a41dc2a47b8fc20a40d885fe66ef6a6530c4a0c0
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
71 if (vec4s[loc] == 0) {
72 loc++;
73 continue;
74 }
75
76 unsigned reg_size = vec4s[loc];
77
78 /* Check if there are any ranges that start within this range and extend
79 * past it. If so, include them in this allocation.
80 */
81 for (unsigned i = 1; i < reg_size; i++)
82 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
83
84 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
85 for (unsigned i = 0; i < reg_size; i++)
86 outputs[loc + i] = offset(reg, bld, 4 * i);
87
88 loc += reg_size;
89 }
90 }
91
92 void
93 fs_visitor::nir_setup_uniforms()
94 {
95 /* Only the first compile gets to set up uniforms. */
96 if (push_constant_loc) {
97 assert(pull_constant_loc);
98 return;
99 }
100
101 uniforms = nir->num_uniforms / 4;
102
103 if (stage == MESA_SHADER_COMPUTE) {
104 /* Add a uniform for the thread local id. It must be the last uniform
105 * on the list.
106 */
107 assert(uniforms == prog_data->nr_params);
108 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
109 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
110 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
111 }
112 }
113
114 static bool
115 emit_system_values_block(nir_block *block, fs_visitor *v)
116 {
117 fs_reg *reg;
118
119 nir_foreach_instr(instr, block) {
120 if (instr->type != nir_instr_type_intrinsic)
121 continue;
122
123 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
124 switch (intrin->intrinsic) {
125 case nir_intrinsic_load_vertex_id:
126 case nir_intrinsic_load_base_vertex:
127 unreachable("should be lowered by nir_lower_system_values().");
128
129 case nir_intrinsic_load_vertex_id_zero_base:
130 case nir_intrinsic_load_is_indexed_draw:
131 case nir_intrinsic_load_first_vertex:
132 case nir_intrinsic_load_instance_id:
133 case nir_intrinsic_load_base_instance:
134 case nir_intrinsic_load_draw_id:
135 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
136
137 case nir_intrinsic_load_invocation_id:
138 if (v->stage == MESA_SHADER_TESS_CTRL)
139 break;
140 assert(v->stage == MESA_SHADER_GEOMETRY);
141 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
142 if (reg->file == BAD_FILE) {
143 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
144 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
145 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
146 abld.SHR(iid, g1, brw_imm_ud(27u));
147 *reg = iid;
148 }
149 break;
150
151 case nir_intrinsic_load_sample_pos:
152 assert(v->stage == MESA_SHADER_FRAGMENT);
153 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
154 if (reg->file == BAD_FILE)
155 *reg = *v->emit_samplepos_setup();
156 break;
157
158 case nir_intrinsic_load_sample_id:
159 assert(v->stage == MESA_SHADER_FRAGMENT);
160 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
161 if (reg->file == BAD_FILE)
162 *reg = *v->emit_sampleid_setup();
163 break;
164
165 case nir_intrinsic_load_sample_mask_in:
166 assert(v->stage == MESA_SHADER_FRAGMENT);
167 assert(v->devinfo->gen >= 7);
168 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
169 if (reg->file == BAD_FILE)
170 *reg = *v->emit_samplemaskin_setup();
171 break;
172
173 case nir_intrinsic_load_work_group_id:
174 assert(v->stage == MESA_SHADER_COMPUTE);
175 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
176 if (reg->file == BAD_FILE)
177 *reg = *v->emit_cs_work_group_id_setup();
178 break;
179
180 case nir_intrinsic_load_helper_invocation:
181 assert(v->stage == MESA_SHADER_FRAGMENT);
182 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
183 if (reg->file == BAD_FILE) {
184 const fs_builder abld =
185 v->bld.annotate("gl_HelperInvocation", NULL);
186
187 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
188 * pixel mask is in g1.7 of the thread payload.
189 *
190 * We move the per-channel pixel enable bit to the low bit of each
191 * channel by shifting the byte containing the pixel mask by the
192 * vector immediate 0x76543210UV.
193 *
194 * The region of <1,8,0> reads only 1 byte (the pixel masks for
195 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
196 * masks for 2 and 3) in SIMD16.
197 */
198 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
199
200 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
201 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
202 hbld.SHR(offset(shifted, hbld, i),
203 stride(retype(brw_vec1_grf(1 + i, 7),
204 BRW_REGISTER_TYPE_UB),
205 1, 8, 0),
206 brw_imm_v(0x76543210));
207 }
208
209 /* A set bit in the pixel mask means the channel is enabled, but
210 * that is the opposite of gl_HelperInvocation so we need to invert
211 * the mask.
212 *
213 * The negate source-modifier bit of logical instructions on Gen8+
214 * performs 1's complement negation, so we can use that instead of
215 * a NOT instruction.
216 */
217 fs_reg inverted = negate(shifted);
218 if (v->devinfo->gen < 8) {
219 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
220 abld.NOT(inverted, shifted);
221 }
222
223 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
224 * with 1 and negating.
225 */
226 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
227 abld.AND(anded, inverted, brw_imm_uw(1));
228
229 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
230 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
231 *reg = dst;
232 }
233 break;
234
235 default:
236 break;
237 }
238 }
239
240 return true;
241 }
242
243 void
244 fs_visitor::nir_emit_system_values()
245 {
246 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
247 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
248 nir_system_values[i] = fs_reg();
249 }
250
251 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
252 * never end up using it.
253 */
254 {
255 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
256 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
257 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
258
259 const fs_builder allbld8 = abld.group(8, 0).exec_all();
260 allbld8.MOV(reg, brw_imm_v(0x76543210));
261 if (dispatch_width > 8)
262 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
263 if (dispatch_width > 16) {
264 const fs_builder allbld16 = abld.group(16, 0).exec_all();
265 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
266 }
267 }
268
269 nir_foreach_function(function, nir) {
270 assert(strcmp(function->name, "main") == 0);
271 assert(function->impl);
272 nir_foreach_block(block, function->impl) {
273 emit_system_values_block(block, this);
274 }
275 }
276 }
277
278 /*
279 * Returns a type based on a reference_type (word, float, half-float) and a
280 * given bit_size.
281 *
282 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
283 *
284 * @FIXME: 64-bit return types are always DF on integer types to maintain
285 * compability with uses of DF previously to the introduction of int64
286 * support.
287 */
288 static brw_reg_type
289 brw_reg_type_from_bit_size(const unsigned bit_size,
290 const brw_reg_type reference_type)
291 {
292 switch(reference_type) {
293 case BRW_REGISTER_TYPE_HF:
294 case BRW_REGISTER_TYPE_F:
295 case BRW_REGISTER_TYPE_DF:
296 switch(bit_size) {
297 case 16:
298 return BRW_REGISTER_TYPE_HF;
299 case 32:
300 return BRW_REGISTER_TYPE_F;
301 case 64:
302 return BRW_REGISTER_TYPE_DF;
303 default:
304 unreachable("Invalid bit size");
305 }
306 case BRW_REGISTER_TYPE_B:
307 case BRW_REGISTER_TYPE_W:
308 case BRW_REGISTER_TYPE_D:
309 case BRW_REGISTER_TYPE_Q:
310 switch(bit_size) {
311 case 8:
312 return BRW_REGISTER_TYPE_B;
313 case 16:
314 return BRW_REGISTER_TYPE_W;
315 case 32:
316 return BRW_REGISTER_TYPE_D;
317 case 64:
318 return BRW_REGISTER_TYPE_Q;
319 default:
320 unreachable("Invalid bit size");
321 }
322 case BRW_REGISTER_TYPE_UB:
323 case BRW_REGISTER_TYPE_UW:
324 case BRW_REGISTER_TYPE_UD:
325 case BRW_REGISTER_TYPE_UQ:
326 switch(bit_size) {
327 case 8:
328 return BRW_REGISTER_TYPE_UB;
329 case 16:
330 return BRW_REGISTER_TYPE_UW;
331 case 32:
332 return BRW_REGISTER_TYPE_UD;
333 case 64:
334 return BRW_REGISTER_TYPE_UQ;
335 default:
336 unreachable("Invalid bit size");
337 }
338 default:
339 unreachable("Unknown type");
340 }
341 }
342
343 void
344 fs_visitor::nir_emit_impl(nir_function_impl *impl)
345 {
346 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
347 for (unsigned i = 0; i < impl->reg_alloc; i++) {
348 nir_locals[i] = fs_reg();
349 }
350
351 foreach_list_typed(nir_register, reg, node, &impl->registers) {
352 unsigned array_elems =
353 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
354 unsigned size = array_elems * reg->num_components;
355 const brw_reg_type reg_type =
356 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
357 nir_locals[reg->index] = bld.vgrf(reg_type, size);
358 }
359
360 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
361 impl->ssa_alloc);
362
363 nir_emit_cf_list(&impl->body);
364 }
365
366 void
367 fs_visitor::nir_emit_cf_list(exec_list *list)
368 {
369 exec_list_validate(list);
370 foreach_list_typed(nir_cf_node, node, node, list) {
371 switch (node->type) {
372 case nir_cf_node_if:
373 nir_emit_if(nir_cf_node_as_if(node));
374 break;
375
376 case nir_cf_node_loop:
377 nir_emit_loop(nir_cf_node_as_loop(node));
378 break;
379
380 case nir_cf_node_block:
381 nir_emit_block(nir_cf_node_as_block(node));
382 break;
383
384 default:
385 unreachable("Invalid CFG node block");
386 }
387 }
388 }
389
390 void
391 fs_visitor::nir_emit_if(nir_if *if_stmt)
392 {
393 /* first, put the condition into f0 */
394 fs_inst *inst = bld.MOV(bld.null_reg_d(),
395 retype(get_nir_src(if_stmt->condition),
396 BRW_REGISTER_TYPE_D));
397 inst->conditional_mod = BRW_CONDITIONAL_NZ;
398
399 bld.IF(BRW_PREDICATE_NORMAL);
400
401 nir_emit_cf_list(&if_stmt->then_list);
402
403 /* note: if the else is empty, dead CF elimination will remove it */
404 bld.emit(BRW_OPCODE_ELSE);
405
406 nir_emit_cf_list(&if_stmt->else_list);
407
408 bld.emit(BRW_OPCODE_ENDIF);
409
410 if (devinfo->gen < 7)
411 limit_dispatch_width(16, "Non-uniform control flow unsupported "
412 "in SIMD32 mode.");
413 }
414
415 void
416 fs_visitor::nir_emit_loop(nir_loop *loop)
417 {
418 bld.emit(BRW_OPCODE_DO);
419
420 nir_emit_cf_list(&loop->body);
421
422 bld.emit(BRW_OPCODE_WHILE);
423
424 if (devinfo->gen < 7)
425 limit_dispatch_width(16, "Non-uniform control flow unsupported "
426 "in SIMD32 mode.");
427 }
428
429 void
430 fs_visitor::nir_emit_block(nir_block *block)
431 {
432 nir_foreach_instr(instr, block) {
433 nir_emit_instr(instr);
434 }
435 }
436
437 void
438 fs_visitor::nir_emit_instr(nir_instr *instr)
439 {
440 const fs_builder abld = bld.annotate(NULL, instr);
441
442 switch (instr->type) {
443 case nir_instr_type_alu:
444 nir_emit_alu(abld, nir_instr_as_alu(instr));
445 break;
446
447 case nir_instr_type_deref:
448 /* Derefs can exist for images but they do nothing */
449 break;
450
451 case nir_instr_type_intrinsic:
452 switch (stage) {
453 case MESA_SHADER_VERTEX:
454 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456 case MESA_SHADER_TESS_CTRL:
457 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
458 break;
459 case MESA_SHADER_TESS_EVAL:
460 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462 case MESA_SHADER_GEOMETRY:
463 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 case MESA_SHADER_FRAGMENT:
466 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_COMPUTE:
469 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 default:
472 unreachable("unsupported shader stage");
473 }
474 break;
475
476 case nir_instr_type_tex:
477 nir_emit_texture(abld, nir_instr_as_tex(instr));
478 break;
479
480 case nir_instr_type_load_const:
481 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
482 break;
483
484 case nir_instr_type_ssa_undef:
485 /* We create a new VGRF for undefs on every use (by handling
486 * them in get_nir_src()), rather than for each definition.
487 * This helps register coalescing eliminate MOVs from undef.
488 */
489 break;
490
491 case nir_instr_type_jump:
492 nir_emit_jump(abld, nir_instr_as_jump(instr));
493 break;
494
495 default:
496 unreachable("unknown instruction type");
497 }
498 }
499
500 /**
501 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
502 * match instr.
503 */
504 bool
505 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
506 const fs_reg &result)
507 {
508 if (!instr->src[0].src.is_ssa ||
509 !instr->src[0].src.ssa->parent_instr)
510 return false;
511
512 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
513 return false;
514
515 nir_alu_instr *src0 =
516 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
517
518 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
519 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
520 return false;
521
522 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
523 assert(element != NULL);
524
525 /* Element type to extract.*/
526 const brw_reg_type type = brw_int_type(
527 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
528 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
529
530 fs_reg op0 = get_nir_src(src0->src[0].src);
531 op0.type = brw_type_for_nir_type(devinfo,
532 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
533 nir_src_bit_size(src0->src[0].src)));
534 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
535
536 set_saturate(instr->dest.saturate,
537 bld.MOV(result, subscript(op0, type, element->u32[0])));
538 return true;
539 }
540
541 bool
542 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
543 const fs_reg &result)
544 {
545 if (!instr->src[0].src.is_ssa ||
546 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
547 return false;
548
549 nir_intrinsic_instr *src0 =
550 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
551
552 if (src0->intrinsic != nir_intrinsic_load_front_face)
553 return false;
554
555 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
556 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
557 return false;
558
559 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
560 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
561 return false;
562
563 fs_reg tmp = vgrf(glsl_type::int_type);
564
565 if (devinfo->gen >= 6) {
566 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
567 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
568
569 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
570 *
571 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
572 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
573 *
574 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
575 *
576 * This negation looks like it's safe in practice, because bits 0:4 will
577 * surely be TRIANGLES
578 */
579
580 if (value1->f32[0] == -1.0f) {
581 g0.negate = true;
582 }
583
584 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
585 g0, brw_imm_uw(0x3f80));
586 } else {
587 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
588 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
589
590 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
591 *
592 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
593 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
594 *
595 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
596 *
597 * This negation looks like it's safe in practice, because bits 0:4 will
598 * surely be TRIANGLES
599 */
600
601 if (value1->f32[0] == -1.0f) {
602 g1_6.negate = true;
603 }
604
605 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
606 }
607 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
608
609 return true;
610 }
611
612 static void
613 emit_find_msb_using_lzd(const fs_builder &bld,
614 const fs_reg &result,
615 const fs_reg &src,
616 bool is_signed)
617 {
618 fs_inst *inst;
619 fs_reg temp = src;
620
621 if (is_signed) {
622 /* LZD of an absolute value source almost always does the right
623 * thing. There are two problem values:
624 *
625 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
626 * 0. However, findMSB(int(0x80000000)) == 30.
627 *
628 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
629 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
630 *
631 * For a value of zero or negative one, -1 will be returned.
632 *
633 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
634 * findMSB(-(1<<x)) should return x-1.
635 *
636 * For all negative number cases, including 0x80000000 and
637 * 0xffffffff, the correct value is obtained from LZD if instead of
638 * negating the (already negative) value the logical-not is used. A
639 * conditonal logical-not can be achieved in two instructions.
640 */
641 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
642
643 bld.ASR(temp, src, brw_imm_d(31));
644 bld.XOR(temp, temp, src);
645 }
646
647 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
648 retype(temp, BRW_REGISTER_TYPE_UD));
649
650 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
651 * from the LSB side. Subtract the result from 31 to convert the MSB
652 * count into an LSB count. If no bits are set, LZD will return 32.
653 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
654 */
655 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
656 inst->src[0].negate = true;
657 }
658
659 static brw_rnd_mode
660 brw_rnd_mode_from_nir_op (const nir_op op) {
661 switch (op) {
662 case nir_op_f2f16_rtz:
663 return BRW_RND_MODE_RTZ;
664 case nir_op_f2f16_rtne:
665 return BRW_RND_MODE_RTNE;
666 default:
667 unreachable("Operation doesn't support rounding mode");
668 }
669 }
670
671 void
672 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
673 {
674 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
675 fs_inst *inst;
676
677 fs_reg result = get_nir_dest(instr->dest.dest);
678 result.type = brw_type_for_nir_type(devinfo,
679 (nir_alu_type)(nir_op_infos[instr->op].output_type |
680 nir_dest_bit_size(instr->dest.dest)));
681
682 fs_reg op[4];
683 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
684 op[i] = get_nir_src(instr->src[i].src);
685 op[i].type = brw_type_for_nir_type(devinfo,
686 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
687 nir_src_bit_size(instr->src[i].src)));
688 op[i].abs = instr->src[i].abs;
689 op[i].negate = instr->src[i].negate;
690 }
691
692 /* We get a bunch of mov's out of the from_ssa pass and they may still
693 * be vectorized. We'll handle them as a special-case. We'll also
694 * handle vecN here because it's basically the same thing.
695 */
696 switch (instr->op) {
697 case nir_op_imov:
698 case nir_op_fmov:
699 case nir_op_vec2:
700 case nir_op_vec3:
701 case nir_op_vec4: {
702 fs_reg temp = result;
703 bool need_extra_copy = false;
704 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
705 if (!instr->src[i].src.is_ssa &&
706 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
707 need_extra_copy = true;
708 temp = bld.vgrf(result.type, 4);
709 break;
710 }
711 }
712
713 for (unsigned i = 0; i < 4; i++) {
714 if (!(instr->dest.write_mask & (1 << i)))
715 continue;
716
717 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
718 inst = bld.MOV(offset(temp, bld, i),
719 offset(op[0], bld, instr->src[0].swizzle[i]));
720 } else {
721 inst = bld.MOV(offset(temp, bld, i),
722 offset(op[i], bld, instr->src[i].swizzle[0]));
723 }
724 inst->saturate = instr->dest.saturate;
725 }
726
727 /* In this case the source and destination registers were the same,
728 * so we need to insert an extra set of moves in order to deal with
729 * any swizzling.
730 */
731 if (need_extra_copy) {
732 for (unsigned i = 0; i < 4; i++) {
733 if (!(instr->dest.write_mask & (1 << i)))
734 continue;
735
736 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
737 }
738 }
739 return;
740 }
741 default:
742 break;
743 }
744
745 /* At this point, we have dealt with any instruction that operates on
746 * more than a single channel. Therefore, we can just adjust the source
747 * and destination registers for that channel and emit the instruction.
748 */
749 unsigned channel = 0;
750 if (nir_op_infos[instr->op].output_size == 0) {
751 /* Since NIR is doing the scalarizing for us, we should only ever see
752 * vectorized operations with a single channel.
753 */
754 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
755 channel = ffs(instr->dest.write_mask) - 1;
756
757 result = offset(result, bld, channel);
758 }
759
760 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
761 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
762 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
763 }
764
765 switch (instr->op) {
766 case nir_op_i2f32:
767 case nir_op_u2f32:
768 if (optimize_extract_to_float(instr, result))
769 return;
770 inst = bld.MOV(result, op[0]);
771 inst->saturate = instr->dest.saturate;
772 break;
773
774 case nir_op_f2f16_rtne:
775 case nir_op_f2f16_rtz:
776 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
777 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
778 /* fallthrough */
779
780 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
781 * on the HW gen, it is a special hw opcode or just a MOV, and
782 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
783 *
784 * But if we want to use that opcode, we need to provide support on
785 * different optimizations and lowerings. As right now HF support is
786 * only for gen8+, it will be better to use directly the MOV, and use
787 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
788 */
789
790 case nir_op_f2f16:
791 inst = bld.MOV(result, op[0]);
792 inst->saturate = instr->dest.saturate;
793 break;
794
795 case nir_op_f2f64:
796 case nir_op_f2i64:
797 case nir_op_f2u64:
798 case nir_op_i2f64:
799 case nir_op_i2i64:
800 case nir_op_u2f64:
801 case nir_op_u2u64:
802 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
803 *
804 * "When source or destination is 64b (...), regioning in Align1
805 * must follow these rules:
806 *
807 * 1. Source and destination horizontal stride must be aligned to
808 * the same qword.
809 * (...)"
810 *
811 * This means that conversions from bit-sizes smaller than 64-bit to
812 * 64-bit need to have the source data elements aligned to 64-bit.
813 * This restriction does not apply to BDW and later.
814 */
815 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
816 nir_src_bit_size(instr->src[0].src) < 64 &&
817 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
818 fs_reg tmp = bld.vgrf(result.type, 1);
819 tmp = subscript(tmp, op[0].type, 0);
820 inst = bld.MOV(tmp, op[0]);
821 inst = bld.MOV(result, tmp);
822 inst->saturate = instr->dest.saturate;
823 break;
824 }
825 /* fallthrough */
826 case nir_op_f2f32:
827 case nir_op_f2i32:
828 case nir_op_f2u32:
829 case nir_op_f2i16:
830 case nir_op_f2u16:
831 case nir_op_i2i32:
832 case nir_op_u2u32:
833 case nir_op_i2i16:
834 case nir_op_u2u16:
835 case nir_op_i2f16:
836 case nir_op_u2f16:
837 case nir_op_i2i8:
838 case nir_op_u2u8:
839 inst = bld.MOV(result, op[0]);
840 inst->saturate = instr->dest.saturate;
841 break;
842
843 case nir_op_fsign: {
844 if (op[0].abs) {
845 /* Straightforward since the source can be assumed to be either
846 * strictly >= 0 or strictly <= 0 depending on the setting of the
847 * negate flag.
848 */
849 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
850
851 inst = (op[0].negate)
852 ? bld.MOV(result, brw_imm_f(-1.0f))
853 : bld.MOV(result, brw_imm_f(1.0f));
854
855 set_predicate(BRW_PREDICATE_NORMAL, inst);
856
857 if (instr->dest.saturate)
858 inst->saturate = true;
859
860 } else if (type_sz(op[0].type) < 8) {
861 /* AND(val, 0x80000000) gives the sign bit.
862 *
863 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
864 * zero.
865 */
866 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
867
868 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
869 op[0].type = BRW_REGISTER_TYPE_UD;
870 result.type = BRW_REGISTER_TYPE_UD;
871 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
872
873 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
874 inst->predicate = BRW_PREDICATE_NORMAL;
875 if (instr->dest.saturate) {
876 inst = bld.MOV(result, result);
877 inst->saturate = true;
878 }
879 } else {
880 /* For doubles we do the same but we need to consider:
881 *
882 * - 2-src instructions can't operate with 64-bit immediates
883 * - The sign is encoded in the high 32-bit of each DF
884 * - We need to produce a DF result.
885 */
886
887 fs_reg zero = vgrf(glsl_type::double_type);
888 bld.MOV(zero, setup_imm_df(bld, 0.0));
889 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
890
891 bld.MOV(result, zero);
892
893 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
894 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
895 brw_imm_ud(0x80000000u));
896
897 set_predicate(BRW_PREDICATE_NORMAL,
898 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
899
900 if (instr->dest.saturate) {
901 inst = bld.MOV(result, result);
902 inst->saturate = true;
903 }
904 }
905 break;
906 }
907
908 case nir_op_isign: {
909 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
910 * -> non-negative val generates 0x00000000.
911 * Predicated OR sets 1 if val is positive.
912 */
913 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
914 assert(bit_size == 32 || bit_size == 16);
915
916 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
917 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
918 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
919
920 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
921 bld.ASR(result, op[0], shift);
922 inst = bld.OR(result, result, one);
923 inst->predicate = BRW_PREDICATE_NORMAL;
924 break;
925 }
926
927 case nir_op_frcp:
928 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
929 inst->saturate = instr->dest.saturate;
930 break;
931
932 case nir_op_fexp2:
933 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936
937 case nir_op_flog2:
938 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
939 inst->saturate = instr->dest.saturate;
940 break;
941
942 case nir_op_fsin:
943 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
944 inst->saturate = instr->dest.saturate;
945 break;
946
947 case nir_op_fcos:
948 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
949 inst->saturate = instr->dest.saturate;
950 break;
951
952 case nir_op_fddx:
953 if (fs_key->high_quality_derivatives) {
954 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
955 } else {
956 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
957 }
958 inst->saturate = instr->dest.saturate;
959 break;
960 case nir_op_fddx_fine:
961 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
962 inst->saturate = instr->dest.saturate;
963 break;
964 case nir_op_fddx_coarse:
965 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
966 inst->saturate = instr->dest.saturate;
967 break;
968 case nir_op_fddy:
969 if (fs_key->high_quality_derivatives) {
970 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
971 } else {
972 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
973 }
974 inst->saturate = instr->dest.saturate;
975 break;
976 case nir_op_fddy_fine:
977 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
978 inst->saturate = instr->dest.saturate;
979 break;
980 case nir_op_fddy_coarse:
981 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
982 inst->saturate = instr->dest.saturate;
983 break;
984
985 case nir_op_iadd:
986 case nir_op_fadd:
987 inst = bld.ADD(result, op[0], op[1]);
988 inst->saturate = instr->dest.saturate;
989 break;
990
991 case nir_op_fmul:
992 inst = bld.MUL(result, op[0], op[1]);
993 inst->saturate = instr->dest.saturate;
994 break;
995
996 case nir_op_imul:
997 assert(nir_dest_bit_size(instr->dest.dest) < 64);
998 bld.MUL(result, op[0], op[1]);
999 break;
1000
1001 case nir_op_imul_high:
1002 case nir_op_umul_high:
1003 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1004 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1005 break;
1006
1007 case nir_op_idiv:
1008 case nir_op_udiv:
1009 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1010 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1011 break;
1012
1013 case nir_op_uadd_carry:
1014 unreachable("Should have been lowered by carry_to_arith().");
1015
1016 case nir_op_usub_borrow:
1017 unreachable("Should have been lowered by borrow_to_arith().");
1018
1019 case nir_op_umod:
1020 case nir_op_irem:
1021 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1022 * appears that our hardware just does the right thing for signed
1023 * remainder.
1024 */
1025 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1026 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1027 break;
1028
1029 case nir_op_imod: {
1030 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1031 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1032
1033 /* Math instructions don't support conditional mod */
1034 inst = bld.MOV(bld.null_reg_d(), result);
1035 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1036
1037 /* Now, we need to determine if signs of the sources are different.
1038 * When we XOR the sources, the top bit is 0 if they are the same and 1
1039 * if they are different. We can then use a conditional modifier to
1040 * turn that into a predicate. This leads us to an XOR.l instruction.
1041 *
1042 * Technically, according to the PRM, you're not allowed to use .l on a
1043 * XOR instruction. However, emperical experiments and Curro's reading
1044 * of the simulator source both indicate that it's safe.
1045 */
1046 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1047 inst = bld.XOR(tmp, op[0], op[1]);
1048 inst->predicate = BRW_PREDICATE_NORMAL;
1049 inst->conditional_mod = BRW_CONDITIONAL_L;
1050
1051 /* If the result of the initial remainder operation is non-zero and the
1052 * two sources have different signs, add in a copy of op[1] to get the
1053 * final integer modulus value.
1054 */
1055 inst = bld.ADD(result, result, op[1]);
1056 inst->predicate = BRW_PREDICATE_NORMAL;
1057 break;
1058 }
1059
1060 case nir_op_flt:
1061 case nir_op_fge:
1062 case nir_op_feq:
1063 case nir_op_fne: {
1064 fs_reg dest = result;
1065
1066 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1067 if (bit_size != 32)
1068 dest = bld.vgrf(op[0].type, 1);
1069
1070 brw_conditional_mod cond;
1071 switch (instr->op) {
1072 case nir_op_flt:
1073 cond = BRW_CONDITIONAL_L;
1074 break;
1075 case nir_op_fge:
1076 cond = BRW_CONDITIONAL_GE;
1077 break;
1078 case nir_op_feq:
1079 cond = BRW_CONDITIONAL_Z;
1080 break;
1081 case nir_op_fne:
1082 cond = BRW_CONDITIONAL_NZ;
1083 break;
1084 default:
1085 unreachable("bad opcode");
1086 }
1087
1088 bld.CMP(dest, op[0], op[1], cond);
1089
1090 if (bit_size > 32) {
1091 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1092 } else if(bit_size < 32) {
1093 /* When we convert the result to 32-bit we need to be careful and do
1094 * it as a signed conversion to get sign extension (for 32-bit true)
1095 */
1096 const brw_reg_type src_type =
1097 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1098
1099 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1100 }
1101 break;
1102 }
1103
1104 case nir_op_ilt:
1105 case nir_op_ult:
1106 case nir_op_ige:
1107 case nir_op_uge:
1108 case nir_op_ieq:
1109 case nir_op_ine: {
1110 fs_reg dest = result;
1111
1112 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1113 if (bit_size != 32)
1114 dest = bld.vgrf(op[0].type, 1);
1115
1116 brw_conditional_mod cond;
1117 switch (instr->op) {
1118 case nir_op_ilt:
1119 case nir_op_ult:
1120 cond = BRW_CONDITIONAL_L;
1121 break;
1122 case nir_op_ige:
1123 case nir_op_uge:
1124 cond = BRW_CONDITIONAL_GE;
1125 break;
1126 case nir_op_ieq:
1127 cond = BRW_CONDITIONAL_Z;
1128 break;
1129 case nir_op_ine:
1130 cond = BRW_CONDITIONAL_NZ;
1131 break;
1132 default:
1133 unreachable("bad opcode");
1134 }
1135 bld.CMP(dest, op[0], op[1], cond);
1136
1137 if (bit_size > 32) {
1138 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1139 } else if (bit_size < 32) {
1140 /* When we convert the result to 32-bit we need to be careful and do
1141 * it as a signed conversion to get sign extension (for 32-bit true)
1142 */
1143 const brw_reg_type src_type =
1144 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1145
1146 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1147 }
1148 break;
1149 }
1150
1151 case nir_op_inot:
1152 if (devinfo->gen >= 8) {
1153 op[0] = resolve_source_modifiers(op[0]);
1154 }
1155 bld.NOT(result, op[0]);
1156 break;
1157 case nir_op_ixor:
1158 if (devinfo->gen >= 8) {
1159 op[0] = resolve_source_modifiers(op[0]);
1160 op[1] = resolve_source_modifiers(op[1]);
1161 }
1162 bld.XOR(result, op[0], op[1]);
1163 break;
1164 case nir_op_ior:
1165 if (devinfo->gen >= 8) {
1166 op[0] = resolve_source_modifiers(op[0]);
1167 op[1] = resolve_source_modifiers(op[1]);
1168 }
1169 bld.OR(result, op[0], op[1]);
1170 break;
1171 case nir_op_iand:
1172 if (devinfo->gen >= 8) {
1173 op[0] = resolve_source_modifiers(op[0]);
1174 op[1] = resolve_source_modifiers(op[1]);
1175 }
1176 bld.AND(result, op[0], op[1]);
1177 break;
1178
1179 case nir_op_fdot2:
1180 case nir_op_fdot3:
1181 case nir_op_fdot4:
1182 case nir_op_ball_fequal2:
1183 case nir_op_ball_iequal2:
1184 case nir_op_ball_fequal3:
1185 case nir_op_ball_iequal3:
1186 case nir_op_ball_fequal4:
1187 case nir_op_ball_iequal4:
1188 case nir_op_bany_fnequal2:
1189 case nir_op_bany_inequal2:
1190 case nir_op_bany_fnequal3:
1191 case nir_op_bany_inequal3:
1192 case nir_op_bany_fnequal4:
1193 case nir_op_bany_inequal4:
1194 unreachable("Lowered by nir_lower_alu_reductions");
1195
1196 case nir_op_fnoise1_1:
1197 case nir_op_fnoise1_2:
1198 case nir_op_fnoise1_3:
1199 case nir_op_fnoise1_4:
1200 case nir_op_fnoise2_1:
1201 case nir_op_fnoise2_2:
1202 case nir_op_fnoise2_3:
1203 case nir_op_fnoise2_4:
1204 case nir_op_fnoise3_1:
1205 case nir_op_fnoise3_2:
1206 case nir_op_fnoise3_3:
1207 case nir_op_fnoise3_4:
1208 case nir_op_fnoise4_1:
1209 case nir_op_fnoise4_2:
1210 case nir_op_fnoise4_3:
1211 case nir_op_fnoise4_4:
1212 unreachable("not reached: should be handled by lower_noise");
1213
1214 case nir_op_ldexp:
1215 unreachable("not reached: should be handled by ldexp_to_arith()");
1216
1217 case nir_op_fsqrt:
1218 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1219 inst->saturate = instr->dest.saturate;
1220 break;
1221
1222 case nir_op_frsq:
1223 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1224 inst->saturate = instr->dest.saturate;
1225 break;
1226
1227 case nir_op_b2i:
1228 case nir_op_b2f:
1229 bld.MOV(result, negate(op[0]));
1230 break;
1231
1232 case nir_op_i2b:
1233 case nir_op_f2b: {
1234 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1235 if (bit_size == 64) {
1236 /* two-argument instructions can't take 64-bit immediates */
1237 fs_reg zero;
1238 fs_reg tmp;
1239
1240 if (instr->op == nir_op_f2b) {
1241 zero = vgrf(glsl_type::double_type);
1242 tmp = vgrf(glsl_type::double_type);
1243 bld.MOV(zero, setup_imm_df(bld, 0.0));
1244 } else {
1245 zero = vgrf(glsl_type::int64_t_type);
1246 tmp = vgrf(glsl_type::int64_t_type);
1247 bld.MOV(zero, brw_imm_q(0));
1248 }
1249
1250 /* A SIMD16 execution needs to be split in two instructions, so use
1251 * a vgrf instead of the flag register as dst so instruction splitting
1252 * works
1253 */
1254 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1255 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1256 } else {
1257 fs_reg zero;
1258 if (bit_size == 32) {
1259 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1260 } else {
1261 assert(bit_size == 16);
1262 zero = instr->op == nir_op_f2b ?
1263 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1264 }
1265 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1266 }
1267 break;
1268 }
1269
1270 case nir_op_ftrunc:
1271 inst = bld.RNDZ(result, op[0]);
1272 inst->saturate = instr->dest.saturate;
1273 break;
1274
1275 case nir_op_fceil: {
1276 op[0].negate = !op[0].negate;
1277 fs_reg temp = vgrf(glsl_type::float_type);
1278 bld.RNDD(temp, op[0]);
1279 temp.negate = true;
1280 inst = bld.MOV(result, temp);
1281 inst->saturate = instr->dest.saturate;
1282 break;
1283 }
1284 case nir_op_ffloor:
1285 inst = bld.RNDD(result, op[0]);
1286 inst->saturate = instr->dest.saturate;
1287 break;
1288 case nir_op_ffract:
1289 inst = bld.FRC(result, op[0]);
1290 inst->saturate = instr->dest.saturate;
1291 break;
1292 case nir_op_fround_even:
1293 inst = bld.RNDE(result, op[0]);
1294 inst->saturate = instr->dest.saturate;
1295 break;
1296
1297 case nir_op_fquantize2f16: {
1298 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1299 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1300 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1301
1302 /* The destination stride must be at least as big as the source stride. */
1303 tmp16.type = BRW_REGISTER_TYPE_W;
1304 tmp16.stride = 2;
1305
1306 /* Check for denormal */
1307 fs_reg abs_src0 = op[0];
1308 abs_src0.abs = true;
1309 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1310 BRW_CONDITIONAL_L);
1311 /* Get the appropriately signed zero */
1312 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1313 retype(op[0], BRW_REGISTER_TYPE_UD),
1314 brw_imm_ud(0x80000000));
1315 /* Do the actual F32 -> F16 -> F32 conversion */
1316 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1317 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1318 /* Select that or zero based on normal status */
1319 inst = bld.SEL(result, zero, tmp32);
1320 inst->predicate = BRW_PREDICATE_NORMAL;
1321 inst->saturate = instr->dest.saturate;
1322 break;
1323 }
1324
1325 case nir_op_imin:
1326 case nir_op_umin:
1327 case nir_op_fmin:
1328 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1329 inst->saturate = instr->dest.saturate;
1330 break;
1331
1332 case nir_op_imax:
1333 case nir_op_umax:
1334 case nir_op_fmax:
1335 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1336 inst->saturate = instr->dest.saturate;
1337 break;
1338
1339 case nir_op_pack_snorm_2x16:
1340 case nir_op_pack_snorm_4x8:
1341 case nir_op_pack_unorm_2x16:
1342 case nir_op_pack_unorm_4x8:
1343 case nir_op_unpack_snorm_2x16:
1344 case nir_op_unpack_snorm_4x8:
1345 case nir_op_unpack_unorm_2x16:
1346 case nir_op_unpack_unorm_4x8:
1347 case nir_op_unpack_half_2x16:
1348 case nir_op_pack_half_2x16:
1349 unreachable("not reached: should be handled by lower_packing_builtins");
1350
1351 case nir_op_unpack_half_2x16_split_x:
1352 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1353 inst->saturate = instr->dest.saturate;
1354 break;
1355 case nir_op_unpack_half_2x16_split_y:
1356 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1357 inst->saturate = instr->dest.saturate;
1358 break;
1359
1360 case nir_op_pack_64_2x32_split:
1361 case nir_op_pack_32_2x16_split:
1362 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1363 break;
1364
1365 case nir_op_unpack_64_2x32_split_x:
1366 case nir_op_unpack_64_2x32_split_y: {
1367 if (instr->op == nir_op_unpack_64_2x32_split_x)
1368 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1369 else
1370 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1371 break;
1372 }
1373
1374 case nir_op_unpack_32_2x16_split_x:
1375 case nir_op_unpack_32_2x16_split_y: {
1376 if (instr->op == nir_op_unpack_32_2x16_split_x)
1377 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1378 else
1379 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1380 break;
1381 }
1382
1383 case nir_op_fpow:
1384 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1385 inst->saturate = instr->dest.saturate;
1386 break;
1387
1388 case nir_op_bitfield_reverse:
1389 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1390 bld.BFREV(result, op[0]);
1391 break;
1392
1393 case nir_op_bit_count:
1394 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1395 bld.CBIT(result, op[0]);
1396 break;
1397
1398 case nir_op_ufind_msb: {
1399 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1400 emit_find_msb_using_lzd(bld, result, op[0], false);
1401 break;
1402 }
1403
1404 case nir_op_ifind_msb: {
1405 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1406
1407 if (devinfo->gen < 7) {
1408 emit_find_msb_using_lzd(bld, result, op[0], true);
1409 } else {
1410 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1411
1412 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1413 * count from the LSB side. If FBH didn't return an error
1414 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1415 * count into an LSB count.
1416 */
1417 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1418
1419 inst = bld.ADD(result, result, brw_imm_d(31));
1420 inst->predicate = BRW_PREDICATE_NORMAL;
1421 inst->src[0].negate = true;
1422 }
1423 break;
1424 }
1425
1426 case nir_op_find_lsb:
1427 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1428
1429 if (devinfo->gen < 7) {
1430 fs_reg temp = vgrf(glsl_type::int_type);
1431
1432 /* (x & -x) generates a value that consists of only the LSB of x.
1433 * For all powers of 2, findMSB(y) == findLSB(y).
1434 */
1435 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1436 fs_reg negated_src = src;
1437
1438 /* One must be negated, and the other must be non-negated. It
1439 * doesn't matter which is which.
1440 */
1441 negated_src.negate = true;
1442 src.negate = false;
1443
1444 bld.AND(temp, src, negated_src);
1445 emit_find_msb_using_lzd(bld, result, temp, false);
1446 } else {
1447 bld.FBL(result, op[0]);
1448 }
1449 break;
1450
1451 case nir_op_ubitfield_extract:
1452 case nir_op_ibitfield_extract:
1453 unreachable("should have been lowered");
1454 case nir_op_ubfe:
1455 case nir_op_ibfe:
1456 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1457 bld.BFE(result, op[2], op[1], op[0]);
1458 break;
1459 case nir_op_bfm:
1460 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1461 bld.BFI1(result, op[0], op[1]);
1462 break;
1463 case nir_op_bfi:
1464 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1465 bld.BFI2(result, op[0], op[1], op[2]);
1466 break;
1467
1468 case nir_op_bitfield_insert:
1469 unreachable("not reached: should have been lowered");
1470
1471 case nir_op_ishl:
1472 case nir_op_ishr:
1473 case nir_op_ushr: {
1474 fs_reg shift_count = op[1];
1475
1476 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1477 if (op[1].file == VGRF &&
1478 (result.type == BRW_REGISTER_TYPE_Q ||
1479 result.type == BRW_REGISTER_TYPE_UQ)) {
1480 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1481 BRW_REGISTER_TYPE_UD);
1482 shift_count.stride = 2;
1483 bld.MOV(shift_count, op[1]);
1484 }
1485 }
1486
1487 switch (instr->op) {
1488 case nir_op_ishl:
1489 bld.SHL(result, op[0], shift_count);
1490 break;
1491 case nir_op_ishr:
1492 bld.ASR(result, op[0], shift_count);
1493 break;
1494 case nir_op_ushr:
1495 bld.SHR(result, op[0], shift_count);
1496 break;
1497 default:
1498 unreachable("not reached");
1499 }
1500 break;
1501 }
1502
1503 case nir_op_pack_half_2x16_split:
1504 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1505 break;
1506
1507 case nir_op_ffma:
1508 inst = bld.MAD(result, op[2], op[1], op[0]);
1509 inst->saturate = instr->dest.saturate;
1510 break;
1511
1512 case nir_op_flrp:
1513 inst = bld.LRP(result, op[0], op[1], op[2]);
1514 inst->saturate = instr->dest.saturate;
1515 break;
1516
1517 case nir_op_bcsel:
1518 if (optimize_frontfacing_ternary(instr, result))
1519 return;
1520
1521 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1522 inst = bld.SEL(result, op[1], op[2]);
1523 inst->predicate = BRW_PREDICATE_NORMAL;
1524 break;
1525
1526 case nir_op_extract_u8:
1527 case nir_op_extract_i8: {
1528 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1529 assert(byte != NULL);
1530
1531 /* The PRMs say:
1532 *
1533 * BDW+
1534 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1535 * Use two instructions and a word or DWord intermediate integer type.
1536 */
1537 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1538 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1539
1540 if (instr->op == nir_op_extract_i8) {
1541 /* If we need to sign extend, extract to a word first */
1542 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1543 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1544 bld.MOV(result, w_temp);
1545 } else {
1546 /* Otherwise use an AND with 0xff and a word type */
1547 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1548 }
1549 } else {
1550 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1551 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1552 }
1553 break;
1554 }
1555
1556 case nir_op_extract_u16:
1557 case nir_op_extract_i16: {
1558 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1559 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1560 assert(word != NULL);
1561 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1562 break;
1563 }
1564
1565 default:
1566 unreachable("unhandled instruction");
1567 }
1568
1569 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1570 * to sign extend the low bit to 0/~0
1571 */
1572 if (devinfo->gen <= 5 &&
1573 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1574 fs_reg masked = vgrf(glsl_type::int_type);
1575 bld.AND(masked, result, brw_imm_d(1));
1576 masked.negate = true;
1577 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1578 }
1579 }
1580
1581 void
1582 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1583 nir_load_const_instr *instr)
1584 {
1585 const brw_reg_type reg_type =
1586 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1587 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1588
1589 switch (instr->def.bit_size) {
1590 case 16:
1591 for (unsigned i = 0; i < instr->def.num_components; i++)
1592 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1593 break;
1594
1595 case 32:
1596 for (unsigned i = 0; i < instr->def.num_components; i++)
1597 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1598 break;
1599
1600 case 64:
1601 assert(devinfo->gen >= 7);
1602 if (devinfo->gen == 7) {
1603 /* We don't get 64-bit integer types until gen8 */
1604 for (unsigned i = 0; i < instr->def.num_components; i++) {
1605 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1606 setup_imm_df(bld, instr->value.f64[i]));
1607 }
1608 } else {
1609 for (unsigned i = 0; i < instr->def.num_components; i++)
1610 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1611 }
1612 break;
1613
1614 default:
1615 unreachable("Invalid bit size");
1616 }
1617
1618 nir_ssa_values[instr->def.index] = reg;
1619 }
1620
1621 fs_reg
1622 fs_visitor::get_nir_src(const nir_src &src)
1623 {
1624 fs_reg reg;
1625 if (src.is_ssa) {
1626 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1627 const brw_reg_type reg_type =
1628 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1629 reg = bld.vgrf(reg_type, src.ssa->num_components);
1630 } else {
1631 reg = nir_ssa_values[src.ssa->index];
1632 }
1633 } else {
1634 /* We don't handle indirects on locals */
1635 assert(src.reg.indirect == NULL);
1636 reg = offset(nir_locals[src.reg.reg->index], bld,
1637 src.reg.base_offset * src.reg.reg->num_components);
1638 }
1639
1640 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1641 /* The only 64-bit type available on gen7 is DF, so use that. */
1642 reg.type = BRW_REGISTER_TYPE_DF;
1643 } else {
1644 /* To avoid floating-point denorm flushing problems, set the type by
1645 * default to an integer type - instructions that need floating point
1646 * semantics will set this to F if they need to
1647 */
1648 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1649 BRW_REGISTER_TYPE_D);
1650 }
1651
1652 return reg;
1653 }
1654
1655 /**
1656 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1657 *
1658 * This function should not be called on any value which may be 64 bits.
1659 * We could theoretically support 64-bit on gen8+ but we choose not to
1660 * because it wouldn't work in general (no gen7 support) and there are
1661 * enough restrictions in 64-bit immediates that you can't take the return
1662 * value and treat it the same as the result of get_nir_src().
1663 */
1664 fs_reg
1665 fs_visitor::get_nir_src_imm(const nir_src &src)
1666 {
1667 nir_const_value *val = nir_src_as_const_value(src);
1668 assert(nir_src_bit_size(src) == 32);
1669 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1670 }
1671
1672 fs_reg
1673 fs_visitor::get_nir_dest(const nir_dest &dest)
1674 {
1675 if (dest.is_ssa) {
1676 const brw_reg_type reg_type =
1677 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1678 dest.ssa.bit_size == 8 ?
1679 BRW_REGISTER_TYPE_D :
1680 BRW_REGISTER_TYPE_F);
1681 nir_ssa_values[dest.ssa.index] =
1682 bld.vgrf(reg_type, dest.ssa.num_components);
1683 return nir_ssa_values[dest.ssa.index];
1684 } else {
1685 /* We don't handle indirects on locals */
1686 assert(dest.reg.indirect == NULL);
1687 return offset(nir_locals[dest.reg.reg->index], bld,
1688 dest.reg.base_offset * dest.reg.reg->num_components);
1689 }
1690 }
1691
1692 fs_reg
1693 fs_visitor::get_nir_image_deref(nir_deref_instr *deref)
1694 {
1695 fs_reg arr_offset = brw_imm_ud(0);
1696 unsigned array_size = BRW_IMAGE_PARAM_SIZE * 4;
1697 nir_deref_instr *head = deref;
1698 while (head->deref_type != nir_deref_type_var) {
1699 assert(head->deref_type == nir_deref_type_array);
1700
1701 /* This level's element size is the previous level's array size */
1702 const unsigned elem_size = array_size;
1703
1704 fs_reg index = retype(get_nir_src_imm(head->arr.index),
1705 BRW_REGISTER_TYPE_UD);
1706 if (arr_offset.file == BRW_IMMEDIATE_VALUE &&
1707 index.file == BRW_IMMEDIATE_VALUE) {
1708 arr_offset.ud += index.ud * elem_size;
1709 } else if (index.file == BRW_IMMEDIATE_VALUE) {
1710 bld.ADD(arr_offset, arr_offset, brw_imm_ud(index.ud * elem_size));
1711 } else {
1712 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
1713 bld.MUL(tmp, index, brw_imm_ud(elem_size));
1714 bld.ADD(tmp, tmp, arr_offset);
1715 arr_offset = tmp;
1716 }
1717
1718 head = nir_deref_instr_parent(head);
1719 assert(glsl_type_is_array(head->type));
1720 array_size = elem_size * glsl_get_length(head->type);
1721 }
1722
1723 assert(head->deref_type == nir_deref_type_var);
1724 const unsigned max_arr_offset = array_size - (BRW_IMAGE_PARAM_SIZE * 4);
1725 fs_reg image(UNIFORM, head->var->data.driver_location / 4,
1726 BRW_REGISTER_TYPE_UD);
1727
1728 if (arr_offset.file == BRW_IMMEDIATE_VALUE) {
1729 /* The offset is in bytes but we want it in dwords */
1730 return offset(image, bld, MIN2(arr_offset.ud, max_arr_offset) / 4);
1731 } else {
1732 /* Accessing an invalid surface index with the dataport can result
1733 * in a hang. According to the spec "if the index used to
1734 * select an individual element is negative or greater than or
1735 * equal to the size of the array, the results of the operation
1736 * are undefined but may not lead to termination" -- which is one
1737 * of the possible outcomes of the hang. Clamp the index to
1738 * prevent access outside of the array bounds.
1739 */
1740 bld.emit_minmax(arr_offset, arr_offset, brw_imm_ud(max_arr_offset),
1741 BRW_CONDITIONAL_L);
1742
1743 /* Emit a pile of MOVs to load the uniform into a temporary. The
1744 * dead-code elimination pass will get rid of what we don't use.
1745 */
1746 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1747 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1748 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1749 offset(tmp, bld, j), offset(image, bld, j),
1750 arr_offset, brw_imm_ud(max_arr_offset + 4));
1751 }
1752 return tmp;
1753 }
1754 }
1755
1756 void
1757 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1758 unsigned wr_mask)
1759 {
1760 for (unsigned i = 0; i < 4; i++) {
1761 if (!((wr_mask >> i) & 1))
1762 continue;
1763
1764 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1765 new_inst->dst = offset(new_inst->dst, bld, i);
1766 for (unsigned j = 0; j < new_inst->sources; j++)
1767 if (new_inst->src[j].file == VGRF)
1768 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1769
1770 bld.emit(new_inst);
1771 }
1772 }
1773
1774 /**
1775 * Get the matching channel register datatype for an image intrinsic of the
1776 * specified GLSL image type.
1777 */
1778 static brw_reg_type
1779 get_image_base_type(const glsl_type *type)
1780 {
1781 switch ((glsl_base_type)type->sampled_type) {
1782 case GLSL_TYPE_UINT:
1783 return BRW_REGISTER_TYPE_UD;
1784 case GLSL_TYPE_INT:
1785 return BRW_REGISTER_TYPE_D;
1786 case GLSL_TYPE_FLOAT:
1787 return BRW_REGISTER_TYPE_F;
1788 default:
1789 unreachable("Not reached.");
1790 }
1791 }
1792
1793 /**
1794 * Get the appropriate atomic op for an image atomic intrinsic.
1795 */
1796 static unsigned
1797 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1798 {
1799 switch (op) {
1800 case nir_intrinsic_image_deref_atomic_add:
1801 return BRW_AOP_ADD;
1802 case nir_intrinsic_image_deref_atomic_min:
1803 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1804 BRW_AOP_IMIN : BRW_AOP_UMIN);
1805 case nir_intrinsic_image_deref_atomic_max:
1806 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1807 BRW_AOP_IMAX : BRW_AOP_UMAX);
1808 case nir_intrinsic_image_deref_atomic_and:
1809 return BRW_AOP_AND;
1810 case nir_intrinsic_image_deref_atomic_or:
1811 return BRW_AOP_OR;
1812 case nir_intrinsic_image_deref_atomic_xor:
1813 return BRW_AOP_XOR;
1814 case nir_intrinsic_image_deref_atomic_exchange:
1815 return BRW_AOP_MOV;
1816 case nir_intrinsic_image_deref_atomic_comp_swap:
1817 return BRW_AOP_CMPWR;
1818 default:
1819 unreachable("Not reachable.");
1820 }
1821 }
1822
1823 static fs_inst *
1824 emit_pixel_interpolater_send(const fs_builder &bld,
1825 enum opcode opcode,
1826 const fs_reg &dst,
1827 const fs_reg &src,
1828 const fs_reg &desc,
1829 glsl_interp_mode interpolation)
1830 {
1831 struct brw_wm_prog_data *wm_prog_data =
1832 brw_wm_prog_data(bld.shader->stage_prog_data);
1833
1834 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1835 /* 2 floats per slot returned */
1836 inst->size_written = 2 * dst.component_size(inst->exec_size);
1837 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1838
1839 wm_prog_data->pulls_bary = true;
1840
1841 return inst;
1842 }
1843
1844 /**
1845 * Computes 1 << x, given a D/UD register containing some value x.
1846 */
1847 static fs_reg
1848 intexp2(const fs_builder &bld, const fs_reg &x)
1849 {
1850 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1851
1852 fs_reg result = bld.vgrf(x.type, 1);
1853 fs_reg one = bld.vgrf(x.type, 1);
1854
1855 bld.MOV(one, retype(brw_imm_d(1), one.type));
1856 bld.SHL(result, one, x);
1857 return result;
1858 }
1859
1860 void
1861 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1862 {
1863 assert(stage == MESA_SHADER_GEOMETRY);
1864
1865 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1866
1867 if (gs_compile->control_data_header_size_bits == 0)
1868 return;
1869
1870 /* We can only do EndPrimitive() functionality when the control data
1871 * consists of cut bits. Fortunately, the only time it isn't is when the
1872 * output type is points, in which case EndPrimitive() is a no-op.
1873 */
1874 if (gs_prog_data->control_data_format !=
1875 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1876 return;
1877 }
1878
1879 /* Cut bits use one bit per vertex. */
1880 assert(gs_compile->control_data_bits_per_vertex == 1);
1881
1882 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1883 vertex_count.type = BRW_REGISTER_TYPE_UD;
1884
1885 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1886 * vertex n, 0 otherwise. So all we need to do here is mark bit
1887 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1888 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1889 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1890 *
1891 * Note that if EndPrimitive() is called before emitting any vertices, this
1892 * will cause us to set bit 31 of the control_data_bits register to 1.
1893 * That's fine because:
1894 *
1895 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1896 * output, so the hardware will ignore cut bit 31.
1897 *
1898 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1899 * last vertex, so setting cut bit 31 has no effect (since the primitive
1900 * is automatically ended when the GS terminates).
1901 *
1902 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1903 * control_data_bits register to 0 when the first vertex is emitted.
1904 */
1905
1906 const fs_builder abld = bld.annotate("end primitive");
1907
1908 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1909 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1910 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1911 fs_reg mask = intexp2(abld, prev_count);
1912 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1913 * attention to the lower 5 bits of its second source argument, so on this
1914 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1915 * ((vertex_count - 1) % 32).
1916 */
1917 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1918 }
1919
1920 void
1921 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1922 {
1923 assert(stage == MESA_SHADER_GEOMETRY);
1924 assert(gs_compile->control_data_bits_per_vertex != 0);
1925
1926 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1927
1928 const fs_builder abld = bld.annotate("emit control data bits");
1929 const fs_builder fwa_bld = bld.exec_all();
1930
1931 /* We use a single UD register to accumulate control data bits (32 bits
1932 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1933 * at a time.
1934 *
1935 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1936 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1937 * use the Channel Mask phase to enable/disable which DWord within that
1938 * group to write. (Remember, different SIMD8 channels may have emitted
1939 * different numbers of vertices, so we may need per-slot offsets.)
1940 *
1941 * Channel masking presents an annoying problem: we may have to replicate
1942 * the data up to 4 times:
1943 *
1944 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1945 *
1946 * To avoid penalizing shaders that emit a small number of vertices, we
1947 * can avoid these sometimes: if the size of the control data header is
1948 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1949 * land in the same 128-bit group, so we can skip per-slot offsets.
1950 *
1951 * Similarly, if the control data header is <= 32 bits, there is only one
1952 * DWord, so we can skip channel masks.
1953 */
1954 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1955
1956 fs_reg channel_mask, per_slot_offset;
1957
1958 if (gs_compile->control_data_header_size_bits > 32) {
1959 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1960 channel_mask = vgrf(glsl_type::uint_type);
1961 }
1962
1963 if (gs_compile->control_data_header_size_bits > 128) {
1964 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1965 per_slot_offset = vgrf(glsl_type::uint_type);
1966 }
1967
1968 /* Figure out which DWord we're trying to write to using the formula:
1969 *
1970 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1971 *
1972 * Since bits_per_vertex is a power of two, and is known at compile
1973 * time, this can be optimized to:
1974 *
1975 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1976 */
1977 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1978 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1979 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1980 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1981 unsigned log2_bits_per_vertex =
1982 util_last_bit(gs_compile->control_data_bits_per_vertex);
1983 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1984
1985 if (per_slot_offset.file != BAD_FILE) {
1986 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1987 * the appropriate OWord within the control data header.
1988 */
1989 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1990 }
1991
1992 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1993 * write to the appropriate DWORD within the OWORD.
1994 */
1995 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1996 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1997 channel_mask = intexp2(fwa_bld, channel);
1998 /* Then the channel masks need to be in bits 23:16. */
1999 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2000 }
2001
2002 /* Store the control data bits in the message payload and send it. */
2003 int mlen = 2;
2004 if (channel_mask.file != BAD_FILE)
2005 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2006 if (per_slot_offset.file != BAD_FILE)
2007 mlen++;
2008
2009 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2010 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2011 int i = 0;
2012 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2013 if (per_slot_offset.file != BAD_FILE)
2014 sources[i++] = per_slot_offset;
2015 if (channel_mask.file != BAD_FILE)
2016 sources[i++] = channel_mask;
2017 while (i < mlen) {
2018 sources[i++] = this->control_data_bits;
2019 }
2020
2021 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2022 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2023 inst->mlen = mlen;
2024 /* We need to increment Global Offset by 256-bits to make room for
2025 * Broadwell's extra "Vertex Count" payload at the beginning of the
2026 * URB entry. Since this is an OWord message, Global Offset is counted
2027 * in 128-bit units, so we must set it to 2.
2028 */
2029 if (gs_prog_data->static_vertex_count == -1)
2030 inst->offset = 2;
2031 }
2032
2033 void
2034 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2035 unsigned stream_id)
2036 {
2037 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2038
2039 /* Note: we are calling this *before* increasing vertex_count, so
2040 * this->vertex_count == vertex_count - 1 in the formula above.
2041 */
2042
2043 /* Stream mode uses 2 bits per vertex */
2044 assert(gs_compile->control_data_bits_per_vertex == 2);
2045
2046 /* Must be a valid stream */
2047 assert(stream_id < MAX_VERTEX_STREAMS);
2048
2049 /* Control data bits are initialized to 0 so we don't have to set any
2050 * bits when sending vertices to stream 0.
2051 */
2052 if (stream_id == 0)
2053 return;
2054
2055 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2056
2057 /* reg::sid = stream_id */
2058 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2059 abld.MOV(sid, brw_imm_ud(stream_id));
2060
2061 /* reg:shift_count = 2 * (vertex_count - 1) */
2062 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2063 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2064
2065 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2066 * attention to the lower 5 bits of its second source argument, so on this
2067 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2068 * stream_id << ((2 * (vertex_count - 1)) % 32).
2069 */
2070 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2071 abld.SHL(mask, sid, shift_count);
2072 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2073 }
2074
2075 void
2076 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2077 unsigned stream_id)
2078 {
2079 assert(stage == MESA_SHADER_GEOMETRY);
2080
2081 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2082
2083 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2084 vertex_count.type = BRW_REGISTER_TYPE_UD;
2085
2086 /* Haswell and later hardware ignores the "Render Stream Select" bits
2087 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2088 * and instead sends all primitives down the pipeline for rasterization.
2089 * If the SOL stage is enabled, "Render Stream Select" is honored and
2090 * primitives bound to non-zero streams are discarded after stream output.
2091 *
2092 * Since the only purpose of primives sent to non-zero streams is to
2093 * be recorded by transform feedback, we can simply discard all geometry
2094 * bound to these streams when transform feedback is disabled.
2095 */
2096 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2097 return;
2098
2099 /* If we're outputting 32 control data bits or less, then we can wait
2100 * until the shader is over to output them all. Otherwise we need to
2101 * output them as we go. Now is the time to do it, since we're about to
2102 * output the vertex_count'th vertex, so it's guaranteed that the
2103 * control data bits associated with the (vertex_count - 1)th vertex are
2104 * correct.
2105 */
2106 if (gs_compile->control_data_header_size_bits > 32) {
2107 const fs_builder abld =
2108 bld.annotate("emit vertex: emit control data bits");
2109
2110 /* Only emit control data bits if we've finished accumulating a batch
2111 * of 32 bits. This is the case when:
2112 *
2113 * (vertex_count * bits_per_vertex) % 32 == 0
2114 *
2115 * (in other words, when the last 5 bits of vertex_count *
2116 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2117 * integer n (which is always the case, since bits_per_vertex is
2118 * always 1 or 2), this is equivalent to requiring that the last 5-n
2119 * bits of vertex_count are 0:
2120 *
2121 * vertex_count & (2^(5-n) - 1) == 0
2122 *
2123 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2124 * equivalent to:
2125 *
2126 * vertex_count & (32 / bits_per_vertex - 1) == 0
2127 *
2128 * TODO: If vertex_count is an immediate, we could do some of this math
2129 * at compile time...
2130 */
2131 fs_inst *inst =
2132 abld.AND(bld.null_reg_d(), vertex_count,
2133 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2134 inst->conditional_mod = BRW_CONDITIONAL_Z;
2135
2136 abld.IF(BRW_PREDICATE_NORMAL);
2137 /* If vertex_count is 0, then no control data bits have been
2138 * accumulated yet, so we can skip emitting them.
2139 */
2140 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2141 BRW_CONDITIONAL_NEQ);
2142 abld.IF(BRW_PREDICATE_NORMAL);
2143 emit_gs_control_data_bits(vertex_count);
2144 abld.emit(BRW_OPCODE_ENDIF);
2145
2146 /* Reset control_data_bits to 0 so we can start accumulating a new
2147 * batch.
2148 *
2149 * Note: in the case where vertex_count == 0, this neutralizes the
2150 * effect of any call to EndPrimitive() that the shader may have
2151 * made before outputting its first vertex.
2152 */
2153 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2154 inst->force_writemask_all = true;
2155 abld.emit(BRW_OPCODE_ENDIF);
2156 }
2157
2158 emit_urb_writes(vertex_count);
2159
2160 /* In stream mode we have to set control data bits for all vertices
2161 * unless we have disabled control data bits completely (which we do
2162 * do for GL_POINTS outputs that don't use streams).
2163 */
2164 if (gs_compile->control_data_header_size_bits > 0 &&
2165 gs_prog_data->control_data_format ==
2166 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2167 set_gs_stream_control_data_bits(vertex_count, stream_id);
2168 }
2169 }
2170
2171 void
2172 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2173 const nir_src &vertex_src,
2174 unsigned base_offset,
2175 const nir_src &offset_src,
2176 unsigned num_components,
2177 unsigned first_component)
2178 {
2179 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2180
2181 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2182 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2183 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2184
2185 /* TODO: figure out push input layout for invocations == 1 */
2186 /* TODO: make this work with 64-bit inputs */
2187 if (gs_prog_data->invocations == 1 &&
2188 type_sz(dst.type) <= 4 &&
2189 offset_const != NULL && vertex_const != NULL &&
2190 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2191 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2192 vertex_const->u32[0] * push_reg_count;
2193 for (unsigned i = 0; i < num_components; i++) {
2194 bld.MOV(offset(dst, bld, i),
2195 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2196 }
2197 return;
2198 }
2199
2200 /* Resort to the pull model. Ensure the VUE handles are provided. */
2201 assert(gs_prog_data->base.include_vue_handles);
2202
2203 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2204 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2205
2206 if (gs_prog_data->invocations == 1) {
2207 if (vertex_const) {
2208 /* The vertex index is constant; just select the proper URB handle. */
2209 icp_handle =
2210 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2211 BRW_REGISTER_TYPE_UD);
2212 } else {
2213 /* The vertex index is non-constant. We need to use indirect
2214 * addressing to fetch the proper URB handle.
2215 *
2216 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2217 * indicating that channel <n> should read the handle from
2218 * DWord <n>. We convert that to bytes by multiplying by 4.
2219 *
2220 * Next, we convert the vertex index to bytes by multiplying
2221 * by 32 (shifting by 5), and add the two together. This is
2222 * the final indirect byte offset.
2223 */
2224 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2225 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2226 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2227 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2228
2229 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2230 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2231 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2232 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2233 /* Convert vertex_index to bytes (multiply by 32) */
2234 bld.SHL(vertex_offset_bytes,
2235 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2236 brw_imm_ud(5u));
2237 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2238
2239 /* Use first_icp_handle as the base offset. There is one register
2240 * of URB handles per vertex, so inform the register allocator that
2241 * we might read up to nir->info.gs.vertices_in registers.
2242 */
2243 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2244 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2245 fs_reg(icp_offset_bytes),
2246 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2247 }
2248 } else {
2249 assert(gs_prog_data->invocations > 1);
2250
2251 if (vertex_const) {
2252 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2253 bld.MOV(icp_handle,
2254 retype(brw_vec1_grf(first_icp_handle +
2255 vertex_const->i32[0] / 8,
2256 vertex_const->i32[0] % 8),
2257 BRW_REGISTER_TYPE_UD));
2258 } else {
2259 /* The vertex index is non-constant. We need to use indirect
2260 * addressing to fetch the proper URB handle.
2261 *
2262 */
2263 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2264
2265 /* Convert vertex_index to bytes (multiply by 4) */
2266 bld.SHL(icp_offset_bytes,
2267 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2268 brw_imm_ud(2u));
2269
2270 /* Use first_icp_handle as the base offset. There is one DWord
2271 * of URB handles per vertex, so inform the register allocator that
2272 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2273 */
2274 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2275 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2276 fs_reg(icp_offset_bytes),
2277 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2278 REG_SIZE));
2279 }
2280 }
2281
2282 fs_inst *inst;
2283
2284 fs_reg tmp_dst = dst;
2285 fs_reg indirect_offset = get_nir_src(offset_src);
2286 unsigned num_iterations = 1;
2287 unsigned orig_num_components = num_components;
2288
2289 if (type_sz(dst.type) == 8) {
2290 if (num_components > 2) {
2291 num_iterations = 2;
2292 num_components = 2;
2293 }
2294 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2295 tmp_dst = tmp;
2296 first_component = first_component / 2;
2297 }
2298
2299 for (unsigned iter = 0; iter < num_iterations; iter++) {
2300 if (offset_const) {
2301 /* Constant indexing - use global offset. */
2302 if (first_component != 0) {
2303 unsigned read_components = num_components + first_component;
2304 fs_reg tmp = bld.vgrf(dst.type, read_components);
2305 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2306 inst->size_written = read_components *
2307 tmp.component_size(inst->exec_size);
2308 for (unsigned i = 0; i < num_components; i++) {
2309 bld.MOV(offset(tmp_dst, bld, i),
2310 offset(tmp, bld, i + first_component));
2311 }
2312 } else {
2313 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2314 icp_handle);
2315 inst->size_written = num_components *
2316 tmp_dst.component_size(inst->exec_size);
2317 }
2318 inst->offset = base_offset + offset_const->u32[0];
2319 inst->mlen = 1;
2320 } else {
2321 /* Indirect indexing - use per-slot offsets as well. */
2322 const fs_reg srcs[] = { icp_handle, indirect_offset };
2323 unsigned read_components = num_components + first_component;
2324 fs_reg tmp = bld.vgrf(dst.type, read_components);
2325 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2326 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2327 if (first_component != 0) {
2328 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2329 payload);
2330 inst->size_written = read_components *
2331 tmp.component_size(inst->exec_size);
2332 for (unsigned i = 0; i < num_components; i++) {
2333 bld.MOV(offset(tmp_dst, bld, i),
2334 offset(tmp, bld, i + first_component));
2335 }
2336 } else {
2337 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2338 payload);
2339 inst->size_written = num_components *
2340 tmp_dst.component_size(inst->exec_size);
2341 }
2342 inst->offset = base_offset;
2343 inst->mlen = 2;
2344 }
2345
2346 if (type_sz(dst.type) == 8) {
2347 shuffle_from_32bit_read(bld,
2348 offset(dst, bld, iter * 2),
2349 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2350 0,
2351 num_components);
2352 }
2353
2354 if (num_iterations > 1) {
2355 num_components = orig_num_components - 2;
2356 if(offset_const) {
2357 base_offset++;
2358 } else {
2359 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2360 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2361 indirect_offset = new_indirect;
2362 }
2363 }
2364 }
2365 }
2366
2367 fs_reg
2368 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2369 {
2370 nir_src *offset_src = nir_get_io_offset_src(instr);
2371 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2372
2373 if (const_value) {
2374 /* The only constant offset we should find is 0. brw_nir.c's
2375 * add_const_offset_to_base() will fold other constant offsets
2376 * into instr->const_index[0].
2377 */
2378 assert(const_value->u32[0] == 0);
2379 return fs_reg();
2380 }
2381
2382 return get_nir_src(*offset_src);
2383 }
2384
2385 static void
2386 do_untyped_vector_read(const fs_builder &bld,
2387 const fs_reg dest,
2388 const fs_reg surf_index,
2389 const fs_reg offset_reg,
2390 unsigned num_components)
2391 {
2392 if (type_sz(dest.type) <= 2) {
2393 assert(dest.stride == 1);
2394 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2395
2396 if (is_const_offset) {
2397 uint32_t start = offset_reg.ud & ~3;
2398 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2399 end = ALIGN(end, 4);
2400 assert (end - start <= 16);
2401
2402 /* At this point we have 16-bit component/s that have constant
2403 * offset aligned to 4-bytes that can be read with untyped_reads.
2404 * untyped_read message requires 32-bit aligned offsets.
2405 */
2406 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2407 unsigned num_components_32bit = (end - start) / 4;
2408
2409 fs_reg read_result =
2410 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2411 1 /* dims */,
2412 num_components_32bit,
2413 BRW_PREDICATE_NONE);
2414 shuffle_from_32bit_read(bld, dest, read_result, first_component,
2415 num_components);
2416 } else {
2417 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2418 for (unsigned i = 0; i < num_components; i++) {
2419 if (i == 0) {
2420 bld.MOV(read_offset, offset_reg);
2421 } else {
2422 bld.ADD(read_offset, offset_reg,
2423 brw_imm_ud(i * type_sz(dest.type)));
2424 }
2425 /* Non constant offsets are not guaranteed to be aligned 32-bits
2426 * so they are read using one byte_scattered_read message
2427 * for each component.
2428 */
2429 fs_reg read_result =
2430 emit_byte_scattered_read(bld, surf_index, read_offset,
2431 1 /* dims */, 1,
2432 type_sz(dest.type) * 8 /* bit_size */,
2433 BRW_PREDICATE_NONE);
2434 bld.MOV(offset(dest, bld, i),
2435 subscript (read_result, dest.type, 0));
2436 }
2437 }
2438 } else if (type_sz(dest.type) == 4) {
2439 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2440 1 /* dims */,
2441 num_components,
2442 BRW_PREDICATE_NONE);
2443 read_result.type = dest.type;
2444 for (unsigned i = 0; i < num_components; i++)
2445 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2446 } else if (type_sz(dest.type) == 8) {
2447 /* Reading a dvec, so we need to:
2448 *
2449 * 1. Multiply num_components by 2, to account for the fact that we
2450 * need to read 64-bit components.
2451 * 2. Shuffle the result of the load to form valid 64-bit elements
2452 * 3. Emit a second load (for components z/w) if needed.
2453 */
2454 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2455 bld.MOV(read_offset, offset_reg);
2456
2457 int iters = num_components <= 2 ? 1 : 2;
2458
2459 /* Load the dvec, the first iteration loads components x/y, the second
2460 * iteration, if needed, loads components z/w
2461 */
2462 for (int it = 0; it < iters; it++) {
2463 /* Compute number of components to read in this iteration */
2464 int iter_components = MIN2(2, num_components);
2465 num_components -= iter_components;
2466
2467 /* Read. Since this message reads 32-bit components, we need to
2468 * read twice as many components.
2469 */
2470 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2471 1 /* dims */,
2472 iter_components * 2,
2473 BRW_PREDICATE_NONE);
2474
2475 /* Shuffle the 32-bit load result into valid 64-bit data */
2476 shuffle_from_32bit_read(bld, offset(dest, bld, it * 2),
2477 read_result, 0, iter_components);
2478
2479 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2480 }
2481 } else {
2482 unreachable("Unsupported type");
2483 }
2484 }
2485
2486 void
2487 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2488 nir_intrinsic_instr *instr)
2489 {
2490 assert(stage == MESA_SHADER_VERTEX);
2491
2492 fs_reg dest;
2493 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2494 dest = get_nir_dest(instr->dest);
2495
2496 switch (instr->intrinsic) {
2497 case nir_intrinsic_load_vertex_id:
2498 case nir_intrinsic_load_base_vertex:
2499 unreachable("should be lowered by nir_lower_system_values()");
2500
2501 case nir_intrinsic_load_input: {
2502 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2503 unsigned first_component = nir_intrinsic_component(instr);
2504 unsigned num_components = instr->num_components;
2505
2506 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2507 assert(const_offset && "Indirect input loads not allowed");
2508 src = offset(src, bld, const_offset->u32[0]);
2509
2510 if (type_sz(dest.type) == 8)
2511 first_component /= 2;
2512
2513 /* For 16-bit support maybe a temporary will be needed to copy from
2514 * the ATTR file.
2515 */
2516 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2517 first_component, num_components);
2518 break;
2519 }
2520
2521 case nir_intrinsic_load_vertex_id_zero_base:
2522 case nir_intrinsic_load_instance_id:
2523 case nir_intrinsic_load_base_instance:
2524 case nir_intrinsic_load_draw_id:
2525 case nir_intrinsic_load_first_vertex:
2526 case nir_intrinsic_load_is_indexed_draw:
2527 unreachable("lowered by brw_nir_lower_vs_inputs");
2528
2529 default:
2530 nir_emit_intrinsic(bld, instr);
2531 break;
2532 }
2533 }
2534
2535 void
2536 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2537 nir_intrinsic_instr *instr)
2538 {
2539 assert(stage == MESA_SHADER_TESS_CTRL);
2540 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2541 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2542
2543 fs_reg dst;
2544 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2545 dst = get_nir_dest(instr->dest);
2546
2547 switch (instr->intrinsic) {
2548 case nir_intrinsic_load_primitive_id:
2549 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2550 break;
2551 case nir_intrinsic_load_invocation_id:
2552 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2553 break;
2554 case nir_intrinsic_load_patch_vertices_in:
2555 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2556 brw_imm_d(tcs_key->input_vertices));
2557 break;
2558
2559 case nir_intrinsic_barrier: {
2560 if (tcs_prog_data->instances == 1)
2561 break;
2562
2563 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2564 fs_reg m0_2 = component(m0, 2);
2565
2566 const fs_builder chanbld = bld.exec_all().group(1, 0);
2567
2568 /* Zero the message header */
2569 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2570
2571 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2572 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2573 brw_imm_ud(INTEL_MASK(16, 13)));
2574
2575 /* Shift it up to bits 27:24. */
2576 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2577
2578 /* Set the Barrier Count and the enable bit */
2579 chanbld.OR(m0_2, m0_2,
2580 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2581
2582 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2583 break;
2584 }
2585
2586 case nir_intrinsic_load_input:
2587 unreachable("nir_lower_io should never give us these.");
2588 break;
2589
2590 case nir_intrinsic_load_per_vertex_input: {
2591 fs_reg indirect_offset = get_indirect_offset(instr);
2592 unsigned imm_offset = instr->const_index[0];
2593
2594 const nir_src &vertex_src = instr->src[0];
2595 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2596
2597 fs_inst *inst;
2598
2599 fs_reg icp_handle;
2600
2601 if (vertex_const) {
2602 /* Emit a MOV to resolve <0,1,0> regioning. */
2603 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2604 bld.MOV(icp_handle,
2605 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2606 vertex_const->i32[0] & 7),
2607 BRW_REGISTER_TYPE_UD));
2608 } else if (tcs_prog_data->instances == 1 &&
2609 vertex_src.is_ssa &&
2610 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2611 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2612 /* For the common case of only 1 instance, an array index of
2613 * gl_InvocationID means reading g1. Skip all the indirect work.
2614 */
2615 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2616 } else {
2617 /* The vertex index is non-constant. We need to use indirect
2618 * addressing to fetch the proper URB handle.
2619 */
2620 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2621
2622 /* Each ICP handle is a single DWord (4 bytes) */
2623 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2624 bld.SHL(vertex_offset_bytes,
2625 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2626 brw_imm_ud(2u));
2627
2628 /* Start at g1. We might read up to 4 registers. */
2629 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2630 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2631 brw_imm_ud(4 * REG_SIZE));
2632 }
2633
2634 /* We can only read two double components with each URB read, so
2635 * we send two read messages in that case, each one loading up to
2636 * two double components.
2637 */
2638 unsigned num_iterations = 1;
2639 unsigned num_components = instr->num_components;
2640 unsigned first_component = nir_intrinsic_component(instr);
2641 fs_reg orig_dst = dst;
2642 if (type_sz(dst.type) == 8) {
2643 first_component = first_component / 2;
2644 if (instr->num_components > 2) {
2645 num_iterations = 2;
2646 num_components = 2;
2647 }
2648
2649 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2650 dst = tmp;
2651 }
2652
2653 for (unsigned iter = 0; iter < num_iterations; iter++) {
2654 if (indirect_offset.file == BAD_FILE) {
2655 /* Constant indexing - use global offset. */
2656 if (first_component != 0) {
2657 unsigned read_components = num_components + first_component;
2658 fs_reg tmp = bld.vgrf(dst.type, read_components);
2659 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2660 for (unsigned i = 0; i < num_components; i++) {
2661 bld.MOV(offset(dst, bld, i),
2662 offset(tmp, bld, i + first_component));
2663 }
2664 } else {
2665 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2666 }
2667 inst->offset = imm_offset;
2668 inst->mlen = 1;
2669 } else {
2670 /* Indirect indexing - use per-slot offsets as well. */
2671 const fs_reg srcs[] = { icp_handle, indirect_offset };
2672 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2673 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2674 if (first_component != 0) {
2675 unsigned read_components = num_components + first_component;
2676 fs_reg tmp = bld.vgrf(dst.type, read_components);
2677 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2678 payload);
2679 for (unsigned i = 0; i < num_components; i++) {
2680 bld.MOV(offset(dst, bld, i),
2681 offset(tmp, bld, i + first_component));
2682 }
2683 } else {
2684 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2685 payload);
2686 }
2687 inst->offset = imm_offset;
2688 inst->mlen = 2;
2689 }
2690 inst->size_written = (num_components + first_component) *
2691 inst->dst.component_size(inst->exec_size);
2692
2693 /* If we are reading 64-bit data using 32-bit read messages we need
2694 * build proper 64-bit data elements by shuffling the low and high
2695 * 32-bit components around like we do for other things like UBOs
2696 * or SSBOs.
2697 */
2698 if (type_sz(dst.type) == 8) {
2699 shuffle_from_32bit_read(bld,
2700 offset(orig_dst, bld, iter * 2),
2701 retype(dst, BRW_REGISTER_TYPE_D),
2702 0, num_components);
2703 }
2704
2705 /* Copy the temporary to the destination to deal with writemasking.
2706 *
2707 * Also attempt to deal with gl_PointSize being in the .w component.
2708 */
2709 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2710 assert(type_sz(dst.type) < 8);
2711 inst->dst = bld.vgrf(dst.type, 4);
2712 inst->size_written = 4 * REG_SIZE;
2713 bld.MOV(dst, offset(inst->dst, bld, 3));
2714 }
2715
2716 /* If we are loading double data and we need a second read message
2717 * adjust the write offset
2718 */
2719 if (num_iterations > 1) {
2720 num_components = instr->num_components - 2;
2721 imm_offset++;
2722 }
2723 }
2724 break;
2725 }
2726
2727 case nir_intrinsic_load_output:
2728 case nir_intrinsic_load_per_vertex_output: {
2729 fs_reg indirect_offset = get_indirect_offset(instr);
2730 unsigned imm_offset = instr->const_index[0];
2731 unsigned first_component = nir_intrinsic_component(instr);
2732
2733 fs_inst *inst;
2734 if (indirect_offset.file == BAD_FILE) {
2735 /* Replicate the patch handle to all enabled channels */
2736 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2737 bld.MOV(patch_handle,
2738 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2739
2740 {
2741 if (first_component != 0) {
2742 unsigned read_components =
2743 instr->num_components + first_component;
2744 fs_reg tmp = bld.vgrf(dst.type, read_components);
2745 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2746 patch_handle);
2747 inst->size_written = read_components * REG_SIZE;
2748 for (unsigned i = 0; i < instr->num_components; i++) {
2749 bld.MOV(offset(dst, bld, i),
2750 offset(tmp, bld, i + first_component));
2751 }
2752 } else {
2753 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2754 patch_handle);
2755 inst->size_written = instr->num_components * REG_SIZE;
2756 }
2757 inst->offset = imm_offset;
2758 inst->mlen = 1;
2759 }
2760 } else {
2761 /* Indirect indexing - use per-slot offsets as well. */
2762 const fs_reg srcs[] = {
2763 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2764 indirect_offset
2765 };
2766 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2767 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2768 if (first_component != 0) {
2769 unsigned read_components =
2770 instr->num_components + first_component;
2771 fs_reg tmp = bld.vgrf(dst.type, read_components);
2772 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2773 payload);
2774 inst->size_written = read_components * REG_SIZE;
2775 for (unsigned i = 0; i < instr->num_components; i++) {
2776 bld.MOV(offset(dst, bld, i),
2777 offset(tmp, bld, i + first_component));
2778 }
2779 } else {
2780 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2781 payload);
2782 inst->size_written = instr->num_components * REG_SIZE;
2783 }
2784 inst->offset = imm_offset;
2785 inst->mlen = 2;
2786 }
2787 break;
2788 }
2789
2790 case nir_intrinsic_store_output:
2791 case nir_intrinsic_store_per_vertex_output: {
2792 fs_reg value = get_nir_src(instr->src[0]);
2793 bool is_64bit = (instr->src[0].is_ssa ?
2794 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2795 fs_reg indirect_offset = get_indirect_offset(instr);
2796 unsigned imm_offset = instr->const_index[0];
2797 unsigned mask = instr->const_index[1];
2798 unsigned header_regs = 0;
2799 fs_reg srcs[7];
2800 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2801
2802 if (indirect_offset.file != BAD_FILE) {
2803 srcs[header_regs++] = indirect_offset;
2804 }
2805
2806 if (mask == 0)
2807 break;
2808
2809 unsigned num_components = util_last_bit(mask);
2810 enum opcode opcode;
2811
2812 /* We can only pack two 64-bit components in a single message, so send
2813 * 2 messages if we have more components
2814 */
2815 unsigned num_iterations = 1;
2816 unsigned iter_components = num_components;
2817 unsigned first_component = nir_intrinsic_component(instr);
2818 if (is_64bit) {
2819 first_component = first_component / 2;
2820 if (instr->num_components > 2) {
2821 num_iterations = 2;
2822 iter_components = 2;
2823 }
2824 }
2825
2826 mask = mask << first_component;
2827
2828 for (unsigned iter = 0; iter < num_iterations; iter++) {
2829 if (!is_64bit && mask != WRITEMASK_XYZW) {
2830 srcs[header_regs++] = brw_imm_ud(mask << 16);
2831 opcode = indirect_offset.file != BAD_FILE ?
2832 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2833 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2834 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2835 /* Expand the 64-bit mask to 32-bit channels. We only handle
2836 * two channels in each iteration, so we only care about X/Y.
2837 */
2838 unsigned mask32 = 0;
2839 if (mask & WRITEMASK_X)
2840 mask32 |= WRITEMASK_XY;
2841 if (mask & WRITEMASK_Y)
2842 mask32 |= WRITEMASK_ZW;
2843
2844 /* If the mask does not include any of the channels X or Y there
2845 * is nothing to do in this iteration. Move on to the next couple
2846 * of 64-bit channels.
2847 */
2848 if (!mask32) {
2849 mask >>= 2;
2850 imm_offset++;
2851 continue;
2852 }
2853
2854 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2855 opcode = indirect_offset.file != BAD_FILE ?
2856 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2857 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2858 } else {
2859 opcode = indirect_offset.file != BAD_FILE ?
2860 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2861 SHADER_OPCODE_URB_WRITE_SIMD8;
2862 }
2863
2864 for (unsigned i = 0; i < iter_components; i++) {
2865 if (!(mask & (1 << (i + first_component))))
2866 continue;
2867
2868 if (!is_64bit) {
2869 srcs[header_regs + i + first_component] = offset(value, bld, i);
2870 } else {
2871 /* We need to shuffle the 64-bit data to match the layout
2872 * expected by our 32-bit URB write messages. We use a temporary
2873 * for that.
2874 */
2875 unsigned channel = iter * 2 + i;
2876 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2877
2878 srcs[header_regs + (i + first_component) * 2] = dest;
2879 srcs[header_regs + (i + first_component) * 2 + 1] =
2880 offset(dest, bld, 1);
2881 }
2882 }
2883
2884 unsigned mlen =
2885 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2886 (is_64bit ? 2 * first_component : first_component);
2887 fs_reg payload =
2888 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2889 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2890
2891 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2892 inst->offset = imm_offset;
2893 inst->mlen = mlen;
2894
2895 /* If this is a 64-bit attribute, select the next two 64-bit channels
2896 * to be handled in the next iteration.
2897 */
2898 if (is_64bit) {
2899 mask >>= 2;
2900 imm_offset++;
2901 }
2902 }
2903 break;
2904 }
2905
2906 default:
2907 nir_emit_intrinsic(bld, instr);
2908 break;
2909 }
2910 }
2911
2912 void
2913 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2914 nir_intrinsic_instr *instr)
2915 {
2916 assert(stage == MESA_SHADER_TESS_EVAL);
2917 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2918
2919 fs_reg dest;
2920 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2921 dest = get_nir_dest(instr->dest);
2922
2923 switch (instr->intrinsic) {
2924 case nir_intrinsic_load_primitive_id:
2925 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2926 break;
2927 case nir_intrinsic_load_tess_coord:
2928 /* gl_TessCoord is part of the payload in g1-3 */
2929 for (unsigned i = 0; i < 3; i++) {
2930 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2931 }
2932 break;
2933
2934 case nir_intrinsic_load_input:
2935 case nir_intrinsic_load_per_vertex_input: {
2936 fs_reg indirect_offset = get_indirect_offset(instr);
2937 unsigned imm_offset = instr->const_index[0];
2938 unsigned first_component = nir_intrinsic_component(instr);
2939
2940 if (type_sz(dest.type) == 8) {
2941 first_component = first_component / 2;
2942 }
2943
2944 fs_inst *inst;
2945 if (indirect_offset.file == BAD_FILE) {
2946 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2947 * which is 16 registers (since each holds 2 vec4 slots).
2948 */
2949 unsigned slot_count = 1;
2950 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2951 slot_count++;
2952
2953 const unsigned max_push_slots = 32;
2954 if (imm_offset + slot_count <= max_push_slots) {
2955 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2956 for (int i = 0; i < instr->num_components; i++) {
2957 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2958 i + first_component;
2959 bld.MOV(offset(dest, bld, i), component(src, comp));
2960 }
2961
2962 tes_prog_data->base.urb_read_length =
2963 MAX2(tes_prog_data->base.urb_read_length,
2964 DIV_ROUND_UP(imm_offset + slot_count, 2));
2965 } else {
2966 /* Replicate the patch handle to all enabled channels */
2967 const fs_reg srcs[] = {
2968 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2969 };
2970 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2971 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2972
2973 if (first_component != 0) {
2974 unsigned read_components =
2975 instr->num_components + first_component;
2976 fs_reg tmp = bld.vgrf(dest.type, read_components);
2977 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2978 patch_handle);
2979 inst->size_written = read_components * REG_SIZE;
2980 for (unsigned i = 0; i < instr->num_components; i++) {
2981 bld.MOV(offset(dest, bld, i),
2982 offset(tmp, bld, i + first_component));
2983 }
2984 } else {
2985 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2986 patch_handle);
2987 inst->size_written = instr->num_components * REG_SIZE;
2988 }
2989 inst->mlen = 1;
2990 inst->offset = imm_offset;
2991 }
2992 } else {
2993 /* Indirect indexing - use per-slot offsets as well. */
2994
2995 /* We can only read two double components with each URB read, so
2996 * we send two read messages in that case, each one loading up to
2997 * two double components.
2998 */
2999 unsigned num_iterations = 1;
3000 unsigned num_components = instr->num_components;
3001 fs_reg orig_dest = dest;
3002 if (type_sz(dest.type) == 8) {
3003 if (instr->num_components > 2) {
3004 num_iterations = 2;
3005 num_components = 2;
3006 }
3007 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
3008 dest = tmp;
3009 }
3010
3011 for (unsigned iter = 0; iter < num_iterations; iter++) {
3012 const fs_reg srcs[] = {
3013 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3014 indirect_offset
3015 };
3016 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3017 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3018
3019 if (first_component != 0) {
3020 unsigned read_components =
3021 num_components + first_component;
3022 fs_reg tmp = bld.vgrf(dest.type, read_components);
3023 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3024 payload);
3025 for (unsigned i = 0; i < num_components; i++) {
3026 bld.MOV(offset(dest, bld, i),
3027 offset(tmp, bld, i + first_component));
3028 }
3029 } else {
3030 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3031 payload);
3032 }
3033 inst->mlen = 2;
3034 inst->offset = imm_offset;
3035 inst->size_written = (num_components + first_component) *
3036 inst->dst.component_size(inst->exec_size);
3037
3038 /* If we are reading 64-bit data using 32-bit read messages we need
3039 * build proper 64-bit data elements by shuffling the low and high
3040 * 32-bit components around like we do for other things like UBOs
3041 * or SSBOs.
3042 */
3043 if (type_sz(dest.type) == 8) {
3044 shuffle_from_32bit_read(bld,
3045 offset(orig_dest, bld, iter * 2),
3046 retype(dest, BRW_REGISTER_TYPE_D),
3047 0, num_components);
3048 }
3049
3050 /* If we are loading double data and we need a second read message
3051 * adjust the offset
3052 */
3053 if (num_iterations > 1) {
3054 num_components = instr->num_components - 2;
3055 imm_offset++;
3056 }
3057 }
3058 }
3059 break;
3060 }
3061 default:
3062 nir_emit_intrinsic(bld, instr);
3063 break;
3064 }
3065 }
3066
3067 void
3068 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3069 nir_intrinsic_instr *instr)
3070 {
3071 assert(stage == MESA_SHADER_GEOMETRY);
3072 fs_reg indirect_offset;
3073
3074 fs_reg dest;
3075 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3076 dest = get_nir_dest(instr->dest);
3077
3078 switch (instr->intrinsic) {
3079 case nir_intrinsic_load_primitive_id:
3080 assert(stage == MESA_SHADER_GEOMETRY);
3081 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3082 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3083 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3084 break;
3085
3086 case nir_intrinsic_load_input:
3087 unreachable("load_input intrinsics are invalid for the GS stage");
3088
3089 case nir_intrinsic_load_per_vertex_input:
3090 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3091 instr->src[1], instr->num_components,
3092 nir_intrinsic_component(instr));
3093 break;
3094
3095 case nir_intrinsic_emit_vertex_with_counter:
3096 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3097 break;
3098
3099 case nir_intrinsic_end_primitive_with_counter:
3100 emit_gs_end_primitive(instr->src[0]);
3101 break;
3102
3103 case nir_intrinsic_set_vertex_count:
3104 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3105 break;
3106
3107 case nir_intrinsic_load_invocation_id: {
3108 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3109 assert(val.file != BAD_FILE);
3110 dest.type = val.type;
3111 bld.MOV(dest, val);
3112 break;
3113 }
3114
3115 default:
3116 nir_emit_intrinsic(bld, instr);
3117 break;
3118 }
3119 }
3120
3121 /**
3122 * Fetch the current render target layer index.
3123 */
3124 static fs_reg
3125 fetch_render_target_array_index(const fs_builder &bld)
3126 {
3127 if (bld.shader->devinfo->gen >= 6) {
3128 /* The render target array index is provided in the thread payload as
3129 * bits 26:16 of r0.0.
3130 */
3131 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3132 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3133 brw_imm_uw(0x7ff));
3134 return idx;
3135 } else {
3136 /* Pre-SNB we only ever render into the first layer of the framebuffer
3137 * since layered rendering is not implemented.
3138 */
3139 return brw_imm_ud(0);
3140 }
3141 }
3142
3143 /**
3144 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3145 * framebuffer at the current fragment coordinates and sample index.
3146 */
3147 fs_inst *
3148 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3149 unsigned target)
3150 {
3151 const struct gen_device_info *devinfo = bld.shader->devinfo;
3152
3153 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3154 const brw_wm_prog_key *wm_key =
3155 reinterpret_cast<const brw_wm_prog_key *>(key);
3156 assert(!wm_key->coherent_fb_fetch);
3157 const struct brw_wm_prog_data *wm_prog_data =
3158 brw_wm_prog_data(stage_prog_data);
3159
3160 /* Calculate the surface index relative to the start of the texture binding
3161 * table block, since that's what the texturing messages expect.
3162 */
3163 const unsigned surface = target +
3164 wm_prog_data->binding_table.render_target_read_start -
3165 wm_prog_data->base.binding_table.texture_start;
3166
3167 brw_mark_surface_used(
3168 bld.shader->stage_prog_data,
3169 wm_prog_data->binding_table.render_target_read_start + target);
3170
3171 /* Calculate the fragment coordinates. */
3172 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3173 bld.MOV(offset(coords, bld, 0), pixel_x);
3174 bld.MOV(offset(coords, bld, 1), pixel_y);
3175 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3176
3177 /* Calculate the sample index and MCS payload when multisampling. Luckily
3178 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3179 * shouldn't be necessary to recompile based on whether the framebuffer is
3180 * CMS or UMS.
3181 */
3182 if (wm_key->multisample_fbo &&
3183 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3184 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3185
3186 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3187 const fs_reg mcs = wm_key->multisample_fbo ?
3188 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3189
3190 /* Use either a normal or a CMS texel fetch message depending on whether
3191 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3192 * message just in case the framebuffer uses 16x multisampling, it should
3193 * be equivalent to the normal CMS fetch for lower multisampling modes.
3194 */
3195 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3196 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3197 SHADER_OPCODE_TXF_CMS_LOGICAL;
3198
3199 /* Emit the instruction. */
3200 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3201 sample, mcs,
3202 brw_imm_ud(surface), brw_imm_ud(0),
3203 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3204 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3205
3206 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3207 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3208
3209 return inst;
3210 }
3211
3212 /**
3213 * Actual coherent framebuffer read implemented using the native render target
3214 * read message. Requires SKL+.
3215 */
3216 static fs_inst *
3217 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3218 {
3219 assert(bld.shader->devinfo->gen >= 9);
3220 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3221 inst->target = target;
3222 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3223
3224 return inst;
3225 }
3226
3227 static fs_reg
3228 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3229 {
3230 if (n && regs[0].file != BAD_FILE) {
3231 return regs[0];
3232
3233 } else {
3234 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3235
3236 for (unsigned i = 0; i < n; i++)
3237 regs[i] = tmp;
3238
3239 return tmp;
3240 }
3241 }
3242
3243 static fs_reg
3244 alloc_frag_output(fs_visitor *v, unsigned location)
3245 {
3246 assert(v->stage == MESA_SHADER_FRAGMENT);
3247 const brw_wm_prog_key *const key =
3248 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3249 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3250 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3251
3252 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3253 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3254
3255 else if (l == FRAG_RESULT_COLOR)
3256 return alloc_temporary(v->bld, 4, v->outputs,
3257 MAX2(key->nr_color_regions, 1));
3258
3259 else if (l == FRAG_RESULT_DEPTH)
3260 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3261
3262 else if (l == FRAG_RESULT_STENCIL)
3263 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3264
3265 else if (l == FRAG_RESULT_SAMPLE_MASK)
3266 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3267
3268 else if (l >= FRAG_RESULT_DATA0 &&
3269 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3270 return alloc_temporary(v->bld, 4,
3271 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3272
3273 else
3274 unreachable("Invalid location");
3275 }
3276
3277 void
3278 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3279 nir_intrinsic_instr *instr)
3280 {
3281 assert(stage == MESA_SHADER_FRAGMENT);
3282
3283 fs_reg dest;
3284 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3285 dest = get_nir_dest(instr->dest);
3286
3287 switch (instr->intrinsic) {
3288 case nir_intrinsic_load_front_face:
3289 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3290 *emit_frontfacing_interpolation());
3291 break;
3292
3293 case nir_intrinsic_load_sample_pos: {
3294 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3295 assert(sample_pos.file != BAD_FILE);
3296 dest.type = sample_pos.type;
3297 bld.MOV(dest, sample_pos);
3298 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3299 break;
3300 }
3301
3302 case nir_intrinsic_load_layer_id:
3303 dest.type = BRW_REGISTER_TYPE_UD;
3304 bld.MOV(dest, fetch_render_target_array_index(bld));
3305 break;
3306
3307 case nir_intrinsic_load_helper_invocation:
3308 case nir_intrinsic_load_sample_mask_in:
3309 case nir_intrinsic_load_sample_id: {
3310 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3311 fs_reg val = nir_system_values[sv];
3312 assert(val.file != BAD_FILE);
3313 dest.type = val.type;
3314 bld.MOV(dest, val);
3315 break;
3316 }
3317
3318 case nir_intrinsic_store_output: {
3319 const fs_reg src = get_nir_src(instr->src[0]);
3320 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3321 assert(const_offset && "Indirect output stores not allowed");
3322 const unsigned location = nir_intrinsic_base(instr) +
3323 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3324 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3325 src.type);
3326
3327 for (unsigned j = 0; j < instr->num_components; j++)
3328 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3329 offset(src, bld, j));
3330
3331 break;
3332 }
3333
3334 case nir_intrinsic_load_output: {
3335 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3336 BRW_NIR_FRAG_OUTPUT_LOCATION);
3337 assert(l >= FRAG_RESULT_DATA0);
3338 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3339 assert(const_offset && "Indirect output loads not allowed");
3340 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3341 const fs_reg tmp = bld.vgrf(dest.type, 4);
3342
3343 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3344 emit_coherent_fb_read(bld, tmp, target);
3345 else
3346 emit_non_coherent_fb_read(bld, tmp, target);
3347
3348 for (unsigned j = 0; j < instr->num_components; j++) {
3349 bld.MOV(offset(dest, bld, j),
3350 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3351 }
3352
3353 break;
3354 }
3355
3356 case nir_intrinsic_discard:
3357 case nir_intrinsic_discard_if: {
3358 /* We track our discarded pixels in f0.1. By predicating on it, we can
3359 * update just the flag bits that aren't yet discarded. If there's no
3360 * condition, we emit a CMP of g0 != g0, so all currently executing
3361 * channels will get turned off.
3362 */
3363 fs_inst *cmp;
3364 if (instr->intrinsic == nir_intrinsic_discard_if) {
3365 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3366 brw_imm_d(0), BRW_CONDITIONAL_Z);
3367 } else {
3368 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3369 BRW_REGISTER_TYPE_UW));
3370 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3371 }
3372 cmp->predicate = BRW_PREDICATE_NORMAL;
3373 cmp->flag_subreg = 1;
3374
3375 if (devinfo->gen >= 6) {
3376 emit_discard_jump();
3377 }
3378
3379 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3380 break;
3381 }
3382
3383 case nir_intrinsic_load_input: {
3384 /* load_input is only used for flat inputs */
3385 unsigned base = nir_intrinsic_base(instr);
3386 unsigned comp = nir_intrinsic_component(instr);
3387 unsigned num_components = instr->num_components;
3388 fs_reg orig_dest = dest;
3389 enum brw_reg_type type = dest.type;
3390
3391 /* Special case fields in the VUE header */
3392 if (base == VARYING_SLOT_LAYER)
3393 comp = 1;
3394 else if (base == VARYING_SLOT_VIEWPORT)
3395 comp = 2;
3396
3397 if (nir_dest_bit_size(instr->dest) == 64) {
3398 /* const_index is in 32-bit type size units that could not be aligned
3399 * with DF. We need to read the double vector as if it was a float
3400 * vector of twice the number of components to fetch the right data.
3401 */
3402 type = BRW_REGISTER_TYPE_F;
3403 num_components *= 2;
3404 dest = bld.vgrf(type, num_components);
3405 }
3406
3407 for (unsigned int i = 0; i < num_components; i++) {
3408 bld.MOV(offset(retype(dest, type), bld, i),
3409 retype(component(interp_reg(base, comp + i), 3), type));
3410 }
3411
3412 if (nir_dest_bit_size(instr->dest) == 64) {
3413 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3414 instr->num_components);
3415 }
3416 break;
3417 }
3418
3419 case nir_intrinsic_load_barycentric_pixel:
3420 case nir_intrinsic_load_barycentric_centroid:
3421 case nir_intrinsic_load_barycentric_sample:
3422 /* Do nothing - load_interpolated_input handling will handle it later. */
3423 break;
3424
3425 case nir_intrinsic_load_barycentric_at_sample: {
3426 const glsl_interp_mode interpolation =
3427 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3428
3429 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3430
3431 if (const_sample) {
3432 unsigned msg_data = const_sample->i32[0] << 4;
3433
3434 emit_pixel_interpolater_send(bld,
3435 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3436 dest,
3437 fs_reg(), /* src */
3438 brw_imm_ud(msg_data),
3439 interpolation);
3440 } else {
3441 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3442 BRW_REGISTER_TYPE_UD);
3443
3444 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3445 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3446 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3447 bld.exec_all().group(1, 0)
3448 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3449 emit_pixel_interpolater_send(bld,
3450 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3451 dest,
3452 fs_reg(), /* src */
3453 msg_data,
3454 interpolation);
3455 } else {
3456 /* Make a loop that sends a message to the pixel interpolater
3457 * for the sample number in each live channel. If there are
3458 * multiple channels with the same sample number then these
3459 * will be handled simultaneously with a single interation of
3460 * the loop.
3461 */
3462 bld.emit(BRW_OPCODE_DO);
3463
3464 /* Get the next live sample number into sample_id_reg */
3465 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3466
3467 /* Set the flag register so that we can perform the send
3468 * message on all channels that have the same sample number
3469 */
3470 bld.CMP(bld.null_reg_ud(),
3471 sample_src, sample_id,
3472 BRW_CONDITIONAL_EQ);
3473 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3474 bld.exec_all().group(1, 0)
3475 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3476 fs_inst *inst =
3477 emit_pixel_interpolater_send(bld,
3478 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3479 dest,
3480 fs_reg(), /* src */
3481 component(msg_data, 0),
3482 interpolation);
3483 set_predicate(BRW_PREDICATE_NORMAL, inst);
3484
3485 /* Continue the loop if there are any live channels left */
3486 set_predicate_inv(BRW_PREDICATE_NORMAL,
3487 true, /* inverse */
3488 bld.emit(BRW_OPCODE_WHILE));
3489 }
3490 }
3491 break;
3492 }
3493
3494 case nir_intrinsic_load_barycentric_at_offset: {
3495 const glsl_interp_mode interpolation =
3496 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3497
3498 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3499
3500 if (const_offset) {
3501 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3502 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3503
3504 emit_pixel_interpolater_send(bld,
3505 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3506 dest,
3507 fs_reg(), /* src */
3508 brw_imm_ud(off_x | (off_y << 4)),
3509 interpolation);
3510 } else {
3511 fs_reg src = vgrf(glsl_type::ivec2_type);
3512 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3513 BRW_REGISTER_TYPE_F);
3514 for (int i = 0; i < 2; i++) {
3515 fs_reg temp = vgrf(glsl_type::float_type);
3516 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3517 fs_reg itemp = vgrf(glsl_type::int_type);
3518 /* float to int */
3519 bld.MOV(itemp, temp);
3520
3521 /* Clamp the upper end of the range to +7/16.
3522 * ARB_gpu_shader5 requires that we support a maximum offset
3523 * of +0.5, which isn't representable in a S0.4 value -- if
3524 * we didn't clamp it, we'd end up with -8/16, which is the
3525 * opposite of what the shader author wanted.
3526 *
3527 * This is legal due to ARB_gpu_shader5's quantization
3528 * rules:
3529 *
3530 * "Not all values of <offset> may be supported; x and y
3531 * offsets may be rounded to fixed-point values with the
3532 * number of fraction bits given by the
3533 * implementation-dependent constant
3534 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3535 */
3536 set_condmod(BRW_CONDITIONAL_L,
3537 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3538 }
3539
3540 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3541 emit_pixel_interpolater_send(bld,
3542 opcode,
3543 dest,
3544 src,
3545 brw_imm_ud(0u),
3546 interpolation);
3547 }
3548 break;
3549 }
3550
3551 case nir_intrinsic_load_interpolated_input: {
3552 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3553 emit_fragcoord_interpolation(dest);
3554 break;
3555 }
3556
3557 assert(instr->src[0].ssa &&
3558 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3559 nir_intrinsic_instr *bary_intrinsic =
3560 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3561 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3562 enum glsl_interp_mode interp_mode =
3563 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3564 fs_reg dst_xy;
3565
3566 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3567 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3568 /* Use the result of the PI message */
3569 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3570 } else {
3571 /* Use the delta_xy values computed from the payload */
3572 enum brw_barycentric_mode bary =
3573 brw_barycentric_mode(interp_mode, bary_intrin);
3574
3575 dst_xy = this->delta_xy[bary];
3576 }
3577
3578 for (unsigned int i = 0; i < instr->num_components; i++) {
3579 fs_reg interp =
3580 component(interp_reg(nir_intrinsic_base(instr),
3581 nir_intrinsic_component(instr) + i), 0);
3582 interp.type = BRW_REGISTER_TYPE_F;
3583 dest.type = BRW_REGISTER_TYPE_F;
3584
3585 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3586 fs_reg tmp = vgrf(glsl_type::float_type);
3587 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3588 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3589 } else {
3590 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3591 }
3592 }
3593 break;
3594 }
3595
3596 default:
3597 nir_emit_intrinsic(bld, instr);
3598 break;
3599 }
3600 }
3601
3602 void
3603 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3604 nir_intrinsic_instr *instr)
3605 {
3606 assert(stage == MESA_SHADER_COMPUTE);
3607 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3608
3609 fs_reg dest;
3610 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3611 dest = get_nir_dest(instr->dest);
3612
3613 switch (instr->intrinsic) {
3614 case nir_intrinsic_barrier:
3615 emit_barrier();
3616 cs_prog_data->uses_barrier = true;
3617 break;
3618
3619 case nir_intrinsic_load_subgroup_id:
3620 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3621 break;
3622
3623 case nir_intrinsic_load_local_invocation_id:
3624 case nir_intrinsic_load_work_group_id: {
3625 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3626 fs_reg val = nir_system_values[sv];
3627 assert(val.file != BAD_FILE);
3628 dest.type = val.type;
3629 for (unsigned i = 0; i < 3; i++)
3630 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3631 break;
3632 }
3633
3634 case nir_intrinsic_load_num_work_groups: {
3635 const unsigned surface =
3636 cs_prog_data->binding_table.work_groups_start;
3637
3638 cs_prog_data->uses_num_work_groups = true;
3639
3640 fs_reg surf_index = brw_imm_ud(surface);
3641 brw_mark_surface_used(prog_data, surface);
3642
3643 /* Read the 3 GLuint components of gl_NumWorkGroups */
3644 for (unsigned i = 0; i < 3; i++) {
3645 fs_reg read_result =
3646 emit_untyped_read(bld, surf_index,
3647 brw_imm_ud(i << 2),
3648 1 /* dims */, 1 /* size */,
3649 BRW_PREDICATE_NONE);
3650 read_result.type = dest.type;
3651 bld.MOV(dest, read_result);
3652 dest = offset(dest, bld, 1);
3653 }
3654 break;
3655 }
3656
3657 case nir_intrinsic_shared_atomic_add:
3658 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3659 break;
3660 case nir_intrinsic_shared_atomic_imin:
3661 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3662 break;
3663 case nir_intrinsic_shared_atomic_umin:
3664 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3665 break;
3666 case nir_intrinsic_shared_atomic_imax:
3667 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3668 break;
3669 case nir_intrinsic_shared_atomic_umax:
3670 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3671 break;
3672 case nir_intrinsic_shared_atomic_and:
3673 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3674 break;
3675 case nir_intrinsic_shared_atomic_or:
3676 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3677 break;
3678 case nir_intrinsic_shared_atomic_xor:
3679 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3680 break;
3681 case nir_intrinsic_shared_atomic_exchange:
3682 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3683 break;
3684 case nir_intrinsic_shared_atomic_comp_swap:
3685 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3686 break;
3687
3688 case nir_intrinsic_load_shared: {
3689 assert(devinfo->gen >= 7);
3690
3691 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3692
3693 /* Get the offset to read from */
3694 fs_reg offset_reg;
3695 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3696 if (const_offset) {
3697 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3698 } else {
3699 offset_reg = vgrf(glsl_type::uint_type);
3700 bld.ADD(offset_reg,
3701 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3702 brw_imm_ud(instr->const_index[0]));
3703 }
3704
3705 /* Read the vector */
3706 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3707 instr->num_components);
3708 break;
3709 }
3710
3711 case nir_intrinsic_store_shared: {
3712 assert(devinfo->gen >= 7);
3713
3714 /* Block index */
3715 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3716
3717 /* Value */
3718 fs_reg val_reg = get_nir_src(instr->src[0]);
3719
3720 /* Writemask */
3721 unsigned writemask = instr->const_index[1];
3722
3723 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3724 * since the untyped writes below operate in units of 32-bits, which
3725 * means that we need to write twice as many components each time.
3726 * Also, we have to suffle 64-bit data to be in the appropriate layout
3727 * expected by our 32-bit write messages.
3728 */
3729 unsigned type_size = 4;
3730 if (nir_src_bit_size(instr->src[0]) == 64) {
3731 type_size = 8;
3732 val_reg = shuffle_for_32bit_write(bld, val_reg, 0,
3733 instr->num_components);
3734 }
3735
3736 unsigned type_slots = type_size / 4;
3737
3738 /* Combine groups of consecutive enabled channels in one write
3739 * message. We use ffs to find the first enabled channel and then ffs on
3740 * the bit-inverse, down-shifted writemask to determine the length of
3741 * the block of enabled bits.
3742 */
3743 while (writemask) {
3744 unsigned first_component = ffs(writemask) - 1;
3745 unsigned length = ffs(~(writemask >> first_component)) - 1;
3746
3747 /* We can't write more than 2 64-bit components at once. Limit the
3748 * length of the write to what we can do and let the next iteration
3749 * handle the rest
3750 */
3751 if (type_size > 4)
3752 length = MIN2(2, length);
3753
3754 fs_reg offset_reg;
3755 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3756 if (const_offset) {
3757 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3758 type_size * first_component);
3759 } else {
3760 offset_reg = vgrf(glsl_type::uint_type);
3761 bld.ADD(offset_reg,
3762 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3763 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3764 }
3765
3766 emit_untyped_write(bld, surf_index, offset_reg,
3767 offset(val_reg, bld, first_component * type_slots),
3768 1 /* dims */, length * type_slots,
3769 BRW_PREDICATE_NONE);
3770
3771 /* Clear the bits in the writemask that we just wrote, then try
3772 * again to see if more channels are left.
3773 */
3774 writemask &= (15 << (first_component + length));
3775 }
3776
3777 break;
3778 }
3779
3780 default:
3781 nir_emit_intrinsic(bld, instr);
3782 break;
3783 }
3784 }
3785
3786 static fs_reg
3787 brw_nir_reduction_op_identity(const fs_builder &bld,
3788 nir_op op, brw_reg_type type)
3789 {
3790 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3791 switch (type_sz(type)) {
3792 case 2:
3793 assert(type != BRW_REGISTER_TYPE_HF);
3794 return retype(brw_imm_uw(value.u16[0]), type);
3795 case 4:
3796 return retype(brw_imm_ud(value.u32[0]), type);
3797 case 8:
3798 if (type == BRW_REGISTER_TYPE_DF)
3799 return setup_imm_df(bld, value.f64[0]);
3800 else
3801 return retype(brw_imm_u64(value.u64[0]), type);
3802 default:
3803 unreachable("Invalid type size");
3804 }
3805 }
3806
3807 static opcode
3808 brw_op_for_nir_reduction_op(nir_op op)
3809 {
3810 switch (op) {
3811 case nir_op_iadd: return BRW_OPCODE_ADD;
3812 case nir_op_fadd: return BRW_OPCODE_ADD;
3813 case nir_op_imul: return BRW_OPCODE_MUL;
3814 case nir_op_fmul: return BRW_OPCODE_MUL;
3815 case nir_op_imin: return BRW_OPCODE_SEL;
3816 case nir_op_umin: return BRW_OPCODE_SEL;
3817 case nir_op_fmin: return BRW_OPCODE_SEL;
3818 case nir_op_imax: return BRW_OPCODE_SEL;
3819 case nir_op_umax: return BRW_OPCODE_SEL;
3820 case nir_op_fmax: return BRW_OPCODE_SEL;
3821 case nir_op_iand: return BRW_OPCODE_AND;
3822 case nir_op_ior: return BRW_OPCODE_OR;
3823 case nir_op_ixor: return BRW_OPCODE_XOR;
3824 default:
3825 unreachable("Invalid reduction operation");
3826 }
3827 }
3828
3829 static brw_conditional_mod
3830 brw_cond_mod_for_nir_reduction_op(nir_op op)
3831 {
3832 switch (op) {
3833 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3834 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3835 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3836 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3837 case nir_op_imin: return BRW_CONDITIONAL_L;
3838 case nir_op_umin: return BRW_CONDITIONAL_L;
3839 case nir_op_fmin: return BRW_CONDITIONAL_L;
3840 case nir_op_imax: return BRW_CONDITIONAL_GE;
3841 case nir_op_umax: return BRW_CONDITIONAL_GE;
3842 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3843 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3844 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3845 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3846 default:
3847 unreachable("Invalid reduction operation");
3848 }
3849 }
3850
3851 void
3852 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3853 {
3854 fs_reg dest;
3855 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3856 dest = get_nir_dest(instr->dest);
3857
3858 switch (instr->intrinsic) {
3859 case nir_intrinsic_image_deref_load:
3860 case nir_intrinsic_image_deref_store:
3861 case nir_intrinsic_image_deref_atomic_add:
3862 case nir_intrinsic_image_deref_atomic_min:
3863 case nir_intrinsic_image_deref_atomic_max:
3864 case nir_intrinsic_image_deref_atomic_and:
3865 case nir_intrinsic_image_deref_atomic_or:
3866 case nir_intrinsic_image_deref_atomic_xor:
3867 case nir_intrinsic_image_deref_atomic_exchange:
3868 case nir_intrinsic_image_deref_atomic_comp_swap: {
3869 using namespace image_access;
3870
3871 if (stage == MESA_SHADER_FRAGMENT &&
3872 instr->intrinsic != nir_intrinsic_image_deref_load)
3873 brw_wm_prog_data(prog_data)->has_side_effects = true;
3874
3875 /* Get the referenced image variable and type. */
3876 nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
3877 const nir_variable *var = nir_deref_instr_get_variable(deref);
3878 const glsl_type *type = var->type->without_array();
3879 const brw_reg_type base_type = get_image_base_type(type);
3880
3881 /* Get some metadata from the image intrinsic. */
3882 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3883 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3884 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3885 const unsigned format = var->data.image.format;
3886 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3887
3888 /* Get the arguments of the image intrinsic. */
3889 const fs_reg image = get_nir_image_deref(deref);
3890 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3891 BRW_REGISTER_TYPE_UD);
3892 const fs_reg src0 = (info->num_srcs >= 4 ?
3893 retype(get_nir_src(instr->src[3]), base_type) :
3894 fs_reg());
3895 const fs_reg src1 = (info->num_srcs >= 5 ?
3896 retype(get_nir_src(instr->src[4]), base_type) :
3897 fs_reg());
3898 fs_reg tmp;
3899
3900 /* Emit an image load, store or atomic op. */
3901 if (instr->intrinsic == nir_intrinsic_image_deref_load)
3902 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3903
3904 else if (instr->intrinsic == nir_intrinsic_image_deref_store)
3905 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3906 var->data.image.write_only ? GL_NONE : format);
3907
3908 else
3909 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3910 surf_dims, arr_dims, dest_components,
3911 get_image_atomic_op(instr->intrinsic, type));
3912
3913 /* Assign the result. */
3914 for (unsigned c = 0; c < dest_components; ++c) {
3915 bld.MOV(offset(retype(dest, base_type), bld, c),
3916 offset(tmp, bld, c));
3917 }
3918 break;
3919 }
3920
3921 case nir_intrinsic_group_memory_barrier:
3922 case nir_intrinsic_memory_barrier_shared:
3923 case nir_intrinsic_memory_barrier_atomic_counter:
3924 case nir_intrinsic_memory_barrier_buffer:
3925 case nir_intrinsic_memory_barrier_image:
3926 case nir_intrinsic_memory_barrier: {
3927 const fs_builder ubld = bld.group(8, 0);
3928 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3929 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3930 ->size_written = 2 * REG_SIZE;
3931 break;
3932 }
3933
3934 case nir_intrinsic_shader_clock: {
3935 /* We cannot do anything if there is an event, so ignore it for now */
3936 const fs_reg shader_clock = get_timestamp(bld);
3937 const fs_reg srcs[] = { component(shader_clock, 0),
3938 component(shader_clock, 1) };
3939 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3940 break;
3941 }
3942
3943 case nir_intrinsic_image_deref_size: {
3944 /* Get the referenced image variable and type. */
3945 nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
3946 const nir_variable *var = nir_deref_instr_get_variable(deref);
3947 const glsl_type *type = var->type->without_array();
3948
3949 /* Get the size of the image. */
3950 const fs_reg image = get_nir_image_deref(deref);
3951 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3952
3953 /* For 1DArray image types, the array index is stored in the Z component.
3954 * Fix this by swizzling the Z component to the Y component.
3955 */
3956 const bool is_1d_array_image =
3957 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3958 type->sampler_array;
3959
3960 /* For CubeArray images, we should count the number of cubes instead
3961 * of the number of faces. Fix it by dividing the (Z component) by 6.
3962 */
3963 const bool is_cube_array_image =
3964 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3965 type->sampler_array;
3966
3967 /* Copy all the components. */
3968 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3969 if ((int)c >= type->coordinate_components()) {
3970 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3971 brw_imm_d(1));
3972 } else if (c == 1 && is_1d_array_image) {
3973 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3974 offset(size, bld, 2));
3975 } else if (c == 2 && is_cube_array_image) {
3976 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3977 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3978 offset(size, bld, c), brw_imm_d(6));
3979 } else {
3980 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3981 offset(size, bld, c));
3982 }
3983 }
3984
3985 break;
3986 }
3987
3988 case nir_intrinsic_image_deref_samples:
3989 /* The driver does not support multi-sampled images. */
3990 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3991 break;
3992
3993 case nir_intrinsic_load_uniform: {
3994 /* Offsets are in bytes but they should always aligned to
3995 * the type size
3996 */
3997 assert(instr->const_index[0] % 4 == 0 ||
3998 instr->const_index[0] % type_sz(dest.type) == 0);
3999
4000 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4001
4002 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4003 if (const_offset) {
4004 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
4005 /* For 16-bit types we add the module of the const_index[0]
4006 * offset to access to not 32-bit aligned element
4007 */
4008 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
4009
4010 for (unsigned j = 0; j < instr->num_components; j++) {
4011 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4012 }
4013 } else {
4014 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4015 BRW_REGISTER_TYPE_UD);
4016
4017 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4018 * go past the end of the uniform. In order to keep the n'th
4019 * component from running past, we subtract off the size of all but
4020 * one component of the vector.
4021 */
4022 assert(instr->const_index[1] >=
4023 instr->num_components * (int) type_sz(dest.type));
4024 unsigned read_size = instr->const_index[1] -
4025 (instr->num_components - 1) * type_sz(dest.type);
4026
4027 bool supports_64bit_indirects =
4028 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4029
4030 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4031 for (unsigned j = 0; j < instr->num_components; j++) {
4032 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4033 offset(dest, bld, j), offset(src, bld, j),
4034 indirect, brw_imm_ud(read_size));
4035 }
4036 } else {
4037 const unsigned num_mov_indirects =
4038 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4039 /* We read a little bit less per MOV INDIRECT, as they are now
4040 * 32-bits ones instead of 64-bit. Fix read_size then.
4041 */
4042 const unsigned read_size_32bit = read_size -
4043 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4044 for (unsigned j = 0; j < instr->num_components; j++) {
4045 for (unsigned i = 0; i < num_mov_indirects; i++) {
4046 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4047 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4048 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4049 indirect, brw_imm_ud(read_size_32bit));
4050 }
4051 }
4052 }
4053 }
4054 break;
4055 }
4056
4057 case nir_intrinsic_load_ubo: {
4058 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4059 fs_reg surf_index;
4060
4061 if (const_index) {
4062 const unsigned index = stage_prog_data->binding_table.ubo_start +
4063 const_index->u32[0];
4064 surf_index = brw_imm_ud(index);
4065 brw_mark_surface_used(prog_data, index);
4066 } else {
4067 /* The block index is not a constant. Evaluate the index expression
4068 * per-channel and add the base UBO index; we have to select a value
4069 * from any live channel.
4070 */
4071 surf_index = vgrf(glsl_type::uint_type);
4072 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4073 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4074 surf_index = bld.emit_uniformize(surf_index);
4075
4076 /* Assume this may touch any UBO. It would be nice to provide
4077 * a tighter bound, but the array information is already lowered away.
4078 */
4079 brw_mark_surface_used(prog_data,
4080 stage_prog_data->binding_table.ubo_start +
4081 nir->info.num_ubos - 1);
4082 }
4083
4084 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4085 if (const_offset == NULL) {
4086 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4087 BRW_REGISTER_TYPE_UD);
4088
4089 for (int i = 0; i < instr->num_components; i++)
4090 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4091 base_offset, i * type_sz(dest.type));
4092 } else {
4093 /* Even if we are loading doubles, a pull constant load will load
4094 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4095 * need to load a full dvec4 we will have to emit 2 loads. This is
4096 * similar to demote_pull_constants(), except that in that case we
4097 * see individual accesses to each component of the vector and then
4098 * we let CSE deal with duplicate loads. Here we see a vector access
4099 * and we have to split it if necessary.
4100 */
4101 const unsigned type_size = type_sz(dest.type);
4102
4103 /* See if we've selected this as a push constant candidate */
4104 if (const_index) {
4105 const unsigned ubo_block = const_index->u32[0];
4106 const unsigned offset_256b = const_offset->u32[0] / 32;
4107
4108 fs_reg push_reg;
4109 for (int i = 0; i < 4; i++) {
4110 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4111 if (range->block == ubo_block &&
4112 offset_256b >= range->start &&
4113 offset_256b < range->start + range->length) {
4114
4115 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4116 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4117 break;
4118 }
4119 }
4120
4121 if (push_reg.file != BAD_FILE) {
4122 for (unsigned i = 0; i < instr->num_components; i++) {
4123 bld.MOV(offset(dest, bld, i),
4124 byte_offset(push_reg, i * type_size));
4125 }
4126 break;
4127 }
4128 }
4129
4130 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4131 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4132 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4133
4134 for (unsigned c = 0; c < instr->num_components;) {
4135 const unsigned base = const_offset->u32[0] + c * type_size;
4136 /* Number of usable components in the next block-aligned load. */
4137 const unsigned count = MIN2(instr->num_components - c,
4138 (block_sz - base % block_sz) / type_size);
4139
4140 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4141 packed_consts, surf_index,
4142 brw_imm_ud(base & ~(block_sz - 1)));
4143
4144 const fs_reg consts =
4145 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4146 dest.type);
4147
4148 for (unsigned d = 0; d < count; d++)
4149 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4150
4151 c += count;
4152 }
4153 }
4154 break;
4155 }
4156
4157 case nir_intrinsic_load_ssbo: {
4158 assert(devinfo->gen >= 7);
4159
4160 nir_const_value *const_uniform_block =
4161 nir_src_as_const_value(instr->src[0]);
4162
4163 fs_reg surf_index;
4164 if (const_uniform_block) {
4165 unsigned index = stage_prog_data->binding_table.ssbo_start +
4166 const_uniform_block->u32[0];
4167 surf_index = brw_imm_ud(index);
4168 brw_mark_surface_used(prog_data, index);
4169 } else {
4170 surf_index = vgrf(glsl_type::uint_type);
4171 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4172 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4173
4174 /* Assume this may touch any UBO. It would be nice to provide
4175 * a tighter bound, but the array information is already lowered away.
4176 */
4177 brw_mark_surface_used(prog_data,
4178 stage_prog_data->binding_table.ssbo_start +
4179 nir->info.num_ssbos - 1);
4180 }
4181
4182 fs_reg offset_reg;
4183 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4184 if (const_offset) {
4185 offset_reg = brw_imm_ud(const_offset->u32[0]);
4186 } else {
4187 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4188 }
4189
4190 /* Read the vector */
4191 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4192 instr->num_components);
4193
4194 break;
4195 }
4196
4197 case nir_intrinsic_store_ssbo: {
4198 assert(devinfo->gen >= 7);
4199
4200 if (stage == MESA_SHADER_FRAGMENT)
4201 brw_wm_prog_data(prog_data)->has_side_effects = true;
4202
4203 /* Block index */
4204 fs_reg surf_index;
4205 nir_const_value *const_uniform_block =
4206 nir_src_as_const_value(instr->src[1]);
4207 if (const_uniform_block) {
4208 unsigned index = stage_prog_data->binding_table.ssbo_start +
4209 const_uniform_block->u32[0];
4210 surf_index = brw_imm_ud(index);
4211 brw_mark_surface_used(prog_data, index);
4212 } else {
4213 surf_index = vgrf(glsl_type::uint_type);
4214 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4215 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4216
4217 brw_mark_surface_used(prog_data,
4218 stage_prog_data->binding_table.ssbo_start +
4219 nir->info.num_ssbos - 1);
4220 }
4221
4222 /* Value */
4223 fs_reg val_reg = get_nir_src(instr->src[0]);
4224
4225 /* Writemask */
4226 unsigned writemask = instr->const_index[0];
4227
4228 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4229 * since the untyped writes below operate in units of 32-bits, which
4230 * means that we need to write twice as many components each time.
4231 * Also, we have to suffle 64-bit data to be in the appropriate layout
4232 * expected by our 32-bit write messages.
4233 */
4234 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4235 unsigned type_size = bit_size / 8;
4236
4237 /* Combine groups of consecutive enabled channels in one write
4238 * message. We use ffs to find the first enabled channel and then ffs on
4239 * the bit-inverse, down-shifted writemask to determine the num_components
4240 * of the block of enabled bits.
4241 */
4242 while (writemask) {
4243 unsigned first_component = ffs(writemask) - 1;
4244 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4245 fs_reg write_src = offset(val_reg, bld, first_component);
4246
4247 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4248
4249 if (type_size > 4) {
4250 /* We can't write more than 2 64-bit components at once. Limit
4251 * the num_components of the write to what we can do and let the next
4252 * iteration handle the rest.
4253 */
4254 num_components = MIN2(2, num_components);
4255 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4256 num_components);
4257 } else if (type_size < 4) {
4258 /* For 16-bit types we pack two consecutive values into a 32-bit
4259 * word and use an untyped write message. For single values or not
4260 * 32-bit-aligned we need to use byte-scattered writes because
4261 * untyped writes works with 32-bit components with 32-bit
4262 * alignment. byte_scattered_write messages only support one
4263 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4264 * could be enabled we can not guarantee that not constant offsets
4265 * to be 32-bit aligned for 16-bit types. For example an array, of
4266 * 16-bit vec3 with array element stride of 6.
4267 *
4268 * In the case of 32-bit aligned constant offsets if there is
4269 * a 3-components vector we submit one untyped-write message
4270 * of 32-bit (first two components), and one byte-scattered
4271 * write message (the last component).
4272 */
4273
4274 if ( !const_offset || ((const_offset->u32[0] +
4275 type_size * first_component) % 4)) {
4276 /* If we use a .yz writemask we also need to emit 2
4277 * byte-scattered write messages because of y-component not
4278 * being aligned to 32-bit.
4279 */
4280 num_components = 1;
4281 } else if (num_components * type_size > 4 &&
4282 (num_components * type_size % 4)) {
4283 /* If the pending components size is not a multiple of 4 bytes
4284 * we left the not aligned components for following emits of
4285 * length == 1 with byte_scattered_write.
4286 */
4287 num_components -= (num_components * type_size % 4) / type_size;
4288 } else if (num_components * type_size < 4) {
4289 num_components = 1;
4290 }
4291 /* For num_components == 1 we are also shuffling the component
4292 * because byte scattered writes of 16-bit need values to be dword
4293 * aligned. Shuffling only one component would be the same as
4294 * striding it.
4295 */
4296 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4297 num_components);
4298 }
4299
4300 fs_reg offset_reg;
4301
4302 if (const_offset) {
4303 offset_reg = brw_imm_ud(const_offset->u32[0] +
4304 type_size * first_component);
4305 } else {
4306 offset_reg = vgrf(glsl_type::uint_type);
4307 bld.ADD(offset_reg,
4308 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4309 brw_imm_ud(type_size * first_component));
4310 }
4311
4312 if (type_size < 4 && num_components == 1) {
4313 /* Untyped Surface messages have a fixed 32-bit size, so we need
4314 * to rely on byte scattered in order to write 16-bit elements.
4315 * The byte_scattered_write message needs that every written 16-bit
4316 * type to be aligned 32-bits (stride=2).
4317 */
4318 emit_byte_scattered_write(bld, surf_index, offset_reg,
4319 write_src,
4320 1 /* dims */, 1,
4321 bit_size,
4322 BRW_PREDICATE_NONE);
4323 } else {
4324 assert(num_components * type_size <= 16);
4325 assert((num_components * type_size) % 4 == 0);
4326 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4327 offset_reg.ud % 4 == 0);
4328 unsigned num_slots = (num_components * type_size) / 4;
4329
4330 emit_untyped_write(bld, surf_index, offset_reg,
4331 write_src,
4332 1 /* dims */, num_slots,
4333 BRW_PREDICATE_NONE);
4334 }
4335
4336 /* Clear the bits in the writemask that we just wrote, then try
4337 * again to see if more channels are left.
4338 */
4339 writemask &= (15 << (first_component + num_components));
4340 }
4341 break;
4342 }
4343
4344 case nir_intrinsic_store_output: {
4345 fs_reg src = get_nir_src(instr->src[0]);
4346
4347 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4348 assert(const_offset && "Indirect output stores not allowed");
4349
4350 unsigned num_components = instr->num_components;
4351 unsigned first_component = nir_intrinsic_component(instr);
4352 if (nir_src_bit_size(instr->src[0]) == 64) {
4353 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4354 num_components *= 2;
4355 }
4356
4357 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4358 4 * const_offset->u32[0]), src.type);
4359 for (unsigned j = 0; j < num_components; j++) {
4360 bld.MOV(offset(new_dest, bld, j + first_component),
4361 offset(src, bld, j));
4362 }
4363 break;
4364 }
4365
4366 case nir_intrinsic_ssbo_atomic_add:
4367 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4368 break;
4369 case nir_intrinsic_ssbo_atomic_imin:
4370 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4371 break;
4372 case nir_intrinsic_ssbo_atomic_umin:
4373 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4374 break;
4375 case nir_intrinsic_ssbo_atomic_imax:
4376 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4377 break;
4378 case nir_intrinsic_ssbo_atomic_umax:
4379 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4380 break;
4381 case nir_intrinsic_ssbo_atomic_and:
4382 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4383 break;
4384 case nir_intrinsic_ssbo_atomic_or:
4385 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4386 break;
4387 case nir_intrinsic_ssbo_atomic_xor:
4388 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4389 break;
4390 case nir_intrinsic_ssbo_atomic_exchange:
4391 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4392 break;
4393 case nir_intrinsic_ssbo_atomic_comp_swap:
4394 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4395 break;
4396
4397 case nir_intrinsic_get_buffer_size: {
4398 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4399 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4400
4401 /* A resinfo's sampler message is used to get the buffer size. The
4402 * SIMD8's writeback message consists of four registers and SIMD16's
4403 * writeback message consists of 8 destination registers (two per each
4404 * component). Because we are only interested on the first channel of
4405 * the first returned component, where resinfo returns the buffer size
4406 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4407 * the dispatch width.
4408 */
4409 const fs_builder ubld = bld.exec_all().group(8, 0);
4410 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4411 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4412
4413 /* Set LOD = 0 */
4414 ubld.MOV(src_payload, brw_imm_d(0));
4415
4416 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4417 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4418 src_payload, brw_imm_ud(index));
4419 inst->header_size = 0;
4420 inst->mlen = 1;
4421 inst->size_written = 4 * REG_SIZE;
4422
4423 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4424 *
4425 * "Out-of-bounds checking is always performed at a DWord granularity. If
4426 * any part of the DWord is out-of-bounds then the whole DWord is
4427 * considered out-of-bounds."
4428 *
4429 * This implies that types with size smaller than 4-bytes need to be
4430 * padded if they don't complete the last dword of the buffer. But as we
4431 * need to maintain the original size we need to reverse the padding
4432 * calculation to return the correct size to know the number of elements
4433 * of an unsized array. As we stored in the last two bits of the surface
4434 * size the needed padding for the buffer, we calculate here the
4435 * original buffer_size reversing the surface_size calculation:
4436 *
4437 * surface_size = isl_align(buffer_size, 4) +
4438 * (isl_align(buffer_size) - buffer_size)
4439 *
4440 * buffer_size = surface_size & ~3 - surface_size & 3
4441 */
4442
4443 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4444 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4445 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4446
4447 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4448 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4449 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4450
4451 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4452
4453 brw_mark_surface_used(prog_data, index);
4454 break;
4455 }
4456
4457 case nir_intrinsic_load_subgroup_invocation:
4458 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4459 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4460 break;
4461
4462 case nir_intrinsic_load_subgroup_eq_mask:
4463 case nir_intrinsic_load_subgroup_ge_mask:
4464 case nir_intrinsic_load_subgroup_gt_mask:
4465 case nir_intrinsic_load_subgroup_le_mask:
4466 case nir_intrinsic_load_subgroup_lt_mask:
4467 unreachable("not reached");
4468
4469 case nir_intrinsic_vote_any: {
4470 const fs_builder ubld = bld.exec_all().group(1, 0);
4471
4472 /* The any/all predicates do not consider channel enables. To prevent
4473 * dead channels from affecting the result, we initialize the flag with
4474 * with the identity value for the logical operation.
4475 */
4476 if (dispatch_width == 32) {
4477 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4478 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4479 brw_imm_ud(0));
4480 } else {
4481 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4482 }
4483 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4484
4485 /* For some reason, the any/all predicates don't work properly with
4486 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4487 * doesn't read the correct subset of the flag register and you end up
4488 * getting garbage in the second half. Work around this by using a pair
4489 * of 1-wide MOVs and scattering the result.
4490 */
4491 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4492 ubld.MOV(res1, brw_imm_d(0));
4493 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4494 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4495 BRW_PREDICATE_ALIGN1_ANY32H,
4496 ubld.MOV(res1, brw_imm_d(-1)));
4497
4498 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4499 break;
4500 }
4501 case nir_intrinsic_vote_all: {
4502 const fs_builder ubld = bld.exec_all().group(1, 0);
4503
4504 /* The any/all predicates do not consider channel enables. To prevent
4505 * dead channels from affecting the result, we initialize the flag with
4506 * with the identity value for the logical operation.
4507 */
4508 if (dispatch_width == 32) {
4509 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4510 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4511 brw_imm_ud(0xffffffff));
4512 } else {
4513 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4514 }
4515 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4516
4517 /* For some reason, the any/all predicates don't work properly with
4518 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4519 * doesn't read the correct subset of the flag register and you end up
4520 * getting garbage in the second half. Work around this by using a pair
4521 * of 1-wide MOVs and scattering the result.
4522 */
4523 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4524 ubld.MOV(res1, brw_imm_d(0));
4525 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4526 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4527 BRW_PREDICATE_ALIGN1_ALL32H,
4528 ubld.MOV(res1, brw_imm_d(-1)));
4529
4530 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4531 break;
4532 }
4533 case nir_intrinsic_vote_feq:
4534 case nir_intrinsic_vote_ieq: {
4535 fs_reg value = get_nir_src(instr->src[0]);
4536 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4537 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4538 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4539 }
4540
4541 fs_reg uniformized = bld.emit_uniformize(value);
4542 const fs_builder ubld = bld.exec_all().group(1, 0);
4543
4544 /* The any/all predicates do not consider channel enables. To prevent
4545 * dead channels from affecting the result, we initialize the flag with
4546 * with the identity value for the logical operation.
4547 */
4548 if (dispatch_width == 32) {
4549 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4550 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4551 brw_imm_ud(0xffffffff));
4552 } else {
4553 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4554 }
4555 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4556
4557 /* For some reason, the any/all predicates don't work properly with
4558 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4559 * doesn't read the correct subset of the flag register and you end up
4560 * getting garbage in the second half. Work around this by using a pair
4561 * of 1-wide MOVs and scattering the result.
4562 */
4563 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4564 ubld.MOV(res1, brw_imm_d(0));
4565 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4566 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4567 BRW_PREDICATE_ALIGN1_ALL32H,
4568 ubld.MOV(res1, brw_imm_d(-1)));
4569
4570 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4571 break;
4572 }
4573
4574 case nir_intrinsic_ballot: {
4575 const fs_reg value = retype(get_nir_src(instr->src[0]),
4576 BRW_REGISTER_TYPE_UD);
4577 struct brw_reg flag = brw_flag_reg(0, 0);
4578 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4579 * as f0.0. This is a problem for fragment programs as we currently use
4580 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4581 * programs yet so this isn't a problem. When we do, something will
4582 * have to change.
4583 */
4584 if (dispatch_width == 32)
4585 flag.type = BRW_REGISTER_TYPE_UD;
4586
4587 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4588 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4589
4590 if (instr->dest.ssa.bit_size > 32) {
4591 dest.type = BRW_REGISTER_TYPE_UQ;
4592 } else {
4593 dest.type = BRW_REGISTER_TYPE_UD;
4594 }
4595 bld.MOV(dest, flag);
4596 break;
4597 }
4598
4599 case nir_intrinsic_read_invocation: {
4600 const fs_reg value = get_nir_src(instr->src[0]);
4601 const fs_reg invocation = get_nir_src(instr->src[1]);
4602 fs_reg tmp = bld.vgrf(value.type);
4603
4604 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4605 bld.emit_uniformize(invocation));
4606
4607 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4608 break;
4609 }
4610
4611 case nir_intrinsic_read_first_invocation: {
4612 const fs_reg value = get_nir_src(instr->src[0]);
4613 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4614 break;
4615 }
4616
4617 case nir_intrinsic_shuffle: {
4618 const fs_reg value = get_nir_src(instr->src[0]);
4619 const fs_reg index = get_nir_src(instr->src[1]);
4620
4621 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4622 break;
4623 }
4624
4625 case nir_intrinsic_first_invocation: {
4626 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4627 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4628 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4629 fs_reg(component(tmp, 0)));
4630 break;
4631 }
4632
4633 case nir_intrinsic_quad_broadcast: {
4634 const fs_reg value = get_nir_src(instr->src[0]);
4635 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4636 assert(nir_src_bit_size(instr->src[1]) == 32);
4637
4638 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4639 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4640 break;
4641 }
4642
4643 case nir_intrinsic_quad_swap_horizontal: {
4644 const fs_reg value = get_nir_src(instr->src[0]);
4645 const fs_reg tmp = bld.vgrf(value.type);
4646 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4647
4648 const fs_reg src_left = horiz_stride(value, 2);
4649 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4650 const fs_reg tmp_left = horiz_stride(tmp, 2);
4651 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4652
4653 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4654 *
4655 * "When source or destination datatype is 64b or operation is
4656 * integer DWord multiply, regioning in Align1 must follow
4657 * these rules:
4658 *
4659 * [...]
4660 *
4661 * 3. Source and Destination offset must be the same, except
4662 * the case of scalar source."
4663 *
4664 * In order to work around this, we have to emit two 32-bit MOVs instead
4665 * of a single 64-bit MOV to do the shuffle.
4666 */
4667 if (type_sz(value.type) > 4 &&
4668 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4669 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4670 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4671 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4672 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4673 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4674 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4675 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4676 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4677 } else {
4678 ubld.MOV(tmp_left, src_right);
4679 ubld.MOV(tmp_right, src_left);
4680 }
4681 bld.MOV(retype(dest, value.type), tmp);
4682 break;
4683 }
4684
4685 case nir_intrinsic_quad_swap_vertical: {
4686 const fs_reg value = get_nir_src(instr->src[0]);
4687 if (nir_src_bit_size(instr->src[0]) == 32) {
4688 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4689 const fs_reg tmp = bld.vgrf(value.type);
4690 const fs_builder ubld = bld.exec_all();
4691 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4692 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4693 bld.MOV(retype(dest, value.type), tmp);
4694 } else {
4695 /* For larger data types, we have to either emit dispatch_width many
4696 * MOVs or else fall back to doing indirects.
4697 */
4698 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4699 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4700 brw_imm_w(0x2));
4701 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4702 }
4703 break;
4704 }
4705
4706 case nir_intrinsic_quad_swap_diagonal: {
4707 const fs_reg value = get_nir_src(instr->src[0]);
4708 if (nir_src_bit_size(instr->src[0]) == 32) {
4709 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4710 const fs_reg tmp = bld.vgrf(value.type);
4711 const fs_builder ubld = bld.exec_all();
4712 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4713 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4714 bld.MOV(retype(dest, value.type), tmp);
4715 } else {
4716 /* For larger data types, we have to either emit dispatch_width many
4717 * MOVs or else fall back to doing indirects.
4718 */
4719 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4720 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4721 brw_imm_w(0x3));
4722 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4723 }
4724 break;
4725 }
4726
4727 case nir_intrinsic_reduce: {
4728 fs_reg src = get_nir_src(instr->src[0]);
4729 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4730 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4731 if (cluster_size == 0 || cluster_size > dispatch_width)
4732 cluster_size = dispatch_width;
4733
4734 /* Figure out the source type */
4735 src.type = brw_type_for_nir_type(devinfo,
4736 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4737 nir_src_bit_size(instr->src[0])));
4738
4739 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4740 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4741 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4742
4743 /* Set up a register for all of our scratching around and initialize it
4744 * to reduction operation's identity value.
4745 */
4746 fs_reg scan = bld.vgrf(src.type);
4747 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4748
4749 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4750
4751 dest.type = src.type;
4752 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4753 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4754 * the distance between clusters is at least 2 GRFs. In this case,
4755 * we don't need the weird striding of the CLUSTER_BROADCAST
4756 * instruction and can just do regular MOVs.
4757 */
4758 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4759 const unsigned groups =
4760 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4761 const unsigned group_size = dispatch_width / groups;
4762 for (unsigned i = 0; i < groups; i++) {
4763 const unsigned cluster = (i * group_size) / cluster_size;
4764 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4765 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4766 component(scan, comp));
4767 }
4768 } else {
4769 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4770 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4771 }
4772 break;
4773 }
4774
4775 case nir_intrinsic_inclusive_scan:
4776 case nir_intrinsic_exclusive_scan: {
4777 fs_reg src = get_nir_src(instr->src[0]);
4778 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4779
4780 /* Figure out the source type */
4781 src.type = brw_type_for_nir_type(devinfo,
4782 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4783 nir_src_bit_size(instr->src[0])));
4784
4785 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4786 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4787 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4788
4789 /* Set up a register for all of our scratching around and initialize it
4790 * to reduction operation's identity value.
4791 */
4792 fs_reg scan = bld.vgrf(src.type);
4793 const fs_builder allbld = bld.exec_all();
4794 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4795
4796 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4797 /* Exclusive scan is a bit harder because we have to do an annoying
4798 * shift of the contents before we can begin. To make things worse,
4799 * we can't do this with a normal stride; we have to use indirects.
4800 */
4801 fs_reg shifted = bld.vgrf(src.type);
4802 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4803 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4804 brw_imm_w(-1));
4805 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4806 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4807 scan = shifted;
4808 }
4809
4810 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4811
4812 bld.MOV(retype(dest, src.type), scan);
4813 break;
4814 }
4815
4816 case nir_intrinsic_begin_invocation_interlock: {
4817 const fs_builder ubld = bld.group(8, 0);
4818 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4819
4820 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4821 REG_SIZE;
4822
4823 break;
4824 }
4825
4826 case nir_intrinsic_end_invocation_interlock: {
4827 /* We don't need to do anything here */
4828 break;
4829 }
4830
4831 default:
4832 unreachable("unknown intrinsic");
4833 }
4834 }
4835
4836 void
4837 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4838 int op, nir_intrinsic_instr *instr)
4839 {
4840 if (stage == MESA_SHADER_FRAGMENT)
4841 brw_wm_prog_data(prog_data)->has_side_effects = true;
4842
4843 fs_reg dest;
4844 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4845 dest = get_nir_dest(instr->dest);
4846
4847 fs_reg surface;
4848 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4849 if (const_surface) {
4850 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4851 const_surface->u32[0];
4852 surface = brw_imm_ud(surf_index);
4853 brw_mark_surface_used(prog_data, surf_index);
4854 } else {
4855 surface = vgrf(glsl_type::uint_type);
4856 bld.ADD(surface, get_nir_src(instr->src[0]),
4857 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4858
4859 /* Assume this may touch any SSBO. This is the same we do for other
4860 * UBO/SSBO accesses with non-constant surface.
4861 */
4862 brw_mark_surface_used(prog_data,
4863 stage_prog_data->binding_table.ssbo_start +
4864 nir->info.num_ssbos - 1);
4865 }
4866
4867 fs_reg offset = get_nir_src(instr->src[1]);
4868 fs_reg data1 = get_nir_src(instr->src[2]);
4869 fs_reg data2;
4870 if (op == BRW_AOP_CMPWR)
4871 data2 = get_nir_src(instr->src[3]);
4872
4873 /* Emit the actual atomic operation */
4874
4875 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4876 data1, data2,
4877 1 /* dims */, 1 /* rsize */,
4878 op,
4879 BRW_PREDICATE_NONE);
4880 dest.type = atomic_result.type;
4881 bld.MOV(dest, atomic_result);
4882 }
4883
4884 void
4885 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4886 int op, nir_intrinsic_instr *instr)
4887 {
4888 fs_reg dest;
4889 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4890 dest = get_nir_dest(instr->dest);
4891
4892 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4893 fs_reg offset;
4894 fs_reg data1 = get_nir_src(instr->src[1]);
4895 fs_reg data2;
4896 if (op == BRW_AOP_CMPWR)
4897 data2 = get_nir_src(instr->src[2]);
4898
4899 /* Get the offset */
4900 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4901 if (const_offset) {
4902 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4903 } else {
4904 offset = vgrf(glsl_type::uint_type);
4905 bld.ADD(offset,
4906 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4907 brw_imm_ud(instr->const_index[0]));
4908 }
4909
4910 /* Emit the actual atomic operation operation */
4911
4912 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4913 data1, data2,
4914 1 /* dims */, 1 /* rsize */,
4915 op,
4916 BRW_PREDICATE_NONE);
4917 dest.type = atomic_result.type;
4918 bld.MOV(dest, atomic_result);
4919 }
4920
4921 void
4922 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4923 {
4924 unsigned texture = instr->texture_index;
4925 unsigned sampler = instr->sampler_index;
4926
4927 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4928
4929 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4930 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4931
4932 int lod_components = 0;
4933
4934 /* The hardware requires a LOD for buffer textures */
4935 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4936 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4937
4938 uint32_t header_bits = 0;
4939 for (unsigned i = 0; i < instr->num_srcs; i++) {
4940 fs_reg src = get_nir_src(instr->src[i].src);
4941 switch (instr->src[i].src_type) {
4942 case nir_tex_src_bias:
4943 srcs[TEX_LOGICAL_SRC_LOD] =
4944 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4945 break;
4946 case nir_tex_src_comparator:
4947 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4948 break;
4949 case nir_tex_src_coord:
4950 switch (instr->op) {
4951 case nir_texop_txf:
4952 case nir_texop_txf_ms:
4953 case nir_texop_txf_ms_mcs:
4954 case nir_texop_samples_identical:
4955 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4956 break;
4957 default:
4958 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4959 break;
4960 }
4961 break;
4962 case nir_tex_src_ddx:
4963 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4964 lod_components = nir_tex_instr_src_size(instr, i);
4965 break;
4966 case nir_tex_src_ddy:
4967 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4968 break;
4969 case nir_tex_src_lod:
4970 switch (instr->op) {
4971 case nir_texop_txs:
4972 srcs[TEX_LOGICAL_SRC_LOD] =
4973 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4974 break;
4975 case nir_texop_txf:
4976 srcs[TEX_LOGICAL_SRC_LOD] =
4977 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4978 break;
4979 default:
4980 srcs[TEX_LOGICAL_SRC_LOD] =
4981 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4982 break;
4983 }
4984 break;
4985 case nir_tex_src_ms_index:
4986 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4987 break;
4988
4989 case nir_tex_src_offset: {
4990 nir_const_value *const_offset =
4991 nir_src_as_const_value(instr->src[i].src);
4992 unsigned offset_bits = 0;
4993 if (const_offset &&
4994 brw_texture_offset(const_offset->i32,
4995 nir_tex_instr_src_size(instr, i),
4996 &offset_bits)) {
4997 header_bits |= offset_bits;
4998 } else {
4999 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5000 retype(src, BRW_REGISTER_TYPE_D);
5001 }
5002 break;
5003 }
5004
5005 case nir_tex_src_projector:
5006 unreachable("should be lowered");
5007
5008 case nir_tex_src_texture_offset: {
5009 /* Figure out the highest possible texture index and mark it as used */
5010 uint32_t max_used = texture + instr->texture_array_size - 1;
5011 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5012 max_used += stage_prog_data->binding_table.gather_texture_start;
5013 } else {
5014 max_used += stage_prog_data->binding_table.texture_start;
5015 }
5016 brw_mark_surface_used(prog_data, max_used);
5017
5018 /* Emit code to evaluate the actual indexing expression */
5019 fs_reg tmp = vgrf(glsl_type::uint_type);
5020 bld.ADD(tmp, src, brw_imm_ud(texture));
5021 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5022 break;
5023 }
5024
5025 case nir_tex_src_sampler_offset: {
5026 /* Emit code to evaluate the actual indexing expression */
5027 fs_reg tmp = vgrf(glsl_type::uint_type);
5028 bld.ADD(tmp, src, brw_imm_ud(sampler));
5029 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5030 break;
5031 }
5032
5033 case nir_tex_src_ms_mcs:
5034 assert(instr->op == nir_texop_txf_ms);
5035 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5036 break;
5037
5038 case nir_tex_src_plane: {
5039 nir_const_value *const_plane =
5040 nir_src_as_const_value(instr->src[i].src);
5041 const uint32_t plane = const_plane->u32[0];
5042 const uint32_t texture_index =
5043 instr->texture_index +
5044 stage_prog_data->binding_table.plane_start[plane] -
5045 stage_prog_data->binding_table.texture_start;
5046
5047 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5048 break;
5049 }
5050
5051 default:
5052 unreachable("unknown texture source");
5053 }
5054 }
5055
5056 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5057 (instr->op == nir_texop_txf_ms ||
5058 instr->op == nir_texop_samples_identical)) {
5059 if (devinfo->gen >= 7 &&
5060 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5061 srcs[TEX_LOGICAL_SRC_MCS] =
5062 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5063 instr->coord_components,
5064 srcs[TEX_LOGICAL_SRC_SURFACE]);
5065 } else {
5066 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5067 }
5068 }
5069
5070 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5071 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5072
5073 enum opcode opcode;
5074 switch (instr->op) {
5075 case nir_texop_tex:
5076 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5077 SHADER_OPCODE_TXL_LOGICAL);
5078 break;
5079 case nir_texop_txb:
5080 opcode = FS_OPCODE_TXB_LOGICAL;
5081 break;
5082 case nir_texop_txl:
5083 opcode = SHADER_OPCODE_TXL_LOGICAL;
5084 break;
5085 case nir_texop_txd:
5086 opcode = SHADER_OPCODE_TXD_LOGICAL;
5087 break;
5088 case nir_texop_txf:
5089 opcode = SHADER_OPCODE_TXF_LOGICAL;
5090 break;
5091 case nir_texop_txf_ms:
5092 if ((key_tex->msaa_16 & (1 << sampler)))
5093 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5094 else
5095 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5096 break;
5097 case nir_texop_txf_ms_mcs:
5098 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5099 break;
5100 case nir_texop_query_levels:
5101 case nir_texop_txs:
5102 opcode = SHADER_OPCODE_TXS_LOGICAL;
5103 break;
5104 case nir_texop_lod:
5105 opcode = SHADER_OPCODE_LOD_LOGICAL;
5106 break;
5107 case nir_texop_tg4:
5108 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5109 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5110 else
5111 opcode = SHADER_OPCODE_TG4_LOGICAL;
5112 break;
5113 case nir_texop_texture_samples:
5114 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5115 break;
5116 case nir_texop_samples_identical: {
5117 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5118
5119 /* If mcs is an immediate value, it means there is no MCS. In that case
5120 * just return false.
5121 */
5122 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5123 bld.MOV(dst, brw_imm_ud(0u));
5124 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5125 fs_reg tmp = vgrf(glsl_type::uint_type);
5126 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5127 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5128 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5129 } else {
5130 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5131 BRW_CONDITIONAL_EQ);
5132 }
5133 return;
5134 }
5135 default:
5136 unreachable("unknown texture opcode");
5137 }
5138
5139 if (instr->op == nir_texop_tg4) {
5140 if (instr->component == 1 &&
5141 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5142 /* gather4 sampler is broken for green channel on RG32F --
5143 * we must ask for blue instead.
5144 */
5145 header_bits |= 2 << 16;
5146 } else {
5147 header_bits |= instr->component << 16;
5148 }
5149 }
5150
5151 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5152 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5153 inst->offset = header_bits;
5154
5155 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5156 if (devinfo->gen >= 9 &&
5157 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5158 unsigned write_mask = instr->dest.is_ssa ?
5159 nir_ssa_def_components_read(&instr->dest.ssa):
5160 (1 << dest_size) - 1;
5161 assert(write_mask != 0); /* dead code should have been eliminated */
5162 inst->size_written = util_last_bit(write_mask) *
5163 inst->dst.component_size(inst->exec_size);
5164 } else {
5165 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5166 }
5167
5168 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5169 inst->shadow_compare = true;
5170
5171 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5172 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5173
5174 fs_reg nir_dest[4];
5175 for (unsigned i = 0; i < dest_size; i++)
5176 nir_dest[i] = offset(dst, bld, i);
5177
5178 if (instr->op == nir_texop_query_levels) {
5179 /* # levels is in .w */
5180 nir_dest[0] = offset(dst, bld, 3);
5181 } else if (instr->op == nir_texop_txs &&
5182 dest_size >= 3 && devinfo->gen < 7) {
5183 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5184 fs_reg depth = offset(dst, bld, 2);
5185 nir_dest[2] = vgrf(glsl_type::int_type);
5186 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5187 }
5188
5189 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5190 }
5191
5192 void
5193 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5194 {
5195 switch (instr->type) {
5196 case nir_jump_break:
5197 bld.emit(BRW_OPCODE_BREAK);
5198 break;
5199 case nir_jump_continue:
5200 bld.emit(BRW_OPCODE_CONTINUE);
5201 break;
5202 case nir_jump_return:
5203 default:
5204 unreachable("unknown jump");
5205 }
5206 }
5207
5208 /*
5209 * This helper takes a source register and un/shuffles it into the destination
5210 * register.
5211 *
5212 * If source type size is smaller than destination type size the operation
5213 * needed is a component shuffle. The opposite case would be an unshuffle. If
5214 * source/destination type size is equal a shuffle is done that would be
5215 * equivalent to a simple MOV.
5216 *
5217 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5218 * components .xyz 16-bit vector on SIMD8 would be.
5219 *
5220 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5221 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5222 *
5223 * This helper will return the following 2 32-bit components with the 16-bit
5224 * values shuffled:
5225 *
5226 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5227 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5228 *
5229 * For unshuffle, the example would be the opposite, a 64-bit type source
5230 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5231 * would be:
5232 *
5233 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5234 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5235 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5236 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5237 *
5238 * The returned result would be the following 4 32-bit components unshuffled:
5239 *
5240 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5241 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5242 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5243 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5244 *
5245 * - Source and destination register must not be overlapped.
5246 * - components units are measured in terms of the smaller type between
5247 * source and destination because we are un/shuffling the smaller
5248 * components from/into the bigger ones.
5249 * - first_component parameter allows skipping source components.
5250 */
5251 void
5252 shuffle_src_to_dst(const fs_builder &bld,
5253 const fs_reg &dst,
5254 const fs_reg &src,
5255 uint32_t first_component,
5256 uint32_t components)
5257 {
5258 if (type_sz(src.type) == type_sz(dst.type)) {
5259 assert(!regions_overlap(dst,
5260 type_sz(dst.type) * bld.dispatch_width() * components,
5261 offset(src, bld, first_component),
5262 type_sz(src.type) * bld.dispatch_width() * components));
5263 for (unsigned i = 0; i < components; i++) {
5264 bld.MOV(retype(offset(dst, bld, i), src.type),
5265 offset(src, bld, i + first_component));
5266 }
5267 } else if (type_sz(src.type) < type_sz(dst.type)) {
5268 /* Source is shuffled into destination */
5269 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5270 assert(!regions_overlap(dst,
5271 type_sz(dst.type) * bld.dispatch_width() *
5272 DIV_ROUND_UP(components, size_ratio),
5273 offset(src, bld, first_component),
5274 type_sz(src.type) * bld.dispatch_width() * components));
5275
5276 brw_reg_type shuffle_type =
5277 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5278 BRW_REGISTER_TYPE_D);
5279 for (unsigned i = 0; i < components; i++) {
5280 fs_reg shuffle_component_i =
5281 subscript(offset(dst, bld, i / size_ratio),
5282 shuffle_type, i % size_ratio);
5283 bld.MOV(shuffle_component_i,
5284 retype(offset(src, bld, i + first_component), shuffle_type));
5285 }
5286 } else {
5287 /* Source is unshuffled into destination */
5288 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5289 assert(!regions_overlap(dst,
5290 type_sz(dst.type) * bld.dispatch_width() * components,
5291 offset(src, bld, first_component / size_ratio),
5292 type_sz(src.type) * bld.dispatch_width() *
5293 DIV_ROUND_UP(components + (first_component % size_ratio),
5294 size_ratio)));
5295
5296 brw_reg_type shuffle_type =
5297 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5298 BRW_REGISTER_TYPE_D);
5299 for (unsigned i = 0; i < components; i++) {
5300 fs_reg shuffle_component_i =
5301 subscript(offset(src, bld, (first_component + i) / size_ratio),
5302 shuffle_type, (first_component + i) % size_ratio);
5303 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5304 shuffle_component_i);
5305 }
5306 }
5307 }
5308
5309 void
5310 shuffle_from_32bit_read(const fs_builder &bld,
5311 const fs_reg &dst,
5312 const fs_reg &src,
5313 uint32_t first_component,
5314 uint32_t components)
5315 {
5316 assert(type_sz(src.type) == 4);
5317
5318 /* This function takes components in units of the destination type while
5319 * shuffle_src_to_dst takes components in units of the smallest type
5320 */
5321 if (type_sz(dst.type) > 4) {
5322 assert(type_sz(dst.type) == 8);
5323 first_component *= 2;
5324 components *= 2;
5325 }
5326
5327 shuffle_src_to_dst(bld, dst, src, first_component, components);
5328 }
5329
5330 fs_reg
5331 shuffle_for_32bit_write(const fs_builder &bld,
5332 const fs_reg &src,
5333 uint32_t first_component,
5334 uint32_t components)
5335 {
5336 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5337 DIV_ROUND_UP (components * type_sz(src.type), 4));
5338 /* This function takes components in units of the source type while
5339 * shuffle_src_to_dst takes components in units of the smallest type
5340 */
5341 if (type_sz(src.type) > 4) {
5342 assert(type_sz(src.type) == 8);
5343 first_component *= 2;
5344 components *= 2;
5345 }
5346
5347 shuffle_src_to_dst(bld, dst, src, first_component, components);
5348
5349 return dst;
5350 }
5351
5352 fs_reg
5353 setup_imm_df(const fs_builder &bld, double v)
5354 {
5355 const struct gen_device_info *devinfo = bld.shader->devinfo;
5356 assert(devinfo->gen >= 7);
5357
5358 if (devinfo->gen >= 8)
5359 return brw_imm_df(v);
5360
5361 /* gen7.5 does not support DF immediates straighforward but the DIM
5362 * instruction allows to set the 64-bit immediate value.
5363 */
5364 if (devinfo->is_haswell) {
5365 const fs_builder ubld = bld.exec_all().group(1, 0);
5366 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5367 ubld.DIM(dst, brw_imm_df(v));
5368 return component(dst, 0);
5369 }
5370
5371 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5372 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5373 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5374 *
5375 * Alternatively, we could also produce a normal VGRF (without stride 0)
5376 * by writing to all the channels in the VGRF, however, that would hit the
5377 * gen7 bug where we have to split writes that span more than 1 register
5378 * into instructions with a width of 4 (otherwise the write to the second
5379 * register written runs into an execmask hardware bug) which isn't very
5380 * nice.
5381 */
5382 union {
5383 double d;
5384 struct {
5385 uint32_t i1;
5386 uint32_t i2;
5387 };
5388 } di;
5389
5390 di.d = v;
5391
5392 const fs_builder ubld = bld.exec_all().group(1, 0);
5393 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5394 ubld.MOV(tmp, brw_imm_ud(di.i1));
5395 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5396
5397 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5398 }