i965/fs: force pull model for 64-bit GS inputs
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 nir_foreach_variable(var, &nir->outputs) {
57 const unsigned vec4s =
58 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
59 : type_size_vec4(var->type);
60 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s);
61 for (unsigned i = 0; i < vec4s; i++) {
62 if (outputs[var->data.driver_location + i].file == BAD_FILE)
63 outputs[var->data.driver_location + i] = offset(reg, bld, 4 * i);
64 }
65 }
66 }
67
68 void
69 fs_visitor::nir_setup_uniforms()
70 {
71 if (dispatch_width != min_dispatch_width)
72 return;
73
74 uniforms = nir->num_uniforms / 4;
75 }
76
77 static bool
78 emit_system_values_block(nir_block *block, fs_visitor *v)
79 {
80 fs_reg *reg;
81
82 nir_foreach_instr(instr, block) {
83 if (instr->type != nir_instr_type_intrinsic)
84 continue;
85
86 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
87 switch (intrin->intrinsic) {
88 case nir_intrinsic_load_vertex_id:
89 unreachable("should be lowered by lower_vertex_id().");
90
91 case nir_intrinsic_load_vertex_id_zero_base:
92 case nir_intrinsic_load_base_vertex:
93 case nir_intrinsic_load_instance_id:
94 case nir_intrinsic_load_base_instance:
95 case nir_intrinsic_load_draw_id:
96 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
97
98 case nir_intrinsic_load_invocation_id:
99 if (v->stage == MESA_SHADER_TESS_CTRL)
100 break;
101 assert(v->stage == MESA_SHADER_GEOMETRY);
102 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
103 if (reg->file == BAD_FILE) {
104 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
105 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
106 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
107 abld.SHR(iid, g1, brw_imm_ud(27u));
108 *reg = iid;
109 }
110 break;
111
112 case nir_intrinsic_load_sample_pos:
113 assert(v->stage == MESA_SHADER_FRAGMENT);
114 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
115 if (reg->file == BAD_FILE)
116 *reg = *v->emit_samplepos_setup();
117 break;
118
119 case nir_intrinsic_load_sample_id:
120 assert(v->stage == MESA_SHADER_FRAGMENT);
121 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
122 if (reg->file == BAD_FILE)
123 *reg = *v->emit_sampleid_setup();
124 break;
125
126 case nir_intrinsic_load_sample_mask_in:
127 assert(v->stage == MESA_SHADER_FRAGMENT);
128 assert(v->devinfo->gen >= 7);
129 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
130 if (reg->file == BAD_FILE)
131 *reg = *v->emit_samplemaskin_setup();
132 break;
133
134 case nir_intrinsic_load_work_group_id:
135 assert(v->stage == MESA_SHADER_COMPUTE);
136 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
137 if (reg->file == BAD_FILE)
138 *reg = *v->emit_cs_work_group_id_setup();
139 break;
140
141 case nir_intrinsic_load_helper_invocation:
142 assert(v->stage == MESA_SHADER_FRAGMENT);
143 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
144 if (reg->file == BAD_FILE) {
145 const fs_builder abld =
146 v->bld.annotate("gl_HelperInvocation", NULL);
147
148 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
149 * pixel mask is in g1.7 of the thread payload.
150 *
151 * We move the per-channel pixel enable bit to the low bit of each
152 * channel by shifting the byte containing the pixel mask by the
153 * vector immediate 0x76543210UV.
154 *
155 * The region of <1,8,0> reads only 1 byte (the pixel masks for
156 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
157 * masks for 2 and 3) in SIMD16.
158 */
159 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
160 abld.SHR(shifted,
161 stride(byte_offset(retype(brw_vec1_grf(1, 0),
162 BRW_REGISTER_TYPE_UB), 28),
163 1, 8, 0),
164 brw_imm_v(0x76543210));
165
166 /* A set bit in the pixel mask means the channel is enabled, but
167 * that is the opposite of gl_HelperInvocation so we need to invert
168 * the mask.
169 *
170 * The negate source-modifier bit of logical instructions on Gen8+
171 * performs 1's complement negation, so we can use that instead of
172 * a NOT instruction.
173 */
174 fs_reg inverted = negate(shifted);
175 if (v->devinfo->gen < 8) {
176 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
177 abld.NOT(inverted, shifted);
178 }
179
180 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
181 * with 1 and negating.
182 */
183 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
184 abld.AND(anded, inverted, brw_imm_uw(1));
185
186 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
187 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
188 *reg = dst;
189 }
190 break;
191
192 default:
193 break;
194 }
195 }
196
197 return true;
198 }
199
200 void
201 fs_visitor::nir_emit_system_values()
202 {
203 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
204 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
205 nir_system_values[i] = fs_reg();
206 }
207
208 nir_foreach_function(function, nir) {
209 assert(strcmp(function->name, "main") == 0);
210 assert(function->impl);
211 nir_foreach_block(block, function->impl) {
212 emit_system_values_block(block, this);
213 }
214 }
215 }
216
217 void
218 fs_visitor::nir_emit_impl(nir_function_impl *impl)
219 {
220 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
221 for (unsigned i = 0; i < impl->reg_alloc; i++) {
222 nir_locals[i] = fs_reg();
223 }
224
225 foreach_list_typed(nir_register, reg, node, &impl->registers) {
226 unsigned array_elems =
227 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
228 unsigned size = array_elems * reg->num_components;
229 const brw_reg_type reg_type =
230 reg->bit_size == 32 ? BRW_REGISTER_TYPE_F : BRW_REGISTER_TYPE_DF;
231 nir_locals[reg->index] = bld.vgrf(reg_type, size);
232 }
233
234 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
235 impl->ssa_alloc);
236
237 nir_emit_cf_list(&impl->body);
238 }
239
240 void
241 fs_visitor::nir_emit_cf_list(exec_list *list)
242 {
243 exec_list_validate(list);
244 foreach_list_typed(nir_cf_node, node, node, list) {
245 switch (node->type) {
246 case nir_cf_node_if:
247 nir_emit_if(nir_cf_node_as_if(node));
248 break;
249
250 case nir_cf_node_loop:
251 nir_emit_loop(nir_cf_node_as_loop(node));
252 break;
253
254 case nir_cf_node_block:
255 nir_emit_block(nir_cf_node_as_block(node));
256 break;
257
258 default:
259 unreachable("Invalid CFG node block");
260 }
261 }
262 }
263
264 void
265 fs_visitor::nir_emit_if(nir_if *if_stmt)
266 {
267 /* first, put the condition into f0 */
268 fs_inst *inst = bld.MOV(bld.null_reg_d(),
269 retype(get_nir_src(if_stmt->condition),
270 BRW_REGISTER_TYPE_D));
271 inst->conditional_mod = BRW_CONDITIONAL_NZ;
272
273 bld.IF(BRW_PREDICATE_NORMAL);
274
275 nir_emit_cf_list(&if_stmt->then_list);
276
277 /* note: if the else is empty, dead CF elimination will remove it */
278 bld.emit(BRW_OPCODE_ELSE);
279
280 nir_emit_cf_list(&if_stmt->else_list);
281
282 bld.emit(BRW_OPCODE_ENDIF);
283 }
284
285 void
286 fs_visitor::nir_emit_loop(nir_loop *loop)
287 {
288 bld.emit(BRW_OPCODE_DO);
289
290 nir_emit_cf_list(&loop->body);
291
292 bld.emit(BRW_OPCODE_WHILE);
293 }
294
295 void
296 fs_visitor::nir_emit_block(nir_block *block)
297 {
298 nir_foreach_instr(instr, block) {
299 nir_emit_instr(instr);
300 }
301 }
302
303 void
304 fs_visitor::nir_emit_instr(nir_instr *instr)
305 {
306 const fs_builder abld = bld.annotate(NULL, instr);
307
308 switch (instr->type) {
309 case nir_instr_type_alu:
310 nir_emit_alu(abld, nir_instr_as_alu(instr));
311 break;
312
313 case nir_instr_type_intrinsic:
314 switch (stage) {
315 case MESA_SHADER_VERTEX:
316 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
317 break;
318 case MESA_SHADER_TESS_CTRL:
319 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
320 break;
321 case MESA_SHADER_TESS_EVAL:
322 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
323 break;
324 case MESA_SHADER_GEOMETRY:
325 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
326 break;
327 case MESA_SHADER_FRAGMENT:
328 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
329 break;
330 case MESA_SHADER_COMPUTE:
331 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
332 break;
333 default:
334 unreachable("unsupported shader stage");
335 }
336 break;
337
338 case nir_instr_type_tex:
339 nir_emit_texture(abld, nir_instr_as_tex(instr));
340 break;
341
342 case nir_instr_type_load_const:
343 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
344 break;
345
346 case nir_instr_type_ssa_undef:
347 /* We create a new VGRF for undefs on every use (by handling
348 * them in get_nir_src()), rather than for each definition.
349 * This helps register coalescing eliminate MOVs from undef.
350 */
351 break;
352
353 case nir_instr_type_jump:
354 nir_emit_jump(abld, nir_instr_as_jump(instr));
355 break;
356
357 default:
358 unreachable("unknown instruction type");
359 }
360 }
361
362 /**
363 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
364 * match instr.
365 */
366 bool
367 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
368 const fs_reg &result)
369 {
370 if (!instr->src[0].src.is_ssa ||
371 !instr->src[0].src.ssa->parent_instr)
372 return false;
373
374 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
375 return false;
376
377 nir_alu_instr *src0 =
378 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
379
380 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
381 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
382 return false;
383
384 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
385 assert(element != NULL);
386
387 /* Element type to extract.*/
388 const brw_reg_type type = brw_int_type(
389 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
390 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
391
392 fs_reg op0 = get_nir_src(src0->src[0].src);
393 op0.type = brw_type_for_nir_type(devinfo,
394 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
395 nir_src_bit_size(src0->src[0].src)));
396 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
397
398 set_saturate(instr->dest.saturate,
399 bld.MOV(result, subscript(op0, type, element->u32[0])));
400 return true;
401 }
402
403 bool
404 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
405 const fs_reg &result)
406 {
407 if (!instr->src[0].src.is_ssa ||
408 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
409 return false;
410
411 nir_intrinsic_instr *src0 =
412 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
413
414 if (src0->intrinsic != nir_intrinsic_load_front_face)
415 return false;
416
417 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
418 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
419 return false;
420
421 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
422 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
423 return false;
424
425 fs_reg tmp = vgrf(glsl_type::int_type);
426
427 if (devinfo->gen >= 6) {
428 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
429 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
430
431 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
432 *
433 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
434 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
435 *
436 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
437 *
438 * This negation looks like it's safe in practice, because bits 0:4 will
439 * surely be TRIANGLES
440 */
441
442 if (value1->f32[0] == -1.0f) {
443 g0.negate = true;
444 }
445
446 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
447 g0, brw_imm_uw(0x3f80));
448 } else {
449 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
450 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
451
452 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
453 *
454 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
455 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
456 *
457 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
458 *
459 * This negation looks like it's safe in practice, because bits 0:4 will
460 * surely be TRIANGLES
461 */
462
463 if (value1->f32[0] == -1.0f) {
464 g1_6.negate = true;
465 }
466
467 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
468 }
469 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
470
471 return true;
472 }
473
474 static void
475 emit_find_msb_using_lzd(const fs_builder &bld,
476 const fs_reg &result,
477 const fs_reg &src,
478 bool is_signed)
479 {
480 fs_inst *inst;
481 fs_reg temp = src;
482
483 if (is_signed) {
484 /* LZD of an absolute value source almost always does the right
485 * thing. There are two problem values:
486 *
487 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
488 * 0. However, findMSB(int(0x80000000)) == 30.
489 *
490 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
491 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
492 *
493 * For a value of zero or negative one, -1 will be returned.
494 *
495 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
496 * findMSB(-(1<<x)) should return x-1.
497 *
498 * For all negative number cases, including 0x80000000 and
499 * 0xffffffff, the correct value is obtained from LZD if instead of
500 * negating the (already negative) value the logical-not is used. A
501 * conditonal logical-not can be achieved in two instructions.
502 */
503 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
504
505 bld.ASR(temp, src, brw_imm_d(31));
506 bld.XOR(temp, temp, src);
507 }
508
509 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
510 retype(temp, BRW_REGISTER_TYPE_UD));
511
512 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
513 * from the LSB side. Subtract the result from 31 to convert the MSB
514 * count into an LSB count. If no bits are set, LZD will return 32.
515 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
516 */
517 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
518 inst->src[0].negate = true;
519 }
520
521 void
522 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
523 {
524 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
525 fs_inst *inst;
526
527 fs_reg result = get_nir_dest(instr->dest.dest);
528 result.type = brw_type_for_nir_type(devinfo,
529 (nir_alu_type)(nir_op_infos[instr->op].output_type |
530 nir_dest_bit_size(instr->dest.dest)));
531
532 fs_reg op[4];
533 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
534 op[i] = get_nir_src(instr->src[i].src);
535 op[i].type = brw_type_for_nir_type(devinfo,
536 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
537 nir_src_bit_size(instr->src[i].src)));
538 op[i].abs = instr->src[i].abs;
539 op[i].negate = instr->src[i].negate;
540 }
541
542 /* We get a bunch of mov's out of the from_ssa pass and they may still
543 * be vectorized. We'll handle them as a special-case. We'll also
544 * handle vecN here because it's basically the same thing.
545 */
546 switch (instr->op) {
547 case nir_op_imov:
548 case nir_op_fmov:
549 case nir_op_vec2:
550 case nir_op_vec3:
551 case nir_op_vec4: {
552 fs_reg temp = result;
553 bool need_extra_copy = false;
554 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
555 if (!instr->src[i].src.is_ssa &&
556 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
557 need_extra_copy = true;
558 temp = bld.vgrf(result.type, 4);
559 break;
560 }
561 }
562
563 for (unsigned i = 0; i < 4; i++) {
564 if (!(instr->dest.write_mask & (1 << i)))
565 continue;
566
567 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
568 inst = bld.MOV(offset(temp, bld, i),
569 offset(op[0], bld, instr->src[0].swizzle[i]));
570 } else {
571 inst = bld.MOV(offset(temp, bld, i),
572 offset(op[i], bld, instr->src[i].swizzle[0]));
573 }
574 inst->saturate = instr->dest.saturate;
575 }
576
577 /* In this case the source and destination registers were the same,
578 * so we need to insert an extra set of moves in order to deal with
579 * any swizzling.
580 */
581 if (need_extra_copy) {
582 for (unsigned i = 0; i < 4; i++) {
583 if (!(instr->dest.write_mask & (1 << i)))
584 continue;
585
586 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
587 }
588 }
589 return;
590 }
591 default:
592 break;
593 }
594
595 /* At this point, we have dealt with any instruction that operates on
596 * more than a single channel. Therefore, we can just adjust the source
597 * and destination registers for that channel and emit the instruction.
598 */
599 unsigned channel = 0;
600 if (nir_op_infos[instr->op].output_size == 0) {
601 /* Since NIR is doing the scalarizing for us, we should only ever see
602 * vectorized operations with a single channel.
603 */
604 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
605 channel = ffs(instr->dest.write_mask) - 1;
606
607 result = offset(result, bld, channel);
608 }
609
610 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
611 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
612 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
613 }
614
615 switch (instr->op) {
616 case nir_op_i2f32:
617 case nir_op_u2f32:
618 if (optimize_extract_to_float(instr, result))
619 return;
620 inst = bld.MOV(result, op[0]);
621 inst->saturate = instr->dest.saturate;
622 break;
623
624 case nir_op_f2f64:
625 case nir_op_i2f64:
626 case nir_op_u2f64:
627 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
628 *
629 * "When source or destination is 64b (...), regioning in Align1
630 * must follow these rules:
631 *
632 * 1. Source and destination horizontal stride must be aligned to
633 * the same qword.
634 * (...)"
635 *
636 * This means that 32-bit to 64-bit conversions need to have the 32-bit
637 * data elements aligned to 64-bit. This restriction does not apply to
638 * BDW and later.
639 */
640 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
641 nir_src_bit_size(instr->src[0].src) == 32 &&
642 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
643 fs_reg tmp = bld.vgrf(result.type, 1);
644 tmp = subscript(tmp, op[0].type, 0);
645 inst = bld.MOV(tmp, op[0]);
646 inst = bld.MOV(result, tmp);
647 inst->saturate = instr->dest.saturate;
648 break;
649 }
650 /* fallthrough */
651 case nir_op_f2f32:
652 case nir_op_f2i32:
653 case nir_op_f2u32:
654 case nir_op_f2i64:
655 case nir_op_f2u64:
656 case nir_op_i2i32:
657 case nir_op_i2i64:
658 case nir_op_u2u32:
659 case nir_op_u2u64:
660 inst = bld.MOV(result, op[0]);
661 inst->saturate = instr->dest.saturate;
662 break;
663
664 case nir_op_fsign: {
665 if (op[0].abs) {
666 /* Straightforward since the source can be assumed to be
667 * non-negative.
668 */
669 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
670 set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
671
672 } else if (type_sz(op[0].type) < 8) {
673 /* AND(val, 0x80000000) gives the sign bit.
674 *
675 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
676 * zero.
677 */
678 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
679
680 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
681 op[0].type = BRW_REGISTER_TYPE_UD;
682 result.type = BRW_REGISTER_TYPE_UD;
683 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
684
685 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
686 inst->predicate = BRW_PREDICATE_NORMAL;
687 if (instr->dest.saturate) {
688 inst = bld.MOV(result, result);
689 inst->saturate = true;
690 }
691 } else {
692 /* For doubles we do the same but we need to consider:
693 *
694 * - 2-src instructions can't operate with 64-bit immediates
695 * - The sign is encoded in the high 32-bit of each DF
696 * - CMP with DF requires special handling in SIMD16
697 * - We need to produce a DF result.
698 */
699
700 /* 2-src instructions can't have 64-bit immediates, so put 0.0 in
701 * a register and compare with that.
702 */
703 fs_reg tmp = vgrf(glsl_type::double_type);
704 bld.MOV(tmp, setup_imm_df(bld, 0.0));
705
706 /* A direct DF CMP using the flag register (null dst) won't work in
707 * SIMD16 because the CMP will be split in two by lower_simd_width,
708 * resulting in two CMP instructions with the same dst (NULL),
709 * leading to dead code elimination of the first one. In SIMD8,
710 * however, there is no need to split the CMP and we can save some
711 * work.
712 */
713 fs_reg dst_tmp = vgrf(glsl_type::double_type);
714 bld.CMP(dst_tmp, op[0], tmp, BRW_CONDITIONAL_NZ);
715
716 /* In SIMD16 we want to avoid using a NULL dst register with DF CMP,
717 * so we store the result of the comparison in a vgrf instead and
718 * then we generate a UD comparison from that that won't have to
719 * be split by lower_simd_width. This is what NIR does to handle
720 * double comparisons in the general case.
721 */
722 if (bld.dispatch_width() == 16 ) {
723 fs_reg dst_tmp_ud = retype(dst_tmp, BRW_REGISTER_TYPE_UD);
724 bld.MOV(dst_tmp_ud, subscript(dst_tmp, BRW_REGISTER_TYPE_UD, 0));
725 bld.CMP(bld.null_reg_ud(),
726 dst_tmp_ud, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
727 }
728
729 /* Get the high 32-bit of each double component where the sign is */
730 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
731 bld.MOV(result_int, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
732
733 /* Get the sign bit */
734 bld.AND(result_int, result_int, brw_imm_ud(0x80000000u));
735
736 /* Add 1.0 to the sign, predicated to skip the case of op[0] == 0.0 */
737 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
738 inst->predicate = BRW_PREDICATE_NORMAL;
739
740 /* Convert from 32-bit float to 64-bit double */
741 result.type = BRW_REGISTER_TYPE_DF;
742 inst = bld.MOV(result, retype(result_int, BRW_REGISTER_TYPE_F));
743
744 if (instr->dest.saturate) {
745 inst = bld.MOV(result, result);
746 inst->saturate = true;
747 }
748 }
749 break;
750 }
751
752 case nir_op_isign:
753 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
754 * -> non-negative val generates 0x00000000.
755 * Predicated OR sets 1 if val is positive.
756 */
757 assert(nir_dest_bit_size(instr->dest.dest) < 64);
758 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
759 bld.ASR(result, op[0], brw_imm_d(31));
760 inst = bld.OR(result, result, brw_imm_d(1));
761 inst->predicate = BRW_PREDICATE_NORMAL;
762 break;
763
764 case nir_op_frcp:
765 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
766 inst->saturate = instr->dest.saturate;
767 break;
768
769 case nir_op_fexp2:
770 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
771 inst->saturate = instr->dest.saturate;
772 break;
773
774 case nir_op_flog2:
775 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
776 inst->saturate = instr->dest.saturate;
777 break;
778
779 case nir_op_fsin:
780 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
781 inst->saturate = instr->dest.saturate;
782 break;
783
784 case nir_op_fcos:
785 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
786 inst->saturate = instr->dest.saturate;
787 break;
788
789 case nir_op_fddx:
790 if (fs_key->high_quality_derivatives) {
791 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
792 } else {
793 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
794 }
795 inst->saturate = instr->dest.saturate;
796 break;
797 case nir_op_fddx_fine:
798 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
799 inst->saturate = instr->dest.saturate;
800 break;
801 case nir_op_fddx_coarse:
802 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
803 inst->saturate = instr->dest.saturate;
804 break;
805 case nir_op_fddy:
806 if (fs_key->high_quality_derivatives) {
807 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
808 } else {
809 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
810 }
811 inst->saturate = instr->dest.saturate;
812 break;
813 case nir_op_fddy_fine:
814 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
815 inst->saturate = instr->dest.saturate;
816 break;
817 case nir_op_fddy_coarse:
818 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
819 inst->saturate = instr->dest.saturate;
820 break;
821
822 case nir_op_iadd:
823 case nir_op_fadd:
824 inst = bld.ADD(result, op[0], op[1]);
825 inst->saturate = instr->dest.saturate;
826 break;
827
828 case nir_op_fmul:
829 inst = bld.MUL(result, op[0], op[1]);
830 inst->saturate = instr->dest.saturate;
831 break;
832
833 case nir_op_imul:
834 assert(nir_dest_bit_size(instr->dest.dest) < 64);
835 bld.MUL(result, op[0], op[1]);
836 break;
837
838 case nir_op_imul_high:
839 case nir_op_umul_high:
840 assert(nir_dest_bit_size(instr->dest.dest) < 64);
841 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
842 break;
843
844 case nir_op_idiv:
845 case nir_op_udiv:
846 assert(nir_dest_bit_size(instr->dest.dest) < 64);
847 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
848 break;
849
850 case nir_op_uadd_carry:
851 unreachable("Should have been lowered by carry_to_arith().");
852
853 case nir_op_usub_borrow:
854 unreachable("Should have been lowered by borrow_to_arith().");
855
856 case nir_op_umod:
857 case nir_op_irem:
858 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
859 * appears that our hardware just does the right thing for signed
860 * remainder.
861 */
862 assert(nir_dest_bit_size(instr->dest.dest) < 64);
863 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
864 break;
865
866 case nir_op_imod: {
867 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
868 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
869
870 /* Math instructions don't support conditional mod */
871 inst = bld.MOV(bld.null_reg_d(), result);
872 inst->conditional_mod = BRW_CONDITIONAL_NZ;
873
874 /* Now, we need to determine if signs of the sources are different.
875 * When we XOR the sources, the top bit is 0 if they are the same and 1
876 * if they are different. We can then use a conditional modifier to
877 * turn that into a predicate. This leads us to an XOR.l instruction.
878 *
879 * Technically, according to the PRM, you're not allowed to use .l on a
880 * XOR instruction. However, emperical experiments and Curro's reading
881 * of the simulator source both indicate that it's safe.
882 */
883 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
884 inst = bld.XOR(tmp, op[0], op[1]);
885 inst->predicate = BRW_PREDICATE_NORMAL;
886 inst->conditional_mod = BRW_CONDITIONAL_L;
887
888 /* If the result of the initial remainder operation is non-zero and the
889 * two sources have different signs, add in a copy of op[1] to get the
890 * final integer modulus value.
891 */
892 inst = bld.ADD(result, result, op[1]);
893 inst->predicate = BRW_PREDICATE_NORMAL;
894 break;
895 }
896
897 case nir_op_flt:
898 case nir_op_fge:
899 case nir_op_feq:
900 case nir_op_fne: {
901 fs_reg dest = result;
902 if (nir_src_bit_size(instr->src[0].src) > 32) {
903 dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
904 }
905 brw_conditional_mod cond;
906 switch (instr->op) {
907 case nir_op_flt:
908 cond = BRW_CONDITIONAL_L;
909 break;
910 case nir_op_fge:
911 cond = BRW_CONDITIONAL_GE;
912 break;
913 case nir_op_feq:
914 cond = BRW_CONDITIONAL_Z;
915 break;
916 case nir_op_fne:
917 cond = BRW_CONDITIONAL_NZ;
918 break;
919 default:
920 unreachable("bad opcode");
921 }
922 bld.CMP(dest, op[0], op[1], cond);
923 if (nir_src_bit_size(instr->src[0].src) > 32) {
924 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
925 }
926 break;
927 }
928
929 case nir_op_ilt:
930 case nir_op_ult:
931 case nir_op_ige:
932 case nir_op_uge:
933 case nir_op_ieq:
934 case nir_op_ine: {
935 fs_reg dest = result;
936 if (nir_src_bit_size(instr->src[0].src) > 32) {
937 dest = bld.vgrf(BRW_REGISTER_TYPE_UQ, 1);
938 }
939
940 brw_conditional_mod cond;
941 switch (instr->op) {
942 case nir_op_ilt:
943 case nir_op_ult:
944 cond = BRW_CONDITIONAL_L;
945 break;
946 case nir_op_ige:
947 case nir_op_uge:
948 cond = BRW_CONDITIONAL_GE;
949 break;
950 case nir_op_ieq:
951 cond = BRW_CONDITIONAL_Z;
952 break;
953 case nir_op_ine:
954 cond = BRW_CONDITIONAL_NZ;
955 break;
956 default:
957 unreachable("bad opcode");
958 }
959 bld.CMP(dest, op[0], op[1], cond);
960 if (nir_src_bit_size(instr->src[0].src) > 32) {
961 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
962 }
963 break;
964 }
965
966 case nir_op_inot:
967 if (devinfo->gen >= 8) {
968 op[0] = resolve_source_modifiers(op[0]);
969 }
970 bld.NOT(result, op[0]);
971 break;
972 case nir_op_ixor:
973 if (devinfo->gen >= 8) {
974 op[0] = resolve_source_modifiers(op[0]);
975 op[1] = resolve_source_modifiers(op[1]);
976 }
977 bld.XOR(result, op[0], op[1]);
978 break;
979 case nir_op_ior:
980 if (devinfo->gen >= 8) {
981 op[0] = resolve_source_modifiers(op[0]);
982 op[1] = resolve_source_modifiers(op[1]);
983 }
984 bld.OR(result, op[0], op[1]);
985 break;
986 case nir_op_iand:
987 if (devinfo->gen >= 8) {
988 op[0] = resolve_source_modifiers(op[0]);
989 op[1] = resolve_source_modifiers(op[1]);
990 }
991 bld.AND(result, op[0], op[1]);
992 break;
993
994 case nir_op_fdot2:
995 case nir_op_fdot3:
996 case nir_op_fdot4:
997 case nir_op_ball_fequal2:
998 case nir_op_ball_iequal2:
999 case nir_op_ball_fequal3:
1000 case nir_op_ball_iequal3:
1001 case nir_op_ball_fequal4:
1002 case nir_op_ball_iequal4:
1003 case nir_op_bany_fnequal2:
1004 case nir_op_bany_inequal2:
1005 case nir_op_bany_fnequal3:
1006 case nir_op_bany_inequal3:
1007 case nir_op_bany_fnequal4:
1008 case nir_op_bany_inequal4:
1009 unreachable("Lowered by nir_lower_alu_reductions");
1010
1011 case nir_op_fnoise1_1:
1012 case nir_op_fnoise1_2:
1013 case nir_op_fnoise1_3:
1014 case nir_op_fnoise1_4:
1015 case nir_op_fnoise2_1:
1016 case nir_op_fnoise2_2:
1017 case nir_op_fnoise2_3:
1018 case nir_op_fnoise2_4:
1019 case nir_op_fnoise3_1:
1020 case nir_op_fnoise3_2:
1021 case nir_op_fnoise3_3:
1022 case nir_op_fnoise3_4:
1023 case nir_op_fnoise4_1:
1024 case nir_op_fnoise4_2:
1025 case nir_op_fnoise4_3:
1026 case nir_op_fnoise4_4:
1027 unreachable("not reached: should be handled by lower_noise");
1028
1029 case nir_op_ldexp:
1030 unreachable("not reached: should be handled by ldexp_to_arith()");
1031
1032 case nir_op_fsqrt:
1033 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1034 inst->saturate = instr->dest.saturate;
1035 break;
1036
1037 case nir_op_frsq:
1038 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1039 inst->saturate = instr->dest.saturate;
1040 break;
1041
1042 case nir_op_b2i:
1043 case nir_op_b2f:
1044 bld.MOV(result, negate(op[0]));
1045 break;
1046
1047 case nir_op_i2b:
1048 case nir_op_f2b:
1049 if (nir_src_bit_size(instr->src[0].src) == 64) {
1050 /* two-argument instructions can't take 64-bit immediates */
1051 fs_reg zero;
1052 fs_reg tmp;
1053
1054 if (instr->op == nir_op_f2b) {
1055 zero = vgrf(glsl_type::double_type);
1056 tmp = vgrf(glsl_type::double_type);
1057 } else {
1058 zero = vgrf(glsl_type::int64_t_type);
1059 tmp = vgrf(glsl_type::int64_t_type);
1060 }
1061
1062 bld.MOV(zero, setup_imm_df(bld, 0.0));
1063 /* A SIMD16 execution needs to be split in two instructions, so use
1064 * a vgrf instead of the flag register as dst so instruction splitting
1065 * works
1066 */
1067 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1068 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1069 } else {
1070 if (instr->op == nir_op_f2b) {
1071 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
1072 } else {
1073 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1074 }
1075 }
1076 break;
1077
1078 case nir_op_ftrunc:
1079 inst = bld.RNDZ(result, op[0]);
1080 inst->saturate = instr->dest.saturate;
1081 break;
1082
1083 case nir_op_fceil: {
1084 op[0].negate = !op[0].negate;
1085 fs_reg temp = vgrf(glsl_type::float_type);
1086 bld.RNDD(temp, op[0]);
1087 temp.negate = true;
1088 inst = bld.MOV(result, temp);
1089 inst->saturate = instr->dest.saturate;
1090 break;
1091 }
1092 case nir_op_ffloor:
1093 inst = bld.RNDD(result, op[0]);
1094 inst->saturate = instr->dest.saturate;
1095 break;
1096 case nir_op_ffract:
1097 inst = bld.FRC(result, op[0]);
1098 inst->saturate = instr->dest.saturate;
1099 break;
1100 case nir_op_fround_even:
1101 inst = bld.RNDE(result, op[0]);
1102 inst->saturate = instr->dest.saturate;
1103 break;
1104
1105 case nir_op_fquantize2f16: {
1106 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1107 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1108 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1109
1110 /* The destination stride must be at least as big as the source stride. */
1111 tmp16.type = BRW_REGISTER_TYPE_W;
1112 tmp16.stride = 2;
1113
1114 /* Check for denormal */
1115 fs_reg abs_src0 = op[0];
1116 abs_src0.abs = true;
1117 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1118 BRW_CONDITIONAL_L);
1119 /* Get the appropriately signed zero */
1120 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1121 retype(op[0], BRW_REGISTER_TYPE_UD),
1122 brw_imm_ud(0x80000000));
1123 /* Do the actual F32 -> F16 -> F32 conversion */
1124 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1125 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1126 /* Select that or zero based on normal status */
1127 inst = bld.SEL(result, zero, tmp32);
1128 inst->predicate = BRW_PREDICATE_NORMAL;
1129 inst->saturate = instr->dest.saturate;
1130 break;
1131 }
1132
1133 case nir_op_imin:
1134 case nir_op_umin:
1135 case nir_op_fmin:
1136 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1137 inst->saturate = instr->dest.saturate;
1138 break;
1139
1140 case nir_op_imax:
1141 case nir_op_umax:
1142 case nir_op_fmax:
1143 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1144 inst->saturate = instr->dest.saturate;
1145 break;
1146
1147 case nir_op_pack_snorm_2x16:
1148 case nir_op_pack_snorm_4x8:
1149 case nir_op_pack_unorm_2x16:
1150 case nir_op_pack_unorm_4x8:
1151 case nir_op_unpack_snorm_2x16:
1152 case nir_op_unpack_snorm_4x8:
1153 case nir_op_unpack_unorm_2x16:
1154 case nir_op_unpack_unorm_4x8:
1155 case nir_op_unpack_half_2x16:
1156 case nir_op_pack_half_2x16:
1157 unreachable("not reached: should be handled by lower_packing_builtins");
1158
1159 case nir_op_unpack_half_2x16_split_x:
1160 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1161 inst->saturate = instr->dest.saturate;
1162 break;
1163 case nir_op_unpack_half_2x16_split_y:
1164 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1165 inst->saturate = instr->dest.saturate;
1166 break;
1167
1168 case nir_op_pack_64_2x32_split:
1169 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1170 break;
1171
1172 case nir_op_unpack_64_2x32_split_x:
1173 case nir_op_unpack_64_2x32_split_y: {
1174 if (instr->op == nir_op_unpack_64_2x32_split_x)
1175 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1176 else
1177 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1178 break;
1179 }
1180
1181 case nir_op_fpow:
1182 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1183 inst->saturate = instr->dest.saturate;
1184 break;
1185
1186 case nir_op_bitfield_reverse:
1187 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1188 bld.BFREV(result, op[0]);
1189 break;
1190
1191 case nir_op_bit_count:
1192 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1193 bld.CBIT(result, op[0]);
1194 break;
1195
1196 case nir_op_ufind_msb: {
1197 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1198 emit_find_msb_using_lzd(bld, result, op[0], false);
1199 break;
1200 }
1201
1202 case nir_op_ifind_msb: {
1203 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1204
1205 if (devinfo->gen < 7) {
1206 emit_find_msb_using_lzd(bld, result, op[0], true);
1207 } else {
1208 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1209
1210 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1211 * count from the LSB side. If FBH didn't return an error
1212 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1213 * count into an LSB count.
1214 */
1215 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1216
1217 inst = bld.ADD(result, result, brw_imm_d(31));
1218 inst->predicate = BRW_PREDICATE_NORMAL;
1219 inst->src[0].negate = true;
1220 }
1221 break;
1222 }
1223
1224 case nir_op_find_lsb:
1225 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1226
1227 if (devinfo->gen < 7) {
1228 fs_reg temp = vgrf(glsl_type::int_type);
1229
1230 /* (x & -x) generates a value that consists of only the LSB of x.
1231 * For all powers of 2, findMSB(y) == findLSB(y).
1232 */
1233 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1234 fs_reg negated_src = src;
1235
1236 /* One must be negated, and the other must be non-negated. It
1237 * doesn't matter which is which.
1238 */
1239 negated_src.negate = true;
1240 src.negate = false;
1241
1242 bld.AND(temp, src, negated_src);
1243 emit_find_msb_using_lzd(bld, result, temp, false);
1244 } else {
1245 bld.FBL(result, op[0]);
1246 }
1247 break;
1248
1249 case nir_op_ubitfield_extract:
1250 case nir_op_ibitfield_extract:
1251 unreachable("should have been lowered");
1252 case nir_op_ubfe:
1253 case nir_op_ibfe:
1254 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1255 bld.BFE(result, op[2], op[1], op[0]);
1256 break;
1257 case nir_op_bfm:
1258 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1259 bld.BFI1(result, op[0], op[1]);
1260 break;
1261 case nir_op_bfi:
1262 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1263 bld.BFI2(result, op[0], op[1], op[2]);
1264 break;
1265
1266 case nir_op_bitfield_insert:
1267 unreachable("not reached: should have been lowered");
1268
1269 case nir_op_ishl:
1270 bld.SHL(result, op[0], op[1]);
1271 break;
1272 case nir_op_ishr:
1273 bld.ASR(result, op[0], op[1]);
1274 break;
1275 case nir_op_ushr:
1276 bld.SHR(result, op[0], op[1]);
1277 break;
1278
1279 case nir_op_pack_half_2x16_split:
1280 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1281 break;
1282
1283 case nir_op_ffma:
1284 inst = bld.MAD(result, op[2], op[1], op[0]);
1285 inst->saturate = instr->dest.saturate;
1286 break;
1287
1288 case nir_op_flrp:
1289 inst = bld.LRP(result, op[0], op[1], op[2]);
1290 inst->saturate = instr->dest.saturate;
1291 break;
1292
1293 case nir_op_bcsel:
1294 if (optimize_frontfacing_ternary(instr, result))
1295 return;
1296
1297 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1298 inst = bld.SEL(result, op[1], op[2]);
1299 inst->predicate = BRW_PREDICATE_NORMAL;
1300 break;
1301
1302 case nir_op_extract_u8:
1303 case nir_op_extract_i8: {
1304 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1305 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1306 assert(byte != NULL);
1307 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1308 break;
1309 }
1310
1311 case nir_op_extract_u16:
1312 case nir_op_extract_i16: {
1313 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1314 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1315 assert(word != NULL);
1316 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1317 break;
1318 }
1319
1320 default:
1321 unreachable("unhandled instruction");
1322 }
1323
1324 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1325 * to sign extend the low bit to 0/~0
1326 */
1327 if (devinfo->gen <= 5 &&
1328 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1329 fs_reg masked = vgrf(glsl_type::int_type);
1330 bld.AND(masked, result, brw_imm_d(1));
1331 masked.negate = true;
1332 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1333 }
1334 }
1335
1336 void
1337 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1338 nir_load_const_instr *instr)
1339 {
1340 const brw_reg_type reg_type =
1341 instr->def.bit_size == 32 ? BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_DF;
1342 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1343
1344 switch (instr->def.bit_size) {
1345 case 32:
1346 for (unsigned i = 0; i < instr->def.num_components; i++)
1347 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1348 break;
1349
1350 case 64:
1351 for (unsigned i = 0; i < instr->def.num_components; i++)
1352 bld.MOV(offset(reg, bld, i),
1353 setup_imm_df(bld, instr->value.f64[i]));
1354 break;
1355
1356 default:
1357 unreachable("Invalid bit size");
1358 }
1359
1360 nir_ssa_values[instr->def.index] = reg;
1361 }
1362
1363 fs_reg
1364 fs_visitor::get_nir_src(const nir_src &src)
1365 {
1366 fs_reg reg;
1367 if (src.is_ssa) {
1368 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1369 const brw_reg_type reg_type = src.ssa->bit_size == 32 ?
1370 BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_DF;
1371 reg = bld.vgrf(reg_type, src.ssa->num_components);
1372 } else {
1373 reg = nir_ssa_values[src.ssa->index];
1374 }
1375 } else {
1376 /* We don't handle indirects on locals */
1377 assert(src.reg.indirect == NULL);
1378 reg = offset(nir_locals[src.reg.reg->index], bld,
1379 src.reg.base_offset * src.reg.reg->num_components);
1380 }
1381
1382 /* to avoid floating-point denorm flushing problems, set the type by
1383 * default to D - instructions that need floating point semantics will set
1384 * this to F if they need to
1385 */
1386 return retype(reg, BRW_REGISTER_TYPE_D);
1387 }
1388
1389 /**
1390 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1391 */
1392 fs_reg
1393 fs_visitor::get_nir_src_imm(const nir_src &src)
1394 {
1395 nir_const_value *val = nir_src_as_const_value(src);
1396 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1397 }
1398
1399 fs_reg
1400 fs_visitor::get_nir_dest(const nir_dest &dest)
1401 {
1402 if (dest.is_ssa) {
1403 const brw_reg_type reg_type =
1404 dest.ssa.bit_size == 32 ? BRW_REGISTER_TYPE_F : BRW_REGISTER_TYPE_DF;
1405 nir_ssa_values[dest.ssa.index] =
1406 bld.vgrf(reg_type, dest.ssa.num_components);
1407 return nir_ssa_values[dest.ssa.index];
1408 } else {
1409 /* We don't handle indirects on locals */
1410 assert(dest.reg.indirect == NULL);
1411 return offset(nir_locals[dest.reg.reg->index], bld,
1412 dest.reg.base_offset * dest.reg.reg->num_components);
1413 }
1414 }
1415
1416 fs_reg
1417 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1418 {
1419 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1420 BRW_REGISTER_TYPE_UD);
1421 fs_reg indirect;
1422 unsigned indirect_max = 0;
1423
1424 for (const nir_deref *tail = &deref->deref; tail->child;
1425 tail = tail->child) {
1426 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1427 assert(tail->child->deref_type == nir_deref_type_array);
1428 const unsigned size = glsl_get_length(tail->type);
1429 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1430 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1431 image = offset(image, bld, base * element_size);
1432
1433 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1434 fs_reg tmp = vgrf(glsl_type::uint_type);
1435
1436 /* Accessing an invalid surface index with the dataport can result
1437 * in a hang. According to the spec "if the index used to
1438 * select an individual element is negative or greater than or
1439 * equal to the size of the array, the results of the operation
1440 * are undefined but may not lead to termination" -- which is one
1441 * of the possible outcomes of the hang. Clamp the index to
1442 * prevent access outside of the array bounds.
1443 */
1444 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1445 BRW_REGISTER_TYPE_UD),
1446 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1447
1448 indirect_max += element_size * (tail->type->length - 1);
1449
1450 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1451 if (indirect.file == BAD_FILE) {
1452 indirect = tmp;
1453 } else {
1454 bld.ADD(indirect, indirect, tmp);
1455 }
1456 }
1457 }
1458
1459 if (indirect.file == BAD_FILE) {
1460 return image;
1461 } else {
1462 /* Emit a pile of MOVs to load the uniform into a temporary. The
1463 * dead-code elimination pass will get rid of what we don't use.
1464 */
1465 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1466 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1467 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1468 offset(tmp, bld, j), offset(image, bld, j),
1469 indirect, brw_imm_ud((indirect_max + 1) * 4));
1470 }
1471 return tmp;
1472 }
1473 }
1474
1475 void
1476 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1477 unsigned wr_mask)
1478 {
1479 for (unsigned i = 0; i < 4; i++) {
1480 if (!((wr_mask >> i) & 1))
1481 continue;
1482
1483 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1484 new_inst->dst = offset(new_inst->dst, bld, i);
1485 for (unsigned j = 0; j < new_inst->sources; j++)
1486 if (new_inst->src[j].file == VGRF)
1487 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1488
1489 bld.emit(new_inst);
1490 }
1491 }
1492
1493 /**
1494 * Get the matching channel register datatype for an image intrinsic of the
1495 * specified GLSL image type.
1496 */
1497 static brw_reg_type
1498 get_image_base_type(const glsl_type *type)
1499 {
1500 switch ((glsl_base_type)type->sampled_type) {
1501 case GLSL_TYPE_UINT:
1502 return BRW_REGISTER_TYPE_UD;
1503 case GLSL_TYPE_INT:
1504 return BRW_REGISTER_TYPE_D;
1505 case GLSL_TYPE_FLOAT:
1506 return BRW_REGISTER_TYPE_F;
1507 default:
1508 unreachable("Not reached.");
1509 }
1510 }
1511
1512 /**
1513 * Get the appropriate atomic op for an image atomic intrinsic.
1514 */
1515 static unsigned
1516 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1517 {
1518 switch (op) {
1519 case nir_intrinsic_image_atomic_add:
1520 return BRW_AOP_ADD;
1521 case nir_intrinsic_image_atomic_min:
1522 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1523 BRW_AOP_IMIN : BRW_AOP_UMIN);
1524 case nir_intrinsic_image_atomic_max:
1525 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1526 BRW_AOP_IMAX : BRW_AOP_UMAX);
1527 case nir_intrinsic_image_atomic_and:
1528 return BRW_AOP_AND;
1529 case nir_intrinsic_image_atomic_or:
1530 return BRW_AOP_OR;
1531 case nir_intrinsic_image_atomic_xor:
1532 return BRW_AOP_XOR;
1533 case nir_intrinsic_image_atomic_exchange:
1534 return BRW_AOP_MOV;
1535 case nir_intrinsic_image_atomic_comp_swap:
1536 return BRW_AOP_CMPWR;
1537 default:
1538 unreachable("Not reachable.");
1539 }
1540 }
1541
1542 static fs_inst *
1543 emit_pixel_interpolater_send(const fs_builder &bld,
1544 enum opcode opcode,
1545 const fs_reg &dst,
1546 const fs_reg &src,
1547 const fs_reg &desc,
1548 glsl_interp_mode interpolation)
1549 {
1550 struct brw_wm_prog_data *wm_prog_data =
1551 brw_wm_prog_data(bld.shader->stage_prog_data);
1552 fs_inst *inst;
1553 fs_reg payload;
1554 int mlen;
1555
1556 if (src.file == BAD_FILE) {
1557 /* Dummy payload */
1558 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1559 mlen = 1;
1560 } else {
1561 payload = src;
1562 mlen = 2 * bld.dispatch_width() / 8;
1563 }
1564
1565 inst = bld.emit(opcode, dst, payload, desc);
1566 inst->mlen = mlen;
1567 /* 2 floats per slot returned */
1568 inst->size_written = 2 * dst.component_size(inst->exec_size);
1569 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1570
1571 wm_prog_data->pulls_bary = true;
1572
1573 return inst;
1574 }
1575
1576 /**
1577 * Computes 1 << x, given a D/UD register containing some value x.
1578 */
1579 static fs_reg
1580 intexp2(const fs_builder &bld, const fs_reg &x)
1581 {
1582 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1583
1584 fs_reg result = bld.vgrf(x.type, 1);
1585 fs_reg one = bld.vgrf(x.type, 1);
1586
1587 bld.MOV(one, retype(brw_imm_d(1), one.type));
1588 bld.SHL(result, one, x);
1589 return result;
1590 }
1591
1592 void
1593 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1594 {
1595 assert(stage == MESA_SHADER_GEOMETRY);
1596
1597 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1598
1599 if (gs_compile->control_data_header_size_bits == 0)
1600 return;
1601
1602 /* We can only do EndPrimitive() functionality when the control data
1603 * consists of cut bits. Fortunately, the only time it isn't is when the
1604 * output type is points, in which case EndPrimitive() is a no-op.
1605 */
1606 if (gs_prog_data->control_data_format !=
1607 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1608 return;
1609 }
1610
1611 /* Cut bits use one bit per vertex. */
1612 assert(gs_compile->control_data_bits_per_vertex == 1);
1613
1614 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1615 vertex_count.type = BRW_REGISTER_TYPE_UD;
1616
1617 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1618 * vertex n, 0 otherwise. So all we need to do here is mark bit
1619 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1620 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1621 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1622 *
1623 * Note that if EndPrimitive() is called before emitting any vertices, this
1624 * will cause us to set bit 31 of the control_data_bits register to 1.
1625 * That's fine because:
1626 *
1627 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1628 * output, so the hardware will ignore cut bit 31.
1629 *
1630 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1631 * last vertex, so setting cut bit 31 has no effect (since the primitive
1632 * is automatically ended when the GS terminates).
1633 *
1634 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1635 * control_data_bits register to 0 when the first vertex is emitted.
1636 */
1637
1638 const fs_builder abld = bld.annotate("end primitive");
1639
1640 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1641 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1642 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1643 fs_reg mask = intexp2(abld, prev_count);
1644 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1645 * attention to the lower 5 bits of its second source argument, so on this
1646 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1647 * ((vertex_count - 1) % 32).
1648 */
1649 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1650 }
1651
1652 void
1653 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1654 {
1655 assert(stage == MESA_SHADER_GEOMETRY);
1656 assert(gs_compile->control_data_bits_per_vertex != 0);
1657
1658 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1659
1660 const fs_builder abld = bld.annotate("emit control data bits");
1661 const fs_builder fwa_bld = bld.exec_all();
1662
1663 /* We use a single UD register to accumulate control data bits (32 bits
1664 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1665 * at a time.
1666 *
1667 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1668 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1669 * use the Channel Mask phase to enable/disable which DWord within that
1670 * group to write. (Remember, different SIMD8 channels may have emitted
1671 * different numbers of vertices, so we may need per-slot offsets.)
1672 *
1673 * Channel masking presents an annoying problem: we may have to replicate
1674 * the data up to 4 times:
1675 *
1676 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1677 *
1678 * To avoid penalizing shaders that emit a small number of vertices, we
1679 * can avoid these sometimes: if the size of the control data header is
1680 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1681 * land in the same 128-bit group, so we can skip per-slot offsets.
1682 *
1683 * Similarly, if the control data header is <= 32 bits, there is only one
1684 * DWord, so we can skip channel masks.
1685 */
1686 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1687
1688 fs_reg channel_mask, per_slot_offset;
1689
1690 if (gs_compile->control_data_header_size_bits > 32) {
1691 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1692 channel_mask = vgrf(glsl_type::uint_type);
1693 }
1694
1695 if (gs_compile->control_data_header_size_bits > 128) {
1696 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1697 per_slot_offset = vgrf(glsl_type::uint_type);
1698 }
1699
1700 /* Figure out which DWord we're trying to write to using the formula:
1701 *
1702 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1703 *
1704 * Since bits_per_vertex is a power of two, and is known at compile
1705 * time, this can be optimized to:
1706 *
1707 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1708 */
1709 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1710 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1711 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1712 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1713 unsigned log2_bits_per_vertex =
1714 util_last_bit(gs_compile->control_data_bits_per_vertex);
1715 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1716
1717 if (per_slot_offset.file != BAD_FILE) {
1718 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1719 * the appropriate OWord within the control data header.
1720 */
1721 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1722 }
1723
1724 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1725 * write to the appropriate DWORD within the OWORD.
1726 */
1727 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1728 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1729 channel_mask = intexp2(fwa_bld, channel);
1730 /* Then the channel masks need to be in bits 23:16. */
1731 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1732 }
1733
1734 /* Store the control data bits in the message payload and send it. */
1735 int mlen = 2;
1736 if (channel_mask.file != BAD_FILE)
1737 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1738 if (per_slot_offset.file != BAD_FILE)
1739 mlen++;
1740
1741 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1742 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1743 int i = 0;
1744 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1745 if (per_slot_offset.file != BAD_FILE)
1746 sources[i++] = per_slot_offset;
1747 if (channel_mask.file != BAD_FILE)
1748 sources[i++] = channel_mask;
1749 while (i < mlen) {
1750 sources[i++] = this->control_data_bits;
1751 }
1752
1753 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1754 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1755 inst->mlen = mlen;
1756 /* We need to increment Global Offset by 256-bits to make room for
1757 * Broadwell's extra "Vertex Count" payload at the beginning of the
1758 * URB entry. Since this is an OWord message, Global Offset is counted
1759 * in 128-bit units, so we must set it to 2.
1760 */
1761 if (gs_prog_data->static_vertex_count == -1)
1762 inst->offset = 2;
1763 }
1764
1765 void
1766 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1767 unsigned stream_id)
1768 {
1769 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1770
1771 /* Note: we are calling this *before* increasing vertex_count, so
1772 * this->vertex_count == vertex_count - 1 in the formula above.
1773 */
1774
1775 /* Stream mode uses 2 bits per vertex */
1776 assert(gs_compile->control_data_bits_per_vertex == 2);
1777
1778 /* Must be a valid stream */
1779 assert(stream_id < MAX_VERTEX_STREAMS);
1780
1781 /* Control data bits are initialized to 0 so we don't have to set any
1782 * bits when sending vertices to stream 0.
1783 */
1784 if (stream_id == 0)
1785 return;
1786
1787 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1788
1789 /* reg::sid = stream_id */
1790 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1791 abld.MOV(sid, brw_imm_ud(stream_id));
1792
1793 /* reg:shift_count = 2 * (vertex_count - 1) */
1794 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1795 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1796
1797 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1798 * attention to the lower 5 bits of its second source argument, so on this
1799 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1800 * stream_id << ((2 * (vertex_count - 1)) % 32).
1801 */
1802 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1803 abld.SHL(mask, sid, shift_count);
1804 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1805 }
1806
1807 void
1808 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1809 unsigned stream_id)
1810 {
1811 assert(stage == MESA_SHADER_GEOMETRY);
1812
1813 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1814
1815 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1816 vertex_count.type = BRW_REGISTER_TYPE_UD;
1817
1818 /* Haswell and later hardware ignores the "Render Stream Select" bits
1819 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1820 * and instead sends all primitives down the pipeline for rasterization.
1821 * If the SOL stage is enabled, "Render Stream Select" is honored and
1822 * primitives bound to non-zero streams are discarded after stream output.
1823 *
1824 * Since the only purpose of primives sent to non-zero streams is to
1825 * be recorded by transform feedback, we can simply discard all geometry
1826 * bound to these streams when transform feedback is disabled.
1827 */
1828 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1829 return;
1830
1831 /* If we're outputting 32 control data bits or less, then we can wait
1832 * until the shader is over to output them all. Otherwise we need to
1833 * output them as we go. Now is the time to do it, since we're about to
1834 * output the vertex_count'th vertex, so it's guaranteed that the
1835 * control data bits associated with the (vertex_count - 1)th vertex are
1836 * correct.
1837 */
1838 if (gs_compile->control_data_header_size_bits > 32) {
1839 const fs_builder abld =
1840 bld.annotate("emit vertex: emit control data bits");
1841
1842 /* Only emit control data bits if we've finished accumulating a batch
1843 * of 32 bits. This is the case when:
1844 *
1845 * (vertex_count * bits_per_vertex) % 32 == 0
1846 *
1847 * (in other words, when the last 5 bits of vertex_count *
1848 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1849 * integer n (which is always the case, since bits_per_vertex is
1850 * always 1 or 2), this is equivalent to requiring that the last 5-n
1851 * bits of vertex_count are 0:
1852 *
1853 * vertex_count & (2^(5-n) - 1) == 0
1854 *
1855 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1856 * equivalent to:
1857 *
1858 * vertex_count & (32 / bits_per_vertex - 1) == 0
1859 *
1860 * TODO: If vertex_count is an immediate, we could do some of this math
1861 * at compile time...
1862 */
1863 fs_inst *inst =
1864 abld.AND(bld.null_reg_d(), vertex_count,
1865 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1866 inst->conditional_mod = BRW_CONDITIONAL_Z;
1867
1868 abld.IF(BRW_PREDICATE_NORMAL);
1869 /* If vertex_count is 0, then no control data bits have been
1870 * accumulated yet, so we can skip emitting them.
1871 */
1872 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1873 BRW_CONDITIONAL_NEQ);
1874 abld.IF(BRW_PREDICATE_NORMAL);
1875 emit_gs_control_data_bits(vertex_count);
1876 abld.emit(BRW_OPCODE_ENDIF);
1877
1878 /* Reset control_data_bits to 0 so we can start accumulating a new
1879 * batch.
1880 *
1881 * Note: in the case where vertex_count == 0, this neutralizes the
1882 * effect of any call to EndPrimitive() that the shader may have
1883 * made before outputting its first vertex.
1884 */
1885 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
1886 inst->force_writemask_all = true;
1887 abld.emit(BRW_OPCODE_ENDIF);
1888 }
1889
1890 emit_urb_writes(vertex_count);
1891
1892 /* In stream mode we have to set control data bits for all vertices
1893 * unless we have disabled control data bits completely (which we do
1894 * do for GL_POINTS outputs that don't use streams).
1895 */
1896 if (gs_compile->control_data_header_size_bits > 0 &&
1897 gs_prog_data->control_data_format ==
1898 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
1899 set_gs_stream_control_data_bits(vertex_count, stream_id);
1900 }
1901 }
1902
1903 void
1904 fs_visitor::emit_gs_input_load(const fs_reg &dst,
1905 const nir_src &vertex_src,
1906 unsigned base_offset,
1907 const nir_src &offset_src,
1908 unsigned num_components,
1909 unsigned first_component)
1910 {
1911 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1912
1913 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
1914 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
1915 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
1916
1917 /* TODO: figure out push input layout for invocations == 1 */
1918 /* TODO: make this work with 64-bit inputs */
1919 if (gs_prog_data->invocations == 1 &&
1920 type_sz(dst.type) <= 4 &&
1921 offset_const != NULL && vertex_const != NULL &&
1922 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
1923 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
1924 vertex_const->u32[0] * push_reg_count;
1925 for (unsigned i = 0; i < num_components; i++) {
1926 bld.MOV(offset(dst, bld, i),
1927 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
1928 }
1929 return;
1930 }
1931
1932 /* Resort to the pull model. Ensure the VUE handles are provided. */
1933 assert(gs_prog_data->base.include_vue_handles);
1934
1935 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
1936 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1937
1938 if (gs_prog_data->invocations == 1) {
1939 if (vertex_const) {
1940 /* The vertex index is constant; just select the proper URB handle. */
1941 icp_handle =
1942 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
1943 BRW_REGISTER_TYPE_UD);
1944 } else {
1945 /* The vertex index is non-constant. We need to use indirect
1946 * addressing to fetch the proper URB handle.
1947 *
1948 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
1949 * indicating that channel <n> should read the handle from
1950 * DWord <n>. We convert that to bytes by multiplying by 4.
1951 *
1952 * Next, we convert the vertex index to bytes by multiplying
1953 * by 32 (shifting by 5), and add the two together. This is
1954 * the final indirect byte offset.
1955 */
1956 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
1957 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1958 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1959 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1960
1961 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
1962 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
1963 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
1964 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
1965 /* Convert vertex_index to bytes (multiply by 32) */
1966 bld.SHL(vertex_offset_bytes,
1967 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
1968 brw_imm_ud(5u));
1969 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
1970
1971 /* Use first_icp_handle as the base offset. There is one register
1972 * of URB handles per vertex, so inform the register allocator that
1973 * we might read up to nir->info.gs.vertices_in registers.
1974 */
1975 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
1976 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
1977 fs_reg(icp_offset_bytes),
1978 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
1979 }
1980 } else {
1981 assert(gs_prog_data->invocations > 1);
1982
1983 if (vertex_const) {
1984 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
1985 bld.MOV(icp_handle,
1986 retype(brw_vec1_grf(first_icp_handle +
1987 vertex_const->i32[0] / 8,
1988 vertex_const->i32[0] % 8),
1989 BRW_REGISTER_TYPE_UD));
1990 } else {
1991 /* The vertex index is non-constant. We need to use indirect
1992 * addressing to fetch the proper URB handle.
1993 *
1994 */
1995 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1996
1997 /* Convert vertex_index to bytes (multiply by 4) */
1998 bld.SHL(icp_offset_bytes,
1999 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2000 brw_imm_ud(2u));
2001
2002 /* Use first_icp_handle as the base offset. There is one DWord
2003 * of URB handles per vertex, so inform the register allocator that
2004 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2005 */
2006 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2007 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2008 fs_reg(icp_offset_bytes),
2009 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2010 REG_SIZE));
2011 }
2012 }
2013
2014 fs_inst *inst;
2015
2016 fs_reg tmp_dst = dst;
2017 fs_reg indirect_offset = get_nir_src(offset_src);
2018 unsigned num_iterations = 1;
2019 unsigned orig_num_components = num_components;
2020
2021 if (type_sz(dst.type) == 8) {
2022 if (num_components > 2) {
2023 num_iterations = 2;
2024 num_components = 2;
2025 }
2026 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2027 tmp_dst = tmp;
2028 first_component = first_component / 2;
2029 }
2030
2031 for (unsigned iter = 0; iter < num_iterations; iter++) {
2032 if (offset_const) {
2033 /* Constant indexing - use global offset. */
2034 if (first_component != 0) {
2035 unsigned read_components = num_components + first_component;
2036 fs_reg tmp = bld.vgrf(dst.type, read_components);
2037 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2038 inst->size_written = read_components *
2039 tmp.component_size(inst->exec_size);
2040 for (unsigned i = 0; i < num_components; i++) {
2041 bld.MOV(offset(tmp_dst, bld, i),
2042 offset(tmp, bld, i + first_component));
2043 }
2044 } else {
2045 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2046 icp_handle);
2047 inst->size_written = num_components *
2048 tmp_dst.component_size(inst->exec_size);
2049 }
2050 inst->offset = base_offset + offset_const->u32[0];
2051 inst->mlen = 1;
2052 } else {
2053 /* Indirect indexing - use per-slot offsets as well. */
2054 const fs_reg srcs[] = { icp_handle, indirect_offset };
2055 unsigned read_components = num_components + first_component;
2056 fs_reg tmp = bld.vgrf(dst.type, read_components);
2057 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2058 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2059 if (first_component != 0) {
2060 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2061 payload);
2062 inst->size_written = read_components *
2063 tmp.component_size(inst->exec_size);
2064 for (unsigned i = 0; i < num_components; i++) {
2065 bld.MOV(offset(tmp_dst, bld, i),
2066 offset(tmp, bld, i + first_component));
2067 }
2068 } else {
2069 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2070 payload);
2071 inst->size_written = num_components *
2072 tmp_dst.component_size(inst->exec_size);
2073 }
2074 inst->offset = base_offset;
2075 inst->mlen = 2;
2076 }
2077
2078 if (type_sz(dst.type) == 8) {
2079 shuffle_32bit_load_result_to_64bit_data(
2080 bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
2081
2082 for (unsigned c = 0; c < num_components; c++)
2083 bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
2084 }
2085
2086 if (num_iterations > 1) {
2087 num_components = orig_num_components - 2;
2088 if(offset_const) {
2089 base_offset++;
2090 } else {
2091 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2092 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2093 indirect_offset = new_indirect;
2094 }
2095 }
2096 }
2097 }
2098
2099 fs_reg
2100 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2101 {
2102 nir_src *offset_src = nir_get_io_offset_src(instr);
2103 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2104
2105 if (const_value) {
2106 /* The only constant offset we should find is 0. brw_nir.c's
2107 * add_const_offset_to_base() will fold other constant offsets
2108 * into instr->const_index[0].
2109 */
2110 assert(const_value->u32[0] == 0);
2111 return fs_reg();
2112 }
2113
2114 return get_nir_src(*offset_src);
2115 }
2116
2117 static void
2118 do_untyped_vector_read(const fs_builder &bld,
2119 const fs_reg dest,
2120 const fs_reg surf_index,
2121 const fs_reg offset_reg,
2122 unsigned num_components)
2123 {
2124 if (type_sz(dest.type) == 4) {
2125 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2126 1 /* dims */,
2127 num_components,
2128 BRW_PREDICATE_NONE);
2129 read_result.type = dest.type;
2130 for (unsigned i = 0; i < num_components; i++)
2131 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2132 } else if (type_sz(dest.type) == 8) {
2133 /* Reading a dvec, so we need to:
2134 *
2135 * 1. Multiply num_components by 2, to account for the fact that we
2136 * need to read 64-bit components.
2137 * 2. Shuffle the result of the load to form valid 64-bit elements
2138 * 3. Emit a second load (for components z/w) if needed.
2139 */
2140 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2141 bld.MOV(read_offset, offset_reg);
2142
2143 int iters = num_components <= 2 ? 1 : 2;
2144
2145 /* Load the dvec, the first iteration loads components x/y, the second
2146 * iteration, if needed, loads components z/w
2147 */
2148 for (int it = 0; it < iters; it++) {
2149 /* Compute number of components to read in this iteration */
2150 int iter_components = MIN2(2, num_components);
2151 num_components -= iter_components;
2152
2153 /* Read. Since this message reads 32-bit components, we need to
2154 * read twice as many components.
2155 */
2156 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2157 1 /* dims */,
2158 iter_components * 2,
2159 BRW_PREDICATE_NONE);
2160
2161 /* Shuffle the 32-bit load result into valid 64-bit data */
2162 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2163 shuffle_32bit_load_result_to_64bit_data(
2164 bld, packed_result, read_result, iter_components);
2165
2166 /* Move each component to its destination */
2167 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2168 for (int c = 0; c < iter_components; c++) {
2169 bld.MOV(offset(dest, bld, it * 2 + c),
2170 offset(packed_result, bld, c));
2171 }
2172
2173 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2174 }
2175 } else {
2176 unreachable("Unsupported type");
2177 }
2178 }
2179
2180 void
2181 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2182 nir_intrinsic_instr *instr)
2183 {
2184 assert(stage == MESA_SHADER_VERTEX);
2185
2186 fs_reg dest;
2187 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2188 dest = get_nir_dest(instr->dest);
2189
2190 switch (instr->intrinsic) {
2191 case nir_intrinsic_load_vertex_id:
2192 unreachable("should be lowered by lower_vertex_id()");
2193
2194 case nir_intrinsic_load_vertex_id_zero_base:
2195 case nir_intrinsic_load_base_vertex:
2196 case nir_intrinsic_load_instance_id:
2197 case nir_intrinsic_load_base_instance:
2198 case nir_intrinsic_load_draw_id: {
2199 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2200 fs_reg val = nir_system_values[sv];
2201 assert(val.file != BAD_FILE);
2202 dest.type = val.type;
2203 bld.MOV(dest, val);
2204 break;
2205 }
2206
2207 case nir_intrinsic_load_input: {
2208 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2209 unsigned first_component = nir_intrinsic_component(instr);
2210 unsigned num_components = instr->num_components;
2211 enum brw_reg_type type = dest.type;
2212
2213 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2214 assert(const_offset && "Indirect input loads not allowed");
2215 src = offset(src, bld, const_offset->u32[0]);
2216
2217 for (unsigned j = 0; j < num_components; j++) {
2218 bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
2219 }
2220
2221 if (type == BRW_REGISTER_TYPE_DF) {
2222 /* Once the double vector is read, set again its original register
2223 * type to continue with normal execution.
2224 */
2225 src = retype(src, type);
2226 dest = retype(dest, type);
2227 }
2228
2229 if (type_sz(src.type) == 8) {
2230 shuffle_32bit_load_result_to_64bit_data(bld,
2231 dest,
2232 retype(dest, BRW_REGISTER_TYPE_F),
2233 instr->num_components);
2234 }
2235 break;
2236 }
2237
2238 default:
2239 nir_emit_intrinsic(bld, instr);
2240 break;
2241 }
2242 }
2243
2244 void
2245 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2246 nir_intrinsic_instr *instr)
2247 {
2248 assert(stage == MESA_SHADER_TESS_CTRL);
2249 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2250 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2251
2252 fs_reg dst;
2253 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2254 dst = get_nir_dest(instr->dest);
2255
2256 switch (instr->intrinsic) {
2257 case nir_intrinsic_load_primitive_id:
2258 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2259 break;
2260 case nir_intrinsic_load_invocation_id:
2261 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2262 break;
2263 case nir_intrinsic_load_patch_vertices_in:
2264 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2265 brw_imm_d(tcs_key->input_vertices));
2266 break;
2267
2268 case nir_intrinsic_barrier: {
2269 if (tcs_prog_data->instances == 1)
2270 break;
2271
2272 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2273 fs_reg m0_2 = component(m0, 2);
2274
2275 const fs_builder chanbld = bld.exec_all().group(1, 0);
2276
2277 /* Zero the message header */
2278 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2279
2280 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2281 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2282 brw_imm_ud(INTEL_MASK(16, 13)));
2283
2284 /* Shift it up to bits 27:24. */
2285 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2286
2287 /* Set the Barrier Count and the enable bit */
2288 chanbld.OR(m0_2, m0_2,
2289 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2290
2291 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2292 break;
2293 }
2294
2295 case nir_intrinsic_load_input:
2296 unreachable("nir_lower_io should never give us these.");
2297 break;
2298
2299 case nir_intrinsic_load_per_vertex_input: {
2300 fs_reg indirect_offset = get_indirect_offset(instr);
2301 unsigned imm_offset = instr->const_index[0];
2302
2303 const nir_src &vertex_src = instr->src[0];
2304 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2305
2306 fs_inst *inst;
2307
2308 fs_reg icp_handle;
2309
2310 if (vertex_const) {
2311 /* Emit a MOV to resolve <0,1,0> regioning. */
2312 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2313 bld.MOV(icp_handle,
2314 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2315 vertex_const->i32[0] & 7),
2316 BRW_REGISTER_TYPE_UD));
2317 } else if (tcs_prog_data->instances == 1 &&
2318 vertex_src.is_ssa &&
2319 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2320 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2321 /* For the common case of only 1 instance, an array index of
2322 * gl_InvocationID means reading g1. Skip all the indirect work.
2323 */
2324 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2325 } else {
2326 /* The vertex index is non-constant. We need to use indirect
2327 * addressing to fetch the proper URB handle.
2328 */
2329 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2330
2331 /* Each ICP handle is a single DWord (4 bytes) */
2332 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2333 bld.SHL(vertex_offset_bytes,
2334 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2335 brw_imm_ud(2u));
2336
2337 /* Start at g1. We might read up to 4 registers. */
2338 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2339 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2340 brw_imm_ud(4 * REG_SIZE));
2341 }
2342
2343 /* We can only read two double components with each URB read, so
2344 * we send two read messages in that case, each one loading up to
2345 * two double components.
2346 */
2347 unsigned num_iterations = 1;
2348 unsigned num_components = instr->num_components;
2349 unsigned first_component = nir_intrinsic_component(instr);
2350 fs_reg orig_dst = dst;
2351 if (type_sz(dst.type) == 8) {
2352 first_component = first_component / 2;
2353 if (instr->num_components > 2) {
2354 num_iterations = 2;
2355 num_components = 2;
2356 }
2357
2358 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2359 dst = tmp;
2360 }
2361
2362 for (unsigned iter = 0; iter < num_iterations; iter++) {
2363 if (indirect_offset.file == BAD_FILE) {
2364 /* Constant indexing - use global offset. */
2365 if (first_component != 0) {
2366 unsigned read_components = num_components + first_component;
2367 fs_reg tmp = bld.vgrf(dst.type, read_components);
2368 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2369 for (unsigned i = 0; i < num_components; i++) {
2370 bld.MOV(offset(dst, bld, i),
2371 offset(tmp, bld, i + first_component));
2372 }
2373 } else {
2374 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2375 }
2376 inst->offset = imm_offset;
2377 inst->mlen = 1;
2378 } else {
2379 /* Indirect indexing - use per-slot offsets as well. */
2380 const fs_reg srcs[] = { icp_handle, indirect_offset };
2381 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2382 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2383 if (first_component != 0) {
2384 unsigned read_components = num_components + first_component;
2385 fs_reg tmp = bld.vgrf(dst.type, read_components);
2386 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2387 payload);
2388 for (unsigned i = 0; i < num_components; i++) {
2389 bld.MOV(offset(dst, bld, i),
2390 offset(tmp, bld, i + first_component));
2391 }
2392 } else {
2393 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2394 payload);
2395 }
2396 inst->offset = imm_offset;
2397 inst->mlen = 2;
2398 }
2399 inst->size_written = (num_components + first_component) *
2400 inst->dst.component_size(inst->exec_size);
2401
2402 /* If we are reading 64-bit data using 32-bit read messages we need
2403 * build proper 64-bit data elements by shuffling the low and high
2404 * 32-bit components around like we do for other things like UBOs
2405 * or SSBOs.
2406 */
2407 if (type_sz(dst.type) == 8) {
2408 shuffle_32bit_load_result_to_64bit_data(
2409 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2410
2411 for (unsigned c = 0; c < num_components; c++) {
2412 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2413 offset(dst, bld, c));
2414 }
2415 }
2416
2417 /* Copy the temporary to the destination to deal with writemasking.
2418 *
2419 * Also attempt to deal with gl_PointSize being in the .w component.
2420 */
2421 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2422 assert(type_sz(dst.type) < 8);
2423 inst->dst = bld.vgrf(dst.type, 4);
2424 inst->size_written = 4 * REG_SIZE;
2425 bld.MOV(dst, offset(inst->dst, bld, 3));
2426 }
2427
2428 /* If we are loading double data and we need a second read message
2429 * adjust the write offset
2430 */
2431 if (num_iterations > 1) {
2432 num_components = instr->num_components - 2;
2433 imm_offset++;
2434 }
2435 }
2436 break;
2437 }
2438
2439 case nir_intrinsic_load_output:
2440 case nir_intrinsic_load_per_vertex_output: {
2441 fs_reg indirect_offset = get_indirect_offset(instr);
2442 unsigned imm_offset = instr->const_index[0];
2443 unsigned first_component = nir_intrinsic_component(instr);
2444
2445 fs_inst *inst;
2446 if (indirect_offset.file == BAD_FILE) {
2447 /* Replicate the patch handle to all enabled channels */
2448 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2449 bld.MOV(patch_handle,
2450 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2451
2452 {
2453 if (first_component != 0) {
2454 unsigned read_components =
2455 instr->num_components + first_component;
2456 fs_reg tmp = bld.vgrf(dst.type, read_components);
2457 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2458 patch_handle);
2459 inst->size_written = read_components * REG_SIZE;
2460 for (unsigned i = 0; i < instr->num_components; i++) {
2461 bld.MOV(offset(dst, bld, i),
2462 offset(tmp, bld, i + first_component));
2463 }
2464 } else {
2465 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2466 patch_handle);
2467 inst->size_written = instr->num_components * REG_SIZE;
2468 }
2469 inst->offset = imm_offset;
2470 inst->mlen = 1;
2471 }
2472 } else {
2473 /* Indirect indexing - use per-slot offsets as well. */
2474 const fs_reg srcs[] = {
2475 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2476 indirect_offset
2477 };
2478 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2479 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2480 if (first_component != 0) {
2481 unsigned read_components =
2482 instr->num_components + first_component;
2483 fs_reg tmp = bld.vgrf(dst.type, read_components);
2484 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2485 payload);
2486 inst->size_written = read_components * REG_SIZE;
2487 for (unsigned i = 0; i < instr->num_components; i++) {
2488 bld.MOV(offset(dst, bld, i),
2489 offset(tmp, bld, i + first_component));
2490 }
2491 } else {
2492 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2493 payload);
2494 inst->size_written = instr->num_components * REG_SIZE;
2495 }
2496 inst->offset = imm_offset;
2497 inst->mlen = 2;
2498 }
2499 break;
2500 }
2501
2502 case nir_intrinsic_store_output:
2503 case nir_intrinsic_store_per_vertex_output: {
2504 fs_reg value = get_nir_src(instr->src[0]);
2505 bool is_64bit = (instr->src[0].is_ssa ?
2506 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2507 fs_reg indirect_offset = get_indirect_offset(instr);
2508 unsigned imm_offset = instr->const_index[0];
2509 unsigned swiz = BRW_SWIZZLE_XYZW;
2510 unsigned mask = instr->const_index[1];
2511 unsigned header_regs = 0;
2512 fs_reg srcs[7];
2513 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2514
2515 if (indirect_offset.file != BAD_FILE) {
2516 srcs[header_regs++] = indirect_offset;
2517 }
2518
2519 if (mask == 0)
2520 break;
2521
2522 unsigned num_components = util_last_bit(mask);
2523 enum opcode opcode;
2524
2525 /* We can only pack two 64-bit components in a single message, so send
2526 * 2 messages if we have more components
2527 */
2528 unsigned num_iterations = 1;
2529 unsigned iter_components = num_components;
2530 unsigned first_component = nir_intrinsic_component(instr);
2531 if (is_64bit) {
2532 first_component = first_component / 2;
2533 if (instr->num_components > 2) {
2534 num_iterations = 2;
2535 iter_components = 2;
2536 }
2537 }
2538
2539 /* 64-bit data needs to me shuffled before we can write it to the URB.
2540 * We will use this temporary to shuffle the components in each
2541 * iteration.
2542 */
2543 fs_reg tmp =
2544 fs_reg(VGRF, alloc.allocate(2 * iter_components), value.type);
2545
2546 mask = mask << first_component;
2547
2548 for (unsigned iter = 0; iter < num_iterations; iter++) {
2549 if (!is_64bit && mask != WRITEMASK_XYZW) {
2550 srcs[header_regs++] = brw_imm_ud(mask << 16);
2551 opcode = indirect_offset.file != BAD_FILE ?
2552 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2553 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2554 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2555 /* Expand the 64-bit mask to 32-bit channels. We only handle
2556 * two channels in each iteration, so we only care about X/Y.
2557 */
2558 unsigned mask32 = 0;
2559 if (mask & WRITEMASK_X)
2560 mask32 |= WRITEMASK_XY;
2561 if (mask & WRITEMASK_Y)
2562 mask32 |= WRITEMASK_ZW;
2563
2564 /* If the mask does not include any of the channels X or Y there
2565 * is nothing to do in this iteration. Move on to the next couple
2566 * of 64-bit channels.
2567 */
2568 if (!mask32) {
2569 mask >>= 2;
2570 imm_offset++;
2571 continue;
2572 }
2573
2574 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2575 opcode = indirect_offset.file != BAD_FILE ?
2576 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2577 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2578 } else {
2579 opcode = indirect_offset.file != BAD_FILE ?
2580 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2581 SHADER_OPCODE_URB_WRITE_SIMD8;
2582 }
2583
2584 for (unsigned i = 0; i < iter_components; i++) {
2585 if (!(mask & (1 << (i + first_component))))
2586 continue;
2587
2588 if (!is_64bit) {
2589 srcs[header_regs + i + first_component] =
2590 offset(value, bld, BRW_GET_SWZ(swiz, i));
2591 } else {
2592 /* We need to shuffle the 64-bit data to match the layout
2593 * expected by our 32-bit URB write messages. We use a temporary
2594 * for that.
2595 */
2596 unsigned channel = BRW_GET_SWZ(swiz, iter * 2 + i);
2597 shuffle_64bit_data_for_32bit_write(bld,
2598 retype(offset(tmp, bld, 2 * i), BRW_REGISTER_TYPE_F),
2599 retype(offset(value, bld, 2 * channel), BRW_REGISTER_TYPE_DF),
2600 1);
2601
2602 /* Now copy the data to the destination */
2603 fs_reg dest = fs_reg(VGRF, alloc.allocate(2), value.type);
2604 unsigned idx = 2 * i;
2605 bld.MOV(dest, offset(tmp, bld, idx));
2606 bld.MOV(offset(dest, bld, 1), offset(tmp, bld, idx + 1));
2607 srcs[header_regs + idx + first_component * 2] = dest;
2608 srcs[header_regs + idx + 1 + first_component * 2] =
2609 offset(dest, bld, 1);
2610 }
2611 }
2612
2613 unsigned mlen =
2614 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2615 (is_64bit ? 2 * first_component : first_component);
2616 fs_reg payload =
2617 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2618 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2619
2620 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2621 inst->offset = imm_offset;
2622 inst->mlen = mlen;
2623
2624 /* If this is a 64-bit attribute, select the next two 64-bit channels
2625 * to be handled in the next iteration.
2626 */
2627 if (is_64bit) {
2628 mask >>= 2;
2629 imm_offset++;
2630 }
2631 }
2632 break;
2633 }
2634
2635 default:
2636 nir_emit_intrinsic(bld, instr);
2637 break;
2638 }
2639 }
2640
2641 void
2642 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2643 nir_intrinsic_instr *instr)
2644 {
2645 assert(stage == MESA_SHADER_TESS_EVAL);
2646 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2647
2648 fs_reg dest;
2649 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2650 dest = get_nir_dest(instr->dest);
2651
2652 switch (instr->intrinsic) {
2653 case nir_intrinsic_load_primitive_id:
2654 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2655 break;
2656 case nir_intrinsic_load_tess_coord:
2657 /* gl_TessCoord is part of the payload in g1-3 */
2658 for (unsigned i = 0; i < 3; i++) {
2659 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2660 }
2661 break;
2662
2663 case nir_intrinsic_load_input:
2664 case nir_intrinsic_load_per_vertex_input: {
2665 fs_reg indirect_offset = get_indirect_offset(instr);
2666 unsigned imm_offset = instr->const_index[0];
2667 unsigned first_component = nir_intrinsic_component(instr);
2668
2669 if (type_sz(dest.type) == 8) {
2670 first_component = first_component / 2;
2671 }
2672
2673 fs_inst *inst;
2674 if (indirect_offset.file == BAD_FILE) {
2675 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2676 * which is 16 registers (since each holds 2 vec4 slots).
2677 */
2678 const unsigned max_push_slots = 32;
2679 if (imm_offset < max_push_slots) {
2680 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2681 for (int i = 0; i < instr->num_components; i++) {
2682 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2683 i + first_component;
2684 bld.MOV(offset(dest, bld, i), component(src, comp));
2685 }
2686 tes_prog_data->base.urb_read_length =
2687 MAX2(tes_prog_data->base.urb_read_length,
2688 DIV_ROUND_UP(imm_offset + 1, 2));
2689 } else {
2690 /* Replicate the patch handle to all enabled channels */
2691 const fs_reg srcs[] = {
2692 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2693 };
2694 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2695 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2696
2697 if (first_component != 0) {
2698 unsigned read_components =
2699 instr->num_components + first_component;
2700 fs_reg tmp = bld.vgrf(dest.type, read_components);
2701 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2702 patch_handle);
2703 inst->size_written = read_components * REG_SIZE;
2704 for (unsigned i = 0; i < instr->num_components; i++) {
2705 bld.MOV(offset(dest, bld, i),
2706 offset(tmp, bld, i + first_component));
2707 }
2708 } else {
2709 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2710 patch_handle);
2711 inst->size_written = instr->num_components * REG_SIZE;
2712 }
2713 inst->mlen = 1;
2714 inst->offset = imm_offset;
2715 }
2716 } else {
2717 /* Indirect indexing - use per-slot offsets as well. */
2718
2719 /* We can only read two double components with each URB read, so
2720 * we send two read messages in that case, each one loading up to
2721 * two double components.
2722 */
2723 unsigned num_iterations = 1;
2724 unsigned num_components = instr->num_components;
2725 fs_reg orig_dest = dest;
2726 if (type_sz(dest.type) == 8) {
2727 if (instr->num_components > 2) {
2728 num_iterations = 2;
2729 num_components = 2;
2730 }
2731 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2732 dest = tmp;
2733 }
2734
2735 for (unsigned iter = 0; iter < num_iterations; iter++) {
2736 const fs_reg srcs[] = {
2737 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2738 indirect_offset
2739 };
2740 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2741 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2742
2743 if (first_component != 0) {
2744 unsigned read_components =
2745 num_components + first_component;
2746 fs_reg tmp = bld.vgrf(dest.type, read_components);
2747 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2748 payload);
2749 for (unsigned i = 0; i < num_components; i++) {
2750 bld.MOV(offset(dest, bld, i),
2751 offset(tmp, bld, i + first_component));
2752 }
2753 } else {
2754 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2755 payload);
2756 }
2757 inst->mlen = 2;
2758 inst->offset = imm_offset;
2759 inst->size_written = (num_components + first_component) *
2760 inst->dst.component_size(inst->exec_size);
2761
2762 /* If we are reading 64-bit data using 32-bit read messages we need
2763 * build proper 64-bit data elements by shuffling the low and high
2764 * 32-bit components around like we do for other things like UBOs
2765 * or SSBOs.
2766 */
2767 if (type_sz(dest.type) == 8) {
2768 shuffle_32bit_load_result_to_64bit_data(
2769 bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
2770
2771 for (unsigned c = 0; c < num_components; c++) {
2772 bld.MOV(offset(orig_dest, bld, iter * 2 + c),
2773 offset(dest, bld, c));
2774 }
2775 }
2776
2777 /* If we are loading double data and we need a second read message
2778 * adjust the offset
2779 */
2780 if (num_iterations > 1) {
2781 num_components = instr->num_components - 2;
2782 imm_offset++;
2783 }
2784 }
2785 }
2786 break;
2787 }
2788 default:
2789 nir_emit_intrinsic(bld, instr);
2790 break;
2791 }
2792 }
2793
2794 void
2795 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2796 nir_intrinsic_instr *instr)
2797 {
2798 assert(stage == MESA_SHADER_GEOMETRY);
2799 fs_reg indirect_offset;
2800
2801 fs_reg dest;
2802 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2803 dest = get_nir_dest(instr->dest);
2804
2805 switch (instr->intrinsic) {
2806 case nir_intrinsic_load_primitive_id:
2807 assert(stage == MESA_SHADER_GEOMETRY);
2808 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2809 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2810 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2811 break;
2812
2813 case nir_intrinsic_load_input:
2814 unreachable("load_input intrinsics are invalid for the GS stage");
2815
2816 case nir_intrinsic_load_per_vertex_input:
2817 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2818 instr->src[1], instr->num_components,
2819 nir_intrinsic_component(instr));
2820 break;
2821
2822 case nir_intrinsic_emit_vertex_with_counter:
2823 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2824 break;
2825
2826 case nir_intrinsic_end_primitive_with_counter:
2827 emit_gs_end_primitive(instr->src[0]);
2828 break;
2829
2830 case nir_intrinsic_set_vertex_count:
2831 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2832 break;
2833
2834 case nir_intrinsic_load_invocation_id: {
2835 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2836 assert(val.file != BAD_FILE);
2837 dest.type = val.type;
2838 bld.MOV(dest, val);
2839 break;
2840 }
2841
2842 default:
2843 nir_emit_intrinsic(bld, instr);
2844 break;
2845 }
2846 }
2847
2848 /**
2849 * Fetch the current render target layer index.
2850 */
2851 static fs_reg
2852 fetch_render_target_array_index(const fs_builder &bld)
2853 {
2854 if (bld.shader->devinfo->gen >= 6) {
2855 /* The render target array index is provided in the thread payload as
2856 * bits 26:16 of r0.0.
2857 */
2858 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
2859 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
2860 brw_imm_uw(0x7ff));
2861 return idx;
2862 } else {
2863 /* Pre-SNB we only ever render into the first layer of the framebuffer
2864 * since layered rendering is not implemented.
2865 */
2866 return brw_imm_ud(0);
2867 }
2868 }
2869
2870 /**
2871 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
2872 * framebuffer at the current fragment coordinates and sample index.
2873 */
2874 fs_inst *
2875 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
2876 unsigned target)
2877 {
2878 const struct gen_device_info *devinfo = bld.shader->devinfo;
2879
2880 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
2881 const brw_wm_prog_key *wm_key =
2882 reinterpret_cast<const brw_wm_prog_key *>(key);
2883 assert(!wm_key->coherent_fb_fetch);
2884 const struct brw_wm_prog_data *wm_prog_data =
2885 brw_wm_prog_data(stage_prog_data);
2886
2887 /* Calculate the surface index relative to the start of the texture binding
2888 * table block, since that's what the texturing messages expect.
2889 */
2890 const unsigned surface = target +
2891 wm_prog_data->binding_table.render_target_read_start -
2892 wm_prog_data->base.binding_table.texture_start;
2893
2894 brw_mark_surface_used(
2895 bld.shader->stage_prog_data,
2896 wm_prog_data->binding_table.render_target_read_start + target);
2897
2898 /* Calculate the fragment coordinates. */
2899 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
2900 bld.MOV(offset(coords, bld, 0), pixel_x);
2901 bld.MOV(offset(coords, bld, 1), pixel_y);
2902 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
2903
2904 /* Calculate the sample index and MCS payload when multisampling. Luckily
2905 * the MCS fetch message behaves deterministically for UMS surfaces, so it
2906 * shouldn't be necessary to recompile based on whether the framebuffer is
2907 * CMS or UMS.
2908 */
2909 if (wm_key->multisample_fbo &&
2910 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
2911 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
2912
2913 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
2914 const fs_reg mcs = wm_key->multisample_fbo ?
2915 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
2916
2917 /* Use either a normal or a CMS texel fetch message depending on whether
2918 * the framebuffer is single or multisample. On SKL+ use the wide CMS
2919 * message just in case the framebuffer uses 16x multisampling, it should
2920 * be equivalent to the normal CMS fetch for lower multisampling modes.
2921 */
2922 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
2923 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
2924 SHADER_OPCODE_TXF_CMS_LOGICAL;
2925
2926 /* Emit the instruction. */
2927 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
2928 sample, mcs,
2929 brw_imm_ud(surface), brw_imm_ud(0),
2930 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
2931 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
2932
2933 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
2934 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
2935
2936 return inst;
2937 }
2938
2939 /**
2940 * Actual coherent framebuffer read implemented using the native render target
2941 * read message. Requires SKL+.
2942 */
2943 static fs_inst *
2944 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
2945 {
2946 assert(bld.shader->devinfo->gen >= 9);
2947 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
2948 inst->target = target;
2949 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
2950
2951 return inst;
2952 }
2953
2954 static fs_reg
2955 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
2956 {
2957 if (n && regs[0].file != BAD_FILE) {
2958 return regs[0];
2959
2960 } else {
2961 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
2962
2963 for (unsigned i = 0; i < n; i++)
2964 regs[i] = tmp;
2965
2966 return tmp;
2967 }
2968 }
2969
2970 static fs_reg
2971 alloc_frag_output(fs_visitor *v, unsigned location)
2972 {
2973 assert(v->stage == MESA_SHADER_FRAGMENT);
2974 const brw_wm_prog_key *const key =
2975 reinterpret_cast<const brw_wm_prog_key *>(v->key);
2976 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
2977 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
2978
2979 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
2980 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
2981
2982 else if (l == FRAG_RESULT_COLOR)
2983 return alloc_temporary(v->bld, 4, v->outputs,
2984 MAX2(key->nr_color_regions, 1));
2985
2986 else if (l == FRAG_RESULT_DEPTH)
2987 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
2988
2989 else if (l == FRAG_RESULT_STENCIL)
2990 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
2991
2992 else if (l == FRAG_RESULT_SAMPLE_MASK)
2993 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
2994
2995 else if (l >= FRAG_RESULT_DATA0 &&
2996 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
2997 return alloc_temporary(v->bld, 4,
2998 &v->outputs[l - FRAG_RESULT_DATA0], 1);
2999
3000 else
3001 unreachable("Invalid location");
3002 }
3003
3004 void
3005 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3006 nir_intrinsic_instr *instr)
3007 {
3008 assert(stage == MESA_SHADER_FRAGMENT);
3009
3010 fs_reg dest;
3011 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3012 dest = get_nir_dest(instr->dest);
3013
3014 switch (instr->intrinsic) {
3015 case nir_intrinsic_load_front_face:
3016 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3017 *emit_frontfacing_interpolation());
3018 break;
3019
3020 case nir_intrinsic_load_sample_pos: {
3021 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3022 assert(sample_pos.file != BAD_FILE);
3023 dest.type = sample_pos.type;
3024 bld.MOV(dest, sample_pos);
3025 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3026 break;
3027 }
3028
3029 case nir_intrinsic_load_layer_id:
3030 dest.type = BRW_REGISTER_TYPE_UD;
3031 bld.MOV(dest, fetch_render_target_array_index(bld));
3032 break;
3033
3034 case nir_intrinsic_load_helper_invocation:
3035 case nir_intrinsic_load_sample_mask_in:
3036 case nir_intrinsic_load_sample_id: {
3037 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3038 fs_reg val = nir_system_values[sv];
3039 assert(val.file != BAD_FILE);
3040 dest.type = val.type;
3041 bld.MOV(dest, val);
3042 break;
3043 }
3044
3045 case nir_intrinsic_store_output: {
3046 const fs_reg src = get_nir_src(instr->src[0]);
3047 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3048 assert(const_offset && "Indirect output stores not allowed");
3049 const unsigned location = nir_intrinsic_base(instr) +
3050 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3051 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3052 src.type);
3053
3054 for (unsigned j = 0; j < instr->num_components; j++)
3055 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3056 offset(src, bld, j));
3057
3058 break;
3059 }
3060
3061 case nir_intrinsic_load_output: {
3062 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3063 BRW_NIR_FRAG_OUTPUT_LOCATION);
3064 assert(l >= FRAG_RESULT_DATA0);
3065 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3066 assert(const_offset && "Indirect output loads not allowed");
3067 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3068 const fs_reg tmp = bld.vgrf(dest.type, 4);
3069
3070 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3071 emit_coherent_fb_read(bld, tmp, target);
3072 else
3073 emit_non_coherent_fb_read(bld, tmp, target);
3074
3075 for (unsigned j = 0; j < instr->num_components; j++) {
3076 bld.MOV(offset(dest, bld, j),
3077 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3078 }
3079
3080 break;
3081 }
3082
3083 case nir_intrinsic_discard:
3084 case nir_intrinsic_discard_if: {
3085 /* We track our discarded pixels in f0.1. By predicating on it, we can
3086 * update just the flag bits that aren't yet discarded. If there's no
3087 * condition, we emit a CMP of g0 != g0, so all currently executing
3088 * channels will get turned off.
3089 */
3090 fs_inst *cmp;
3091 if (instr->intrinsic == nir_intrinsic_discard_if) {
3092 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3093 brw_imm_d(0), BRW_CONDITIONAL_Z);
3094 } else {
3095 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3096 BRW_REGISTER_TYPE_UW));
3097 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3098 }
3099 cmp->predicate = BRW_PREDICATE_NORMAL;
3100 cmp->flag_subreg = 1;
3101
3102 if (devinfo->gen >= 6) {
3103 emit_discard_jump();
3104 }
3105 break;
3106 }
3107
3108 case nir_intrinsic_load_input: {
3109 /* load_input is only used for flat inputs */
3110 unsigned base = nir_intrinsic_base(instr);
3111 unsigned component = nir_intrinsic_component(instr);
3112 unsigned num_components = instr->num_components;
3113 enum brw_reg_type type = dest.type;
3114
3115 /* Special case fields in the VUE header */
3116 if (base == VARYING_SLOT_LAYER)
3117 component = 1;
3118 else if (base == VARYING_SLOT_VIEWPORT)
3119 component = 2;
3120
3121 if (nir_dest_bit_size(instr->dest) == 64) {
3122 /* const_index is in 32-bit type size units that could not be aligned
3123 * with DF. We need to read the double vector as if it was a float
3124 * vector of twice the number of components to fetch the right data.
3125 */
3126 type = BRW_REGISTER_TYPE_F;
3127 num_components *= 2;
3128 }
3129
3130 for (unsigned int i = 0; i < num_components; i++) {
3131 struct brw_reg interp = interp_reg(base, component + i);
3132 interp = suboffset(interp, 3);
3133 bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i),
3134 retype(fs_reg(interp), type));
3135 }
3136
3137 if (nir_dest_bit_size(instr->dest) == 64) {
3138 shuffle_32bit_load_result_to_64bit_data(bld,
3139 dest,
3140 retype(dest, type),
3141 instr->num_components);
3142 }
3143 break;
3144 }
3145
3146 case nir_intrinsic_load_barycentric_pixel:
3147 case nir_intrinsic_load_barycentric_centroid:
3148 case nir_intrinsic_load_barycentric_sample:
3149 /* Do nothing - load_interpolated_input handling will handle it later. */
3150 break;
3151
3152 case nir_intrinsic_load_barycentric_at_sample: {
3153 const glsl_interp_mode interpolation =
3154 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3155
3156 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3157
3158 if (const_sample) {
3159 unsigned msg_data = const_sample->i32[0] << 4;
3160
3161 emit_pixel_interpolater_send(bld,
3162 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3163 dest,
3164 fs_reg(), /* src */
3165 brw_imm_ud(msg_data),
3166 interpolation);
3167 } else {
3168 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3169 BRW_REGISTER_TYPE_UD);
3170
3171 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3172 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3173 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3174 bld.exec_all().group(1, 0)
3175 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3176 emit_pixel_interpolater_send(bld,
3177 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3178 dest,
3179 fs_reg(), /* src */
3180 msg_data,
3181 interpolation);
3182 } else {
3183 /* Make a loop that sends a message to the pixel interpolater
3184 * for the sample number in each live channel. If there are
3185 * multiple channels with the same sample number then these
3186 * will be handled simultaneously with a single interation of
3187 * the loop.
3188 */
3189 bld.emit(BRW_OPCODE_DO);
3190
3191 /* Get the next live sample number into sample_id_reg */
3192 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3193
3194 /* Set the flag register so that we can perform the send
3195 * message on all channels that have the same sample number
3196 */
3197 bld.CMP(bld.null_reg_ud(),
3198 sample_src, sample_id,
3199 BRW_CONDITIONAL_EQ);
3200 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3201 bld.exec_all().group(1, 0)
3202 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3203 fs_inst *inst =
3204 emit_pixel_interpolater_send(bld,
3205 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3206 dest,
3207 fs_reg(), /* src */
3208 msg_data,
3209 interpolation);
3210 set_predicate(BRW_PREDICATE_NORMAL, inst);
3211
3212 /* Continue the loop if there are any live channels left */
3213 set_predicate_inv(BRW_PREDICATE_NORMAL,
3214 true, /* inverse */
3215 bld.emit(BRW_OPCODE_WHILE));
3216 }
3217 }
3218 break;
3219 }
3220
3221 case nir_intrinsic_load_barycentric_at_offset: {
3222 const glsl_interp_mode interpolation =
3223 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3224
3225 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3226
3227 if (const_offset) {
3228 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3229 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3230
3231 emit_pixel_interpolater_send(bld,
3232 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3233 dest,
3234 fs_reg(), /* src */
3235 brw_imm_ud(off_x | (off_y << 4)),
3236 interpolation);
3237 } else {
3238 fs_reg src = vgrf(glsl_type::ivec2_type);
3239 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3240 BRW_REGISTER_TYPE_F);
3241 for (int i = 0; i < 2; i++) {
3242 fs_reg temp = vgrf(glsl_type::float_type);
3243 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3244 fs_reg itemp = vgrf(glsl_type::int_type);
3245 /* float to int */
3246 bld.MOV(itemp, temp);
3247
3248 /* Clamp the upper end of the range to +7/16.
3249 * ARB_gpu_shader5 requires that we support a maximum offset
3250 * of +0.5, which isn't representable in a S0.4 value -- if
3251 * we didn't clamp it, we'd end up with -8/16, which is the
3252 * opposite of what the shader author wanted.
3253 *
3254 * This is legal due to ARB_gpu_shader5's quantization
3255 * rules:
3256 *
3257 * "Not all values of <offset> may be supported; x and y
3258 * offsets may be rounded to fixed-point values with the
3259 * number of fraction bits given by the
3260 * implementation-dependent constant
3261 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3262 */
3263 set_condmod(BRW_CONDITIONAL_L,
3264 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3265 }
3266
3267 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3268 emit_pixel_interpolater_send(bld,
3269 opcode,
3270 dest,
3271 src,
3272 brw_imm_ud(0u),
3273 interpolation);
3274 }
3275 break;
3276 }
3277
3278 case nir_intrinsic_load_interpolated_input: {
3279 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3280 emit_fragcoord_interpolation(dest);
3281 break;
3282 }
3283
3284 assert(instr->src[0].ssa &&
3285 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3286 nir_intrinsic_instr *bary_intrinsic =
3287 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3288 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3289 enum glsl_interp_mode interp_mode =
3290 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3291 fs_reg dst_xy;
3292
3293 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3294 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3295 /* Use the result of the PI message */
3296 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3297 } else {
3298 /* Use the delta_xy values computed from the payload */
3299 enum brw_barycentric_mode bary =
3300 brw_barycentric_mode(interp_mode, bary_intrin);
3301
3302 dst_xy = this->delta_xy[bary];
3303 }
3304
3305 for (unsigned int i = 0; i < instr->num_components; i++) {
3306 fs_reg interp =
3307 fs_reg(interp_reg(nir_intrinsic_base(instr),
3308 nir_intrinsic_component(instr) + i));
3309 interp.type = BRW_REGISTER_TYPE_F;
3310 dest.type = BRW_REGISTER_TYPE_F;
3311
3312 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3313 fs_reg tmp = vgrf(glsl_type::float_type);
3314 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3315 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3316 } else {
3317 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3318 }
3319 }
3320 break;
3321 }
3322
3323 default:
3324 nir_emit_intrinsic(bld, instr);
3325 break;
3326 }
3327 }
3328
3329 void
3330 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3331 nir_intrinsic_instr *instr)
3332 {
3333 assert(stage == MESA_SHADER_COMPUTE);
3334 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3335
3336 fs_reg dest;
3337 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3338 dest = get_nir_dest(instr->dest);
3339
3340 switch (instr->intrinsic) {
3341 case nir_intrinsic_barrier:
3342 emit_barrier();
3343 cs_prog_data->uses_barrier = true;
3344 break;
3345
3346 case nir_intrinsic_load_local_invocation_id:
3347 case nir_intrinsic_load_work_group_id: {
3348 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3349 fs_reg val = nir_system_values[sv];
3350 assert(val.file != BAD_FILE);
3351 dest.type = val.type;
3352 for (unsigned i = 0; i < 3; i++)
3353 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3354 break;
3355 }
3356
3357 case nir_intrinsic_load_num_work_groups: {
3358 const unsigned surface =
3359 cs_prog_data->binding_table.work_groups_start;
3360
3361 cs_prog_data->uses_num_work_groups = true;
3362
3363 fs_reg surf_index = brw_imm_ud(surface);
3364 brw_mark_surface_used(prog_data, surface);
3365
3366 /* Read the 3 GLuint components of gl_NumWorkGroups */
3367 for (unsigned i = 0; i < 3; i++) {
3368 fs_reg read_result =
3369 emit_untyped_read(bld, surf_index,
3370 brw_imm_ud(i << 2),
3371 1 /* dims */, 1 /* size */,
3372 BRW_PREDICATE_NONE);
3373 read_result.type = dest.type;
3374 bld.MOV(dest, read_result);
3375 dest = offset(dest, bld, 1);
3376 }
3377 break;
3378 }
3379
3380 case nir_intrinsic_shared_atomic_add:
3381 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3382 break;
3383 case nir_intrinsic_shared_atomic_imin:
3384 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3385 break;
3386 case nir_intrinsic_shared_atomic_umin:
3387 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3388 break;
3389 case nir_intrinsic_shared_atomic_imax:
3390 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3391 break;
3392 case nir_intrinsic_shared_atomic_umax:
3393 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3394 break;
3395 case nir_intrinsic_shared_atomic_and:
3396 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3397 break;
3398 case nir_intrinsic_shared_atomic_or:
3399 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3400 break;
3401 case nir_intrinsic_shared_atomic_xor:
3402 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3403 break;
3404 case nir_intrinsic_shared_atomic_exchange:
3405 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3406 break;
3407 case nir_intrinsic_shared_atomic_comp_swap:
3408 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3409 break;
3410
3411 case nir_intrinsic_load_shared: {
3412 assert(devinfo->gen >= 7);
3413
3414 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3415
3416 /* Get the offset to read from */
3417 fs_reg offset_reg;
3418 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3419 if (const_offset) {
3420 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3421 } else {
3422 offset_reg = vgrf(glsl_type::uint_type);
3423 bld.ADD(offset_reg,
3424 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3425 brw_imm_ud(instr->const_index[0]));
3426 }
3427
3428 /* Read the vector */
3429 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3430 instr->num_components);
3431 break;
3432 }
3433
3434 case nir_intrinsic_store_shared: {
3435 assert(devinfo->gen >= 7);
3436
3437 /* Block index */
3438 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3439
3440 /* Value */
3441 fs_reg val_reg = get_nir_src(instr->src[0]);
3442
3443 /* Writemask */
3444 unsigned writemask = instr->const_index[1];
3445
3446 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3447 * since the untyped writes below operate in units of 32-bits, which
3448 * means that we need to write twice as many components each time.
3449 * Also, we have to suffle 64-bit data to be in the appropriate layout
3450 * expected by our 32-bit write messages.
3451 */
3452 unsigned type_size = 4;
3453 unsigned bit_size = instr->src[0].is_ssa ?
3454 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
3455 if (bit_size == 64) {
3456 type_size = 8;
3457 fs_reg tmp =
3458 fs_reg(VGRF, alloc.allocate(alloc.sizes[val_reg.nr]), val_reg.type);
3459 shuffle_64bit_data_for_32bit_write(
3460 bld,
3461 retype(tmp, BRW_REGISTER_TYPE_F),
3462 retype(val_reg, BRW_REGISTER_TYPE_DF),
3463 instr->num_components);
3464 val_reg = tmp;
3465 }
3466
3467 unsigned type_slots = type_size / 4;
3468
3469 /* Combine groups of consecutive enabled channels in one write
3470 * message. We use ffs to find the first enabled channel and then ffs on
3471 * the bit-inverse, down-shifted writemask to determine the length of
3472 * the block of enabled bits.
3473 */
3474 while (writemask) {
3475 unsigned first_component = ffs(writemask) - 1;
3476 unsigned length = ffs(~(writemask >> first_component)) - 1;
3477
3478 /* We can't write more than 2 64-bit components at once. Limit the
3479 * length of the write to what we can do and let the next iteration
3480 * handle the rest
3481 */
3482 if (type_size > 4)
3483 length = MIN2(2, length);
3484
3485 fs_reg offset_reg;
3486 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3487 if (const_offset) {
3488 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3489 type_size * first_component);
3490 } else {
3491 offset_reg = vgrf(glsl_type::uint_type);
3492 bld.ADD(offset_reg,
3493 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3494 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3495 }
3496
3497 emit_untyped_write(bld, surf_index, offset_reg,
3498 offset(val_reg, bld, first_component * type_slots),
3499 1 /* dims */, length * type_slots,
3500 BRW_PREDICATE_NONE);
3501
3502 /* Clear the bits in the writemask that we just wrote, then try
3503 * again to see if more channels are left.
3504 */
3505 writemask &= (15 << (first_component + length));
3506 }
3507
3508 break;
3509 }
3510
3511 default:
3512 nir_emit_intrinsic(bld, instr);
3513 break;
3514 }
3515 }
3516
3517 void
3518 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3519 {
3520 fs_reg dest;
3521 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3522 dest = get_nir_dest(instr->dest);
3523
3524 switch (instr->intrinsic) {
3525 case nir_intrinsic_atomic_counter_inc:
3526 case nir_intrinsic_atomic_counter_dec:
3527 case nir_intrinsic_atomic_counter_read:
3528 case nir_intrinsic_atomic_counter_add:
3529 case nir_intrinsic_atomic_counter_min:
3530 case nir_intrinsic_atomic_counter_max:
3531 case nir_intrinsic_atomic_counter_and:
3532 case nir_intrinsic_atomic_counter_or:
3533 case nir_intrinsic_atomic_counter_xor:
3534 case nir_intrinsic_atomic_counter_exchange:
3535 case nir_intrinsic_atomic_counter_comp_swap: {
3536 if (stage == MESA_SHADER_FRAGMENT &&
3537 instr->intrinsic != nir_intrinsic_atomic_counter_read)
3538 brw_wm_prog_data(prog_data)->has_side_effects = true;
3539
3540 /* Get some metadata from the image intrinsic. */
3541 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3542
3543 /* Get the arguments of the atomic intrinsic. */
3544 const fs_reg offset = get_nir_src(instr->src[0]);
3545 const unsigned surface = (stage_prog_data->binding_table.abo_start +
3546 instr->const_index[0]);
3547 const fs_reg src0 = (info->num_srcs >= 2
3548 ? get_nir_src(instr->src[1]) : fs_reg());
3549 const fs_reg src1 = (info->num_srcs >= 3
3550 ? get_nir_src(instr->src[2]) : fs_reg());
3551 fs_reg tmp;
3552
3553 assert(info->num_srcs <= 3);
3554
3555 /* Emit a surface read or atomic op. */
3556 if (instr->intrinsic == nir_intrinsic_atomic_counter_read) {
3557 tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
3558 } else {
3559 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, src0,
3560 src1, 1, 1,
3561 get_atomic_counter_op(instr->intrinsic));
3562 }
3563
3564 /* Assign the result. */
3565 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
3566
3567 /* Mark the surface as used. */
3568 brw_mark_surface_used(stage_prog_data, surface);
3569 break;
3570 }
3571
3572 case nir_intrinsic_image_load:
3573 case nir_intrinsic_image_store:
3574 case nir_intrinsic_image_atomic_add:
3575 case nir_intrinsic_image_atomic_min:
3576 case nir_intrinsic_image_atomic_max:
3577 case nir_intrinsic_image_atomic_and:
3578 case nir_intrinsic_image_atomic_or:
3579 case nir_intrinsic_image_atomic_xor:
3580 case nir_intrinsic_image_atomic_exchange:
3581 case nir_intrinsic_image_atomic_comp_swap: {
3582 using namespace image_access;
3583
3584 if (stage == MESA_SHADER_FRAGMENT &&
3585 instr->intrinsic != nir_intrinsic_image_load)
3586 brw_wm_prog_data(prog_data)->has_side_effects = true;
3587
3588 /* Get the referenced image variable and type. */
3589 const nir_variable *var = instr->variables[0]->var;
3590 const glsl_type *type = var->type->without_array();
3591 const brw_reg_type base_type = get_image_base_type(type);
3592
3593 /* Get some metadata from the image intrinsic. */
3594 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3595 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3596 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3597 const unsigned format = var->data.image.format;
3598
3599 /* Get the arguments of the image intrinsic. */
3600 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3601 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3602 BRW_REGISTER_TYPE_UD);
3603 const fs_reg src0 = (info->num_srcs >= 3 ?
3604 retype(get_nir_src(instr->src[2]), base_type) :
3605 fs_reg());
3606 const fs_reg src1 = (info->num_srcs >= 4 ?
3607 retype(get_nir_src(instr->src[3]), base_type) :
3608 fs_reg());
3609 fs_reg tmp;
3610
3611 /* Emit an image load, store or atomic op. */
3612 if (instr->intrinsic == nir_intrinsic_image_load)
3613 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3614
3615 else if (instr->intrinsic == nir_intrinsic_image_store)
3616 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3617 var->data.image.write_only ? GL_NONE : format);
3618
3619 else
3620 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3621 surf_dims, arr_dims, info->dest_components,
3622 get_image_atomic_op(instr->intrinsic, type));
3623
3624 /* Assign the result. */
3625 for (unsigned c = 0; c < info->dest_components; ++c)
3626 bld.MOV(offset(retype(dest, base_type), bld, c),
3627 offset(tmp, bld, c));
3628 break;
3629 }
3630
3631 case nir_intrinsic_memory_barrier_atomic_counter:
3632 case nir_intrinsic_memory_barrier_buffer:
3633 case nir_intrinsic_memory_barrier_image:
3634 case nir_intrinsic_memory_barrier: {
3635 const fs_builder ubld = bld.group(8, 0);
3636 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3637 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3638 ->size_written = 2 * REG_SIZE;
3639 break;
3640 }
3641
3642 case nir_intrinsic_group_memory_barrier:
3643 case nir_intrinsic_memory_barrier_shared:
3644 /* We treat these workgroup-level barriers as no-ops. This should be
3645 * safe at present and as long as:
3646 *
3647 * - Memory access instructions are not subsequently reordered by the
3648 * compiler back-end.
3649 *
3650 * - All threads from a given compute shader workgroup fit within a
3651 * single subslice and therefore talk to the same HDC shared unit
3652 * what supposedly guarantees ordering and coherency between threads
3653 * from the same workgroup. This may change in the future when we
3654 * start splitting workgroups across multiple subslices.
3655 *
3656 * - The context is not in fault-and-stream mode, which could cause
3657 * memory transactions (including to SLM) prior to the barrier to be
3658 * replayed after the barrier if a pagefault occurs. This shouldn't
3659 * be a problem up to and including SKL because fault-and-stream is
3660 * not usable due to hardware issues, but that's likely to change in
3661 * the future.
3662 */
3663 break;
3664
3665 case nir_intrinsic_shader_clock: {
3666 /* We cannot do anything if there is an event, so ignore it for now */
3667 const fs_reg shader_clock = get_timestamp(bld);
3668 const fs_reg srcs[] = { component(shader_clock, 0),
3669 component(shader_clock, 1) };
3670 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3671 break;
3672 }
3673
3674 case nir_intrinsic_image_size: {
3675 /* Get the referenced image variable and type. */
3676 const nir_variable *var = instr->variables[0]->var;
3677 const glsl_type *type = var->type->without_array();
3678
3679 /* Get the size of the image. */
3680 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3681 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3682
3683 /* For 1DArray image types, the array index is stored in the Z component.
3684 * Fix this by swizzling the Z component to the Y component.
3685 */
3686 const bool is_1d_array_image =
3687 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3688 type->sampler_array;
3689
3690 /* For CubeArray images, we should count the number of cubes instead
3691 * of the number of faces. Fix it by dividing the (Z component) by 6.
3692 */
3693 const bool is_cube_array_image =
3694 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3695 type->sampler_array;
3696
3697 /* Copy all the components. */
3698 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3699 if ((int)c >= type->coordinate_components()) {
3700 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3701 brw_imm_d(1));
3702 } else if (c == 1 && is_1d_array_image) {
3703 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3704 offset(size, bld, 2));
3705 } else if (c == 2 && is_cube_array_image) {
3706 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3707 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3708 offset(size, bld, c), brw_imm_d(6));
3709 } else {
3710 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3711 offset(size, bld, c));
3712 }
3713 }
3714
3715 break;
3716 }
3717
3718 case nir_intrinsic_image_samples:
3719 /* The driver does not support multi-sampled images. */
3720 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3721 break;
3722
3723 case nir_intrinsic_load_uniform: {
3724 /* Offsets are in bytes but they should always be multiples of 4 */
3725 assert(instr->const_index[0] % 4 == 0);
3726
3727 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3728
3729 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3730 if (const_offset) {
3731 /* Offsets are in bytes but they should always be multiples of 4 */
3732 assert(const_offset->u32[0] % 4 == 0);
3733 src.offset = const_offset->u32[0];
3734
3735 for (unsigned j = 0; j < instr->num_components; j++) {
3736 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3737 }
3738 } else {
3739 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3740 BRW_REGISTER_TYPE_UD);
3741
3742 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3743 * go past the end of the uniform. In order to keep the n'th
3744 * component from running past, we subtract off the size of all but
3745 * one component of the vector.
3746 */
3747 assert(instr->const_index[1] >=
3748 instr->num_components * (int) type_sz(dest.type));
3749 unsigned read_size = instr->const_index[1] -
3750 (instr->num_components - 1) * type_sz(dest.type);
3751
3752 bool supports_64bit_indirects =
3753 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
3754
3755 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
3756 for (unsigned j = 0; j < instr->num_components; j++) {
3757 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3758 offset(dest, bld, j), offset(src, bld, j),
3759 indirect, brw_imm_ud(read_size));
3760 }
3761 } else {
3762 const unsigned num_mov_indirects =
3763 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
3764 /* We read a little bit less per MOV INDIRECT, as they are now
3765 * 32-bits ones instead of 64-bit. Fix read_size then.
3766 */
3767 const unsigned read_size_32bit = read_size -
3768 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
3769 for (unsigned j = 0; j < instr->num_components; j++) {
3770 for (unsigned i = 0; i < num_mov_indirects; i++) {
3771 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3772 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
3773 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
3774 indirect, brw_imm_ud(read_size_32bit));
3775 }
3776 }
3777 }
3778 }
3779 break;
3780 }
3781
3782 case nir_intrinsic_load_ubo: {
3783 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
3784 fs_reg surf_index;
3785
3786 if (const_index) {
3787 const unsigned index = stage_prog_data->binding_table.ubo_start +
3788 const_index->u32[0];
3789 surf_index = brw_imm_ud(index);
3790 brw_mark_surface_used(prog_data, index);
3791 } else {
3792 /* The block index is not a constant. Evaluate the index expression
3793 * per-channel and add the base UBO index; we have to select a value
3794 * from any live channel.
3795 */
3796 surf_index = vgrf(glsl_type::uint_type);
3797 bld.ADD(surf_index, get_nir_src(instr->src[0]),
3798 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
3799 surf_index = bld.emit_uniformize(surf_index);
3800
3801 /* Assume this may touch any UBO. It would be nice to provide
3802 * a tighter bound, but the array information is already lowered away.
3803 */
3804 brw_mark_surface_used(prog_data,
3805 stage_prog_data->binding_table.ubo_start +
3806 nir->info.num_ubos - 1);
3807 }
3808
3809 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3810 if (const_offset == NULL) {
3811 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
3812 BRW_REGISTER_TYPE_UD);
3813
3814 for (int i = 0; i < instr->num_components; i++)
3815 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
3816 base_offset, i * type_sz(dest.type));
3817 } else {
3818 /* Even if we are loading doubles, a pull constant load will load
3819 * a 32-bit vec4, so should only reserve vgrf space for that. If we
3820 * need to load a full dvec4 we will have to emit 2 loads. This is
3821 * similar to demote_pull_constants(), except that in that case we
3822 * see individual accesses to each component of the vector and then
3823 * we let CSE deal with duplicate loads. Here we see a vector access
3824 * and we have to split it if necessary.
3825 */
3826 const unsigned type_size = type_sz(dest.type);
3827
3828 /* See if we've selected this as a push constant candidate */
3829 if (const_index) {
3830 const unsigned ubo_block = const_index->u32[0];
3831 const unsigned offset_256b = const_offset->u32[0] / 32;
3832
3833 fs_reg push_reg;
3834 for (int i = 0; i < 4; i++) {
3835 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3836 if (range->block == ubo_block &&
3837 offset_256b >= range->start &&
3838 offset_256b < range->start + range->length) {
3839
3840 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
3841 push_reg.offset = const_offset->u32[0] - 32 * range->start;
3842 break;
3843 }
3844 }
3845
3846 if (push_reg.file != BAD_FILE) {
3847 for (unsigned i = 0; i < instr->num_components; i++) {
3848 bld.MOV(offset(dest, bld, i),
3849 byte_offset(push_reg, i * type_size));
3850 }
3851 break;
3852 }
3853 }
3854
3855 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
3856 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
3857 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3858
3859 for (unsigned c = 0; c < instr->num_components;) {
3860 const unsigned base = const_offset->u32[0] + c * type_size;
3861 /* Number of usable components in the next block-aligned load. */
3862 const unsigned count = MIN2(instr->num_components - c,
3863 (block_sz - base % block_sz) / type_size);
3864
3865 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
3866 packed_consts, surf_index,
3867 brw_imm_ud(base & ~(block_sz - 1)));
3868
3869 const fs_reg consts =
3870 retype(byte_offset(packed_consts, base & (block_sz - 1)),
3871 dest.type);
3872
3873 for (unsigned d = 0; d < count; d++)
3874 bld.MOV(offset(dest, bld, c + d), component(consts, d));
3875
3876 c += count;
3877 }
3878 }
3879 break;
3880 }
3881
3882 case nir_intrinsic_load_ssbo: {
3883 assert(devinfo->gen >= 7);
3884
3885 nir_const_value *const_uniform_block =
3886 nir_src_as_const_value(instr->src[0]);
3887
3888 fs_reg surf_index;
3889 if (const_uniform_block) {
3890 unsigned index = stage_prog_data->binding_table.ssbo_start +
3891 const_uniform_block->u32[0];
3892 surf_index = brw_imm_ud(index);
3893 brw_mark_surface_used(prog_data, index);
3894 } else {
3895 surf_index = vgrf(glsl_type::uint_type);
3896 bld.ADD(surf_index, get_nir_src(instr->src[0]),
3897 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3898
3899 /* Assume this may touch any UBO. It would be nice to provide
3900 * a tighter bound, but the array information is already lowered away.
3901 */
3902 brw_mark_surface_used(prog_data,
3903 stage_prog_data->binding_table.ssbo_start +
3904 nir->info.num_ssbos - 1);
3905 }
3906
3907 fs_reg offset_reg;
3908 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3909 if (const_offset) {
3910 offset_reg = brw_imm_ud(const_offset->u32[0]);
3911 } else {
3912 offset_reg = get_nir_src(instr->src[1]);
3913 }
3914
3915 /* Read the vector */
3916 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3917 instr->num_components);
3918
3919 break;
3920 }
3921
3922 case nir_intrinsic_store_ssbo: {
3923 assert(devinfo->gen >= 7);
3924
3925 if (stage == MESA_SHADER_FRAGMENT)
3926 brw_wm_prog_data(prog_data)->has_side_effects = true;
3927
3928 /* Block index */
3929 fs_reg surf_index;
3930 nir_const_value *const_uniform_block =
3931 nir_src_as_const_value(instr->src[1]);
3932 if (const_uniform_block) {
3933 unsigned index = stage_prog_data->binding_table.ssbo_start +
3934 const_uniform_block->u32[0];
3935 surf_index = brw_imm_ud(index);
3936 brw_mark_surface_used(prog_data, index);
3937 } else {
3938 surf_index = vgrf(glsl_type::uint_type);
3939 bld.ADD(surf_index, get_nir_src(instr->src[1]),
3940 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3941
3942 brw_mark_surface_used(prog_data,
3943 stage_prog_data->binding_table.ssbo_start +
3944 nir->info.num_ssbos - 1);
3945 }
3946
3947 /* Value */
3948 fs_reg val_reg = get_nir_src(instr->src[0]);
3949
3950 /* Writemask */
3951 unsigned writemask = instr->const_index[0];
3952
3953 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3954 * since the untyped writes below operate in units of 32-bits, which
3955 * means that we need to write twice as many components each time.
3956 * Also, we have to suffle 64-bit data to be in the appropriate layout
3957 * expected by our 32-bit write messages.
3958 */
3959 unsigned type_size = 4;
3960 unsigned bit_size = instr->src[0].is_ssa ?
3961 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
3962 if (bit_size == 64) {
3963 type_size = 8;
3964 fs_reg tmp =
3965 fs_reg(VGRF, alloc.allocate(alloc.sizes[val_reg.nr]), val_reg.type);
3966 shuffle_64bit_data_for_32bit_write(bld,
3967 retype(tmp, BRW_REGISTER_TYPE_F),
3968 retype(val_reg, BRW_REGISTER_TYPE_DF),
3969 instr->num_components);
3970 val_reg = tmp;
3971 }
3972
3973 unsigned type_slots = type_size / 4;
3974
3975 /* Combine groups of consecutive enabled channels in one write
3976 * message. We use ffs to find the first enabled channel and then ffs on
3977 * the bit-inverse, down-shifted writemask to determine the length of
3978 * the block of enabled bits.
3979 */
3980 while (writemask) {
3981 unsigned first_component = ffs(writemask) - 1;
3982 unsigned length = ffs(~(writemask >> first_component)) - 1;
3983
3984 /* We can't write more than 2 64-bit components at once. Limit the
3985 * length of the write to what we can do and let the next iteration
3986 * handle the rest
3987 */
3988 if (type_size > 4)
3989 length = MIN2(2, length);
3990
3991 fs_reg offset_reg;
3992 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
3993 if (const_offset) {
3994 offset_reg = brw_imm_ud(const_offset->u32[0] +
3995 type_size * first_component);
3996 } else {
3997 offset_reg = vgrf(glsl_type::uint_type);
3998 bld.ADD(offset_reg,
3999 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4000 brw_imm_ud(type_size * first_component));
4001 }
4002
4003
4004 emit_untyped_write(bld, surf_index, offset_reg,
4005 offset(val_reg, bld, first_component * type_slots),
4006 1 /* dims */, length * type_slots,
4007 BRW_PREDICATE_NONE);
4008
4009 /* Clear the bits in the writemask that we just wrote, then try
4010 * again to see if more channels are left.
4011 */
4012 writemask &= (15 << (first_component + length));
4013 }
4014 break;
4015 }
4016
4017 case nir_intrinsic_store_output: {
4018 fs_reg src = get_nir_src(instr->src[0]);
4019
4020 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4021 assert(const_offset && "Indirect output stores not allowed");
4022 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4023 4 * const_offset->u32[0]), src.type);
4024
4025 unsigned num_components = instr->num_components;
4026 unsigned first_component = nir_intrinsic_component(instr);
4027 unsigned bit_size = instr->src[0].is_ssa ?
4028 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
4029 if (bit_size == 64) {
4030 fs_reg tmp =
4031 fs_reg(VGRF, alloc.allocate(2 * num_components),
4032 BRW_REGISTER_TYPE_F);
4033 shuffle_64bit_data_for_32bit_write(
4034 bld, tmp, retype(src, BRW_REGISTER_TYPE_DF), num_components);
4035 src = retype(tmp, src.type);
4036 num_components *= 2;
4037 }
4038
4039 for (unsigned j = 0; j < num_components; j++) {
4040 bld.MOV(offset(new_dest, bld, j + first_component),
4041 offset(src, bld, j));
4042 }
4043 break;
4044 }
4045
4046 case nir_intrinsic_ssbo_atomic_add:
4047 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4048 break;
4049 case nir_intrinsic_ssbo_atomic_imin:
4050 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4051 break;
4052 case nir_intrinsic_ssbo_atomic_umin:
4053 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4054 break;
4055 case nir_intrinsic_ssbo_atomic_imax:
4056 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4057 break;
4058 case nir_intrinsic_ssbo_atomic_umax:
4059 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4060 break;
4061 case nir_intrinsic_ssbo_atomic_and:
4062 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4063 break;
4064 case nir_intrinsic_ssbo_atomic_or:
4065 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4066 break;
4067 case nir_intrinsic_ssbo_atomic_xor:
4068 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4069 break;
4070 case nir_intrinsic_ssbo_atomic_exchange:
4071 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4072 break;
4073 case nir_intrinsic_ssbo_atomic_comp_swap:
4074 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4075 break;
4076
4077 case nir_intrinsic_get_buffer_size: {
4078 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4079 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4080
4081 /* A resinfo's sampler message is used to get the buffer size. The
4082 * SIMD8's writeback message consists of four registers and SIMD16's
4083 * writeback message consists of 8 destination registers (two per each
4084 * component). Because we are only interested on the first channel of
4085 * the first returned component, where resinfo returns the buffer size
4086 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4087 * the dispatch width.
4088 */
4089 const fs_builder ubld = bld.exec_all().group(8, 0);
4090 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4091 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4092
4093 /* Set LOD = 0 */
4094 ubld.MOV(src_payload, brw_imm_d(0));
4095
4096 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4097 fs_inst *inst = ubld.emit(FS_OPCODE_GET_BUFFER_SIZE, ret_payload,
4098 src_payload, brw_imm_ud(index));
4099 inst->header_size = 0;
4100 inst->mlen = 1;
4101 inst->size_written = 4 * REG_SIZE;
4102
4103 bld.MOV(retype(dest, ret_payload.type), component(ret_payload, 0));
4104 brw_mark_surface_used(prog_data, index);
4105 break;
4106 }
4107
4108 case nir_intrinsic_load_subgroup_size:
4109 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(dispatch_width));
4110 break;
4111
4112 case nir_intrinsic_load_subgroup_invocation: {
4113 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UW);
4114 dest = retype(dest, BRW_REGISTER_TYPE_UD);
4115 const fs_builder allbld8 = bld.group(8, 0).exec_all();
4116 allbld8.MOV(tmp, brw_imm_v(0x76543210));
4117 if (dispatch_width > 8)
4118 allbld8.ADD(byte_offset(tmp, 16), tmp, brw_imm_uw(8u));
4119 if (dispatch_width > 16) {
4120 const fs_builder allbld16 = bld.group(16, 0).exec_all();
4121 allbld16.ADD(byte_offset(tmp, 32), tmp, brw_imm_uw(16u));
4122 }
4123 bld.MOV(dest, tmp);
4124 break;
4125 }
4126
4127 case nir_intrinsic_load_subgroup_eq_mask:
4128 case nir_intrinsic_load_subgroup_ge_mask:
4129 case nir_intrinsic_load_subgroup_gt_mask:
4130 case nir_intrinsic_load_subgroup_le_mask:
4131 case nir_intrinsic_load_subgroup_lt_mask:
4132 unreachable("not reached");
4133
4134 case nir_intrinsic_vote_any: {
4135 const fs_builder ubld = bld.exec_all();
4136
4137 /* The any/all predicates do not consider channel enables. To prevent
4138 * dead channels from affecting the result, we initialize the flag with
4139 * with the identity value for the logical operation.
4140 */
4141 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4142 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4143 bld.MOV(dest, brw_imm_d(-1));
4144 set_predicate(dispatch_width == 8 ?
4145 BRW_PREDICATE_ALIGN1_ANY8H :
4146 BRW_PREDICATE_ALIGN1_ANY16H,
4147 bld.SEL(dest, dest, brw_imm_d(0)));
4148 break;
4149 }
4150 case nir_intrinsic_vote_all: {
4151 const fs_builder ubld = bld.exec_all();
4152
4153 /* The any/all predicates do not consider channel enables. To prevent
4154 * dead channels from affecting the result, we initialize the flag with
4155 * with the identity value for the logical operation.
4156 */
4157 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4158 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4159 bld.MOV(dest, brw_imm_d(-1));
4160 set_predicate(dispatch_width == 8 ?
4161 BRW_PREDICATE_ALIGN1_ALL8H :
4162 BRW_PREDICATE_ALIGN1_ALL16H,
4163 bld.SEL(dest, dest, brw_imm_d(0)));
4164 break;
4165 }
4166 case nir_intrinsic_vote_eq: {
4167 fs_reg value = get_nir_src(instr->src[0]);
4168 fs_reg uniformized = bld.emit_uniformize(value);
4169 const fs_builder ubld = bld.exec_all();
4170
4171 /* The any/all predicates do not consider channel enables. To prevent
4172 * dead channels from affecting the result, we initialize the flag with
4173 * with the identity value for the logical operation.
4174 */
4175 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4176 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4177 bld.MOV(dest, brw_imm_d(-1));
4178 set_predicate(dispatch_width == 8 ?
4179 BRW_PREDICATE_ALIGN1_ALL8H :
4180 BRW_PREDICATE_ALIGN1_ALL16H,
4181 bld.SEL(dest, dest, brw_imm_d(0)));
4182 break;
4183 }
4184
4185 case nir_intrinsic_ballot: {
4186 const fs_reg value = retype(get_nir_src(instr->src[0]),
4187 BRW_REGISTER_TYPE_UD);
4188 const struct brw_reg flag = retype(brw_flag_reg(0, 0),
4189 BRW_REGISTER_TYPE_UD);
4190
4191 bld.exec_all().MOV(flag, brw_imm_ud(0u));
4192 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4193
4194 if (instr->dest.ssa.bit_size > 32) {
4195 dest.type = BRW_REGISTER_TYPE_UQ;
4196 } else {
4197 dest.type = BRW_REGISTER_TYPE_UD;
4198 }
4199 bld.MOV(dest, flag);
4200 break;
4201 }
4202
4203 case nir_intrinsic_read_invocation: {
4204 const fs_reg value = get_nir_src(instr->src[0]);
4205 const fs_reg invocation = get_nir_src(instr->src[1]);
4206 fs_reg tmp = bld.vgrf(value.type);
4207
4208 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4209 component(invocation, 0));
4210
4211 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4212 fs_reg(component(tmp, 0)));
4213 break;
4214 }
4215
4216 case nir_intrinsic_read_first_invocation: {
4217 const fs_reg value = get_nir_src(instr->src[0]);
4218 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4219 bld.emit_uniformize(value));
4220 break;
4221 }
4222
4223 default:
4224 unreachable("unknown intrinsic");
4225 }
4226 }
4227
4228 void
4229 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4230 int op, nir_intrinsic_instr *instr)
4231 {
4232 if (stage == MESA_SHADER_FRAGMENT)
4233 brw_wm_prog_data(prog_data)->has_side_effects = true;
4234
4235 fs_reg dest;
4236 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4237 dest = get_nir_dest(instr->dest);
4238
4239 fs_reg surface;
4240 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4241 if (const_surface) {
4242 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4243 const_surface->u32[0];
4244 surface = brw_imm_ud(surf_index);
4245 brw_mark_surface_used(prog_data, surf_index);
4246 } else {
4247 surface = vgrf(glsl_type::uint_type);
4248 bld.ADD(surface, get_nir_src(instr->src[0]),
4249 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4250
4251 /* Assume this may touch any SSBO. This is the same we do for other
4252 * UBO/SSBO accesses with non-constant surface.
4253 */
4254 brw_mark_surface_used(prog_data,
4255 stage_prog_data->binding_table.ssbo_start +
4256 nir->info.num_ssbos - 1);
4257 }
4258
4259 fs_reg offset = get_nir_src(instr->src[1]);
4260 fs_reg data1 = get_nir_src(instr->src[2]);
4261 fs_reg data2;
4262 if (op == BRW_AOP_CMPWR)
4263 data2 = get_nir_src(instr->src[3]);
4264
4265 /* Emit the actual atomic operation */
4266
4267 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4268 data1, data2,
4269 1 /* dims */, 1 /* rsize */,
4270 op,
4271 BRW_PREDICATE_NONE);
4272 dest.type = atomic_result.type;
4273 bld.MOV(dest, atomic_result);
4274 }
4275
4276 void
4277 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4278 int op, nir_intrinsic_instr *instr)
4279 {
4280 fs_reg dest;
4281 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4282 dest = get_nir_dest(instr->dest);
4283
4284 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4285 fs_reg offset;
4286 fs_reg data1 = get_nir_src(instr->src[1]);
4287 fs_reg data2;
4288 if (op == BRW_AOP_CMPWR)
4289 data2 = get_nir_src(instr->src[2]);
4290
4291 /* Get the offset */
4292 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4293 if (const_offset) {
4294 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4295 } else {
4296 offset = vgrf(glsl_type::uint_type);
4297 bld.ADD(offset,
4298 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4299 brw_imm_ud(instr->const_index[0]));
4300 }
4301
4302 /* Emit the actual atomic operation operation */
4303
4304 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4305 data1, data2,
4306 1 /* dims */, 1 /* rsize */,
4307 op,
4308 BRW_PREDICATE_NONE);
4309 dest.type = atomic_result.type;
4310 bld.MOV(dest, atomic_result);
4311 }
4312
4313 void
4314 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4315 {
4316 unsigned texture = instr->texture_index;
4317 unsigned sampler = instr->sampler_index;
4318
4319 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4320
4321 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4322 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4323
4324 int lod_components = 0;
4325
4326 /* The hardware requires a LOD for buffer textures */
4327 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4328 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4329
4330 uint32_t header_bits = 0;
4331 for (unsigned i = 0; i < instr->num_srcs; i++) {
4332 fs_reg src = get_nir_src(instr->src[i].src);
4333 switch (instr->src[i].src_type) {
4334 case nir_tex_src_bias:
4335 srcs[TEX_LOGICAL_SRC_LOD] =
4336 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4337 break;
4338 case nir_tex_src_comparator:
4339 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4340 break;
4341 case nir_tex_src_coord:
4342 switch (instr->op) {
4343 case nir_texop_txf:
4344 case nir_texop_txf_ms:
4345 case nir_texop_txf_ms_mcs:
4346 case nir_texop_samples_identical:
4347 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4348 break;
4349 default:
4350 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4351 break;
4352 }
4353 break;
4354 case nir_tex_src_ddx:
4355 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4356 lod_components = nir_tex_instr_src_size(instr, i);
4357 break;
4358 case nir_tex_src_ddy:
4359 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4360 break;
4361 case nir_tex_src_lod:
4362 switch (instr->op) {
4363 case nir_texop_txs:
4364 srcs[TEX_LOGICAL_SRC_LOD] =
4365 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4366 break;
4367 case nir_texop_txf:
4368 srcs[TEX_LOGICAL_SRC_LOD] =
4369 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4370 break;
4371 default:
4372 srcs[TEX_LOGICAL_SRC_LOD] =
4373 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4374 break;
4375 }
4376 break;
4377 case nir_tex_src_ms_index:
4378 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4379 break;
4380
4381 case nir_tex_src_offset: {
4382 nir_const_value *const_offset =
4383 nir_src_as_const_value(instr->src[i].src);
4384 unsigned offset_bits = 0;
4385 if (const_offset &&
4386 brw_texture_offset(const_offset->i32,
4387 nir_tex_instr_src_size(instr, i),
4388 &offset_bits)) {
4389 header_bits |= offset_bits;
4390 } else {
4391 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
4392 retype(src, BRW_REGISTER_TYPE_D);
4393 }
4394 break;
4395 }
4396
4397 case nir_tex_src_projector:
4398 unreachable("should be lowered");
4399
4400 case nir_tex_src_texture_offset: {
4401 /* Figure out the highest possible texture index and mark it as used */
4402 uint32_t max_used = texture + instr->texture_array_size - 1;
4403 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
4404 max_used += stage_prog_data->binding_table.gather_texture_start;
4405 } else {
4406 max_used += stage_prog_data->binding_table.texture_start;
4407 }
4408 brw_mark_surface_used(prog_data, max_used);
4409
4410 /* Emit code to evaluate the actual indexing expression */
4411 fs_reg tmp = vgrf(glsl_type::uint_type);
4412 bld.ADD(tmp, src, brw_imm_ud(texture));
4413 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4414 break;
4415 }
4416
4417 case nir_tex_src_sampler_offset: {
4418 /* Emit code to evaluate the actual indexing expression */
4419 fs_reg tmp = vgrf(glsl_type::uint_type);
4420 bld.ADD(tmp, src, brw_imm_ud(sampler));
4421 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4422 break;
4423 }
4424
4425 case nir_tex_src_ms_mcs:
4426 assert(instr->op == nir_texop_txf_ms);
4427 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
4428 break;
4429
4430 case nir_tex_src_plane: {
4431 nir_const_value *const_plane =
4432 nir_src_as_const_value(instr->src[i].src);
4433 const uint32_t plane = const_plane->u32[0];
4434 const uint32_t texture_index =
4435 instr->texture_index +
4436 stage_prog_data->binding_table.plane_start[plane] -
4437 stage_prog_data->binding_table.texture_start;
4438
4439 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
4440 break;
4441 }
4442
4443 default:
4444 unreachable("unknown texture source");
4445 }
4446 }
4447
4448 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
4449 (instr->op == nir_texop_txf_ms ||
4450 instr->op == nir_texop_samples_identical)) {
4451 if (devinfo->gen >= 7 &&
4452 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
4453 srcs[TEX_LOGICAL_SRC_MCS] =
4454 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
4455 instr->coord_components,
4456 srcs[TEX_LOGICAL_SRC_SURFACE]);
4457 } else {
4458 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
4459 }
4460 }
4461
4462 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
4463 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
4464
4465 enum opcode opcode;
4466 switch (instr->op) {
4467 case nir_texop_tex:
4468 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
4469 SHADER_OPCODE_TXL_LOGICAL);
4470 break;
4471 case nir_texop_txb:
4472 opcode = FS_OPCODE_TXB_LOGICAL;
4473 break;
4474 case nir_texop_txl:
4475 opcode = SHADER_OPCODE_TXL_LOGICAL;
4476 break;
4477 case nir_texop_txd:
4478 opcode = SHADER_OPCODE_TXD_LOGICAL;
4479 break;
4480 case nir_texop_txf:
4481 opcode = SHADER_OPCODE_TXF_LOGICAL;
4482 break;
4483 case nir_texop_txf_ms:
4484 if ((key_tex->msaa_16 & (1 << sampler)))
4485 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
4486 else
4487 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
4488 break;
4489 case nir_texop_txf_ms_mcs:
4490 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
4491 break;
4492 case nir_texop_query_levels:
4493 case nir_texop_txs:
4494 opcode = SHADER_OPCODE_TXS_LOGICAL;
4495 break;
4496 case nir_texop_lod:
4497 opcode = SHADER_OPCODE_LOD_LOGICAL;
4498 break;
4499 case nir_texop_tg4:
4500 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
4501 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
4502 else
4503 opcode = SHADER_OPCODE_TG4_LOGICAL;
4504 break;
4505 case nir_texop_texture_samples:
4506 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
4507 break;
4508 case nir_texop_samples_identical: {
4509 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
4510
4511 /* If mcs is an immediate value, it means there is no MCS. In that case
4512 * just return false.
4513 */
4514 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
4515 bld.MOV(dst, brw_imm_ud(0u));
4516 } else if ((key_tex->msaa_16 & (1 << sampler))) {
4517 fs_reg tmp = vgrf(glsl_type::uint_type);
4518 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
4519 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
4520 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
4521 } else {
4522 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
4523 BRW_CONDITIONAL_EQ);
4524 }
4525 return;
4526 }
4527 default:
4528 unreachable("unknown texture opcode");
4529 }
4530
4531 /* TXS and TXL require a LOD but not everything we implement using those
4532 * two opcodes provides one. Provide a default LOD of 0.
4533 */
4534 if ((opcode == SHADER_OPCODE_TXS_LOGICAL ||
4535 opcode == SHADER_OPCODE_TXL_LOGICAL) &&
4536 srcs[TEX_LOGICAL_SRC_LOD].file == BAD_FILE) {
4537 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0u);
4538 }
4539
4540 if (instr->op == nir_texop_tg4) {
4541 if (instr->component == 1 &&
4542 key_tex->gather_channel_quirk_mask & (1 << texture)) {
4543 /* gather4 sampler is broken for green channel on RG32F --
4544 * we must ask for blue instead.
4545 */
4546 header_bits |= 2 << 16;
4547 } else {
4548 header_bits |= instr->component << 16;
4549 }
4550 }
4551
4552 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
4553 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
4554 inst->offset = header_bits;
4555
4556 const unsigned dest_size = nir_tex_instr_dest_size(instr);
4557 if (devinfo->gen >= 9 &&
4558 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
4559 unsigned write_mask = instr->dest.is_ssa ?
4560 nir_ssa_def_components_read(&instr->dest.ssa):
4561 (1 << dest_size) - 1;
4562 assert(write_mask != 0); /* dead code should have been eliminated */
4563 inst->size_written = util_last_bit(write_mask) *
4564 inst->dst.component_size(inst->exec_size);
4565 } else {
4566 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
4567 }
4568
4569 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
4570 inst->shadow_compare = true;
4571
4572 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
4573 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
4574
4575 fs_reg nir_dest[4];
4576 for (unsigned i = 0; i < dest_size; i++)
4577 nir_dest[i] = offset(dst, bld, i);
4578
4579 if (instr->op == nir_texop_query_levels) {
4580 /* # levels is in .w */
4581 nir_dest[0] = offset(dst, bld, 3);
4582 } else if (instr->op == nir_texop_txs &&
4583 dest_size >= 3 && devinfo->gen < 7) {
4584 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
4585 fs_reg depth = offset(dst, bld, 2);
4586 nir_dest[2] = vgrf(glsl_type::int_type);
4587 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
4588 }
4589
4590 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
4591 }
4592
4593 void
4594 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
4595 {
4596 switch (instr->type) {
4597 case nir_jump_break:
4598 bld.emit(BRW_OPCODE_BREAK);
4599 break;
4600 case nir_jump_continue:
4601 bld.emit(BRW_OPCODE_CONTINUE);
4602 break;
4603 case nir_jump_return:
4604 default:
4605 unreachable("unknown jump");
4606 }
4607 }
4608
4609 /**
4610 * This helper takes the result of a load operation that reads 32-bit elements
4611 * in this format:
4612 *
4613 * x x x x x x x x
4614 * y y y y y y y y
4615 * z z z z z z z z
4616 * w w w w w w w w
4617 *
4618 * and shuffles the data to get this:
4619 *
4620 * x y x y x y x y
4621 * x y x y x y x y
4622 * z w z w z w z w
4623 * z w z w z w z w
4624 *
4625 * Which is exactly what we want if the load is reading 64-bit components
4626 * like doubles, where x represents the low 32-bit of the x double component
4627 * and y represents the high 32-bit of the x double component (likewise with
4628 * z and w for double component y). The parameter @components represents
4629 * the number of 64-bit components present in @src. This would typically be
4630 * 2 at most, since we can only fit 2 double elements in the result of a
4631 * vec4 load.
4632 *
4633 * Notice that @dst and @src can be the same register.
4634 */
4635 void
4636 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
4637 const fs_reg &dst,
4638 const fs_reg &src,
4639 uint32_t components)
4640 {
4641 assert(type_sz(src.type) == 4);
4642 assert(type_sz(dst.type) == 8);
4643
4644 /* A temporary that we will use to shuffle the 32-bit data of each
4645 * component in the vector into valid 64-bit data. We can't write directly
4646 * to dst because dst can be (and would usually be) the same as src
4647 * and in that case the first MOV in the loop below would overwrite the
4648 * data read in the second MOV.
4649 */
4650 fs_reg tmp = bld.vgrf(dst.type);
4651
4652 for (unsigned i = 0; i < components; i++) {
4653 const fs_reg component_i = offset(src, bld, 2 * i);
4654
4655 bld.MOV(subscript(tmp, src.type, 0), component_i);
4656 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
4657
4658 bld.MOV(offset(dst, bld, i), tmp);
4659 }
4660 }
4661
4662 /**
4663 * This helper does the inverse operation of
4664 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
4665 *
4666 * We need to do this when we are going to use untyped write messsages that
4667 * operate with 32-bit components in order to arrange our 64-bit data to be
4668 * in the expected layout.
4669 *
4670 * Notice that callers of this function, unlike in the case of the inverse
4671 * operation, would typically need to call this with dst and src being
4672 * different registers, since they would otherwise corrupt the original
4673 * 64-bit data they are about to write. Because of this the function checks
4674 * that the src and dst regions involved in the operation do not overlap.
4675 */
4676 void
4677 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
4678 const fs_reg &dst,
4679 const fs_reg &src,
4680 uint32_t components)
4681 {
4682 assert(type_sz(src.type) == 8);
4683 assert(type_sz(dst.type) == 4);
4684
4685 assert(!regions_overlap(
4686 dst, 2 * components * dst.component_size(bld.dispatch_width()),
4687 src, components * src.component_size(bld.dispatch_width())));
4688
4689 for (unsigned i = 0; i < components; i++) {
4690 const fs_reg component_i = offset(src, bld, i);
4691 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
4692 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
4693 }
4694 }
4695
4696 fs_reg
4697 setup_imm_df(const fs_builder &bld, double v)
4698 {
4699 const struct gen_device_info *devinfo = bld.shader->devinfo;
4700 assert(devinfo->gen >= 7);
4701
4702 if (devinfo->gen >= 8)
4703 return brw_imm_df(v);
4704
4705 /* gen7.5 does not support DF immediates straighforward but the DIM
4706 * instruction allows to set the 64-bit immediate value.
4707 */
4708 if (devinfo->is_haswell) {
4709 const fs_builder ubld = bld.exec_all().group(1, 0);
4710 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
4711 ubld.DIM(dst, brw_imm_df(v));
4712 return component(dst, 0);
4713 }
4714
4715 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
4716 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
4717 * the high 32-bit to suboffset 4 and then applying a stride of 0.
4718 *
4719 * Alternatively, we could also produce a normal VGRF (without stride 0)
4720 * by writing to all the channels in the VGRF, however, that would hit the
4721 * gen7 bug where we have to split writes that span more than 1 register
4722 * into instructions with a width of 4 (otherwise the write to the second
4723 * register written runs into an execmask hardware bug) which isn't very
4724 * nice.
4725 */
4726 union {
4727 double d;
4728 struct {
4729 uint32_t i1;
4730 uint32_t i2;
4731 };
4732 } di;
4733
4734 di.d = v;
4735
4736 const fs_builder ubld = bld.exec_all().group(1, 0);
4737 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4738 ubld.MOV(tmp, brw_imm_ud(di.i1));
4739 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
4740
4741 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
4742 }