intel/fs: Emit better code for b2f(inot(a)) and b2i(inot(a))
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "util/u_math.h"
28 #include "util/bitscan.h"
29
30 using namespace brw;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
43 }
44
45 void
46 fs_visitor::nir_setup_outputs()
47 {
48 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
49 return;
50
51 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
52
53 /* Calculate the size of output registers in a separate pass, before
54 * allocating them. With ARB_enhanced_layouts, multiple output variables
55 * may occupy the same slot, but have different type sizes.
56 */
57 nir_foreach_variable(var, &nir->outputs) {
58 const int loc = var->data.driver_location;
59 const unsigned var_vec4s =
60 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
61 : type_size_vec4(var->type);
62 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
63 }
64
65 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
66 if (vec4s[loc] == 0) {
67 loc++;
68 continue;
69 }
70
71 unsigned reg_size = vec4s[loc];
72
73 /* Check if there are any ranges that start within this range and extend
74 * past it. If so, include them in this allocation.
75 */
76 for (unsigned i = 1; i < reg_size; i++)
77 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
78
79 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
80 for (unsigned i = 0; i < reg_size; i++)
81 outputs[loc + i] = offset(reg, bld, 4 * i);
82
83 loc += reg_size;
84 }
85 }
86
87 void
88 fs_visitor::nir_setup_uniforms()
89 {
90 /* Only the first compile gets to set up uniforms. */
91 if (push_constant_loc) {
92 assert(pull_constant_loc);
93 return;
94 }
95
96 uniforms = nir->num_uniforms / 4;
97
98 if (stage == MESA_SHADER_COMPUTE) {
99 /* Add a uniform for the thread local id. It must be the last uniform
100 * on the list.
101 */
102 assert(uniforms == prog_data->nr_params);
103 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
104 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
105 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
106 }
107 }
108
109 static bool
110 emit_system_values_block(nir_block *block, fs_visitor *v)
111 {
112 fs_reg *reg;
113
114 nir_foreach_instr(instr, block) {
115 if (instr->type != nir_instr_type_intrinsic)
116 continue;
117
118 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
119 switch (intrin->intrinsic) {
120 case nir_intrinsic_load_vertex_id:
121 case nir_intrinsic_load_base_vertex:
122 unreachable("should be lowered by nir_lower_system_values().");
123
124 case nir_intrinsic_load_vertex_id_zero_base:
125 case nir_intrinsic_load_is_indexed_draw:
126 case nir_intrinsic_load_first_vertex:
127 case nir_intrinsic_load_instance_id:
128 case nir_intrinsic_load_base_instance:
129 case nir_intrinsic_load_draw_id:
130 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
131
132 case nir_intrinsic_load_invocation_id:
133 if (v->stage == MESA_SHADER_TESS_CTRL)
134 break;
135 assert(v->stage == MESA_SHADER_GEOMETRY);
136 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
137 if (reg->file == BAD_FILE) {
138 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
139 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
140 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
141 abld.SHR(iid, g1, brw_imm_ud(27u));
142 *reg = iid;
143 }
144 break;
145
146 case nir_intrinsic_load_sample_pos:
147 assert(v->stage == MESA_SHADER_FRAGMENT);
148 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
149 if (reg->file == BAD_FILE)
150 *reg = *v->emit_samplepos_setup();
151 break;
152
153 case nir_intrinsic_load_sample_id:
154 assert(v->stage == MESA_SHADER_FRAGMENT);
155 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
156 if (reg->file == BAD_FILE)
157 *reg = *v->emit_sampleid_setup();
158 break;
159
160 case nir_intrinsic_load_sample_mask_in:
161 assert(v->stage == MESA_SHADER_FRAGMENT);
162 assert(v->devinfo->gen >= 7);
163 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
164 if (reg->file == BAD_FILE)
165 *reg = *v->emit_samplemaskin_setup();
166 break;
167
168 case nir_intrinsic_load_work_group_id:
169 assert(v->stage == MESA_SHADER_COMPUTE);
170 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
171 if (reg->file == BAD_FILE)
172 *reg = *v->emit_cs_work_group_id_setup();
173 break;
174
175 case nir_intrinsic_load_helper_invocation:
176 assert(v->stage == MESA_SHADER_FRAGMENT);
177 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
178 if (reg->file == BAD_FILE) {
179 const fs_builder abld =
180 v->bld.annotate("gl_HelperInvocation", NULL);
181
182 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
183 * pixel mask is in g1.7 of the thread payload.
184 *
185 * We move the per-channel pixel enable bit to the low bit of each
186 * channel by shifting the byte containing the pixel mask by the
187 * vector immediate 0x76543210UV.
188 *
189 * The region of <1,8,0> reads only 1 byte (the pixel masks for
190 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
191 * masks for 2 and 3) in SIMD16.
192 */
193 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
194
195 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
196 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
197 hbld.SHR(offset(shifted, hbld, i),
198 stride(retype(brw_vec1_grf(1 + i, 7),
199 BRW_REGISTER_TYPE_UB),
200 1, 8, 0),
201 brw_imm_v(0x76543210));
202 }
203
204 /* A set bit in the pixel mask means the channel is enabled, but
205 * that is the opposite of gl_HelperInvocation so we need to invert
206 * the mask.
207 *
208 * The negate source-modifier bit of logical instructions on Gen8+
209 * performs 1's complement negation, so we can use that instead of
210 * a NOT instruction.
211 */
212 fs_reg inverted = negate(shifted);
213 if (v->devinfo->gen < 8) {
214 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
215 abld.NOT(inverted, shifted);
216 }
217
218 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
219 * with 1 and negating.
220 */
221 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
222 abld.AND(anded, inverted, brw_imm_uw(1));
223
224 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
225 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
226 *reg = dst;
227 }
228 break;
229
230 default:
231 break;
232 }
233 }
234
235 return true;
236 }
237
238 void
239 fs_visitor::nir_emit_system_values()
240 {
241 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
242 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
243 nir_system_values[i] = fs_reg();
244 }
245
246 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
247 * never end up using it.
248 */
249 {
250 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
251 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
252 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
253
254 const fs_builder allbld8 = abld.group(8, 0).exec_all();
255 allbld8.MOV(reg, brw_imm_v(0x76543210));
256 if (dispatch_width > 8)
257 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
258 if (dispatch_width > 16) {
259 const fs_builder allbld16 = abld.group(16, 0).exec_all();
260 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
261 }
262 }
263
264 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
265 nir_foreach_block(block, impl)
266 emit_system_values_block(block, this);
267 }
268
269 /*
270 * Returns a type based on a reference_type (word, float, half-float) and a
271 * given bit_size.
272 *
273 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
274 *
275 * @FIXME: 64-bit return types are always DF on integer types to maintain
276 * compability with uses of DF previously to the introduction of int64
277 * support.
278 */
279 static brw_reg_type
280 brw_reg_type_from_bit_size(const unsigned bit_size,
281 const brw_reg_type reference_type)
282 {
283 switch(reference_type) {
284 case BRW_REGISTER_TYPE_HF:
285 case BRW_REGISTER_TYPE_F:
286 case BRW_REGISTER_TYPE_DF:
287 switch(bit_size) {
288 case 16:
289 return BRW_REGISTER_TYPE_HF;
290 case 32:
291 return BRW_REGISTER_TYPE_F;
292 case 64:
293 return BRW_REGISTER_TYPE_DF;
294 default:
295 unreachable("Invalid bit size");
296 }
297 case BRW_REGISTER_TYPE_B:
298 case BRW_REGISTER_TYPE_W:
299 case BRW_REGISTER_TYPE_D:
300 case BRW_REGISTER_TYPE_Q:
301 switch(bit_size) {
302 case 8:
303 return BRW_REGISTER_TYPE_B;
304 case 16:
305 return BRW_REGISTER_TYPE_W;
306 case 32:
307 return BRW_REGISTER_TYPE_D;
308 case 64:
309 return BRW_REGISTER_TYPE_Q;
310 default:
311 unreachable("Invalid bit size");
312 }
313 case BRW_REGISTER_TYPE_UB:
314 case BRW_REGISTER_TYPE_UW:
315 case BRW_REGISTER_TYPE_UD:
316 case BRW_REGISTER_TYPE_UQ:
317 switch(bit_size) {
318 case 8:
319 return BRW_REGISTER_TYPE_UB;
320 case 16:
321 return BRW_REGISTER_TYPE_UW;
322 case 32:
323 return BRW_REGISTER_TYPE_UD;
324 case 64:
325 return BRW_REGISTER_TYPE_UQ;
326 default:
327 unreachable("Invalid bit size");
328 }
329 default:
330 unreachable("Unknown type");
331 }
332 }
333
334 void
335 fs_visitor::nir_emit_impl(nir_function_impl *impl)
336 {
337 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
338 for (unsigned i = 0; i < impl->reg_alloc; i++) {
339 nir_locals[i] = fs_reg();
340 }
341
342 foreach_list_typed(nir_register, reg, node, &impl->registers) {
343 unsigned array_elems =
344 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
345 unsigned size = array_elems * reg->num_components;
346 const brw_reg_type reg_type =
347 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
348 nir_locals[reg->index] = bld.vgrf(reg_type, size);
349 }
350
351 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
352 impl->ssa_alloc);
353
354 nir_emit_cf_list(&impl->body);
355 }
356
357 void
358 fs_visitor::nir_emit_cf_list(exec_list *list)
359 {
360 exec_list_validate(list);
361 foreach_list_typed(nir_cf_node, node, node, list) {
362 switch (node->type) {
363 case nir_cf_node_if:
364 nir_emit_if(nir_cf_node_as_if(node));
365 break;
366
367 case nir_cf_node_loop:
368 nir_emit_loop(nir_cf_node_as_loop(node));
369 break;
370
371 case nir_cf_node_block:
372 nir_emit_block(nir_cf_node_as_block(node));
373 break;
374
375 default:
376 unreachable("Invalid CFG node block");
377 }
378 }
379 }
380
381 void
382 fs_visitor::nir_emit_if(nir_if *if_stmt)
383 {
384 /* first, put the condition into f0 */
385 fs_inst *inst = bld.MOV(bld.null_reg_d(),
386 retype(get_nir_src(if_stmt->condition),
387 BRW_REGISTER_TYPE_D));
388 inst->conditional_mod = BRW_CONDITIONAL_NZ;
389
390 bld.IF(BRW_PREDICATE_NORMAL);
391
392 nir_emit_cf_list(&if_stmt->then_list);
393
394 /* note: if the else is empty, dead CF elimination will remove it */
395 bld.emit(BRW_OPCODE_ELSE);
396
397 nir_emit_cf_list(&if_stmt->else_list);
398
399 bld.emit(BRW_OPCODE_ENDIF);
400
401 if (devinfo->gen < 7)
402 limit_dispatch_width(16, "Non-uniform control flow unsupported "
403 "in SIMD32 mode.");
404 }
405
406 void
407 fs_visitor::nir_emit_loop(nir_loop *loop)
408 {
409 bld.emit(BRW_OPCODE_DO);
410
411 nir_emit_cf_list(&loop->body);
412
413 bld.emit(BRW_OPCODE_WHILE);
414
415 if (devinfo->gen < 7)
416 limit_dispatch_width(16, "Non-uniform control flow unsupported "
417 "in SIMD32 mode.");
418 }
419
420 void
421 fs_visitor::nir_emit_block(nir_block *block)
422 {
423 nir_foreach_instr(instr, block) {
424 nir_emit_instr(instr);
425 }
426 }
427
428 void
429 fs_visitor::nir_emit_instr(nir_instr *instr)
430 {
431 const fs_builder abld = bld.annotate(NULL, instr);
432
433 switch (instr->type) {
434 case nir_instr_type_alu:
435 nir_emit_alu(abld, nir_instr_as_alu(instr));
436 break;
437
438 case nir_instr_type_deref:
439 /* Derefs can exist for images but they do nothing */
440 break;
441
442 case nir_instr_type_intrinsic:
443 switch (stage) {
444 case MESA_SHADER_VERTEX:
445 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
446 break;
447 case MESA_SHADER_TESS_CTRL:
448 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
449 break;
450 case MESA_SHADER_TESS_EVAL:
451 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
452 break;
453 case MESA_SHADER_GEOMETRY:
454 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456 case MESA_SHADER_FRAGMENT:
457 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
458 break;
459 case MESA_SHADER_COMPUTE:
460 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462 default:
463 unreachable("unsupported shader stage");
464 }
465 break;
466
467 case nir_instr_type_tex:
468 nir_emit_texture(abld, nir_instr_as_tex(instr));
469 break;
470
471 case nir_instr_type_load_const:
472 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
473 break;
474
475 case nir_instr_type_ssa_undef:
476 /* We create a new VGRF for undefs on every use (by handling
477 * them in get_nir_src()), rather than for each definition.
478 * This helps register coalescing eliminate MOVs from undef.
479 */
480 break;
481
482 case nir_instr_type_jump:
483 nir_emit_jump(abld, nir_instr_as_jump(instr));
484 break;
485
486 default:
487 unreachable("unknown instruction type");
488 }
489 }
490
491 /**
492 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
493 * match instr.
494 */
495 bool
496 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
497 const fs_reg &result)
498 {
499 if (!instr->src[0].src.is_ssa ||
500 !instr->src[0].src.ssa->parent_instr)
501 return false;
502
503 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
504 return false;
505
506 nir_alu_instr *src0 =
507 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
508
509 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
510 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
511 return false;
512
513 /* If either opcode has source modifiers, bail.
514 *
515 * TODO: We can potentially handle source modifiers if both of the opcodes
516 * we're combining are signed integers.
517 */
518 if (instr->src[0].abs || instr->src[0].negate ||
519 src0->src[0].abs || src0->src[0].negate)
520 return false;
521
522 unsigned element = nir_src_as_uint(src0->src[1].src);
523
524 /* Element type to extract.*/
525 const brw_reg_type type = brw_int_type(
526 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
527 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
528
529 fs_reg op0 = get_nir_src(src0->src[0].src);
530 op0.type = brw_type_for_nir_type(devinfo,
531 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
532 nir_src_bit_size(src0->src[0].src)));
533 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
534
535 set_saturate(instr->dest.saturate,
536 bld.MOV(result, subscript(op0, type, element)));
537 return true;
538 }
539
540 bool
541 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
542 const fs_reg &result)
543 {
544 if (!instr->src[0].src.is_ssa ||
545 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
546 return false;
547
548 nir_intrinsic_instr *src0 =
549 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
550
551 if (src0->intrinsic != nir_intrinsic_load_front_face)
552 return false;
553
554 if (!nir_src_is_const(instr->src[1].src) ||
555 !nir_src_is_const(instr->src[2].src))
556 return false;
557
558 const float value1 = nir_src_as_float(instr->src[1].src);
559 const float value2 = nir_src_as_float(instr->src[2].src);
560 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
561 return false;
562
563 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
564 assert(value1 == -value2);
565
566 fs_reg tmp = vgrf(glsl_type::int_type);
567
568 if (devinfo->gen >= 6) {
569 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
570 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
571
572 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
573 *
574 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
575 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
576 *
577 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
578 *
579 * This negation looks like it's safe in practice, because bits 0:4 will
580 * surely be TRIANGLES
581 */
582
583 if (value1 == -1.0f) {
584 g0.negate = true;
585 }
586
587 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
588 g0, brw_imm_uw(0x3f80));
589 } else {
590 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
591 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
592
593 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
594 *
595 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
596 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
597 *
598 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
599 *
600 * This negation looks like it's safe in practice, because bits 0:4 will
601 * surely be TRIANGLES
602 */
603
604 if (value1 == -1.0f) {
605 g1_6.negate = true;
606 }
607
608 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
609 }
610 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
611
612 return true;
613 }
614
615 static void
616 emit_find_msb_using_lzd(const fs_builder &bld,
617 const fs_reg &result,
618 const fs_reg &src,
619 bool is_signed)
620 {
621 fs_inst *inst;
622 fs_reg temp = src;
623
624 if (is_signed) {
625 /* LZD of an absolute value source almost always does the right
626 * thing. There are two problem values:
627 *
628 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
629 * 0. However, findMSB(int(0x80000000)) == 30.
630 *
631 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
632 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
633 *
634 * For a value of zero or negative one, -1 will be returned.
635 *
636 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
637 * findMSB(-(1<<x)) should return x-1.
638 *
639 * For all negative number cases, including 0x80000000 and
640 * 0xffffffff, the correct value is obtained from LZD if instead of
641 * negating the (already negative) value the logical-not is used. A
642 * conditonal logical-not can be achieved in two instructions.
643 */
644 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
645
646 bld.ASR(temp, src, brw_imm_d(31));
647 bld.XOR(temp, temp, src);
648 }
649
650 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
651 retype(temp, BRW_REGISTER_TYPE_UD));
652
653 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
654 * from the LSB side. Subtract the result from 31 to convert the MSB
655 * count into an LSB count. If no bits are set, LZD will return 32.
656 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
657 */
658 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
659 inst->src[0].negate = true;
660 }
661
662 static brw_rnd_mode
663 brw_rnd_mode_from_nir_op (const nir_op op) {
664 switch (op) {
665 case nir_op_f2f16_rtz:
666 return BRW_RND_MODE_RTZ;
667 case nir_op_f2f16_rtne:
668 return BRW_RND_MODE_RTNE;
669 default:
670 unreachable("Operation doesn't support rounding mode");
671 }
672 }
673
674 fs_reg
675 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
676 nir_alu_instr *instr,
677 fs_reg *op,
678 bool need_dest)
679 {
680 fs_reg result =
681 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
682
683 result.type = brw_type_for_nir_type(devinfo,
684 (nir_alu_type)(nir_op_infos[instr->op].output_type |
685 nir_dest_bit_size(instr->dest.dest)));
686
687 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
688 op[i] = get_nir_src(instr->src[i].src);
689 op[i].type = brw_type_for_nir_type(devinfo,
690 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
691 nir_src_bit_size(instr->src[i].src)));
692 op[i].abs = instr->src[i].abs;
693 op[i].negate = instr->src[i].negate;
694 }
695
696 /* Move and vecN instrutions may still be vectored. Return the raw,
697 * vectored source and destination so that fs_visitor::nir_emit_alu can
698 * handle it. Other callers should not have to handle these kinds of
699 * instructions.
700 */
701 switch (instr->op) {
702 case nir_op_imov:
703 case nir_op_fmov:
704 case nir_op_vec2:
705 case nir_op_vec3:
706 case nir_op_vec4:
707 return result;
708 default:
709 break;
710 }
711
712 /* At this point, we have dealt with any instruction that operates on
713 * more than a single channel. Therefore, we can just adjust the source
714 * and destination registers for that channel and emit the instruction.
715 */
716 unsigned channel = 0;
717 if (nir_op_infos[instr->op].output_size == 0) {
718 /* Since NIR is doing the scalarizing for us, we should only ever see
719 * vectorized operations with a single channel.
720 */
721 assert(util_bitcount(instr->dest.write_mask) == 1);
722 channel = ffs(instr->dest.write_mask) - 1;
723
724 result = offset(result, bld, channel);
725 }
726
727 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
728 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
729 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
730 }
731
732 return result;
733 }
734
735 void
736 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
737 fs_reg *op)
738 {
739 for (unsigned i = 0; i < 2; i++) {
740 nir_alu_instr *const inot_instr =
741 nir_src_as_alu_instr(&instr->src[i].src);
742
743 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
744 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
745 /* The source of the inot is now the source of instr. */
746 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
747
748 assert(!op[i].negate);
749 op[i].negate = true;
750 } else {
751 op[i] = resolve_source_modifiers(op[i]);
752 }
753 }
754 }
755
756 bool
757 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
758 fs_reg result,
759 nir_alu_instr *instr)
760 {
761 if (devinfo->gen < 6 || devinfo->gen >= 12)
762 return false;
763
764 nir_alu_instr *const inot_instr = nir_src_as_alu_instr(&instr->src[0].src);
765
766 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
767 return false;
768
769 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
770 * of valid size-changing combinations is a bit more complex.
771 *
772 * The source restriction is just because I was lazy about generating the
773 * constant below.
774 */
775 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
776 nir_src_bit_size(inot_instr->src[0].src) != 32)
777 return false;
778
779 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
780 * this is float(1 + a).
781 */
782 fs_reg op;
783
784 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
785
786 bld.ADD(result, op, brw_imm_d(1));
787 assert(!instr->dest.saturate);
788
789 return true;
790 }
791
792 void
793 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
794 {
795 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
796 fs_inst *inst;
797
798 fs_reg op[4];
799 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, true);
800
801 switch (instr->op) {
802 case nir_op_imov:
803 case nir_op_fmov:
804 case nir_op_vec2:
805 case nir_op_vec3:
806 case nir_op_vec4: {
807 fs_reg temp = result;
808 bool need_extra_copy = false;
809 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
810 if (!instr->src[i].src.is_ssa &&
811 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
812 need_extra_copy = true;
813 temp = bld.vgrf(result.type, 4);
814 break;
815 }
816 }
817
818 for (unsigned i = 0; i < 4; i++) {
819 if (!(instr->dest.write_mask & (1 << i)))
820 continue;
821
822 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
823 inst = bld.MOV(offset(temp, bld, i),
824 offset(op[0], bld, instr->src[0].swizzle[i]));
825 } else {
826 inst = bld.MOV(offset(temp, bld, i),
827 offset(op[i], bld, instr->src[i].swizzle[0]));
828 }
829 inst->saturate = instr->dest.saturate;
830 }
831
832 /* In this case the source and destination registers were the same,
833 * so we need to insert an extra set of moves in order to deal with
834 * any swizzling.
835 */
836 if (need_extra_copy) {
837 for (unsigned i = 0; i < 4; i++) {
838 if (!(instr->dest.write_mask & (1 << i)))
839 continue;
840
841 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
842 }
843 }
844 return;
845 }
846
847 case nir_op_i2f32:
848 case nir_op_u2f32:
849 if (optimize_extract_to_float(instr, result))
850 return;
851 inst = bld.MOV(result, op[0]);
852 inst->saturate = instr->dest.saturate;
853 break;
854
855 case nir_op_f2f16_rtne:
856 case nir_op_f2f16_rtz:
857 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
858 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
859 /* fallthrough */
860
861 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
862 * on the HW gen, it is a special hw opcode or just a MOV, and
863 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
864 *
865 * But if we want to use that opcode, we need to provide support on
866 * different optimizations and lowerings. As right now HF support is
867 * only for gen8+, it will be better to use directly the MOV, and use
868 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
869 */
870
871 case nir_op_f2f16:
872 inst = bld.MOV(result, op[0]);
873 inst->saturate = instr->dest.saturate;
874 break;
875
876 case nir_op_b2i8:
877 case nir_op_b2i16:
878 case nir_op_b2i32:
879 case nir_op_b2i64:
880 case nir_op_b2f16:
881 case nir_op_b2f32:
882 case nir_op_b2f64:
883 if (try_emit_b2fi_of_inot(bld, result, instr))
884 break;
885 op[0].type = BRW_REGISTER_TYPE_D;
886 op[0].negate = !op[0].negate;
887 /* fallthrough */
888 case nir_op_f2f64:
889 case nir_op_f2i64:
890 case nir_op_f2u64:
891 case nir_op_i2f64:
892 case nir_op_i2i64:
893 case nir_op_u2f64:
894 case nir_op_u2u64:
895 case nir_op_f2f32:
896 case nir_op_f2i32:
897 case nir_op_f2u32:
898 case nir_op_f2i16:
899 case nir_op_f2u16:
900 case nir_op_i2i32:
901 case nir_op_u2u32:
902 case nir_op_i2i16:
903 case nir_op_u2u16:
904 case nir_op_i2f16:
905 case nir_op_u2f16:
906 case nir_op_i2i8:
907 case nir_op_u2u8:
908 inst = bld.MOV(result, op[0]);
909 inst->saturate = instr->dest.saturate;
910 break;
911
912 case nir_op_fsign: {
913 assert(!instr->dest.saturate);
914 if (op[0].abs) {
915 /* Straightforward since the source can be assumed to be either
916 * strictly >= 0 or strictly <= 0 depending on the setting of the
917 * negate flag.
918 */
919 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
920
921 inst = (op[0].negate)
922 ? bld.MOV(result, brw_imm_f(-1.0f))
923 : bld.MOV(result, brw_imm_f(1.0f));
924
925 set_predicate(BRW_PREDICATE_NORMAL, inst);
926 } else if (type_sz(op[0].type) < 8) {
927 /* AND(val, 0x80000000) gives the sign bit.
928 *
929 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
930 * zero.
931 */
932 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
933
934 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
935 op[0].type = BRW_REGISTER_TYPE_UD;
936 result.type = BRW_REGISTER_TYPE_UD;
937 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
938
939 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
940 inst->predicate = BRW_PREDICATE_NORMAL;
941 } else {
942 /* For doubles we do the same but we need to consider:
943 *
944 * - 2-src instructions can't operate with 64-bit immediates
945 * - The sign is encoded in the high 32-bit of each DF
946 * - We need to produce a DF result.
947 */
948
949 fs_reg zero = vgrf(glsl_type::double_type);
950 bld.MOV(zero, setup_imm_df(bld, 0.0));
951 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
952
953 bld.MOV(result, zero);
954
955 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
956 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
957 brw_imm_ud(0x80000000u));
958
959 set_predicate(BRW_PREDICATE_NORMAL,
960 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
961 }
962 break;
963 }
964
965 case nir_op_frcp:
966 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
967 inst->saturate = instr->dest.saturate;
968 break;
969
970 case nir_op_fexp2:
971 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
972 inst->saturate = instr->dest.saturate;
973 break;
974
975 case nir_op_flog2:
976 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
977 inst->saturate = instr->dest.saturate;
978 break;
979
980 case nir_op_fsin:
981 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
982 inst->saturate = instr->dest.saturate;
983 break;
984
985 case nir_op_fcos:
986 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
987 inst->saturate = instr->dest.saturate;
988 break;
989
990 case nir_op_fddx:
991 if (fs_key->high_quality_derivatives) {
992 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
993 } else {
994 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
995 }
996 inst->saturate = instr->dest.saturate;
997 break;
998 case nir_op_fddx_fine:
999 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1000 inst->saturate = instr->dest.saturate;
1001 break;
1002 case nir_op_fddx_coarse:
1003 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1004 inst->saturate = instr->dest.saturate;
1005 break;
1006 case nir_op_fddy:
1007 if (fs_key->high_quality_derivatives) {
1008 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1009 } else {
1010 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1011 }
1012 inst->saturate = instr->dest.saturate;
1013 break;
1014 case nir_op_fddy_fine:
1015 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1016 inst->saturate = instr->dest.saturate;
1017 break;
1018 case nir_op_fddy_coarse:
1019 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1020 inst->saturate = instr->dest.saturate;
1021 break;
1022
1023 case nir_op_iadd:
1024 case nir_op_fadd:
1025 inst = bld.ADD(result, op[0], op[1]);
1026 inst->saturate = instr->dest.saturate;
1027 break;
1028
1029 case nir_op_uadd_sat:
1030 inst = bld.ADD(result, op[0], op[1]);
1031 inst->saturate = true;
1032 break;
1033
1034 case nir_op_fmul:
1035 inst = bld.MUL(result, op[0], op[1]);
1036 inst->saturate = instr->dest.saturate;
1037 break;
1038
1039 case nir_op_imul:
1040 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1041 bld.MUL(result, op[0], op[1]);
1042 break;
1043
1044 case nir_op_imul_high:
1045 case nir_op_umul_high:
1046 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1047 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1048 break;
1049
1050 case nir_op_idiv:
1051 case nir_op_udiv:
1052 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1053 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1054 break;
1055
1056 case nir_op_uadd_carry:
1057 unreachable("Should have been lowered by carry_to_arith().");
1058
1059 case nir_op_usub_borrow:
1060 unreachable("Should have been lowered by borrow_to_arith().");
1061
1062 case nir_op_umod:
1063 case nir_op_irem:
1064 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1065 * appears that our hardware just does the right thing for signed
1066 * remainder.
1067 */
1068 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1069 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1070 break;
1071
1072 case nir_op_imod: {
1073 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1074 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1075
1076 /* Math instructions don't support conditional mod */
1077 inst = bld.MOV(bld.null_reg_d(), result);
1078 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1079
1080 /* Now, we need to determine if signs of the sources are different.
1081 * When we XOR the sources, the top bit is 0 if they are the same and 1
1082 * if they are different. We can then use a conditional modifier to
1083 * turn that into a predicate. This leads us to an XOR.l instruction.
1084 *
1085 * Technically, according to the PRM, you're not allowed to use .l on a
1086 * XOR instruction. However, emperical experiments and Curro's reading
1087 * of the simulator source both indicate that it's safe.
1088 */
1089 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1090 inst = bld.XOR(tmp, op[0], op[1]);
1091 inst->predicate = BRW_PREDICATE_NORMAL;
1092 inst->conditional_mod = BRW_CONDITIONAL_L;
1093
1094 /* If the result of the initial remainder operation is non-zero and the
1095 * two sources have different signs, add in a copy of op[1] to get the
1096 * final integer modulus value.
1097 */
1098 inst = bld.ADD(result, result, op[1]);
1099 inst->predicate = BRW_PREDICATE_NORMAL;
1100 break;
1101 }
1102
1103 case nir_op_flt32:
1104 case nir_op_fge32:
1105 case nir_op_feq32:
1106 case nir_op_fne32: {
1107 fs_reg dest = result;
1108
1109 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1110 if (bit_size != 32)
1111 dest = bld.vgrf(op[0].type, 1);
1112
1113 brw_conditional_mod cond;
1114 switch (instr->op) {
1115 case nir_op_flt32:
1116 cond = BRW_CONDITIONAL_L;
1117 break;
1118 case nir_op_fge32:
1119 cond = BRW_CONDITIONAL_GE;
1120 break;
1121 case nir_op_feq32:
1122 cond = BRW_CONDITIONAL_Z;
1123 break;
1124 case nir_op_fne32:
1125 cond = BRW_CONDITIONAL_NZ;
1126 break;
1127 default:
1128 unreachable("bad opcode");
1129 }
1130
1131 bld.CMP(dest, op[0], op[1], cond);
1132
1133 if (bit_size > 32) {
1134 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1135 } else if(bit_size < 32) {
1136 /* When we convert the result to 32-bit we need to be careful and do
1137 * it as a signed conversion to get sign extension (for 32-bit true)
1138 */
1139 const brw_reg_type src_type =
1140 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1141
1142 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1143 }
1144 break;
1145 }
1146
1147 case nir_op_ilt32:
1148 case nir_op_ult32:
1149 case nir_op_ige32:
1150 case nir_op_uge32:
1151 case nir_op_ieq32:
1152 case nir_op_ine32: {
1153 fs_reg dest = result;
1154
1155 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1156 if (bit_size != 32)
1157 dest = bld.vgrf(op[0].type, 1);
1158
1159 brw_conditional_mod cond;
1160 switch (instr->op) {
1161 case nir_op_ilt32:
1162 case nir_op_ult32:
1163 cond = BRW_CONDITIONAL_L;
1164 break;
1165 case nir_op_ige32:
1166 case nir_op_uge32:
1167 cond = BRW_CONDITIONAL_GE;
1168 break;
1169 case nir_op_ieq32:
1170 cond = BRW_CONDITIONAL_Z;
1171 break;
1172 case nir_op_ine32:
1173 cond = BRW_CONDITIONAL_NZ;
1174 break;
1175 default:
1176 unreachable("bad opcode");
1177 }
1178 bld.CMP(dest, op[0], op[1], cond);
1179
1180 if (bit_size > 32) {
1181 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1182 } else if (bit_size < 32) {
1183 /* When we convert the result to 32-bit we need to be careful and do
1184 * it as a signed conversion to get sign extension (for 32-bit true)
1185 */
1186 const brw_reg_type src_type =
1187 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1188
1189 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1190 }
1191 break;
1192 }
1193
1194 case nir_op_inot:
1195 if (devinfo->gen >= 8) {
1196 nir_alu_instr *const inot_src_instr =
1197 nir_src_as_alu_instr(&instr->src[0].src);
1198
1199 if (inot_src_instr != NULL &&
1200 (inot_src_instr->op == nir_op_ior ||
1201 inot_src_instr->op == nir_op_ixor ||
1202 inot_src_instr->op == nir_op_iand) &&
1203 !inot_src_instr->src[0].abs &&
1204 !inot_src_instr->src[0].negate &&
1205 !inot_src_instr->src[1].abs &&
1206 !inot_src_instr->src[1].negate) {
1207 /* The sources of the source logical instruction are now the
1208 * sources of the instruction that will be generated.
1209 */
1210 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1211 resolve_inot_sources(bld, inot_src_instr, op);
1212
1213 /* Smash all of the sources and destination to be signed. This
1214 * doesn't matter for the operation of the instruction, but cmod
1215 * propagation fails on unsigned sources with negation (due to
1216 * fs_inst::can_do_cmod returning false).
1217 */
1218 result.type =
1219 brw_type_for_nir_type(devinfo,
1220 (nir_alu_type)(nir_type_int |
1221 nir_dest_bit_size(instr->dest.dest)));
1222 op[0].type =
1223 brw_type_for_nir_type(devinfo,
1224 (nir_alu_type)(nir_type_int |
1225 nir_src_bit_size(inot_src_instr->src[0].src)));
1226 op[1].type =
1227 brw_type_for_nir_type(devinfo,
1228 (nir_alu_type)(nir_type_int |
1229 nir_src_bit_size(inot_src_instr->src[1].src)));
1230
1231 /* For XOR, only invert one of the sources. Arbitrarily choose
1232 * the first source.
1233 */
1234 op[0].negate = !op[0].negate;
1235 if (inot_src_instr->op != nir_op_ixor)
1236 op[1].negate = !op[1].negate;
1237
1238 switch (inot_src_instr->op) {
1239 case nir_op_ior:
1240 bld.AND(result, op[0], op[1]);
1241 return;
1242
1243 case nir_op_iand:
1244 bld.OR(result, op[0], op[1]);
1245 return;
1246
1247 case nir_op_ixor:
1248 bld.XOR(result, op[0], op[1]);
1249 return;
1250
1251 default:
1252 unreachable("impossible opcode");
1253 }
1254 }
1255 op[0] = resolve_source_modifiers(op[0]);
1256 }
1257 bld.NOT(result, op[0]);
1258 break;
1259 case nir_op_ixor:
1260 if (devinfo->gen >= 8) {
1261 resolve_inot_sources(bld, instr, op);
1262 }
1263 bld.XOR(result, op[0], op[1]);
1264 break;
1265 case nir_op_ior:
1266 if (devinfo->gen >= 8) {
1267 resolve_inot_sources(bld, instr, op);
1268 }
1269 bld.OR(result, op[0], op[1]);
1270 break;
1271 case nir_op_iand:
1272 if (devinfo->gen >= 8) {
1273 resolve_inot_sources(bld, instr, op);
1274 }
1275 bld.AND(result, op[0], op[1]);
1276 break;
1277
1278 case nir_op_fdot2:
1279 case nir_op_fdot3:
1280 case nir_op_fdot4:
1281 case nir_op_b32all_fequal2:
1282 case nir_op_b32all_iequal2:
1283 case nir_op_b32all_fequal3:
1284 case nir_op_b32all_iequal3:
1285 case nir_op_b32all_fequal4:
1286 case nir_op_b32all_iequal4:
1287 case nir_op_b32any_fnequal2:
1288 case nir_op_b32any_inequal2:
1289 case nir_op_b32any_fnequal3:
1290 case nir_op_b32any_inequal3:
1291 case nir_op_b32any_fnequal4:
1292 case nir_op_b32any_inequal4:
1293 unreachable("Lowered by nir_lower_alu_reductions");
1294
1295 case nir_op_fnoise1_1:
1296 case nir_op_fnoise1_2:
1297 case nir_op_fnoise1_3:
1298 case nir_op_fnoise1_4:
1299 case nir_op_fnoise2_1:
1300 case nir_op_fnoise2_2:
1301 case nir_op_fnoise2_3:
1302 case nir_op_fnoise2_4:
1303 case nir_op_fnoise3_1:
1304 case nir_op_fnoise3_2:
1305 case nir_op_fnoise3_3:
1306 case nir_op_fnoise3_4:
1307 case nir_op_fnoise4_1:
1308 case nir_op_fnoise4_2:
1309 case nir_op_fnoise4_3:
1310 case nir_op_fnoise4_4:
1311 unreachable("not reached: should be handled by lower_noise");
1312
1313 case nir_op_ldexp:
1314 unreachable("not reached: should be handled by ldexp_to_arith()");
1315
1316 case nir_op_fsqrt:
1317 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1318 inst->saturate = instr->dest.saturate;
1319 break;
1320
1321 case nir_op_frsq:
1322 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1323 inst->saturate = instr->dest.saturate;
1324 break;
1325
1326 case nir_op_i2b32:
1327 case nir_op_f2b32: {
1328 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1329 if (bit_size == 64) {
1330 /* two-argument instructions can't take 64-bit immediates */
1331 fs_reg zero;
1332 fs_reg tmp;
1333
1334 if (instr->op == nir_op_f2b32) {
1335 zero = vgrf(glsl_type::double_type);
1336 tmp = vgrf(glsl_type::double_type);
1337 bld.MOV(zero, setup_imm_df(bld, 0.0));
1338 } else {
1339 zero = vgrf(glsl_type::int64_t_type);
1340 tmp = vgrf(glsl_type::int64_t_type);
1341 bld.MOV(zero, brw_imm_q(0));
1342 }
1343
1344 /* A SIMD16 execution needs to be split in two instructions, so use
1345 * a vgrf instead of the flag register as dst so instruction splitting
1346 * works
1347 */
1348 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1349 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1350 } else {
1351 fs_reg zero;
1352 if (bit_size == 32) {
1353 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1354 } else {
1355 assert(bit_size == 16);
1356 zero = instr->op == nir_op_f2b32 ?
1357 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1358 }
1359 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1360 }
1361 break;
1362 }
1363
1364 case nir_op_ftrunc:
1365 inst = bld.RNDZ(result, op[0]);
1366 inst->saturate = instr->dest.saturate;
1367 break;
1368
1369 case nir_op_fceil: {
1370 op[0].negate = !op[0].negate;
1371 fs_reg temp = vgrf(glsl_type::float_type);
1372 bld.RNDD(temp, op[0]);
1373 temp.negate = true;
1374 inst = bld.MOV(result, temp);
1375 inst->saturate = instr->dest.saturate;
1376 break;
1377 }
1378 case nir_op_ffloor:
1379 inst = bld.RNDD(result, op[0]);
1380 inst->saturate = instr->dest.saturate;
1381 break;
1382 case nir_op_ffract:
1383 inst = bld.FRC(result, op[0]);
1384 inst->saturate = instr->dest.saturate;
1385 break;
1386 case nir_op_fround_even:
1387 inst = bld.RNDE(result, op[0]);
1388 inst->saturate = instr->dest.saturate;
1389 break;
1390
1391 case nir_op_fquantize2f16: {
1392 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1393 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1394 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1395
1396 /* The destination stride must be at least as big as the source stride. */
1397 tmp16.type = BRW_REGISTER_TYPE_W;
1398 tmp16.stride = 2;
1399
1400 /* Check for denormal */
1401 fs_reg abs_src0 = op[0];
1402 abs_src0.abs = true;
1403 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1404 BRW_CONDITIONAL_L);
1405 /* Get the appropriately signed zero */
1406 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1407 retype(op[0], BRW_REGISTER_TYPE_UD),
1408 brw_imm_ud(0x80000000));
1409 /* Do the actual F32 -> F16 -> F32 conversion */
1410 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1411 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1412 /* Select that or zero based on normal status */
1413 inst = bld.SEL(result, zero, tmp32);
1414 inst->predicate = BRW_PREDICATE_NORMAL;
1415 inst->saturate = instr->dest.saturate;
1416 break;
1417 }
1418
1419 case nir_op_imin:
1420 case nir_op_umin:
1421 case nir_op_fmin:
1422 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1423 inst->saturate = instr->dest.saturate;
1424 break;
1425
1426 case nir_op_imax:
1427 case nir_op_umax:
1428 case nir_op_fmax:
1429 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1430 inst->saturate = instr->dest.saturate;
1431 break;
1432
1433 case nir_op_pack_snorm_2x16:
1434 case nir_op_pack_snorm_4x8:
1435 case nir_op_pack_unorm_2x16:
1436 case nir_op_pack_unorm_4x8:
1437 case nir_op_unpack_snorm_2x16:
1438 case nir_op_unpack_snorm_4x8:
1439 case nir_op_unpack_unorm_2x16:
1440 case nir_op_unpack_unorm_4x8:
1441 case nir_op_unpack_half_2x16:
1442 case nir_op_pack_half_2x16:
1443 unreachable("not reached: should be handled by lower_packing_builtins");
1444
1445 case nir_op_unpack_half_2x16_split_x:
1446 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1447 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1448 inst->saturate = instr->dest.saturate;
1449 break;
1450 case nir_op_unpack_half_2x16_split_y:
1451 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1452 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1453 inst->saturate = instr->dest.saturate;
1454 break;
1455
1456 case nir_op_pack_64_2x32_split:
1457 case nir_op_pack_32_2x16_split:
1458 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1459 break;
1460
1461 case nir_op_unpack_64_2x32_split_x:
1462 case nir_op_unpack_64_2x32_split_y: {
1463 if (instr->op == nir_op_unpack_64_2x32_split_x)
1464 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1465 else
1466 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1467 break;
1468 }
1469
1470 case nir_op_unpack_32_2x16_split_x:
1471 case nir_op_unpack_32_2x16_split_y: {
1472 if (instr->op == nir_op_unpack_32_2x16_split_x)
1473 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1474 else
1475 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1476 break;
1477 }
1478
1479 case nir_op_fpow:
1480 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1481 inst->saturate = instr->dest.saturate;
1482 break;
1483
1484 case nir_op_bitfield_reverse:
1485 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1486 bld.BFREV(result, op[0]);
1487 break;
1488
1489 case nir_op_bit_count:
1490 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1491 bld.CBIT(result, op[0]);
1492 break;
1493
1494 case nir_op_ufind_msb: {
1495 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1496 emit_find_msb_using_lzd(bld, result, op[0], false);
1497 break;
1498 }
1499
1500 case nir_op_ifind_msb: {
1501 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1502
1503 if (devinfo->gen < 7) {
1504 emit_find_msb_using_lzd(bld, result, op[0], true);
1505 } else {
1506 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1507
1508 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1509 * count from the LSB side. If FBH didn't return an error
1510 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1511 * count into an LSB count.
1512 */
1513 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1514
1515 inst = bld.ADD(result, result, brw_imm_d(31));
1516 inst->predicate = BRW_PREDICATE_NORMAL;
1517 inst->src[0].negate = true;
1518 }
1519 break;
1520 }
1521
1522 case nir_op_find_lsb:
1523 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1524
1525 if (devinfo->gen < 7) {
1526 fs_reg temp = vgrf(glsl_type::int_type);
1527
1528 /* (x & -x) generates a value that consists of only the LSB of x.
1529 * For all powers of 2, findMSB(y) == findLSB(y).
1530 */
1531 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1532 fs_reg negated_src = src;
1533
1534 /* One must be negated, and the other must be non-negated. It
1535 * doesn't matter which is which.
1536 */
1537 negated_src.negate = true;
1538 src.negate = false;
1539
1540 bld.AND(temp, src, negated_src);
1541 emit_find_msb_using_lzd(bld, result, temp, false);
1542 } else {
1543 bld.FBL(result, op[0]);
1544 }
1545 break;
1546
1547 case nir_op_ubitfield_extract:
1548 case nir_op_ibitfield_extract:
1549 unreachable("should have been lowered");
1550 case nir_op_ubfe:
1551 case nir_op_ibfe:
1552 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1553 bld.BFE(result, op[2], op[1], op[0]);
1554 break;
1555 case nir_op_bfm:
1556 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1557 bld.BFI1(result, op[0], op[1]);
1558 break;
1559 case nir_op_bfi:
1560 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1561 bld.BFI2(result, op[0], op[1], op[2]);
1562 break;
1563
1564 case nir_op_bitfield_insert:
1565 unreachable("not reached: should have been lowered");
1566
1567 case nir_op_ishl:
1568 bld.SHL(result, op[0], op[1]);
1569 break;
1570 case nir_op_ishr:
1571 bld.ASR(result, op[0], op[1]);
1572 break;
1573 case nir_op_ushr:
1574 bld.SHR(result, op[0], op[1]);
1575 break;
1576
1577 case nir_op_pack_half_2x16_split:
1578 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1579 break;
1580
1581 case nir_op_ffma:
1582 inst = bld.MAD(result, op[2], op[1], op[0]);
1583 inst->saturate = instr->dest.saturate;
1584 break;
1585
1586 case nir_op_flrp:
1587 inst = bld.LRP(result, op[0], op[1], op[2]);
1588 inst->saturate = instr->dest.saturate;
1589 break;
1590
1591 case nir_op_b32csel:
1592 if (optimize_frontfacing_ternary(instr, result))
1593 return;
1594
1595 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1596 inst = bld.SEL(result, op[1], op[2]);
1597 inst->predicate = BRW_PREDICATE_NORMAL;
1598 break;
1599
1600 case nir_op_extract_u8:
1601 case nir_op_extract_i8: {
1602 unsigned byte = nir_src_as_uint(instr->src[1].src);
1603
1604 /* The PRMs say:
1605 *
1606 * BDW+
1607 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1608 * Use two instructions and a word or DWord intermediate integer type.
1609 */
1610 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1611 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1612
1613 if (instr->op == nir_op_extract_i8) {
1614 /* If we need to sign extend, extract to a word first */
1615 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1616 bld.MOV(w_temp, subscript(op[0], type, byte));
1617 bld.MOV(result, w_temp);
1618 } else {
1619 /* Otherwise use an AND with 0xff and a word type */
1620 bld.AND(result, subscript(op[0], type, byte / 2), brw_imm_uw(0xff));
1621 }
1622 } else {
1623 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1624 bld.MOV(result, subscript(op[0], type, byte));
1625 }
1626 break;
1627 }
1628
1629 case nir_op_extract_u16:
1630 case nir_op_extract_i16: {
1631 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1632 unsigned word = nir_src_as_uint(instr->src[1].src);
1633 bld.MOV(result, subscript(op[0], type, word));
1634 break;
1635 }
1636
1637 default:
1638 unreachable("unhandled instruction");
1639 }
1640
1641 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1642 * to sign extend the low bit to 0/~0
1643 */
1644 if (devinfo->gen <= 5 &&
1645 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1646 fs_reg masked = vgrf(glsl_type::int_type);
1647 bld.AND(masked, result, brw_imm_d(1));
1648 masked.negate = true;
1649 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1650 }
1651 }
1652
1653 void
1654 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1655 nir_load_const_instr *instr)
1656 {
1657 const brw_reg_type reg_type =
1658 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1659 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1660
1661 switch (instr->def.bit_size) {
1662 case 8:
1663 for (unsigned i = 0; i < instr->def.num_components; i++)
1664 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value.i8[i]));
1665 break;
1666
1667 case 16:
1668 for (unsigned i = 0; i < instr->def.num_components; i++)
1669 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1670 break;
1671
1672 case 32:
1673 for (unsigned i = 0; i < instr->def.num_components; i++)
1674 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1675 break;
1676
1677 case 64:
1678 assert(devinfo->gen >= 7);
1679 if (devinfo->gen == 7) {
1680 /* We don't get 64-bit integer types until gen8 */
1681 for (unsigned i = 0; i < instr->def.num_components; i++) {
1682 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1683 setup_imm_df(bld, instr->value.f64[i]));
1684 }
1685 } else {
1686 for (unsigned i = 0; i < instr->def.num_components; i++)
1687 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1688 }
1689 break;
1690
1691 default:
1692 unreachable("Invalid bit size");
1693 }
1694
1695 nir_ssa_values[instr->def.index] = reg;
1696 }
1697
1698 fs_reg
1699 fs_visitor::get_nir_src(const nir_src &src)
1700 {
1701 fs_reg reg;
1702 if (src.is_ssa) {
1703 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1704 const brw_reg_type reg_type =
1705 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1706 reg = bld.vgrf(reg_type, src.ssa->num_components);
1707 } else {
1708 reg = nir_ssa_values[src.ssa->index];
1709 }
1710 } else {
1711 /* We don't handle indirects on locals */
1712 assert(src.reg.indirect == NULL);
1713 reg = offset(nir_locals[src.reg.reg->index], bld,
1714 src.reg.base_offset * src.reg.reg->num_components);
1715 }
1716
1717 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1718 /* The only 64-bit type available on gen7 is DF, so use that. */
1719 reg.type = BRW_REGISTER_TYPE_DF;
1720 } else {
1721 /* To avoid floating-point denorm flushing problems, set the type by
1722 * default to an integer type - instructions that need floating point
1723 * semantics will set this to F if they need to
1724 */
1725 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1726 BRW_REGISTER_TYPE_D);
1727 }
1728
1729 return reg;
1730 }
1731
1732 /**
1733 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1734 *
1735 * This function should not be called on any value which may be 64 bits.
1736 * We could theoretically support 64-bit on gen8+ but we choose not to
1737 * because it wouldn't work in general (no gen7 support) and there are
1738 * enough restrictions in 64-bit immediates that you can't take the return
1739 * value and treat it the same as the result of get_nir_src().
1740 */
1741 fs_reg
1742 fs_visitor::get_nir_src_imm(const nir_src &src)
1743 {
1744 assert(nir_src_bit_size(src) == 32);
1745 return nir_src_is_const(src) ?
1746 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1747 }
1748
1749 fs_reg
1750 fs_visitor::get_nir_dest(const nir_dest &dest)
1751 {
1752 if (dest.is_ssa) {
1753 const brw_reg_type reg_type =
1754 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1755 dest.ssa.bit_size == 8 ?
1756 BRW_REGISTER_TYPE_D :
1757 BRW_REGISTER_TYPE_F);
1758 nir_ssa_values[dest.ssa.index] =
1759 bld.vgrf(reg_type, dest.ssa.num_components);
1760 return nir_ssa_values[dest.ssa.index];
1761 } else {
1762 /* We don't handle indirects on locals */
1763 assert(dest.reg.indirect == NULL);
1764 return offset(nir_locals[dest.reg.reg->index], bld,
1765 dest.reg.base_offset * dest.reg.reg->num_components);
1766 }
1767 }
1768
1769 void
1770 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1771 unsigned wr_mask)
1772 {
1773 for (unsigned i = 0; i < 4; i++) {
1774 if (!((wr_mask >> i) & 1))
1775 continue;
1776
1777 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1778 new_inst->dst = offset(new_inst->dst, bld, i);
1779 for (unsigned j = 0; j < new_inst->sources; j++)
1780 if (new_inst->src[j].file == VGRF)
1781 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1782
1783 bld.emit(new_inst);
1784 }
1785 }
1786
1787 static fs_inst *
1788 emit_pixel_interpolater_send(const fs_builder &bld,
1789 enum opcode opcode,
1790 const fs_reg &dst,
1791 const fs_reg &src,
1792 const fs_reg &desc,
1793 glsl_interp_mode interpolation)
1794 {
1795 struct brw_wm_prog_data *wm_prog_data =
1796 brw_wm_prog_data(bld.shader->stage_prog_data);
1797
1798 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1799 /* 2 floats per slot returned */
1800 inst->size_written = 2 * dst.component_size(inst->exec_size);
1801 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1802
1803 wm_prog_data->pulls_bary = true;
1804
1805 return inst;
1806 }
1807
1808 /**
1809 * Computes 1 << x, given a D/UD register containing some value x.
1810 */
1811 static fs_reg
1812 intexp2(const fs_builder &bld, const fs_reg &x)
1813 {
1814 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1815
1816 fs_reg result = bld.vgrf(x.type, 1);
1817 fs_reg one = bld.vgrf(x.type, 1);
1818
1819 bld.MOV(one, retype(brw_imm_d(1), one.type));
1820 bld.SHL(result, one, x);
1821 return result;
1822 }
1823
1824 void
1825 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1826 {
1827 assert(stage == MESA_SHADER_GEOMETRY);
1828
1829 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1830
1831 if (gs_compile->control_data_header_size_bits == 0)
1832 return;
1833
1834 /* We can only do EndPrimitive() functionality when the control data
1835 * consists of cut bits. Fortunately, the only time it isn't is when the
1836 * output type is points, in which case EndPrimitive() is a no-op.
1837 */
1838 if (gs_prog_data->control_data_format !=
1839 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1840 return;
1841 }
1842
1843 /* Cut bits use one bit per vertex. */
1844 assert(gs_compile->control_data_bits_per_vertex == 1);
1845
1846 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1847 vertex_count.type = BRW_REGISTER_TYPE_UD;
1848
1849 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1850 * vertex n, 0 otherwise. So all we need to do here is mark bit
1851 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1852 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1853 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1854 *
1855 * Note that if EndPrimitive() is called before emitting any vertices, this
1856 * will cause us to set bit 31 of the control_data_bits register to 1.
1857 * That's fine because:
1858 *
1859 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1860 * output, so the hardware will ignore cut bit 31.
1861 *
1862 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1863 * last vertex, so setting cut bit 31 has no effect (since the primitive
1864 * is automatically ended when the GS terminates).
1865 *
1866 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1867 * control_data_bits register to 0 when the first vertex is emitted.
1868 */
1869
1870 const fs_builder abld = bld.annotate("end primitive");
1871
1872 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1873 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1874 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1875 fs_reg mask = intexp2(abld, prev_count);
1876 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1877 * attention to the lower 5 bits of its second source argument, so on this
1878 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1879 * ((vertex_count - 1) % 32).
1880 */
1881 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1882 }
1883
1884 void
1885 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1886 {
1887 assert(stage == MESA_SHADER_GEOMETRY);
1888 assert(gs_compile->control_data_bits_per_vertex != 0);
1889
1890 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1891
1892 const fs_builder abld = bld.annotate("emit control data bits");
1893 const fs_builder fwa_bld = bld.exec_all();
1894
1895 /* We use a single UD register to accumulate control data bits (32 bits
1896 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1897 * at a time.
1898 *
1899 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1900 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1901 * use the Channel Mask phase to enable/disable which DWord within that
1902 * group to write. (Remember, different SIMD8 channels may have emitted
1903 * different numbers of vertices, so we may need per-slot offsets.)
1904 *
1905 * Channel masking presents an annoying problem: we may have to replicate
1906 * the data up to 4 times:
1907 *
1908 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1909 *
1910 * To avoid penalizing shaders that emit a small number of vertices, we
1911 * can avoid these sometimes: if the size of the control data header is
1912 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1913 * land in the same 128-bit group, so we can skip per-slot offsets.
1914 *
1915 * Similarly, if the control data header is <= 32 bits, there is only one
1916 * DWord, so we can skip channel masks.
1917 */
1918 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1919
1920 fs_reg channel_mask, per_slot_offset;
1921
1922 if (gs_compile->control_data_header_size_bits > 32) {
1923 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1924 channel_mask = vgrf(glsl_type::uint_type);
1925 }
1926
1927 if (gs_compile->control_data_header_size_bits > 128) {
1928 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1929 per_slot_offset = vgrf(glsl_type::uint_type);
1930 }
1931
1932 /* Figure out which DWord we're trying to write to using the formula:
1933 *
1934 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1935 *
1936 * Since bits_per_vertex is a power of two, and is known at compile
1937 * time, this can be optimized to:
1938 *
1939 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1940 */
1941 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1942 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1943 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1944 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1945 unsigned log2_bits_per_vertex =
1946 util_last_bit(gs_compile->control_data_bits_per_vertex);
1947 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1948
1949 if (per_slot_offset.file != BAD_FILE) {
1950 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1951 * the appropriate OWord within the control data header.
1952 */
1953 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1954 }
1955
1956 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1957 * write to the appropriate DWORD within the OWORD.
1958 */
1959 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1960 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1961 channel_mask = intexp2(fwa_bld, channel);
1962 /* Then the channel masks need to be in bits 23:16. */
1963 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1964 }
1965
1966 /* Store the control data bits in the message payload and send it. */
1967 unsigned mlen = 2;
1968 if (channel_mask.file != BAD_FILE)
1969 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1970 if (per_slot_offset.file != BAD_FILE)
1971 mlen++;
1972
1973 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1974 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1975 unsigned i = 0;
1976 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1977 if (per_slot_offset.file != BAD_FILE)
1978 sources[i++] = per_slot_offset;
1979 if (channel_mask.file != BAD_FILE)
1980 sources[i++] = channel_mask;
1981 while (i < mlen) {
1982 sources[i++] = this->control_data_bits;
1983 }
1984
1985 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1986 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1987 inst->mlen = mlen;
1988 /* We need to increment Global Offset by 256-bits to make room for
1989 * Broadwell's extra "Vertex Count" payload at the beginning of the
1990 * URB entry. Since this is an OWord message, Global Offset is counted
1991 * in 128-bit units, so we must set it to 2.
1992 */
1993 if (gs_prog_data->static_vertex_count == -1)
1994 inst->offset = 2;
1995 }
1996
1997 void
1998 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1999 unsigned stream_id)
2000 {
2001 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2002
2003 /* Note: we are calling this *before* increasing vertex_count, so
2004 * this->vertex_count == vertex_count - 1 in the formula above.
2005 */
2006
2007 /* Stream mode uses 2 bits per vertex */
2008 assert(gs_compile->control_data_bits_per_vertex == 2);
2009
2010 /* Must be a valid stream */
2011 assert(stream_id < MAX_VERTEX_STREAMS);
2012
2013 /* Control data bits are initialized to 0 so we don't have to set any
2014 * bits when sending vertices to stream 0.
2015 */
2016 if (stream_id == 0)
2017 return;
2018
2019 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2020
2021 /* reg::sid = stream_id */
2022 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2023 abld.MOV(sid, brw_imm_ud(stream_id));
2024
2025 /* reg:shift_count = 2 * (vertex_count - 1) */
2026 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2027 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2028
2029 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2030 * attention to the lower 5 bits of its second source argument, so on this
2031 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2032 * stream_id << ((2 * (vertex_count - 1)) % 32).
2033 */
2034 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2035 abld.SHL(mask, sid, shift_count);
2036 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2037 }
2038
2039 void
2040 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2041 unsigned stream_id)
2042 {
2043 assert(stage == MESA_SHADER_GEOMETRY);
2044
2045 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2046
2047 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2048 vertex_count.type = BRW_REGISTER_TYPE_UD;
2049
2050 /* Haswell and later hardware ignores the "Render Stream Select" bits
2051 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2052 * and instead sends all primitives down the pipeline for rasterization.
2053 * If the SOL stage is enabled, "Render Stream Select" is honored and
2054 * primitives bound to non-zero streams are discarded after stream output.
2055 *
2056 * Since the only purpose of primives sent to non-zero streams is to
2057 * be recorded by transform feedback, we can simply discard all geometry
2058 * bound to these streams when transform feedback is disabled.
2059 */
2060 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2061 return;
2062
2063 /* If we're outputting 32 control data bits or less, then we can wait
2064 * until the shader is over to output them all. Otherwise we need to
2065 * output them as we go. Now is the time to do it, since we're about to
2066 * output the vertex_count'th vertex, so it's guaranteed that the
2067 * control data bits associated with the (vertex_count - 1)th vertex are
2068 * correct.
2069 */
2070 if (gs_compile->control_data_header_size_bits > 32) {
2071 const fs_builder abld =
2072 bld.annotate("emit vertex: emit control data bits");
2073
2074 /* Only emit control data bits if we've finished accumulating a batch
2075 * of 32 bits. This is the case when:
2076 *
2077 * (vertex_count * bits_per_vertex) % 32 == 0
2078 *
2079 * (in other words, when the last 5 bits of vertex_count *
2080 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2081 * integer n (which is always the case, since bits_per_vertex is
2082 * always 1 or 2), this is equivalent to requiring that the last 5-n
2083 * bits of vertex_count are 0:
2084 *
2085 * vertex_count & (2^(5-n) - 1) == 0
2086 *
2087 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2088 * equivalent to:
2089 *
2090 * vertex_count & (32 / bits_per_vertex - 1) == 0
2091 *
2092 * TODO: If vertex_count is an immediate, we could do some of this math
2093 * at compile time...
2094 */
2095 fs_inst *inst =
2096 abld.AND(bld.null_reg_d(), vertex_count,
2097 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2098 inst->conditional_mod = BRW_CONDITIONAL_Z;
2099
2100 abld.IF(BRW_PREDICATE_NORMAL);
2101 /* If vertex_count is 0, then no control data bits have been
2102 * accumulated yet, so we can skip emitting them.
2103 */
2104 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2105 BRW_CONDITIONAL_NEQ);
2106 abld.IF(BRW_PREDICATE_NORMAL);
2107 emit_gs_control_data_bits(vertex_count);
2108 abld.emit(BRW_OPCODE_ENDIF);
2109
2110 /* Reset control_data_bits to 0 so we can start accumulating a new
2111 * batch.
2112 *
2113 * Note: in the case where vertex_count == 0, this neutralizes the
2114 * effect of any call to EndPrimitive() that the shader may have
2115 * made before outputting its first vertex.
2116 */
2117 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2118 inst->force_writemask_all = true;
2119 abld.emit(BRW_OPCODE_ENDIF);
2120 }
2121
2122 emit_urb_writes(vertex_count);
2123
2124 /* In stream mode we have to set control data bits for all vertices
2125 * unless we have disabled control data bits completely (which we do
2126 * do for GL_POINTS outputs that don't use streams).
2127 */
2128 if (gs_compile->control_data_header_size_bits > 0 &&
2129 gs_prog_data->control_data_format ==
2130 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2131 set_gs_stream_control_data_bits(vertex_count, stream_id);
2132 }
2133 }
2134
2135 void
2136 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2137 const nir_src &vertex_src,
2138 unsigned base_offset,
2139 const nir_src &offset_src,
2140 unsigned num_components,
2141 unsigned first_component)
2142 {
2143 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2144 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2145
2146 /* TODO: figure out push input layout for invocations == 1 */
2147 /* TODO: make this work with 64-bit inputs */
2148 if (gs_prog_data->invocations == 1 &&
2149 type_sz(dst.type) <= 4 &&
2150 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2151 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2152 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2153 nir_src_as_uint(vertex_src) * push_reg_count;
2154 for (unsigned i = 0; i < num_components; i++) {
2155 bld.MOV(offset(dst, bld, i),
2156 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2157 }
2158 return;
2159 }
2160
2161 /* Resort to the pull model. Ensure the VUE handles are provided. */
2162 assert(gs_prog_data->base.include_vue_handles);
2163
2164 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2165 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2166
2167 if (gs_prog_data->invocations == 1) {
2168 if (nir_src_is_const(vertex_src)) {
2169 /* The vertex index is constant; just select the proper URB handle. */
2170 icp_handle =
2171 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2172 BRW_REGISTER_TYPE_UD);
2173 } else {
2174 /* The vertex index is non-constant. We need to use indirect
2175 * addressing to fetch the proper URB handle.
2176 *
2177 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2178 * indicating that channel <n> should read the handle from
2179 * DWord <n>. We convert that to bytes by multiplying by 4.
2180 *
2181 * Next, we convert the vertex index to bytes by multiplying
2182 * by 32 (shifting by 5), and add the two together. This is
2183 * the final indirect byte offset.
2184 */
2185 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2186 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2187 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2188 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2189
2190 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2191 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2192 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2193 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2194 /* Convert vertex_index to bytes (multiply by 32) */
2195 bld.SHL(vertex_offset_bytes,
2196 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2197 brw_imm_ud(5u));
2198 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2199
2200 /* Use first_icp_handle as the base offset. There is one register
2201 * of URB handles per vertex, so inform the register allocator that
2202 * we might read up to nir->info.gs.vertices_in registers.
2203 */
2204 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2205 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2206 fs_reg(icp_offset_bytes),
2207 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2208 }
2209 } else {
2210 assert(gs_prog_data->invocations > 1);
2211
2212 if (nir_src_is_const(vertex_src)) {
2213 unsigned vertex = nir_src_as_uint(vertex_src);
2214 assert(devinfo->gen >= 9 || vertex <= 5);
2215 bld.MOV(icp_handle,
2216 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2217 BRW_REGISTER_TYPE_UD));
2218 } else {
2219 /* The vertex index is non-constant. We need to use indirect
2220 * addressing to fetch the proper URB handle.
2221 *
2222 */
2223 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2224
2225 /* Convert vertex_index to bytes (multiply by 4) */
2226 bld.SHL(icp_offset_bytes,
2227 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2228 brw_imm_ud(2u));
2229
2230 /* Use first_icp_handle as the base offset. There is one DWord
2231 * of URB handles per vertex, so inform the register allocator that
2232 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2233 */
2234 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2235 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2236 fs_reg(icp_offset_bytes),
2237 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2238 REG_SIZE));
2239 }
2240 }
2241
2242 fs_inst *inst;
2243
2244 fs_reg tmp_dst = dst;
2245 fs_reg indirect_offset = get_nir_src(offset_src);
2246 unsigned num_iterations = 1;
2247 unsigned orig_num_components = num_components;
2248
2249 if (type_sz(dst.type) == 8) {
2250 if (num_components > 2) {
2251 num_iterations = 2;
2252 num_components = 2;
2253 }
2254 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2255 tmp_dst = tmp;
2256 first_component = first_component / 2;
2257 }
2258
2259 for (unsigned iter = 0; iter < num_iterations; iter++) {
2260 if (nir_src_is_const(offset_src)) {
2261 /* Constant indexing - use global offset. */
2262 if (first_component != 0) {
2263 unsigned read_components = num_components + first_component;
2264 fs_reg tmp = bld.vgrf(dst.type, read_components);
2265 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2266 inst->size_written = read_components *
2267 tmp.component_size(inst->exec_size);
2268 for (unsigned i = 0; i < num_components; i++) {
2269 bld.MOV(offset(tmp_dst, bld, i),
2270 offset(tmp, bld, i + first_component));
2271 }
2272 } else {
2273 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2274 icp_handle);
2275 inst->size_written = num_components *
2276 tmp_dst.component_size(inst->exec_size);
2277 }
2278 inst->offset = base_offset + nir_src_as_uint(offset_src);
2279 inst->mlen = 1;
2280 } else {
2281 /* Indirect indexing - use per-slot offsets as well. */
2282 const fs_reg srcs[] = { icp_handle, indirect_offset };
2283 unsigned read_components = num_components + first_component;
2284 fs_reg tmp = bld.vgrf(dst.type, read_components);
2285 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2286 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2287 if (first_component != 0) {
2288 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2289 payload);
2290 inst->size_written = read_components *
2291 tmp.component_size(inst->exec_size);
2292 for (unsigned i = 0; i < num_components; i++) {
2293 bld.MOV(offset(tmp_dst, bld, i),
2294 offset(tmp, bld, i + first_component));
2295 }
2296 } else {
2297 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2298 payload);
2299 inst->size_written = num_components *
2300 tmp_dst.component_size(inst->exec_size);
2301 }
2302 inst->offset = base_offset;
2303 inst->mlen = 2;
2304 }
2305
2306 if (type_sz(dst.type) == 8) {
2307 shuffle_from_32bit_read(bld,
2308 offset(dst, bld, iter * 2),
2309 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2310 0,
2311 num_components);
2312 }
2313
2314 if (num_iterations > 1) {
2315 num_components = orig_num_components - 2;
2316 if(nir_src_is_const(offset_src)) {
2317 base_offset++;
2318 } else {
2319 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2320 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2321 indirect_offset = new_indirect;
2322 }
2323 }
2324 }
2325 }
2326
2327 fs_reg
2328 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2329 {
2330 nir_src *offset_src = nir_get_io_offset_src(instr);
2331
2332 if (nir_src_is_const(*offset_src)) {
2333 /* The only constant offset we should find is 0. brw_nir.c's
2334 * add_const_offset_to_base() will fold other constant offsets
2335 * into instr->const_index[0].
2336 */
2337 assert(nir_src_as_uint(*offset_src) == 0);
2338 return fs_reg();
2339 }
2340
2341 return get_nir_src(*offset_src);
2342 }
2343
2344 void
2345 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2346 nir_intrinsic_instr *instr)
2347 {
2348 assert(stage == MESA_SHADER_VERTEX);
2349
2350 fs_reg dest;
2351 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2352 dest = get_nir_dest(instr->dest);
2353
2354 switch (instr->intrinsic) {
2355 case nir_intrinsic_load_vertex_id:
2356 case nir_intrinsic_load_base_vertex:
2357 unreachable("should be lowered by nir_lower_system_values()");
2358
2359 case nir_intrinsic_load_input: {
2360 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2361 unsigned first_component = nir_intrinsic_component(instr);
2362 unsigned num_components = instr->num_components;
2363
2364 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2365
2366 if (type_sz(dest.type) == 8)
2367 first_component /= 2;
2368
2369 /* For 16-bit support maybe a temporary will be needed to copy from
2370 * the ATTR file.
2371 */
2372 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2373 first_component, num_components);
2374 break;
2375 }
2376
2377 case nir_intrinsic_load_vertex_id_zero_base:
2378 case nir_intrinsic_load_instance_id:
2379 case nir_intrinsic_load_base_instance:
2380 case nir_intrinsic_load_draw_id:
2381 case nir_intrinsic_load_first_vertex:
2382 case nir_intrinsic_load_is_indexed_draw:
2383 unreachable("lowered by brw_nir_lower_vs_inputs");
2384
2385 default:
2386 nir_emit_intrinsic(bld, instr);
2387 break;
2388 }
2389 }
2390
2391 void
2392 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2393 nir_intrinsic_instr *instr)
2394 {
2395 assert(stage == MESA_SHADER_TESS_CTRL);
2396 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2397 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2398
2399 fs_reg dst;
2400 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2401 dst = get_nir_dest(instr->dest);
2402
2403 switch (instr->intrinsic) {
2404 case nir_intrinsic_load_primitive_id:
2405 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2406 break;
2407 case nir_intrinsic_load_invocation_id:
2408 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2409 break;
2410 case nir_intrinsic_load_patch_vertices_in:
2411 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2412 brw_imm_d(tcs_key->input_vertices));
2413 break;
2414
2415 case nir_intrinsic_barrier: {
2416 if (tcs_prog_data->instances == 1)
2417 break;
2418
2419 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2420 fs_reg m0_2 = component(m0, 2);
2421
2422 const fs_builder chanbld = bld.exec_all().group(1, 0);
2423
2424 /* Zero the message header */
2425 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2426
2427 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2428 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2429 brw_imm_ud(INTEL_MASK(16, 13)));
2430
2431 /* Shift it up to bits 27:24. */
2432 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2433
2434 /* Set the Barrier Count and the enable bit */
2435 chanbld.OR(m0_2, m0_2,
2436 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2437
2438 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2439 break;
2440 }
2441
2442 case nir_intrinsic_load_input:
2443 unreachable("nir_lower_io should never give us these.");
2444 break;
2445
2446 case nir_intrinsic_load_per_vertex_input: {
2447 fs_reg indirect_offset = get_indirect_offset(instr);
2448 unsigned imm_offset = instr->const_index[0];
2449
2450 const nir_src &vertex_src = instr->src[0];
2451
2452 fs_inst *inst;
2453
2454 fs_reg icp_handle;
2455
2456 if (nir_src_is_const(vertex_src)) {
2457 /* Emit a MOV to resolve <0,1,0> regioning. */
2458 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2459 unsigned vertex = nir_src_as_uint(vertex_src);
2460 bld.MOV(icp_handle,
2461 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2462 BRW_REGISTER_TYPE_UD));
2463 } else if (tcs_prog_data->instances == 1 &&
2464 vertex_src.is_ssa &&
2465 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2466 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2467 /* For the common case of only 1 instance, an array index of
2468 * gl_InvocationID means reading g1. Skip all the indirect work.
2469 */
2470 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2471 } else {
2472 /* The vertex index is non-constant. We need to use indirect
2473 * addressing to fetch the proper URB handle.
2474 */
2475 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2476
2477 /* Each ICP handle is a single DWord (4 bytes) */
2478 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2479 bld.SHL(vertex_offset_bytes,
2480 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2481 brw_imm_ud(2u));
2482
2483 /* Start at g1. We might read up to 4 registers. */
2484 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2485 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2486 brw_imm_ud(4 * REG_SIZE));
2487 }
2488
2489 /* We can only read two double components with each URB read, so
2490 * we send two read messages in that case, each one loading up to
2491 * two double components.
2492 */
2493 unsigned num_iterations = 1;
2494 unsigned num_components = instr->num_components;
2495 unsigned first_component = nir_intrinsic_component(instr);
2496 fs_reg orig_dst = dst;
2497 if (type_sz(dst.type) == 8) {
2498 first_component = first_component / 2;
2499 if (instr->num_components > 2) {
2500 num_iterations = 2;
2501 num_components = 2;
2502 }
2503
2504 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2505 dst = tmp;
2506 }
2507
2508 for (unsigned iter = 0; iter < num_iterations; iter++) {
2509 if (indirect_offset.file == BAD_FILE) {
2510 /* Constant indexing - use global offset. */
2511 if (first_component != 0) {
2512 unsigned read_components = num_components + first_component;
2513 fs_reg tmp = bld.vgrf(dst.type, read_components);
2514 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2515 for (unsigned i = 0; i < num_components; i++) {
2516 bld.MOV(offset(dst, bld, i),
2517 offset(tmp, bld, i + first_component));
2518 }
2519 } else {
2520 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2521 }
2522 inst->offset = imm_offset;
2523 inst->mlen = 1;
2524 } else {
2525 /* Indirect indexing - use per-slot offsets as well. */
2526 const fs_reg srcs[] = { icp_handle, indirect_offset };
2527 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2528 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2529 if (first_component != 0) {
2530 unsigned read_components = num_components + first_component;
2531 fs_reg tmp = bld.vgrf(dst.type, read_components);
2532 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2533 payload);
2534 for (unsigned i = 0; i < num_components; i++) {
2535 bld.MOV(offset(dst, bld, i),
2536 offset(tmp, bld, i + first_component));
2537 }
2538 } else {
2539 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2540 payload);
2541 }
2542 inst->offset = imm_offset;
2543 inst->mlen = 2;
2544 }
2545 inst->size_written = (num_components + first_component) *
2546 inst->dst.component_size(inst->exec_size);
2547
2548 /* If we are reading 64-bit data using 32-bit read messages we need
2549 * build proper 64-bit data elements by shuffling the low and high
2550 * 32-bit components around like we do for other things like UBOs
2551 * or SSBOs.
2552 */
2553 if (type_sz(dst.type) == 8) {
2554 shuffle_from_32bit_read(bld,
2555 offset(orig_dst, bld, iter * 2),
2556 retype(dst, BRW_REGISTER_TYPE_D),
2557 0, num_components);
2558 }
2559
2560 /* Copy the temporary to the destination to deal with writemasking.
2561 *
2562 * Also attempt to deal with gl_PointSize being in the .w component.
2563 */
2564 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2565 assert(type_sz(dst.type) < 8);
2566 inst->dst = bld.vgrf(dst.type, 4);
2567 inst->size_written = 4 * REG_SIZE;
2568 bld.MOV(dst, offset(inst->dst, bld, 3));
2569 }
2570
2571 /* If we are loading double data and we need a second read message
2572 * adjust the write offset
2573 */
2574 if (num_iterations > 1) {
2575 num_components = instr->num_components - 2;
2576 imm_offset++;
2577 }
2578 }
2579 break;
2580 }
2581
2582 case nir_intrinsic_load_output:
2583 case nir_intrinsic_load_per_vertex_output: {
2584 fs_reg indirect_offset = get_indirect_offset(instr);
2585 unsigned imm_offset = instr->const_index[0];
2586 unsigned first_component = nir_intrinsic_component(instr);
2587
2588 fs_inst *inst;
2589 if (indirect_offset.file == BAD_FILE) {
2590 /* Replicate the patch handle to all enabled channels */
2591 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2592 bld.MOV(patch_handle,
2593 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2594
2595 {
2596 if (first_component != 0) {
2597 unsigned read_components =
2598 instr->num_components + first_component;
2599 fs_reg tmp = bld.vgrf(dst.type, read_components);
2600 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2601 patch_handle);
2602 inst->size_written = read_components * REG_SIZE;
2603 for (unsigned i = 0; i < instr->num_components; i++) {
2604 bld.MOV(offset(dst, bld, i),
2605 offset(tmp, bld, i + first_component));
2606 }
2607 } else {
2608 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2609 patch_handle);
2610 inst->size_written = instr->num_components * REG_SIZE;
2611 }
2612 inst->offset = imm_offset;
2613 inst->mlen = 1;
2614 }
2615 } else {
2616 /* Indirect indexing - use per-slot offsets as well. */
2617 const fs_reg srcs[] = {
2618 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2619 indirect_offset
2620 };
2621 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2622 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2623 if (first_component != 0) {
2624 unsigned read_components =
2625 instr->num_components + first_component;
2626 fs_reg tmp = bld.vgrf(dst.type, read_components);
2627 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2628 payload);
2629 inst->size_written = read_components * REG_SIZE;
2630 for (unsigned i = 0; i < instr->num_components; i++) {
2631 bld.MOV(offset(dst, bld, i),
2632 offset(tmp, bld, i + first_component));
2633 }
2634 } else {
2635 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2636 payload);
2637 inst->size_written = instr->num_components * REG_SIZE;
2638 }
2639 inst->offset = imm_offset;
2640 inst->mlen = 2;
2641 }
2642 break;
2643 }
2644
2645 case nir_intrinsic_store_output:
2646 case nir_intrinsic_store_per_vertex_output: {
2647 fs_reg value = get_nir_src(instr->src[0]);
2648 bool is_64bit = (instr->src[0].is_ssa ?
2649 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2650 fs_reg indirect_offset = get_indirect_offset(instr);
2651 unsigned imm_offset = instr->const_index[0];
2652 unsigned mask = instr->const_index[1];
2653 unsigned header_regs = 0;
2654 fs_reg srcs[7];
2655 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2656
2657 if (indirect_offset.file != BAD_FILE) {
2658 srcs[header_regs++] = indirect_offset;
2659 }
2660
2661 if (mask == 0)
2662 break;
2663
2664 unsigned num_components = util_last_bit(mask);
2665 enum opcode opcode;
2666
2667 /* We can only pack two 64-bit components in a single message, so send
2668 * 2 messages if we have more components
2669 */
2670 unsigned num_iterations = 1;
2671 unsigned iter_components = num_components;
2672 unsigned first_component = nir_intrinsic_component(instr);
2673 if (is_64bit) {
2674 first_component = first_component / 2;
2675 if (instr->num_components > 2) {
2676 num_iterations = 2;
2677 iter_components = 2;
2678 }
2679 }
2680
2681 mask = mask << first_component;
2682
2683 for (unsigned iter = 0; iter < num_iterations; iter++) {
2684 if (!is_64bit && mask != WRITEMASK_XYZW) {
2685 srcs[header_regs++] = brw_imm_ud(mask << 16);
2686 opcode = indirect_offset.file != BAD_FILE ?
2687 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2688 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2689 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2690 /* Expand the 64-bit mask to 32-bit channels. We only handle
2691 * two channels in each iteration, so we only care about X/Y.
2692 */
2693 unsigned mask32 = 0;
2694 if (mask & WRITEMASK_X)
2695 mask32 |= WRITEMASK_XY;
2696 if (mask & WRITEMASK_Y)
2697 mask32 |= WRITEMASK_ZW;
2698
2699 /* If the mask does not include any of the channels X or Y there
2700 * is nothing to do in this iteration. Move on to the next couple
2701 * of 64-bit channels.
2702 */
2703 if (!mask32) {
2704 mask >>= 2;
2705 imm_offset++;
2706 continue;
2707 }
2708
2709 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2710 opcode = indirect_offset.file != BAD_FILE ?
2711 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2712 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2713 } else {
2714 opcode = indirect_offset.file != BAD_FILE ?
2715 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2716 SHADER_OPCODE_URB_WRITE_SIMD8;
2717 }
2718
2719 for (unsigned i = 0; i < iter_components; i++) {
2720 if (!(mask & (1 << (i + first_component))))
2721 continue;
2722
2723 if (!is_64bit) {
2724 srcs[header_regs + i + first_component] = offset(value, bld, i);
2725 } else {
2726 /* We need to shuffle the 64-bit data to match the layout
2727 * expected by our 32-bit URB write messages. We use a temporary
2728 * for that.
2729 */
2730 unsigned channel = iter * 2 + i;
2731 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2732
2733 srcs[header_regs + (i + first_component) * 2] = dest;
2734 srcs[header_regs + (i + first_component) * 2 + 1] =
2735 offset(dest, bld, 1);
2736 }
2737 }
2738
2739 unsigned mlen =
2740 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2741 (is_64bit ? 2 * first_component : first_component);
2742 fs_reg payload =
2743 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2744 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2745
2746 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2747 inst->offset = imm_offset;
2748 inst->mlen = mlen;
2749
2750 /* If this is a 64-bit attribute, select the next two 64-bit channels
2751 * to be handled in the next iteration.
2752 */
2753 if (is_64bit) {
2754 mask >>= 2;
2755 imm_offset++;
2756 }
2757 }
2758 break;
2759 }
2760
2761 default:
2762 nir_emit_intrinsic(bld, instr);
2763 break;
2764 }
2765 }
2766
2767 void
2768 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2769 nir_intrinsic_instr *instr)
2770 {
2771 assert(stage == MESA_SHADER_TESS_EVAL);
2772 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2773
2774 fs_reg dest;
2775 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2776 dest = get_nir_dest(instr->dest);
2777
2778 switch (instr->intrinsic) {
2779 case nir_intrinsic_load_primitive_id:
2780 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2781 break;
2782 case nir_intrinsic_load_tess_coord:
2783 /* gl_TessCoord is part of the payload in g1-3 */
2784 for (unsigned i = 0; i < 3; i++) {
2785 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2786 }
2787 break;
2788
2789 case nir_intrinsic_load_input:
2790 case nir_intrinsic_load_per_vertex_input: {
2791 fs_reg indirect_offset = get_indirect_offset(instr);
2792 unsigned imm_offset = instr->const_index[0];
2793 unsigned first_component = nir_intrinsic_component(instr);
2794
2795 if (type_sz(dest.type) == 8) {
2796 first_component = first_component / 2;
2797 }
2798
2799 fs_inst *inst;
2800 if (indirect_offset.file == BAD_FILE) {
2801 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2802 * which is 16 registers (since each holds 2 vec4 slots).
2803 */
2804 unsigned slot_count = 1;
2805 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2806 slot_count++;
2807
2808 const unsigned max_push_slots = 32;
2809 if (imm_offset + slot_count <= max_push_slots) {
2810 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2811 for (int i = 0; i < instr->num_components; i++) {
2812 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2813 i + first_component;
2814 bld.MOV(offset(dest, bld, i), component(src, comp));
2815 }
2816
2817 tes_prog_data->base.urb_read_length =
2818 MAX2(tes_prog_data->base.urb_read_length,
2819 DIV_ROUND_UP(imm_offset + slot_count, 2));
2820 } else {
2821 /* Replicate the patch handle to all enabled channels */
2822 const fs_reg srcs[] = {
2823 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2824 };
2825 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2826 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2827
2828 if (first_component != 0) {
2829 unsigned read_components =
2830 instr->num_components + first_component;
2831 fs_reg tmp = bld.vgrf(dest.type, read_components);
2832 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2833 patch_handle);
2834 inst->size_written = read_components * REG_SIZE;
2835 for (unsigned i = 0; i < instr->num_components; i++) {
2836 bld.MOV(offset(dest, bld, i),
2837 offset(tmp, bld, i + first_component));
2838 }
2839 } else {
2840 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2841 patch_handle);
2842 inst->size_written = instr->num_components * REG_SIZE;
2843 }
2844 inst->mlen = 1;
2845 inst->offset = imm_offset;
2846 }
2847 } else {
2848 /* Indirect indexing - use per-slot offsets as well. */
2849
2850 /* We can only read two double components with each URB read, so
2851 * we send two read messages in that case, each one loading up to
2852 * two double components.
2853 */
2854 unsigned num_iterations = 1;
2855 unsigned num_components = instr->num_components;
2856 fs_reg orig_dest = dest;
2857 if (type_sz(dest.type) == 8) {
2858 if (instr->num_components > 2) {
2859 num_iterations = 2;
2860 num_components = 2;
2861 }
2862 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2863 dest = tmp;
2864 }
2865
2866 for (unsigned iter = 0; iter < num_iterations; iter++) {
2867 const fs_reg srcs[] = {
2868 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2869 indirect_offset
2870 };
2871 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2872 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2873
2874 if (first_component != 0) {
2875 unsigned read_components =
2876 num_components + first_component;
2877 fs_reg tmp = bld.vgrf(dest.type, read_components);
2878 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2879 payload);
2880 for (unsigned i = 0; i < num_components; i++) {
2881 bld.MOV(offset(dest, bld, i),
2882 offset(tmp, bld, i + first_component));
2883 }
2884 } else {
2885 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2886 payload);
2887 }
2888 inst->mlen = 2;
2889 inst->offset = imm_offset;
2890 inst->size_written = (num_components + first_component) *
2891 inst->dst.component_size(inst->exec_size);
2892
2893 /* If we are reading 64-bit data using 32-bit read messages we need
2894 * build proper 64-bit data elements by shuffling the low and high
2895 * 32-bit components around like we do for other things like UBOs
2896 * or SSBOs.
2897 */
2898 if (type_sz(dest.type) == 8) {
2899 shuffle_from_32bit_read(bld,
2900 offset(orig_dest, bld, iter * 2),
2901 retype(dest, BRW_REGISTER_TYPE_D),
2902 0, num_components);
2903 }
2904
2905 /* If we are loading double data and we need a second read message
2906 * adjust the offset
2907 */
2908 if (num_iterations > 1) {
2909 num_components = instr->num_components - 2;
2910 imm_offset++;
2911 }
2912 }
2913 }
2914 break;
2915 }
2916 default:
2917 nir_emit_intrinsic(bld, instr);
2918 break;
2919 }
2920 }
2921
2922 void
2923 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2924 nir_intrinsic_instr *instr)
2925 {
2926 assert(stage == MESA_SHADER_GEOMETRY);
2927 fs_reg indirect_offset;
2928
2929 fs_reg dest;
2930 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2931 dest = get_nir_dest(instr->dest);
2932
2933 switch (instr->intrinsic) {
2934 case nir_intrinsic_load_primitive_id:
2935 assert(stage == MESA_SHADER_GEOMETRY);
2936 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2937 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2938 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2939 break;
2940
2941 case nir_intrinsic_load_input:
2942 unreachable("load_input intrinsics are invalid for the GS stage");
2943
2944 case nir_intrinsic_load_per_vertex_input:
2945 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2946 instr->src[1], instr->num_components,
2947 nir_intrinsic_component(instr));
2948 break;
2949
2950 case nir_intrinsic_emit_vertex_with_counter:
2951 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2952 break;
2953
2954 case nir_intrinsic_end_primitive_with_counter:
2955 emit_gs_end_primitive(instr->src[0]);
2956 break;
2957
2958 case nir_intrinsic_set_vertex_count:
2959 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2960 break;
2961
2962 case nir_intrinsic_load_invocation_id: {
2963 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2964 assert(val.file != BAD_FILE);
2965 dest.type = val.type;
2966 bld.MOV(dest, val);
2967 break;
2968 }
2969
2970 default:
2971 nir_emit_intrinsic(bld, instr);
2972 break;
2973 }
2974 }
2975
2976 /**
2977 * Fetch the current render target layer index.
2978 */
2979 static fs_reg
2980 fetch_render_target_array_index(const fs_builder &bld)
2981 {
2982 if (bld.shader->devinfo->gen >= 6) {
2983 /* The render target array index is provided in the thread payload as
2984 * bits 26:16 of r0.0.
2985 */
2986 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
2987 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
2988 brw_imm_uw(0x7ff));
2989 return idx;
2990 } else {
2991 /* Pre-SNB we only ever render into the first layer of the framebuffer
2992 * since layered rendering is not implemented.
2993 */
2994 return brw_imm_ud(0);
2995 }
2996 }
2997
2998 /**
2999 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3000 * framebuffer at the current fragment coordinates and sample index.
3001 */
3002 fs_inst *
3003 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3004 unsigned target)
3005 {
3006 const struct gen_device_info *devinfo = bld.shader->devinfo;
3007
3008 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3009 const brw_wm_prog_key *wm_key =
3010 reinterpret_cast<const brw_wm_prog_key *>(key);
3011 assert(!wm_key->coherent_fb_fetch);
3012 const struct brw_wm_prog_data *wm_prog_data =
3013 brw_wm_prog_data(stage_prog_data);
3014
3015 /* Calculate the surface index relative to the start of the texture binding
3016 * table block, since that's what the texturing messages expect.
3017 */
3018 const unsigned surface = target +
3019 wm_prog_data->binding_table.render_target_read_start -
3020 wm_prog_data->base.binding_table.texture_start;
3021
3022 /* Calculate the fragment coordinates. */
3023 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3024 bld.MOV(offset(coords, bld, 0), pixel_x);
3025 bld.MOV(offset(coords, bld, 1), pixel_y);
3026 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3027
3028 /* Calculate the sample index and MCS payload when multisampling. Luckily
3029 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3030 * shouldn't be necessary to recompile based on whether the framebuffer is
3031 * CMS or UMS.
3032 */
3033 if (wm_key->multisample_fbo &&
3034 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3035 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3036
3037 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3038 const fs_reg mcs = wm_key->multisample_fbo ?
3039 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3040
3041 /* Use either a normal or a CMS texel fetch message depending on whether
3042 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3043 * message just in case the framebuffer uses 16x multisampling, it should
3044 * be equivalent to the normal CMS fetch for lower multisampling modes.
3045 */
3046 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3047 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3048 SHADER_OPCODE_TXF_CMS_LOGICAL;
3049
3050 /* Emit the instruction. */
3051 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3052 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3053 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3054 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3055 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3056 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3057 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3058 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3059 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3060
3061 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3062 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3063
3064 return inst;
3065 }
3066
3067 /**
3068 * Actual coherent framebuffer read implemented using the native render target
3069 * read message. Requires SKL+.
3070 */
3071 static fs_inst *
3072 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3073 {
3074 assert(bld.shader->devinfo->gen >= 9);
3075 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3076 inst->target = target;
3077 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3078
3079 return inst;
3080 }
3081
3082 static fs_reg
3083 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3084 {
3085 if (n && regs[0].file != BAD_FILE) {
3086 return regs[0];
3087
3088 } else {
3089 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3090
3091 for (unsigned i = 0; i < n; i++)
3092 regs[i] = tmp;
3093
3094 return tmp;
3095 }
3096 }
3097
3098 static fs_reg
3099 alloc_frag_output(fs_visitor *v, unsigned location)
3100 {
3101 assert(v->stage == MESA_SHADER_FRAGMENT);
3102 const brw_wm_prog_key *const key =
3103 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3104 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3105 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3106
3107 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3108 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3109
3110 else if (l == FRAG_RESULT_COLOR)
3111 return alloc_temporary(v->bld, 4, v->outputs,
3112 MAX2(key->nr_color_regions, 1));
3113
3114 else if (l == FRAG_RESULT_DEPTH)
3115 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3116
3117 else if (l == FRAG_RESULT_STENCIL)
3118 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3119
3120 else if (l == FRAG_RESULT_SAMPLE_MASK)
3121 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3122
3123 else if (l >= FRAG_RESULT_DATA0 &&
3124 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3125 return alloc_temporary(v->bld, 4,
3126 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3127
3128 else
3129 unreachable("Invalid location");
3130 }
3131
3132 void
3133 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3134 nir_intrinsic_instr *instr)
3135 {
3136 assert(stage == MESA_SHADER_FRAGMENT);
3137
3138 fs_reg dest;
3139 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3140 dest = get_nir_dest(instr->dest);
3141
3142 switch (instr->intrinsic) {
3143 case nir_intrinsic_load_front_face:
3144 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3145 *emit_frontfacing_interpolation());
3146 break;
3147
3148 case nir_intrinsic_load_sample_pos: {
3149 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3150 assert(sample_pos.file != BAD_FILE);
3151 dest.type = sample_pos.type;
3152 bld.MOV(dest, sample_pos);
3153 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3154 break;
3155 }
3156
3157 case nir_intrinsic_load_layer_id:
3158 dest.type = BRW_REGISTER_TYPE_UD;
3159 bld.MOV(dest, fetch_render_target_array_index(bld));
3160 break;
3161
3162 case nir_intrinsic_load_helper_invocation:
3163 case nir_intrinsic_load_sample_mask_in:
3164 case nir_intrinsic_load_sample_id: {
3165 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3166 fs_reg val = nir_system_values[sv];
3167 assert(val.file != BAD_FILE);
3168 dest.type = val.type;
3169 bld.MOV(dest, val);
3170 break;
3171 }
3172
3173 case nir_intrinsic_store_output: {
3174 const fs_reg src = get_nir_src(instr->src[0]);
3175 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3176 const unsigned location = nir_intrinsic_base(instr) +
3177 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3178 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3179 src.type);
3180
3181 for (unsigned j = 0; j < instr->num_components; j++)
3182 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3183 offset(src, bld, j));
3184
3185 break;
3186 }
3187
3188 case nir_intrinsic_load_output: {
3189 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3190 BRW_NIR_FRAG_OUTPUT_LOCATION);
3191 assert(l >= FRAG_RESULT_DATA0);
3192 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3193 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3194 const fs_reg tmp = bld.vgrf(dest.type, 4);
3195
3196 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3197 emit_coherent_fb_read(bld, tmp, target);
3198 else
3199 emit_non_coherent_fb_read(bld, tmp, target);
3200
3201 for (unsigned j = 0; j < instr->num_components; j++) {
3202 bld.MOV(offset(dest, bld, j),
3203 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3204 }
3205
3206 break;
3207 }
3208
3209 case nir_intrinsic_discard:
3210 case nir_intrinsic_discard_if: {
3211 /* We track our discarded pixels in f0.1. By predicating on it, we can
3212 * update just the flag bits that aren't yet discarded. If there's no
3213 * condition, we emit a CMP of g0 != g0, so all currently executing
3214 * channels will get turned off.
3215 */
3216 fs_inst *cmp;
3217 if (instr->intrinsic == nir_intrinsic_discard_if) {
3218 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3219 brw_imm_d(0), BRW_CONDITIONAL_Z);
3220 } else {
3221 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3222 BRW_REGISTER_TYPE_UW));
3223 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3224 }
3225 cmp->predicate = BRW_PREDICATE_NORMAL;
3226 cmp->flag_subreg = 1;
3227
3228 if (devinfo->gen >= 6) {
3229 emit_discard_jump();
3230 }
3231
3232 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3233 break;
3234 }
3235
3236 case nir_intrinsic_load_input: {
3237 /* load_input is only used for flat inputs */
3238 unsigned base = nir_intrinsic_base(instr);
3239 unsigned comp = nir_intrinsic_component(instr);
3240 unsigned num_components = instr->num_components;
3241 fs_reg orig_dest = dest;
3242 enum brw_reg_type type = dest.type;
3243
3244 /* Special case fields in the VUE header */
3245 if (base == VARYING_SLOT_LAYER)
3246 comp = 1;
3247 else if (base == VARYING_SLOT_VIEWPORT)
3248 comp = 2;
3249
3250 if (nir_dest_bit_size(instr->dest) == 64) {
3251 /* const_index is in 32-bit type size units that could not be aligned
3252 * with DF. We need to read the double vector as if it was a float
3253 * vector of twice the number of components to fetch the right data.
3254 */
3255 type = BRW_REGISTER_TYPE_F;
3256 num_components *= 2;
3257 dest = bld.vgrf(type, num_components);
3258 }
3259
3260 for (unsigned int i = 0; i < num_components; i++) {
3261 bld.MOV(offset(retype(dest, type), bld, i),
3262 retype(component(interp_reg(base, comp + i), 3), type));
3263 }
3264
3265 if (nir_dest_bit_size(instr->dest) == 64) {
3266 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3267 instr->num_components);
3268 }
3269 break;
3270 }
3271
3272 case nir_intrinsic_load_barycentric_pixel:
3273 case nir_intrinsic_load_barycentric_centroid:
3274 case nir_intrinsic_load_barycentric_sample:
3275 /* Do nothing - load_interpolated_input handling will handle it later. */
3276 break;
3277
3278 case nir_intrinsic_load_barycentric_at_sample: {
3279 const glsl_interp_mode interpolation =
3280 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3281
3282 if (nir_src_is_const(instr->src[0])) {
3283 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3284
3285 emit_pixel_interpolater_send(bld,
3286 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3287 dest,
3288 fs_reg(), /* src */
3289 brw_imm_ud(msg_data),
3290 interpolation);
3291 } else {
3292 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3293 BRW_REGISTER_TYPE_UD);
3294
3295 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3296 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3297 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3298 bld.exec_all().group(1, 0)
3299 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3300 emit_pixel_interpolater_send(bld,
3301 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3302 dest,
3303 fs_reg(), /* src */
3304 msg_data,
3305 interpolation);
3306 } else {
3307 /* Make a loop that sends a message to the pixel interpolater
3308 * for the sample number in each live channel. If there are
3309 * multiple channels with the same sample number then these
3310 * will be handled simultaneously with a single interation of
3311 * the loop.
3312 */
3313 bld.emit(BRW_OPCODE_DO);
3314
3315 /* Get the next live sample number into sample_id_reg */
3316 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3317
3318 /* Set the flag register so that we can perform the send
3319 * message on all channels that have the same sample number
3320 */
3321 bld.CMP(bld.null_reg_ud(),
3322 sample_src, sample_id,
3323 BRW_CONDITIONAL_EQ);
3324 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3325 bld.exec_all().group(1, 0)
3326 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3327 fs_inst *inst =
3328 emit_pixel_interpolater_send(bld,
3329 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3330 dest,
3331 fs_reg(), /* src */
3332 component(msg_data, 0),
3333 interpolation);
3334 set_predicate(BRW_PREDICATE_NORMAL, inst);
3335
3336 /* Continue the loop if there are any live channels left */
3337 set_predicate_inv(BRW_PREDICATE_NORMAL,
3338 true, /* inverse */
3339 bld.emit(BRW_OPCODE_WHILE));
3340 }
3341 }
3342 break;
3343 }
3344
3345 case nir_intrinsic_load_barycentric_at_offset: {
3346 const glsl_interp_mode interpolation =
3347 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3348
3349 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3350
3351 if (const_offset) {
3352 assert(nir_src_bit_size(instr->src[0]) == 32);
3353 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3354 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3355
3356 emit_pixel_interpolater_send(bld,
3357 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3358 dest,
3359 fs_reg(), /* src */
3360 brw_imm_ud(off_x | (off_y << 4)),
3361 interpolation);
3362 } else {
3363 fs_reg src = vgrf(glsl_type::ivec2_type);
3364 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3365 BRW_REGISTER_TYPE_F);
3366 for (int i = 0; i < 2; i++) {
3367 fs_reg temp = vgrf(glsl_type::float_type);
3368 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3369 fs_reg itemp = vgrf(glsl_type::int_type);
3370 /* float to int */
3371 bld.MOV(itemp, temp);
3372
3373 /* Clamp the upper end of the range to +7/16.
3374 * ARB_gpu_shader5 requires that we support a maximum offset
3375 * of +0.5, which isn't representable in a S0.4 value -- if
3376 * we didn't clamp it, we'd end up with -8/16, which is the
3377 * opposite of what the shader author wanted.
3378 *
3379 * This is legal due to ARB_gpu_shader5's quantization
3380 * rules:
3381 *
3382 * "Not all values of <offset> may be supported; x and y
3383 * offsets may be rounded to fixed-point values with the
3384 * number of fraction bits given by the
3385 * implementation-dependent constant
3386 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3387 */
3388 set_condmod(BRW_CONDITIONAL_L,
3389 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3390 }
3391
3392 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3393 emit_pixel_interpolater_send(bld,
3394 opcode,
3395 dest,
3396 src,
3397 brw_imm_ud(0u),
3398 interpolation);
3399 }
3400 break;
3401 }
3402
3403 case nir_intrinsic_load_interpolated_input: {
3404 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3405 emit_fragcoord_interpolation(dest);
3406 break;
3407 }
3408
3409 assert(instr->src[0].ssa &&
3410 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3411 nir_intrinsic_instr *bary_intrinsic =
3412 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3413 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3414 enum glsl_interp_mode interp_mode =
3415 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3416 fs_reg dst_xy;
3417
3418 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3419 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3420 /* Use the result of the PI message */
3421 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3422 } else {
3423 /* Use the delta_xy values computed from the payload */
3424 enum brw_barycentric_mode bary =
3425 brw_barycentric_mode(interp_mode, bary_intrin);
3426
3427 dst_xy = this->delta_xy[bary];
3428 }
3429
3430 for (unsigned int i = 0; i < instr->num_components; i++) {
3431 fs_reg interp =
3432 component(interp_reg(nir_intrinsic_base(instr),
3433 nir_intrinsic_component(instr) + i), 0);
3434 interp.type = BRW_REGISTER_TYPE_F;
3435 dest.type = BRW_REGISTER_TYPE_F;
3436
3437 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3438 fs_reg tmp = vgrf(glsl_type::float_type);
3439 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3440 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3441 } else {
3442 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3443 }
3444 }
3445 break;
3446 }
3447
3448 default:
3449 nir_emit_intrinsic(bld, instr);
3450 break;
3451 }
3452 }
3453
3454 static int
3455 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3456 {
3457 if (nir_src_is_const(instr->src[src])) {
3458 int64_t add_val = nir_src_as_int(instr->src[src]);
3459 if (add_val == 1)
3460 return BRW_AOP_INC;
3461 else if (add_val == -1)
3462 return BRW_AOP_DEC;
3463 }
3464
3465 return BRW_AOP_ADD;
3466 }
3467
3468 void
3469 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3470 nir_intrinsic_instr *instr)
3471 {
3472 assert(stage == MESA_SHADER_COMPUTE);
3473 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3474
3475 fs_reg dest;
3476 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3477 dest = get_nir_dest(instr->dest);
3478
3479 switch (instr->intrinsic) {
3480 case nir_intrinsic_barrier:
3481 emit_barrier();
3482 cs_prog_data->uses_barrier = true;
3483 break;
3484
3485 case nir_intrinsic_load_subgroup_id:
3486 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3487 break;
3488
3489 case nir_intrinsic_load_local_invocation_id:
3490 case nir_intrinsic_load_work_group_id: {
3491 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3492 fs_reg val = nir_system_values[sv];
3493 assert(val.file != BAD_FILE);
3494 dest.type = val.type;
3495 for (unsigned i = 0; i < 3; i++)
3496 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3497 break;
3498 }
3499
3500 case nir_intrinsic_load_num_work_groups: {
3501 const unsigned surface =
3502 cs_prog_data->binding_table.work_groups_start;
3503
3504 cs_prog_data->uses_num_work_groups = true;
3505
3506 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3507 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3508 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3509 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3510
3511 /* Read the 3 GLuint components of gl_NumWorkGroups */
3512 for (unsigned i = 0; i < 3; i++) {
3513 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3514 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3515 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3516 }
3517 break;
3518 }
3519
3520 case nir_intrinsic_shared_atomic_add:
3521 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3522 break;
3523 case nir_intrinsic_shared_atomic_imin:
3524 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3525 break;
3526 case nir_intrinsic_shared_atomic_umin:
3527 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3528 break;
3529 case nir_intrinsic_shared_atomic_imax:
3530 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3531 break;
3532 case nir_intrinsic_shared_atomic_umax:
3533 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3534 break;
3535 case nir_intrinsic_shared_atomic_and:
3536 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3537 break;
3538 case nir_intrinsic_shared_atomic_or:
3539 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3540 break;
3541 case nir_intrinsic_shared_atomic_xor:
3542 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3543 break;
3544 case nir_intrinsic_shared_atomic_exchange:
3545 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3546 break;
3547 case nir_intrinsic_shared_atomic_comp_swap:
3548 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3549 break;
3550 case nir_intrinsic_shared_atomic_fmin:
3551 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3552 break;
3553 case nir_intrinsic_shared_atomic_fmax:
3554 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3555 break;
3556 case nir_intrinsic_shared_atomic_fcomp_swap:
3557 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3558 break;
3559
3560 case nir_intrinsic_load_shared: {
3561 assert(devinfo->gen >= 7);
3562 assert(stage == MESA_SHADER_COMPUTE);
3563
3564 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3565 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3566 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3567 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3568 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3569
3570 /* Make dest unsigned because that's what the temporary will be */
3571 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3572
3573 /* Read the vector */
3574 if (nir_intrinsic_align(instr) >= 4) {
3575 assert(nir_dest_bit_size(instr->dest) == 32);
3576 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3577 fs_inst *inst =
3578 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3579 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3580 inst->size_written = instr->num_components * dispatch_width * 4;
3581 } else {
3582 assert(nir_dest_bit_size(instr->dest) <= 32);
3583 assert(nir_dest_num_components(instr->dest) == 1);
3584 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3585
3586 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3587 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3588 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3589 bld.MOV(dest, read_result);
3590 }
3591 break;
3592 }
3593
3594 case nir_intrinsic_store_shared: {
3595 assert(devinfo->gen >= 7);
3596 assert(stage == MESA_SHADER_COMPUTE);
3597
3598 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3599 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3600 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3601 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3602 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3603
3604 fs_reg data = get_nir_src(instr->src[0]);
3605 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3606
3607 assert(nir_intrinsic_write_mask(instr) ==
3608 (1u << instr->num_components) - 1);
3609 if (nir_intrinsic_align(instr) >= 4) {
3610 assert(nir_src_bit_size(instr->src[0]) == 32);
3611 assert(nir_src_num_components(instr->src[0]) <= 4);
3612 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3613 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3614 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3615 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3616 } else {
3617 assert(nir_src_bit_size(instr->src[0]) <= 32);
3618 assert(nir_src_num_components(instr->src[0]) == 1);
3619 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3620
3621 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3622 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3623
3624 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3625 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3626 }
3627 break;
3628 }
3629
3630 default:
3631 nir_emit_intrinsic(bld, instr);
3632 break;
3633 }
3634 }
3635
3636 static fs_reg
3637 brw_nir_reduction_op_identity(const fs_builder &bld,
3638 nir_op op, brw_reg_type type)
3639 {
3640 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3641 switch (type_sz(type)) {
3642 case 2:
3643 assert(type != BRW_REGISTER_TYPE_HF);
3644 return retype(brw_imm_uw(value.u16[0]), type);
3645 case 4:
3646 return retype(brw_imm_ud(value.u32[0]), type);
3647 case 8:
3648 if (type == BRW_REGISTER_TYPE_DF)
3649 return setup_imm_df(bld, value.f64[0]);
3650 else
3651 return retype(brw_imm_u64(value.u64[0]), type);
3652 default:
3653 unreachable("Invalid type size");
3654 }
3655 }
3656
3657 static opcode
3658 brw_op_for_nir_reduction_op(nir_op op)
3659 {
3660 switch (op) {
3661 case nir_op_iadd: return BRW_OPCODE_ADD;
3662 case nir_op_fadd: return BRW_OPCODE_ADD;
3663 case nir_op_imul: return BRW_OPCODE_MUL;
3664 case nir_op_fmul: return BRW_OPCODE_MUL;
3665 case nir_op_imin: return BRW_OPCODE_SEL;
3666 case nir_op_umin: return BRW_OPCODE_SEL;
3667 case nir_op_fmin: return BRW_OPCODE_SEL;
3668 case nir_op_imax: return BRW_OPCODE_SEL;
3669 case nir_op_umax: return BRW_OPCODE_SEL;
3670 case nir_op_fmax: return BRW_OPCODE_SEL;
3671 case nir_op_iand: return BRW_OPCODE_AND;
3672 case nir_op_ior: return BRW_OPCODE_OR;
3673 case nir_op_ixor: return BRW_OPCODE_XOR;
3674 default:
3675 unreachable("Invalid reduction operation");
3676 }
3677 }
3678
3679 static brw_conditional_mod
3680 brw_cond_mod_for_nir_reduction_op(nir_op op)
3681 {
3682 switch (op) {
3683 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3684 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3685 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3686 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3687 case nir_op_imin: return BRW_CONDITIONAL_L;
3688 case nir_op_umin: return BRW_CONDITIONAL_L;
3689 case nir_op_fmin: return BRW_CONDITIONAL_L;
3690 case nir_op_imax: return BRW_CONDITIONAL_GE;
3691 case nir_op_umax: return BRW_CONDITIONAL_GE;
3692 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3693 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3694 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3695 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3696 default:
3697 unreachable("Invalid reduction operation");
3698 }
3699 }
3700
3701 fs_reg
3702 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3703 nir_intrinsic_instr *instr)
3704 {
3705 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3706
3707 if (stage_prog_data->binding_table.image_start > 0) {
3708 if (image.file == BRW_IMMEDIATE_VALUE) {
3709 image.d += stage_prog_data->binding_table.image_start;
3710 } else {
3711 bld.ADD(image, image,
3712 brw_imm_d(stage_prog_data->binding_table.image_start));
3713 }
3714 }
3715
3716 return bld.emit_uniformize(image);
3717 }
3718
3719 fs_reg
3720 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3721 nir_intrinsic_instr *instr)
3722 {
3723 /* SSBO stores are weird in that their index is in src[1] */
3724 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3725
3726 fs_reg surf_index;
3727 if (nir_src_is_const(instr->src[src])) {
3728 unsigned index = stage_prog_data->binding_table.ssbo_start +
3729 nir_src_as_uint(instr->src[src]);
3730 surf_index = brw_imm_ud(index);
3731 } else {
3732 surf_index = vgrf(glsl_type::uint_type);
3733 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3734 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3735 }
3736
3737 return bld.emit_uniformize(surf_index);
3738 }
3739
3740 static unsigned
3741 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3742 {
3743 switch (nir_intrinsic_image_dim(instr)) {
3744 case GLSL_SAMPLER_DIM_1D:
3745 return 1 + nir_intrinsic_image_array(instr);
3746 case GLSL_SAMPLER_DIM_2D:
3747 case GLSL_SAMPLER_DIM_RECT:
3748 return 2 + nir_intrinsic_image_array(instr);
3749 case GLSL_SAMPLER_DIM_3D:
3750 case GLSL_SAMPLER_DIM_CUBE:
3751 return 3;
3752 case GLSL_SAMPLER_DIM_BUF:
3753 return 1;
3754 case GLSL_SAMPLER_DIM_MS:
3755 return 2 + nir_intrinsic_image_array(instr);
3756 default:
3757 unreachable("Invalid image dimension");
3758 }
3759 }
3760
3761 void
3762 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3763 {
3764 fs_reg dest;
3765 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3766 dest = get_nir_dest(instr->dest);
3767
3768 switch (instr->intrinsic) {
3769 case nir_intrinsic_image_load:
3770 case nir_intrinsic_image_store:
3771 case nir_intrinsic_image_atomic_add:
3772 case nir_intrinsic_image_atomic_min:
3773 case nir_intrinsic_image_atomic_max:
3774 case nir_intrinsic_image_atomic_and:
3775 case nir_intrinsic_image_atomic_or:
3776 case nir_intrinsic_image_atomic_xor:
3777 case nir_intrinsic_image_atomic_exchange:
3778 case nir_intrinsic_image_atomic_comp_swap: {
3779 if (stage == MESA_SHADER_FRAGMENT &&
3780 instr->intrinsic != nir_intrinsic_image_load)
3781 brw_wm_prog_data(prog_data)->has_side_effects = true;
3782
3783 /* Get some metadata from the image intrinsic. */
3784 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3785 const GLenum format = nir_intrinsic_format(instr);
3786
3787 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3788 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3789 get_nir_image_intrinsic_image(bld, instr);
3790 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3791 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
3792 brw_imm_ud(image_intrinsic_coord_components(instr));
3793
3794 /* Emit an image load, store or atomic op. */
3795 if (instr->intrinsic == nir_intrinsic_image_load) {
3796 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3797 fs_inst *inst =
3798 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
3799 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3800 inst->size_written = instr->num_components * dispatch_width * 4;
3801 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3802 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3803 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
3804 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
3805 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3806 } else {
3807 int op;
3808 unsigned num_srcs = info->num_srcs;
3809
3810 switch (instr->intrinsic) {
3811 case nir_intrinsic_image_atomic_add:
3812 assert(num_srcs == 4);
3813
3814 op = get_op_for_atomic_add(instr, 3);
3815
3816 if (op != BRW_AOP_ADD)
3817 num_srcs = 3;
3818 break;
3819 case nir_intrinsic_image_atomic_min:
3820 assert(format == GL_R32UI || format == GL_R32I);
3821 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3822 break;
3823 case nir_intrinsic_image_atomic_max:
3824 assert(format == GL_R32UI || format == GL_R32I);
3825 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3826 break;
3827 case nir_intrinsic_image_atomic_and:
3828 op = BRW_AOP_AND;
3829 break;
3830 case nir_intrinsic_image_atomic_or:
3831 op = BRW_AOP_OR;
3832 break;
3833 case nir_intrinsic_image_atomic_xor:
3834 op = BRW_AOP_XOR;
3835 break;
3836 case nir_intrinsic_image_atomic_exchange:
3837 op = BRW_AOP_MOV;
3838 break;
3839 case nir_intrinsic_image_atomic_comp_swap:
3840 op = BRW_AOP_CMPWR;
3841 break;
3842 default:
3843 unreachable("Not reachable.");
3844 }
3845
3846 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
3847
3848 fs_reg data;
3849 if (num_srcs >= 4)
3850 data = get_nir_src(instr->src[3]);
3851 if (num_srcs >= 5) {
3852 fs_reg tmp = bld.vgrf(data.type, 2);
3853 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
3854 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
3855 data = tmp;
3856 }
3857 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3858
3859 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
3860 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3861 }
3862 break;
3863 }
3864
3865 case nir_intrinsic_image_size: {
3866 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3867 * into will handle the binding table index for us in the geneerator.
3868 */
3869 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3870 BRW_REGISTER_TYPE_UD);
3871 image = bld.emit_uniformize(image);
3872
3873 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3874 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
3875 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
3876 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
3877 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
3878
3879 /* Since the image size is always uniform, we can just emit a SIMD8
3880 * query instruction and splat the result out.
3881 */
3882 const fs_builder ubld = bld.exec_all().group(8, 0);
3883
3884 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3885 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
3886 tmp, srcs, ARRAY_SIZE(srcs));
3887 inst->size_written = 4 * REG_SIZE;
3888
3889 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3890 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3891 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3892 offset(retype(dest, tmp.type), bld, c),
3893 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3894 } else {
3895 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3896 component(offset(tmp, ubld, c), 0));
3897 }
3898 }
3899 break;
3900 }
3901
3902 case nir_intrinsic_image_load_raw_intel: {
3903 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3904 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3905 get_nir_image_intrinsic_image(bld, instr);
3906 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3907 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3908 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3909
3910 fs_inst *inst =
3911 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3912 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3913 inst->size_written = instr->num_components * dispatch_width * 4;
3914 break;
3915 }
3916
3917 case nir_intrinsic_image_store_raw_intel: {
3918 if (stage == MESA_SHADER_FRAGMENT)
3919 brw_wm_prog_data(prog_data)->has_side_effects = true;
3920
3921 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3922 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3923 get_nir_image_intrinsic_image(bld, instr);
3924 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3925 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
3926 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3927 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3928
3929 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3930 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3931 break;
3932 }
3933
3934 case nir_intrinsic_group_memory_barrier:
3935 case nir_intrinsic_memory_barrier_shared:
3936 case nir_intrinsic_memory_barrier_atomic_counter:
3937 case nir_intrinsic_memory_barrier_buffer:
3938 case nir_intrinsic_memory_barrier_image:
3939 case nir_intrinsic_memory_barrier: {
3940 const fs_builder ubld = bld.group(8, 0);
3941 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3942 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3943 ->size_written = 2 * REG_SIZE;
3944 break;
3945 }
3946
3947 case nir_intrinsic_shader_clock: {
3948 /* We cannot do anything if there is an event, so ignore it for now */
3949 const fs_reg shader_clock = get_timestamp(bld);
3950 const fs_reg srcs[] = { component(shader_clock, 0),
3951 component(shader_clock, 1) };
3952 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3953 break;
3954 }
3955
3956 case nir_intrinsic_image_samples:
3957 /* The driver does not support multi-sampled images. */
3958 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3959 break;
3960
3961 case nir_intrinsic_load_uniform: {
3962 /* Offsets are in bytes but they should always aligned to
3963 * the type size
3964 */
3965 assert(instr->const_index[0] % 4 == 0 ||
3966 instr->const_index[0] % type_sz(dest.type) == 0);
3967
3968 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3969
3970 if (nir_src_is_const(instr->src[0])) {
3971 unsigned load_offset = nir_src_as_uint(instr->src[0]);
3972 assert(load_offset % type_sz(dest.type) == 0);
3973 /* For 16-bit types we add the module of the const_index[0]
3974 * offset to access to not 32-bit aligned element
3975 */
3976 src.offset = load_offset + instr->const_index[0] % 4;
3977
3978 for (unsigned j = 0; j < instr->num_components; j++) {
3979 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3980 }
3981 } else {
3982 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3983 BRW_REGISTER_TYPE_UD);
3984
3985 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3986 * go past the end of the uniform. In order to keep the n'th
3987 * component from running past, we subtract off the size of all but
3988 * one component of the vector.
3989 */
3990 assert(instr->const_index[1] >=
3991 instr->num_components * (int) type_sz(dest.type));
3992 unsigned read_size = instr->const_index[1] -
3993 (instr->num_components - 1) * type_sz(dest.type);
3994
3995 bool supports_64bit_indirects =
3996 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
3997
3998 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
3999 for (unsigned j = 0; j < instr->num_components; j++) {
4000 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4001 offset(dest, bld, j), offset(src, bld, j),
4002 indirect, brw_imm_ud(read_size));
4003 }
4004 } else {
4005 const unsigned num_mov_indirects =
4006 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4007 /* We read a little bit less per MOV INDIRECT, as they are now
4008 * 32-bits ones instead of 64-bit. Fix read_size then.
4009 */
4010 const unsigned read_size_32bit = read_size -
4011 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4012 for (unsigned j = 0; j < instr->num_components; j++) {
4013 for (unsigned i = 0; i < num_mov_indirects; i++) {
4014 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4015 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4016 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4017 indirect, brw_imm_ud(read_size_32bit));
4018 }
4019 }
4020 }
4021 }
4022 break;
4023 }
4024
4025 case nir_intrinsic_load_ubo: {
4026 fs_reg surf_index;
4027 if (nir_src_is_const(instr->src[0])) {
4028 const unsigned index = stage_prog_data->binding_table.ubo_start +
4029 nir_src_as_uint(instr->src[0]);
4030 surf_index = brw_imm_ud(index);
4031 } else {
4032 /* The block index is not a constant. Evaluate the index expression
4033 * per-channel and add the base UBO index; we have to select a value
4034 * from any live channel.
4035 */
4036 surf_index = vgrf(glsl_type::uint_type);
4037 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4038 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4039 surf_index = bld.emit_uniformize(surf_index);
4040 }
4041
4042 if (!nir_src_is_const(instr->src[1])) {
4043 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4044 BRW_REGISTER_TYPE_UD);
4045
4046 for (int i = 0; i < instr->num_components; i++)
4047 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4048 base_offset, i * type_sz(dest.type));
4049 } else {
4050 /* Even if we are loading doubles, a pull constant load will load
4051 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4052 * need to load a full dvec4 we will have to emit 2 loads. This is
4053 * similar to demote_pull_constants(), except that in that case we
4054 * see individual accesses to each component of the vector and then
4055 * we let CSE deal with duplicate loads. Here we see a vector access
4056 * and we have to split it if necessary.
4057 */
4058 const unsigned type_size = type_sz(dest.type);
4059 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4060
4061 /* See if we've selected this as a push constant candidate */
4062 if (nir_src_is_const(instr->src[0])) {
4063 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4064 const unsigned offset_256b = load_offset / 32;
4065
4066 fs_reg push_reg;
4067 for (int i = 0; i < 4; i++) {
4068 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4069 if (range->block == ubo_block &&
4070 offset_256b >= range->start &&
4071 offset_256b < range->start + range->length) {
4072
4073 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4074 push_reg.offset = load_offset - 32 * range->start;
4075 break;
4076 }
4077 }
4078
4079 if (push_reg.file != BAD_FILE) {
4080 for (unsigned i = 0; i < instr->num_components; i++) {
4081 bld.MOV(offset(dest, bld, i),
4082 byte_offset(push_reg, i * type_size));
4083 }
4084 break;
4085 }
4086 }
4087
4088 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4089 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4090 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4091
4092 for (unsigned c = 0; c < instr->num_components;) {
4093 const unsigned base = load_offset + c * type_size;
4094 /* Number of usable components in the next block-aligned load. */
4095 const unsigned count = MIN2(instr->num_components - c,
4096 (block_sz - base % block_sz) / type_size);
4097
4098 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4099 packed_consts, surf_index,
4100 brw_imm_ud(base & ~(block_sz - 1)));
4101
4102 const fs_reg consts =
4103 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4104 dest.type);
4105
4106 for (unsigned d = 0; d < count; d++)
4107 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4108
4109 c += count;
4110 }
4111 }
4112 break;
4113 }
4114
4115 case nir_intrinsic_load_global: {
4116 assert(devinfo->gen >= 8);
4117
4118 if (nir_intrinsic_align(instr) >= 4) {
4119 assert(nir_dest_bit_size(instr->dest) == 32);
4120 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4121 dest,
4122 get_nir_src(instr->src[0]), /* Address */
4123 fs_reg(), /* No source data */
4124 brw_imm_ud(instr->num_components));
4125 inst->size_written = instr->num_components *
4126 inst->dst.component_size(inst->exec_size);
4127 } else {
4128 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4129 assert(bit_size <= 32);
4130 assert(nir_dest_num_components(instr->dest) == 1);
4131 brw_reg_type data_type =
4132 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4133 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4134 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4135 tmp,
4136 get_nir_src(instr->src[0]), /* Address */
4137 fs_reg(), /* No source data */
4138 brw_imm_ud(bit_size));
4139 bld.MOV(retype(dest, data_type), tmp);
4140 }
4141 break;
4142 }
4143
4144 case nir_intrinsic_store_global:
4145 assert(devinfo->gen >= 8);
4146
4147 if (stage == MESA_SHADER_FRAGMENT)
4148 brw_wm_prog_data(prog_data)->has_side_effects = true;
4149
4150 if (nir_intrinsic_align(instr) >= 4) {
4151 assert(nir_src_bit_size(instr->src[0]) == 32);
4152 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4153 fs_reg(),
4154 get_nir_src(instr->src[1]), /* Address */
4155 get_nir_src(instr->src[0]), /* Data */
4156 brw_imm_ud(instr->num_components));
4157 } else {
4158 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4159 assert(bit_size <= 32);
4160 assert(nir_src_num_components(instr->src[0]) == 1);
4161 brw_reg_type data_type =
4162 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4163 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4164 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4165 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4166 fs_reg(),
4167 get_nir_src(instr->src[1]), /* Address */
4168 tmp, /* Data */
4169 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4170 }
4171 break;
4172
4173 case nir_intrinsic_global_atomic_add:
4174 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4175 break;
4176 case nir_intrinsic_global_atomic_imin:
4177 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4178 break;
4179 case nir_intrinsic_global_atomic_umin:
4180 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4181 break;
4182 case nir_intrinsic_global_atomic_imax:
4183 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4184 break;
4185 case nir_intrinsic_global_atomic_umax:
4186 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4187 break;
4188 case nir_intrinsic_global_atomic_and:
4189 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4190 break;
4191 case nir_intrinsic_global_atomic_or:
4192 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4193 break;
4194 case nir_intrinsic_global_atomic_xor:
4195 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4196 break;
4197 case nir_intrinsic_global_atomic_exchange:
4198 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4199 break;
4200 case nir_intrinsic_global_atomic_comp_swap:
4201 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4202 break;
4203 case nir_intrinsic_global_atomic_fmin:
4204 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4205 break;
4206 case nir_intrinsic_global_atomic_fmax:
4207 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4208 break;
4209 case nir_intrinsic_global_atomic_fcomp_swap:
4210 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4211 break;
4212
4213 case nir_intrinsic_load_ssbo: {
4214 assert(devinfo->gen >= 7);
4215
4216 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4217 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4218 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4219 get_nir_ssbo_intrinsic_index(bld, instr);
4220 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4221 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4222
4223 /* Make dest unsigned because that's what the temporary will be */
4224 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4225
4226 /* Read the vector */
4227 if (nir_intrinsic_align(instr) >= 4) {
4228 assert(nir_dest_bit_size(instr->dest) == 32);
4229 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4230 fs_inst *inst =
4231 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4232 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4233 inst->size_written = instr->num_components * dispatch_width * 4;
4234 } else {
4235 assert(nir_dest_bit_size(instr->dest) <= 32);
4236 assert(nir_dest_num_components(instr->dest) == 1);
4237 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4238
4239 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4240 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4241 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4242 bld.MOV(dest, read_result);
4243 }
4244 break;
4245 }
4246
4247 case nir_intrinsic_store_ssbo: {
4248 assert(devinfo->gen >= 7);
4249
4250 if (stage == MESA_SHADER_FRAGMENT)
4251 brw_wm_prog_data(prog_data)->has_side_effects = true;
4252
4253 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4254 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4255 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4256 get_nir_ssbo_intrinsic_index(bld, instr);
4257 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4258 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4259
4260 fs_reg data = get_nir_src(instr->src[0]);
4261 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4262
4263 assert(nir_intrinsic_write_mask(instr) ==
4264 (1u << instr->num_components) - 1);
4265 if (nir_intrinsic_align(instr) >= 4) {
4266 assert(nir_src_bit_size(instr->src[0]) == 32);
4267 assert(nir_src_num_components(instr->src[0]) <= 4);
4268 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4269 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4270 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4271 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4272 } else {
4273 assert(nir_src_bit_size(instr->src[0]) <= 32);
4274 assert(nir_src_num_components(instr->src[0]) == 1);
4275 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4276
4277 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4278 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4279
4280 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4281 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4282 }
4283 break;
4284 }
4285
4286 case nir_intrinsic_store_output: {
4287 fs_reg src = get_nir_src(instr->src[0]);
4288
4289 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4290 unsigned num_components = instr->num_components;
4291 unsigned first_component = nir_intrinsic_component(instr);
4292 if (nir_src_bit_size(instr->src[0]) == 64) {
4293 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4294 num_components *= 2;
4295 }
4296
4297 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4298 4 * store_offset), src.type);
4299 for (unsigned j = 0; j < num_components; j++) {
4300 bld.MOV(offset(new_dest, bld, j + first_component),
4301 offset(src, bld, j));
4302 }
4303 break;
4304 }
4305
4306 case nir_intrinsic_ssbo_atomic_add:
4307 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4308 break;
4309 case nir_intrinsic_ssbo_atomic_imin:
4310 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4311 break;
4312 case nir_intrinsic_ssbo_atomic_umin:
4313 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4314 break;
4315 case nir_intrinsic_ssbo_atomic_imax:
4316 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4317 break;
4318 case nir_intrinsic_ssbo_atomic_umax:
4319 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4320 break;
4321 case nir_intrinsic_ssbo_atomic_and:
4322 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4323 break;
4324 case nir_intrinsic_ssbo_atomic_or:
4325 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4326 break;
4327 case nir_intrinsic_ssbo_atomic_xor:
4328 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4329 break;
4330 case nir_intrinsic_ssbo_atomic_exchange:
4331 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4332 break;
4333 case nir_intrinsic_ssbo_atomic_comp_swap:
4334 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4335 break;
4336 case nir_intrinsic_ssbo_atomic_fmin:
4337 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4338 break;
4339 case nir_intrinsic_ssbo_atomic_fmax:
4340 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4341 break;
4342 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4343 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4344 break;
4345
4346 case nir_intrinsic_get_buffer_size: {
4347 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4348 nir_src_as_uint(instr->src[0]) : 0;
4349
4350 /* A resinfo's sampler message is used to get the buffer size. The
4351 * SIMD8's writeback message consists of four registers and SIMD16's
4352 * writeback message consists of 8 destination registers (two per each
4353 * component). Because we are only interested on the first channel of
4354 * the first returned component, where resinfo returns the buffer size
4355 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4356 * the dispatch width.
4357 */
4358 const fs_builder ubld = bld.exec_all().group(8, 0);
4359 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4360 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4361
4362 /* Set LOD = 0 */
4363 ubld.MOV(src_payload, brw_imm_d(0));
4364
4365 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4366 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4367 src_payload, brw_imm_ud(index));
4368 inst->header_size = 0;
4369 inst->mlen = 1;
4370 inst->size_written = 4 * REG_SIZE;
4371
4372 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4373 *
4374 * "Out-of-bounds checking is always performed at a DWord granularity. If
4375 * any part of the DWord is out-of-bounds then the whole DWord is
4376 * considered out-of-bounds."
4377 *
4378 * This implies that types with size smaller than 4-bytes need to be
4379 * padded if they don't complete the last dword of the buffer. But as we
4380 * need to maintain the original size we need to reverse the padding
4381 * calculation to return the correct size to know the number of elements
4382 * of an unsized array. As we stored in the last two bits of the surface
4383 * size the needed padding for the buffer, we calculate here the
4384 * original buffer_size reversing the surface_size calculation:
4385 *
4386 * surface_size = isl_align(buffer_size, 4) +
4387 * (isl_align(buffer_size) - buffer_size)
4388 *
4389 * buffer_size = surface_size & ~3 - surface_size & 3
4390 */
4391
4392 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4393 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4394 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4395
4396 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4397 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4398 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4399
4400 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4401 break;
4402 }
4403
4404 case nir_intrinsic_load_subgroup_invocation:
4405 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4406 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4407 break;
4408
4409 case nir_intrinsic_load_subgroup_eq_mask:
4410 case nir_intrinsic_load_subgroup_ge_mask:
4411 case nir_intrinsic_load_subgroup_gt_mask:
4412 case nir_intrinsic_load_subgroup_le_mask:
4413 case nir_intrinsic_load_subgroup_lt_mask:
4414 unreachable("not reached");
4415
4416 case nir_intrinsic_vote_any: {
4417 const fs_builder ubld = bld.exec_all().group(1, 0);
4418
4419 /* The any/all predicates do not consider channel enables. To prevent
4420 * dead channels from affecting the result, we initialize the flag with
4421 * with the identity value for the logical operation.
4422 */
4423 if (dispatch_width == 32) {
4424 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4425 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4426 brw_imm_ud(0));
4427 } else {
4428 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4429 }
4430 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4431
4432 /* For some reason, the any/all predicates don't work properly with
4433 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4434 * doesn't read the correct subset of the flag register and you end up
4435 * getting garbage in the second half. Work around this by using a pair
4436 * of 1-wide MOVs and scattering the result.
4437 */
4438 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4439 ubld.MOV(res1, brw_imm_d(0));
4440 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4441 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4442 BRW_PREDICATE_ALIGN1_ANY32H,
4443 ubld.MOV(res1, brw_imm_d(-1)));
4444
4445 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4446 break;
4447 }
4448 case nir_intrinsic_vote_all: {
4449 const fs_builder ubld = bld.exec_all().group(1, 0);
4450
4451 /* The any/all predicates do not consider channel enables. To prevent
4452 * dead channels from affecting the result, we initialize the flag with
4453 * with the identity value for the logical operation.
4454 */
4455 if (dispatch_width == 32) {
4456 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4457 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4458 brw_imm_ud(0xffffffff));
4459 } else {
4460 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4461 }
4462 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4463
4464 /* For some reason, the any/all predicates don't work properly with
4465 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4466 * doesn't read the correct subset of the flag register and you end up
4467 * getting garbage in the second half. Work around this by using a pair
4468 * of 1-wide MOVs and scattering the result.
4469 */
4470 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4471 ubld.MOV(res1, brw_imm_d(0));
4472 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4473 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4474 BRW_PREDICATE_ALIGN1_ALL32H,
4475 ubld.MOV(res1, brw_imm_d(-1)));
4476
4477 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4478 break;
4479 }
4480 case nir_intrinsic_vote_feq:
4481 case nir_intrinsic_vote_ieq: {
4482 fs_reg value = get_nir_src(instr->src[0]);
4483 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4484 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4485 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4486 }
4487
4488 fs_reg uniformized = bld.emit_uniformize(value);
4489 const fs_builder ubld = bld.exec_all().group(1, 0);
4490
4491 /* The any/all predicates do not consider channel enables. To prevent
4492 * dead channels from affecting the result, we initialize the flag with
4493 * with the identity value for the logical operation.
4494 */
4495 if (dispatch_width == 32) {
4496 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4497 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4498 brw_imm_ud(0xffffffff));
4499 } else {
4500 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4501 }
4502 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4503
4504 /* For some reason, the any/all predicates don't work properly with
4505 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4506 * doesn't read the correct subset of the flag register and you end up
4507 * getting garbage in the second half. Work around this by using a pair
4508 * of 1-wide MOVs and scattering the result.
4509 */
4510 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4511 ubld.MOV(res1, brw_imm_d(0));
4512 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4513 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4514 BRW_PREDICATE_ALIGN1_ALL32H,
4515 ubld.MOV(res1, brw_imm_d(-1)));
4516
4517 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4518 break;
4519 }
4520
4521 case nir_intrinsic_ballot: {
4522 const fs_reg value = retype(get_nir_src(instr->src[0]),
4523 BRW_REGISTER_TYPE_UD);
4524 struct brw_reg flag = brw_flag_reg(0, 0);
4525 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4526 * as f0.0. This is a problem for fragment programs as we currently use
4527 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4528 * programs yet so this isn't a problem. When we do, something will
4529 * have to change.
4530 */
4531 if (dispatch_width == 32)
4532 flag.type = BRW_REGISTER_TYPE_UD;
4533
4534 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4535 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4536
4537 if (instr->dest.ssa.bit_size > 32) {
4538 dest.type = BRW_REGISTER_TYPE_UQ;
4539 } else {
4540 dest.type = BRW_REGISTER_TYPE_UD;
4541 }
4542 bld.MOV(dest, flag);
4543 break;
4544 }
4545
4546 case nir_intrinsic_read_invocation: {
4547 const fs_reg value = get_nir_src(instr->src[0]);
4548 const fs_reg invocation = get_nir_src(instr->src[1]);
4549 fs_reg tmp = bld.vgrf(value.type);
4550
4551 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4552 bld.emit_uniformize(invocation));
4553
4554 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4555 break;
4556 }
4557
4558 case nir_intrinsic_read_first_invocation: {
4559 const fs_reg value = get_nir_src(instr->src[0]);
4560 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4561 break;
4562 }
4563
4564 case nir_intrinsic_shuffle: {
4565 const fs_reg value = get_nir_src(instr->src[0]);
4566 const fs_reg index = get_nir_src(instr->src[1]);
4567
4568 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4569 break;
4570 }
4571
4572 case nir_intrinsic_first_invocation: {
4573 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4574 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4575 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4576 fs_reg(component(tmp, 0)));
4577 break;
4578 }
4579
4580 case nir_intrinsic_quad_broadcast: {
4581 const fs_reg value = get_nir_src(instr->src[0]);
4582 const unsigned index = nir_src_as_uint(instr->src[1]);
4583
4584 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4585 value, brw_imm_ud(index), brw_imm_ud(4));
4586 break;
4587 }
4588
4589 case nir_intrinsic_quad_swap_horizontal: {
4590 const fs_reg value = get_nir_src(instr->src[0]);
4591 const fs_reg tmp = bld.vgrf(value.type);
4592 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4593
4594 const fs_reg src_left = horiz_stride(value, 2);
4595 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4596 const fs_reg tmp_left = horiz_stride(tmp, 2);
4597 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4598
4599 ubld.MOV(tmp_left, src_right);
4600 ubld.MOV(tmp_right, src_left);
4601
4602 bld.MOV(retype(dest, value.type), tmp);
4603 break;
4604 }
4605
4606 case nir_intrinsic_quad_swap_vertical: {
4607 const fs_reg value = get_nir_src(instr->src[0]);
4608 if (nir_src_bit_size(instr->src[0]) == 32) {
4609 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4610 const fs_reg tmp = bld.vgrf(value.type);
4611 const fs_builder ubld = bld.exec_all();
4612 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4613 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4614 bld.MOV(retype(dest, value.type), tmp);
4615 } else {
4616 /* For larger data types, we have to either emit dispatch_width many
4617 * MOVs or else fall back to doing indirects.
4618 */
4619 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4620 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4621 brw_imm_w(0x2));
4622 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4623 }
4624 break;
4625 }
4626
4627 case nir_intrinsic_quad_swap_diagonal: {
4628 const fs_reg value = get_nir_src(instr->src[0]);
4629 if (nir_src_bit_size(instr->src[0]) == 32) {
4630 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4631 const fs_reg tmp = bld.vgrf(value.type);
4632 const fs_builder ubld = bld.exec_all();
4633 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4634 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4635 bld.MOV(retype(dest, value.type), tmp);
4636 } else {
4637 /* For larger data types, we have to either emit dispatch_width many
4638 * MOVs or else fall back to doing indirects.
4639 */
4640 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4641 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4642 brw_imm_w(0x3));
4643 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4644 }
4645 break;
4646 }
4647
4648 case nir_intrinsic_reduce: {
4649 fs_reg src = get_nir_src(instr->src[0]);
4650 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4651 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4652 if (cluster_size == 0 || cluster_size > dispatch_width)
4653 cluster_size = dispatch_width;
4654
4655 /* Figure out the source type */
4656 src.type = brw_type_for_nir_type(devinfo,
4657 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4658 nir_src_bit_size(instr->src[0])));
4659
4660 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4661 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4662 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4663
4664 /* Set up a register for all of our scratching around and initialize it
4665 * to reduction operation's identity value.
4666 */
4667 fs_reg scan = bld.vgrf(src.type);
4668 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4669
4670 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4671
4672 dest.type = src.type;
4673 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4674 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4675 * the distance between clusters is at least 2 GRFs. In this case,
4676 * we don't need the weird striding of the CLUSTER_BROADCAST
4677 * instruction and can just do regular MOVs.
4678 */
4679 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4680 const unsigned groups =
4681 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4682 const unsigned group_size = dispatch_width / groups;
4683 for (unsigned i = 0; i < groups; i++) {
4684 const unsigned cluster = (i * group_size) / cluster_size;
4685 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4686 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4687 component(scan, comp));
4688 }
4689 } else {
4690 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4691 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4692 }
4693 break;
4694 }
4695
4696 case nir_intrinsic_inclusive_scan:
4697 case nir_intrinsic_exclusive_scan: {
4698 fs_reg src = get_nir_src(instr->src[0]);
4699 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4700
4701 /* Figure out the source type */
4702 src.type = brw_type_for_nir_type(devinfo,
4703 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4704 nir_src_bit_size(instr->src[0])));
4705
4706 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4707 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4708 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4709
4710 /* Set up a register for all of our scratching around and initialize it
4711 * to reduction operation's identity value.
4712 */
4713 fs_reg scan = bld.vgrf(src.type);
4714 const fs_builder allbld = bld.exec_all();
4715 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4716
4717 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4718 /* Exclusive scan is a bit harder because we have to do an annoying
4719 * shift of the contents before we can begin. To make things worse,
4720 * we can't do this with a normal stride; we have to use indirects.
4721 */
4722 fs_reg shifted = bld.vgrf(src.type);
4723 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4724 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4725 brw_imm_w(-1));
4726 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4727 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4728 scan = shifted;
4729 }
4730
4731 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4732
4733 bld.MOV(retype(dest, src.type), scan);
4734 break;
4735 }
4736
4737 case nir_intrinsic_begin_invocation_interlock: {
4738 const fs_builder ubld = bld.group(8, 0);
4739 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4740
4741 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4742 REG_SIZE;
4743
4744 break;
4745 }
4746
4747 case nir_intrinsic_end_invocation_interlock: {
4748 /* We don't need to do anything here */
4749 break;
4750 }
4751
4752 default:
4753 unreachable("unknown intrinsic");
4754 }
4755 }
4756
4757 void
4758 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4759 int op, nir_intrinsic_instr *instr)
4760 {
4761 if (stage == MESA_SHADER_FRAGMENT)
4762 brw_wm_prog_data(prog_data)->has_side_effects = true;
4763
4764 fs_reg dest;
4765 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4766 dest = get_nir_dest(instr->dest);
4767
4768 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4769 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4770 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4771 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4772 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4773
4774 fs_reg data;
4775 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4776 data = get_nir_src(instr->src[2]);
4777
4778 if (op == BRW_AOP_CMPWR) {
4779 fs_reg tmp = bld.vgrf(data.type, 2);
4780 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4781 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4782 data = tmp;
4783 }
4784 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4785
4786 /* Emit the actual atomic operation */
4787
4788 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4789 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4790 }
4791
4792 void
4793 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4794 int op, nir_intrinsic_instr *instr)
4795 {
4796 if (stage == MESA_SHADER_FRAGMENT)
4797 brw_wm_prog_data(prog_data)->has_side_effects = true;
4798
4799 fs_reg dest;
4800 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4801 dest = get_nir_dest(instr->dest);
4802
4803 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4804 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4805 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4806 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4807 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4808
4809 fs_reg data = get_nir_src(instr->src[2]);
4810 if (op == BRW_AOP_FCMPWR) {
4811 fs_reg tmp = bld.vgrf(data.type, 2);
4812 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4813 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4814 data = tmp;
4815 }
4816 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4817
4818 /* Emit the actual atomic operation */
4819
4820 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4821 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4822 }
4823
4824 void
4825 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4826 int op, nir_intrinsic_instr *instr)
4827 {
4828 fs_reg dest;
4829 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4830 dest = get_nir_dest(instr->dest);
4831
4832 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4833 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4834 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4835 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4836
4837 fs_reg data;
4838 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4839 data = get_nir_src(instr->src[1]);
4840 if (op == BRW_AOP_CMPWR) {
4841 fs_reg tmp = bld.vgrf(data.type, 2);
4842 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4843 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4844 data = tmp;
4845 }
4846 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4847
4848 /* Get the offset */
4849 if (nir_src_is_const(instr->src[0])) {
4850 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4851 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4852 } else {
4853 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4854 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4855 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4856 brw_imm_ud(instr->const_index[0]));
4857 }
4858
4859 /* Emit the actual atomic operation operation */
4860
4861 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4862 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4863 }
4864
4865 void
4866 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4867 int op, nir_intrinsic_instr *instr)
4868 {
4869 fs_reg dest;
4870 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4871 dest = get_nir_dest(instr->dest);
4872
4873 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4874 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4875 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4876 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4877
4878 fs_reg data = get_nir_src(instr->src[1]);
4879 if (op == BRW_AOP_FCMPWR) {
4880 fs_reg tmp = bld.vgrf(data.type, 2);
4881 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4882 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4883 data = tmp;
4884 }
4885 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4886
4887 /* Get the offset */
4888 if (nir_src_is_const(instr->src[0])) {
4889 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4890 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4891 } else {
4892 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4893 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4894 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4895 brw_imm_ud(instr->const_index[0]));
4896 }
4897
4898 /* Emit the actual atomic operation operation */
4899
4900 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4901 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4902 }
4903
4904 void
4905 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
4906 int op, nir_intrinsic_instr *instr)
4907 {
4908 if (stage == MESA_SHADER_FRAGMENT)
4909 brw_wm_prog_data(prog_data)->has_side_effects = true;
4910
4911 fs_reg dest;
4912 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4913 dest = get_nir_dest(instr->dest);
4914
4915 fs_reg addr = get_nir_src(instr->src[0]);
4916
4917 fs_reg data;
4918 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4919 data = get_nir_src(instr->src[1]);
4920
4921 if (op == BRW_AOP_CMPWR) {
4922 fs_reg tmp = bld.vgrf(data.type, 2);
4923 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4924 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4925 data = tmp;
4926 }
4927
4928 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4929 dest, addr, data, brw_imm_ud(op));
4930 }
4931
4932 void
4933 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
4934 int op, nir_intrinsic_instr *instr)
4935 {
4936 if (stage == MESA_SHADER_FRAGMENT)
4937 brw_wm_prog_data(prog_data)->has_side_effects = true;
4938
4939 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
4940 fs_reg dest = get_nir_dest(instr->dest);
4941
4942 fs_reg addr = get_nir_src(instr->src[0]);
4943
4944 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
4945 fs_reg data = get_nir_src(instr->src[1]);
4946
4947 if (op == BRW_AOP_FCMPWR) {
4948 fs_reg tmp = bld.vgrf(data.type, 2);
4949 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4950 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4951 data = tmp;
4952 }
4953
4954 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4955 dest, addr, data, brw_imm_ud(op));
4956 }
4957
4958 void
4959 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4960 {
4961 unsigned texture = instr->texture_index;
4962 unsigned sampler = instr->sampler_index;
4963
4964 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4965
4966 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4967 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4968
4969 int lod_components = 0;
4970
4971 /* The hardware requires a LOD for buffer textures */
4972 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4973 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4974
4975 uint32_t header_bits = 0;
4976 for (unsigned i = 0; i < instr->num_srcs; i++) {
4977 fs_reg src = get_nir_src(instr->src[i].src);
4978 switch (instr->src[i].src_type) {
4979 case nir_tex_src_bias:
4980 srcs[TEX_LOGICAL_SRC_LOD] =
4981 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4982 break;
4983 case nir_tex_src_comparator:
4984 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4985 break;
4986 case nir_tex_src_coord:
4987 switch (instr->op) {
4988 case nir_texop_txf:
4989 case nir_texop_txf_ms:
4990 case nir_texop_txf_ms_mcs:
4991 case nir_texop_samples_identical:
4992 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4993 break;
4994 default:
4995 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4996 break;
4997 }
4998 break;
4999 case nir_tex_src_ddx:
5000 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5001 lod_components = nir_tex_instr_src_size(instr, i);
5002 break;
5003 case nir_tex_src_ddy:
5004 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5005 break;
5006 case nir_tex_src_lod:
5007 switch (instr->op) {
5008 case nir_texop_txs:
5009 srcs[TEX_LOGICAL_SRC_LOD] =
5010 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5011 break;
5012 case nir_texop_txf:
5013 srcs[TEX_LOGICAL_SRC_LOD] =
5014 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5015 break;
5016 default:
5017 srcs[TEX_LOGICAL_SRC_LOD] =
5018 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5019 break;
5020 }
5021 break;
5022 case nir_tex_src_min_lod:
5023 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5024 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5025 break;
5026 case nir_tex_src_ms_index:
5027 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5028 break;
5029
5030 case nir_tex_src_offset: {
5031 nir_const_value *const_offset =
5032 nir_src_as_const_value(instr->src[i].src);
5033 assert(nir_src_bit_size(instr->src[i].src) == 32);
5034 unsigned offset_bits = 0;
5035 if (const_offset &&
5036 brw_texture_offset(const_offset->i32,
5037 nir_tex_instr_src_size(instr, i),
5038 &offset_bits)) {
5039 header_bits |= offset_bits;
5040 } else {
5041 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5042 retype(src, BRW_REGISTER_TYPE_D);
5043 }
5044 break;
5045 }
5046
5047 case nir_tex_src_projector:
5048 unreachable("should be lowered");
5049
5050 case nir_tex_src_texture_offset: {
5051 /* Emit code to evaluate the actual indexing expression */
5052 fs_reg tmp = vgrf(glsl_type::uint_type);
5053 bld.ADD(tmp, src, brw_imm_ud(texture));
5054 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5055 break;
5056 }
5057
5058 case nir_tex_src_sampler_offset: {
5059 /* Emit code to evaluate the actual indexing expression */
5060 fs_reg tmp = vgrf(glsl_type::uint_type);
5061 bld.ADD(tmp, src, brw_imm_ud(sampler));
5062 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5063 break;
5064 }
5065
5066 case nir_tex_src_ms_mcs:
5067 assert(instr->op == nir_texop_txf_ms);
5068 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5069 break;
5070
5071 case nir_tex_src_plane: {
5072 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5073 const uint32_t texture_index =
5074 instr->texture_index +
5075 stage_prog_data->binding_table.plane_start[plane] -
5076 stage_prog_data->binding_table.texture_start;
5077
5078 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5079 break;
5080 }
5081
5082 default:
5083 unreachable("unknown texture source");
5084 }
5085 }
5086
5087 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5088 (instr->op == nir_texop_txf_ms ||
5089 instr->op == nir_texop_samples_identical)) {
5090 if (devinfo->gen >= 7 &&
5091 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5092 srcs[TEX_LOGICAL_SRC_MCS] =
5093 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5094 instr->coord_components,
5095 srcs[TEX_LOGICAL_SRC_SURFACE]);
5096 } else {
5097 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5098 }
5099 }
5100
5101 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5102 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5103
5104 enum opcode opcode;
5105 switch (instr->op) {
5106 case nir_texop_tex:
5107 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5108 SHADER_OPCODE_TXL_LOGICAL);
5109 break;
5110 case nir_texop_txb:
5111 opcode = FS_OPCODE_TXB_LOGICAL;
5112 break;
5113 case nir_texop_txl:
5114 opcode = SHADER_OPCODE_TXL_LOGICAL;
5115 break;
5116 case nir_texop_txd:
5117 opcode = SHADER_OPCODE_TXD_LOGICAL;
5118 break;
5119 case nir_texop_txf:
5120 opcode = SHADER_OPCODE_TXF_LOGICAL;
5121 break;
5122 case nir_texop_txf_ms:
5123 if ((key_tex->msaa_16 & (1 << sampler)))
5124 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5125 else
5126 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5127 break;
5128 case nir_texop_txf_ms_mcs:
5129 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5130 break;
5131 case nir_texop_query_levels:
5132 case nir_texop_txs:
5133 opcode = SHADER_OPCODE_TXS_LOGICAL;
5134 break;
5135 case nir_texop_lod:
5136 opcode = SHADER_OPCODE_LOD_LOGICAL;
5137 break;
5138 case nir_texop_tg4:
5139 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5140 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5141 else
5142 opcode = SHADER_OPCODE_TG4_LOGICAL;
5143 break;
5144 case nir_texop_texture_samples:
5145 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5146 break;
5147 case nir_texop_samples_identical: {
5148 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5149
5150 /* If mcs is an immediate value, it means there is no MCS. In that case
5151 * just return false.
5152 */
5153 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5154 bld.MOV(dst, brw_imm_ud(0u));
5155 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5156 fs_reg tmp = vgrf(glsl_type::uint_type);
5157 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5158 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5159 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5160 } else {
5161 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5162 BRW_CONDITIONAL_EQ);
5163 }
5164 return;
5165 }
5166 default:
5167 unreachable("unknown texture opcode");
5168 }
5169
5170 if (instr->op == nir_texop_tg4) {
5171 if (instr->component == 1 &&
5172 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5173 /* gather4 sampler is broken for green channel on RG32F --
5174 * we must ask for blue instead.
5175 */
5176 header_bits |= 2 << 16;
5177 } else {
5178 header_bits |= instr->component << 16;
5179 }
5180 }
5181
5182 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5183 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5184 inst->offset = header_bits;
5185
5186 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5187 if (devinfo->gen >= 9 &&
5188 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5189 unsigned write_mask = instr->dest.is_ssa ?
5190 nir_ssa_def_components_read(&instr->dest.ssa):
5191 (1 << dest_size) - 1;
5192 assert(write_mask != 0); /* dead code should have been eliminated */
5193 inst->size_written = util_last_bit(write_mask) *
5194 inst->dst.component_size(inst->exec_size);
5195 } else {
5196 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5197 }
5198
5199 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5200 inst->shadow_compare = true;
5201
5202 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5203 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5204
5205 fs_reg nir_dest[4];
5206 for (unsigned i = 0; i < dest_size; i++)
5207 nir_dest[i] = offset(dst, bld, i);
5208
5209 if (instr->op == nir_texop_query_levels) {
5210 /* # levels is in .w */
5211 nir_dest[0] = offset(dst, bld, 3);
5212 } else if (instr->op == nir_texop_txs &&
5213 dest_size >= 3 && devinfo->gen < 7) {
5214 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5215 fs_reg depth = offset(dst, bld, 2);
5216 nir_dest[2] = vgrf(glsl_type::int_type);
5217 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5218 }
5219
5220 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5221 }
5222
5223 void
5224 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5225 {
5226 switch (instr->type) {
5227 case nir_jump_break:
5228 bld.emit(BRW_OPCODE_BREAK);
5229 break;
5230 case nir_jump_continue:
5231 bld.emit(BRW_OPCODE_CONTINUE);
5232 break;
5233 case nir_jump_return:
5234 default:
5235 unreachable("unknown jump");
5236 }
5237 }
5238
5239 /*
5240 * This helper takes a source register and un/shuffles it into the destination
5241 * register.
5242 *
5243 * If source type size is smaller than destination type size the operation
5244 * needed is a component shuffle. The opposite case would be an unshuffle. If
5245 * source/destination type size is equal a shuffle is done that would be
5246 * equivalent to a simple MOV.
5247 *
5248 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5249 * components .xyz 16-bit vector on SIMD8 would be.
5250 *
5251 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5252 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5253 *
5254 * This helper will return the following 2 32-bit components with the 16-bit
5255 * values shuffled:
5256 *
5257 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5258 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5259 *
5260 * For unshuffle, the example would be the opposite, a 64-bit type source
5261 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5262 * would be:
5263 *
5264 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5265 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5266 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5267 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5268 *
5269 * The returned result would be the following 4 32-bit components unshuffled:
5270 *
5271 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5272 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5273 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5274 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5275 *
5276 * - Source and destination register must not be overlapped.
5277 * - components units are measured in terms of the smaller type between
5278 * source and destination because we are un/shuffling the smaller
5279 * components from/into the bigger ones.
5280 * - first_component parameter allows skipping source components.
5281 */
5282 void
5283 shuffle_src_to_dst(const fs_builder &bld,
5284 const fs_reg &dst,
5285 const fs_reg &src,
5286 uint32_t first_component,
5287 uint32_t components)
5288 {
5289 if (type_sz(src.type) == type_sz(dst.type)) {
5290 assert(!regions_overlap(dst,
5291 type_sz(dst.type) * bld.dispatch_width() * components,
5292 offset(src, bld, first_component),
5293 type_sz(src.type) * bld.dispatch_width() * components));
5294 for (unsigned i = 0; i < components; i++) {
5295 bld.MOV(retype(offset(dst, bld, i), src.type),
5296 offset(src, bld, i + first_component));
5297 }
5298 } else if (type_sz(src.type) < type_sz(dst.type)) {
5299 /* Source is shuffled into destination */
5300 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5301 assert(!regions_overlap(dst,
5302 type_sz(dst.type) * bld.dispatch_width() *
5303 DIV_ROUND_UP(components, size_ratio),
5304 offset(src, bld, first_component),
5305 type_sz(src.type) * bld.dispatch_width() * components));
5306
5307 brw_reg_type shuffle_type =
5308 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5309 BRW_REGISTER_TYPE_D);
5310 for (unsigned i = 0; i < components; i++) {
5311 fs_reg shuffle_component_i =
5312 subscript(offset(dst, bld, i / size_ratio),
5313 shuffle_type, i % size_ratio);
5314 bld.MOV(shuffle_component_i,
5315 retype(offset(src, bld, i + first_component), shuffle_type));
5316 }
5317 } else {
5318 /* Source is unshuffled into destination */
5319 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5320 assert(!regions_overlap(dst,
5321 type_sz(dst.type) * bld.dispatch_width() * components,
5322 offset(src, bld, first_component / size_ratio),
5323 type_sz(src.type) * bld.dispatch_width() *
5324 DIV_ROUND_UP(components + (first_component % size_ratio),
5325 size_ratio)));
5326
5327 brw_reg_type shuffle_type =
5328 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5329 BRW_REGISTER_TYPE_D);
5330 for (unsigned i = 0; i < components; i++) {
5331 fs_reg shuffle_component_i =
5332 subscript(offset(src, bld, (first_component + i) / size_ratio),
5333 shuffle_type, (first_component + i) % size_ratio);
5334 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5335 shuffle_component_i);
5336 }
5337 }
5338 }
5339
5340 void
5341 shuffle_from_32bit_read(const fs_builder &bld,
5342 const fs_reg &dst,
5343 const fs_reg &src,
5344 uint32_t first_component,
5345 uint32_t components)
5346 {
5347 assert(type_sz(src.type) == 4);
5348
5349 /* This function takes components in units of the destination type while
5350 * shuffle_src_to_dst takes components in units of the smallest type
5351 */
5352 if (type_sz(dst.type) > 4) {
5353 assert(type_sz(dst.type) == 8);
5354 first_component *= 2;
5355 components *= 2;
5356 }
5357
5358 shuffle_src_to_dst(bld, dst, src, first_component, components);
5359 }
5360
5361 fs_reg
5362 shuffle_for_32bit_write(const fs_builder &bld,
5363 const fs_reg &src,
5364 uint32_t first_component,
5365 uint32_t components)
5366 {
5367 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5368 DIV_ROUND_UP (components * type_sz(src.type), 4));
5369 /* This function takes components in units of the source type while
5370 * shuffle_src_to_dst takes components in units of the smallest type
5371 */
5372 if (type_sz(src.type) > 4) {
5373 assert(type_sz(src.type) == 8);
5374 first_component *= 2;
5375 components *= 2;
5376 }
5377
5378 shuffle_src_to_dst(bld, dst, src, first_component, components);
5379
5380 return dst;
5381 }
5382
5383 fs_reg
5384 setup_imm_df(const fs_builder &bld, double v)
5385 {
5386 const struct gen_device_info *devinfo = bld.shader->devinfo;
5387 assert(devinfo->gen >= 7);
5388
5389 if (devinfo->gen >= 8)
5390 return brw_imm_df(v);
5391
5392 /* gen7.5 does not support DF immediates straighforward but the DIM
5393 * instruction allows to set the 64-bit immediate value.
5394 */
5395 if (devinfo->is_haswell) {
5396 const fs_builder ubld = bld.exec_all().group(1, 0);
5397 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5398 ubld.DIM(dst, brw_imm_df(v));
5399 return component(dst, 0);
5400 }
5401
5402 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5403 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5404 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5405 *
5406 * Alternatively, we could also produce a normal VGRF (without stride 0)
5407 * by writing to all the channels in the VGRF, however, that would hit the
5408 * gen7 bug where we have to split writes that span more than 1 register
5409 * into instructions with a width of 4 (otherwise the write to the second
5410 * register written runs into an execmask hardware bug) which isn't very
5411 * nice.
5412 */
5413 union {
5414 double d;
5415 struct {
5416 uint32_t i1;
5417 uint32_t i2;
5418 };
5419 } di;
5420
5421 di.d = v;
5422
5423 const fs_builder ubld = bld.exec_all().group(1, 0);
5424 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5425 ubld.MOV(tmp, brw_imm_ud(di.i1));
5426 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5427
5428 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5429 }
5430
5431 fs_reg
5432 setup_imm_b(const fs_builder &bld, int8_t v)
5433 {
5434 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5435 bld.MOV(tmp, brw_imm_w(v));
5436 return tmp;
5437 }
5438
5439 fs_reg
5440 setup_imm_ub(const fs_builder &bld, uint8_t v)
5441 {
5442 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5443 bld.MOV(tmp, brw_imm_uw(v));
5444 return tmp;
5445 }