1930 * output the vertex_count'th vertex, so it's guaranteed that the
1931 * control data bits associated with the (vertex_count - 1)th vertex are
1932 * correct.
1933 */
1934 if (gs_compile->control_data_header_size_bits > 32) {
1935 const fs_builder abld =
1936 bld.annotate("emit vertex: emit control data bits");
1937
1938 /* Only emit control data bits if we've finished accumulating a batch
1939 * of 32 bits. This is the case when:
1940 *
1941 * (vertex_count * bits_per_vertex) % 32 == 0
1942 *
1943 * (in other words, when the last 5 bits of vertex_count *
1944 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1945 * integer n (which is always the case, since bits_per_vertex is
1946 * always 1 or 2), this is equivalent to requiring that the last 5-n
1947 * bits of vertex_count are 0:
1948 *
1949 * vertex_count & (2^(5-n) - 1) == 0
1950 *
1951 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1952 * equivalent to:
1953 *
1954 * vertex_count & (32 / bits_per_vertex - 1) == 0
1955 *
1956 * TODO: If vertex_count is an immediate, we could do some of this math
1957 * at compile time...
1958 */
1959 fs_inst *inst =
1960 abld.AND(bld.null_reg_d(), vertex_count,
1961 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1962 inst->conditional_mod = BRW_CONDITIONAL_Z;
1963
1964 abld.IF(BRW_PREDICATE_NORMAL);
1965 /* If vertex_count is 0, then no control data bits have been
1966 * accumulated yet, so we can skip emitting them.
1967 */
1968 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1969 BRW_CONDITIONAL_NEQ);
1970 abld.IF(BRW_PREDICATE_NORMAL);
1971 emit_gs_control_data_bits(vertex_count);
1972 abld.emit(BRW_OPCODE_ENDIF);
1973
1974 /* Reset control_data_bits to 0 so we can start accumulating a new
1975 * batch.
1976 *
1977 * Note: in the case where vertex_count == 0, this neutralizes the
1978 * effect of any call to EndPrimitive() that the shader may have
1979 * made before outputting its first vertex.
1980 */
1981 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
1982 inst->force_writemask_all = true;
1983 abld.emit(BRW_OPCODE_ENDIF);
1984 }
1985
1986 emit_urb_writes(vertex_count);
1987
1988 /* In stream mode we have to set control data bits for all vertices
1989 * unless we have disabled control data bits completely (which we do
1990 * do for GL_POINTS outputs that don't use streams).
1991 */
1992 if (gs_compile->control_data_header_size_bits > 0 &&
1993 gs_prog_data->control_data_format ==
1994 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
1995 set_gs_stream_control_data_bits(vertex_count, stream_id);
1996 }
1997 }
1998
1999 void
2000 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2001 const nir_src &vertex_src,
2002 unsigned base_offset,
2003 const nir_src &offset_src,
2004 unsigned num_components,
2005 unsigned first_component)
2006 {
2007 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2008 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2009
2010 /* TODO: figure out push input layout for invocations == 1 */
2011 /* TODO: make this work with 64-bit inputs */
2012 if (gs_prog_data->invocations == 1 &&
2013 type_sz(dst.type) <= 4 &&
2014 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2015 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2016 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2017 nir_src_as_uint(vertex_src) * push_reg_count;
2018 for (unsigned i = 0; i < num_components; i++) {
2019 bld.MOV(offset(dst, bld, i),
2020 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2021 }
2022 return;
2023 }
2024
2025 /* Resort to the pull model. Ensure the VUE handles are provided. */
2026 assert(gs_prog_data->base.include_vue_handles);
2027
2028 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2029 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2030
2031 if (gs_prog_data->invocations == 1) {
2032 if (nir_src_is_const(vertex_src)) {
2033 /* The vertex index is constant; just select the proper URB handle. */
2034 icp_handle =
2035 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2036 BRW_REGISTER_TYPE_UD);
2037 } else {
2038 /* The vertex index is non-constant. We need to use indirect
2039 * addressing to fetch the proper URB handle.
2040 *
2041 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2042 * indicating that channel <n> should read the handle from
2043 * DWord <n>. We convert that to bytes by multiplying by 4.
2044 *
2045 * Next, we convert the vertex index to bytes by multiplying
2046 * by 32 (shifting by 5), and add the two together. This is
2047 * the final indirect byte offset.
2048 */
2049 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2050 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2051 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2052 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2053
2054 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2055 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2056 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2057 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2058 /* Convert vertex_index to bytes (multiply by 32) */
2059 bld.SHL(vertex_offset_bytes,
2060 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2061 brw_imm_ud(5u));
2062 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2063
2064 /* Use first_icp_handle as the base offset. There is one register
2065 * of URB handles per vertex, so inform the register allocator that
2066 * we might read up to nir->info.gs.vertices_in registers.
2067 */
2068 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2069 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2070 fs_reg(icp_offset_bytes),
2071 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2072 }
2073 } else {
2074 assert(gs_prog_data->invocations > 1);
2075
2076 if (nir_src_is_const(vertex_src)) {
2077 unsigned vertex = nir_src_as_uint(vertex_src);
2078 assert(devinfo->gen >= 9 || vertex <= 5);
2079 bld.MOV(icp_handle,
2080 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2081 BRW_REGISTER_TYPE_UD));
2082 } else {
2083 /* The vertex index is non-constant. We need to use indirect
2084 * addressing to fetch the proper URB handle.
2085 *
2086 */
2087 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2088
2089 /* Convert vertex_index to bytes (multiply by 4) */
2090 bld.SHL(icp_offset_bytes,
2091 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2092 brw_imm_ud(2u));
2093
2094 /* Use first_icp_handle as the base offset. There is one DWord
2095 * of URB handles per vertex, so inform the register allocator that
2096 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2097 */
2098 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2099 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2100 fs_reg(icp_offset_bytes),
2101 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2102 REG_SIZE));
2103 }
2104 }
2105
2106 fs_inst *inst;
2107
2108 fs_reg tmp_dst = dst;
2109 fs_reg indirect_offset = get_nir_src(offset_src);
2110 unsigned num_iterations = 1;
2111 unsigned orig_num_components = num_components;
2112
2113 if (type_sz(dst.type) == 8) {
2114 if (num_components > 2) {
2115 num_iterations = 2;
2116 num_components = 2;
2117 }
2118 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2119 tmp_dst = tmp;
2120 first_component = first_component / 2;
2121 }
2122
2123 for (unsigned iter = 0; iter < num_iterations; iter++) {
2124 if (nir_src_is_const(offset_src)) {
2125 /* Constant indexing - use global offset. */
2126 if (first_component != 0) {
2127 unsigned read_components = num_components + first_component;
2128 fs_reg tmp = bld.vgrf(dst.type, read_components);
2129 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2130 inst->size_written = read_components *
2131 tmp.component_size(inst->exec_size);
2132 for (unsigned i = 0; i < num_components; i++) {
2133 bld.MOV(offset(tmp_dst, bld, i),
2134 offset(tmp, bld, i + first_component));
2135 }
2136 } else {
2137 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2138 icp_handle);
2139 inst->size_written = num_components *
2140 tmp_dst.component_size(inst->exec_size);
2141 }
2142 inst->offset = base_offset + nir_src_as_uint(offset_src);
2143 inst->mlen = 1;
2144 } else {
2145 /* Indirect indexing - use per-slot offsets as well. */
2146 const fs_reg srcs[] = { icp_handle, indirect_offset };
2147 unsigned read_components = num_components + first_component;
2148 fs_reg tmp = bld.vgrf(dst.type, read_components);
2149 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2150 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2151 if (first_component != 0) {
2152 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2153 payload);
2154 inst->size_written = read_components *
2155 tmp.component_size(inst->exec_size);
2156 for (unsigned i = 0; i < num_components; i++) {
2157 bld.MOV(offset(tmp_dst, bld, i),
2158 offset(tmp, bld, i + first_component));
2159 }
2160 } else {
2161 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2162 payload);
2163 inst->size_written = num_components *
2164 tmp_dst.component_size(inst->exec_size);
2165 }
2166 inst->offset = base_offset;
2167 inst->mlen = 2;
2168 }
2169
2170 if (type_sz(dst.type) == 8) {
2171 shuffle_from_32bit_read(bld,
2172 offset(dst, bld, iter * 2),
2173 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2174 0,
2175 num_components);
2176 }
2177
2178 if (num_iterations > 1) {
2179 num_components = orig_num_components - 2;
2180 if(nir_src_is_const(offset_src)) {
2181 base_offset++;
2182 } else {
2183 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2184 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2185 indirect_offset = new_indirect;
2186 }
2187 }
2188 }
2189 }
2190
2191 fs_reg
2192 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2193 {
2194 nir_src *offset_src = nir_get_io_offset_src(instr);
2195
2196 if (nir_src_is_const(*offset_src)) {
2197 /* The only constant offset we should find is 0. brw_nir.c's
2198 * add_const_offset_to_base() will fold other constant offsets
2199 * into instr->const_index[0].
2200 */
2201 assert(nir_src_as_uint(*offset_src) == 0);
2202 return fs_reg();
2203 }
2204
2205 return get_nir_src(*offset_src);
2206 }
2207
2208 void
2209 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2210 nir_intrinsic_instr *instr)
2211 {
2212 assert(stage == MESA_SHADER_VERTEX);
2213
2214 fs_reg dest;
2215 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2216 dest = get_nir_dest(instr->dest);
2217
2218 switch (instr->intrinsic) {
2219 case nir_intrinsic_load_vertex_id:
2220 case nir_intrinsic_load_base_vertex:
2221 unreachable("should be lowered by nir_lower_system_values()");
2222
2223 case nir_intrinsic_load_input: {
2224 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2225 unsigned first_component = nir_intrinsic_component(instr);
2226 unsigned num_components = instr->num_components;
2227
2228 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2229
2230 if (type_sz(dest.type) == 8)
2231 first_component /= 2;
2232
2233 /* For 16-bit support maybe a temporary will be needed to copy from
2234 * the ATTR file.
2235 */
2236 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2237 first_component, num_components);
2238 break;
2239 }
2240
2241 case nir_intrinsic_load_vertex_id_zero_base:
2242 case nir_intrinsic_load_instance_id:
2243 case nir_intrinsic_load_base_instance:
2244 case nir_intrinsic_load_draw_id:
2245 case nir_intrinsic_load_first_vertex:
2246 case nir_intrinsic_load_is_indexed_draw:
2247 unreachable("lowered by brw_nir_lower_vs_inputs");
2248
2249 default:
2250 nir_emit_intrinsic(bld, instr);
2251 break;
2252 }
2253 }
2254
2255 void
2256 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2257 nir_intrinsic_instr *instr)
2258 {
2259 assert(stage == MESA_SHADER_TESS_CTRL);
2260 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2261 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2262
2263 fs_reg dst;
2264 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2265 dst = get_nir_dest(instr->dest);
2266
2267 switch (instr->intrinsic) {
2268 case nir_intrinsic_load_primitive_id:
2269 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2270 break;
2271 case nir_intrinsic_load_invocation_id:
2272 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2273 break;
2274 case nir_intrinsic_load_patch_vertices_in:
2275 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2276 brw_imm_d(tcs_key->input_vertices));
2277 break;
2278
2279 case nir_intrinsic_barrier: {
2280 if (tcs_prog_data->instances == 1)
2281 break;
2282
2283 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2284 fs_reg m0_2 = component(m0, 2);
2285
2286 const fs_builder chanbld = bld.exec_all().group(1, 0);
2287
2288 /* Zero the message header */
2289 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2290
2291 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2292 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2293 brw_imm_ud(INTEL_MASK(16, 13)));
2294
2295 /* Shift it up to bits 27:24. */
2296 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2297
2298 /* Set the Barrier Count and the enable bit */
2299 chanbld.OR(m0_2, m0_2,
2300 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2301
2302 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2303 break;
2304 }
2305
2306 case nir_intrinsic_load_input:
2307 unreachable("nir_lower_io should never give us these.");
2308 break;
2309
2310 case nir_intrinsic_load_per_vertex_input: {
2311 fs_reg indirect_offset = get_indirect_offset(instr);
2312 unsigned imm_offset = instr->const_index[0];
2313
2314 const nir_src &vertex_src = instr->src[0];
2315
2316 fs_inst *inst;
2317
2318 fs_reg icp_handle;
2319
2320 if (nir_src_is_const(vertex_src)) {
2321 /* Emit a MOV to resolve <0,1,0> regioning. */
2322 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2323 unsigned vertex = nir_src_as_uint(vertex_src);
2324 bld.MOV(icp_handle,
2325 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2326 BRW_REGISTER_TYPE_UD));
2327 } else if (tcs_prog_data->instances == 1 &&
2328 vertex_src.is_ssa &&
2329 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2330 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2331 /* For the common case of only 1 instance, an array index of
2332 * gl_InvocationID means reading g1. Skip all the indirect work.
2333 */
2334 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2335 } else {
2336 /* The vertex index is non-constant. We need to use indirect
2337 * addressing to fetch the proper URB handle.
2338 */
2339 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2340
2341 /* Each ICP handle is a single DWord (4 bytes) */
2342 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2343 bld.SHL(vertex_offset_bytes,
2344 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2345 brw_imm_ud(2u));
2346
2347 /* Start at g1. We might read up to 4 registers. */
2348 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2349 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2350 brw_imm_ud(4 * REG_SIZE));
2351 }
2352
2353 /* We can only read two double components with each URB read, so
2354 * we send two read messages in that case, each one loading up to
2355 * two double components.
2356 */
2357 unsigned num_iterations = 1;
2358 unsigned num_components = instr->num_components;
2359 unsigned first_component = nir_intrinsic_component(instr);
2360 fs_reg orig_dst = dst;
2361 if (type_sz(dst.type) == 8) {
2362 first_component = first_component / 2;
2363 if (instr->num_components > 2) {
2364 num_iterations = 2;
2365 num_components = 2;
2366 }
2367
2368 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2369 dst = tmp;
2370 }
2371
2372 for (unsigned iter = 0; iter < num_iterations; iter++) {
2373 if (indirect_offset.file == BAD_FILE) {
2374 /* Constant indexing - use global offset. */
2375 if (first_component != 0) {
2376 unsigned read_components = num_components + first_component;
2377 fs_reg tmp = bld.vgrf(dst.type, read_components);
2378 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2379 for (unsigned i = 0; i < num_components; i++) {
2380 bld.MOV(offset(dst, bld, i),
2381 offset(tmp, bld, i + first_component));
2382 }
2383 } else {
2384 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2385 }
2386 inst->offset = imm_offset;
2387 inst->mlen = 1;
2388 } else {
2389 /* Indirect indexing - use per-slot offsets as well. */
2390 const fs_reg srcs[] = { icp_handle, indirect_offset };
2391 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2392 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2393 if (first_component != 0) {
2394 unsigned read_components = num_components + first_component;
2395 fs_reg tmp = bld.vgrf(dst.type, read_components);
2396 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2397 payload);
2398 for (unsigned i = 0; i < num_components; i++) {
2399 bld.MOV(offset(dst, bld, i),
2400 offset(tmp, bld, i + first_component));
2401 }
2402 } else {
2403 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2404 payload);
2405 }
2406 inst->offset = imm_offset;
2407 inst->mlen = 2;
2408 }
2409 inst->size_written = (num_components + first_component) *
2410 inst->dst.component_size(inst->exec_size);
2411
2412 /* If we are reading 64-bit data using 32-bit read messages we need
2413 * build proper 64-bit data elements by shuffling the low and high
2414 * 32-bit components around like we do for other things like UBOs
2415 * or SSBOs.
2416 */
2417 if (type_sz(dst.type) == 8) {
2418 shuffle_from_32bit_read(bld,
2419 offset(orig_dst, bld, iter * 2),
2420 retype(dst, BRW_REGISTER_TYPE_D),
2421 0, num_components);
2422 }
2423
2424 /* Copy the temporary to the destination to deal with writemasking.
2425 *
2426 * Also attempt to deal with gl_PointSize being in the .w component.
2427 */
2428 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2429 assert(type_sz(dst.type) < 8);
2430 inst->dst = bld.vgrf(dst.type, 4);
2431 inst->size_written = 4 * REG_SIZE;
2432 bld.MOV(dst, offset(inst->dst, bld, 3));
2433 }
2434
2435 /* If we are loading double data and we need a second read message
2436 * adjust the write offset
2437 */
2438 if (num_iterations > 1) {
2439 num_components = instr->num_components - 2;
2440 imm_offset++;
2441 }
2442 }
2443 break;
2444 }
2445
2446 case nir_intrinsic_load_output:
2447 case nir_intrinsic_load_per_vertex_output: {
2448 fs_reg indirect_offset = get_indirect_offset(instr);
2449 unsigned imm_offset = instr->const_index[0];
2450 unsigned first_component = nir_intrinsic_component(instr);
2451
2452 fs_inst *inst;
2453 if (indirect_offset.file == BAD_FILE) {
2454 /* Replicate the patch handle to all enabled channels */
2455 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2456 bld.MOV(patch_handle,
2457 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2458
2459 {
2460 if (first_component != 0) {
2461 unsigned read_components =
2462 instr->num_components + first_component;
2463 fs_reg tmp = bld.vgrf(dst.type, read_components);
2464 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2465 patch_handle);
2466 inst->size_written = read_components * REG_SIZE;
2467 for (unsigned i = 0; i < instr->num_components; i++) {
2468 bld.MOV(offset(dst, bld, i),
2469 offset(tmp, bld, i + first_component));
2470 }
2471 } else {
2472 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2473 patch_handle);
2474 inst->size_written = instr->num_components * REG_SIZE;
2475 }
2476 inst->offset = imm_offset;
2477 inst->mlen = 1;
2478 }
2479 } else {
2480 /* Indirect indexing - use per-slot offsets as well. */
2481 const fs_reg srcs[] = {
2482 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2483 indirect_offset
2484 };
2485 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2486 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2487 if (first_component != 0) {
2488 unsigned read_components =
2489 instr->num_components + first_component;
2490 fs_reg tmp = bld.vgrf(dst.type, read_components);
2491 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2492 payload);
2493 inst->size_written = read_components * REG_SIZE;
2494 for (unsigned i = 0; i < instr->num_components; i++) {
2495 bld.MOV(offset(dst, bld, i),
2496 offset(tmp, bld, i + first_component));
2497 }
2498 } else {
2499 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2500 payload);
2501 inst->size_written = instr->num_components * REG_SIZE;
2502 }
2503 inst->offset = imm_offset;
2504 inst->mlen = 2;
2505 }
2506 break;
2507 }
2508
2509 case nir_intrinsic_store_output:
2510 case nir_intrinsic_store_per_vertex_output: {
2511 fs_reg value = get_nir_src(instr->src[0]);
2512 bool is_64bit = (instr->src[0].is_ssa ?
2513 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2514 fs_reg indirect_offset = get_indirect_offset(instr);
2515 unsigned imm_offset = instr->const_index[0];
2516 unsigned mask = instr->const_index[1];
2517 unsigned header_regs = 0;
2518 fs_reg srcs[7];
2519 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2520
2521 if (indirect_offset.file != BAD_FILE) {
2522 srcs[header_regs++] = indirect_offset;
2523 }
2524
2525 if (mask == 0)
2526 break;
2527
2528 unsigned num_components = util_last_bit(mask);
2529 enum opcode opcode;
2530
2531 /* We can only pack two 64-bit components in a single message, so send
2532 * 2 messages if we have more components
2533 */
2534 unsigned num_iterations = 1;
2535 unsigned iter_components = num_components;
2536 unsigned first_component = nir_intrinsic_component(instr);
2537 if (is_64bit) {
2538 first_component = first_component / 2;
2539 if (instr->num_components > 2) {
2540 num_iterations = 2;
2541 iter_components = 2;
2542 }
2543 }
2544
2545 mask = mask << first_component;
2546
2547 for (unsigned iter = 0; iter < num_iterations; iter++) {
2548 if (!is_64bit && mask != WRITEMASK_XYZW) {
2549 srcs[header_regs++] = brw_imm_ud(mask << 16);
2550 opcode = indirect_offset.file != BAD_FILE ?
2551 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2552 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2553 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2554 /* Expand the 64-bit mask to 32-bit channels. We only handle
2555 * two channels in each iteration, so we only care about X/Y.
2556 */
2557 unsigned mask32 = 0;
2558 if (mask & WRITEMASK_X)
2559 mask32 |= WRITEMASK_XY;
2560 if (mask & WRITEMASK_Y)
2561 mask32 |= WRITEMASK_ZW;
2562
2563 /* If the mask does not include any of the channels X or Y there
2564 * is nothing to do in this iteration. Move on to the next couple
2565 * of 64-bit channels.
2566 */
2567 if (!mask32) {
2568 mask >>= 2;
2569 imm_offset++;
2570 continue;
2571 }
2572
2573 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2574 opcode = indirect_offset.file != BAD_FILE ?
2575 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2576 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2577 } else {
2578 opcode = indirect_offset.file != BAD_FILE ?
2579 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2580 SHADER_OPCODE_URB_WRITE_SIMD8;
2581 }
2582
2583 for (unsigned i = 0; i < iter_components; i++) {
2584 if (!(mask & (1 << (i + first_component))))
2585 continue;
2586
2587 if (!is_64bit) {
2588 srcs[header_regs + i + first_component] = offset(value, bld, i);
2589 } else {
2590 /* We need to shuffle the 64-bit data to match the layout
2591 * expected by our 32-bit URB write messages. We use a temporary
2592 * for that.
2593 */
2594 unsigned channel = iter * 2 + i;
2595 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2596
2597 srcs[header_regs + (i + first_component) * 2] = dest;
2598 srcs[header_regs + (i + first_component) * 2 + 1] =
2599 offset(dest, bld, 1);
2600 }
2601 }
2602
2603 unsigned mlen =
2604 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2605 (is_64bit ? 2 * first_component : first_component);
2606 fs_reg payload =
2607 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2608 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2609
2610 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2611 inst->offset = imm_offset;
2612 inst->mlen = mlen;
2613
2614 /* If this is a 64-bit attribute, select the next two 64-bit channels
2615 * to be handled in the next iteration.
2616 */
2617 if (is_64bit) {
2618 mask >>= 2;
2619 imm_offset++;
2620 }
2621 }
2622 break;
2623 }
2624
2625 default:
2626 nir_emit_intrinsic(bld, instr);
2627 break;
2628 }
2629 }
2630
2631 void
2632 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2633 nir_intrinsic_instr *instr)
2634 {
2635 assert(stage == MESA_SHADER_TESS_EVAL);
2636 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2637
2638 fs_reg dest;
2639 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2640 dest = get_nir_dest(instr->dest);
2641
2642 switch (instr->intrinsic) {
2643 case nir_intrinsic_load_primitive_id:
2644 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2645 break;
2646 case nir_intrinsic_load_tess_coord:
2647 /* gl_TessCoord is part of the payload in g1-3 */
2648 for (unsigned i = 0; i < 3; i++) {
2649 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2650 }
2651 break;
2652
2653 case nir_intrinsic_load_input:
2654 case nir_intrinsic_load_per_vertex_input: {
2655 fs_reg indirect_offset = get_indirect_offset(instr);
2656 unsigned imm_offset = instr->const_index[0];
2657 unsigned first_component = nir_intrinsic_component(instr);
2658
2659 if (type_sz(dest.type) == 8) {
2660 first_component = first_component / 2;
2661 }
2662
2663 fs_inst *inst;
2664 if (indirect_offset.file == BAD_FILE) {
2665 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2666 * which is 16 registers (since each holds 2 vec4 slots).
2667 */
2668 unsigned slot_count = 1;
2669 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2670 slot_count++;
2671
2672 const unsigned max_push_slots = 32;
2673 if (imm_offset + slot_count <= max_push_slots) {
2674 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2675 for (int i = 0; i < instr->num_components; i++) {
2676 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2677 i + first_component;
2678 bld.MOV(offset(dest, bld, i), component(src, comp));
2679 }
2680
2681 tes_prog_data->base.urb_read_length =
2682 MAX2(tes_prog_data->base.urb_read_length,
2683 DIV_ROUND_UP(imm_offset + slot_count, 2));
2684 } else {
2685 /* Replicate the patch handle to all enabled channels */
2686 const fs_reg srcs[] = {
2687 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2688 };
2689 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2690 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2691
2692 if (first_component != 0) {
2693 unsigned read_components =
2694 instr->num_components + first_component;
2695 fs_reg tmp = bld.vgrf(dest.type, read_components);
2696 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2697 patch_handle);
2698 inst->size_written = read_components * REG_SIZE;
2699 for (unsigned i = 0; i < instr->num_components; i++) {
2700 bld.MOV(offset(dest, bld, i),
2701 offset(tmp, bld, i + first_component));
2702 }
2703 } else {
2704 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2705 patch_handle);
2706 inst->size_written = instr->num_components * REG_SIZE;
2707 }
2708 inst->mlen = 1;
2709 inst->offset = imm_offset;
2710 }
2711 } else {
2712 /* Indirect indexing - use per-slot offsets as well. */
2713
2714 /* We can only read two double components with each URB read, so
2715 * we send two read messages in that case, each one loading up to
2716 * two double components.
2717 */
2718 unsigned num_iterations = 1;
2719 unsigned num_components = instr->num_components;
2720 fs_reg orig_dest = dest;
2721 if (type_sz(dest.type) == 8) {
2722 if (instr->num_components > 2) {
2723 num_iterations = 2;
2724 num_components = 2;
2725 }
2726 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2727 dest = tmp;
2728 }
2729
2730 for (unsigned iter = 0; iter < num_iterations; iter++) {
2731 const fs_reg srcs[] = {
2732 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2733 indirect_offset
2734 };
2735 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2736 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2737
2738 if (first_component != 0) {
2739 unsigned read_components =
2740 num_components + first_component;
2741 fs_reg tmp = bld.vgrf(dest.type, read_components);
2742 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2743 payload);
2744 for (unsigned i = 0; i < num_components; i++) {
2745 bld.MOV(offset(dest, bld, i),
2746 offset(tmp, bld, i + first_component));
2747 }
2748 } else {
2749 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2750 payload);
2751 }
2752 inst->mlen = 2;
2753 inst->offset = imm_offset;
2754 inst->size_written = (num_components + first_component) *
2755 inst->dst.component_size(inst->exec_size);
2756
2757 /* If we are reading 64-bit data using 32-bit read messages we need
2758 * build proper 64-bit data elements by shuffling the low and high
2759 * 32-bit components around like we do for other things like UBOs
2760 * or SSBOs.
2761 */
2762 if (type_sz(dest.type) == 8) {
2763 shuffle_from_32bit_read(bld,
2764 offset(orig_dest, bld, iter * 2),
2765 retype(dest, BRW_REGISTER_TYPE_D),
2766 0, num_components);
2767 }
2768
2769 /* If we are loading double data and we need a second read message
2770 * adjust the offset
2771 */
2772 if (num_iterations > 1) {
2773 num_components = instr->num_components - 2;
2774 imm_offset++;
2775 }
2776 }
2777 }
2778 break;
2779 }
2780 default:
2781 nir_emit_intrinsic(bld, instr);
2782 break;
2783 }
2784 }
2785
2786 void
2787 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2788 nir_intrinsic_instr *instr)
2789 {
2790 assert(stage == MESA_SHADER_GEOMETRY);
2791 fs_reg indirect_offset;
2792
2793 fs_reg dest;
2794 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2795 dest = get_nir_dest(instr->dest);
2796
2797 switch (instr->intrinsic) {
2798 case nir_intrinsic_load_primitive_id:
2799 assert(stage == MESA_SHADER_GEOMETRY);
2800 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2801 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2802 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2803 break;
2804
2805 case nir_intrinsic_load_input:
2806 unreachable("load_input intrinsics are invalid for the GS stage");
2807
2808 case nir_intrinsic_load_per_vertex_input:
2809 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2810 instr->src[1], instr->num_components,
2811 nir_intrinsic_component(instr));
2812 break;
2813
2814 case nir_intrinsic_emit_vertex_with_counter:
2815 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2816 break;
2817
2818 case nir_intrinsic_end_primitive_with_counter:
2819 emit_gs_end_primitive(instr->src[0]);
2820 break;
2821
2822 case nir_intrinsic_set_vertex_count:
2823 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2824 break;
2825
2826 case nir_intrinsic_load_invocation_id: {
2827 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2828 assert(val.file != BAD_FILE);
2829 dest.type = val.type;
2830 bld.MOV(dest, val);
2831 break;
2832 }
2833
2834 default:
2835 nir_emit_intrinsic(bld, instr);
2836 break;
2837 }
2838 }
2839
2840 /**
2841 * Fetch the current render target layer index.
2842 */
2843 static fs_reg
2844 fetch_render_target_array_index(const fs_builder &bld)
2845 {
2846 if (bld.shader->devinfo->gen >= 6) {
2847 /* The render target array index is provided in the thread payload as
2848 * bits 26:16 of r0.0.
2849 */
2850 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
2851 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
2852 brw_imm_uw(0x7ff));
2853 return idx;
2854 } else {
2855 /* Pre-SNB we only ever render into the first layer of the framebuffer
2856 * since layered rendering is not implemented.
2857 */
2858 return brw_imm_ud(0);
2859 }
2860 }
2861
2862 /**
2863 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
2864 * framebuffer at the current fragment coordinates and sample index.
2865 */
2866 fs_inst *
2867 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
2868 unsigned target)
2869 {
2870 const struct gen_device_info *devinfo = bld.shader->devinfo;
2871
2872 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
2873 const brw_wm_prog_key *wm_key =
2874 reinterpret_cast<const brw_wm_prog_key *>(key);
2875 assert(!wm_key->coherent_fb_fetch);
2876 const struct brw_wm_prog_data *wm_prog_data =
2877 brw_wm_prog_data(stage_prog_data);
2878
2879 /* Calculate the surface index relative to the start of the texture binding
2880 * table block, since that's what the texturing messages expect.
2881 */
2882 const unsigned surface = target +
2883 wm_prog_data->binding_table.render_target_read_start -
2884 wm_prog_data->base.binding_table.texture_start;
2885
2886 /* Calculate the fragment coordinates. */
2887 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
2888 bld.MOV(offset(coords, bld, 0), pixel_x);
2889 bld.MOV(offset(coords, bld, 1), pixel_y);
2890 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
2891
2892 /* Calculate the sample index and MCS payload when multisampling. Luckily
2893 * the MCS fetch message behaves deterministically for UMS surfaces, so it
2894 * shouldn't be necessary to recompile based on whether the framebuffer is
2895 * CMS or UMS.
2896 */
2897 if (wm_key->multisample_fbo &&
2898 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
2899 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
2900
2901 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
2902 const fs_reg mcs = wm_key->multisample_fbo ?
2903 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
2904
2905 /* Use either a normal or a CMS texel fetch message depending on whether
2906 * the framebuffer is single or multisample. On SKL+ use the wide CMS
2907 * message just in case the framebuffer uses 16x multisampling, it should
2908 * be equivalent to the normal CMS fetch for lower multisampling modes.
2909 */
2910 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
2911 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
2912 SHADER_OPCODE_TXF_CMS_LOGICAL;
2913
2914 /* Emit the instruction. */
2915 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
2916 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
2917 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
2918 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
2919 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
2920 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
2921 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
2922 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
2923 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
2924
2925 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
2926 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
2927
2928 return inst;
2929 }
2930
2931 /**
2932 * Actual coherent framebuffer read implemented using the native render target
2933 * read message. Requires SKL+.
2934 */
2935 static fs_inst *
2936 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
2937 {
2938 assert(bld.shader->devinfo->gen >= 9);
2939 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
2940 inst->target = target;
2941 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
2942
2943 return inst;
2944 }
2945
2946 static fs_reg
2947 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
2948 {
2949 if (n && regs[0].file != BAD_FILE) {
2950 return regs[0];
2951
2952 } else {
2953 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
2954
2955 for (unsigned i = 0; i < n; i++)
2956 regs[i] = tmp;
2957
2958 return tmp;
2959 }
2960 }
2961
2962 static fs_reg
2963 alloc_frag_output(fs_visitor *v, unsigned location)
2964 {
2965 assert(v->stage == MESA_SHADER_FRAGMENT);
2966 const brw_wm_prog_key *const key =
2967 reinterpret_cast<const brw_wm_prog_key *>(v->key);
2968 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
2969 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
2970
2971 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
2972 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
2973
2974 else if (l == FRAG_RESULT_COLOR)
2975 return alloc_temporary(v->bld, 4, v->outputs,
2976 MAX2(key->nr_color_regions, 1));
2977
2978 else if (l == FRAG_RESULT_DEPTH)
2979 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
2980
2981 else if (l == FRAG_RESULT_STENCIL)
2982 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
2983
2984 else if (l == FRAG_RESULT_SAMPLE_MASK)
2985 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
2986
2987 else if (l >= FRAG_RESULT_DATA0 &&
2988 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
2989 return alloc_temporary(v->bld, 4,
2990 &v->outputs[l - FRAG_RESULT_DATA0], 1);
2991
2992 else
2993 unreachable("Invalid location");
2994 }
2995
2996 void
2997 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
2998 nir_intrinsic_instr *instr)
2999 {
3000 assert(stage == MESA_SHADER_FRAGMENT);
3001
3002 fs_reg dest;
3003 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3004 dest = get_nir_dest(instr->dest);
3005
3006 switch (instr->intrinsic) {
3007 case nir_intrinsic_load_front_face:
3008 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3009 *emit_frontfacing_interpolation());
3010 break;
3011
3012 case nir_intrinsic_load_sample_pos: {
3013 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3014 assert(sample_pos.file != BAD_FILE);
3015 dest.type = sample_pos.type;
3016 bld.MOV(dest, sample_pos);
3017 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3018 break;
3019 }
3020
3021 case nir_intrinsic_load_layer_id:
3022 dest.type = BRW_REGISTER_TYPE_UD;
3023 bld.MOV(dest, fetch_render_target_array_index(bld));
3024 break;
3025
3026 case nir_intrinsic_load_helper_invocation:
3027 case nir_intrinsic_load_sample_mask_in:
3028 case nir_intrinsic_load_sample_id: {
3029 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3030 fs_reg val = nir_system_values[sv];
3031 assert(val.file != BAD_FILE);
3032 dest.type = val.type;
3033 bld.MOV(dest, val);
3034 break;
3035 }
3036
3037 case nir_intrinsic_store_output: {
3038 const fs_reg src = get_nir_src(instr->src[0]);
3039 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3040 const unsigned location = nir_intrinsic_base(instr) +
3041 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3042 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3043 src.type);
3044
3045 for (unsigned j = 0; j < instr->num_components; j++)
3046 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3047 offset(src, bld, j));
3048
3049 break;
3050 }
3051
3052 case nir_intrinsic_load_output: {
3053 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3054 BRW_NIR_FRAG_OUTPUT_LOCATION);
3055 assert(l >= FRAG_RESULT_DATA0);
3056 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3057 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3058 const fs_reg tmp = bld.vgrf(dest.type, 4);
3059
3060 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3061 emit_coherent_fb_read(bld, tmp, target);
3062 else
3063 emit_non_coherent_fb_read(bld, tmp, target);
3064
3065 for (unsigned j = 0; j < instr->num_components; j++) {
3066 bld.MOV(offset(dest, bld, j),
3067 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3068 }
3069
3070 break;
3071 }
3072
3073 case nir_intrinsic_discard:
3074 case nir_intrinsic_discard_if: {
3075 /* We track our discarded pixels in f0.1. By predicating on it, we can
3076 * update just the flag bits that aren't yet discarded. If there's no
3077 * condition, we emit a CMP of g0 != g0, so all currently executing
3078 * channels will get turned off.
3079 */
3080 fs_inst *cmp;
3081 if (instr->intrinsic == nir_intrinsic_discard_if) {
3082 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3083 brw_imm_d(0), BRW_CONDITIONAL_Z);
3084 } else {
3085 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3086 BRW_REGISTER_TYPE_UW));
3087 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3088 }
3089 cmp->predicate = BRW_PREDICATE_NORMAL;
3090 cmp->flag_subreg = 1;
3091
3092 if (devinfo->gen >= 6) {
3093 emit_discard_jump();
3094 }
3095
3096 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3097 break;
3098 }
3099
3100 case nir_intrinsic_load_input: {
3101 /* load_input is only used for flat inputs */
3102 unsigned base = nir_intrinsic_base(instr);
3103 unsigned comp = nir_intrinsic_component(instr);
3104 unsigned num_components = instr->num_components;
3105 fs_reg orig_dest = dest;
3106 enum brw_reg_type type = dest.type;
3107
3108 /* Special case fields in the VUE header */
3109 if (base == VARYING_SLOT_LAYER)
3110 comp = 1;
3111 else if (base == VARYING_SLOT_VIEWPORT)
3112 comp = 2;
3113
3114 if (nir_dest_bit_size(instr->dest) == 64) {
3115 /* const_index is in 32-bit type size units that could not be aligned
3116 * with DF. We need to read the double vector as if it was a float
3117 * vector of twice the number of components to fetch the right data.
3118 */
3119 type = BRW_REGISTER_TYPE_F;
3120 num_components *= 2;
3121 dest = bld.vgrf(type, num_components);
3122 }
3123
3124 for (unsigned int i = 0; i < num_components; i++) {
3125 bld.MOV(offset(retype(dest, type), bld, i),
3126 retype(component(interp_reg(base, comp + i), 3), type));
3127 }
3128
3129 if (nir_dest_bit_size(instr->dest) == 64) {
3130 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3131 instr->num_components);
3132 }
3133 break;
3134 }
3135
3136 case nir_intrinsic_load_barycentric_pixel:
3137 case nir_intrinsic_load_barycentric_centroid:
3138 case nir_intrinsic_load_barycentric_sample:
3139 /* Do nothing - load_interpolated_input handling will handle it later. */
3140 break;
3141
3142 case nir_intrinsic_load_barycentric_at_sample: {
3143 const glsl_interp_mode interpolation =
3144 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3145
3146 if (nir_src_is_const(instr->src[0])) {
3147 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3148
3149 emit_pixel_interpolater_send(bld,
3150 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3151 dest,
3152 fs_reg(), /* src */
3153 brw_imm_ud(msg_data),
3154 interpolation);
3155 } else {
3156 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3157 BRW_REGISTER_TYPE_UD);
3158
3159 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3160 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3161 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3162 bld.exec_all().group(1, 0)
3163 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3164 emit_pixel_interpolater_send(bld,
3165 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3166 dest,
3167 fs_reg(), /* src */
3168 msg_data,
3169 interpolation);
3170 } else {
3171 /* Make a loop that sends a message to the pixel interpolater
3172 * for the sample number in each live channel. If there are
3173 * multiple channels with the same sample number then these
3174 * will be handled simultaneously with a single interation of
3175 * the loop.
3176 */
3177 bld.emit(BRW_OPCODE_DO);
3178
3179 /* Get the next live sample number into sample_id_reg */
3180 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3181
3182 /* Set the flag register so that we can perform the send
3183 * message on all channels that have the same sample number
3184 */
3185 bld.CMP(bld.null_reg_ud(),
3186 sample_src, sample_id,
3187 BRW_CONDITIONAL_EQ);
3188 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3189 bld.exec_all().group(1, 0)
3190 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3191 fs_inst *inst =
3192 emit_pixel_interpolater_send(bld,
3193 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3194 dest,
3195 fs_reg(), /* src */
3196 component(msg_data, 0),
3197 interpolation);
3198 set_predicate(BRW_PREDICATE_NORMAL, inst);
3199
3200 /* Continue the loop if there are any live channels left */
3201 set_predicate_inv(BRW_PREDICATE_NORMAL,
3202 true, /* inverse */
3203 bld.emit(BRW_OPCODE_WHILE));
3204 }
3205 }
3206 break;
3207 }
3208
3209 case nir_intrinsic_load_barycentric_at_offset: {
3210 const glsl_interp_mode interpolation =
3211 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3212
3213 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3214
3215 if (const_offset) {
3216 assert(nir_src_bit_size(instr->src[0]) == 32);
3217 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3218 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3219
3220 emit_pixel_interpolater_send(bld,
3221 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3222 dest,
3223 fs_reg(), /* src */
3224 brw_imm_ud(off_x | (off_y << 4)),
3225 interpolation);
3226 } else {
3227 fs_reg src = vgrf(glsl_type::ivec2_type);
3228 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3229 BRW_REGISTER_TYPE_F);
3230 for (int i = 0; i < 2; i++) {
3231 fs_reg temp = vgrf(glsl_type::float_type);
3232 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3233 fs_reg itemp = vgrf(glsl_type::int_type);
3234 /* float to int */
3235 bld.MOV(itemp, temp);
3236
3237 /* Clamp the upper end of the range to +7/16.
3238 * ARB_gpu_shader5 requires that we support a maximum offset
3239 * of +0.5, which isn't representable in a S0.4 value -- if
3240 * we didn't clamp it, we'd end up with -8/16, which is the
3241 * opposite of what the shader author wanted.
3242 *
3243 * This is legal due to ARB_gpu_shader5's quantization
3244 * rules:
3245 *
3246 * "Not all values of <offset> may be supported; x and y
3247 * offsets may be rounded to fixed-point values with the
3248 * number of fraction bits given by the
3249 * implementation-dependent constant
3250 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3251 */
3252 set_condmod(BRW_CONDITIONAL_L,
3253 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3254 }
3255
3256 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3257 emit_pixel_interpolater_send(bld,
3258 opcode,
3259 dest,
3260 src,
3261 brw_imm_ud(0u),
3262 interpolation);
3263 }
3264 break;
3265 }
3266
3267 case nir_intrinsic_load_interpolated_input: {
3268 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3269 emit_fragcoord_interpolation(dest);
3270 break;
3271 }
3272
3273 assert(instr->src[0].ssa &&
3274 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3275 nir_intrinsic_instr *bary_intrinsic =
3276 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3277 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3278 enum glsl_interp_mode interp_mode =
3279 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3280 fs_reg dst_xy;
3281
3282 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3283 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3284 /* Use the result of the PI message */
3285 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3286 } else {
3287 /* Use the delta_xy values computed from the payload */
3288 enum brw_barycentric_mode bary =
3289 brw_barycentric_mode(interp_mode, bary_intrin);
3290
3291 dst_xy = this->delta_xy[bary];
3292 }
3293
3294 for (unsigned int i = 0; i < instr->num_components; i++) {
3295 fs_reg interp =
3296 component(interp_reg(nir_intrinsic_base(instr),
3297 nir_intrinsic_component(instr) + i), 0);
3298 interp.type = BRW_REGISTER_TYPE_F;
3299 dest.type = BRW_REGISTER_TYPE_F;
3300
3301 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3302 fs_reg tmp = vgrf(glsl_type::float_type);
3303 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3304 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3305 } else {
3306 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3307 }
3308 }
3309 break;
3310 }
3311
3312 default:
3313 nir_emit_intrinsic(bld, instr);
3314 break;
3315 }
3316 }
3317
3318 static int
3319 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3320 {
3321 if (nir_src_is_const(instr->src[src])) {
3322 int64_t add_val = nir_src_as_int(instr->src[src]);
3323 if (add_val == 1)
3324 return BRW_AOP_INC;
3325 else if (add_val == -1)
3326 return BRW_AOP_DEC;
3327 }
3328
3329 return BRW_AOP_ADD;
3330 }
3331
3332 void
3333 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3334 nir_intrinsic_instr *instr)
3335 {
3336 assert(stage == MESA_SHADER_COMPUTE);
3337 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3338
3339 fs_reg dest;
3340 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3341 dest = get_nir_dest(instr->dest);
3342
3343 switch (instr->intrinsic) {
3344 case nir_intrinsic_barrier:
3345 emit_barrier();
3346 cs_prog_data->uses_barrier = true;
3347 break;
3348
3349 case nir_intrinsic_load_subgroup_id:
3350 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3351 break;
3352
3353 case nir_intrinsic_load_local_invocation_id:
3354 case nir_intrinsic_load_work_group_id: {
3355 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3356 fs_reg val = nir_system_values[sv];
3357 assert(val.file != BAD_FILE);
3358 dest.type = val.type;
3359 for (unsigned i = 0; i < 3; i++)
3360 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3361 break;
3362 }
3363
3364 case nir_intrinsic_load_num_work_groups: {
3365 const unsigned surface =
3366 cs_prog_data->binding_table.work_groups_start;
3367
3368 cs_prog_data->uses_num_work_groups = true;
3369
3370 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3371 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3372 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3373 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3374
3375 /* Read the 3 GLuint components of gl_NumWorkGroups */
3376 for (unsigned i = 0; i < 3; i++) {
3377 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3378 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3379 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3380 }
3381 break;
3382 }
3383
3384 case nir_intrinsic_shared_atomic_add:
3385 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3386 break;
3387 case nir_intrinsic_shared_atomic_imin:
3388 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3389 break;
3390 case nir_intrinsic_shared_atomic_umin:
3391 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3392 break;
3393 case nir_intrinsic_shared_atomic_imax:
3394 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3395 break;
3396 case nir_intrinsic_shared_atomic_umax:
3397 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3398 break;
3399 case nir_intrinsic_shared_atomic_and:
3400 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3401 break;
3402 case nir_intrinsic_shared_atomic_or:
3403 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3404 break;
3405 case nir_intrinsic_shared_atomic_xor:
3406 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3407 break;
3408 case nir_intrinsic_shared_atomic_exchange:
3409 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3410 break;
3411 case nir_intrinsic_shared_atomic_comp_swap:
3412 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3413 break;
3414 case nir_intrinsic_shared_atomic_fmin:
3415 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3416 break;
3417 case nir_intrinsic_shared_atomic_fmax:
3418 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3419 break;
3420 case nir_intrinsic_shared_atomic_fcomp_swap:
3421 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3422 break;
3423
3424 case nir_intrinsic_load_shared: {
3425 assert(devinfo->gen >= 7);
3426 assert(stage == MESA_SHADER_COMPUTE);
3427
3428 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3429 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3430 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3431 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3432 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3433
3434 /* Make dest unsigned because that's what the temporary will be */
3435 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3436
3437 /* Read the vector */
3438 if (nir_intrinsic_align(instr) >= 4) {
3439 assert(nir_dest_bit_size(instr->dest) == 32);
3440 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3441 fs_inst *inst =
3442 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3443 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3444 inst->size_written = instr->num_components * dispatch_width * 4;
3445 } else {
3446 assert(nir_dest_bit_size(instr->dest) <= 32);
3447 assert(nir_dest_num_components(instr->dest) == 1);
3448 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3449
3450 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3451 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3452 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3453 bld.MOV(dest, read_result);
3454 }
3455 break;
3456 }
3457
3458 case nir_intrinsic_store_shared: {
3459 assert(devinfo->gen >= 7);
3460 assert(stage == MESA_SHADER_COMPUTE);
3461
3462 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3463 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3464 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3465 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3466 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3467
3468 fs_reg data = get_nir_src(instr->src[0]);
3469 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3470
3471 assert(nir_intrinsic_write_mask(instr) ==
3472 (1u << instr->num_components) - 1);
3473 if (nir_intrinsic_align(instr) >= 4) {
3474 assert(nir_src_bit_size(instr->src[0]) == 32);
3475 assert(nir_src_num_components(instr->src[0]) <= 4);
3476 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3477 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3478 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3479 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3480 } else {
3481 assert(nir_src_bit_size(instr->src[0]) <= 32);
3482 assert(nir_src_num_components(instr->src[0]) == 1);
3483 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3484
3485 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3486 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3487
3488 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3489 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3490 }
3491 break;
3492 }
3493
3494 default:
3495 nir_emit_intrinsic(bld, instr);
3496 break;
3497 }
3498 }
3499
3500 static fs_reg
3501 brw_nir_reduction_op_identity(const fs_builder &bld,
3502 nir_op op, brw_reg_type type)
3503 {
3504 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3505 switch (type_sz(type)) {
3506 case 2:
3507 assert(type != BRW_REGISTER_TYPE_HF);
3508 return retype(brw_imm_uw(value.u16[0]), type);
3509 case 4:
3510 return retype(brw_imm_ud(value.u32[0]), type);
3511 case 8:
3512 if (type == BRW_REGISTER_TYPE_DF)
3513 return setup_imm_df(bld, value.f64[0]);
3514 else
3515 return retype(brw_imm_u64(value.u64[0]), type);
3516 default:
3517 unreachable("Invalid type size");
3518 }
3519 }
3520
3521 static opcode
3522 brw_op_for_nir_reduction_op(nir_op op)
3523 {
3524 switch (op) {
3525 case nir_op_iadd: return BRW_OPCODE_ADD;
3526 case nir_op_fadd: return BRW_OPCODE_ADD;
3527 case nir_op_imul: return BRW_OPCODE_MUL;
3528 case nir_op_fmul: return BRW_OPCODE_MUL;
3529 case nir_op_imin: return BRW_OPCODE_SEL;
3530 case nir_op_umin: return BRW_OPCODE_SEL;
3531 case nir_op_fmin: return BRW_OPCODE_SEL;
3532 case nir_op_imax: return BRW_OPCODE_SEL;
3533 case nir_op_umax: return BRW_OPCODE_SEL;
3534 case nir_op_fmax: return BRW_OPCODE_SEL;
3535 case nir_op_iand: return BRW_OPCODE_AND;
3536 case nir_op_ior: return BRW_OPCODE_OR;
3537 case nir_op_ixor: return BRW_OPCODE_XOR;
3538 default:
3539 unreachable("Invalid reduction operation");
3540 }
3541 }
3542
3543 static brw_conditional_mod
3544 brw_cond_mod_for_nir_reduction_op(nir_op op)
3545 {
3546 switch (op) {
3547 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3548 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3549 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3550 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3551 case nir_op_imin: return BRW_CONDITIONAL_L;
3552 case nir_op_umin: return BRW_CONDITIONAL_L;
3553 case nir_op_fmin: return BRW_CONDITIONAL_L;
3554 case nir_op_imax: return BRW_CONDITIONAL_GE;
3555 case nir_op_umax: return BRW_CONDITIONAL_GE;
3556 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3557 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3558 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3559 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3560 default:
3561 unreachable("Invalid reduction operation");
3562 }
3563 }
3564
3565 fs_reg
3566 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3567 nir_intrinsic_instr *instr)
3568 {
3569 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3570
3571 if (stage_prog_data->binding_table.image_start > 0) {
3572 if (image.file == BRW_IMMEDIATE_VALUE) {
3573 image.d += stage_prog_data->binding_table.image_start;
3574 } else {
3575 bld.ADD(image, image,
3576 brw_imm_d(stage_prog_data->binding_table.image_start));
3577 }
3578 }
3579
3580 return bld.emit_uniformize(image);
3581 }
3582
3583 fs_reg
3584 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3585 nir_intrinsic_instr *instr)
3586 {
3587 /* SSBO stores are weird in that their index is in src[1] */
3588 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3589
3590 fs_reg surf_index;
3591 if (nir_src_is_const(instr->src[src])) {
3592 unsigned index = stage_prog_data->binding_table.ssbo_start +
3593 nir_src_as_uint(instr->src[src]);
3594 surf_index = brw_imm_ud(index);
3595 } else {
3596 surf_index = vgrf(glsl_type::uint_type);
3597 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3598 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3599 }
3600
3601 return bld.emit_uniformize(surf_index);
3602 }
3603
3604 static unsigned
3605 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3606 {
3607 switch (nir_intrinsic_image_dim(instr)) {
3608 case GLSL_SAMPLER_DIM_1D:
3609 return 1 + nir_intrinsic_image_array(instr);
3610 case GLSL_SAMPLER_DIM_2D:
3611 case GLSL_SAMPLER_DIM_RECT:
3612 return 2 + nir_intrinsic_image_array(instr);
3613 case GLSL_SAMPLER_DIM_3D:
3614 case GLSL_SAMPLER_DIM_CUBE:
3615 return 3;
3616 case GLSL_SAMPLER_DIM_BUF:
3617 return 1;
3618 case GLSL_SAMPLER_DIM_MS:
3619 return 2 + nir_intrinsic_image_array(instr);
3620 default:
3621 unreachable("Invalid image dimension");
3622 }
3623 }
3624
3625 void
3626 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3627 {
3628 fs_reg dest;
3629 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3630 dest = get_nir_dest(instr->dest);
3631
3632 switch (instr->intrinsic) {
3633 case nir_intrinsic_image_load:
3634 case nir_intrinsic_image_store:
3635 case nir_intrinsic_image_atomic_add:
3636 case nir_intrinsic_image_atomic_min:
3637 case nir_intrinsic_image_atomic_max:
3638 case nir_intrinsic_image_atomic_and:
3639 case nir_intrinsic_image_atomic_or:
3640 case nir_intrinsic_image_atomic_xor:
3641 case nir_intrinsic_image_atomic_exchange:
3642 case nir_intrinsic_image_atomic_comp_swap: {
3643 if (stage == MESA_SHADER_FRAGMENT &&
3644 instr->intrinsic != nir_intrinsic_image_load)
3645 brw_wm_prog_data(prog_data)->has_side_effects = true;
3646
3647 /* Get some metadata from the image intrinsic. */
3648 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3649 const GLenum format = nir_intrinsic_format(instr);
3650
3651 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3652 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3653 get_nir_image_intrinsic_image(bld, instr);
3654 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3655 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
3656 brw_imm_ud(image_intrinsic_coord_components(instr));
3657
3658 /* Emit an image load, store or atomic op. */
3659 if (instr->intrinsic == nir_intrinsic_image_load) {
3660 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3661 fs_inst *inst =
3662 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
3663 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3664 inst->size_written = instr->num_components * dispatch_width * 4;
3665 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3666 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3667 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
3668 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
3669 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3670 } else {
3671 int op;
3672 unsigned num_srcs = info->num_srcs;
3673
3674 switch (instr->intrinsic) {
3675 case nir_intrinsic_image_atomic_add:
3676 assert(num_srcs == 4);
3677
3678 op = get_op_for_atomic_add(instr, 3);
3679
3680 if (op != BRW_AOP_ADD)
3681 num_srcs = 3;
3682 break;
3683 case nir_intrinsic_image_atomic_min:
3684 assert(format == GL_R32UI || format == GL_R32I);
3685 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3686 break;
3687 case nir_intrinsic_image_atomic_max:
3688 assert(format == GL_R32UI || format == GL_R32I);
3689 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3690 break;
3691 case nir_intrinsic_image_atomic_and:
3692 op = BRW_AOP_AND;
3693 break;
3694 case nir_intrinsic_image_atomic_or:
3695 op = BRW_AOP_OR;
3696 break;
3697 case nir_intrinsic_image_atomic_xor:
3698 op = BRW_AOP_XOR;
3699 break;
3700 case nir_intrinsic_image_atomic_exchange:
3701 op = BRW_AOP_MOV;
3702 break;
3703 case nir_intrinsic_image_atomic_comp_swap:
3704 op = BRW_AOP_CMPWR;
3705 break;
3706 default:
3707 unreachable("Not reachable.");
3708 }
3709
3710 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
3711
3712 fs_reg data;
3713 if (num_srcs >= 4)
3714 data = get_nir_src(instr->src[3]);
3715 if (num_srcs >= 5) {
3716 fs_reg tmp = bld.vgrf(data.type, 2);
3717 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
3718 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
3719 data = tmp;
3720 }
3721 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3722
3723 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
3724 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3725 }
3726 break;
3727 }
3728
3729 case nir_intrinsic_image_size: {
3730 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3731 * into will handle the binding table index for us in the geneerator.
3732 */
3733 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3734 BRW_REGISTER_TYPE_UD);
3735 image = bld.emit_uniformize(image);
3736
3737 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3738 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
3739 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
3740 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
3741 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
3742
3743 /* Since the image size is always uniform, we can just emit a SIMD8
3744 * query instruction and splat the result out.
3745 */
3746 const fs_builder ubld = bld.exec_all().group(8, 0);
3747
3748 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3749 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
3750 tmp, srcs, ARRAY_SIZE(srcs));
3751 inst->size_written = 4 * REG_SIZE;
3752
3753 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3754 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3755 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3756 offset(retype(dest, tmp.type), bld, c),
3757 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3758 } else {
3759 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3760 component(offset(tmp, ubld, c), 0));
3761 }
3762 }
3763 break;
3764 }
3765
3766 case nir_intrinsic_image_load_raw_intel: {
3767 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3768 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3769 get_nir_image_intrinsic_image(bld, instr);
3770 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3771 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3772 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3773
3774 fs_inst *inst =
3775 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3776 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3777 inst->size_written = instr->num_components * dispatch_width * 4;
3778 break;
3779 }
3780
3781 case nir_intrinsic_image_store_raw_intel: {
3782 if (stage == MESA_SHADER_FRAGMENT)
3783 brw_wm_prog_data(prog_data)->has_side_effects = true;
3784
3785 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3786 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3787 get_nir_image_intrinsic_image(bld, instr);
3788 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3789 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
3790 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3791 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3792
3793 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3794 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3795 break;
3796 }
3797
3798 case nir_intrinsic_group_memory_barrier:
3799 case nir_intrinsic_memory_barrier_shared:
3800 case nir_intrinsic_memory_barrier_atomic_counter:
3801 case nir_intrinsic_memory_barrier_buffer:
3802 case nir_intrinsic_memory_barrier_image:
3803 case nir_intrinsic_memory_barrier: {
3804 const fs_builder ubld = bld.group(8, 0);
3805 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3806 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3807 ->size_written = 2 * REG_SIZE;
3808 break;
3809 }
3810
3811 case nir_intrinsic_shader_clock: {
3812 /* We cannot do anything if there is an event, so ignore it for now */
3813 const fs_reg shader_clock = get_timestamp(bld);
3814 const fs_reg srcs[] = { component(shader_clock, 0),
3815 component(shader_clock, 1) };
3816 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3817 break;
3818 }
3819
3820 case nir_intrinsic_image_samples:
3821 /* The driver does not support multi-sampled images. */
3822 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3823 break;
3824
3825 case nir_intrinsic_load_uniform: {
3826 /* Offsets are in bytes but they should always aligned to
3827 * the type size
3828 */
3829 assert(instr->const_index[0] % 4 == 0 ||
3830 instr->const_index[0] % type_sz(dest.type) == 0);
3831
3832 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3833
3834 if (nir_src_is_const(instr->src[0])) {
3835 unsigned load_offset = nir_src_as_uint(instr->src[0]);
3836 assert(load_offset % type_sz(dest.type) == 0);
3837 /* For 16-bit types we add the module of the const_index[0]
3838 * offset to access to not 32-bit aligned element
3839 */
3840 src.offset = load_offset + instr->const_index[0] % 4;
3841
3842 for (unsigned j = 0; j < instr->num_components; j++) {
3843 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3844 }
3845 } else {
3846 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3847 BRW_REGISTER_TYPE_UD);
3848
3849 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3850 * go past the end of the uniform. In order to keep the n'th
3851 * component from running past, we subtract off the size of all but
3852 * one component of the vector.
3853 */
3854 assert(instr->const_index[1] >=
3855 instr->num_components * (int) type_sz(dest.type));
3856 unsigned read_size = instr->const_index[1] -
3857 (instr->num_components - 1) * type_sz(dest.type);
3858
3859 bool supports_64bit_indirects =
3860 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
3861
3862 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
3863 for (unsigned j = 0; j < instr->num_components; j++) {
3864 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3865 offset(dest, bld, j), offset(src, bld, j),
3866 indirect, brw_imm_ud(read_size));
3867 }
3868 } else {
3869 const unsigned num_mov_indirects =
3870 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
3871 /* We read a little bit less per MOV INDIRECT, as they are now
3872 * 32-bits ones instead of 64-bit. Fix read_size then.
3873 */
3874 const unsigned read_size_32bit = read_size -
3875 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
3876 for (unsigned j = 0; j < instr->num_components; j++) {
3877 for (unsigned i = 0; i < num_mov_indirects; i++) {
3878 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3879 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
3880 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
3881 indirect, brw_imm_ud(read_size_32bit));
3882 }
3883 }
3884 }
3885 }
3886 break;
3887 }
3888
3889 case nir_intrinsic_load_ubo: {
3890 fs_reg surf_index;
3891 if (nir_src_is_const(instr->src[0])) {
3892 const unsigned index = stage_prog_data->binding_table.ubo_start +
3893 nir_src_as_uint(instr->src[0]);
3894 surf_index = brw_imm_ud(index);
3895 } else {
3896 /* The block index is not a constant. Evaluate the index expression
3897 * per-channel and add the base UBO index; we have to select a value
3898 * from any live channel.
3899 */
3900 surf_index = vgrf(glsl_type::uint_type);
3901 bld.ADD(surf_index, get_nir_src(instr->src[0]),
3902 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
3903 surf_index = bld.emit_uniformize(surf_index);
3904 }
3905
3906 if (!nir_src_is_const(instr->src[1])) {
3907 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
3908 BRW_REGISTER_TYPE_UD);
3909
3910 for (int i = 0; i < instr->num_components; i++)
3911 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
3912 base_offset, i * type_sz(dest.type));
3913 } else {
3914 /* Even if we are loading doubles, a pull constant load will load
3915 * a 32-bit vec4, so should only reserve vgrf space for that. If we
3916 * need to load a full dvec4 we will have to emit 2 loads. This is
3917 * similar to demote_pull_constants(), except that in that case we
3918 * see individual accesses to each component of the vector and then
3919 * we let CSE deal with duplicate loads. Here we see a vector access
3920 * and we have to split it if necessary.
3921 */
3922 const unsigned type_size = type_sz(dest.type);
3923 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
3924
3925 /* See if we've selected this as a push constant candidate */
3926 if (nir_src_is_const(instr->src[0])) {
3927 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
3928 const unsigned offset_256b = load_offset / 32;
3929
3930 fs_reg push_reg;
3931 for (int i = 0; i < 4; i++) {
3932 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3933 if (range->block == ubo_block &&
3934 offset_256b >= range->start &&
3935 offset_256b < range->start + range->length) {
3936
3937 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
3938 push_reg.offset = load_offset - 32 * range->start;
3939 break;
3940 }
3941 }
3942
3943 if (push_reg.file != BAD_FILE) {
3944 for (unsigned i = 0; i < instr->num_components; i++) {
3945 bld.MOV(offset(dest, bld, i),
3946 byte_offset(push_reg, i * type_size));
3947 }
3948 break;
3949 }
3950 }
3951
3952 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
3953 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
3954 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3955
3956 for (unsigned c = 0; c < instr->num_components;) {
3957 const unsigned base = load_offset + c * type_size;
3958 /* Number of usable components in the next block-aligned load. */
3959 const unsigned count = MIN2(instr->num_components - c,
3960 (block_sz - base % block_sz) / type_size);
3961
3962 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
3963 packed_consts, surf_index,
3964 brw_imm_ud(base & ~(block_sz - 1)));
3965
3966 const fs_reg consts =
3967 retype(byte_offset(packed_consts, base & (block_sz - 1)),
3968 dest.type);
3969
3970 for (unsigned d = 0; d < count; d++)
3971 bld.MOV(offset(dest, bld, c + d), component(consts, d));
3972
3973 c += count;
3974 }
3975 }
3976 break;
3977 }
3978
3979 case nir_intrinsic_load_global: {
3980 assert(devinfo->gen >= 8);
3981
3982 if (nir_intrinsic_align(instr) >= 4) {
3983 assert(nir_dest_bit_size(instr->dest) == 32);
3984 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
3985 dest,
3986 get_nir_src(instr->src[0]), /* Address */
3987 fs_reg(), /* No source data */
3988 brw_imm_ud(instr->num_components));
3989 inst->size_written = instr->num_components *
3990 inst->dst.component_size(inst->exec_size);
3991 } else {
3992 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3993 assert(bit_size <= 32);
3994 assert(nir_dest_num_components(instr->dest) == 1);
3995 brw_reg_type data_type =
3996 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3997 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
3998 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
3999 tmp,
4000 get_nir_src(instr->src[0]), /* Address */
4001 fs_reg(), /* No source data */
4002 brw_imm_ud(bit_size));
4003 bld.MOV(retype(dest, data_type), tmp);
4004 }
4005 break;
4006 }
4007
4008 case nir_intrinsic_store_global:
4009 assert(devinfo->gen >= 8);
4010
4011 if (stage == MESA_SHADER_FRAGMENT)
4012 brw_wm_prog_data(prog_data)->has_side_effects = true;
4013
4014 if (nir_intrinsic_align(instr) >= 4) {
4015 assert(nir_src_bit_size(instr->src[0]) == 32);
4016 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4017 fs_reg(),
4018 get_nir_src(instr->src[1]), /* Address */
4019 get_nir_src(instr->src[0]), /* Data */
4020 brw_imm_ud(instr->num_components));
4021 } else {
4022 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4023 assert(bit_size <= 32);
4024 assert(nir_src_num_components(instr->src[0]) == 1);
4025 brw_reg_type data_type =
4026 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4027 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4028 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4029 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4030 fs_reg(),
4031 get_nir_src(instr->src[1]), /* Address */
4032 tmp, /* Data */
4033 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4034 }
4035 break;
4036
4037 case nir_intrinsic_global_atomic_add:
4038 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4039 break;
4040 case nir_intrinsic_global_atomic_imin:
4041 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4042 break;
4043 case nir_intrinsic_global_atomic_umin:
4044 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4045 break;
4046 case nir_intrinsic_global_atomic_imax:
4047 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4048 break;
4049 case nir_intrinsic_global_atomic_umax:
4050 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4051 break;
4052 case nir_intrinsic_global_atomic_and:
4053 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4054 break;
4055 case nir_intrinsic_global_atomic_or:
4056 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4057 break;
4058 case nir_intrinsic_global_atomic_xor:
4059 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4060 break;
4061 case nir_intrinsic_global_atomic_exchange:
4062 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4063 break;
4064 case nir_intrinsic_global_atomic_comp_swap:
4065 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4066 break;
4067 case nir_intrinsic_global_atomic_fmin:
4068 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4069 break;
4070 case nir_intrinsic_global_atomic_fmax:
4071 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4072 break;
4073 case nir_intrinsic_global_atomic_fcomp_swap:
4074 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4075 break;
4076
4077 case nir_intrinsic_load_ssbo: {
4078 assert(devinfo->gen >= 7);
4079
4080 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4081 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4082 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4083 get_nir_ssbo_intrinsic_index(bld, instr);
4084 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4085 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4086
4087 /* Make dest unsigned because that's what the temporary will be */
4088 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4089
4090 /* Read the vector */
4091 if (nir_intrinsic_align(instr) >= 4) {
4092 assert(nir_dest_bit_size(instr->dest) == 32);
4093 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4094 fs_inst *inst =
4095 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4096 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4097 inst->size_written = instr->num_components * dispatch_width * 4;
4098 } else {
4099 assert(nir_dest_bit_size(instr->dest) <= 32);
4100 assert(nir_dest_num_components(instr->dest) == 1);
4101 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4102
4103 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4104 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4105 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4106 bld.MOV(dest, read_result);
4107 }
4108 break;
4109 }
4110
4111 case nir_intrinsic_store_ssbo: {
4112 assert(devinfo->gen >= 7);
4113
4114 if (stage == MESA_SHADER_FRAGMENT)
4115 brw_wm_prog_data(prog_data)->has_side_effects = true;
4116
4117 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4118 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4119 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4120 get_nir_ssbo_intrinsic_index(bld, instr);
4121 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4122 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4123
4124 fs_reg data = get_nir_src(instr->src[0]);
4125 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4126
4127 assert(nir_intrinsic_write_mask(instr) ==
4128 (1u << instr->num_components) - 1);
4129 if (nir_intrinsic_align(instr) >= 4) {
4130 assert(nir_src_bit_size(instr->src[0]) == 32);
4131 assert(nir_src_num_components(instr->src[0]) <= 4);
4132 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4133 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4134 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4135 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4136 } else {
4137 assert(nir_src_bit_size(instr->src[0]) <= 32);
4138 assert(nir_src_num_components(instr->src[0]) == 1);
4139 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4140
4141 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4142 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4143
4144 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4145 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4146 }
4147 break;
4148 }
4149
4150 case nir_intrinsic_store_output: {
4151 fs_reg src = get_nir_src(instr->src[0]);
4152
4153 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4154 unsigned num_components = instr->num_components;
4155 unsigned first_component = nir_intrinsic_component(instr);
4156 if (nir_src_bit_size(instr->src[0]) == 64) {
4157 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4158 num_components *= 2;
4159 }
4160
4161 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4162 4 * store_offset), src.type);
4163 for (unsigned j = 0; j < num_components; j++) {
4164 bld.MOV(offset(new_dest, bld, j + first_component),
4165 offset(src, bld, j));
4166 }
4167 break;
4168 }
4169
4170 case nir_intrinsic_ssbo_atomic_add:
4171 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4172 break;
4173 case nir_intrinsic_ssbo_atomic_imin:
4174 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4175 break;
4176 case nir_intrinsic_ssbo_atomic_umin:
4177 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4178 break;
4179 case nir_intrinsic_ssbo_atomic_imax:
4180 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4181 break;
4182 case nir_intrinsic_ssbo_atomic_umax:
4183 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4184 break;
4185 case nir_intrinsic_ssbo_atomic_and:
4186 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4187 break;
4188 case nir_intrinsic_ssbo_atomic_or:
4189 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4190 break;
4191 case nir_intrinsic_ssbo_atomic_xor:
4192 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4193 break;
4194 case nir_intrinsic_ssbo_atomic_exchange:
4195 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4196 break;
4197 case nir_intrinsic_ssbo_atomic_comp_swap:
4198 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4199 break;
4200 case nir_intrinsic_ssbo_atomic_fmin:
4201 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4202 break;
4203 case nir_intrinsic_ssbo_atomic_fmax:
4204 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4205 break;
4206 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4207 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4208 break;
4209
4210 case nir_intrinsic_get_buffer_size: {
4211 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4212 nir_src_as_uint(instr->src[0]) : 0;
4213
4214 /* A resinfo's sampler message is used to get the buffer size. The
4215 * SIMD8's writeback message consists of four registers and SIMD16's
4216 * writeback message consists of 8 destination registers (two per each
4217 * component). Because we are only interested on the first channel of
4218 * the first returned component, where resinfo returns the buffer size
4219 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4220 * the dispatch width.
4221 */
4222 const fs_builder ubld = bld.exec_all().group(8, 0);
4223 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4224 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4225
4226 /* Set LOD = 0 */
4227 ubld.MOV(src_payload, brw_imm_d(0));
4228
4229 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4230 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4231 src_payload, brw_imm_ud(index));
4232 inst->header_size = 0;
4233 inst->mlen = 1;
4234 inst->size_written = 4 * REG_SIZE;
4235
4236 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4237 *
4238 * "Out-of-bounds checking is always performed at a DWord granularity. If
4239 * any part of the DWord is out-of-bounds then the whole DWord is
4240 * considered out-of-bounds."
4241 *
4242 * This implies that types with size smaller than 4-bytes need to be
4243 * padded if they don't complete the last dword of the buffer. But as we
4244 * need to maintain the original size we need to reverse the padding
4245 * calculation to return the correct size to know the number of elements
4246 * of an unsized array. As we stored in the last two bits of the surface
4247 * size the needed padding for the buffer, we calculate here the
4248 * original buffer_size reversing the surface_size calculation:
4249 *
4250 * surface_size = isl_align(buffer_size, 4) +
4251 * (isl_align(buffer_size) - buffer_size)
4252 *
4253 * buffer_size = surface_size & ~3 - surface_size & 3
4254 */
4255
4256 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4257 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4258 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4259
4260 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4261 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4262 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4263
4264 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4265 break;
4266 }
4267
4268 case nir_intrinsic_load_subgroup_invocation:
4269 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4270 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4271 break;
4272
4273 case nir_intrinsic_load_subgroup_eq_mask:
4274 case nir_intrinsic_load_subgroup_ge_mask:
4275 case nir_intrinsic_load_subgroup_gt_mask:
4276 case nir_intrinsic_load_subgroup_le_mask:
4277 case nir_intrinsic_load_subgroup_lt_mask:
4278 unreachable("not reached");
4279
4280 case nir_intrinsic_vote_any: {
4281 const fs_builder ubld = bld.exec_all().group(1, 0);
4282
4283 /* The any/all predicates do not consider channel enables. To prevent
4284 * dead channels from affecting the result, we initialize the flag with
4285 * with the identity value for the logical operation.
4286 */
4287 if (dispatch_width == 32) {
4288 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4289 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4290 brw_imm_ud(0));
4291 } else {
4292 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4293 }
4294 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4295
4296 /* For some reason, the any/all predicates don't work properly with
4297 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4298 * doesn't read the correct subset of the flag register and you end up
4299 * getting garbage in the second half. Work around this by using a pair
4300 * of 1-wide MOVs and scattering the result.
4301 */
4302 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4303 ubld.MOV(res1, brw_imm_d(0));
4304 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4305 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4306 BRW_PREDICATE_ALIGN1_ANY32H,
4307 ubld.MOV(res1, brw_imm_d(-1)));
4308
4309 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4310 break;
4311 }
4312 case nir_intrinsic_vote_all: {
4313 const fs_builder ubld = bld.exec_all().group(1, 0);
4314
4315 /* The any/all predicates do not consider channel enables. To prevent
4316 * dead channels from affecting the result, we initialize the flag with
4317 * with the identity value for the logical operation.
4318 */
4319 if (dispatch_width == 32) {
4320 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4321 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4322 brw_imm_ud(0xffffffff));
4323 } else {
4324 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4325 }
4326 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4327
4328 /* For some reason, the any/all predicates don't work properly with
4329 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4330 * doesn't read the correct subset of the flag register and you end up
4331 * getting garbage in the second half. Work around this by using a pair
4332 * of 1-wide MOVs and scattering the result.
4333 */
4334 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4335 ubld.MOV(res1, brw_imm_d(0));
4336 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4337 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4338 BRW_PREDICATE_ALIGN1_ALL32H,
4339 ubld.MOV(res1, brw_imm_d(-1)));
4340
4341 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4342 break;
4343 }
4344 case nir_intrinsic_vote_feq:
4345 case nir_intrinsic_vote_ieq: {
4346 fs_reg value = get_nir_src(instr->src[0]);
4347 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4348 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4349 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4350 }
4351
4352 fs_reg uniformized = bld.emit_uniformize(value);
4353 const fs_builder ubld = bld.exec_all().group(1, 0);
4354
4355 /* The any/all predicates do not consider channel enables. To prevent
4356 * dead channels from affecting the result, we initialize the flag with
4357 * with the identity value for the logical operation.
4358 */
4359 if (dispatch_width == 32) {
4360 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4361 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4362 brw_imm_ud(0xffffffff));
4363 } else {
4364 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4365 }
4366 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4367
4368 /* For some reason, the any/all predicates don't work properly with
4369 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4370 * doesn't read the correct subset of the flag register and you end up
4371 * getting garbage in the second half. Work around this by using a pair
4372 * of 1-wide MOVs and scattering the result.
4373 */
4374 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4375 ubld.MOV(res1, brw_imm_d(0));
4376 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4377 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4378 BRW_PREDICATE_ALIGN1_ALL32H,
4379 ubld.MOV(res1, brw_imm_d(-1)));
4380
4381 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4382 break;
4383 }
4384
4385 case nir_intrinsic_ballot: {
4386 const fs_reg value = retype(get_nir_src(instr->src[0]),
4387 BRW_REGISTER_TYPE_UD);
4388 struct brw_reg flag = brw_flag_reg(0, 0);
4389 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4390 * as f0.0. This is a problem for fragment programs as we currently use
4391 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4392 * programs yet so this isn't a problem. When we do, something will
4393 * have to change.
4394 */
4395 if (dispatch_width == 32)
4396 flag.type = BRW_REGISTER_TYPE_UD;
4397
4398 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4399 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4400
4401 if (instr->dest.ssa.bit_size > 32) {
4402 dest.type = BRW_REGISTER_TYPE_UQ;
4403 } else {
4404 dest.type = BRW_REGISTER_TYPE_UD;
4405 }
4406 bld.MOV(dest, flag);
4407 break;
4408 }
4409
4410 case nir_intrinsic_read_invocation: {
4411 const fs_reg value = get_nir_src(instr->src[0]);
4412 const fs_reg invocation = get_nir_src(instr->src[1]);
4413 fs_reg tmp = bld.vgrf(value.type);
4414
4415 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4416 bld.emit_uniformize(invocation));
4417
4418 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4419 break;
4420 }
4421
4422 case nir_intrinsic_read_first_invocation: {
4423 const fs_reg value = get_nir_src(instr->src[0]);
4424 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4425 break;
4426 }
4427
4428 case nir_intrinsic_shuffle: {
4429 const fs_reg value = get_nir_src(instr->src[0]);
4430 const fs_reg index = get_nir_src(instr->src[1]);
4431
4432 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4433 break;
4434 }
4435
4436 case nir_intrinsic_first_invocation: {
4437 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4438 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4439 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4440 fs_reg(component(tmp, 0)));
4441 break;
4442 }
4443
4444 case nir_intrinsic_quad_broadcast: {
4445 const fs_reg value = get_nir_src(instr->src[0]);
4446 const unsigned index = nir_src_as_uint(instr->src[1]);
4447
4448 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4449 value, brw_imm_ud(index), brw_imm_ud(4));
4450 break;
4451 }
4452
4453 case nir_intrinsic_quad_swap_horizontal: {
4454 const fs_reg value = get_nir_src(instr->src[0]);
4455 const fs_reg tmp = bld.vgrf(value.type);
4456 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4457
4458 const fs_reg src_left = horiz_stride(value, 2);
4459 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4460 const fs_reg tmp_left = horiz_stride(tmp, 2);
4461 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4462
4463 ubld.MOV(tmp_left, src_right);
4464 ubld.MOV(tmp_right, src_left);
4465
4466 bld.MOV(retype(dest, value.type), tmp);
4467 break;
4468 }
4469
4470 case nir_intrinsic_quad_swap_vertical: {
4471 const fs_reg value = get_nir_src(instr->src[0]);
4472 if (nir_src_bit_size(instr->src[0]) == 32) {
4473 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4474 const fs_reg tmp = bld.vgrf(value.type);
4475 const fs_builder ubld = bld.exec_all();
4476 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4477 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4478 bld.MOV(retype(dest, value.type), tmp);
4479 } else {
4480 /* For larger data types, we have to either emit dispatch_width many
4481 * MOVs or else fall back to doing indirects.
4482 */
4483 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4484 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4485 brw_imm_w(0x2));
4486 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4487 }
4488 break;
4489 }
4490
4491 case nir_intrinsic_quad_swap_diagonal: {
4492 const fs_reg value = get_nir_src(instr->src[0]);
4493 if (nir_src_bit_size(instr->src[0]) == 32) {
4494 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4495 const fs_reg tmp = bld.vgrf(value.type);
4496 const fs_builder ubld = bld.exec_all();
4497 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4498 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4499 bld.MOV(retype(dest, value.type), tmp);
4500 } else {
4501 /* For larger data types, we have to either emit dispatch_width many
4502 * MOVs or else fall back to doing indirects.
4503 */
4504 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4505 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4506 brw_imm_w(0x3));
4507 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4508 }
4509 break;
4510 }
4511
4512 case nir_intrinsic_reduce: {
4513 fs_reg src = get_nir_src(instr->src[0]);
4514 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4515 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4516 if (cluster_size == 0 || cluster_size > dispatch_width)
4517 cluster_size = dispatch_width;
4518
4519 /* Figure out the source type */
4520 src.type = brw_type_for_nir_type(devinfo,
4521 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4522 nir_src_bit_size(instr->src[0])));
4523
4524 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4525 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4526 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4527
4528 /* Set up a register for all of our scratching around and initialize it
4529 * to reduction operation's identity value.
4530 */
4531 fs_reg scan = bld.vgrf(src.type);
4532 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4533
4534 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4535
4536 dest.type = src.type;
4537 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4538 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4539 * the distance between clusters is at least 2 GRFs. In this case,
4540 * we don't need the weird striding of the CLUSTER_BROADCAST
4541 * instruction and can just do regular MOVs.
4542 */
4543 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4544 const unsigned groups =
4545 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4546 const unsigned group_size = dispatch_width / groups;
4547 for (unsigned i = 0; i < groups; i++) {
4548 const unsigned cluster = (i * group_size) / cluster_size;
4549 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4550 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4551 component(scan, comp));
4552 }
4553 } else {
4554 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4555 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4556 }
4557 break;
4558 }
4559
4560 case nir_intrinsic_inclusive_scan:
4561 case nir_intrinsic_exclusive_scan: {
4562 fs_reg src = get_nir_src(instr->src[0]);
4563 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4564
4565 /* Figure out the source type */
4566 src.type = brw_type_for_nir_type(devinfo,
4567 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4568 nir_src_bit_size(instr->src[0])));
4569
4570 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4571 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4572 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4573
4574 /* Set up a register for all of our scratching around and initialize it
4575 * to reduction operation's identity value.
4576 */
4577 fs_reg scan = bld.vgrf(src.type);
4578 const fs_builder allbld = bld.exec_all();
4579 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4580
4581 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4582 /* Exclusive scan is a bit harder because we have to do an annoying
4583 * shift of the contents before we can begin. To make things worse,
4584 * we can't do this with a normal stride; we have to use indirects.
4585 */
4586 fs_reg shifted = bld.vgrf(src.type);
4587 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4588 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4589 brw_imm_w(-1));
4590 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4591 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4592 scan = shifted;
4593 }
4594
4595 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4596
4597 bld.MOV(retype(dest, src.type), scan);
4598 break;
4599 }
4600
4601 case nir_intrinsic_begin_invocation_interlock: {
4602 const fs_builder ubld = bld.group(8, 0);
4603 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4604
4605 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4606 REG_SIZE;
4607
4608 break;
4609 }
4610
4611 case nir_intrinsic_end_invocation_interlock: {
4612 /* We don't need to do anything here */
4613 break;
4614 }
4615
4616 default:
4617 unreachable("unknown intrinsic");
4618 }
4619 }
4620
4621 void
4622 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4623 int op, nir_intrinsic_instr *instr)
4624 {
4625 if (stage == MESA_SHADER_FRAGMENT)
4626 brw_wm_prog_data(prog_data)->has_side_effects = true;
4627
4628 fs_reg dest;
4629 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4630 dest = get_nir_dest(instr->dest);
4631
4632 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4633 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4634 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4635 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4636 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4637
4638 fs_reg data;
4639 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4640 data = get_nir_src(instr->src[2]);
4641
4642 if (op == BRW_AOP_CMPWR) {
4643 fs_reg tmp = bld.vgrf(data.type, 2);
4644 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4645 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4646 data = tmp;
4647 }
4648 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4649
4650 /* Emit the actual atomic operation */
4651
4652 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4653 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4654 }
4655
4656 void
4657 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4658 int op, nir_intrinsic_instr *instr)
4659 {
4660 if (stage == MESA_SHADER_FRAGMENT)
4661 brw_wm_prog_data(prog_data)->has_side_effects = true;
4662
4663 fs_reg dest;
4664 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4665 dest = get_nir_dest(instr->dest);
4666
4667 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4668 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4669 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4670 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4671 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4672
4673 fs_reg data = get_nir_src(instr->src[2]);
4674 if (op == BRW_AOP_FCMPWR) {
4675 fs_reg tmp = bld.vgrf(data.type, 2);
4676 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4677 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4678 data = tmp;
4679 }
4680 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4681
4682 /* Emit the actual atomic operation */
4683
4684 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4685 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4686 }
4687
4688 void
4689 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4690 int op, nir_intrinsic_instr *instr)
4691 {
4692 fs_reg dest;
4693 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4694 dest = get_nir_dest(instr->dest);
4695
4696 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4697 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4698 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4699 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4700
4701 fs_reg data;
4702 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4703 data = get_nir_src(instr->src[1]);
4704 if (op == BRW_AOP_CMPWR) {
4705 fs_reg tmp = bld.vgrf(data.type, 2);
4706 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4707 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4708 data = tmp;
4709 }
4710 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4711
4712 /* Get the offset */
4713 if (nir_src_is_const(instr->src[0])) {
4714 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4715 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4716 } else {
4717 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4718 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4719 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4720 brw_imm_ud(instr->const_index[0]));
4721 }
4722
4723 /* Emit the actual atomic operation operation */
4724
4725 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4726 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4727 }
4728
4729 void
4730 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4731 int op, nir_intrinsic_instr *instr)
4732 {
4733 fs_reg dest;
4734 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4735 dest = get_nir_dest(instr->dest);
4736
4737 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4738 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4739 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4740 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4741
4742 fs_reg data = get_nir_src(instr->src[1]);
4743 if (op == BRW_AOP_FCMPWR) {
4744 fs_reg tmp = bld.vgrf(data.type, 2);
4745 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4746 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4747 data = tmp;
4748 }
4749 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4750
4751 /* Get the offset */
4752 if (nir_src_is_const(instr->src[0])) {
4753 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4754 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4755 } else {
4756 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4757 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4758 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4759 brw_imm_ud(instr->const_index[0]));
4760 }
4761
4762 /* Emit the actual atomic operation operation */
4763
4764 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4765 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4766 }
4767
4768 void
4769 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
4770 int op, nir_intrinsic_instr *instr)
4771 {
4772 if (stage == MESA_SHADER_FRAGMENT)
4773 brw_wm_prog_data(prog_data)->has_side_effects = true;
4774
4775 fs_reg dest;
4776 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4777 dest = get_nir_dest(instr->dest);
4778
4779 fs_reg addr = get_nir_src(instr->src[0]);
4780
4781 fs_reg data;
4782 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4783 data = get_nir_src(instr->src[1]);
4784
4785 if (op == BRW_AOP_CMPWR) {
4786 fs_reg tmp = bld.vgrf(data.type, 2);
4787 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4788 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4789 data = tmp;
4790 }
4791
4792 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4793 dest, addr, data, brw_imm_ud(op));
4794 }
4795
4796 void
4797 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
4798 int op, nir_intrinsic_instr *instr)
4799 {
4800 if (stage == MESA_SHADER_FRAGMENT)
4801 brw_wm_prog_data(prog_data)->has_side_effects = true;
4802
4803 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
4804 fs_reg dest = get_nir_dest(instr->dest);
4805
4806 fs_reg addr = get_nir_src(instr->src[0]);
4807
4808 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
4809 fs_reg data = get_nir_src(instr->src[1]);
4810
4811 if (op == BRW_AOP_FCMPWR) {
4812 fs_reg tmp = bld.vgrf(data.type, 2);
4813 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4814 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4815 data = tmp;
4816 }
4817
4818 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4819 dest, addr, data, brw_imm_ud(op));
4820 }
4821
4822 void
4823 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4824 {
4825 unsigned texture = instr->texture_index;
4826 unsigned sampler = instr->sampler_index;
4827
4828 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4829
4830 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4831 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4832
4833 int lod_components = 0;
4834
4835 /* The hardware requires a LOD for buffer textures */
4836 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4837 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4838
4839 uint32_t header_bits = 0;
4840 for (unsigned i = 0; i < instr->num_srcs; i++) {
4841 fs_reg src = get_nir_src(instr->src[i].src);
4842 switch (instr->src[i].src_type) {
4843 case nir_tex_src_bias:
4844 srcs[TEX_LOGICAL_SRC_LOD] =
4845 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4846 break;
4847 case nir_tex_src_comparator:
4848 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4849 break;
4850 case nir_tex_src_coord:
4851 switch (instr->op) {
4852 case nir_texop_txf:
4853 case nir_texop_txf_ms:
4854 case nir_texop_txf_ms_mcs:
4855 case nir_texop_samples_identical:
4856 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4857 break;
4858 default:
4859 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4860 break;
4861 }
4862 break;
4863 case nir_tex_src_ddx:
4864 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4865 lod_components = nir_tex_instr_src_size(instr, i);
4866 break;
4867 case nir_tex_src_ddy:
4868 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4869 break;
4870 case nir_tex_src_lod:
4871 switch (instr->op) {
4872 case nir_texop_txs:
4873 srcs[TEX_LOGICAL_SRC_LOD] =
4874 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4875 break;
4876 case nir_texop_txf:
4877 srcs[TEX_LOGICAL_SRC_LOD] =
4878 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4879 break;
4880 default:
4881 srcs[TEX_LOGICAL_SRC_LOD] =
4882 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4883 break;
4884 }
4885 break;
4886 case nir_tex_src_min_lod:
4887 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
4888 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4889 break;
4890 case nir_tex_src_ms_index:
4891 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4892 break;
4893
4894 case nir_tex_src_offset: {
4895 nir_const_value *const_offset =
4896 nir_src_as_const_value(instr->src[i].src);
4897 assert(nir_src_bit_size(instr->src[i].src) == 32);
4898 unsigned offset_bits = 0;
4899 if (const_offset &&
4900 brw_texture_offset(const_offset->i32,
4901 nir_tex_instr_src_size(instr, i),
4902 &offset_bits)) {
4903 header_bits |= offset_bits;
4904 } else {
4905 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
4906 retype(src, BRW_REGISTER_TYPE_D);
4907 }
4908 break;
4909 }
4910
4911 case nir_tex_src_projector:
4912 unreachable("should be lowered");
4913
4914 case nir_tex_src_texture_offset: {
4915 /* Emit code to evaluate the actual indexing expression */
4916 fs_reg tmp = vgrf(glsl_type::uint_type);
4917 bld.ADD(tmp, src, brw_imm_ud(texture));
4918 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4919 break;
4920 }
4921
4922 case nir_tex_src_sampler_offset: {
4923 /* Emit code to evaluate the actual indexing expression */
4924 fs_reg tmp = vgrf(glsl_type::uint_type);
4925 bld.ADD(tmp, src, brw_imm_ud(sampler));
4926 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4927 break;
4928 }
4929
4930 case nir_tex_src_ms_mcs:
4931 assert(instr->op == nir_texop_txf_ms);
4932 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
4933 break;
4934
4935 case nir_tex_src_plane: {
4936 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
4937 const uint32_t texture_index =
4938 instr->texture_index +
4939 stage_prog_data->binding_table.plane_start[plane] -
4940 stage_prog_data->binding_table.texture_start;
4941
4942 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
4943 break;
4944 }
4945
4946 default:
4947 unreachable("unknown texture source");
4948 }
4949 }
4950
4951 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
4952 (instr->op == nir_texop_txf_ms ||
4953 instr->op == nir_texop_samples_identical)) {
4954 if (devinfo->gen >= 7 &&
4955 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
4956 srcs[TEX_LOGICAL_SRC_MCS] =
4957 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
4958 instr->coord_components,
4959 srcs[TEX_LOGICAL_SRC_SURFACE]);
4960 } else {
4961 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
4962 }
4963 }
4964
4965 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
4966 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
4967
4968 enum opcode opcode;
4969 switch (instr->op) {
4970 case nir_texop_tex:
4971 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
4972 SHADER_OPCODE_TXL_LOGICAL);
4973 break;
4974 case nir_texop_txb:
4975 opcode = FS_OPCODE_TXB_LOGICAL;
4976 break;
4977 case nir_texop_txl:
4978 opcode = SHADER_OPCODE_TXL_LOGICAL;
4979 break;
4980 case nir_texop_txd:
4981 opcode = SHADER_OPCODE_TXD_LOGICAL;
4982 break;
4983 case nir_texop_txf:
4984 opcode = SHADER_OPCODE_TXF_LOGICAL;
4985 break;
4986 case nir_texop_txf_ms:
4987 if ((key_tex->msaa_16 & (1 << sampler)))
4988 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
4989 else
4990 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
4991 break;
4992 case nir_texop_txf_ms_mcs:
4993 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
4994 break;
4995 case nir_texop_query_levels:
4996 case nir_texop_txs:
4997 opcode = SHADER_OPCODE_TXS_LOGICAL;
4998 break;
4999 case nir_texop_lod:
5000 opcode = SHADER_OPCODE_LOD_LOGICAL;
5001 break;
5002 case nir_texop_tg4:
5003 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5004 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5005 else
5006 opcode = SHADER_OPCODE_TG4_LOGICAL;
5007 break;
5008 case nir_texop_texture_samples:
5009 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5010 break;
5011 case nir_texop_samples_identical: {
5012 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5013
5014 /* If mcs is an immediate value, it means there is no MCS. In that case
5015 * just return false.
5016 */
5017 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5018 bld.MOV(dst, brw_imm_ud(0u));
5019 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5020 fs_reg tmp = vgrf(glsl_type::uint_type);
5021 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5022 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5023 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5024 } else {
5025 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5026 BRW_CONDITIONAL_EQ);
5027 }
5028 return;
5029 }
5030 default:
5031 unreachable("unknown texture opcode");
5032 }
5033
5034 if (instr->op == nir_texop_tg4) {
5035 if (instr->component == 1 &&
5036 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5037 /* gather4 sampler is broken for green channel on RG32F --
5038 * we must ask for blue instead.
5039 */
5040 header_bits |= 2 << 16;
5041 } else {
5042 header_bits |= instr->component << 16;
5043 }
5044 }
5045
5046 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5047 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5048 inst->offset = header_bits;
5049
5050 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5051 if (devinfo->gen >= 9 &&
5052 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5053 unsigned write_mask = instr->dest.is_ssa ?
5054 nir_ssa_def_components_read(&instr->dest.ssa):
5055 (1 << dest_size) - 1;
5056 assert(write_mask != 0); /* dead code should have been eliminated */
5057 inst->size_written = util_last_bit(write_mask) *
5058 inst->dst.component_size(inst->exec_size);
5059 } else {
5060 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5061 }
5062
5063 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5064 inst->shadow_compare = true;
5065
5066 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5067 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5068
5069 fs_reg nir_dest[4];
5070 for (unsigned i = 0; i < dest_size; i++)
5071 nir_dest[i] = offset(dst, bld, i);
5072
5073 if (instr->op == nir_texop_query_levels) {
5074 /* # levels is in .w */
5075 nir_dest[0] = offset(dst, bld, 3);
5076 } else if (instr->op == nir_texop_txs &&
5077 dest_size >= 3 && devinfo->gen < 7) {
5078 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5079 fs_reg depth = offset(dst, bld, 2);
5080 nir_dest[2] = vgrf(glsl_type::int_type);
5081 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5082 }
5083
5084 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5085 }
5086
5087 void
5088 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5089 {
5090 switch (instr->type) {
5091 case nir_jump_break:
5092 bld.emit(BRW_OPCODE_BREAK);
5093 break;
5094 case nir_jump_continue:
5095 bld.emit(BRW_OPCODE_CONTINUE);
5096 break;
5097 case nir_jump_return:
5098 default:
5099 unreachable("unknown jump");
5100 }
5101 }
5102
5103 /*
5104 * This helper takes a source register and un/shuffles it into the destination
5105 * register.
5106 *
5107 * If source type size is smaller than destination type size the operation
5108 * needed is a component shuffle. The opposite case would be an unshuffle. If
5109 * source/destination type size is equal a shuffle is done that would be
5110 * equivalent to a simple MOV.
5111 *
5112 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5113 * components .xyz 16-bit vector on SIMD8 would be.
5114 *
5115 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5116 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5117 *
5118 * This helper will return the following 2 32-bit components with the 16-bit
5119 * values shuffled:
5120 *
5121 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5122 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5123 *
5124 * For unshuffle, the example would be the opposite, a 64-bit type source
5125 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5126 * would be:
5127 *
5128 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5129 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5130 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5131 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5132 *
5133 * The returned result would be the following 4 32-bit components unshuffled:
5134 *
5135 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5136 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5137 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5138 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5139 *
5140 * - Source and destination register must not be overlapped.
5141 * - components units are measured in terms of the smaller type between
5142 * source and destination because we are un/shuffling the smaller
5143 * components from/into the bigger ones.
5144 * - first_component parameter allows skipping source components.
5145 */
5146 void
5147 shuffle_src_to_dst(const fs_builder &bld,
5148 const fs_reg &dst,
5149 const fs_reg &src,
5150 uint32_t first_component,
5151 uint32_t components)
5152 {
5153 if (type_sz(src.type) == type_sz(dst.type)) {
5154 assert(!regions_overlap(dst,
5155 type_sz(dst.type) * bld.dispatch_width() * components,
5156 offset(src, bld, first_component),
5157 type_sz(src.type) * bld.dispatch_width() * components));
5158 for (unsigned i = 0; i < components; i++) {
5159 bld.MOV(retype(offset(dst, bld, i), src.type),
5160 offset(src, bld, i + first_component));
5161 }
5162 } else if (type_sz(src.type) < type_sz(dst.type)) {
5163 /* Source is shuffled into destination */
5164 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5165 assert(!regions_overlap(dst,
5166 type_sz(dst.type) * bld.dispatch_width() *
5167 DIV_ROUND_UP(components, size_ratio),
5168 offset(src, bld, first_component),
5169 type_sz(src.type) * bld.dispatch_width() * components));
5170
5171 brw_reg_type shuffle_type =
5172 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5173 BRW_REGISTER_TYPE_D);
5174 for (unsigned i = 0; i < components; i++) {
5175 fs_reg shuffle_component_i =
5176 subscript(offset(dst, bld, i / size_ratio),
5177 shuffle_type, i % size_ratio);
5178 bld.MOV(shuffle_component_i,
5179 retype(offset(src, bld, i + first_component), shuffle_type));
5180 }
5181 } else {
5182 /* Source is unshuffled into destination */
5183 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5184 assert(!regions_overlap(dst,
5185 type_sz(dst.type) * bld.dispatch_width() * components,
5186 offset(src, bld, first_component / size_ratio),
5187 type_sz(src.type) * bld.dispatch_width() *
5188 DIV_ROUND_UP(components + (first_component % size_ratio),
5189 size_ratio)));
5190
5191 brw_reg_type shuffle_type =
5192 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5193 BRW_REGISTER_TYPE_D);
5194 for (unsigned i = 0; i < components; i++) {
5195 fs_reg shuffle_component_i =
5196 subscript(offset(src, bld, (first_component + i) / size_ratio),
5197 shuffle_type, (first_component + i) % size_ratio);
5198 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5199 shuffle_component_i);
5200 }
5201 }
5202 }
5203
5204 void
5205 shuffle_from_32bit_read(const fs_builder &bld,
5206 const fs_reg &dst,
5207 const fs_reg &src,
5208 uint32_t first_component,
5209 uint32_t components)
5210 {
5211 assert(type_sz(src.type) == 4);
5212
5213 /* This function takes components in units of the destination type while
5214 * shuffle_src_to_dst takes components in units of the smallest type
5215 */
5216 if (type_sz(dst.type) > 4) {
5217 assert(type_sz(dst.type) == 8);
5218 first_component *= 2;
5219 components *= 2;
5220 }
5221
5222 shuffle_src_to_dst(bld, dst, src, first_component, components);
5223 }
5224
5225 fs_reg
5226 shuffle_for_32bit_write(const fs_builder &bld,
5227 const fs_reg &src,
5228 uint32_t first_component,
5229 uint32_t components)
5230 {
5231 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5232 DIV_ROUND_UP (components * type_sz(src.type), 4));
5233 /* This function takes components in units of the source type while
5234 * shuffle_src_to_dst takes components in units of the smallest type
5235 */
5236 if (type_sz(src.type) > 4) {
5237 assert(type_sz(src.type) == 8);
5238 first_component *= 2;
5239 components *= 2;
5240 }
5241
5242 shuffle_src_to_dst(bld, dst, src, first_component, components);
5243
5244 return dst;
5245 }
5246
5247 fs_reg
5248 setup_imm_df(const fs_builder &bld, double v)
5249 {
5250 const struct gen_device_info *devinfo = bld.shader->devinfo;
5251 assert(devinfo->gen >= 7);
5252
5253 if (devinfo->gen >= 8)
5254 return brw_imm_df(v);
5255
5256 /* gen7.5 does not support DF immediates straighforward but the DIM
5257 * instruction allows to set the 64-bit immediate value.
5258 */
5259 if (devinfo->is_haswell) {
5260 const fs_builder ubld = bld.exec_all().group(1, 0);
5261 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5262 ubld.DIM(dst, brw_imm_df(v));
5263 return component(dst, 0);
5264 }
5265
5266 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5267 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5268 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5269 *
5270 * Alternatively, we could also produce a normal VGRF (without stride 0)
5271 * by writing to all the channels in the VGRF, however, that would hit the
5272 * gen7 bug where we have to split writes that span more than 1 register
5273 * into instructions with a width of 4 (otherwise the write to the second
5274 * register written runs into an execmask hardware bug) which isn't very
5275 * nice.
5276 */
5277 union {
5278 double d;
5279 struct {
5280 uint32_t i1;
5281 uint32_t i2;
5282 };
5283 } di;
5284
5285 di.d = v;
5286
5287 const fs_builder ubld = bld.exec_all().group(1, 0);
5288 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5289 ubld.MOV(tmp, brw_imm_ud(di.i1));
5290 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5291
5292 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5293 }
5294
5295 fs_reg
5296 setup_imm_b(const fs_builder &bld, int8_t v)
5297 {
5298 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5299 bld.MOV(tmp, brw_imm_w(v));
5300 return tmp;
5301 }
5302
5303 fs_reg
5304 setup_imm_ub(const fs_builder &bld, uint8_t v)
5305 {
5306 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5307 bld.MOV(tmp, brw_imm_uw(v));
5308 return tmp;
5309 }