9c9df5ac09f8068636158f33ce1944e7c9885b2e
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
71 if (vec4s[loc] == 0) {
72 loc++;
73 continue;
74 }
75
76 unsigned reg_size = vec4s[loc];
77
78 /* Check if there are any ranges that start within this range and extend
79 * past it. If so, include them in this allocation.
80 */
81 for (unsigned i = 1; i < reg_size; i++)
82 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
83
84 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
85 for (unsigned i = 0; i < reg_size; i++)
86 outputs[loc + i] = offset(reg, bld, 4 * i);
87
88 loc += reg_size;
89 }
90 }
91
92 void
93 fs_visitor::nir_setup_uniforms()
94 {
95 /* Only the first compile gets to set up uniforms. */
96 if (push_constant_loc) {
97 assert(pull_constant_loc);
98 return;
99 }
100
101 uniforms = nir->num_uniforms / 4;
102
103 if (stage == MESA_SHADER_COMPUTE) {
104 /* Add a uniform for the thread local id. It must be the last uniform
105 * on the list.
106 */
107 assert(uniforms == prog_data->nr_params);
108 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
109 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
110 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
111 }
112 }
113
114 static bool
115 emit_system_values_block(nir_block *block, fs_visitor *v)
116 {
117 fs_reg *reg;
118
119 nir_foreach_instr(instr, block) {
120 if (instr->type != nir_instr_type_intrinsic)
121 continue;
122
123 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
124 switch (intrin->intrinsic) {
125 case nir_intrinsic_load_vertex_id:
126 case nir_intrinsic_load_base_vertex:
127 unreachable("should be lowered by nir_lower_system_values().");
128
129 case nir_intrinsic_load_vertex_id_zero_base:
130 case nir_intrinsic_load_is_indexed_draw:
131 case nir_intrinsic_load_first_vertex:
132 case nir_intrinsic_load_instance_id:
133 case nir_intrinsic_load_base_instance:
134 case nir_intrinsic_load_draw_id:
135 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
136
137 case nir_intrinsic_load_invocation_id:
138 if (v->stage == MESA_SHADER_TESS_CTRL)
139 break;
140 assert(v->stage == MESA_SHADER_GEOMETRY);
141 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
142 if (reg->file == BAD_FILE) {
143 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
144 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
145 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
146 abld.SHR(iid, g1, brw_imm_ud(27u));
147 *reg = iid;
148 }
149 break;
150
151 case nir_intrinsic_load_sample_pos:
152 assert(v->stage == MESA_SHADER_FRAGMENT);
153 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
154 if (reg->file == BAD_FILE)
155 *reg = *v->emit_samplepos_setup();
156 break;
157
158 case nir_intrinsic_load_sample_id:
159 assert(v->stage == MESA_SHADER_FRAGMENT);
160 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
161 if (reg->file == BAD_FILE)
162 *reg = *v->emit_sampleid_setup();
163 break;
164
165 case nir_intrinsic_load_sample_mask_in:
166 assert(v->stage == MESA_SHADER_FRAGMENT);
167 assert(v->devinfo->gen >= 7);
168 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
169 if (reg->file == BAD_FILE)
170 *reg = *v->emit_samplemaskin_setup();
171 break;
172
173 case nir_intrinsic_load_work_group_id:
174 assert(v->stage == MESA_SHADER_COMPUTE);
175 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
176 if (reg->file == BAD_FILE)
177 *reg = *v->emit_cs_work_group_id_setup();
178 break;
179
180 case nir_intrinsic_load_helper_invocation:
181 assert(v->stage == MESA_SHADER_FRAGMENT);
182 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
183 if (reg->file == BAD_FILE) {
184 const fs_builder abld =
185 v->bld.annotate("gl_HelperInvocation", NULL);
186
187 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
188 * pixel mask is in g1.7 of the thread payload.
189 *
190 * We move the per-channel pixel enable bit to the low bit of each
191 * channel by shifting the byte containing the pixel mask by the
192 * vector immediate 0x76543210UV.
193 *
194 * The region of <1,8,0> reads only 1 byte (the pixel masks for
195 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
196 * masks for 2 and 3) in SIMD16.
197 */
198 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
199
200 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
201 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
202 hbld.SHR(offset(shifted, hbld, i),
203 stride(retype(brw_vec1_grf(1 + i, 7),
204 BRW_REGISTER_TYPE_UB),
205 1, 8, 0),
206 brw_imm_v(0x76543210));
207 }
208
209 /* A set bit in the pixel mask means the channel is enabled, but
210 * that is the opposite of gl_HelperInvocation so we need to invert
211 * the mask.
212 *
213 * The negate source-modifier bit of logical instructions on Gen8+
214 * performs 1's complement negation, so we can use that instead of
215 * a NOT instruction.
216 */
217 fs_reg inverted = negate(shifted);
218 if (v->devinfo->gen < 8) {
219 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
220 abld.NOT(inverted, shifted);
221 }
222
223 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
224 * with 1 and negating.
225 */
226 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
227 abld.AND(anded, inverted, brw_imm_uw(1));
228
229 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
230 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
231 *reg = dst;
232 }
233 break;
234
235 default:
236 break;
237 }
238 }
239
240 return true;
241 }
242
243 void
244 fs_visitor::nir_emit_system_values()
245 {
246 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
247 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
248 nir_system_values[i] = fs_reg();
249 }
250
251 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
252 * never end up using it.
253 */
254 {
255 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
256 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
257 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
258
259 const fs_builder allbld8 = abld.group(8, 0).exec_all();
260 allbld8.MOV(reg, brw_imm_v(0x76543210));
261 if (dispatch_width > 8)
262 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
263 if (dispatch_width > 16) {
264 const fs_builder allbld16 = abld.group(16, 0).exec_all();
265 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
266 }
267 }
268
269 nir_foreach_function(function, nir) {
270 assert(strcmp(function->name, "main") == 0);
271 assert(function->impl);
272 nir_foreach_block(block, function->impl) {
273 emit_system_values_block(block, this);
274 }
275 }
276 }
277
278 /*
279 * Returns a type based on a reference_type (word, float, half-float) and a
280 * given bit_size.
281 *
282 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
283 *
284 * @FIXME: 64-bit return types are always DF on integer types to maintain
285 * compability with uses of DF previously to the introduction of int64
286 * support.
287 */
288 static brw_reg_type
289 brw_reg_type_from_bit_size(const unsigned bit_size,
290 const brw_reg_type reference_type)
291 {
292 switch(reference_type) {
293 case BRW_REGISTER_TYPE_HF:
294 case BRW_REGISTER_TYPE_F:
295 case BRW_REGISTER_TYPE_DF:
296 switch(bit_size) {
297 case 16:
298 return BRW_REGISTER_TYPE_HF;
299 case 32:
300 return BRW_REGISTER_TYPE_F;
301 case 64:
302 return BRW_REGISTER_TYPE_DF;
303 default:
304 unreachable("Invalid bit size");
305 }
306 case BRW_REGISTER_TYPE_B:
307 case BRW_REGISTER_TYPE_W:
308 case BRW_REGISTER_TYPE_D:
309 case BRW_REGISTER_TYPE_Q:
310 switch(bit_size) {
311 case 8:
312 return BRW_REGISTER_TYPE_B;
313 case 16:
314 return BRW_REGISTER_TYPE_W;
315 case 32:
316 return BRW_REGISTER_TYPE_D;
317 case 64:
318 return BRW_REGISTER_TYPE_Q;
319 default:
320 unreachable("Invalid bit size");
321 }
322 case BRW_REGISTER_TYPE_UB:
323 case BRW_REGISTER_TYPE_UW:
324 case BRW_REGISTER_TYPE_UD:
325 case BRW_REGISTER_TYPE_UQ:
326 switch(bit_size) {
327 case 8:
328 return BRW_REGISTER_TYPE_UB;
329 case 16:
330 return BRW_REGISTER_TYPE_UW;
331 case 32:
332 return BRW_REGISTER_TYPE_UD;
333 case 64:
334 return BRW_REGISTER_TYPE_UQ;
335 default:
336 unreachable("Invalid bit size");
337 }
338 default:
339 unreachable("Unknown type");
340 }
341 }
342
343 void
344 fs_visitor::nir_emit_impl(nir_function_impl *impl)
345 {
346 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
347 for (unsigned i = 0; i < impl->reg_alloc; i++) {
348 nir_locals[i] = fs_reg();
349 }
350
351 foreach_list_typed(nir_register, reg, node, &impl->registers) {
352 unsigned array_elems =
353 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
354 unsigned size = array_elems * reg->num_components;
355 const brw_reg_type reg_type =
356 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
357 nir_locals[reg->index] = bld.vgrf(reg_type, size);
358 }
359
360 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
361 impl->ssa_alloc);
362
363 nir_emit_cf_list(&impl->body);
364 }
365
366 void
367 fs_visitor::nir_emit_cf_list(exec_list *list)
368 {
369 exec_list_validate(list);
370 foreach_list_typed(nir_cf_node, node, node, list) {
371 switch (node->type) {
372 case nir_cf_node_if:
373 nir_emit_if(nir_cf_node_as_if(node));
374 break;
375
376 case nir_cf_node_loop:
377 nir_emit_loop(nir_cf_node_as_loop(node));
378 break;
379
380 case nir_cf_node_block:
381 nir_emit_block(nir_cf_node_as_block(node));
382 break;
383
384 default:
385 unreachable("Invalid CFG node block");
386 }
387 }
388 }
389
390 void
391 fs_visitor::nir_emit_if(nir_if *if_stmt)
392 {
393 /* first, put the condition into f0 */
394 fs_inst *inst = bld.MOV(bld.null_reg_d(),
395 retype(get_nir_src(if_stmt->condition),
396 BRW_REGISTER_TYPE_D));
397 inst->conditional_mod = BRW_CONDITIONAL_NZ;
398
399 bld.IF(BRW_PREDICATE_NORMAL);
400
401 nir_emit_cf_list(&if_stmt->then_list);
402
403 /* note: if the else is empty, dead CF elimination will remove it */
404 bld.emit(BRW_OPCODE_ELSE);
405
406 nir_emit_cf_list(&if_stmt->else_list);
407
408 bld.emit(BRW_OPCODE_ENDIF);
409
410 if (devinfo->gen < 7)
411 limit_dispatch_width(16, "Non-uniform control flow unsupported "
412 "in SIMD32 mode.");
413 }
414
415 void
416 fs_visitor::nir_emit_loop(nir_loop *loop)
417 {
418 bld.emit(BRW_OPCODE_DO);
419
420 nir_emit_cf_list(&loop->body);
421
422 bld.emit(BRW_OPCODE_WHILE);
423
424 if (devinfo->gen < 7)
425 limit_dispatch_width(16, "Non-uniform control flow unsupported "
426 "in SIMD32 mode.");
427 }
428
429 void
430 fs_visitor::nir_emit_block(nir_block *block)
431 {
432 nir_foreach_instr(instr, block) {
433 nir_emit_instr(instr);
434 }
435 }
436
437 void
438 fs_visitor::nir_emit_instr(nir_instr *instr)
439 {
440 const fs_builder abld = bld.annotate(NULL, instr);
441
442 switch (instr->type) {
443 case nir_instr_type_alu:
444 nir_emit_alu(abld, nir_instr_as_alu(instr));
445 break;
446
447 case nir_instr_type_deref:
448 /* Derefs can exist for images but they do nothing */
449 break;
450
451 case nir_instr_type_intrinsic:
452 switch (stage) {
453 case MESA_SHADER_VERTEX:
454 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456 case MESA_SHADER_TESS_CTRL:
457 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
458 break;
459 case MESA_SHADER_TESS_EVAL:
460 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462 case MESA_SHADER_GEOMETRY:
463 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 case MESA_SHADER_FRAGMENT:
466 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_COMPUTE:
469 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 default:
472 unreachable("unsupported shader stage");
473 }
474 break;
475
476 case nir_instr_type_tex:
477 nir_emit_texture(abld, nir_instr_as_tex(instr));
478 break;
479
480 case nir_instr_type_load_const:
481 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
482 break;
483
484 case nir_instr_type_ssa_undef:
485 /* We create a new VGRF for undefs on every use (by handling
486 * them in get_nir_src()), rather than for each definition.
487 * This helps register coalescing eliminate MOVs from undef.
488 */
489 break;
490
491 case nir_instr_type_jump:
492 nir_emit_jump(abld, nir_instr_as_jump(instr));
493 break;
494
495 default:
496 unreachable("unknown instruction type");
497 }
498 }
499
500 /**
501 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
502 * match instr.
503 */
504 bool
505 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
506 const fs_reg &result)
507 {
508 if (!instr->src[0].src.is_ssa ||
509 !instr->src[0].src.ssa->parent_instr)
510 return false;
511
512 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
513 return false;
514
515 nir_alu_instr *src0 =
516 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
517
518 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
519 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
520 return false;
521
522 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
523 assert(element != NULL);
524
525 /* Element type to extract.*/
526 const brw_reg_type type = brw_int_type(
527 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
528 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
529
530 fs_reg op0 = get_nir_src(src0->src[0].src);
531 op0.type = brw_type_for_nir_type(devinfo,
532 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
533 nir_src_bit_size(src0->src[0].src)));
534 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
535
536 set_saturate(instr->dest.saturate,
537 bld.MOV(result, subscript(op0, type, element->u32[0])));
538 return true;
539 }
540
541 bool
542 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
543 const fs_reg &result)
544 {
545 if (!instr->src[0].src.is_ssa ||
546 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
547 return false;
548
549 nir_intrinsic_instr *src0 =
550 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
551
552 if (src0->intrinsic != nir_intrinsic_load_front_face)
553 return false;
554
555 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
556 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
557 return false;
558
559 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
560 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
561 return false;
562
563 fs_reg tmp = vgrf(glsl_type::int_type);
564
565 if (devinfo->gen >= 6) {
566 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
567 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
568
569 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
570 *
571 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
572 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
573 *
574 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
575 *
576 * This negation looks like it's safe in practice, because bits 0:4 will
577 * surely be TRIANGLES
578 */
579
580 if (value1->f32[0] == -1.0f) {
581 g0.negate = true;
582 }
583
584 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
585 g0, brw_imm_uw(0x3f80));
586 } else {
587 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
588 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
589
590 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
591 *
592 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
593 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
594 *
595 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
596 *
597 * This negation looks like it's safe in practice, because bits 0:4 will
598 * surely be TRIANGLES
599 */
600
601 if (value1->f32[0] == -1.0f) {
602 g1_6.negate = true;
603 }
604
605 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
606 }
607 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
608
609 return true;
610 }
611
612 static void
613 emit_find_msb_using_lzd(const fs_builder &bld,
614 const fs_reg &result,
615 const fs_reg &src,
616 bool is_signed)
617 {
618 fs_inst *inst;
619 fs_reg temp = src;
620
621 if (is_signed) {
622 /* LZD of an absolute value source almost always does the right
623 * thing. There are two problem values:
624 *
625 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
626 * 0. However, findMSB(int(0x80000000)) == 30.
627 *
628 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
629 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
630 *
631 * For a value of zero or negative one, -1 will be returned.
632 *
633 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
634 * findMSB(-(1<<x)) should return x-1.
635 *
636 * For all negative number cases, including 0x80000000 and
637 * 0xffffffff, the correct value is obtained from LZD if instead of
638 * negating the (already negative) value the logical-not is used. A
639 * conditonal logical-not can be achieved in two instructions.
640 */
641 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
642
643 bld.ASR(temp, src, brw_imm_d(31));
644 bld.XOR(temp, temp, src);
645 }
646
647 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
648 retype(temp, BRW_REGISTER_TYPE_UD));
649
650 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
651 * from the LSB side. Subtract the result from 31 to convert the MSB
652 * count into an LSB count. If no bits are set, LZD will return 32.
653 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
654 */
655 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
656 inst->src[0].negate = true;
657 }
658
659 static brw_rnd_mode
660 brw_rnd_mode_from_nir_op (const nir_op op) {
661 switch (op) {
662 case nir_op_f2f16_rtz:
663 return BRW_RND_MODE_RTZ;
664 case nir_op_f2f16_rtne:
665 return BRW_RND_MODE_RTNE;
666 default:
667 unreachable("Operation doesn't support rounding mode");
668 }
669 }
670
671 void
672 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
673 {
674 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
675 fs_inst *inst;
676
677 fs_reg result = get_nir_dest(instr->dest.dest);
678 result.type = brw_type_for_nir_type(devinfo,
679 (nir_alu_type)(nir_op_infos[instr->op].output_type |
680 nir_dest_bit_size(instr->dest.dest)));
681
682 fs_reg op[4];
683 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
684 op[i] = get_nir_src(instr->src[i].src);
685 op[i].type = brw_type_for_nir_type(devinfo,
686 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
687 nir_src_bit_size(instr->src[i].src)));
688 op[i].abs = instr->src[i].abs;
689 op[i].negate = instr->src[i].negate;
690 }
691
692 /* We get a bunch of mov's out of the from_ssa pass and they may still
693 * be vectorized. We'll handle them as a special-case. We'll also
694 * handle vecN here because it's basically the same thing.
695 */
696 switch (instr->op) {
697 case nir_op_imov:
698 case nir_op_fmov:
699 case nir_op_vec2:
700 case nir_op_vec3:
701 case nir_op_vec4: {
702 fs_reg temp = result;
703 bool need_extra_copy = false;
704 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
705 if (!instr->src[i].src.is_ssa &&
706 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
707 need_extra_copy = true;
708 temp = bld.vgrf(result.type, 4);
709 break;
710 }
711 }
712
713 for (unsigned i = 0; i < 4; i++) {
714 if (!(instr->dest.write_mask & (1 << i)))
715 continue;
716
717 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
718 inst = bld.MOV(offset(temp, bld, i),
719 offset(op[0], bld, instr->src[0].swizzle[i]));
720 } else {
721 inst = bld.MOV(offset(temp, bld, i),
722 offset(op[i], bld, instr->src[i].swizzle[0]));
723 }
724 inst->saturate = instr->dest.saturate;
725 }
726
727 /* In this case the source and destination registers were the same,
728 * so we need to insert an extra set of moves in order to deal with
729 * any swizzling.
730 */
731 if (need_extra_copy) {
732 for (unsigned i = 0; i < 4; i++) {
733 if (!(instr->dest.write_mask & (1 << i)))
734 continue;
735
736 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
737 }
738 }
739 return;
740 }
741 default:
742 break;
743 }
744
745 /* At this point, we have dealt with any instruction that operates on
746 * more than a single channel. Therefore, we can just adjust the source
747 * and destination registers for that channel and emit the instruction.
748 */
749 unsigned channel = 0;
750 if (nir_op_infos[instr->op].output_size == 0) {
751 /* Since NIR is doing the scalarizing for us, we should only ever see
752 * vectorized operations with a single channel.
753 */
754 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
755 channel = ffs(instr->dest.write_mask) - 1;
756
757 result = offset(result, bld, channel);
758 }
759
760 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
761 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
762 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
763 }
764
765 switch (instr->op) {
766 case nir_op_i2f32:
767 case nir_op_u2f32:
768 if (optimize_extract_to_float(instr, result))
769 return;
770 inst = bld.MOV(result, op[0]);
771 inst->saturate = instr->dest.saturate;
772 break;
773
774 case nir_op_f2f16_rtne:
775 case nir_op_f2f16_rtz:
776 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
777 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
778 /* fallthrough */
779
780 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
781 * on the HW gen, it is a special hw opcode or just a MOV, and
782 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
783 *
784 * But if we want to use that opcode, we need to provide support on
785 * different optimizations and lowerings. As right now HF support is
786 * only for gen8+, it will be better to use directly the MOV, and use
787 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
788 */
789
790 case nir_op_f2f16:
791 inst = bld.MOV(result, op[0]);
792 inst->saturate = instr->dest.saturate;
793 break;
794
795 case nir_op_f2f64:
796 case nir_op_f2i64:
797 case nir_op_f2u64:
798 case nir_op_i2f64:
799 case nir_op_i2i64:
800 case nir_op_u2f64:
801 case nir_op_u2u64:
802 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
803 *
804 * "When source or destination is 64b (...), regioning in Align1
805 * must follow these rules:
806 *
807 * 1. Source and destination horizontal stride must be aligned to
808 * the same qword.
809 * (...)"
810 *
811 * This means that conversions from bit-sizes smaller than 64-bit to
812 * 64-bit need to have the source data elements aligned to 64-bit.
813 * This restriction does not apply to BDW and later.
814 */
815 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
816 nir_src_bit_size(instr->src[0].src) < 64 &&
817 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
818 fs_reg tmp = bld.vgrf(result.type, 1);
819 tmp = subscript(tmp, op[0].type, 0);
820 inst = bld.MOV(tmp, op[0]);
821 inst = bld.MOV(result, tmp);
822 inst->saturate = instr->dest.saturate;
823 break;
824 }
825 /* fallthrough */
826 case nir_op_f2f32:
827 case nir_op_f2i32:
828 case nir_op_f2u32:
829 case nir_op_f2i16:
830 case nir_op_f2u16:
831 case nir_op_i2i32:
832 case nir_op_u2u32:
833 case nir_op_i2i16:
834 case nir_op_u2u16:
835 case nir_op_i2f16:
836 case nir_op_u2f16:
837 case nir_op_i2i8:
838 case nir_op_u2u8:
839 inst = bld.MOV(result, op[0]);
840 inst->saturate = instr->dest.saturate;
841 break;
842
843 case nir_op_fsign: {
844 if (op[0].abs) {
845 /* Straightforward since the source can be assumed to be either
846 * strictly >= 0 or strictly <= 0 depending on the setting of the
847 * negate flag.
848 */
849 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
850
851 inst = (op[0].negate)
852 ? bld.MOV(result, brw_imm_f(-1.0f))
853 : bld.MOV(result, brw_imm_f(1.0f));
854
855 set_predicate(BRW_PREDICATE_NORMAL, inst);
856
857 if (instr->dest.saturate)
858 inst->saturate = true;
859
860 } else if (type_sz(op[0].type) < 8) {
861 /* AND(val, 0x80000000) gives the sign bit.
862 *
863 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
864 * zero.
865 */
866 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
867
868 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
869 op[0].type = BRW_REGISTER_TYPE_UD;
870 result.type = BRW_REGISTER_TYPE_UD;
871 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
872
873 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
874 inst->predicate = BRW_PREDICATE_NORMAL;
875 if (instr->dest.saturate) {
876 inst = bld.MOV(result, result);
877 inst->saturate = true;
878 }
879 } else {
880 /* For doubles we do the same but we need to consider:
881 *
882 * - 2-src instructions can't operate with 64-bit immediates
883 * - The sign is encoded in the high 32-bit of each DF
884 * - We need to produce a DF result.
885 */
886
887 fs_reg zero = vgrf(glsl_type::double_type);
888 bld.MOV(zero, setup_imm_df(bld, 0.0));
889 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
890
891 bld.MOV(result, zero);
892
893 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
894 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
895 brw_imm_ud(0x80000000u));
896
897 set_predicate(BRW_PREDICATE_NORMAL,
898 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
899
900 if (instr->dest.saturate) {
901 inst = bld.MOV(result, result);
902 inst->saturate = true;
903 }
904 }
905 break;
906 }
907
908 case nir_op_isign: {
909 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
910 * -> non-negative val generates 0x00000000.
911 * Predicated OR sets 1 if val is positive.
912 */
913 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
914 assert(bit_size == 32 || bit_size == 16);
915
916 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
917 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
918 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
919
920 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
921 bld.ASR(result, op[0], shift);
922 inst = bld.OR(result, result, one);
923 inst->predicate = BRW_PREDICATE_NORMAL;
924 break;
925 }
926
927 case nir_op_frcp:
928 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
929 inst->saturate = instr->dest.saturate;
930 break;
931
932 case nir_op_fexp2:
933 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936
937 case nir_op_flog2:
938 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
939 inst->saturate = instr->dest.saturate;
940 break;
941
942 case nir_op_fsin:
943 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
944 inst->saturate = instr->dest.saturate;
945 break;
946
947 case nir_op_fcos:
948 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
949 inst->saturate = instr->dest.saturate;
950 break;
951
952 case nir_op_fddx:
953 if (fs_key->high_quality_derivatives) {
954 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
955 } else {
956 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
957 }
958 inst->saturate = instr->dest.saturate;
959 break;
960 case nir_op_fddx_fine:
961 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
962 inst->saturate = instr->dest.saturate;
963 break;
964 case nir_op_fddx_coarse:
965 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
966 inst->saturate = instr->dest.saturate;
967 break;
968 case nir_op_fddy:
969 if (fs_key->high_quality_derivatives) {
970 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
971 } else {
972 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
973 }
974 inst->saturate = instr->dest.saturate;
975 break;
976 case nir_op_fddy_fine:
977 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
978 inst->saturate = instr->dest.saturate;
979 break;
980 case nir_op_fddy_coarse:
981 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
982 inst->saturate = instr->dest.saturate;
983 break;
984
985 case nir_op_iadd:
986 case nir_op_fadd:
987 inst = bld.ADD(result, op[0], op[1]);
988 inst->saturate = instr->dest.saturate;
989 break;
990
991 case nir_op_fmul:
992 inst = bld.MUL(result, op[0], op[1]);
993 inst->saturate = instr->dest.saturate;
994 break;
995
996 case nir_op_imul:
997 assert(nir_dest_bit_size(instr->dest.dest) < 64);
998 bld.MUL(result, op[0], op[1]);
999 break;
1000
1001 case nir_op_imul_high:
1002 case nir_op_umul_high:
1003 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1004 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1005 break;
1006
1007 case nir_op_idiv:
1008 case nir_op_udiv:
1009 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1010 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1011 break;
1012
1013 case nir_op_uadd_carry:
1014 unreachable("Should have been lowered by carry_to_arith().");
1015
1016 case nir_op_usub_borrow:
1017 unreachable("Should have been lowered by borrow_to_arith().");
1018
1019 case nir_op_umod:
1020 case nir_op_irem:
1021 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1022 * appears that our hardware just does the right thing for signed
1023 * remainder.
1024 */
1025 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1026 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1027 break;
1028
1029 case nir_op_imod: {
1030 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1031 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1032
1033 /* Math instructions don't support conditional mod */
1034 inst = bld.MOV(bld.null_reg_d(), result);
1035 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1036
1037 /* Now, we need to determine if signs of the sources are different.
1038 * When we XOR the sources, the top bit is 0 if they are the same and 1
1039 * if they are different. We can then use a conditional modifier to
1040 * turn that into a predicate. This leads us to an XOR.l instruction.
1041 *
1042 * Technically, according to the PRM, you're not allowed to use .l on a
1043 * XOR instruction. However, emperical experiments and Curro's reading
1044 * of the simulator source both indicate that it's safe.
1045 */
1046 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1047 inst = bld.XOR(tmp, op[0], op[1]);
1048 inst->predicate = BRW_PREDICATE_NORMAL;
1049 inst->conditional_mod = BRW_CONDITIONAL_L;
1050
1051 /* If the result of the initial remainder operation is non-zero and the
1052 * two sources have different signs, add in a copy of op[1] to get the
1053 * final integer modulus value.
1054 */
1055 inst = bld.ADD(result, result, op[1]);
1056 inst->predicate = BRW_PREDICATE_NORMAL;
1057 break;
1058 }
1059
1060 case nir_op_flt:
1061 case nir_op_fge:
1062 case nir_op_feq:
1063 case nir_op_fne: {
1064 fs_reg dest = result;
1065
1066 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1067 if (bit_size != 32)
1068 dest = bld.vgrf(op[0].type, 1);
1069
1070 brw_conditional_mod cond;
1071 switch (instr->op) {
1072 case nir_op_flt:
1073 cond = BRW_CONDITIONAL_L;
1074 break;
1075 case nir_op_fge:
1076 cond = BRW_CONDITIONAL_GE;
1077 break;
1078 case nir_op_feq:
1079 cond = BRW_CONDITIONAL_Z;
1080 break;
1081 case nir_op_fne:
1082 cond = BRW_CONDITIONAL_NZ;
1083 break;
1084 default:
1085 unreachable("bad opcode");
1086 }
1087
1088 bld.CMP(dest, op[0], op[1], cond);
1089
1090 if (bit_size > 32) {
1091 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1092 } else if(bit_size < 32) {
1093 /* When we convert the result to 32-bit we need to be careful and do
1094 * it as a signed conversion to get sign extension (for 32-bit true)
1095 */
1096 const brw_reg_type src_type =
1097 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1098
1099 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1100 }
1101 break;
1102 }
1103
1104 case nir_op_ilt:
1105 case nir_op_ult:
1106 case nir_op_ige:
1107 case nir_op_uge:
1108 case nir_op_ieq:
1109 case nir_op_ine: {
1110 fs_reg dest = result;
1111
1112 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1113 if (bit_size != 32)
1114 dest = bld.vgrf(op[0].type, 1);
1115
1116 brw_conditional_mod cond;
1117 switch (instr->op) {
1118 case nir_op_ilt:
1119 case nir_op_ult:
1120 cond = BRW_CONDITIONAL_L;
1121 break;
1122 case nir_op_ige:
1123 case nir_op_uge:
1124 cond = BRW_CONDITIONAL_GE;
1125 break;
1126 case nir_op_ieq:
1127 cond = BRW_CONDITIONAL_Z;
1128 break;
1129 case nir_op_ine:
1130 cond = BRW_CONDITIONAL_NZ;
1131 break;
1132 default:
1133 unreachable("bad opcode");
1134 }
1135 bld.CMP(dest, op[0], op[1], cond);
1136
1137 if (bit_size > 32) {
1138 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1139 } else if (bit_size < 32) {
1140 /* When we convert the result to 32-bit we need to be careful and do
1141 * it as a signed conversion to get sign extension (for 32-bit true)
1142 */
1143 const brw_reg_type src_type =
1144 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1145
1146 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1147 }
1148 break;
1149 }
1150
1151 case nir_op_inot:
1152 if (devinfo->gen >= 8) {
1153 op[0] = resolve_source_modifiers(op[0]);
1154 }
1155 bld.NOT(result, op[0]);
1156 break;
1157 case nir_op_ixor:
1158 if (devinfo->gen >= 8) {
1159 op[0] = resolve_source_modifiers(op[0]);
1160 op[1] = resolve_source_modifiers(op[1]);
1161 }
1162 bld.XOR(result, op[0], op[1]);
1163 break;
1164 case nir_op_ior:
1165 if (devinfo->gen >= 8) {
1166 op[0] = resolve_source_modifiers(op[0]);
1167 op[1] = resolve_source_modifiers(op[1]);
1168 }
1169 bld.OR(result, op[0], op[1]);
1170 break;
1171 case nir_op_iand:
1172 if (devinfo->gen >= 8) {
1173 op[0] = resolve_source_modifiers(op[0]);
1174 op[1] = resolve_source_modifiers(op[1]);
1175 }
1176 bld.AND(result, op[0], op[1]);
1177 break;
1178
1179 case nir_op_fdot2:
1180 case nir_op_fdot3:
1181 case nir_op_fdot4:
1182 case nir_op_ball_fequal2:
1183 case nir_op_ball_iequal2:
1184 case nir_op_ball_fequal3:
1185 case nir_op_ball_iequal3:
1186 case nir_op_ball_fequal4:
1187 case nir_op_ball_iequal4:
1188 case nir_op_bany_fnequal2:
1189 case nir_op_bany_inequal2:
1190 case nir_op_bany_fnequal3:
1191 case nir_op_bany_inequal3:
1192 case nir_op_bany_fnequal4:
1193 case nir_op_bany_inequal4:
1194 unreachable("Lowered by nir_lower_alu_reductions");
1195
1196 case nir_op_fnoise1_1:
1197 case nir_op_fnoise1_2:
1198 case nir_op_fnoise1_3:
1199 case nir_op_fnoise1_4:
1200 case nir_op_fnoise2_1:
1201 case nir_op_fnoise2_2:
1202 case nir_op_fnoise2_3:
1203 case nir_op_fnoise2_4:
1204 case nir_op_fnoise3_1:
1205 case nir_op_fnoise3_2:
1206 case nir_op_fnoise3_3:
1207 case nir_op_fnoise3_4:
1208 case nir_op_fnoise4_1:
1209 case nir_op_fnoise4_2:
1210 case nir_op_fnoise4_3:
1211 case nir_op_fnoise4_4:
1212 unreachable("not reached: should be handled by lower_noise");
1213
1214 case nir_op_ldexp:
1215 unreachable("not reached: should be handled by ldexp_to_arith()");
1216
1217 case nir_op_fsqrt:
1218 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1219 inst->saturate = instr->dest.saturate;
1220 break;
1221
1222 case nir_op_frsq:
1223 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1224 inst->saturate = instr->dest.saturate;
1225 break;
1226
1227 case nir_op_b2i:
1228 case nir_op_b2f:
1229 bld.MOV(result, negate(op[0]));
1230 break;
1231
1232 case nir_op_i2b:
1233 case nir_op_f2b: {
1234 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1235 if (bit_size == 64) {
1236 /* two-argument instructions can't take 64-bit immediates */
1237 fs_reg zero;
1238 fs_reg tmp;
1239
1240 if (instr->op == nir_op_f2b) {
1241 zero = vgrf(glsl_type::double_type);
1242 tmp = vgrf(glsl_type::double_type);
1243 bld.MOV(zero, setup_imm_df(bld, 0.0));
1244 } else {
1245 zero = vgrf(glsl_type::int64_t_type);
1246 tmp = vgrf(glsl_type::int64_t_type);
1247 bld.MOV(zero, brw_imm_q(0));
1248 }
1249
1250 /* A SIMD16 execution needs to be split in two instructions, so use
1251 * a vgrf instead of the flag register as dst so instruction splitting
1252 * works
1253 */
1254 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1255 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1256 } else {
1257 fs_reg zero;
1258 if (bit_size == 32) {
1259 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1260 } else {
1261 assert(bit_size == 16);
1262 zero = instr->op == nir_op_f2b ?
1263 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1264 }
1265 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1266 }
1267 break;
1268 }
1269
1270 case nir_op_ftrunc:
1271 inst = bld.RNDZ(result, op[0]);
1272 inst->saturate = instr->dest.saturate;
1273 break;
1274
1275 case nir_op_fceil: {
1276 op[0].negate = !op[0].negate;
1277 fs_reg temp = vgrf(glsl_type::float_type);
1278 bld.RNDD(temp, op[0]);
1279 temp.negate = true;
1280 inst = bld.MOV(result, temp);
1281 inst->saturate = instr->dest.saturate;
1282 break;
1283 }
1284 case nir_op_ffloor:
1285 inst = bld.RNDD(result, op[0]);
1286 inst->saturate = instr->dest.saturate;
1287 break;
1288 case nir_op_ffract:
1289 inst = bld.FRC(result, op[0]);
1290 inst->saturate = instr->dest.saturate;
1291 break;
1292 case nir_op_fround_even:
1293 inst = bld.RNDE(result, op[0]);
1294 inst->saturate = instr->dest.saturate;
1295 break;
1296
1297 case nir_op_fquantize2f16: {
1298 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1299 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1300 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1301
1302 /* The destination stride must be at least as big as the source stride. */
1303 tmp16.type = BRW_REGISTER_TYPE_W;
1304 tmp16.stride = 2;
1305
1306 /* Check for denormal */
1307 fs_reg abs_src0 = op[0];
1308 abs_src0.abs = true;
1309 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1310 BRW_CONDITIONAL_L);
1311 /* Get the appropriately signed zero */
1312 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1313 retype(op[0], BRW_REGISTER_TYPE_UD),
1314 brw_imm_ud(0x80000000));
1315 /* Do the actual F32 -> F16 -> F32 conversion */
1316 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1317 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1318 /* Select that or zero based on normal status */
1319 inst = bld.SEL(result, zero, tmp32);
1320 inst->predicate = BRW_PREDICATE_NORMAL;
1321 inst->saturate = instr->dest.saturate;
1322 break;
1323 }
1324
1325 case nir_op_imin:
1326 case nir_op_umin:
1327 case nir_op_fmin:
1328 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1329 inst->saturate = instr->dest.saturate;
1330 break;
1331
1332 case nir_op_imax:
1333 case nir_op_umax:
1334 case nir_op_fmax:
1335 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1336 inst->saturate = instr->dest.saturate;
1337 break;
1338
1339 case nir_op_pack_snorm_2x16:
1340 case nir_op_pack_snorm_4x8:
1341 case nir_op_pack_unorm_2x16:
1342 case nir_op_pack_unorm_4x8:
1343 case nir_op_unpack_snorm_2x16:
1344 case nir_op_unpack_snorm_4x8:
1345 case nir_op_unpack_unorm_2x16:
1346 case nir_op_unpack_unorm_4x8:
1347 case nir_op_unpack_half_2x16:
1348 case nir_op_pack_half_2x16:
1349 unreachable("not reached: should be handled by lower_packing_builtins");
1350
1351 case nir_op_unpack_half_2x16_split_x:
1352 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1353 inst->saturate = instr->dest.saturate;
1354 break;
1355 case nir_op_unpack_half_2x16_split_y:
1356 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1357 inst->saturate = instr->dest.saturate;
1358 break;
1359
1360 case nir_op_pack_64_2x32_split:
1361 case nir_op_pack_32_2x16_split:
1362 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1363 break;
1364
1365 case nir_op_unpack_64_2x32_split_x:
1366 case nir_op_unpack_64_2x32_split_y: {
1367 if (instr->op == nir_op_unpack_64_2x32_split_x)
1368 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1369 else
1370 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1371 break;
1372 }
1373
1374 case nir_op_unpack_32_2x16_split_x:
1375 case nir_op_unpack_32_2x16_split_y: {
1376 if (instr->op == nir_op_unpack_32_2x16_split_x)
1377 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1378 else
1379 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1380 break;
1381 }
1382
1383 case nir_op_fpow:
1384 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1385 inst->saturate = instr->dest.saturate;
1386 break;
1387
1388 case nir_op_bitfield_reverse:
1389 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1390 bld.BFREV(result, op[0]);
1391 break;
1392
1393 case nir_op_bit_count:
1394 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1395 bld.CBIT(result, op[0]);
1396 break;
1397
1398 case nir_op_ufind_msb: {
1399 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1400 emit_find_msb_using_lzd(bld, result, op[0], false);
1401 break;
1402 }
1403
1404 case nir_op_ifind_msb: {
1405 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1406
1407 if (devinfo->gen < 7) {
1408 emit_find_msb_using_lzd(bld, result, op[0], true);
1409 } else {
1410 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1411
1412 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1413 * count from the LSB side. If FBH didn't return an error
1414 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1415 * count into an LSB count.
1416 */
1417 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1418
1419 inst = bld.ADD(result, result, brw_imm_d(31));
1420 inst->predicate = BRW_PREDICATE_NORMAL;
1421 inst->src[0].negate = true;
1422 }
1423 break;
1424 }
1425
1426 case nir_op_find_lsb:
1427 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1428
1429 if (devinfo->gen < 7) {
1430 fs_reg temp = vgrf(glsl_type::int_type);
1431
1432 /* (x & -x) generates a value that consists of only the LSB of x.
1433 * For all powers of 2, findMSB(y) == findLSB(y).
1434 */
1435 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1436 fs_reg negated_src = src;
1437
1438 /* One must be negated, and the other must be non-negated. It
1439 * doesn't matter which is which.
1440 */
1441 negated_src.negate = true;
1442 src.negate = false;
1443
1444 bld.AND(temp, src, negated_src);
1445 emit_find_msb_using_lzd(bld, result, temp, false);
1446 } else {
1447 bld.FBL(result, op[0]);
1448 }
1449 break;
1450
1451 case nir_op_ubitfield_extract:
1452 case nir_op_ibitfield_extract:
1453 unreachable("should have been lowered");
1454 case nir_op_ubfe:
1455 case nir_op_ibfe:
1456 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1457 bld.BFE(result, op[2], op[1], op[0]);
1458 break;
1459 case nir_op_bfm:
1460 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1461 bld.BFI1(result, op[0], op[1]);
1462 break;
1463 case nir_op_bfi:
1464 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1465 bld.BFI2(result, op[0], op[1], op[2]);
1466 break;
1467
1468 case nir_op_bitfield_insert:
1469 unreachable("not reached: should have been lowered");
1470
1471 case nir_op_ishl:
1472 case nir_op_ishr:
1473 case nir_op_ushr: {
1474 fs_reg shift_count = op[1];
1475
1476 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1477 if (op[1].file == VGRF &&
1478 (result.type == BRW_REGISTER_TYPE_Q ||
1479 result.type == BRW_REGISTER_TYPE_UQ)) {
1480 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1481 BRW_REGISTER_TYPE_UD);
1482 shift_count.stride = 2;
1483 bld.MOV(shift_count, op[1]);
1484 }
1485 }
1486
1487 switch (instr->op) {
1488 case nir_op_ishl:
1489 bld.SHL(result, op[0], shift_count);
1490 break;
1491 case nir_op_ishr:
1492 bld.ASR(result, op[0], shift_count);
1493 break;
1494 case nir_op_ushr:
1495 bld.SHR(result, op[0], shift_count);
1496 break;
1497 default:
1498 unreachable("not reached");
1499 }
1500 break;
1501 }
1502
1503 case nir_op_pack_half_2x16_split:
1504 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1505 break;
1506
1507 case nir_op_ffma:
1508 inst = bld.MAD(result, op[2], op[1], op[0]);
1509 inst->saturate = instr->dest.saturate;
1510 break;
1511
1512 case nir_op_flrp:
1513 inst = bld.LRP(result, op[0], op[1], op[2]);
1514 inst->saturate = instr->dest.saturate;
1515 break;
1516
1517 case nir_op_bcsel:
1518 if (optimize_frontfacing_ternary(instr, result))
1519 return;
1520
1521 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1522 inst = bld.SEL(result, op[1], op[2]);
1523 inst->predicate = BRW_PREDICATE_NORMAL;
1524 break;
1525
1526 case nir_op_extract_u8:
1527 case nir_op_extract_i8: {
1528 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1529 assert(byte != NULL);
1530
1531 /* The PRMs say:
1532 *
1533 * BDW+
1534 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1535 * Use two instructions and a word or DWord intermediate integer type.
1536 */
1537 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1538 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1539
1540 if (instr->op == nir_op_extract_i8) {
1541 /* If we need to sign extend, extract to a word first */
1542 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1543 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1544 bld.MOV(result, w_temp);
1545 } else {
1546 /* Otherwise use an AND with 0xff and a word type */
1547 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1548 }
1549 } else {
1550 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1551 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1552 }
1553 break;
1554 }
1555
1556 case nir_op_extract_u16:
1557 case nir_op_extract_i16: {
1558 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1559 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1560 assert(word != NULL);
1561 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1562 break;
1563 }
1564
1565 default:
1566 unreachable("unhandled instruction");
1567 }
1568
1569 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1570 * to sign extend the low bit to 0/~0
1571 */
1572 if (devinfo->gen <= 5 &&
1573 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1574 fs_reg masked = vgrf(glsl_type::int_type);
1575 bld.AND(masked, result, brw_imm_d(1));
1576 masked.negate = true;
1577 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1578 }
1579 }
1580
1581 void
1582 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1583 nir_load_const_instr *instr)
1584 {
1585 const brw_reg_type reg_type =
1586 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1587 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1588
1589 switch (instr->def.bit_size) {
1590 case 8:
1591 for (unsigned i = 0; i < instr->def.num_components; i++)
1592 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value.i8[i]));
1593 break;
1594
1595 case 16:
1596 for (unsigned i = 0; i < instr->def.num_components; i++)
1597 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1598 break;
1599
1600 case 32:
1601 for (unsigned i = 0; i < instr->def.num_components; i++)
1602 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1603 break;
1604
1605 case 64:
1606 assert(devinfo->gen >= 7);
1607 if (devinfo->gen == 7) {
1608 /* We don't get 64-bit integer types until gen8 */
1609 for (unsigned i = 0; i < instr->def.num_components; i++) {
1610 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1611 setup_imm_df(bld, instr->value.f64[i]));
1612 }
1613 } else {
1614 for (unsigned i = 0; i < instr->def.num_components; i++)
1615 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1616 }
1617 break;
1618
1619 default:
1620 unreachable("Invalid bit size");
1621 }
1622
1623 nir_ssa_values[instr->def.index] = reg;
1624 }
1625
1626 fs_reg
1627 fs_visitor::get_nir_src(const nir_src &src)
1628 {
1629 fs_reg reg;
1630 if (src.is_ssa) {
1631 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1632 const brw_reg_type reg_type =
1633 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1634 reg = bld.vgrf(reg_type, src.ssa->num_components);
1635 } else {
1636 reg = nir_ssa_values[src.ssa->index];
1637 }
1638 } else {
1639 /* We don't handle indirects on locals */
1640 assert(src.reg.indirect == NULL);
1641 reg = offset(nir_locals[src.reg.reg->index], bld,
1642 src.reg.base_offset * src.reg.reg->num_components);
1643 }
1644
1645 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1646 /* The only 64-bit type available on gen7 is DF, so use that. */
1647 reg.type = BRW_REGISTER_TYPE_DF;
1648 } else {
1649 /* To avoid floating-point denorm flushing problems, set the type by
1650 * default to an integer type - instructions that need floating point
1651 * semantics will set this to F if they need to
1652 */
1653 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1654 BRW_REGISTER_TYPE_D);
1655 }
1656
1657 return reg;
1658 }
1659
1660 /**
1661 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1662 *
1663 * This function should not be called on any value which may be 64 bits.
1664 * We could theoretically support 64-bit on gen8+ but we choose not to
1665 * because it wouldn't work in general (no gen7 support) and there are
1666 * enough restrictions in 64-bit immediates that you can't take the return
1667 * value and treat it the same as the result of get_nir_src().
1668 */
1669 fs_reg
1670 fs_visitor::get_nir_src_imm(const nir_src &src)
1671 {
1672 nir_const_value *val = nir_src_as_const_value(src);
1673 assert(nir_src_bit_size(src) == 32);
1674 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1675 }
1676
1677 fs_reg
1678 fs_visitor::get_nir_dest(const nir_dest &dest)
1679 {
1680 if (dest.is_ssa) {
1681 const brw_reg_type reg_type =
1682 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1683 dest.ssa.bit_size == 8 ?
1684 BRW_REGISTER_TYPE_D :
1685 BRW_REGISTER_TYPE_F);
1686 nir_ssa_values[dest.ssa.index] =
1687 bld.vgrf(reg_type, dest.ssa.num_components);
1688 return nir_ssa_values[dest.ssa.index];
1689 } else {
1690 /* We don't handle indirects on locals */
1691 assert(dest.reg.indirect == NULL);
1692 return offset(nir_locals[dest.reg.reg->index], bld,
1693 dest.reg.base_offset * dest.reg.reg->num_components);
1694 }
1695 }
1696
1697 fs_reg
1698 fs_visitor::get_nir_image_deref(nir_deref_instr *deref)
1699 {
1700 fs_reg arr_offset = brw_imm_ud(0);
1701 unsigned array_size = BRW_IMAGE_PARAM_SIZE * 4;
1702 nir_deref_instr *head = deref;
1703 while (head->deref_type != nir_deref_type_var) {
1704 assert(head->deref_type == nir_deref_type_array);
1705
1706 /* This level's element size is the previous level's array size */
1707 const unsigned elem_size = array_size;
1708
1709 fs_reg index = retype(get_nir_src_imm(head->arr.index),
1710 BRW_REGISTER_TYPE_UD);
1711 if (arr_offset.file == BRW_IMMEDIATE_VALUE &&
1712 index.file == BRW_IMMEDIATE_VALUE) {
1713 arr_offset.ud += index.ud * elem_size;
1714 } else if (index.file == BRW_IMMEDIATE_VALUE) {
1715 bld.ADD(arr_offset, arr_offset, brw_imm_ud(index.ud * elem_size));
1716 } else {
1717 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
1718 bld.MUL(tmp, index, brw_imm_ud(elem_size));
1719 bld.ADD(tmp, tmp, arr_offset);
1720 arr_offset = tmp;
1721 }
1722
1723 head = nir_deref_instr_parent(head);
1724 assert(glsl_type_is_array(head->type));
1725 array_size = elem_size * glsl_get_length(head->type);
1726 }
1727
1728 assert(head->deref_type == nir_deref_type_var);
1729 const unsigned max_arr_offset = array_size - (BRW_IMAGE_PARAM_SIZE * 4);
1730 fs_reg image(UNIFORM, head->var->data.driver_location / 4,
1731 BRW_REGISTER_TYPE_UD);
1732
1733 if (arr_offset.file == BRW_IMMEDIATE_VALUE) {
1734 /* The offset is in bytes but we want it in dwords */
1735 return offset(image, bld, MIN2(arr_offset.ud, max_arr_offset) / 4);
1736 } else {
1737 /* Accessing an invalid surface index with the dataport can result
1738 * in a hang. According to the spec "if the index used to
1739 * select an individual element is negative or greater than or
1740 * equal to the size of the array, the results of the operation
1741 * are undefined but may not lead to termination" -- which is one
1742 * of the possible outcomes of the hang. Clamp the index to
1743 * prevent access outside of the array bounds.
1744 */
1745 bld.emit_minmax(arr_offset, arr_offset, brw_imm_ud(max_arr_offset),
1746 BRW_CONDITIONAL_L);
1747
1748 /* Emit a pile of MOVs to load the uniform into a temporary. The
1749 * dead-code elimination pass will get rid of what we don't use.
1750 */
1751 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1752 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1753 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1754 offset(tmp, bld, j), offset(image, bld, j),
1755 arr_offset, brw_imm_ud(max_arr_offset + 4));
1756 }
1757 return tmp;
1758 }
1759 }
1760
1761 void
1762 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1763 unsigned wr_mask)
1764 {
1765 for (unsigned i = 0; i < 4; i++) {
1766 if (!((wr_mask >> i) & 1))
1767 continue;
1768
1769 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1770 new_inst->dst = offset(new_inst->dst, bld, i);
1771 for (unsigned j = 0; j < new_inst->sources; j++)
1772 if (new_inst->src[j].file == VGRF)
1773 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1774
1775 bld.emit(new_inst);
1776 }
1777 }
1778
1779 /**
1780 * Get the matching channel register datatype for an image intrinsic of the
1781 * specified GLSL image type.
1782 */
1783 static brw_reg_type
1784 get_image_base_type(const glsl_type *type)
1785 {
1786 switch ((glsl_base_type)type->sampled_type) {
1787 case GLSL_TYPE_UINT:
1788 return BRW_REGISTER_TYPE_UD;
1789 case GLSL_TYPE_INT:
1790 return BRW_REGISTER_TYPE_D;
1791 case GLSL_TYPE_FLOAT:
1792 return BRW_REGISTER_TYPE_F;
1793 default:
1794 unreachable("Not reached.");
1795 }
1796 }
1797
1798 /**
1799 * Get the appropriate atomic op for an image atomic intrinsic.
1800 */
1801 static unsigned
1802 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1803 {
1804 switch (op) {
1805 case nir_intrinsic_image_deref_atomic_add:
1806 return BRW_AOP_ADD;
1807 case nir_intrinsic_image_deref_atomic_min:
1808 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1809 BRW_AOP_IMIN : BRW_AOP_UMIN);
1810 case nir_intrinsic_image_deref_atomic_max:
1811 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1812 BRW_AOP_IMAX : BRW_AOP_UMAX);
1813 case nir_intrinsic_image_deref_atomic_and:
1814 return BRW_AOP_AND;
1815 case nir_intrinsic_image_deref_atomic_or:
1816 return BRW_AOP_OR;
1817 case nir_intrinsic_image_deref_atomic_xor:
1818 return BRW_AOP_XOR;
1819 case nir_intrinsic_image_deref_atomic_exchange:
1820 return BRW_AOP_MOV;
1821 case nir_intrinsic_image_deref_atomic_comp_swap:
1822 return BRW_AOP_CMPWR;
1823 default:
1824 unreachable("Not reachable.");
1825 }
1826 }
1827
1828 static fs_inst *
1829 emit_pixel_interpolater_send(const fs_builder &bld,
1830 enum opcode opcode,
1831 const fs_reg &dst,
1832 const fs_reg &src,
1833 const fs_reg &desc,
1834 glsl_interp_mode interpolation)
1835 {
1836 struct brw_wm_prog_data *wm_prog_data =
1837 brw_wm_prog_data(bld.shader->stage_prog_data);
1838
1839 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1840 /* 2 floats per slot returned */
1841 inst->size_written = 2 * dst.component_size(inst->exec_size);
1842 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1843
1844 wm_prog_data->pulls_bary = true;
1845
1846 return inst;
1847 }
1848
1849 /**
1850 * Computes 1 << x, given a D/UD register containing some value x.
1851 */
1852 static fs_reg
1853 intexp2(const fs_builder &bld, const fs_reg &x)
1854 {
1855 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1856
1857 fs_reg result = bld.vgrf(x.type, 1);
1858 fs_reg one = bld.vgrf(x.type, 1);
1859
1860 bld.MOV(one, retype(brw_imm_d(1), one.type));
1861 bld.SHL(result, one, x);
1862 return result;
1863 }
1864
1865 void
1866 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1867 {
1868 assert(stage == MESA_SHADER_GEOMETRY);
1869
1870 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1871
1872 if (gs_compile->control_data_header_size_bits == 0)
1873 return;
1874
1875 /* We can only do EndPrimitive() functionality when the control data
1876 * consists of cut bits. Fortunately, the only time it isn't is when the
1877 * output type is points, in which case EndPrimitive() is a no-op.
1878 */
1879 if (gs_prog_data->control_data_format !=
1880 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1881 return;
1882 }
1883
1884 /* Cut bits use one bit per vertex. */
1885 assert(gs_compile->control_data_bits_per_vertex == 1);
1886
1887 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1888 vertex_count.type = BRW_REGISTER_TYPE_UD;
1889
1890 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1891 * vertex n, 0 otherwise. So all we need to do here is mark bit
1892 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1893 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1894 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1895 *
1896 * Note that if EndPrimitive() is called before emitting any vertices, this
1897 * will cause us to set bit 31 of the control_data_bits register to 1.
1898 * That's fine because:
1899 *
1900 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1901 * output, so the hardware will ignore cut bit 31.
1902 *
1903 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1904 * last vertex, so setting cut bit 31 has no effect (since the primitive
1905 * is automatically ended when the GS terminates).
1906 *
1907 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1908 * control_data_bits register to 0 when the first vertex is emitted.
1909 */
1910
1911 const fs_builder abld = bld.annotate("end primitive");
1912
1913 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1914 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1915 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1916 fs_reg mask = intexp2(abld, prev_count);
1917 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1918 * attention to the lower 5 bits of its second source argument, so on this
1919 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1920 * ((vertex_count - 1) % 32).
1921 */
1922 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1923 }
1924
1925 void
1926 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1927 {
1928 assert(stage == MESA_SHADER_GEOMETRY);
1929 assert(gs_compile->control_data_bits_per_vertex != 0);
1930
1931 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1932
1933 const fs_builder abld = bld.annotate("emit control data bits");
1934 const fs_builder fwa_bld = bld.exec_all();
1935
1936 /* We use a single UD register to accumulate control data bits (32 bits
1937 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1938 * at a time.
1939 *
1940 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1941 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1942 * use the Channel Mask phase to enable/disable which DWord within that
1943 * group to write. (Remember, different SIMD8 channels may have emitted
1944 * different numbers of vertices, so we may need per-slot offsets.)
1945 *
1946 * Channel masking presents an annoying problem: we may have to replicate
1947 * the data up to 4 times:
1948 *
1949 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1950 *
1951 * To avoid penalizing shaders that emit a small number of vertices, we
1952 * can avoid these sometimes: if the size of the control data header is
1953 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1954 * land in the same 128-bit group, so we can skip per-slot offsets.
1955 *
1956 * Similarly, if the control data header is <= 32 bits, there is only one
1957 * DWord, so we can skip channel masks.
1958 */
1959 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1960
1961 fs_reg channel_mask, per_slot_offset;
1962
1963 if (gs_compile->control_data_header_size_bits > 32) {
1964 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1965 channel_mask = vgrf(glsl_type::uint_type);
1966 }
1967
1968 if (gs_compile->control_data_header_size_bits > 128) {
1969 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1970 per_slot_offset = vgrf(glsl_type::uint_type);
1971 }
1972
1973 /* Figure out which DWord we're trying to write to using the formula:
1974 *
1975 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1976 *
1977 * Since bits_per_vertex is a power of two, and is known at compile
1978 * time, this can be optimized to:
1979 *
1980 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1981 */
1982 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1983 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1984 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1985 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1986 unsigned log2_bits_per_vertex =
1987 util_last_bit(gs_compile->control_data_bits_per_vertex);
1988 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1989
1990 if (per_slot_offset.file != BAD_FILE) {
1991 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1992 * the appropriate OWord within the control data header.
1993 */
1994 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1995 }
1996
1997 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1998 * write to the appropriate DWORD within the OWORD.
1999 */
2000 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2001 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2002 channel_mask = intexp2(fwa_bld, channel);
2003 /* Then the channel masks need to be in bits 23:16. */
2004 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2005 }
2006
2007 /* Store the control data bits in the message payload and send it. */
2008 int mlen = 2;
2009 if (channel_mask.file != BAD_FILE)
2010 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2011 if (per_slot_offset.file != BAD_FILE)
2012 mlen++;
2013
2014 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2015 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2016 int i = 0;
2017 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2018 if (per_slot_offset.file != BAD_FILE)
2019 sources[i++] = per_slot_offset;
2020 if (channel_mask.file != BAD_FILE)
2021 sources[i++] = channel_mask;
2022 while (i < mlen) {
2023 sources[i++] = this->control_data_bits;
2024 }
2025
2026 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2027 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2028 inst->mlen = mlen;
2029 /* We need to increment Global Offset by 256-bits to make room for
2030 * Broadwell's extra "Vertex Count" payload at the beginning of the
2031 * URB entry. Since this is an OWord message, Global Offset is counted
2032 * in 128-bit units, so we must set it to 2.
2033 */
2034 if (gs_prog_data->static_vertex_count == -1)
2035 inst->offset = 2;
2036 }
2037
2038 void
2039 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2040 unsigned stream_id)
2041 {
2042 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2043
2044 /* Note: we are calling this *before* increasing vertex_count, so
2045 * this->vertex_count == vertex_count - 1 in the formula above.
2046 */
2047
2048 /* Stream mode uses 2 bits per vertex */
2049 assert(gs_compile->control_data_bits_per_vertex == 2);
2050
2051 /* Must be a valid stream */
2052 assert(stream_id < MAX_VERTEX_STREAMS);
2053
2054 /* Control data bits are initialized to 0 so we don't have to set any
2055 * bits when sending vertices to stream 0.
2056 */
2057 if (stream_id == 0)
2058 return;
2059
2060 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2061
2062 /* reg::sid = stream_id */
2063 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2064 abld.MOV(sid, brw_imm_ud(stream_id));
2065
2066 /* reg:shift_count = 2 * (vertex_count - 1) */
2067 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2068 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2069
2070 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2071 * attention to the lower 5 bits of its second source argument, so on this
2072 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2073 * stream_id << ((2 * (vertex_count - 1)) % 32).
2074 */
2075 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2076 abld.SHL(mask, sid, shift_count);
2077 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2078 }
2079
2080 void
2081 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2082 unsigned stream_id)
2083 {
2084 assert(stage == MESA_SHADER_GEOMETRY);
2085
2086 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2087
2088 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2089 vertex_count.type = BRW_REGISTER_TYPE_UD;
2090
2091 /* Haswell and later hardware ignores the "Render Stream Select" bits
2092 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2093 * and instead sends all primitives down the pipeline for rasterization.
2094 * If the SOL stage is enabled, "Render Stream Select" is honored and
2095 * primitives bound to non-zero streams are discarded after stream output.
2096 *
2097 * Since the only purpose of primives sent to non-zero streams is to
2098 * be recorded by transform feedback, we can simply discard all geometry
2099 * bound to these streams when transform feedback is disabled.
2100 */
2101 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2102 return;
2103
2104 /* If we're outputting 32 control data bits or less, then we can wait
2105 * until the shader is over to output them all. Otherwise we need to
2106 * output them as we go. Now is the time to do it, since we're about to
2107 * output the vertex_count'th vertex, so it's guaranteed that the
2108 * control data bits associated with the (vertex_count - 1)th vertex are
2109 * correct.
2110 */
2111 if (gs_compile->control_data_header_size_bits > 32) {
2112 const fs_builder abld =
2113 bld.annotate("emit vertex: emit control data bits");
2114
2115 /* Only emit control data bits if we've finished accumulating a batch
2116 * of 32 bits. This is the case when:
2117 *
2118 * (vertex_count * bits_per_vertex) % 32 == 0
2119 *
2120 * (in other words, when the last 5 bits of vertex_count *
2121 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2122 * integer n (which is always the case, since bits_per_vertex is
2123 * always 1 or 2), this is equivalent to requiring that the last 5-n
2124 * bits of vertex_count are 0:
2125 *
2126 * vertex_count & (2^(5-n) - 1) == 0
2127 *
2128 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2129 * equivalent to:
2130 *
2131 * vertex_count & (32 / bits_per_vertex - 1) == 0
2132 *
2133 * TODO: If vertex_count is an immediate, we could do some of this math
2134 * at compile time...
2135 */
2136 fs_inst *inst =
2137 abld.AND(bld.null_reg_d(), vertex_count,
2138 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2139 inst->conditional_mod = BRW_CONDITIONAL_Z;
2140
2141 abld.IF(BRW_PREDICATE_NORMAL);
2142 /* If vertex_count is 0, then no control data bits have been
2143 * accumulated yet, so we can skip emitting them.
2144 */
2145 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2146 BRW_CONDITIONAL_NEQ);
2147 abld.IF(BRW_PREDICATE_NORMAL);
2148 emit_gs_control_data_bits(vertex_count);
2149 abld.emit(BRW_OPCODE_ENDIF);
2150
2151 /* Reset control_data_bits to 0 so we can start accumulating a new
2152 * batch.
2153 *
2154 * Note: in the case where vertex_count == 0, this neutralizes the
2155 * effect of any call to EndPrimitive() that the shader may have
2156 * made before outputting its first vertex.
2157 */
2158 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2159 inst->force_writemask_all = true;
2160 abld.emit(BRW_OPCODE_ENDIF);
2161 }
2162
2163 emit_urb_writes(vertex_count);
2164
2165 /* In stream mode we have to set control data bits for all vertices
2166 * unless we have disabled control data bits completely (which we do
2167 * do for GL_POINTS outputs that don't use streams).
2168 */
2169 if (gs_compile->control_data_header_size_bits > 0 &&
2170 gs_prog_data->control_data_format ==
2171 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2172 set_gs_stream_control_data_bits(vertex_count, stream_id);
2173 }
2174 }
2175
2176 void
2177 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2178 const nir_src &vertex_src,
2179 unsigned base_offset,
2180 const nir_src &offset_src,
2181 unsigned num_components,
2182 unsigned first_component)
2183 {
2184 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2185
2186 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2187 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2188 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2189
2190 /* TODO: figure out push input layout for invocations == 1 */
2191 /* TODO: make this work with 64-bit inputs */
2192 if (gs_prog_data->invocations == 1 &&
2193 type_sz(dst.type) <= 4 &&
2194 offset_const != NULL && vertex_const != NULL &&
2195 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2196 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2197 vertex_const->u32[0] * push_reg_count;
2198 for (unsigned i = 0; i < num_components; i++) {
2199 bld.MOV(offset(dst, bld, i),
2200 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2201 }
2202 return;
2203 }
2204
2205 /* Resort to the pull model. Ensure the VUE handles are provided. */
2206 assert(gs_prog_data->base.include_vue_handles);
2207
2208 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2209 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2210
2211 if (gs_prog_data->invocations == 1) {
2212 if (vertex_const) {
2213 /* The vertex index is constant; just select the proper URB handle. */
2214 icp_handle =
2215 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2216 BRW_REGISTER_TYPE_UD);
2217 } else {
2218 /* The vertex index is non-constant. We need to use indirect
2219 * addressing to fetch the proper URB handle.
2220 *
2221 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2222 * indicating that channel <n> should read the handle from
2223 * DWord <n>. We convert that to bytes by multiplying by 4.
2224 *
2225 * Next, we convert the vertex index to bytes by multiplying
2226 * by 32 (shifting by 5), and add the two together. This is
2227 * the final indirect byte offset.
2228 */
2229 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2230 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2231 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2232 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2233
2234 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2235 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2236 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2237 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2238 /* Convert vertex_index to bytes (multiply by 32) */
2239 bld.SHL(vertex_offset_bytes,
2240 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2241 brw_imm_ud(5u));
2242 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2243
2244 /* Use first_icp_handle as the base offset. There is one register
2245 * of URB handles per vertex, so inform the register allocator that
2246 * we might read up to nir->info.gs.vertices_in registers.
2247 */
2248 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2249 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2250 fs_reg(icp_offset_bytes),
2251 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2252 }
2253 } else {
2254 assert(gs_prog_data->invocations > 1);
2255
2256 if (vertex_const) {
2257 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2258 bld.MOV(icp_handle,
2259 retype(brw_vec1_grf(first_icp_handle +
2260 vertex_const->i32[0] / 8,
2261 vertex_const->i32[0] % 8),
2262 BRW_REGISTER_TYPE_UD));
2263 } else {
2264 /* The vertex index is non-constant. We need to use indirect
2265 * addressing to fetch the proper URB handle.
2266 *
2267 */
2268 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2269
2270 /* Convert vertex_index to bytes (multiply by 4) */
2271 bld.SHL(icp_offset_bytes,
2272 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2273 brw_imm_ud(2u));
2274
2275 /* Use first_icp_handle as the base offset. There is one DWord
2276 * of URB handles per vertex, so inform the register allocator that
2277 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2278 */
2279 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2280 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2281 fs_reg(icp_offset_bytes),
2282 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2283 REG_SIZE));
2284 }
2285 }
2286
2287 fs_inst *inst;
2288
2289 fs_reg tmp_dst = dst;
2290 fs_reg indirect_offset = get_nir_src(offset_src);
2291 unsigned num_iterations = 1;
2292 unsigned orig_num_components = num_components;
2293
2294 if (type_sz(dst.type) == 8) {
2295 if (num_components > 2) {
2296 num_iterations = 2;
2297 num_components = 2;
2298 }
2299 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2300 tmp_dst = tmp;
2301 first_component = first_component / 2;
2302 }
2303
2304 for (unsigned iter = 0; iter < num_iterations; iter++) {
2305 if (offset_const) {
2306 /* Constant indexing - use global offset. */
2307 if (first_component != 0) {
2308 unsigned read_components = num_components + first_component;
2309 fs_reg tmp = bld.vgrf(dst.type, read_components);
2310 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2311 inst->size_written = read_components *
2312 tmp.component_size(inst->exec_size);
2313 for (unsigned i = 0; i < num_components; i++) {
2314 bld.MOV(offset(tmp_dst, bld, i),
2315 offset(tmp, bld, i + first_component));
2316 }
2317 } else {
2318 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2319 icp_handle);
2320 inst->size_written = num_components *
2321 tmp_dst.component_size(inst->exec_size);
2322 }
2323 inst->offset = base_offset + offset_const->u32[0];
2324 inst->mlen = 1;
2325 } else {
2326 /* Indirect indexing - use per-slot offsets as well. */
2327 const fs_reg srcs[] = { icp_handle, indirect_offset };
2328 unsigned read_components = num_components + first_component;
2329 fs_reg tmp = bld.vgrf(dst.type, read_components);
2330 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2331 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2332 if (first_component != 0) {
2333 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2334 payload);
2335 inst->size_written = read_components *
2336 tmp.component_size(inst->exec_size);
2337 for (unsigned i = 0; i < num_components; i++) {
2338 bld.MOV(offset(tmp_dst, bld, i),
2339 offset(tmp, bld, i + first_component));
2340 }
2341 } else {
2342 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2343 payload);
2344 inst->size_written = num_components *
2345 tmp_dst.component_size(inst->exec_size);
2346 }
2347 inst->offset = base_offset;
2348 inst->mlen = 2;
2349 }
2350
2351 if (type_sz(dst.type) == 8) {
2352 shuffle_from_32bit_read(bld,
2353 offset(dst, bld, iter * 2),
2354 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2355 0,
2356 num_components);
2357 }
2358
2359 if (num_iterations > 1) {
2360 num_components = orig_num_components - 2;
2361 if(offset_const) {
2362 base_offset++;
2363 } else {
2364 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2365 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2366 indirect_offset = new_indirect;
2367 }
2368 }
2369 }
2370 }
2371
2372 fs_reg
2373 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2374 {
2375 nir_src *offset_src = nir_get_io_offset_src(instr);
2376 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2377
2378 if (const_value) {
2379 /* The only constant offset we should find is 0. brw_nir.c's
2380 * add_const_offset_to_base() will fold other constant offsets
2381 * into instr->const_index[0].
2382 */
2383 assert(const_value->u32[0] == 0);
2384 return fs_reg();
2385 }
2386
2387 return get_nir_src(*offset_src);
2388 }
2389
2390 static void
2391 do_untyped_vector_read(const fs_builder &bld,
2392 const fs_reg dest,
2393 const fs_reg surf_index,
2394 const fs_reg offset_reg,
2395 unsigned num_components)
2396 {
2397 if (type_sz(dest.type) <= 2) {
2398 assert(dest.stride == 1);
2399 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2400
2401 if (is_const_offset) {
2402 uint32_t start = offset_reg.ud & ~3;
2403 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2404 end = ALIGN(end, 4);
2405 assert (end - start <= 16);
2406
2407 /* At this point we have 16-bit component/s that have constant
2408 * offset aligned to 4-bytes that can be read with untyped_reads.
2409 * untyped_read message requires 32-bit aligned offsets.
2410 */
2411 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2412 unsigned num_components_32bit = (end - start) / 4;
2413
2414 fs_reg read_result =
2415 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2416 1 /* dims */,
2417 num_components_32bit,
2418 BRW_PREDICATE_NONE);
2419 shuffle_from_32bit_read(bld, dest, read_result, first_component,
2420 num_components);
2421 } else {
2422 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2423 for (unsigned i = 0; i < num_components; i++) {
2424 if (i == 0) {
2425 bld.MOV(read_offset, offset_reg);
2426 } else {
2427 bld.ADD(read_offset, offset_reg,
2428 brw_imm_ud(i * type_sz(dest.type)));
2429 }
2430 /* Non constant offsets are not guaranteed to be aligned 32-bits
2431 * so they are read using one byte_scattered_read message
2432 * for each component.
2433 */
2434 fs_reg read_result =
2435 emit_byte_scattered_read(bld, surf_index, read_offset,
2436 1 /* dims */, 1,
2437 type_sz(dest.type) * 8 /* bit_size */,
2438 BRW_PREDICATE_NONE);
2439 bld.MOV(offset(dest, bld, i),
2440 subscript (read_result, dest.type, 0));
2441 }
2442 }
2443 } else if (type_sz(dest.type) == 4) {
2444 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2445 1 /* dims */,
2446 num_components,
2447 BRW_PREDICATE_NONE);
2448 read_result.type = dest.type;
2449 for (unsigned i = 0; i < num_components; i++)
2450 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2451 } else if (type_sz(dest.type) == 8) {
2452 /* Reading a dvec, so we need to:
2453 *
2454 * 1. Multiply num_components by 2, to account for the fact that we
2455 * need to read 64-bit components.
2456 * 2. Shuffle the result of the load to form valid 64-bit elements
2457 * 3. Emit a second load (for components z/w) if needed.
2458 */
2459 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2460 bld.MOV(read_offset, offset_reg);
2461
2462 int iters = num_components <= 2 ? 1 : 2;
2463
2464 /* Load the dvec, the first iteration loads components x/y, the second
2465 * iteration, if needed, loads components z/w
2466 */
2467 for (int it = 0; it < iters; it++) {
2468 /* Compute number of components to read in this iteration */
2469 int iter_components = MIN2(2, num_components);
2470 num_components -= iter_components;
2471
2472 /* Read. Since this message reads 32-bit components, we need to
2473 * read twice as many components.
2474 */
2475 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2476 1 /* dims */,
2477 iter_components * 2,
2478 BRW_PREDICATE_NONE);
2479
2480 /* Shuffle the 32-bit load result into valid 64-bit data */
2481 shuffle_from_32bit_read(bld, offset(dest, bld, it * 2),
2482 read_result, 0, iter_components);
2483
2484 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2485 }
2486 } else {
2487 unreachable("Unsupported type");
2488 }
2489 }
2490
2491 void
2492 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2493 nir_intrinsic_instr *instr)
2494 {
2495 assert(stage == MESA_SHADER_VERTEX);
2496
2497 fs_reg dest;
2498 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2499 dest = get_nir_dest(instr->dest);
2500
2501 switch (instr->intrinsic) {
2502 case nir_intrinsic_load_vertex_id:
2503 case nir_intrinsic_load_base_vertex:
2504 unreachable("should be lowered by nir_lower_system_values()");
2505
2506 case nir_intrinsic_load_input: {
2507 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2508 unsigned first_component = nir_intrinsic_component(instr);
2509 unsigned num_components = instr->num_components;
2510
2511 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2512 assert(const_offset && "Indirect input loads not allowed");
2513 src = offset(src, bld, const_offset->u32[0]);
2514
2515 if (type_sz(dest.type) == 8)
2516 first_component /= 2;
2517
2518 /* For 16-bit support maybe a temporary will be needed to copy from
2519 * the ATTR file.
2520 */
2521 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2522 first_component, num_components);
2523 break;
2524 }
2525
2526 case nir_intrinsic_load_vertex_id_zero_base:
2527 case nir_intrinsic_load_instance_id:
2528 case nir_intrinsic_load_base_instance:
2529 case nir_intrinsic_load_draw_id:
2530 case nir_intrinsic_load_first_vertex:
2531 case nir_intrinsic_load_is_indexed_draw:
2532 unreachable("lowered by brw_nir_lower_vs_inputs");
2533
2534 default:
2535 nir_emit_intrinsic(bld, instr);
2536 break;
2537 }
2538 }
2539
2540 void
2541 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2542 nir_intrinsic_instr *instr)
2543 {
2544 assert(stage == MESA_SHADER_TESS_CTRL);
2545 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2546 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2547
2548 fs_reg dst;
2549 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2550 dst = get_nir_dest(instr->dest);
2551
2552 switch (instr->intrinsic) {
2553 case nir_intrinsic_load_primitive_id:
2554 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2555 break;
2556 case nir_intrinsic_load_invocation_id:
2557 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2558 break;
2559 case nir_intrinsic_load_patch_vertices_in:
2560 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2561 brw_imm_d(tcs_key->input_vertices));
2562 break;
2563
2564 case nir_intrinsic_barrier: {
2565 if (tcs_prog_data->instances == 1)
2566 break;
2567
2568 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2569 fs_reg m0_2 = component(m0, 2);
2570
2571 const fs_builder chanbld = bld.exec_all().group(1, 0);
2572
2573 /* Zero the message header */
2574 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2575
2576 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2577 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2578 brw_imm_ud(INTEL_MASK(16, 13)));
2579
2580 /* Shift it up to bits 27:24. */
2581 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2582
2583 /* Set the Barrier Count and the enable bit */
2584 chanbld.OR(m0_2, m0_2,
2585 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2586
2587 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2588 break;
2589 }
2590
2591 case nir_intrinsic_load_input:
2592 unreachable("nir_lower_io should never give us these.");
2593 break;
2594
2595 case nir_intrinsic_load_per_vertex_input: {
2596 fs_reg indirect_offset = get_indirect_offset(instr);
2597 unsigned imm_offset = instr->const_index[0];
2598
2599 const nir_src &vertex_src = instr->src[0];
2600 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2601
2602 fs_inst *inst;
2603
2604 fs_reg icp_handle;
2605
2606 if (vertex_const) {
2607 /* Emit a MOV to resolve <0,1,0> regioning. */
2608 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2609 bld.MOV(icp_handle,
2610 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2611 vertex_const->i32[0] & 7),
2612 BRW_REGISTER_TYPE_UD));
2613 } else if (tcs_prog_data->instances == 1 &&
2614 vertex_src.is_ssa &&
2615 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2616 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2617 /* For the common case of only 1 instance, an array index of
2618 * gl_InvocationID means reading g1. Skip all the indirect work.
2619 */
2620 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2621 } else {
2622 /* The vertex index is non-constant. We need to use indirect
2623 * addressing to fetch the proper URB handle.
2624 */
2625 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2626
2627 /* Each ICP handle is a single DWord (4 bytes) */
2628 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2629 bld.SHL(vertex_offset_bytes,
2630 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2631 brw_imm_ud(2u));
2632
2633 /* Start at g1. We might read up to 4 registers. */
2634 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2635 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2636 brw_imm_ud(4 * REG_SIZE));
2637 }
2638
2639 /* We can only read two double components with each URB read, so
2640 * we send two read messages in that case, each one loading up to
2641 * two double components.
2642 */
2643 unsigned num_iterations = 1;
2644 unsigned num_components = instr->num_components;
2645 unsigned first_component = nir_intrinsic_component(instr);
2646 fs_reg orig_dst = dst;
2647 if (type_sz(dst.type) == 8) {
2648 first_component = first_component / 2;
2649 if (instr->num_components > 2) {
2650 num_iterations = 2;
2651 num_components = 2;
2652 }
2653
2654 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2655 dst = tmp;
2656 }
2657
2658 for (unsigned iter = 0; iter < num_iterations; iter++) {
2659 if (indirect_offset.file == BAD_FILE) {
2660 /* Constant indexing - use global offset. */
2661 if (first_component != 0) {
2662 unsigned read_components = num_components + first_component;
2663 fs_reg tmp = bld.vgrf(dst.type, read_components);
2664 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2665 for (unsigned i = 0; i < num_components; i++) {
2666 bld.MOV(offset(dst, bld, i),
2667 offset(tmp, bld, i + first_component));
2668 }
2669 } else {
2670 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2671 }
2672 inst->offset = imm_offset;
2673 inst->mlen = 1;
2674 } else {
2675 /* Indirect indexing - use per-slot offsets as well. */
2676 const fs_reg srcs[] = { icp_handle, indirect_offset };
2677 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2678 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2679 if (first_component != 0) {
2680 unsigned read_components = num_components + first_component;
2681 fs_reg tmp = bld.vgrf(dst.type, read_components);
2682 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2683 payload);
2684 for (unsigned i = 0; i < num_components; i++) {
2685 bld.MOV(offset(dst, bld, i),
2686 offset(tmp, bld, i + first_component));
2687 }
2688 } else {
2689 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2690 payload);
2691 }
2692 inst->offset = imm_offset;
2693 inst->mlen = 2;
2694 }
2695 inst->size_written = (num_components + first_component) *
2696 inst->dst.component_size(inst->exec_size);
2697
2698 /* If we are reading 64-bit data using 32-bit read messages we need
2699 * build proper 64-bit data elements by shuffling the low and high
2700 * 32-bit components around like we do for other things like UBOs
2701 * or SSBOs.
2702 */
2703 if (type_sz(dst.type) == 8) {
2704 shuffle_from_32bit_read(bld,
2705 offset(orig_dst, bld, iter * 2),
2706 retype(dst, BRW_REGISTER_TYPE_D),
2707 0, num_components);
2708 }
2709
2710 /* Copy the temporary to the destination to deal with writemasking.
2711 *
2712 * Also attempt to deal with gl_PointSize being in the .w component.
2713 */
2714 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2715 assert(type_sz(dst.type) < 8);
2716 inst->dst = bld.vgrf(dst.type, 4);
2717 inst->size_written = 4 * REG_SIZE;
2718 bld.MOV(dst, offset(inst->dst, bld, 3));
2719 }
2720
2721 /* If we are loading double data and we need a second read message
2722 * adjust the write offset
2723 */
2724 if (num_iterations > 1) {
2725 num_components = instr->num_components - 2;
2726 imm_offset++;
2727 }
2728 }
2729 break;
2730 }
2731
2732 case nir_intrinsic_load_output:
2733 case nir_intrinsic_load_per_vertex_output: {
2734 fs_reg indirect_offset = get_indirect_offset(instr);
2735 unsigned imm_offset = instr->const_index[0];
2736 unsigned first_component = nir_intrinsic_component(instr);
2737
2738 fs_inst *inst;
2739 if (indirect_offset.file == BAD_FILE) {
2740 /* Replicate the patch handle to all enabled channels */
2741 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2742 bld.MOV(patch_handle,
2743 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2744
2745 {
2746 if (first_component != 0) {
2747 unsigned read_components =
2748 instr->num_components + first_component;
2749 fs_reg tmp = bld.vgrf(dst.type, read_components);
2750 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2751 patch_handle);
2752 inst->size_written = read_components * REG_SIZE;
2753 for (unsigned i = 0; i < instr->num_components; i++) {
2754 bld.MOV(offset(dst, bld, i),
2755 offset(tmp, bld, i + first_component));
2756 }
2757 } else {
2758 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2759 patch_handle);
2760 inst->size_written = instr->num_components * REG_SIZE;
2761 }
2762 inst->offset = imm_offset;
2763 inst->mlen = 1;
2764 }
2765 } else {
2766 /* Indirect indexing - use per-slot offsets as well. */
2767 const fs_reg srcs[] = {
2768 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2769 indirect_offset
2770 };
2771 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2772 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2773 if (first_component != 0) {
2774 unsigned read_components =
2775 instr->num_components + first_component;
2776 fs_reg tmp = bld.vgrf(dst.type, read_components);
2777 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2778 payload);
2779 inst->size_written = read_components * REG_SIZE;
2780 for (unsigned i = 0; i < instr->num_components; i++) {
2781 bld.MOV(offset(dst, bld, i),
2782 offset(tmp, bld, i + first_component));
2783 }
2784 } else {
2785 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2786 payload);
2787 inst->size_written = instr->num_components * REG_SIZE;
2788 }
2789 inst->offset = imm_offset;
2790 inst->mlen = 2;
2791 }
2792 break;
2793 }
2794
2795 case nir_intrinsic_store_output:
2796 case nir_intrinsic_store_per_vertex_output: {
2797 fs_reg value = get_nir_src(instr->src[0]);
2798 bool is_64bit = (instr->src[0].is_ssa ?
2799 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2800 fs_reg indirect_offset = get_indirect_offset(instr);
2801 unsigned imm_offset = instr->const_index[0];
2802 unsigned mask = instr->const_index[1];
2803 unsigned header_regs = 0;
2804 fs_reg srcs[7];
2805 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2806
2807 if (indirect_offset.file != BAD_FILE) {
2808 srcs[header_regs++] = indirect_offset;
2809 }
2810
2811 if (mask == 0)
2812 break;
2813
2814 unsigned num_components = util_last_bit(mask);
2815 enum opcode opcode;
2816
2817 /* We can only pack two 64-bit components in a single message, so send
2818 * 2 messages if we have more components
2819 */
2820 unsigned num_iterations = 1;
2821 unsigned iter_components = num_components;
2822 unsigned first_component = nir_intrinsic_component(instr);
2823 if (is_64bit) {
2824 first_component = first_component / 2;
2825 if (instr->num_components > 2) {
2826 num_iterations = 2;
2827 iter_components = 2;
2828 }
2829 }
2830
2831 mask = mask << first_component;
2832
2833 for (unsigned iter = 0; iter < num_iterations; iter++) {
2834 if (!is_64bit && mask != WRITEMASK_XYZW) {
2835 srcs[header_regs++] = brw_imm_ud(mask << 16);
2836 opcode = indirect_offset.file != BAD_FILE ?
2837 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2838 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2839 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2840 /* Expand the 64-bit mask to 32-bit channels. We only handle
2841 * two channels in each iteration, so we only care about X/Y.
2842 */
2843 unsigned mask32 = 0;
2844 if (mask & WRITEMASK_X)
2845 mask32 |= WRITEMASK_XY;
2846 if (mask & WRITEMASK_Y)
2847 mask32 |= WRITEMASK_ZW;
2848
2849 /* If the mask does not include any of the channels X or Y there
2850 * is nothing to do in this iteration. Move on to the next couple
2851 * of 64-bit channels.
2852 */
2853 if (!mask32) {
2854 mask >>= 2;
2855 imm_offset++;
2856 continue;
2857 }
2858
2859 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2860 opcode = indirect_offset.file != BAD_FILE ?
2861 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2862 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2863 } else {
2864 opcode = indirect_offset.file != BAD_FILE ?
2865 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2866 SHADER_OPCODE_URB_WRITE_SIMD8;
2867 }
2868
2869 for (unsigned i = 0; i < iter_components; i++) {
2870 if (!(mask & (1 << (i + first_component))))
2871 continue;
2872
2873 if (!is_64bit) {
2874 srcs[header_regs + i + first_component] = offset(value, bld, i);
2875 } else {
2876 /* We need to shuffle the 64-bit data to match the layout
2877 * expected by our 32-bit URB write messages. We use a temporary
2878 * for that.
2879 */
2880 unsigned channel = iter * 2 + i;
2881 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2882
2883 srcs[header_regs + (i + first_component) * 2] = dest;
2884 srcs[header_regs + (i + first_component) * 2 + 1] =
2885 offset(dest, bld, 1);
2886 }
2887 }
2888
2889 unsigned mlen =
2890 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2891 (is_64bit ? 2 * first_component : first_component);
2892 fs_reg payload =
2893 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2894 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2895
2896 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2897 inst->offset = imm_offset;
2898 inst->mlen = mlen;
2899
2900 /* If this is a 64-bit attribute, select the next two 64-bit channels
2901 * to be handled in the next iteration.
2902 */
2903 if (is_64bit) {
2904 mask >>= 2;
2905 imm_offset++;
2906 }
2907 }
2908 break;
2909 }
2910
2911 default:
2912 nir_emit_intrinsic(bld, instr);
2913 break;
2914 }
2915 }
2916
2917 void
2918 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2919 nir_intrinsic_instr *instr)
2920 {
2921 assert(stage == MESA_SHADER_TESS_EVAL);
2922 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2923
2924 fs_reg dest;
2925 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2926 dest = get_nir_dest(instr->dest);
2927
2928 switch (instr->intrinsic) {
2929 case nir_intrinsic_load_primitive_id:
2930 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2931 break;
2932 case nir_intrinsic_load_tess_coord:
2933 /* gl_TessCoord is part of the payload in g1-3 */
2934 for (unsigned i = 0; i < 3; i++) {
2935 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2936 }
2937 break;
2938
2939 case nir_intrinsic_load_input:
2940 case nir_intrinsic_load_per_vertex_input: {
2941 fs_reg indirect_offset = get_indirect_offset(instr);
2942 unsigned imm_offset = instr->const_index[0];
2943 unsigned first_component = nir_intrinsic_component(instr);
2944
2945 if (type_sz(dest.type) == 8) {
2946 first_component = first_component / 2;
2947 }
2948
2949 fs_inst *inst;
2950 if (indirect_offset.file == BAD_FILE) {
2951 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2952 * which is 16 registers (since each holds 2 vec4 slots).
2953 */
2954 unsigned slot_count = 1;
2955 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2956 slot_count++;
2957
2958 const unsigned max_push_slots = 32;
2959 if (imm_offset + slot_count <= max_push_slots) {
2960 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2961 for (int i = 0; i < instr->num_components; i++) {
2962 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2963 i + first_component;
2964 bld.MOV(offset(dest, bld, i), component(src, comp));
2965 }
2966
2967 tes_prog_data->base.urb_read_length =
2968 MAX2(tes_prog_data->base.urb_read_length,
2969 DIV_ROUND_UP(imm_offset + slot_count, 2));
2970 } else {
2971 /* Replicate the patch handle to all enabled channels */
2972 const fs_reg srcs[] = {
2973 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2974 };
2975 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2976 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2977
2978 if (first_component != 0) {
2979 unsigned read_components =
2980 instr->num_components + first_component;
2981 fs_reg tmp = bld.vgrf(dest.type, read_components);
2982 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2983 patch_handle);
2984 inst->size_written = read_components * REG_SIZE;
2985 for (unsigned i = 0; i < instr->num_components; i++) {
2986 bld.MOV(offset(dest, bld, i),
2987 offset(tmp, bld, i + first_component));
2988 }
2989 } else {
2990 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2991 patch_handle);
2992 inst->size_written = instr->num_components * REG_SIZE;
2993 }
2994 inst->mlen = 1;
2995 inst->offset = imm_offset;
2996 }
2997 } else {
2998 /* Indirect indexing - use per-slot offsets as well. */
2999
3000 /* We can only read two double components with each URB read, so
3001 * we send two read messages in that case, each one loading up to
3002 * two double components.
3003 */
3004 unsigned num_iterations = 1;
3005 unsigned num_components = instr->num_components;
3006 fs_reg orig_dest = dest;
3007 if (type_sz(dest.type) == 8) {
3008 if (instr->num_components > 2) {
3009 num_iterations = 2;
3010 num_components = 2;
3011 }
3012 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
3013 dest = tmp;
3014 }
3015
3016 for (unsigned iter = 0; iter < num_iterations; iter++) {
3017 const fs_reg srcs[] = {
3018 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3019 indirect_offset
3020 };
3021 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3022 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3023
3024 if (first_component != 0) {
3025 unsigned read_components =
3026 num_components + first_component;
3027 fs_reg tmp = bld.vgrf(dest.type, read_components);
3028 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3029 payload);
3030 for (unsigned i = 0; i < num_components; i++) {
3031 bld.MOV(offset(dest, bld, i),
3032 offset(tmp, bld, i + first_component));
3033 }
3034 } else {
3035 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3036 payload);
3037 }
3038 inst->mlen = 2;
3039 inst->offset = imm_offset;
3040 inst->size_written = (num_components + first_component) *
3041 inst->dst.component_size(inst->exec_size);
3042
3043 /* If we are reading 64-bit data using 32-bit read messages we need
3044 * build proper 64-bit data elements by shuffling the low and high
3045 * 32-bit components around like we do for other things like UBOs
3046 * or SSBOs.
3047 */
3048 if (type_sz(dest.type) == 8) {
3049 shuffle_from_32bit_read(bld,
3050 offset(orig_dest, bld, iter * 2),
3051 retype(dest, BRW_REGISTER_TYPE_D),
3052 0, num_components);
3053 }
3054
3055 /* If we are loading double data and we need a second read message
3056 * adjust the offset
3057 */
3058 if (num_iterations > 1) {
3059 num_components = instr->num_components - 2;
3060 imm_offset++;
3061 }
3062 }
3063 }
3064 break;
3065 }
3066 default:
3067 nir_emit_intrinsic(bld, instr);
3068 break;
3069 }
3070 }
3071
3072 void
3073 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3074 nir_intrinsic_instr *instr)
3075 {
3076 assert(stage == MESA_SHADER_GEOMETRY);
3077 fs_reg indirect_offset;
3078
3079 fs_reg dest;
3080 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3081 dest = get_nir_dest(instr->dest);
3082
3083 switch (instr->intrinsic) {
3084 case nir_intrinsic_load_primitive_id:
3085 assert(stage == MESA_SHADER_GEOMETRY);
3086 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3087 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3088 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3089 break;
3090
3091 case nir_intrinsic_load_input:
3092 unreachable("load_input intrinsics are invalid for the GS stage");
3093
3094 case nir_intrinsic_load_per_vertex_input:
3095 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3096 instr->src[1], instr->num_components,
3097 nir_intrinsic_component(instr));
3098 break;
3099
3100 case nir_intrinsic_emit_vertex_with_counter:
3101 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3102 break;
3103
3104 case nir_intrinsic_end_primitive_with_counter:
3105 emit_gs_end_primitive(instr->src[0]);
3106 break;
3107
3108 case nir_intrinsic_set_vertex_count:
3109 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3110 break;
3111
3112 case nir_intrinsic_load_invocation_id: {
3113 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3114 assert(val.file != BAD_FILE);
3115 dest.type = val.type;
3116 bld.MOV(dest, val);
3117 break;
3118 }
3119
3120 default:
3121 nir_emit_intrinsic(bld, instr);
3122 break;
3123 }
3124 }
3125
3126 /**
3127 * Fetch the current render target layer index.
3128 */
3129 static fs_reg
3130 fetch_render_target_array_index(const fs_builder &bld)
3131 {
3132 if (bld.shader->devinfo->gen >= 6) {
3133 /* The render target array index is provided in the thread payload as
3134 * bits 26:16 of r0.0.
3135 */
3136 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3137 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3138 brw_imm_uw(0x7ff));
3139 return idx;
3140 } else {
3141 /* Pre-SNB we only ever render into the first layer of the framebuffer
3142 * since layered rendering is not implemented.
3143 */
3144 return brw_imm_ud(0);
3145 }
3146 }
3147
3148 /**
3149 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3150 * framebuffer at the current fragment coordinates and sample index.
3151 */
3152 fs_inst *
3153 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3154 unsigned target)
3155 {
3156 const struct gen_device_info *devinfo = bld.shader->devinfo;
3157
3158 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3159 const brw_wm_prog_key *wm_key =
3160 reinterpret_cast<const brw_wm_prog_key *>(key);
3161 assert(!wm_key->coherent_fb_fetch);
3162 const struct brw_wm_prog_data *wm_prog_data =
3163 brw_wm_prog_data(stage_prog_data);
3164
3165 /* Calculate the surface index relative to the start of the texture binding
3166 * table block, since that's what the texturing messages expect.
3167 */
3168 const unsigned surface = target +
3169 wm_prog_data->binding_table.render_target_read_start -
3170 wm_prog_data->base.binding_table.texture_start;
3171
3172 brw_mark_surface_used(
3173 bld.shader->stage_prog_data,
3174 wm_prog_data->binding_table.render_target_read_start + target);
3175
3176 /* Calculate the fragment coordinates. */
3177 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3178 bld.MOV(offset(coords, bld, 0), pixel_x);
3179 bld.MOV(offset(coords, bld, 1), pixel_y);
3180 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3181
3182 /* Calculate the sample index and MCS payload when multisampling. Luckily
3183 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3184 * shouldn't be necessary to recompile based on whether the framebuffer is
3185 * CMS or UMS.
3186 */
3187 if (wm_key->multisample_fbo &&
3188 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3189 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3190
3191 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3192 const fs_reg mcs = wm_key->multisample_fbo ?
3193 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3194
3195 /* Use either a normal or a CMS texel fetch message depending on whether
3196 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3197 * message just in case the framebuffer uses 16x multisampling, it should
3198 * be equivalent to the normal CMS fetch for lower multisampling modes.
3199 */
3200 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3201 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3202 SHADER_OPCODE_TXF_CMS_LOGICAL;
3203
3204 /* Emit the instruction. */
3205 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3206 sample, mcs,
3207 brw_imm_ud(surface), brw_imm_ud(0),
3208 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3209 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3210
3211 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3212 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3213
3214 return inst;
3215 }
3216
3217 /**
3218 * Actual coherent framebuffer read implemented using the native render target
3219 * read message. Requires SKL+.
3220 */
3221 static fs_inst *
3222 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3223 {
3224 assert(bld.shader->devinfo->gen >= 9);
3225 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3226 inst->target = target;
3227 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3228
3229 return inst;
3230 }
3231
3232 static fs_reg
3233 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3234 {
3235 if (n && regs[0].file != BAD_FILE) {
3236 return regs[0];
3237
3238 } else {
3239 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3240
3241 for (unsigned i = 0; i < n; i++)
3242 regs[i] = tmp;
3243
3244 return tmp;
3245 }
3246 }
3247
3248 static fs_reg
3249 alloc_frag_output(fs_visitor *v, unsigned location)
3250 {
3251 assert(v->stage == MESA_SHADER_FRAGMENT);
3252 const brw_wm_prog_key *const key =
3253 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3254 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3255 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3256
3257 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3258 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3259
3260 else if (l == FRAG_RESULT_COLOR)
3261 return alloc_temporary(v->bld, 4, v->outputs,
3262 MAX2(key->nr_color_regions, 1));
3263
3264 else if (l == FRAG_RESULT_DEPTH)
3265 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3266
3267 else if (l == FRAG_RESULT_STENCIL)
3268 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3269
3270 else if (l == FRAG_RESULT_SAMPLE_MASK)
3271 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3272
3273 else if (l >= FRAG_RESULT_DATA0 &&
3274 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3275 return alloc_temporary(v->bld, 4,
3276 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3277
3278 else
3279 unreachable("Invalid location");
3280 }
3281
3282 void
3283 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3284 nir_intrinsic_instr *instr)
3285 {
3286 assert(stage == MESA_SHADER_FRAGMENT);
3287
3288 fs_reg dest;
3289 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3290 dest = get_nir_dest(instr->dest);
3291
3292 switch (instr->intrinsic) {
3293 case nir_intrinsic_load_front_face:
3294 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3295 *emit_frontfacing_interpolation());
3296 break;
3297
3298 case nir_intrinsic_load_sample_pos: {
3299 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3300 assert(sample_pos.file != BAD_FILE);
3301 dest.type = sample_pos.type;
3302 bld.MOV(dest, sample_pos);
3303 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3304 break;
3305 }
3306
3307 case nir_intrinsic_load_layer_id:
3308 dest.type = BRW_REGISTER_TYPE_UD;
3309 bld.MOV(dest, fetch_render_target_array_index(bld));
3310 break;
3311
3312 case nir_intrinsic_load_helper_invocation:
3313 case nir_intrinsic_load_sample_mask_in:
3314 case nir_intrinsic_load_sample_id: {
3315 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3316 fs_reg val = nir_system_values[sv];
3317 assert(val.file != BAD_FILE);
3318 dest.type = val.type;
3319 bld.MOV(dest, val);
3320 break;
3321 }
3322
3323 case nir_intrinsic_store_output: {
3324 const fs_reg src = get_nir_src(instr->src[0]);
3325 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3326 assert(const_offset && "Indirect output stores not allowed");
3327 const unsigned location = nir_intrinsic_base(instr) +
3328 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3329 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3330 src.type);
3331
3332 for (unsigned j = 0; j < instr->num_components; j++)
3333 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3334 offset(src, bld, j));
3335
3336 break;
3337 }
3338
3339 case nir_intrinsic_load_output: {
3340 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3341 BRW_NIR_FRAG_OUTPUT_LOCATION);
3342 assert(l >= FRAG_RESULT_DATA0);
3343 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3344 assert(const_offset && "Indirect output loads not allowed");
3345 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3346 const fs_reg tmp = bld.vgrf(dest.type, 4);
3347
3348 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3349 emit_coherent_fb_read(bld, tmp, target);
3350 else
3351 emit_non_coherent_fb_read(bld, tmp, target);
3352
3353 for (unsigned j = 0; j < instr->num_components; j++) {
3354 bld.MOV(offset(dest, bld, j),
3355 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3356 }
3357
3358 break;
3359 }
3360
3361 case nir_intrinsic_discard:
3362 case nir_intrinsic_discard_if: {
3363 /* We track our discarded pixels in f0.1. By predicating on it, we can
3364 * update just the flag bits that aren't yet discarded. If there's no
3365 * condition, we emit a CMP of g0 != g0, so all currently executing
3366 * channels will get turned off.
3367 */
3368 fs_inst *cmp;
3369 if (instr->intrinsic == nir_intrinsic_discard_if) {
3370 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3371 brw_imm_d(0), BRW_CONDITIONAL_Z);
3372 } else {
3373 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3374 BRW_REGISTER_TYPE_UW));
3375 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3376 }
3377 cmp->predicate = BRW_PREDICATE_NORMAL;
3378 cmp->flag_subreg = 1;
3379
3380 if (devinfo->gen >= 6) {
3381 emit_discard_jump();
3382 }
3383
3384 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3385 break;
3386 }
3387
3388 case nir_intrinsic_load_input: {
3389 /* load_input is only used for flat inputs */
3390 unsigned base = nir_intrinsic_base(instr);
3391 unsigned comp = nir_intrinsic_component(instr);
3392 unsigned num_components = instr->num_components;
3393 fs_reg orig_dest = dest;
3394 enum brw_reg_type type = dest.type;
3395
3396 /* Special case fields in the VUE header */
3397 if (base == VARYING_SLOT_LAYER)
3398 comp = 1;
3399 else if (base == VARYING_SLOT_VIEWPORT)
3400 comp = 2;
3401
3402 if (nir_dest_bit_size(instr->dest) == 64) {
3403 /* const_index is in 32-bit type size units that could not be aligned
3404 * with DF. We need to read the double vector as if it was a float
3405 * vector of twice the number of components to fetch the right data.
3406 */
3407 type = BRW_REGISTER_TYPE_F;
3408 num_components *= 2;
3409 dest = bld.vgrf(type, num_components);
3410 }
3411
3412 for (unsigned int i = 0; i < num_components; i++) {
3413 bld.MOV(offset(retype(dest, type), bld, i),
3414 retype(component(interp_reg(base, comp + i), 3), type));
3415 }
3416
3417 if (nir_dest_bit_size(instr->dest) == 64) {
3418 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3419 instr->num_components);
3420 }
3421 break;
3422 }
3423
3424 case nir_intrinsic_load_barycentric_pixel:
3425 case nir_intrinsic_load_barycentric_centroid:
3426 case nir_intrinsic_load_barycentric_sample:
3427 /* Do nothing - load_interpolated_input handling will handle it later. */
3428 break;
3429
3430 case nir_intrinsic_load_barycentric_at_sample: {
3431 const glsl_interp_mode interpolation =
3432 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3433
3434 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3435
3436 if (const_sample) {
3437 unsigned msg_data = const_sample->i32[0] << 4;
3438
3439 emit_pixel_interpolater_send(bld,
3440 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3441 dest,
3442 fs_reg(), /* src */
3443 brw_imm_ud(msg_data),
3444 interpolation);
3445 } else {
3446 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3447 BRW_REGISTER_TYPE_UD);
3448
3449 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3450 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3451 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3452 bld.exec_all().group(1, 0)
3453 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3454 emit_pixel_interpolater_send(bld,
3455 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3456 dest,
3457 fs_reg(), /* src */
3458 msg_data,
3459 interpolation);
3460 } else {
3461 /* Make a loop that sends a message to the pixel interpolater
3462 * for the sample number in each live channel. If there are
3463 * multiple channels with the same sample number then these
3464 * will be handled simultaneously with a single interation of
3465 * the loop.
3466 */
3467 bld.emit(BRW_OPCODE_DO);
3468
3469 /* Get the next live sample number into sample_id_reg */
3470 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3471
3472 /* Set the flag register so that we can perform the send
3473 * message on all channels that have the same sample number
3474 */
3475 bld.CMP(bld.null_reg_ud(),
3476 sample_src, sample_id,
3477 BRW_CONDITIONAL_EQ);
3478 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3479 bld.exec_all().group(1, 0)
3480 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3481 fs_inst *inst =
3482 emit_pixel_interpolater_send(bld,
3483 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3484 dest,
3485 fs_reg(), /* src */
3486 component(msg_data, 0),
3487 interpolation);
3488 set_predicate(BRW_PREDICATE_NORMAL, inst);
3489
3490 /* Continue the loop if there are any live channels left */
3491 set_predicate_inv(BRW_PREDICATE_NORMAL,
3492 true, /* inverse */
3493 bld.emit(BRW_OPCODE_WHILE));
3494 }
3495 }
3496 break;
3497 }
3498
3499 case nir_intrinsic_load_barycentric_at_offset: {
3500 const glsl_interp_mode interpolation =
3501 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3502
3503 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3504
3505 if (const_offset) {
3506 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3507 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3508
3509 emit_pixel_interpolater_send(bld,
3510 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3511 dest,
3512 fs_reg(), /* src */
3513 brw_imm_ud(off_x | (off_y << 4)),
3514 interpolation);
3515 } else {
3516 fs_reg src = vgrf(glsl_type::ivec2_type);
3517 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3518 BRW_REGISTER_TYPE_F);
3519 for (int i = 0; i < 2; i++) {
3520 fs_reg temp = vgrf(glsl_type::float_type);
3521 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3522 fs_reg itemp = vgrf(glsl_type::int_type);
3523 /* float to int */
3524 bld.MOV(itemp, temp);
3525
3526 /* Clamp the upper end of the range to +7/16.
3527 * ARB_gpu_shader5 requires that we support a maximum offset
3528 * of +0.5, which isn't representable in a S0.4 value -- if
3529 * we didn't clamp it, we'd end up with -8/16, which is the
3530 * opposite of what the shader author wanted.
3531 *
3532 * This is legal due to ARB_gpu_shader5's quantization
3533 * rules:
3534 *
3535 * "Not all values of <offset> may be supported; x and y
3536 * offsets may be rounded to fixed-point values with the
3537 * number of fraction bits given by the
3538 * implementation-dependent constant
3539 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3540 */
3541 set_condmod(BRW_CONDITIONAL_L,
3542 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3543 }
3544
3545 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3546 emit_pixel_interpolater_send(bld,
3547 opcode,
3548 dest,
3549 src,
3550 brw_imm_ud(0u),
3551 interpolation);
3552 }
3553 break;
3554 }
3555
3556 case nir_intrinsic_load_interpolated_input: {
3557 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3558 emit_fragcoord_interpolation(dest);
3559 break;
3560 }
3561
3562 assert(instr->src[0].ssa &&
3563 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3564 nir_intrinsic_instr *bary_intrinsic =
3565 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3566 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3567 enum glsl_interp_mode interp_mode =
3568 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3569 fs_reg dst_xy;
3570
3571 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3572 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3573 /* Use the result of the PI message */
3574 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3575 } else {
3576 /* Use the delta_xy values computed from the payload */
3577 enum brw_barycentric_mode bary =
3578 brw_barycentric_mode(interp_mode, bary_intrin);
3579
3580 dst_xy = this->delta_xy[bary];
3581 }
3582
3583 for (unsigned int i = 0; i < instr->num_components; i++) {
3584 fs_reg interp =
3585 component(interp_reg(nir_intrinsic_base(instr),
3586 nir_intrinsic_component(instr) + i), 0);
3587 interp.type = BRW_REGISTER_TYPE_F;
3588 dest.type = BRW_REGISTER_TYPE_F;
3589
3590 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3591 fs_reg tmp = vgrf(glsl_type::float_type);
3592 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3593 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3594 } else {
3595 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3596 }
3597 }
3598 break;
3599 }
3600
3601 default:
3602 nir_emit_intrinsic(bld, instr);
3603 break;
3604 }
3605 }
3606
3607 void
3608 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3609 nir_intrinsic_instr *instr)
3610 {
3611 assert(stage == MESA_SHADER_COMPUTE);
3612 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3613
3614 fs_reg dest;
3615 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3616 dest = get_nir_dest(instr->dest);
3617
3618 switch (instr->intrinsic) {
3619 case nir_intrinsic_barrier:
3620 emit_barrier();
3621 cs_prog_data->uses_barrier = true;
3622 break;
3623
3624 case nir_intrinsic_load_subgroup_id:
3625 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3626 break;
3627
3628 case nir_intrinsic_load_local_invocation_id:
3629 case nir_intrinsic_load_work_group_id: {
3630 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3631 fs_reg val = nir_system_values[sv];
3632 assert(val.file != BAD_FILE);
3633 dest.type = val.type;
3634 for (unsigned i = 0; i < 3; i++)
3635 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3636 break;
3637 }
3638
3639 case nir_intrinsic_load_num_work_groups: {
3640 const unsigned surface =
3641 cs_prog_data->binding_table.work_groups_start;
3642
3643 cs_prog_data->uses_num_work_groups = true;
3644
3645 fs_reg surf_index = brw_imm_ud(surface);
3646 brw_mark_surface_used(prog_data, surface);
3647
3648 /* Read the 3 GLuint components of gl_NumWorkGroups */
3649 for (unsigned i = 0; i < 3; i++) {
3650 fs_reg read_result =
3651 emit_untyped_read(bld, surf_index,
3652 brw_imm_ud(i << 2),
3653 1 /* dims */, 1 /* size */,
3654 BRW_PREDICATE_NONE);
3655 read_result.type = dest.type;
3656 bld.MOV(dest, read_result);
3657 dest = offset(dest, bld, 1);
3658 }
3659 break;
3660 }
3661
3662 case nir_intrinsic_shared_atomic_add:
3663 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3664 break;
3665 case nir_intrinsic_shared_atomic_imin:
3666 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3667 break;
3668 case nir_intrinsic_shared_atomic_umin:
3669 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3670 break;
3671 case nir_intrinsic_shared_atomic_imax:
3672 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3673 break;
3674 case nir_intrinsic_shared_atomic_umax:
3675 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3676 break;
3677 case nir_intrinsic_shared_atomic_and:
3678 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3679 break;
3680 case nir_intrinsic_shared_atomic_or:
3681 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3682 break;
3683 case nir_intrinsic_shared_atomic_xor:
3684 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3685 break;
3686 case nir_intrinsic_shared_atomic_exchange:
3687 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3688 break;
3689 case nir_intrinsic_shared_atomic_comp_swap:
3690 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3691 break;
3692 case nir_intrinsic_shared_atomic_fmin:
3693 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3694 break;
3695 case nir_intrinsic_shared_atomic_fmax:
3696 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3697 break;
3698 case nir_intrinsic_shared_atomic_fcomp_swap:
3699 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3700 break;
3701
3702 case nir_intrinsic_load_shared: {
3703 assert(devinfo->gen >= 7);
3704
3705 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3706
3707 /* Get the offset to read from */
3708 fs_reg offset_reg;
3709 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3710 if (const_offset) {
3711 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3712 } else {
3713 offset_reg = vgrf(glsl_type::uint_type);
3714 bld.ADD(offset_reg,
3715 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3716 brw_imm_ud(instr->const_index[0]));
3717 }
3718
3719 /* Read the vector */
3720 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3721 instr->num_components);
3722 break;
3723 }
3724
3725 case nir_intrinsic_store_shared: {
3726 assert(devinfo->gen >= 7);
3727
3728 /* Block index */
3729 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3730
3731 /* Value */
3732 fs_reg val_reg = get_nir_src(instr->src[0]);
3733
3734 /* Writemask */
3735 unsigned writemask = instr->const_index[1];
3736
3737 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3738 * since the untyped writes below operate in units of 32-bits, which
3739 * means that we need to write twice as many components each time.
3740 * Also, we have to suffle 64-bit data to be in the appropriate layout
3741 * expected by our 32-bit write messages.
3742 */
3743 unsigned type_size = 4;
3744 if (nir_src_bit_size(instr->src[0]) == 64) {
3745 type_size = 8;
3746 val_reg = shuffle_for_32bit_write(bld, val_reg, 0,
3747 instr->num_components);
3748 }
3749
3750 unsigned type_slots = type_size / 4;
3751
3752 /* Combine groups of consecutive enabled channels in one write
3753 * message. We use ffs to find the first enabled channel and then ffs on
3754 * the bit-inverse, down-shifted writemask to determine the length of
3755 * the block of enabled bits.
3756 */
3757 while (writemask) {
3758 unsigned first_component = ffs(writemask) - 1;
3759 unsigned length = ffs(~(writemask >> first_component)) - 1;
3760
3761 /* We can't write more than 2 64-bit components at once. Limit the
3762 * length of the write to what we can do and let the next iteration
3763 * handle the rest
3764 */
3765 if (type_size > 4)
3766 length = MIN2(2, length);
3767
3768 fs_reg offset_reg;
3769 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3770 if (const_offset) {
3771 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3772 type_size * first_component);
3773 } else {
3774 offset_reg = vgrf(glsl_type::uint_type);
3775 bld.ADD(offset_reg,
3776 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3777 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3778 }
3779
3780 emit_untyped_write(bld, surf_index, offset_reg,
3781 offset(val_reg, bld, first_component * type_slots),
3782 1 /* dims */, length * type_slots,
3783 BRW_PREDICATE_NONE);
3784
3785 /* Clear the bits in the writemask that we just wrote, then try
3786 * again to see if more channels are left.
3787 */
3788 writemask &= (15 << (first_component + length));
3789 }
3790
3791 break;
3792 }
3793
3794 default:
3795 nir_emit_intrinsic(bld, instr);
3796 break;
3797 }
3798 }
3799
3800 static fs_reg
3801 brw_nir_reduction_op_identity(const fs_builder &bld,
3802 nir_op op, brw_reg_type type)
3803 {
3804 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3805 switch (type_sz(type)) {
3806 case 2:
3807 assert(type != BRW_REGISTER_TYPE_HF);
3808 return retype(brw_imm_uw(value.u16[0]), type);
3809 case 4:
3810 return retype(brw_imm_ud(value.u32[0]), type);
3811 case 8:
3812 if (type == BRW_REGISTER_TYPE_DF)
3813 return setup_imm_df(bld, value.f64[0]);
3814 else
3815 return retype(brw_imm_u64(value.u64[0]), type);
3816 default:
3817 unreachable("Invalid type size");
3818 }
3819 }
3820
3821 static opcode
3822 brw_op_for_nir_reduction_op(nir_op op)
3823 {
3824 switch (op) {
3825 case nir_op_iadd: return BRW_OPCODE_ADD;
3826 case nir_op_fadd: return BRW_OPCODE_ADD;
3827 case nir_op_imul: return BRW_OPCODE_MUL;
3828 case nir_op_fmul: return BRW_OPCODE_MUL;
3829 case nir_op_imin: return BRW_OPCODE_SEL;
3830 case nir_op_umin: return BRW_OPCODE_SEL;
3831 case nir_op_fmin: return BRW_OPCODE_SEL;
3832 case nir_op_imax: return BRW_OPCODE_SEL;
3833 case nir_op_umax: return BRW_OPCODE_SEL;
3834 case nir_op_fmax: return BRW_OPCODE_SEL;
3835 case nir_op_iand: return BRW_OPCODE_AND;
3836 case nir_op_ior: return BRW_OPCODE_OR;
3837 case nir_op_ixor: return BRW_OPCODE_XOR;
3838 default:
3839 unreachable("Invalid reduction operation");
3840 }
3841 }
3842
3843 static brw_conditional_mod
3844 brw_cond_mod_for_nir_reduction_op(nir_op op)
3845 {
3846 switch (op) {
3847 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3848 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3849 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3850 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3851 case nir_op_imin: return BRW_CONDITIONAL_L;
3852 case nir_op_umin: return BRW_CONDITIONAL_L;
3853 case nir_op_fmin: return BRW_CONDITIONAL_L;
3854 case nir_op_imax: return BRW_CONDITIONAL_GE;
3855 case nir_op_umax: return BRW_CONDITIONAL_GE;
3856 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3857 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3858 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3859 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3860 default:
3861 unreachable("Invalid reduction operation");
3862 }
3863 }
3864
3865 void
3866 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3867 {
3868 fs_reg dest;
3869 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3870 dest = get_nir_dest(instr->dest);
3871
3872 switch (instr->intrinsic) {
3873 case nir_intrinsic_image_deref_load:
3874 case nir_intrinsic_image_deref_store:
3875 case nir_intrinsic_image_deref_atomic_add:
3876 case nir_intrinsic_image_deref_atomic_min:
3877 case nir_intrinsic_image_deref_atomic_max:
3878 case nir_intrinsic_image_deref_atomic_and:
3879 case nir_intrinsic_image_deref_atomic_or:
3880 case nir_intrinsic_image_deref_atomic_xor:
3881 case nir_intrinsic_image_deref_atomic_exchange:
3882 case nir_intrinsic_image_deref_atomic_comp_swap: {
3883 using namespace image_access;
3884
3885 if (stage == MESA_SHADER_FRAGMENT &&
3886 instr->intrinsic != nir_intrinsic_image_deref_load)
3887 brw_wm_prog_data(prog_data)->has_side_effects = true;
3888
3889 /* Get the referenced image variable and type. */
3890 nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
3891 const nir_variable *var = nir_deref_instr_get_variable(deref);
3892 const glsl_type *type = var->type->without_array();
3893 const brw_reg_type base_type = get_image_base_type(type);
3894
3895 /* Get some metadata from the image intrinsic. */
3896 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3897 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3898 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3899 const unsigned format = var->data.image.format;
3900 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3901
3902 /* Get the arguments of the image intrinsic. */
3903 const fs_reg image = get_nir_image_deref(deref);
3904 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3905 BRW_REGISTER_TYPE_UD);
3906 const fs_reg src0 = (info->num_srcs >= 4 ?
3907 retype(get_nir_src(instr->src[3]), base_type) :
3908 fs_reg());
3909 const fs_reg src1 = (info->num_srcs >= 5 ?
3910 retype(get_nir_src(instr->src[4]), base_type) :
3911 fs_reg());
3912 fs_reg tmp;
3913
3914 /* Emit an image load, store or atomic op. */
3915 if (instr->intrinsic == nir_intrinsic_image_deref_load)
3916 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3917
3918 else if (instr->intrinsic == nir_intrinsic_image_deref_store)
3919 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3920 var->data.image.write_only ? GL_NONE : format);
3921
3922 else
3923 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3924 surf_dims, arr_dims, dest_components,
3925 get_image_atomic_op(instr->intrinsic, type));
3926
3927 /* Assign the result. */
3928 for (unsigned c = 0; c < dest_components; ++c) {
3929 bld.MOV(offset(retype(dest, base_type), bld, c),
3930 offset(tmp, bld, c));
3931 }
3932 break;
3933 }
3934
3935 case nir_intrinsic_group_memory_barrier:
3936 case nir_intrinsic_memory_barrier_shared:
3937 case nir_intrinsic_memory_barrier_atomic_counter:
3938 case nir_intrinsic_memory_barrier_buffer:
3939 case nir_intrinsic_memory_barrier_image:
3940 case nir_intrinsic_memory_barrier: {
3941 const fs_builder ubld = bld.group(8, 0);
3942 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3943 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3944 ->size_written = 2 * REG_SIZE;
3945 break;
3946 }
3947
3948 case nir_intrinsic_shader_clock: {
3949 /* We cannot do anything if there is an event, so ignore it for now */
3950 const fs_reg shader_clock = get_timestamp(bld);
3951 const fs_reg srcs[] = { component(shader_clock, 0),
3952 component(shader_clock, 1) };
3953 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3954 break;
3955 }
3956
3957 case nir_intrinsic_image_deref_size: {
3958 /* Get the referenced image variable and type. */
3959 nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
3960 const nir_variable *var = nir_deref_instr_get_variable(deref);
3961 const glsl_type *type = var->type->without_array();
3962
3963 /* Get the size of the image. */
3964 const fs_reg image = get_nir_image_deref(deref);
3965 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3966
3967 /* For 1DArray image types, the array index is stored in the Z component.
3968 * Fix this by swizzling the Z component to the Y component.
3969 */
3970 const bool is_1d_array_image =
3971 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3972 type->sampler_array;
3973
3974 /* For CubeArray images, we should count the number of cubes instead
3975 * of the number of faces. Fix it by dividing the (Z component) by 6.
3976 */
3977 const bool is_cube_array_image =
3978 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3979 type->sampler_array;
3980
3981 /* Copy all the components. */
3982 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3983 if ((int)c >= type->coordinate_components()) {
3984 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3985 brw_imm_d(1));
3986 } else if (c == 1 && is_1d_array_image) {
3987 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3988 offset(size, bld, 2));
3989 } else if (c == 2 && is_cube_array_image) {
3990 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3991 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3992 offset(size, bld, c), brw_imm_d(6));
3993 } else {
3994 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3995 offset(size, bld, c));
3996 }
3997 }
3998
3999 break;
4000 }
4001
4002 case nir_intrinsic_image_deref_samples:
4003 /* The driver does not support multi-sampled images. */
4004 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4005 break;
4006
4007 case nir_intrinsic_load_uniform: {
4008 /* Offsets are in bytes but they should always aligned to
4009 * the type size
4010 */
4011 assert(instr->const_index[0] % 4 == 0 ||
4012 instr->const_index[0] % type_sz(dest.type) == 0);
4013
4014 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4015
4016 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4017 if (const_offset) {
4018 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
4019 /* For 16-bit types we add the module of the const_index[0]
4020 * offset to access to not 32-bit aligned element
4021 */
4022 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
4023
4024 for (unsigned j = 0; j < instr->num_components; j++) {
4025 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4026 }
4027 } else {
4028 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4029 BRW_REGISTER_TYPE_UD);
4030
4031 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4032 * go past the end of the uniform. In order to keep the n'th
4033 * component from running past, we subtract off the size of all but
4034 * one component of the vector.
4035 */
4036 assert(instr->const_index[1] >=
4037 instr->num_components * (int) type_sz(dest.type));
4038 unsigned read_size = instr->const_index[1] -
4039 (instr->num_components - 1) * type_sz(dest.type);
4040
4041 bool supports_64bit_indirects =
4042 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4043
4044 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4045 for (unsigned j = 0; j < instr->num_components; j++) {
4046 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4047 offset(dest, bld, j), offset(src, bld, j),
4048 indirect, brw_imm_ud(read_size));
4049 }
4050 } else {
4051 const unsigned num_mov_indirects =
4052 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4053 /* We read a little bit less per MOV INDIRECT, as they are now
4054 * 32-bits ones instead of 64-bit. Fix read_size then.
4055 */
4056 const unsigned read_size_32bit = read_size -
4057 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4058 for (unsigned j = 0; j < instr->num_components; j++) {
4059 for (unsigned i = 0; i < num_mov_indirects; i++) {
4060 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4061 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4062 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4063 indirect, brw_imm_ud(read_size_32bit));
4064 }
4065 }
4066 }
4067 }
4068 break;
4069 }
4070
4071 case nir_intrinsic_load_ubo: {
4072 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4073 fs_reg surf_index;
4074
4075 if (const_index) {
4076 const unsigned index = stage_prog_data->binding_table.ubo_start +
4077 const_index->u32[0];
4078 surf_index = brw_imm_ud(index);
4079 brw_mark_surface_used(prog_data, index);
4080 } else {
4081 /* The block index is not a constant. Evaluate the index expression
4082 * per-channel and add the base UBO index; we have to select a value
4083 * from any live channel.
4084 */
4085 surf_index = vgrf(glsl_type::uint_type);
4086 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4087 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4088 surf_index = bld.emit_uniformize(surf_index);
4089
4090 /* Assume this may touch any UBO. It would be nice to provide
4091 * a tighter bound, but the array information is already lowered away.
4092 */
4093 brw_mark_surface_used(prog_data,
4094 stage_prog_data->binding_table.ubo_start +
4095 nir->info.num_ubos - 1);
4096 }
4097
4098 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4099 if (const_offset == NULL) {
4100 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4101 BRW_REGISTER_TYPE_UD);
4102
4103 for (int i = 0; i < instr->num_components; i++)
4104 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4105 base_offset, i * type_sz(dest.type));
4106 } else {
4107 /* Even if we are loading doubles, a pull constant load will load
4108 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4109 * need to load a full dvec4 we will have to emit 2 loads. This is
4110 * similar to demote_pull_constants(), except that in that case we
4111 * see individual accesses to each component of the vector and then
4112 * we let CSE deal with duplicate loads. Here we see a vector access
4113 * and we have to split it if necessary.
4114 */
4115 const unsigned type_size = type_sz(dest.type);
4116
4117 /* See if we've selected this as a push constant candidate */
4118 if (const_index) {
4119 const unsigned ubo_block = const_index->u32[0];
4120 const unsigned offset_256b = const_offset->u32[0] / 32;
4121
4122 fs_reg push_reg;
4123 for (int i = 0; i < 4; i++) {
4124 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4125 if (range->block == ubo_block &&
4126 offset_256b >= range->start &&
4127 offset_256b < range->start + range->length) {
4128
4129 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4130 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4131 break;
4132 }
4133 }
4134
4135 if (push_reg.file != BAD_FILE) {
4136 for (unsigned i = 0; i < instr->num_components; i++) {
4137 bld.MOV(offset(dest, bld, i),
4138 byte_offset(push_reg, i * type_size));
4139 }
4140 break;
4141 }
4142 }
4143
4144 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4145 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4146 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4147
4148 for (unsigned c = 0; c < instr->num_components;) {
4149 const unsigned base = const_offset->u32[0] + c * type_size;
4150 /* Number of usable components in the next block-aligned load. */
4151 const unsigned count = MIN2(instr->num_components - c,
4152 (block_sz - base % block_sz) / type_size);
4153
4154 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4155 packed_consts, surf_index,
4156 brw_imm_ud(base & ~(block_sz - 1)));
4157
4158 const fs_reg consts =
4159 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4160 dest.type);
4161
4162 for (unsigned d = 0; d < count; d++)
4163 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4164
4165 c += count;
4166 }
4167 }
4168 break;
4169 }
4170
4171 case nir_intrinsic_load_ssbo: {
4172 assert(devinfo->gen >= 7);
4173
4174 nir_const_value *const_uniform_block =
4175 nir_src_as_const_value(instr->src[0]);
4176
4177 fs_reg surf_index;
4178 if (const_uniform_block) {
4179 unsigned index = stage_prog_data->binding_table.ssbo_start +
4180 const_uniform_block->u32[0];
4181 surf_index = brw_imm_ud(index);
4182 brw_mark_surface_used(prog_data, index);
4183 } else {
4184 surf_index = vgrf(glsl_type::uint_type);
4185 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4186 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4187
4188 /* Assume this may touch any UBO. It would be nice to provide
4189 * a tighter bound, but the array information is already lowered away.
4190 */
4191 brw_mark_surface_used(prog_data,
4192 stage_prog_data->binding_table.ssbo_start +
4193 nir->info.num_ssbos - 1);
4194 }
4195
4196 fs_reg offset_reg;
4197 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4198 if (const_offset) {
4199 offset_reg = brw_imm_ud(const_offset->u32[0]);
4200 } else {
4201 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4202 }
4203
4204 /* Read the vector */
4205 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4206 instr->num_components);
4207
4208 break;
4209 }
4210
4211 case nir_intrinsic_store_ssbo: {
4212 assert(devinfo->gen >= 7);
4213
4214 if (stage == MESA_SHADER_FRAGMENT)
4215 brw_wm_prog_data(prog_data)->has_side_effects = true;
4216
4217 /* Block index */
4218 fs_reg surf_index;
4219 nir_const_value *const_uniform_block =
4220 nir_src_as_const_value(instr->src[1]);
4221 if (const_uniform_block) {
4222 unsigned index = stage_prog_data->binding_table.ssbo_start +
4223 const_uniform_block->u32[0];
4224 surf_index = brw_imm_ud(index);
4225 brw_mark_surface_used(prog_data, index);
4226 } else {
4227 surf_index = vgrf(glsl_type::uint_type);
4228 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4229 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4230
4231 brw_mark_surface_used(prog_data,
4232 stage_prog_data->binding_table.ssbo_start +
4233 nir->info.num_ssbos - 1);
4234 }
4235
4236 /* Value */
4237 fs_reg val_reg = get_nir_src(instr->src[0]);
4238
4239 /* Writemask */
4240 unsigned writemask = instr->const_index[0];
4241
4242 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4243 * since the untyped writes below operate in units of 32-bits, which
4244 * means that we need to write twice as many components each time.
4245 * Also, we have to suffle 64-bit data to be in the appropriate layout
4246 * expected by our 32-bit write messages.
4247 */
4248 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4249 unsigned type_size = bit_size / 8;
4250
4251 /* Combine groups of consecutive enabled channels in one write
4252 * message. We use ffs to find the first enabled channel and then ffs on
4253 * the bit-inverse, down-shifted writemask to determine the num_components
4254 * of the block of enabled bits.
4255 */
4256 while (writemask) {
4257 unsigned first_component = ffs(writemask) - 1;
4258 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4259 fs_reg write_src = offset(val_reg, bld, first_component);
4260
4261 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4262
4263 if (type_size > 4) {
4264 /* We can't write more than 2 64-bit components at once. Limit
4265 * the num_components of the write to what we can do and let the next
4266 * iteration handle the rest.
4267 */
4268 num_components = MIN2(2, num_components);
4269 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4270 num_components);
4271 } else if (type_size < 4) {
4272 /* For 16-bit types we pack two consecutive values into a 32-bit
4273 * word and use an untyped write message. For single values or not
4274 * 32-bit-aligned we need to use byte-scattered writes because
4275 * untyped writes works with 32-bit components with 32-bit
4276 * alignment. byte_scattered_write messages only support one
4277 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4278 * could be enabled we can not guarantee that not constant offsets
4279 * to be 32-bit aligned for 16-bit types. For example an array, of
4280 * 16-bit vec3 with array element stride of 6.
4281 *
4282 * In the case of 32-bit aligned constant offsets if there is
4283 * a 3-components vector we submit one untyped-write message
4284 * of 32-bit (first two components), and one byte-scattered
4285 * write message (the last component).
4286 */
4287
4288 if ( !const_offset || ((const_offset->u32[0] +
4289 type_size * first_component) % 4)) {
4290 /* If we use a .yz writemask we also need to emit 2
4291 * byte-scattered write messages because of y-component not
4292 * being aligned to 32-bit.
4293 */
4294 num_components = 1;
4295 } else if (num_components * type_size > 4 &&
4296 (num_components * type_size % 4)) {
4297 /* If the pending components size is not a multiple of 4 bytes
4298 * we left the not aligned components for following emits of
4299 * length == 1 with byte_scattered_write.
4300 */
4301 num_components -= (num_components * type_size % 4) / type_size;
4302 } else if (num_components * type_size < 4) {
4303 num_components = 1;
4304 }
4305 /* For num_components == 1 we are also shuffling the component
4306 * because byte scattered writes of 16-bit need values to be dword
4307 * aligned. Shuffling only one component would be the same as
4308 * striding it.
4309 */
4310 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4311 num_components);
4312 }
4313
4314 fs_reg offset_reg;
4315
4316 if (const_offset) {
4317 offset_reg = brw_imm_ud(const_offset->u32[0] +
4318 type_size * first_component);
4319 } else {
4320 offset_reg = vgrf(glsl_type::uint_type);
4321 bld.ADD(offset_reg,
4322 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4323 brw_imm_ud(type_size * first_component));
4324 }
4325
4326 if (type_size < 4 && num_components == 1) {
4327 /* Untyped Surface messages have a fixed 32-bit size, so we need
4328 * to rely on byte scattered in order to write 16-bit elements.
4329 * The byte_scattered_write message needs that every written 16-bit
4330 * type to be aligned 32-bits (stride=2).
4331 */
4332 emit_byte_scattered_write(bld, surf_index, offset_reg,
4333 write_src,
4334 1 /* dims */,
4335 bit_size,
4336 BRW_PREDICATE_NONE);
4337 } else {
4338 assert(num_components * type_size <= 16);
4339 assert((num_components * type_size) % 4 == 0);
4340 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4341 offset_reg.ud % 4 == 0);
4342 unsigned num_slots = (num_components * type_size) / 4;
4343
4344 emit_untyped_write(bld, surf_index, offset_reg,
4345 write_src,
4346 1 /* dims */, num_slots,
4347 BRW_PREDICATE_NONE);
4348 }
4349
4350 /* Clear the bits in the writemask that we just wrote, then try
4351 * again to see if more channels are left.
4352 */
4353 writemask &= (15 << (first_component + num_components));
4354 }
4355 break;
4356 }
4357
4358 case nir_intrinsic_store_output: {
4359 fs_reg src = get_nir_src(instr->src[0]);
4360
4361 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4362 assert(const_offset && "Indirect output stores not allowed");
4363
4364 unsigned num_components = instr->num_components;
4365 unsigned first_component = nir_intrinsic_component(instr);
4366 if (nir_src_bit_size(instr->src[0]) == 64) {
4367 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4368 num_components *= 2;
4369 }
4370
4371 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4372 4 * const_offset->u32[0]), src.type);
4373 for (unsigned j = 0; j < num_components; j++) {
4374 bld.MOV(offset(new_dest, bld, j + first_component),
4375 offset(src, bld, j));
4376 }
4377 break;
4378 }
4379
4380 case nir_intrinsic_ssbo_atomic_add:
4381 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4382 break;
4383 case nir_intrinsic_ssbo_atomic_imin:
4384 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4385 break;
4386 case nir_intrinsic_ssbo_atomic_umin:
4387 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4388 break;
4389 case nir_intrinsic_ssbo_atomic_imax:
4390 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4391 break;
4392 case nir_intrinsic_ssbo_atomic_umax:
4393 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4394 break;
4395 case nir_intrinsic_ssbo_atomic_and:
4396 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4397 break;
4398 case nir_intrinsic_ssbo_atomic_or:
4399 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4400 break;
4401 case nir_intrinsic_ssbo_atomic_xor:
4402 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4403 break;
4404 case nir_intrinsic_ssbo_atomic_exchange:
4405 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4406 break;
4407 case nir_intrinsic_ssbo_atomic_comp_swap:
4408 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4409 break;
4410 case nir_intrinsic_ssbo_atomic_fmin:
4411 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4412 break;
4413 case nir_intrinsic_ssbo_atomic_fmax:
4414 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4415 break;
4416 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4417 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4418 break;
4419
4420 case nir_intrinsic_get_buffer_size: {
4421 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4422 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4423
4424 /* A resinfo's sampler message is used to get the buffer size. The
4425 * SIMD8's writeback message consists of four registers and SIMD16's
4426 * writeback message consists of 8 destination registers (two per each
4427 * component). Because we are only interested on the first channel of
4428 * the first returned component, where resinfo returns the buffer size
4429 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4430 * the dispatch width.
4431 */
4432 const fs_builder ubld = bld.exec_all().group(8, 0);
4433 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4434 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4435
4436 /* Set LOD = 0 */
4437 ubld.MOV(src_payload, brw_imm_d(0));
4438
4439 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4440 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4441 src_payload, brw_imm_ud(index));
4442 inst->header_size = 0;
4443 inst->mlen = 1;
4444 inst->size_written = 4 * REG_SIZE;
4445
4446 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4447 *
4448 * "Out-of-bounds checking is always performed at a DWord granularity. If
4449 * any part of the DWord is out-of-bounds then the whole DWord is
4450 * considered out-of-bounds."
4451 *
4452 * This implies that types with size smaller than 4-bytes need to be
4453 * padded if they don't complete the last dword of the buffer. But as we
4454 * need to maintain the original size we need to reverse the padding
4455 * calculation to return the correct size to know the number of elements
4456 * of an unsized array. As we stored in the last two bits of the surface
4457 * size the needed padding for the buffer, we calculate here the
4458 * original buffer_size reversing the surface_size calculation:
4459 *
4460 * surface_size = isl_align(buffer_size, 4) +
4461 * (isl_align(buffer_size) - buffer_size)
4462 *
4463 * buffer_size = surface_size & ~3 - surface_size & 3
4464 */
4465
4466 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4467 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4468 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4469
4470 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4471 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4472 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4473
4474 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4475
4476 brw_mark_surface_used(prog_data, index);
4477 break;
4478 }
4479
4480 case nir_intrinsic_load_subgroup_invocation:
4481 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4482 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4483 break;
4484
4485 case nir_intrinsic_load_subgroup_eq_mask:
4486 case nir_intrinsic_load_subgroup_ge_mask:
4487 case nir_intrinsic_load_subgroup_gt_mask:
4488 case nir_intrinsic_load_subgroup_le_mask:
4489 case nir_intrinsic_load_subgroup_lt_mask:
4490 unreachable("not reached");
4491
4492 case nir_intrinsic_vote_any: {
4493 const fs_builder ubld = bld.exec_all().group(1, 0);
4494
4495 /* The any/all predicates do not consider channel enables. To prevent
4496 * dead channels from affecting the result, we initialize the flag with
4497 * with the identity value for the logical operation.
4498 */
4499 if (dispatch_width == 32) {
4500 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4501 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4502 brw_imm_ud(0));
4503 } else {
4504 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4505 }
4506 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4507
4508 /* For some reason, the any/all predicates don't work properly with
4509 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4510 * doesn't read the correct subset of the flag register and you end up
4511 * getting garbage in the second half. Work around this by using a pair
4512 * of 1-wide MOVs and scattering the result.
4513 */
4514 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4515 ubld.MOV(res1, brw_imm_d(0));
4516 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4517 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4518 BRW_PREDICATE_ALIGN1_ANY32H,
4519 ubld.MOV(res1, brw_imm_d(-1)));
4520
4521 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4522 break;
4523 }
4524 case nir_intrinsic_vote_all: {
4525 const fs_builder ubld = bld.exec_all().group(1, 0);
4526
4527 /* The any/all predicates do not consider channel enables. To prevent
4528 * dead channels from affecting the result, we initialize the flag with
4529 * with the identity value for the logical operation.
4530 */
4531 if (dispatch_width == 32) {
4532 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4533 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4534 brw_imm_ud(0xffffffff));
4535 } else {
4536 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4537 }
4538 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4539
4540 /* For some reason, the any/all predicates don't work properly with
4541 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4542 * doesn't read the correct subset of the flag register and you end up
4543 * getting garbage in the second half. Work around this by using a pair
4544 * of 1-wide MOVs and scattering the result.
4545 */
4546 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4547 ubld.MOV(res1, brw_imm_d(0));
4548 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4549 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4550 BRW_PREDICATE_ALIGN1_ALL32H,
4551 ubld.MOV(res1, brw_imm_d(-1)));
4552
4553 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4554 break;
4555 }
4556 case nir_intrinsic_vote_feq:
4557 case nir_intrinsic_vote_ieq: {
4558 fs_reg value = get_nir_src(instr->src[0]);
4559 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4560 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4561 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4562 }
4563
4564 fs_reg uniformized = bld.emit_uniformize(value);
4565 const fs_builder ubld = bld.exec_all().group(1, 0);
4566
4567 /* The any/all predicates do not consider channel enables. To prevent
4568 * dead channels from affecting the result, we initialize the flag with
4569 * with the identity value for the logical operation.
4570 */
4571 if (dispatch_width == 32) {
4572 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4573 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4574 brw_imm_ud(0xffffffff));
4575 } else {
4576 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4577 }
4578 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4579
4580 /* For some reason, the any/all predicates don't work properly with
4581 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4582 * doesn't read the correct subset of the flag register and you end up
4583 * getting garbage in the second half. Work around this by using a pair
4584 * of 1-wide MOVs and scattering the result.
4585 */
4586 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4587 ubld.MOV(res1, brw_imm_d(0));
4588 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4589 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4590 BRW_PREDICATE_ALIGN1_ALL32H,
4591 ubld.MOV(res1, brw_imm_d(-1)));
4592
4593 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4594 break;
4595 }
4596
4597 case nir_intrinsic_ballot: {
4598 const fs_reg value = retype(get_nir_src(instr->src[0]),
4599 BRW_REGISTER_TYPE_UD);
4600 struct brw_reg flag = brw_flag_reg(0, 0);
4601 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4602 * as f0.0. This is a problem for fragment programs as we currently use
4603 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4604 * programs yet so this isn't a problem. When we do, something will
4605 * have to change.
4606 */
4607 if (dispatch_width == 32)
4608 flag.type = BRW_REGISTER_TYPE_UD;
4609
4610 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4611 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4612
4613 if (instr->dest.ssa.bit_size > 32) {
4614 dest.type = BRW_REGISTER_TYPE_UQ;
4615 } else {
4616 dest.type = BRW_REGISTER_TYPE_UD;
4617 }
4618 bld.MOV(dest, flag);
4619 break;
4620 }
4621
4622 case nir_intrinsic_read_invocation: {
4623 const fs_reg value = get_nir_src(instr->src[0]);
4624 const fs_reg invocation = get_nir_src(instr->src[1]);
4625 fs_reg tmp = bld.vgrf(value.type);
4626
4627 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4628 bld.emit_uniformize(invocation));
4629
4630 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4631 break;
4632 }
4633
4634 case nir_intrinsic_read_first_invocation: {
4635 const fs_reg value = get_nir_src(instr->src[0]);
4636 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4637 break;
4638 }
4639
4640 case nir_intrinsic_shuffle: {
4641 const fs_reg value = get_nir_src(instr->src[0]);
4642 const fs_reg index = get_nir_src(instr->src[1]);
4643
4644 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4645 break;
4646 }
4647
4648 case nir_intrinsic_first_invocation: {
4649 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4650 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4651 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4652 fs_reg(component(tmp, 0)));
4653 break;
4654 }
4655
4656 case nir_intrinsic_quad_broadcast: {
4657 const fs_reg value = get_nir_src(instr->src[0]);
4658 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4659 assert(nir_src_bit_size(instr->src[1]) == 32);
4660
4661 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4662 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4663 break;
4664 }
4665
4666 case nir_intrinsic_quad_swap_horizontal: {
4667 const fs_reg value = get_nir_src(instr->src[0]);
4668 const fs_reg tmp = bld.vgrf(value.type);
4669 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4670
4671 const fs_reg src_left = horiz_stride(value, 2);
4672 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4673 const fs_reg tmp_left = horiz_stride(tmp, 2);
4674 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4675
4676 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4677 *
4678 * "When source or destination datatype is 64b or operation is
4679 * integer DWord multiply, regioning in Align1 must follow
4680 * these rules:
4681 *
4682 * [...]
4683 *
4684 * 3. Source and Destination offset must be the same, except
4685 * the case of scalar source."
4686 *
4687 * In order to work around this, we have to emit two 32-bit MOVs instead
4688 * of a single 64-bit MOV to do the shuffle.
4689 */
4690 if (type_sz(value.type) > 4 &&
4691 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4692 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4693 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4694 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4695 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4696 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4697 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4698 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4699 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4700 } else {
4701 ubld.MOV(tmp_left, src_right);
4702 ubld.MOV(tmp_right, src_left);
4703 }
4704 bld.MOV(retype(dest, value.type), tmp);
4705 break;
4706 }
4707
4708 case nir_intrinsic_quad_swap_vertical: {
4709 const fs_reg value = get_nir_src(instr->src[0]);
4710 if (nir_src_bit_size(instr->src[0]) == 32) {
4711 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4712 const fs_reg tmp = bld.vgrf(value.type);
4713 const fs_builder ubld = bld.exec_all();
4714 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4715 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4716 bld.MOV(retype(dest, value.type), tmp);
4717 } else {
4718 /* For larger data types, we have to either emit dispatch_width many
4719 * MOVs or else fall back to doing indirects.
4720 */
4721 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4722 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4723 brw_imm_w(0x2));
4724 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4725 }
4726 break;
4727 }
4728
4729 case nir_intrinsic_quad_swap_diagonal: {
4730 const fs_reg value = get_nir_src(instr->src[0]);
4731 if (nir_src_bit_size(instr->src[0]) == 32) {
4732 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4733 const fs_reg tmp = bld.vgrf(value.type);
4734 const fs_builder ubld = bld.exec_all();
4735 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4736 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4737 bld.MOV(retype(dest, value.type), tmp);
4738 } else {
4739 /* For larger data types, we have to either emit dispatch_width many
4740 * MOVs or else fall back to doing indirects.
4741 */
4742 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4743 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4744 brw_imm_w(0x3));
4745 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4746 }
4747 break;
4748 }
4749
4750 case nir_intrinsic_reduce: {
4751 fs_reg src = get_nir_src(instr->src[0]);
4752 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4753 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4754 if (cluster_size == 0 || cluster_size > dispatch_width)
4755 cluster_size = dispatch_width;
4756
4757 /* Figure out the source type */
4758 src.type = brw_type_for_nir_type(devinfo,
4759 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4760 nir_src_bit_size(instr->src[0])));
4761
4762 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4763 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4764 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4765
4766 /* Set up a register for all of our scratching around and initialize it
4767 * to reduction operation's identity value.
4768 */
4769 fs_reg scan = bld.vgrf(src.type);
4770 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4771
4772 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4773
4774 dest.type = src.type;
4775 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4776 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4777 * the distance between clusters is at least 2 GRFs. In this case,
4778 * we don't need the weird striding of the CLUSTER_BROADCAST
4779 * instruction and can just do regular MOVs.
4780 */
4781 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4782 const unsigned groups =
4783 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4784 const unsigned group_size = dispatch_width / groups;
4785 for (unsigned i = 0; i < groups; i++) {
4786 const unsigned cluster = (i * group_size) / cluster_size;
4787 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4788 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4789 component(scan, comp));
4790 }
4791 } else {
4792 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4793 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4794 }
4795 break;
4796 }
4797
4798 case nir_intrinsic_inclusive_scan:
4799 case nir_intrinsic_exclusive_scan: {
4800 fs_reg src = get_nir_src(instr->src[0]);
4801 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4802
4803 /* Figure out the source type */
4804 src.type = brw_type_for_nir_type(devinfo,
4805 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4806 nir_src_bit_size(instr->src[0])));
4807
4808 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4809 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4810 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4811
4812 /* Set up a register for all of our scratching around and initialize it
4813 * to reduction operation's identity value.
4814 */
4815 fs_reg scan = bld.vgrf(src.type);
4816 const fs_builder allbld = bld.exec_all();
4817 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4818
4819 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4820 /* Exclusive scan is a bit harder because we have to do an annoying
4821 * shift of the contents before we can begin. To make things worse,
4822 * we can't do this with a normal stride; we have to use indirects.
4823 */
4824 fs_reg shifted = bld.vgrf(src.type);
4825 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4826 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4827 brw_imm_w(-1));
4828 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4829 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4830 scan = shifted;
4831 }
4832
4833 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4834
4835 bld.MOV(retype(dest, src.type), scan);
4836 break;
4837 }
4838
4839 case nir_intrinsic_begin_invocation_interlock: {
4840 const fs_builder ubld = bld.group(8, 0);
4841 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4842
4843 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4844 REG_SIZE;
4845
4846 break;
4847 }
4848
4849 case nir_intrinsic_end_invocation_interlock: {
4850 /* We don't need to do anything here */
4851 break;
4852 }
4853
4854 default:
4855 unreachable("unknown intrinsic");
4856 }
4857 }
4858
4859 void
4860 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4861 int op, nir_intrinsic_instr *instr)
4862 {
4863 if (stage == MESA_SHADER_FRAGMENT)
4864 brw_wm_prog_data(prog_data)->has_side_effects = true;
4865
4866 fs_reg dest;
4867 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4868 dest = get_nir_dest(instr->dest);
4869
4870 fs_reg surface;
4871 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4872 if (const_surface) {
4873 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4874 const_surface->u32[0];
4875 surface = brw_imm_ud(surf_index);
4876 brw_mark_surface_used(prog_data, surf_index);
4877 } else {
4878 surface = vgrf(glsl_type::uint_type);
4879 bld.ADD(surface, get_nir_src(instr->src[0]),
4880 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4881
4882 /* Assume this may touch any SSBO. This is the same we do for other
4883 * UBO/SSBO accesses with non-constant surface.
4884 */
4885 brw_mark_surface_used(prog_data,
4886 stage_prog_data->binding_table.ssbo_start +
4887 nir->info.num_ssbos - 1);
4888 }
4889
4890 fs_reg offset = get_nir_src(instr->src[1]);
4891 fs_reg data1 = get_nir_src(instr->src[2]);
4892 fs_reg data2;
4893 if (op == BRW_AOP_CMPWR)
4894 data2 = get_nir_src(instr->src[3]);
4895
4896 /* Emit the actual atomic operation */
4897
4898 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4899 data1, data2,
4900 1 /* dims */, 1 /* rsize */,
4901 op,
4902 BRW_PREDICATE_NONE);
4903 dest.type = atomic_result.type;
4904 bld.MOV(dest, atomic_result);
4905 }
4906
4907 void
4908 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4909 int op, nir_intrinsic_instr *instr)
4910 {
4911 if (stage == MESA_SHADER_FRAGMENT)
4912 brw_wm_prog_data(prog_data)->has_side_effects = true;
4913
4914 fs_reg dest;
4915 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4916 dest = get_nir_dest(instr->dest);
4917
4918 fs_reg surface;
4919 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4920 if (const_surface) {
4921 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4922 const_surface->u32[0];
4923 surface = brw_imm_ud(surf_index);
4924 brw_mark_surface_used(prog_data, surf_index);
4925 } else {
4926 surface = vgrf(glsl_type::uint_type);
4927 bld.ADD(surface, get_nir_src(instr->src[0]),
4928 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4929
4930 /* Assume this may touch any SSBO. This is the same we do for other
4931 * UBO/SSBO accesses with non-constant surface.
4932 */
4933 brw_mark_surface_used(prog_data,
4934 stage_prog_data->binding_table.ssbo_start +
4935 nir->info.num_ssbos - 1);
4936 }
4937
4938 fs_reg offset = get_nir_src(instr->src[1]);
4939 fs_reg data1 = get_nir_src(instr->src[2]);
4940 fs_reg data2;
4941 if (op == BRW_AOP_FCMPWR)
4942 data2 = get_nir_src(instr->src[3]);
4943
4944 /* Emit the actual atomic operation */
4945
4946 fs_reg atomic_result = emit_untyped_atomic_float(bld, surface, offset,
4947 data1, data2,
4948 1 /* dims */, 1 /* rsize */,
4949 op,
4950 BRW_PREDICATE_NONE);
4951 dest.type = atomic_result.type;
4952 bld.MOV(dest, atomic_result);
4953 }
4954
4955 void
4956 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4957 int op, nir_intrinsic_instr *instr)
4958 {
4959 fs_reg dest;
4960 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4961 dest = get_nir_dest(instr->dest);
4962
4963 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4964 fs_reg offset;
4965 fs_reg data1 = get_nir_src(instr->src[1]);
4966 fs_reg data2;
4967 if (op == BRW_AOP_CMPWR)
4968 data2 = get_nir_src(instr->src[2]);
4969
4970 /* Get the offset */
4971 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4972 if (const_offset) {
4973 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4974 } else {
4975 offset = vgrf(glsl_type::uint_type);
4976 bld.ADD(offset,
4977 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4978 brw_imm_ud(instr->const_index[0]));
4979 }
4980
4981 /* Emit the actual atomic operation operation */
4982
4983 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4984 data1, data2,
4985 1 /* dims */, 1 /* rsize */,
4986 op,
4987 BRW_PREDICATE_NONE);
4988 dest.type = atomic_result.type;
4989 bld.MOV(dest, atomic_result);
4990 }
4991
4992 void
4993 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4994 int op, nir_intrinsic_instr *instr)
4995 {
4996 fs_reg dest;
4997 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4998 dest = get_nir_dest(instr->dest);
4999
5000 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
5001 fs_reg offset;
5002 fs_reg data1 = get_nir_src(instr->src[1]);
5003 fs_reg data2;
5004 if (op == BRW_AOP_FCMPWR)
5005 data2 = get_nir_src(instr->src[2]);
5006
5007 /* Get the offset */
5008 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
5009 if (const_offset) {
5010 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
5011 } else {
5012 offset = vgrf(glsl_type::uint_type);
5013 bld.ADD(offset,
5014 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5015 brw_imm_ud(instr->const_index[0]));
5016 }
5017
5018 /* Emit the actual atomic operation operation */
5019
5020 fs_reg atomic_result = emit_untyped_atomic_float(bld, surface, offset,
5021 data1, data2,
5022 1 /* dims */, 1 /* rsize */,
5023 op,
5024 BRW_PREDICATE_NONE);
5025 dest.type = atomic_result.type;
5026 bld.MOV(dest, atomic_result);
5027 }
5028
5029 void
5030 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5031 {
5032 unsigned texture = instr->texture_index;
5033 unsigned sampler = instr->sampler_index;
5034
5035 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5036
5037 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5038 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5039
5040 int lod_components = 0;
5041
5042 /* The hardware requires a LOD for buffer textures */
5043 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5044 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5045
5046 uint32_t header_bits = 0;
5047 for (unsigned i = 0; i < instr->num_srcs; i++) {
5048 fs_reg src = get_nir_src(instr->src[i].src);
5049 switch (instr->src[i].src_type) {
5050 case nir_tex_src_bias:
5051 srcs[TEX_LOGICAL_SRC_LOD] =
5052 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5053 break;
5054 case nir_tex_src_comparator:
5055 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5056 break;
5057 case nir_tex_src_coord:
5058 switch (instr->op) {
5059 case nir_texop_txf:
5060 case nir_texop_txf_ms:
5061 case nir_texop_txf_ms_mcs:
5062 case nir_texop_samples_identical:
5063 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5064 break;
5065 default:
5066 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5067 break;
5068 }
5069 break;
5070 case nir_tex_src_ddx:
5071 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5072 lod_components = nir_tex_instr_src_size(instr, i);
5073 break;
5074 case nir_tex_src_ddy:
5075 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5076 break;
5077 case nir_tex_src_lod:
5078 switch (instr->op) {
5079 case nir_texop_txs:
5080 srcs[TEX_LOGICAL_SRC_LOD] =
5081 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5082 break;
5083 case nir_texop_txf:
5084 srcs[TEX_LOGICAL_SRC_LOD] =
5085 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5086 break;
5087 default:
5088 srcs[TEX_LOGICAL_SRC_LOD] =
5089 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5090 break;
5091 }
5092 break;
5093 case nir_tex_src_ms_index:
5094 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5095 break;
5096
5097 case nir_tex_src_offset: {
5098 nir_const_value *const_offset =
5099 nir_src_as_const_value(instr->src[i].src);
5100 unsigned offset_bits = 0;
5101 if (const_offset &&
5102 brw_texture_offset(const_offset->i32,
5103 nir_tex_instr_src_size(instr, i),
5104 &offset_bits)) {
5105 header_bits |= offset_bits;
5106 } else {
5107 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5108 retype(src, BRW_REGISTER_TYPE_D);
5109 }
5110 break;
5111 }
5112
5113 case nir_tex_src_projector:
5114 unreachable("should be lowered");
5115
5116 case nir_tex_src_texture_offset: {
5117 /* Figure out the highest possible texture index and mark it as used */
5118 uint32_t max_used = texture + instr->texture_array_size - 1;
5119 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5120 max_used += stage_prog_data->binding_table.gather_texture_start;
5121 } else {
5122 max_used += stage_prog_data->binding_table.texture_start;
5123 }
5124 brw_mark_surface_used(prog_data, max_used);
5125
5126 /* Emit code to evaluate the actual indexing expression */
5127 fs_reg tmp = vgrf(glsl_type::uint_type);
5128 bld.ADD(tmp, src, brw_imm_ud(texture));
5129 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5130 break;
5131 }
5132
5133 case nir_tex_src_sampler_offset: {
5134 /* Emit code to evaluate the actual indexing expression */
5135 fs_reg tmp = vgrf(glsl_type::uint_type);
5136 bld.ADD(tmp, src, brw_imm_ud(sampler));
5137 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5138 break;
5139 }
5140
5141 case nir_tex_src_ms_mcs:
5142 assert(instr->op == nir_texop_txf_ms);
5143 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5144 break;
5145
5146 case nir_tex_src_plane: {
5147 nir_const_value *const_plane =
5148 nir_src_as_const_value(instr->src[i].src);
5149 const uint32_t plane = const_plane->u32[0];
5150 const uint32_t texture_index =
5151 instr->texture_index +
5152 stage_prog_data->binding_table.plane_start[plane] -
5153 stage_prog_data->binding_table.texture_start;
5154
5155 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5156 break;
5157 }
5158
5159 default:
5160 unreachable("unknown texture source");
5161 }
5162 }
5163
5164 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5165 (instr->op == nir_texop_txf_ms ||
5166 instr->op == nir_texop_samples_identical)) {
5167 if (devinfo->gen >= 7 &&
5168 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5169 srcs[TEX_LOGICAL_SRC_MCS] =
5170 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5171 instr->coord_components,
5172 srcs[TEX_LOGICAL_SRC_SURFACE]);
5173 } else {
5174 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5175 }
5176 }
5177
5178 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5179 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5180
5181 enum opcode opcode;
5182 switch (instr->op) {
5183 case nir_texop_tex:
5184 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5185 SHADER_OPCODE_TXL_LOGICAL);
5186 break;
5187 case nir_texop_txb:
5188 opcode = FS_OPCODE_TXB_LOGICAL;
5189 break;
5190 case nir_texop_txl:
5191 opcode = SHADER_OPCODE_TXL_LOGICAL;
5192 break;
5193 case nir_texop_txd:
5194 opcode = SHADER_OPCODE_TXD_LOGICAL;
5195 break;
5196 case nir_texop_txf:
5197 opcode = SHADER_OPCODE_TXF_LOGICAL;
5198 break;
5199 case nir_texop_txf_ms:
5200 if ((key_tex->msaa_16 & (1 << sampler)))
5201 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5202 else
5203 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5204 break;
5205 case nir_texop_txf_ms_mcs:
5206 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5207 break;
5208 case nir_texop_query_levels:
5209 case nir_texop_txs:
5210 opcode = SHADER_OPCODE_TXS_LOGICAL;
5211 break;
5212 case nir_texop_lod:
5213 opcode = SHADER_OPCODE_LOD_LOGICAL;
5214 break;
5215 case nir_texop_tg4:
5216 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5217 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5218 else
5219 opcode = SHADER_OPCODE_TG4_LOGICAL;
5220 break;
5221 case nir_texop_texture_samples:
5222 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5223 break;
5224 case nir_texop_samples_identical: {
5225 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5226
5227 /* If mcs is an immediate value, it means there is no MCS. In that case
5228 * just return false.
5229 */
5230 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5231 bld.MOV(dst, brw_imm_ud(0u));
5232 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5233 fs_reg tmp = vgrf(glsl_type::uint_type);
5234 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5235 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5236 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5237 } else {
5238 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5239 BRW_CONDITIONAL_EQ);
5240 }
5241 return;
5242 }
5243 default:
5244 unreachable("unknown texture opcode");
5245 }
5246
5247 if (instr->op == nir_texop_tg4) {
5248 if (instr->component == 1 &&
5249 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5250 /* gather4 sampler is broken for green channel on RG32F --
5251 * we must ask for blue instead.
5252 */
5253 header_bits |= 2 << 16;
5254 } else {
5255 header_bits |= instr->component << 16;
5256 }
5257 }
5258
5259 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5260 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5261 inst->offset = header_bits;
5262
5263 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5264 if (devinfo->gen >= 9 &&
5265 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5266 unsigned write_mask = instr->dest.is_ssa ?
5267 nir_ssa_def_components_read(&instr->dest.ssa):
5268 (1 << dest_size) - 1;
5269 assert(write_mask != 0); /* dead code should have been eliminated */
5270 inst->size_written = util_last_bit(write_mask) *
5271 inst->dst.component_size(inst->exec_size);
5272 } else {
5273 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5274 }
5275
5276 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5277 inst->shadow_compare = true;
5278
5279 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5280 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5281
5282 fs_reg nir_dest[4];
5283 for (unsigned i = 0; i < dest_size; i++)
5284 nir_dest[i] = offset(dst, bld, i);
5285
5286 if (instr->op == nir_texop_query_levels) {
5287 /* # levels is in .w */
5288 nir_dest[0] = offset(dst, bld, 3);
5289 } else if (instr->op == nir_texop_txs &&
5290 dest_size >= 3 && devinfo->gen < 7) {
5291 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5292 fs_reg depth = offset(dst, bld, 2);
5293 nir_dest[2] = vgrf(glsl_type::int_type);
5294 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5295 }
5296
5297 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5298 }
5299
5300 void
5301 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5302 {
5303 switch (instr->type) {
5304 case nir_jump_break:
5305 bld.emit(BRW_OPCODE_BREAK);
5306 break;
5307 case nir_jump_continue:
5308 bld.emit(BRW_OPCODE_CONTINUE);
5309 break;
5310 case nir_jump_return:
5311 default:
5312 unreachable("unknown jump");
5313 }
5314 }
5315
5316 /*
5317 * This helper takes a source register and un/shuffles it into the destination
5318 * register.
5319 *
5320 * If source type size is smaller than destination type size the operation
5321 * needed is a component shuffle. The opposite case would be an unshuffle. If
5322 * source/destination type size is equal a shuffle is done that would be
5323 * equivalent to a simple MOV.
5324 *
5325 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5326 * components .xyz 16-bit vector on SIMD8 would be.
5327 *
5328 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5329 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5330 *
5331 * This helper will return the following 2 32-bit components with the 16-bit
5332 * values shuffled:
5333 *
5334 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5335 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5336 *
5337 * For unshuffle, the example would be the opposite, a 64-bit type source
5338 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5339 * would be:
5340 *
5341 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5342 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5343 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5344 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5345 *
5346 * The returned result would be the following 4 32-bit components unshuffled:
5347 *
5348 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5349 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5350 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5351 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5352 *
5353 * - Source and destination register must not be overlapped.
5354 * - components units are measured in terms of the smaller type between
5355 * source and destination because we are un/shuffling the smaller
5356 * components from/into the bigger ones.
5357 * - first_component parameter allows skipping source components.
5358 */
5359 void
5360 shuffle_src_to_dst(const fs_builder &bld,
5361 const fs_reg &dst,
5362 const fs_reg &src,
5363 uint32_t first_component,
5364 uint32_t components)
5365 {
5366 if (type_sz(src.type) == type_sz(dst.type)) {
5367 assert(!regions_overlap(dst,
5368 type_sz(dst.type) * bld.dispatch_width() * components,
5369 offset(src, bld, first_component),
5370 type_sz(src.type) * bld.dispatch_width() * components));
5371 for (unsigned i = 0; i < components; i++) {
5372 bld.MOV(retype(offset(dst, bld, i), src.type),
5373 offset(src, bld, i + first_component));
5374 }
5375 } else if (type_sz(src.type) < type_sz(dst.type)) {
5376 /* Source is shuffled into destination */
5377 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5378 assert(!regions_overlap(dst,
5379 type_sz(dst.type) * bld.dispatch_width() *
5380 DIV_ROUND_UP(components, size_ratio),
5381 offset(src, bld, first_component),
5382 type_sz(src.type) * bld.dispatch_width() * components));
5383
5384 brw_reg_type shuffle_type =
5385 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5386 BRW_REGISTER_TYPE_D);
5387 for (unsigned i = 0; i < components; i++) {
5388 fs_reg shuffle_component_i =
5389 subscript(offset(dst, bld, i / size_ratio),
5390 shuffle_type, i % size_ratio);
5391 bld.MOV(shuffle_component_i,
5392 retype(offset(src, bld, i + first_component), shuffle_type));
5393 }
5394 } else {
5395 /* Source is unshuffled into destination */
5396 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5397 assert(!regions_overlap(dst,
5398 type_sz(dst.type) * bld.dispatch_width() * components,
5399 offset(src, bld, first_component / size_ratio),
5400 type_sz(src.type) * bld.dispatch_width() *
5401 DIV_ROUND_UP(components + (first_component % size_ratio),
5402 size_ratio)));
5403
5404 brw_reg_type shuffle_type =
5405 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5406 BRW_REGISTER_TYPE_D);
5407 for (unsigned i = 0; i < components; i++) {
5408 fs_reg shuffle_component_i =
5409 subscript(offset(src, bld, (first_component + i) / size_ratio),
5410 shuffle_type, (first_component + i) % size_ratio);
5411 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5412 shuffle_component_i);
5413 }
5414 }
5415 }
5416
5417 void
5418 shuffle_from_32bit_read(const fs_builder &bld,
5419 const fs_reg &dst,
5420 const fs_reg &src,
5421 uint32_t first_component,
5422 uint32_t components)
5423 {
5424 assert(type_sz(src.type) == 4);
5425
5426 /* This function takes components in units of the destination type while
5427 * shuffle_src_to_dst takes components in units of the smallest type
5428 */
5429 if (type_sz(dst.type) > 4) {
5430 assert(type_sz(dst.type) == 8);
5431 first_component *= 2;
5432 components *= 2;
5433 }
5434
5435 shuffle_src_to_dst(bld, dst, src, first_component, components);
5436 }
5437
5438 fs_reg
5439 shuffle_for_32bit_write(const fs_builder &bld,
5440 const fs_reg &src,
5441 uint32_t first_component,
5442 uint32_t components)
5443 {
5444 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5445 DIV_ROUND_UP (components * type_sz(src.type), 4));
5446 /* This function takes components in units of the source type while
5447 * shuffle_src_to_dst takes components in units of the smallest type
5448 */
5449 if (type_sz(src.type) > 4) {
5450 assert(type_sz(src.type) == 8);
5451 first_component *= 2;
5452 components *= 2;
5453 }
5454
5455 shuffle_src_to_dst(bld, dst, src, first_component, components);
5456
5457 return dst;
5458 }
5459
5460 fs_reg
5461 setup_imm_df(const fs_builder &bld, double v)
5462 {
5463 const struct gen_device_info *devinfo = bld.shader->devinfo;
5464 assert(devinfo->gen >= 7);
5465
5466 if (devinfo->gen >= 8)
5467 return brw_imm_df(v);
5468
5469 /* gen7.5 does not support DF immediates straighforward but the DIM
5470 * instruction allows to set the 64-bit immediate value.
5471 */
5472 if (devinfo->is_haswell) {
5473 const fs_builder ubld = bld.exec_all().group(1, 0);
5474 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5475 ubld.DIM(dst, brw_imm_df(v));
5476 return component(dst, 0);
5477 }
5478
5479 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5480 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5481 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5482 *
5483 * Alternatively, we could also produce a normal VGRF (without stride 0)
5484 * by writing to all the channels in the VGRF, however, that would hit the
5485 * gen7 bug where we have to split writes that span more than 1 register
5486 * into instructions with a width of 4 (otherwise the write to the second
5487 * register written runs into an execmask hardware bug) which isn't very
5488 * nice.
5489 */
5490 union {
5491 double d;
5492 struct {
5493 uint32_t i1;
5494 uint32_t i2;
5495 };
5496 } di;
5497
5498 di.d = v;
5499
5500 const fs_builder ubld = bld.exec_all().group(1, 0);
5501 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5502 ubld.MOV(tmp, brw_imm_ud(di.i1));
5503 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5504
5505 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5506 }
5507
5508 fs_reg
5509 setup_imm_b(const fs_builder &bld, int8_t v)
5510 {
5511 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5512 bld.MOV(tmp, brw_imm_w(v));
5513 return tmp;
5514 }
5515
5516 fs_reg
5517 setup_imm_ub(const fs_builder &bld, uint8_t v)
5518 {
5519 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5520 bld.MOV(tmp, brw_imm_uw(v));
5521 return tmp;
5522 }