intel/fs: Refactor ALU source and destination handling to a separate function
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "util/u_math.h"
28 #include "util/bitscan.h"
29
30 using namespace brw;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
43 }
44
45 void
46 fs_visitor::nir_setup_outputs()
47 {
48 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
49 return;
50
51 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
52
53 /* Calculate the size of output registers in a separate pass, before
54 * allocating them. With ARB_enhanced_layouts, multiple output variables
55 * may occupy the same slot, but have different type sizes.
56 */
57 nir_foreach_variable(var, &nir->outputs) {
58 const int loc = var->data.driver_location;
59 const unsigned var_vec4s =
60 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
61 : type_size_vec4(var->type);
62 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
63 }
64
65 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
66 if (vec4s[loc] == 0) {
67 loc++;
68 continue;
69 }
70
71 unsigned reg_size = vec4s[loc];
72
73 /* Check if there are any ranges that start within this range and extend
74 * past it. If so, include them in this allocation.
75 */
76 for (unsigned i = 1; i < reg_size; i++)
77 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
78
79 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
80 for (unsigned i = 0; i < reg_size; i++)
81 outputs[loc + i] = offset(reg, bld, 4 * i);
82
83 loc += reg_size;
84 }
85 }
86
87 void
88 fs_visitor::nir_setup_uniforms()
89 {
90 /* Only the first compile gets to set up uniforms. */
91 if (push_constant_loc) {
92 assert(pull_constant_loc);
93 return;
94 }
95
96 uniforms = nir->num_uniforms / 4;
97
98 if (stage == MESA_SHADER_COMPUTE) {
99 /* Add a uniform for the thread local id. It must be the last uniform
100 * on the list.
101 */
102 assert(uniforms == prog_data->nr_params);
103 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
104 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
105 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
106 }
107 }
108
109 static bool
110 emit_system_values_block(nir_block *block, fs_visitor *v)
111 {
112 fs_reg *reg;
113
114 nir_foreach_instr(instr, block) {
115 if (instr->type != nir_instr_type_intrinsic)
116 continue;
117
118 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
119 switch (intrin->intrinsic) {
120 case nir_intrinsic_load_vertex_id:
121 case nir_intrinsic_load_base_vertex:
122 unreachable("should be lowered by nir_lower_system_values().");
123
124 case nir_intrinsic_load_vertex_id_zero_base:
125 case nir_intrinsic_load_is_indexed_draw:
126 case nir_intrinsic_load_first_vertex:
127 case nir_intrinsic_load_instance_id:
128 case nir_intrinsic_load_base_instance:
129 case nir_intrinsic_load_draw_id:
130 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
131
132 case nir_intrinsic_load_invocation_id:
133 if (v->stage == MESA_SHADER_TESS_CTRL)
134 break;
135 assert(v->stage == MESA_SHADER_GEOMETRY);
136 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
137 if (reg->file == BAD_FILE) {
138 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
139 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
140 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
141 abld.SHR(iid, g1, brw_imm_ud(27u));
142 *reg = iid;
143 }
144 break;
145
146 case nir_intrinsic_load_sample_pos:
147 assert(v->stage == MESA_SHADER_FRAGMENT);
148 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
149 if (reg->file == BAD_FILE)
150 *reg = *v->emit_samplepos_setup();
151 break;
152
153 case nir_intrinsic_load_sample_id:
154 assert(v->stage == MESA_SHADER_FRAGMENT);
155 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
156 if (reg->file == BAD_FILE)
157 *reg = *v->emit_sampleid_setup();
158 break;
159
160 case nir_intrinsic_load_sample_mask_in:
161 assert(v->stage == MESA_SHADER_FRAGMENT);
162 assert(v->devinfo->gen >= 7);
163 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
164 if (reg->file == BAD_FILE)
165 *reg = *v->emit_samplemaskin_setup();
166 break;
167
168 case nir_intrinsic_load_work_group_id:
169 assert(v->stage == MESA_SHADER_COMPUTE);
170 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
171 if (reg->file == BAD_FILE)
172 *reg = *v->emit_cs_work_group_id_setup();
173 break;
174
175 case nir_intrinsic_load_helper_invocation:
176 assert(v->stage == MESA_SHADER_FRAGMENT);
177 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
178 if (reg->file == BAD_FILE) {
179 const fs_builder abld =
180 v->bld.annotate("gl_HelperInvocation", NULL);
181
182 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
183 * pixel mask is in g1.7 of the thread payload.
184 *
185 * We move the per-channel pixel enable bit to the low bit of each
186 * channel by shifting the byte containing the pixel mask by the
187 * vector immediate 0x76543210UV.
188 *
189 * The region of <1,8,0> reads only 1 byte (the pixel masks for
190 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
191 * masks for 2 and 3) in SIMD16.
192 */
193 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
194
195 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
196 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
197 hbld.SHR(offset(shifted, hbld, i),
198 stride(retype(brw_vec1_grf(1 + i, 7),
199 BRW_REGISTER_TYPE_UB),
200 1, 8, 0),
201 brw_imm_v(0x76543210));
202 }
203
204 /* A set bit in the pixel mask means the channel is enabled, but
205 * that is the opposite of gl_HelperInvocation so we need to invert
206 * the mask.
207 *
208 * The negate source-modifier bit of logical instructions on Gen8+
209 * performs 1's complement negation, so we can use that instead of
210 * a NOT instruction.
211 */
212 fs_reg inverted = negate(shifted);
213 if (v->devinfo->gen < 8) {
214 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
215 abld.NOT(inverted, shifted);
216 }
217
218 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
219 * with 1 and negating.
220 */
221 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
222 abld.AND(anded, inverted, brw_imm_uw(1));
223
224 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
225 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
226 *reg = dst;
227 }
228 break;
229
230 default:
231 break;
232 }
233 }
234
235 return true;
236 }
237
238 void
239 fs_visitor::nir_emit_system_values()
240 {
241 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
242 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
243 nir_system_values[i] = fs_reg();
244 }
245
246 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
247 * never end up using it.
248 */
249 {
250 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
251 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
252 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
253
254 const fs_builder allbld8 = abld.group(8, 0).exec_all();
255 allbld8.MOV(reg, brw_imm_v(0x76543210));
256 if (dispatch_width > 8)
257 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
258 if (dispatch_width > 16) {
259 const fs_builder allbld16 = abld.group(16, 0).exec_all();
260 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
261 }
262 }
263
264 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
265 nir_foreach_block(block, impl)
266 emit_system_values_block(block, this);
267 }
268
269 /*
270 * Returns a type based on a reference_type (word, float, half-float) and a
271 * given bit_size.
272 *
273 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
274 *
275 * @FIXME: 64-bit return types are always DF on integer types to maintain
276 * compability with uses of DF previously to the introduction of int64
277 * support.
278 */
279 static brw_reg_type
280 brw_reg_type_from_bit_size(const unsigned bit_size,
281 const brw_reg_type reference_type)
282 {
283 switch(reference_type) {
284 case BRW_REGISTER_TYPE_HF:
285 case BRW_REGISTER_TYPE_F:
286 case BRW_REGISTER_TYPE_DF:
287 switch(bit_size) {
288 case 16:
289 return BRW_REGISTER_TYPE_HF;
290 case 32:
291 return BRW_REGISTER_TYPE_F;
292 case 64:
293 return BRW_REGISTER_TYPE_DF;
294 default:
295 unreachable("Invalid bit size");
296 }
297 case BRW_REGISTER_TYPE_B:
298 case BRW_REGISTER_TYPE_W:
299 case BRW_REGISTER_TYPE_D:
300 case BRW_REGISTER_TYPE_Q:
301 switch(bit_size) {
302 case 8:
303 return BRW_REGISTER_TYPE_B;
304 case 16:
305 return BRW_REGISTER_TYPE_W;
306 case 32:
307 return BRW_REGISTER_TYPE_D;
308 case 64:
309 return BRW_REGISTER_TYPE_Q;
310 default:
311 unreachable("Invalid bit size");
312 }
313 case BRW_REGISTER_TYPE_UB:
314 case BRW_REGISTER_TYPE_UW:
315 case BRW_REGISTER_TYPE_UD:
316 case BRW_REGISTER_TYPE_UQ:
317 switch(bit_size) {
318 case 8:
319 return BRW_REGISTER_TYPE_UB;
320 case 16:
321 return BRW_REGISTER_TYPE_UW;
322 case 32:
323 return BRW_REGISTER_TYPE_UD;
324 case 64:
325 return BRW_REGISTER_TYPE_UQ;
326 default:
327 unreachable("Invalid bit size");
328 }
329 default:
330 unreachable("Unknown type");
331 }
332 }
333
334 void
335 fs_visitor::nir_emit_impl(nir_function_impl *impl)
336 {
337 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
338 for (unsigned i = 0; i < impl->reg_alloc; i++) {
339 nir_locals[i] = fs_reg();
340 }
341
342 foreach_list_typed(nir_register, reg, node, &impl->registers) {
343 unsigned array_elems =
344 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
345 unsigned size = array_elems * reg->num_components;
346 const brw_reg_type reg_type =
347 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
348 nir_locals[reg->index] = bld.vgrf(reg_type, size);
349 }
350
351 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
352 impl->ssa_alloc);
353
354 nir_emit_cf_list(&impl->body);
355 }
356
357 void
358 fs_visitor::nir_emit_cf_list(exec_list *list)
359 {
360 exec_list_validate(list);
361 foreach_list_typed(nir_cf_node, node, node, list) {
362 switch (node->type) {
363 case nir_cf_node_if:
364 nir_emit_if(nir_cf_node_as_if(node));
365 break;
366
367 case nir_cf_node_loop:
368 nir_emit_loop(nir_cf_node_as_loop(node));
369 break;
370
371 case nir_cf_node_block:
372 nir_emit_block(nir_cf_node_as_block(node));
373 break;
374
375 default:
376 unreachable("Invalid CFG node block");
377 }
378 }
379 }
380
381 void
382 fs_visitor::nir_emit_if(nir_if *if_stmt)
383 {
384 /* first, put the condition into f0 */
385 fs_inst *inst = bld.MOV(bld.null_reg_d(),
386 retype(get_nir_src(if_stmt->condition),
387 BRW_REGISTER_TYPE_D));
388 inst->conditional_mod = BRW_CONDITIONAL_NZ;
389
390 bld.IF(BRW_PREDICATE_NORMAL);
391
392 nir_emit_cf_list(&if_stmt->then_list);
393
394 /* note: if the else is empty, dead CF elimination will remove it */
395 bld.emit(BRW_OPCODE_ELSE);
396
397 nir_emit_cf_list(&if_stmt->else_list);
398
399 bld.emit(BRW_OPCODE_ENDIF);
400
401 if (devinfo->gen < 7)
402 limit_dispatch_width(16, "Non-uniform control flow unsupported "
403 "in SIMD32 mode.");
404 }
405
406 void
407 fs_visitor::nir_emit_loop(nir_loop *loop)
408 {
409 bld.emit(BRW_OPCODE_DO);
410
411 nir_emit_cf_list(&loop->body);
412
413 bld.emit(BRW_OPCODE_WHILE);
414
415 if (devinfo->gen < 7)
416 limit_dispatch_width(16, "Non-uniform control flow unsupported "
417 "in SIMD32 mode.");
418 }
419
420 void
421 fs_visitor::nir_emit_block(nir_block *block)
422 {
423 nir_foreach_instr(instr, block) {
424 nir_emit_instr(instr);
425 }
426 }
427
428 void
429 fs_visitor::nir_emit_instr(nir_instr *instr)
430 {
431 const fs_builder abld = bld.annotate(NULL, instr);
432
433 switch (instr->type) {
434 case nir_instr_type_alu:
435 nir_emit_alu(abld, nir_instr_as_alu(instr));
436 break;
437
438 case nir_instr_type_deref:
439 /* Derefs can exist for images but they do nothing */
440 break;
441
442 case nir_instr_type_intrinsic:
443 switch (stage) {
444 case MESA_SHADER_VERTEX:
445 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
446 break;
447 case MESA_SHADER_TESS_CTRL:
448 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
449 break;
450 case MESA_SHADER_TESS_EVAL:
451 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
452 break;
453 case MESA_SHADER_GEOMETRY:
454 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456 case MESA_SHADER_FRAGMENT:
457 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
458 break;
459 case MESA_SHADER_COMPUTE:
460 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462 default:
463 unreachable("unsupported shader stage");
464 }
465 break;
466
467 case nir_instr_type_tex:
468 nir_emit_texture(abld, nir_instr_as_tex(instr));
469 break;
470
471 case nir_instr_type_load_const:
472 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
473 break;
474
475 case nir_instr_type_ssa_undef:
476 /* We create a new VGRF for undefs on every use (by handling
477 * them in get_nir_src()), rather than for each definition.
478 * This helps register coalescing eliminate MOVs from undef.
479 */
480 break;
481
482 case nir_instr_type_jump:
483 nir_emit_jump(abld, nir_instr_as_jump(instr));
484 break;
485
486 default:
487 unreachable("unknown instruction type");
488 }
489 }
490
491 /**
492 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
493 * match instr.
494 */
495 bool
496 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
497 const fs_reg &result)
498 {
499 if (!instr->src[0].src.is_ssa ||
500 !instr->src[0].src.ssa->parent_instr)
501 return false;
502
503 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
504 return false;
505
506 nir_alu_instr *src0 =
507 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
508
509 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
510 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
511 return false;
512
513 /* If either opcode has source modifiers, bail.
514 *
515 * TODO: We can potentially handle source modifiers if both of the opcodes
516 * we're combining are signed integers.
517 */
518 if (instr->src[0].abs || instr->src[0].negate ||
519 src0->src[0].abs || src0->src[0].negate)
520 return false;
521
522 unsigned element = nir_src_as_uint(src0->src[1].src);
523
524 /* Element type to extract.*/
525 const brw_reg_type type = brw_int_type(
526 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
527 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
528
529 fs_reg op0 = get_nir_src(src0->src[0].src);
530 op0.type = brw_type_for_nir_type(devinfo,
531 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
532 nir_src_bit_size(src0->src[0].src)));
533 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
534
535 set_saturate(instr->dest.saturate,
536 bld.MOV(result, subscript(op0, type, element)));
537 return true;
538 }
539
540 bool
541 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
542 const fs_reg &result)
543 {
544 if (!instr->src[0].src.is_ssa ||
545 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
546 return false;
547
548 nir_intrinsic_instr *src0 =
549 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
550
551 if (src0->intrinsic != nir_intrinsic_load_front_face)
552 return false;
553
554 if (!nir_src_is_const(instr->src[1].src) ||
555 !nir_src_is_const(instr->src[2].src))
556 return false;
557
558 const float value1 = nir_src_as_float(instr->src[1].src);
559 const float value2 = nir_src_as_float(instr->src[2].src);
560 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
561 return false;
562
563 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
564 assert(value1 == -value2);
565
566 fs_reg tmp = vgrf(glsl_type::int_type);
567
568 if (devinfo->gen >= 6) {
569 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
570 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
571
572 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
573 *
574 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
575 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
576 *
577 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
578 *
579 * This negation looks like it's safe in practice, because bits 0:4 will
580 * surely be TRIANGLES
581 */
582
583 if (value1 == -1.0f) {
584 g0.negate = true;
585 }
586
587 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
588 g0, brw_imm_uw(0x3f80));
589 } else {
590 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
591 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
592
593 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
594 *
595 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
596 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
597 *
598 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
599 *
600 * This negation looks like it's safe in practice, because bits 0:4 will
601 * surely be TRIANGLES
602 */
603
604 if (value1 == -1.0f) {
605 g1_6.negate = true;
606 }
607
608 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
609 }
610 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
611
612 return true;
613 }
614
615 static void
616 emit_find_msb_using_lzd(const fs_builder &bld,
617 const fs_reg &result,
618 const fs_reg &src,
619 bool is_signed)
620 {
621 fs_inst *inst;
622 fs_reg temp = src;
623
624 if (is_signed) {
625 /* LZD of an absolute value source almost always does the right
626 * thing. There are two problem values:
627 *
628 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
629 * 0. However, findMSB(int(0x80000000)) == 30.
630 *
631 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
632 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
633 *
634 * For a value of zero or negative one, -1 will be returned.
635 *
636 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
637 * findMSB(-(1<<x)) should return x-1.
638 *
639 * For all negative number cases, including 0x80000000 and
640 * 0xffffffff, the correct value is obtained from LZD if instead of
641 * negating the (already negative) value the logical-not is used. A
642 * conditonal logical-not can be achieved in two instructions.
643 */
644 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
645
646 bld.ASR(temp, src, brw_imm_d(31));
647 bld.XOR(temp, temp, src);
648 }
649
650 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
651 retype(temp, BRW_REGISTER_TYPE_UD));
652
653 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
654 * from the LSB side. Subtract the result from 31 to convert the MSB
655 * count into an LSB count. If no bits are set, LZD will return 32.
656 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
657 */
658 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
659 inst->src[0].negate = true;
660 }
661
662 static brw_rnd_mode
663 brw_rnd_mode_from_nir_op (const nir_op op) {
664 switch (op) {
665 case nir_op_f2f16_rtz:
666 return BRW_RND_MODE_RTZ;
667 case nir_op_f2f16_rtne:
668 return BRW_RND_MODE_RTNE;
669 default:
670 unreachable("Operation doesn't support rounding mode");
671 }
672 }
673
674 fs_reg
675 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
676 nir_alu_instr *instr,
677 fs_reg *op,
678 bool need_dest)
679 {
680 fs_reg result =
681 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
682
683 result.type = brw_type_for_nir_type(devinfo,
684 (nir_alu_type)(nir_op_infos[instr->op].output_type |
685 nir_dest_bit_size(instr->dest.dest)));
686
687 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
688 op[i] = get_nir_src(instr->src[i].src);
689 op[i].type = brw_type_for_nir_type(devinfo,
690 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
691 nir_src_bit_size(instr->src[i].src)));
692 op[i].abs = instr->src[i].abs;
693 op[i].negate = instr->src[i].negate;
694 }
695
696 /* Move and vecN instrutions may still be vectored. Return the raw,
697 * vectored source and destination so that fs_visitor::nir_emit_alu can
698 * handle it. Other callers should not have to handle these kinds of
699 * instructions.
700 */
701 switch (instr->op) {
702 case nir_op_imov:
703 case nir_op_fmov:
704 case nir_op_vec2:
705 case nir_op_vec3:
706 case nir_op_vec4:
707 return result;
708 default:
709 break;
710 }
711
712 /* At this point, we have dealt with any instruction that operates on
713 * more than a single channel. Therefore, we can just adjust the source
714 * and destination registers for that channel and emit the instruction.
715 */
716 unsigned channel = 0;
717 if (nir_op_infos[instr->op].output_size == 0) {
718 /* Since NIR is doing the scalarizing for us, we should only ever see
719 * vectorized operations with a single channel.
720 */
721 assert(util_bitcount(instr->dest.write_mask) == 1);
722 channel = ffs(instr->dest.write_mask) - 1;
723
724 result = offset(result, bld, channel);
725 }
726
727 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
728 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
729 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
730 }
731
732 return result;
733 }
734
735 void
736 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
737 {
738 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
739 fs_inst *inst;
740
741 fs_reg op[4];
742 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, true);
743
744 switch (instr->op) {
745 case nir_op_imov:
746 case nir_op_fmov:
747 case nir_op_vec2:
748 case nir_op_vec3:
749 case nir_op_vec4: {
750 fs_reg temp = result;
751 bool need_extra_copy = false;
752 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
753 if (!instr->src[i].src.is_ssa &&
754 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
755 need_extra_copy = true;
756 temp = bld.vgrf(result.type, 4);
757 break;
758 }
759 }
760
761 for (unsigned i = 0; i < 4; i++) {
762 if (!(instr->dest.write_mask & (1 << i)))
763 continue;
764
765 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
766 inst = bld.MOV(offset(temp, bld, i),
767 offset(op[0], bld, instr->src[0].swizzle[i]));
768 } else {
769 inst = bld.MOV(offset(temp, bld, i),
770 offset(op[i], bld, instr->src[i].swizzle[0]));
771 }
772 inst->saturate = instr->dest.saturate;
773 }
774
775 /* In this case the source and destination registers were the same,
776 * so we need to insert an extra set of moves in order to deal with
777 * any swizzling.
778 */
779 if (need_extra_copy) {
780 for (unsigned i = 0; i < 4; i++) {
781 if (!(instr->dest.write_mask & (1 << i)))
782 continue;
783
784 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
785 }
786 }
787 return;
788 }
789
790 case nir_op_i2f32:
791 case nir_op_u2f32:
792 if (optimize_extract_to_float(instr, result))
793 return;
794 inst = bld.MOV(result, op[0]);
795 inst->saturate = instr->dest.saturate;
796 break;
797
798 case nir_op_f2f16_rtne:
799 case nir_op_f2f16_rtz:
800 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
801 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
802 /* fallthrough */
803
804 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
805 * on the HW gen, it is a special hw opcode or just a MOV, and
806 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
807 *
808 * But if we want to use that opcode, we need to provide support on
809 * different optimizations and lowerings. As right now HF support is
810 * only for gen8+, it will be better to use directly the MOV, and use
811 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
812 */
813
814 case nir_op_f2f16:
815 inst = bld.MOV(result, op[0]);
816 inst->saturate = instr->dest.saturate;
817 break;
818
819 case nir_op_b2i8:
820 case nir_op_b2i16:
821 case nir_op_b2i32:
822 case nir_op_b2i64:
823 case nir_op_b2f16:
824 case nir_op_b2f32:
825 case nir_op_b2f64:
826 op[0].type = BRW_REGISTER_TYPE_D;
827 op[0].negate = !op[0].negate;
828 /* fallthrough */
829 case nir_op_f2f64:
830 case nir_op_f2i64:
831 case nir_op_f2u64:
832 case nir_op_i2f64:
833 case nir_op_i2i64:
834 case nir_op_u2f64:
835 case nir_op_u2u64:
836 case nir_op_f2f32:
837 case nir_op_f2i32:
838 case nir_op_f2u32:
839 case nir_op_f2i16:
840 case nir_op_f2u16:
841 case nir_op_i2i32:
842 case nir_op_u2u32:
843 case nir_op_i2i16:
844 case nir_op_u2u16:
845 case nir_op_i2f16:
846 case nir_op_u2f16:
847 case nir_op_i2i8:
848 case nir_op_u2u8:
849 inst = bld.MOV(result, op[0]);
850 inst->saturate = instr->dest.saturate;
851 break;
852
853 case nir_op_fsign: {
854 assert(!instr->dest.saturate);
855 if (op[0].abs) {
856 /* Straightforward since the source can be assumed to be either
857 * strictly >= 0 or strictly <= 0 depending on the setting of the
858 * negate flag.
859 */
860 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
861
862 inst = (op[0].negate)
863 ? bld.MOV(result, brw_imm_f(-1.0f))
864 : bld.MOV(result, brw_imm_f(1.0f));
865
866 set_predicate(BRW_PREDICATE_NORMAL, inst);
867 } else if (type_sz(op[0].type) < 8) {
868 /* AND(val, 0x80000000) gives the sign bit.
869 *
870 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
871 * zero.
872 */
873 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
874
875 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
876 op[0].type = BRW_REGISTER_TYPE_UD;
877 result.type = BRW_REGISTER_TYPE_UD;
878 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
879
880 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
881 inst->predicate = BRW_PREDICATE_NORMAL;
882 } else {
883 /* For doubles we do the same but we need to consider:
884 *
885 * - 2-src instructions can't operate with 64-bit immediates
886 * - The sign is encoded in the high 32-bit of each DF
887 * - We need to produce a DF result.
888 */
889
890 fs_reg zero = vgrf(glsl_type::double_type);
891 bld.MOV(zero, setup_imm_df(bld, 0.0));
892 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
893
894 bld.MOV(result, zero);
895
896 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
897 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
898 brw_imm_ud(0x80000000u));
899
900 set_predicate(BRW_PREDICATE_NORMAL,
901 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
902 }
903 break;
904 }
905
906 case nir_op_frcp:
907 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
908 inst->saturate = instr->dest.saturate;
909 break;
910
911 case nir_op_fexp2:
912 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
913 inst->saturate = instr->dest.saturate;
914 break;
915
916 case nir_op_flog2:
917 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
918 inst->saturate = instr->dest.saturate;
919 break;
920
921 case nir_op_fsin:
922 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
923 inst->saturate = instr->dest.saturate;
924 break;
925
926 case nir_op_fcos:
927 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
928 inst->saturate = instr->dest.saturate;
929 break;
930
931 case nir_op_fddx:
932 if (fs_key->high_quality_derivatives) {
933 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
934 } else {
935 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
936 }
937 inst->saturate = instr->dest.saturate;
938 break;
939 case nir_op_fddx_fine:
940 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
941 inst->saturate = instr->dest.saturate;
942 break;
943 case nir_op_fddx_coarse:
944 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
945 inst->saturate = instr->dest.saturate;
946 break;
947 case nir_op_fddy:
948 if (fs_key->high_quality_derivatives) {
949 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
950 } else {
951 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
952 }
953 inst->saturate = instr->dest.saturate;
954 break;
955 case nir_op_fddy_fine:
956 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
957 inst->saturate = instr->dest.saturate;
958 break;
959 case nir_op_fddy_coarse:
960 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
961 inst->saturate = instr->dest.saturate;
962 break;
963
964 case nir_op_iadd:
965 case nir_op_fadd:
966 inst = bld.ADD(result, op[0], op[1]);
967 inst->saturate = instr->dest.saturate;
968 break;
969
970 case nir_op_uadd_sat:
971 inst = bld.ADD(result, op[0], op[1]);
972 inst->saturate = true;
973 break;
974
975 case nir_op_fmul:
976 inst = bld.MUL(result, op[0], op[1]);
977 inst->saturate = instr->dest.saturate;
978 break;
979
980 case nir_op_imul:
981 assert(nir_dest_bit_size(instr->dest.dest) < 64);
982 bld.MUL(result, op[0], op[1]);
983 break;
984
985 case nir_op_imul_high:
986 case nir_op_umul_high:
987 assert(nir_dest_bit_size(instr->dest.dest) < 64);
988 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
989 break;
990
991 case nir_op_idiv:
992 case nir_op_udiv:
993 assert(nir_dest_bit_size(instr->dest.dest) < 64);
994 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
995 break;
996
997 case nir_op_uadd_carry:
998 unreachable("Should have been lowered by carry_to_arith().");
999
1000 case nir_op_usub_borrow:
1001 unreachable("Should have been lowered by borrow_to_arith().");
1002
1003 case nir_op_umod:
1004 case nir_op_irem:
1005 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1006 * appears that our hardware just does the right thing for signed
1007 * remainder.
1008 */
1009 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1010 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1011 break;
1012
1013 case nir_op_imod: {
1014 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1015 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1016
1017 /* Math instructions don't support conditional mod */
1018 inst = bld.MOV(bld.null_reg_d(), result);
1019 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1020
1021 /* Now, we need to determine if signs of the sources are different.
1022 * When we XOR the sources, the top bit is 0 if they are the same and 1
1023 * if they are different. We can then use a conditional modifier to
1024 * turn that into a predicate. This leads us to an XOR.l instruction.
1025 *
1026 * Technically, according to the PRM, you're not allowed to use .l on a
1027 * XOR instruction. However, emperical experiments and Curro's reading
1028 * of the simulator source both indicate that it's safe.
1029 */
1030 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1031 inst = bld.XOR(tmp, op[0], op[1]);
1032 inst->predicate = BRW_PREDICATE_NORMAL;
1033 inst->conditional_mod = BRW_CONDITIONAL_L;
1034
1035 /* If the result of the initial remainder operation is non-zero and the
1036 * two sources have different signs, add in a copy of op[1] to get the
1037 * final integer modulus value.
1038 */
1039 inst = bld.ADD(result, result, op[1]);
1040 inst->predicate = BRW_PREDICATE_NORMAL;
1041 break;
1042 }
1043
1044 case nir_op_flt32:
1045 case nir_op_fge32:
1046 case nir_op_feq32:
1047 case nir_op_fne32: {
1048 fs_reg dest = result;
1049
1050 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1051 if (bit_size != 32)
1052 dest = bld.vgrf(op[0].type, 1);
1053
1054 brw_conditional_mod cond;
1055 switch (instr->op) {
1056 case nir_op_flt32:
1057 cond = BRW_CONDITIONAL_L;
1058 break;
1059 case nir_op_fge32:
1060 cond = BRW_CONDITIONAL_GE;
1061 break;
1062 case nir_op_feq32:
1063 cond = BRW_CONDITIONAL_Z;
1064 break;
1065 case nir_op_fne32:
1066 cond = BRW_CONDITIONAL_NZ;
1067 break;
1068 default:
1069 unreachable("bad opcode");
1070 }
1071
1072 bld.CMP(dest, op[0], op[1], cond);
1073
1074 if (bit_size > 32) {
1075 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1076 } else if(bit_size < 32) {
1077 /* When we convert the result to 32-bit we need to be careful and do
1078 * it as a signed conversion to get sign extension (for 32-bit true)
1079 */
1080 const brw_reg_type src_type =
1081 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1082
1083 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1084 }
1085 break;
1086 }
1087
1088 case nir_op_ilt32:
1089 case nir_op_ult32:
1090 case nir_op_ige32:
1091 case nir_op_uge32:
1092 case nir_op_ieq32:
1093 case nir_op_ine32: {
1094 fs_reg dest = result;
1095
1096 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1097 if (bit_size != 32)
1098 dest = bld.vgrf(op[0].type, 1);
1099
1100 brw_conditional_mod cond;
1101 switch (instr->op) {
1102 case nir_op_ilt32:
1103 case nir_op_ult32:
1104 cond = BRW_CONDITIONAL_L;
1105 break;
1106 case nir_op_ige32:
1107 case nir_op_uge32:
1108 cond = BRW_CONDITIONAL_GE;
1109 break;
1110 case nir_op_ieq32:
1111 cond = BRW_CONDITIONAL_Z;
1112 break;
1113 case nir_op_ine32:
1114 cond = BRW_CONDITIONAL_NZ;
1115 break;
1116 default:
1117 unreachable("bad opcode");
1118 }
1119 bld.CMP(dest, op[0], op[1], cond);
1120
1121 if (bit_size > 32) {
1122 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1123 } else if (bit_size < 32) {
1124 /* When we convert the result to 32-bit we need to be careful and do
1125 * it as a signed conversion to get sign extension (for 32-bit true)
1126 */
1127 const brw_reg_type src_type =
1128 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1129
1130 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1131 }
1132 break;
1133 }
1134
1135 case nir_op_inot:
1136 if (devinfo->gen >= 8) {
1137 op[0] = resolve_source_modifiers(op[0]);
1138 }
1139 bld.NOT(result, op[0]);
1140 break;
1141 case nir_op_ixor:
1142 if (devinfo->gen >= 8) {
1143 op[0] = resolve_source_modifiers(op[0]);
1144 op[1] = resolve_source_modifiers(op[1]);
1145 }
1146 bld.XOR(result, op[0], op[1]);
1147 break;
1148 case nir_op_ior:
1149 if (devinfo->gen >= 8) {
1150 op[0] = resolve_source_modifiers(op[0]);
1151 op[1] = resolve_source_modifiers(op[1]);
1152 }
1153 bld.OR(result, op[0], op[1]);
1154 break;
1155 case nir_op_iand:
1156 if (devinfo->gen >= 8) {
1157 op[0] = resolve_source_modifiers(op[0]);
1158 op[1] = resolve_source_modifiers(op[1]);
1159 }
1160 bld.AND(result, op[0], op[1]);
1161 break;
1162
1163 case nir_op_fdot2:
1164 case nir_op_fdot3:
1165 case nir_op_fdot4:
1166 case nir_op_b32all_fequal2:
1167 case nir_op_b32all_iequal2:
1168 case nir_op_b32all_fequal3:
1169 case nir_op_b32all_iequal3:
1170 case nir_op_b32all_fequal4:
1171 case nir_op_b32all_iequal4:
1172 case nir_op_b32any_fnequal2:
1173 case nir_op_b32any_inequal2:
1174 case nir_op_b32any_fnequal3:
1175 case nir_op_b32any_inequal3:
1176 case nir_op_b32any_fnequal4:
1177 case nir_op_b32any_inequal4:
1178 unreachable("Lowered by nir_lower_alu_reductions");
1179
1180 case nir_op_fnoise1_1:
1181 case nir_op_fnoise1_2:
1182 case nir_op_fnoise1_3:
1183 case nir_op_fnoise1_4:
1184 case nir_op_fnoise2_1:
1185 case nir_op_fnoise2_2:
1186 case nir_op_fnoise2_3:
1187 case nir_op_fnoise2_4:
1188 case nir_op_fnoise3_1:
1189 case nir_op_fnoise3_2:
1190 case nir_op_fnoise3_3:
1191 case nir_op_fnoise3_4:
1192 case nir_op_fnoise4_1:
1193 case nir_op_fnoise4_2:
1194 case nir_op_fnoise4_3:
1195 case nir_op_fnoise4_4:
1196 unreachable("not reached: should be handled by lower_noise");
1197
1198 case nir_op_ldexp:
1199 unreachable("not reached: should be handled by ldexp_to_arith()");
1200
1201 case nir_op_fsqrt:
1202 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1203 inst->saturate = instr->dest.saturate;
1204 break;
1205
1206 case nir_op_frsq:
1207 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1208 inst->saturate = instr->dest.saturate;
1209 break;
1210
1211 case nir_op_i2b32:
1212 case nir_op_f2b32: {
1213 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1214 if (bit_size == 64) {
1215 /* two-argument instructions can't take 64-bit immediates */
1216 fs_reg zero;
1217 fs_reg tmp;
1218
1219 if (instr->op == nir_op_f2b32) {
1220 zero = vgrf(glsl_type::double_type);
1221 tmp = vgrf(glsl_type::double_type);
1222 bld.MOV(zero, setup_imm_df(bld, 0.0));
1223 } else {
1224 zero = vgrf(glsl_type::int64_t_type);
1225 tmp = vgrf(glsl_type::int64_t_type);
1226 bld.MOV(zero, brw_imm_q(0));
1227 }
1228
1229 /* A SIMD16 execution needs to be split in two instructions, so use
1230 * a vgrf instead of the flag register as dst so instruction splitting
1231 * works
1232 */
1233 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1234 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1235 } else {
1236 fs_reg zero;
1237 if (bit_size == 32) {
1238 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1239 } else {
1240 assert(bit_size == 16);
1241 zero = instr->op == nir_op_f2b32 ?
1242 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1243 }
1244 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1245 }
1246 break;
1247 }
1248
1249 case nir_op_ftrunc:
1250 inst = bld.RNDZ(result, op[0]);
1251 inst->saturate = instr->dest.saturate;
1252 break;
1253
1254 case nir_op_fceil: {
1255 op[0].negate = !op[0].negate;
1256 fs_reg temp = vgrf(glsl_type::float_type);
1257 bld.RNDD(temp, op[0]);
1258 temp.negate = true;
1259 inst = bld.MOV(result, temp);
1260 inst->saturate = instr->dest.saturate;
1261 break;
1262 }
1263 case nir_op_ffloor:
1264 inst = bld.RNDD(result, op[0]);
1265 inst->saturate = instr->dest.saturate;
1266 break;
1267 case nir_op_ffract:
1268 inst = bld.FRC(result, op[0]);
1269 inst->saturate = instr->dest.saturate;
1270 break;
1271 case nir_op_fround_even:
1272 inst = bld.RNDE(result, op[0]);
1273 inst->saturate = instr->dest.saturate;
1274 break;
1275
1276 case nir_op_fquantize2f16: {
1277 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1278 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1279 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1280
1281 /* The destination stride must be at least as big as the source stride. */
1282 tmp16.type = BRW_REGISTER_TYPE_W;
1283 tmp16.stride = 2;
1284
1285 /* Check for denormal */
1286 fs_reg abs_src0 = op[0];
1287 abs_src0.abs = true;
1288 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1289 BRW_CONDITIONAL_L);
1290 /* Get the appropriately signed zero */
1291 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1292 retype(op[0], BRW_REGISTER_TYPE_UD),
1293 brw_imm_ud(0x80000000));
1294 /* Do the actual F32 -> F16 -> F32 conversion */
1295 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1296 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1297 /* Select that or zero based on normal status */
1298 inst = bld.SEL(result, zero, tmp32);
1299 inst->predicate = BRW_PREDICATE_NORMAL;
1300 inst->saturate = instr->dest.saturate;
1301 break;
1302 }
1303
1304 case nir_op_imin:
1305 case nir_op_umin:
1306 case nir_op_fmin:
1307 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1308 inst->saturate = instr->dest.saturate;
1309 break;
1310
1311 case nir_op_imax:
1312 case nir_op_umax:
1313 case nir_op_fmax:
1314 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1315 inst->saturate = instr->dest.saturate;
1316 break;
1317
1318 case nir_op_pack_snorm_2x16:
1319 case nir_op_pack_snorm_4x8:
1320 case nir_op_pack_unorm_2x16:
1321 case nir_op_pack_unorm_4x8:
1322 case nir_op_unpack_snorm_2x16:
1323 case nir_op_unpack_snorm_4x8:
1324 case nir_op_unpack_unorm_2x16:
1325 case nir_op_unpack_unorm_4x8:
1326 case nir_op_unpack_half_2x16:
1327 case nir_op_pack_half_2x16:
1328 unreachable("not reached: should be handled by lower_packing_builtins");
1329
1330 case nir_op_unpack_half_2x16_split_x:
1331 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1332 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1333 inst->saturate = instr->dest.saturate;
1334 break;
1335 case nir_op_unpack_half_2x16_split_y:
1336 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1337 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1338 inst->saturate = instr->dest.saturate;
1339 break;
1340
1341 case nir_op_pack_64_2x32_split:
1342 case nir_op_pack_32_2x16_split:
1343 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1344 break;
1345
1346 case nir_op_unpack_64_2x32_split_x:
1347 case nir_op_unpack_64_2x32_split_y: {
1348 if (instr->op == nir_op_unpack_64_2x32_split_x)
1349 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1350 else
1351 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1352 break;
1353 }
1354
1355 case nir_op_unpack_32_2x16_split_x:
1356 case nir_op_unpack_32_2x16_split_y: {
1357 if (instr->op == nir_op_unpack_32_2x16_split_x)
1358 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1359 else
1360 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1361 break;
1362 }
1363
1364 case nir_op_fpow:
1365 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1366 inst->saturate = instr->dest.saturate;
1367 break;
1368
1369 case nir_op_bitfield_reverse:
1370 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1371 bld.BFREV(result, op[0]);
1372 break;
1373
1374 case nir_op_bit_count:
1375 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1376 bld.CBIT(result, op[0]);
1377 break;
1378
1379 case nir_op_ufind_msb: {
1380 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1381 emit_find_msb_using_lzd(bld, result, op[0], false);
1382 break;
1383 }
1384
1385 case nir_op_ifind_msb: {
1386 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1387
1388 if (devinfo->gen < 7) {
1389 emit_find_msb_using_lzd(bld, result, op[0], true);
1390 } else {
1391 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1392
1393 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1394 * count from the LSB side. If FBH didn't return an error
1395 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1396 * count into an LSB count.
1397 */
1398 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1399
1400 inst = bld.ADD(result, result, brw_imm_d(31));
1401 inst->predicate = BRW_PREDICATE_NORMAL;
1402 inst->src[0].negate = true;
1403 }
1404 break;
1405 }
1406
1407 case nir_op_find_lsb:
1408 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1409
1410 if (devinfo->gen < 7) {
1411 fs_reg temp = vgrf(glsl_type::int_type);
1412
1413 /* (x & -x) generates a value that consists of only the LSB of x.
1414 * For all powers of 2, findMSB(y) == findLSB(y).
1415 */
1416 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1417 fs_reg negated_src = src;
1418
1419 /* One must be negated, and the other must be non-negated. It
1420 * doesn't matter which is which.
1421 */
1422 negated_src.negate = true;
1423 src.negate = false;
1424
1425 bld.AND(temp, src, negated_src);
1426 emit_find_msb_using_lzd(bld, result, temp, false);
1427 } else {
1428 bld.FBL(result, op[0]);
1429 }
1430 break;
1431
1432 case nir_op_ubitfield_extract:
1433 case nir_op_ibitfield_extract:
1434 unreachable("should have been lowered");
1435 case nir_op_ubfe:
1436 case nir_op_ibfe:
1437 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1438 bld.BFE(result, op[2], op[1], op[0]);
1439 break;
1440 case nir_op_bfm:
1441 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1442 bld.BFI1(result, op[0], op[1]);
1443 break;
1444 case nir_op_bfi:
1445 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1446 bld.BFI2(result, op[0], op[1], op[2]);
1447 break;
1448
1449 case nir_op_bitfield_insert:
1450 unreachable("not reached: should have been lowered");
1451
1452 case nir_op_ishl:
1453 bld.SHL(result, op[0], op[1]);
1454 break;
1455 case nir_op_ishr:
1456 bld.ASR(result, op[0], op[1]);
1457 break;
1458 case nir_op_ushr:
1459 bld.SHR(result, op[0], op[1]);
1460 break;
1461
1462 case nir_op_pack_half_2x16_split:
1463 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1464 break;
1465
1466 case nir_op_ffma:
1467 inst = bld.MAD(result, op[2], op[1], op[0]);
1468 inst->saturate = instr->dest.saturate;
1469 break;
1470
1471 case nir_op_flrp:
1472 inst = bld.LRP(result, op[0], op[1], op[2]);
1473 inst->saturate = instr->dest.saturate;
1474 break;
1475
1476 case nir_op_b32csel:
1477 if (optimize_frontfacing_ternary(instr, result))
1478 return;
1479
1480 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1481 inst = bld.SEL(result, op[1], op[2]);
1482 inst->predicate = BRW_PREDICATE_NORMAL;
1483 break;
1484
1485 case nir_op_extract_u8:
1486 case nir_op_extract_i8: {
1487 unsigned byte = nir_src_as_uint(instr->src[1].src);
1488
1489 /* The PRMs say:
1490 *
1491 * BDW+
1492 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1493 * Use two instructions and a word or DWord intermediate integer type.
1494 */
1495 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1496 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1497
1498 if (instr->op == nir_op_extract_i8) {
1499 /* If we need to sign extend, extract to a word first */
1500 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1501 bld.MOV(w_temp, subscript(op[0], type, byte));
1502 bld.MOV(result, w_temp);
1503 } else {
1504 /* Otherwise use an AND with 0xff and a word type */
1505 bld.AND(result, subscript(op[0], type, byte / 2), brw_imm_uw(0xff));
1506 }
1507 } else {
1508 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1509 bld.MOV(result, subscript(op[0], type, byte));
1510 }
1511 break;
1512 }
1513
1514 case nir_op_extract_u16:
1515 case nir_op_extract_i16: {
1516 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1517 unsigned word = nir_src_as_uint(instr->src[1].src);
1518 bld.MOV(result, subscript(op[0], type, word));
1519 break;
1520 }
1521
1522 default:
1523 unreachable("unhandled instruction");
1524 }
1525
1526 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1527 * to sign extend the low bit to 0/~0
1528 */
1529 if (devinfo->gen <= 5 &&
1530 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1531 fs_reg masked = vgrf(glsl_type::int_type);
1532 bld.AND(masked, result, brw_imm_d(1));
1533 masked.negate = true;
1534 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1535 }
1536 }
1537
1538 void
1539 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1540 nir_load_const_instr *instr)
1541 {
1542 const brw_reg_type reg_type =
1543 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1544 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1545
1546 switch (instr->def.bit_size) {
1547 case 8:
1548 for (unsigned i = 0; i < instr->def.num_components; i++)
1549 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value.i8[i]));
1550 break;
1551
1552 case 16:
1553 for (unsigned i = 0; i < instr->def.num_components; i++)
1554 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1555 break;
1556
1557 case 32:
1558 for (unsigned i = 0; i < instr->def.num_components; i++)
1559 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1560 break;
1561
1562 case 64:
1563 assert(devinfo->gen >= 7);
1564 if (devinfo->gen == 7) {
1565 /* We don't get 64-bit integer types until gen8 */
1566 for (unsigned i = 0; i < instr->def.num_components; i++) {
1567 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1568 setup_imm_df(bld, instr->value.f64[i]));
1569 }
1570 } else {
1571 for (unsigned i = 0; i < instr->def.num_components; i++)
1572 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1573 }
1574 break;
1575
1576 default:
1577 unreachable("Invalid bit size");
1578 }
1579
1580 nir_ssa_values[instr->def.index] = reg;
1581 }
1582
1583 fs_reg
1584 fs_visitor::get_nir_src(const nir_src &src)
1585 {
1586 fs_reg reg;
1587 if (src.is_ssa) {
1588 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1589 const brw_reg_type reg_type =
1590 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1591 reg = bld.vgrf(reg_type, src.ssa->num_components);
1592 } else {
1593 reg = nir_ssa_values[src.ssa->index];
1594 }
1595 } else {
1596 /* We don't handle indirects on locals */
1597 assert(src.reg.indirect == NULL);
1598 reg = offset(nir_locals[src.reg.reg->index], bld,
1599 src.reg.base_offset * src.reg.reg->num_components);
1600 }
1601
1602 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1603 /* The only 64-bit type available on gen7 is DF, so use that. */
1604 reg.type = BRW_REGISTER_TYPE_DF;
1605 } else {
1606 /* To avoid floating-point denorm flushing problems, set the type by
1607 * default to an integer type - instructions that need floating point
1608 * semantics will set this to F if they need to
1609 */
1610 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1611 BRW_REGISTER_TYPE_D);
1612 }
1613
1614 return reg;
1615 }
1616
1617 /**
1618 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1619 *
1620 * This function should not be called on any value which may be 64 bits.
1621 * We could theoretically support 64-bit on gen8+ but we choose not to
1622 * because it wouldn't work in general (no gen7 support) and there are
1623 * enough restrictions in 64-bit immediates that you can't take the return
1624 * value and treat it the same as the result of get_nir_src().
1625 */
1626 fs_reg
1627 fs_visitor::get_nir_src_imm(const nir_src &src)
1628 {
1629 assert(nir_src_bit_size(src) == 32);
1630 return nir_src_is_const(src) ?
1631 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1632 }
1633
1634 fs_reg
1635 fs_visitor::get_nir_dest(const nir_dest &dest)
1636 {
1637 if (dest.is_ssa) {
1638 const brw_reg_type reg_type =
1639 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1640 dest.ssa.bit_size == 8 ?
1641 BRW_REGISTER_TYPE_D :
1642 BRW_REGISTER_TYPE_F);
1643 nir_ssa_values[dest.ssa.index] =
1644 bld.vgrf(reg_type, dest.ssa.num_components);
1645 return nir_ssa_values[dest.ssa.index];
1646 } else {
1647 /* We don't handle indirects on locals */
1648 assert(dest.reg.indirect == NULL);
1649 return offset(nir_locals[dest.reg.reg->index], bld,
1650 dest.reg.base_offset * dest.reg.reg->num_components);
1651 }
1652 }
1653
1654 void
1655 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1656 unsigned wr_mask)
1657 {
1658 for (unsigned i = 0; i < 4; i++) {
1659 if (!((wr_mask >> i) & 1))
1660 continue;
1661
1662 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1663 new_inst->dst = offset(new_inst->dst, bld, i);
1664 for (unsigned j = 0; j < new_inst->sources; j++)
1665 if (new_inst->src[j].file == VGRF)
1666 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1667
1668 bld.emit(new_inst);
1669 }
1670 }
1671
1672 static fs_inst *
1673 emit_pixel_interpolater_send(const fs_builder &bld,
1674 enum opcode opcode,
1675 const fs_reg &dst,
1676 const fs_reg &src,
1677 const fs_reg &desc,
1678 glsl_interp_mode interpolation)
1679 {
1680 struct brw_wm_prog_data *wm_prog_data =
1681 brw_wm_prog_data(bld.shader->stage_prog_data);
1682
1683 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1684 /* 2 floats per slot returned */
1685 inst->size_written = 2 * dst.component_size(inst->exec_size);
1686 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1687
1688 wm_prog_data->pulls_bary = true;
1689
1690 return inst;
1691 }
1692
1693 /**
1694 * Computes 1 << x, given a D/UD register containing some value x.
1695 */
1696 static fs_reg
1697 intexp2(const fs_builder &bld, const fs_reg &x)
1698 {
1699 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1700
1701 fs_reg result = bld.vgrf(x.type, 1);
1702 fs_reg one = bld.vgrf(x.type, 1);
1703
1704 bld.MOV(one, retype(brw_imm_d(1), one.type));
1705 bld.SHL(result, one, x);
1706 return result;
1707 }
1708
1709 void
1710 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1711 {
1712 assert(stage == MESA_SHADER_GEOMETRY);
1713
1714 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1715
1716 if (gs_compile->control_data_header_size_bits == 0)
1717 return;
1718
1719 /* We can only do EndPrimitive() functionality when the control data
1720 * consists of cut bits. Fortunately, the only time it isn't is when the
1721 * output type is points, in which case EndPrimitive() is a no-op.
1722 */
1723 if (gs_prog_data->control_data_format !=
1724 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1725 return;
1726 }
1727
1728 /* Cut bits use one bit per vertex. */
1729 assert(gs_compile->control_data_bits_per_vertex == 1);
1730
1731 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1732 vertex_count.type = BRW_REGISTER_TYPE_UD;
1733
1734 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1735 * vertex n, 0 otherwise. So all we need to do here is mark bit
1736 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1737 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1738 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1739 *
1740 * Note that if EndPrimitive() is called before emitting any vertices, this
1741 * will cause us to set bit 31 of the control_data_bits register to 1.
1742 * That's fine because:
1743 *
1744 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1745 * output, so the hardware will ignore cut bit 31.
1746 *
1747 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1748 * last vertex, so setting cut bit 31 has no effect (since the primitive
1749 * is automatically ended when the GS terminates).
1750 *
1751 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1752 * control_data_bits register to 0 when the first vertex is emitted.
1753 */
1754
1755 const fs_builder abld = bld.annotate("end primitive");
1756
1757 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1758 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1759 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1760 fs_reg mask = intexp2(abld, prev_count);
1761 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1762 * attention to the lower 5 bits of its second source argument, so on this
1763 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1764 * ((vertex_count - 1) % 32).
1765 */
1766 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1767 }
1768
1769 void
1770 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1771 {
1772 assert(stage == MESA_SHADER_GEOMETRY);
1773 assert(gs_compile->control_data_bits_per_vertex != 0);
1774
1775 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1776
1777 const fs_builder abld = bld.annotate("emit control data bits");
1778 const fs_builder fwa_bld = bld.exec_all();
1779
1780 /* We use a single UD register to accumulate control data bits (32 bits
1781 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1782 * at a time.
1783 *
1784 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1785 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1786 * use the Channel Mask phase to enable/disable which DWord within that
1787 * group to write. (Remember, different SIMD8 channels may have emitted
1788 * different numbers of vertices, so we may need per-slot offsets.)
1789 *
1790 * Channel masking presents an annoying problem: we may have to replicate
1791 * the data up to 4 times:
1792 *
1793 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1794 *
1795 * To avoid penalizing shaders that emit a small number of vertices, we
1796 * can avoid these sometimes: if the size of the control data header is
1797 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1798 * land in the same 128-bit group, so we can skip per-slot offsets.
1799 *
1800 * Similarly, if the control data header is <= 32 bits, there is only one
1801 * DWord, so we can skip channel masks.
1802 */
1803 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1804
1805 fs_reg channel_mask, per_slot_offset;
1806
1807 if (gs_compile->control_data_header_size_bits > 32) {
1808 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1809 channel_mask = vgrf(glsl_type::uint_type);
1810 }
1811
1812 if (gs_compile->control_data_header_size_bits > 128) {
1813 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1814 per_slot_offset = vgrf(glsl_type::uint_type);
1815 }
1816
1817 /* Figure out which DWord we're trying to write to using the formula:
1818 *
1819 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1820 *
1821 * Since bits_per_vertex is a power of two, and is known at compile
1822 * time, this can be optimized to:
1823 *
1824 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1825 */
1826 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1827 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1828 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1829 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1830 unsigned log2_bits_per_vertex =
1831 util_last_bit(gs_compile->control_data_bits_per_vertex);
1832 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1833
1834 if (per_slot_offset.file != BAD_FILE) {
1835 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1836 * the appropriate OWord within the control data header.
1837 */
1838 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1839 }
1840
1841 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1842 * write to the appropriate DWORD within the OWORD.
1843 */
1844 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1845 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1846 channel_mask = intexp2(fwa_bld, channel);
1847 /* Then the channel masks need to be in bits 23:16. */
1848 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1849 }
1850
1851 /* Store the control data bits in the message payload and send it. */
1852 unsigned mlen = 2;
1853 if (channel_mask.file != BAD_FILE)
1854 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1855 if (per_slot_offset.file != BAD_FILE)
1856 mlen++;
1857
1858 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1859 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1860 unsigned i = 0;
1861 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1862 if (per_slot_offset.file != BAD_FILE)
1863 sources[i++] = per_slot_offset;
1864 if (channel_mask.file != BAD_FILE)
1865 sources[i++] = channel_mask;
1866 while (i < mlen) {
1867 sources[i++] = this->control_data_bits;
1868 }
1869
1870 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1871 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1872 inst->mlen = mlen;
1873 /* We need to increment Global Offset by 256-bits to make room for
1874 * Broadwell's extra "Vertex Count" payload at the beginning of the
1875 * URB entry. Since this is an OWord message, Global Offset is counted
1876 * in 128-bit units, so we must set it to 2.
1877 */
1878 if (gs_prog_data->static_vertex_count == -1)
1879 inst->offset = 2;
1880 }
1881
1882 void
1883 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1884 unsigned stream_id)
1885 {
1886 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1887
1888 /* Note: we are calling this *before* increasing vertex_count, so
1889 * this->vertex_count == vertex_count - 1 in the formula above.
1890 */
1891
1892 /* Stream mode uses 2 bits per vertex */
1893 assert(gs_compile->control_data_bits_per_vertex == 2);
1894
1895 /* Must be a valid stream */
1896 assert(stream_id < MAX_VERTEX_STREAMS);
1897
1898 /* Control data bits are initialized to 0 so we don't have to set any
1899 * bits when sending vertices to stream 0.
1900 */
1901 if (stream_id == 0)
1902 return;
1903
1904 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1905
1906 /* reg::sid = stream_id */
1907 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1908 abld.MOV(sid, brw_imm_ud(stream_id));
1909
1910 /* reg:shift_count = 2 * (vertex_count - 1) */
1911 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1912 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1913
1914 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1915 * attention to the lower 5 bits of its second source argument, so on this
1916 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1917 * stream_id << ((2 * (vertex_count - 1)) % 32).
1918 */
1919 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1920 abld.SHL(mask, sid, shift_count);
1921 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1922 }
1923
1924 void
1925 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1926 unsigned stream_id)
1927 {
1928 assert(stage == MESA_SHADER_GEOMETRY);
1929
1930 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1931
1932 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1933 vertex_count.type = BRW_REGISTER_TYPE_UD;
1934
1935 /* Haswell and later hardware ignores the "Render Stream Select" bits
1936 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1937 * and instead sends all primitives down the pipeline for rasterization.
1938 * If the SOL stage is enabled, "Render Stream Select" is honored and
1939 * primitives bound to non-zero streams are discarded after stream output.
1940 *
1941 * Since the only purpose of primives sent to non-zero streams is to
1942 * be recorded by transform feedback, we can simply discard all geometry
1943 * bound to these streams when transform feedback is disabled.
1944 */
1945 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1946 return;
1947
1948 /* If we're outputting 32 control data bits or less, then we can wait
1949 * until the shader is over to output them all. Otherwise we need to
1950 * output them as we go. Now is the time to do it, since we're about to
1951 * output the vertex_count'th vertex, so it's guaranteed that the
1952 * control data bits associated with the (vertex_count - 1)th vertex are
1953 * correct.
1954 */
1955 if (gs_compile->control_data_header_size_bits > 32) {
1956 const fs_builder abld =
1957 bld.annotate("emit vertex: emit control data bits");
1958
1959 /* Only emit control data bits if we've finished accumulating a batch
1960 * of 32 bits. This is the case when:
1961 *
1962 * (vertex_count * bits_per_vertex) % 32 == 0
1963 *
1964 * (in other words, when the last 5 bits of vertex_count *
1965 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1966 * integer n (which is always the case, since bits_per_vertex is
1967 * always 1 or 2), this is equivalent to requiring that the last 5-n
1968 * bits of vertex_count are 0:
1969 *
1970 * vertex_count & (2^(5-n) - 1) == 0
1971 *
1972 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1973 * equivalent to:
1974 *
1975 * vertex_count & (32 / bits_per_vertex - 1) == 0
1976 *
1977 * TODO: If vertex_count is an immediate, we could do some of this math
1978 * at compile time...
1979 */
1980 fs_inst *inst =
1981 abld.AND(bld.null_reg_d(), vertex_count,
1982 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1983 inst->conditional_mod = BRW_CONDITIONAL_Z;
1984
1985 abld.IF(BRW_PREDICATE_NORMAL);
1986 /* If vertex_count is 0, then no control data bits have been
1987 * accumulated yet, so we can skip emitting them.
1988 */
1989 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1990 BRW_CONDITIONAL_NEQ);
1991 abld.IF(BRW_PREDICATE_NORMAL);
1992 emit_gs_control_data_bits(vertex_count);
1993 abld.emit(BRW_OPCODE_ENDIF);
1994
1995 /* Reset control_data_bits to 0 so we can start accumulating a new
1996 * batch.
1997 *
1998 * Note: in the case where vertex_count == 0, this neutralizes the
1999 * effect of any call to EndPrimitive() that the shader may have
2000 * made before outputting its first vertex.
2001 */
2002 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2003 inst->force_writemask_all = true;
2004 abld.emit(BRW_OPCODE_ENDIF);
2005 }
2006
2007 emit_urb_writes(vertex_count);
2008
2009 /* In stream mode we have to set control data bits for all vertices
2010 * unless we have disabled control data bits completely (which we do
2011 * do for GL_POINTS outputs that don't use streams).
2012 */
2013 if (gs_compile->control_data_header_size_bits > 0 &&
2014 gs_prog_data->control_data_format ==
2015 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2016 set_gs_stream_control_data_bits(vertex_count, stream_id);
2017 }
2018 }
2019
2020 void
2021 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2022 const nir_src &vertex_src,
2023 unsigned base_offset,
2024 const nir_src &offset_src,
2025 unsigned num_components,
2026 unsigned first_component)
2027 {
2028 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2029 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2030
2031 /* TODO: figure out push input layout for invocations == 1 */
2032 /* TODO: make this work with 64-bit inputs */
2033 if (gs_prog_data->invocations == 1 &&
2034 type_sz(dst.type) <= 4 &&
2035 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2036 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2037 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2038 nir_src_as_uint(vertex_src) * push_reg_count;
2039 for (unsigned i = 0; i < num_components; i++) {
2040 bld.MOV(offset(dst, bld, i),
2041 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2042 }
2043 return;
2044 }
2045
2046 /* Resort to the pull model. Ensure the VUE handles are provided. */
2047 assert(gs_prog_data->base.include_vue_handles);
2048
2049 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2050 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2051
2052 if (gs_prog_data->invocations == 1) {
2053 if (nir_src_is_const(vertex_src)) {
2054 /* The vertex index is constant; just select the proper URB handle. */
2055 icp_handle =
2056 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2057 BRW_REGISTER_TYPE_UD);
2058 } else {
2059 /* The vertex index is non-constant. We need to use indirect
2060 * addressing to fetch the proper URB handle.
2061 *
2062 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2063 * indicating that channel <n> should read the handle from
2064 * DWord <n>. We convert that to bytes by multiplying by 4.
2065 *
2066 * Next, we convert the vertex index to bytes by multiplying
2067 * by 32 (shifting by 5), and add the two together. This is
2068 * the final indirect byte offset.
2069 */
2070 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2071 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2072 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2073 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2074
2075 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2076 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2077 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2078 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2079 /* Convert vertex_index to bytes (multiply by 32) */
2080 bld.SHL(vertex_offset_bytes,
2081 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2082 brw_imm_ud(5u));
2083 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2084
2085 /* Use first_icp_handle as the base offset. There is one register
2086 * of URB handles per vertex, so inform the register allocator that
2087 * we might read up to nir->info.gs.vertices_in registers.
2088 */
2089 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2090 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2091 fs_reg(icp_offset_bytes),
2092 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2093 }
2094 } else {
2095 assert(gs_prog_data->invocations > 1);
2096
2097 if (nir_src_is_const(vertex_src)) {
2098 unsigned vertex = nir_src_as_uint(vertex_src);
2099 assert(devinfo->gen >= 9 || vertex <= 5);
2100 bld.MOV(icp_handle,
2101 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2102 BRW_REGISTER_TYPE_UD));
2103 } else {
2104 /* The vertex index is non-constant. We need to use indirect
2105 * addressing to fetch the proper URB handle.
2106 *
2107 */
2108 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2109
2110 /* Convert vertex_index to bytes (multiply by 4) */
2111 bld.SHL(icp_offset_bytes,
2112 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2113 brw_imm_ud(2u));
2114
2115 /* Use first_icp_handle as the base offset. There is one DWord
2116 * of URB handles per vertex, so inform the register allocator that
2117 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2118 */
2119 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2120 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2121 fs_reg(icp_offset_bytes),
2122 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2123 REG_SIZE));
2124 }
2125 }
2126
2127 fs_inst *inst;
2128
2129 fs_reg tmp_dst = dst;
2130 fs_reg indirect_offset = get_nir_src(offset_src);
2131 unsigned num_iterations = 1;
2132 unsigned orig_num_components = num_components;
2133
2134 if (type_sz(dst.type) == 8) {
2135 if (num_components > 2) {
2136 num_iterations = 2;
2137 num_components = 2;
2138 }
2139 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2140 tmp_dst = tmp;
2141 first_component = first_component / 2;
2142 }
2143
2144 for (unsigned iter = 0; iter < num_iterations; iter++) {
2145 if (nir_src_is_const(offset_src)) {
2146 /* Constant indexing - use global offset. */
2147 if (first_component != 0) {
2148 unsigned read_components = num_components + first_component;
2149 fs_reg tmp = bld.vgrf(dst.type, read_components);
2150 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2151 inst->size_written = read_components *
2152 tmp.component_size(inst->exec_size);
2153 for (unsigned i = 0; i < num_components; i++) {
2154 bld.MOV(offset(tmp_dst, bld, i),
2155 offset(tmp, bld, i + first_component));
2156 }
2157 } else {
2158 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2159 icp_handle);
2160 inst->size_written = num_components *
2161 tmp_dst.component_size(inst->exec_size);
2162 }
2163 inst->offset = base_offset + nir_src_as_uint(offset_src);
2164 inst->mlen = 1;
2165 } else {
2166 /* Indirect indexing - use per-slot offsets as well. */
2167 const fs_reg srcs[] = { icp_handle, indirect_offset };
2168 unsigned read_components = num_components + first_component;
2169 fs_reg tmp = bld.vgrf(dst.type, read_components);
2170 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2171 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2172 if (first_component != 0) {
2173 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2174 payload);
2175 inst->size_written = read_components *
2176 tmp.component_size(inst->exec_size);
2177 for (unsigned i = 0; i < num_components; i++) {
2178 bld.MOV(offset(tmp_dst, bld, i),
2179 offset(tmp, bld, i + first_component));
2180 }
2181 } else {
2182 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2183 payload);
2184 inst->size_written = num_components *
2185 tmp_dst.component_size(inst->exec_size);
2186 }
2187 inst->offset = base_offset;
2188 inst->mlen = 2;
2189 }
2190
2191 if (type_sz(dst.type) == 8) {
2192 shuffle_from_32bit_read(bld,
2193 offset(dst, bld, iter * 2),
2194 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2195 0,
2196 num_components);
2197 }
2198
2199 if (num_iterations > 1) {
2200 num_components = orig_num_components - 2;
2201 if(nir_src_is_const(offset_src)) {
2202 base_offset++;
2203 } else {
2204 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2205 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2206 indirect_offset = new_indirect;
2207 }
2208 }
2209 }
2210 }
2211
2212 fs_reg
2213 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2214 {
2215 nir_src *offset_src = nir_get_io_offset_src(instr);
2216
2217 if (nir_src_is_const(*offset_src)) {
2218 /* The only constant offset we should find is 0. brw_nir.c's
2219 * add_const_offset_to_base() will fold other constant offsets
2220 * into instr->const_index[0].
2221 */
2222 assert(nir_src_as_uint(*offset_src) == 0);
2223 return fs_reg();
2224 }
2225
2226 return get_nir_src(*offset_src);
2227 }
2228
2229 void
2230 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2231 nir_intrinsic_instr *instr)
2232 {
2233 assert(stage == MESA_SHADER_VERTEX);
2234
2235 fs_reg dest;
2236 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2237 dest = get_nir_dest(instr->dest);
2238
2239 switch (instr->intrinsic) {
2240 case nir_intrinsic_load_vertex_id:
2241 case nir_intrinsic_load_base_vertex:
2242 unreachable("should be lowered by nir_lower_system_values()");
2243
2244 case nir_intrinsic_load_input: {
2245 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2246 unsigned first_component = nir_intrinsic_component(instr);
2247 unsigned num_components = instr->num_components;
2248
2249 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2250
2251 if (type_sz(dest.type) == 8)
2252 first_component /= 2;
2253
2254 /* For 16-bit support maybe a temporary will be needed to copy from
2255 * the ATTR file.
2256 */
2257 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2258 first_component, num_components);
2259 break;
2260 }
2261
2262 case nir_intrinsic_load_vertex_id_zero_base:
2263 case nir_intrinsic_load_instance_id:
2264 case nir_intrinsic_load_base_instance:
2265 case nir_intrinsic_load_draw_id:
2266 case nir_intrinsic_load_first_vertex:
2267 case nir_intrinsic_load_is_indexed_draw:
2268 unreachable("lowered by brw_nir_lower_vs_inputs");
2269
2270 default:
2271 nir_emit_intrinsic(bld, instr);
2272 break;
2273 }
2274 }
2275
2276 void
2277 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2278 nir_intrinsic_instr *instr)
2279 {
2280 assert(stage == MESA_SHADER_TESS_CTRL);
2281 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2282 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2283
2284 fs_reg dst;
2285 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2286 dst = get_nir_dest(instr->dest);
2287
2288 switch (instr->intrinsic) {
2289 case nir_intrinsic_load_primitive_id:
2290 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2291 break;
2292 case nir_intrinsic_load_invocation_id:
2293 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2294 break;
2295 case nir_intrinsic_load_patch_vertices_in:
2296 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2297 brw_imm_d(tcs_key->input_vertices));
2298 break;
2299
2300 case nir_intrinsic_barrier: {
2301 if (tcs_prog_data->instances == 1)
2302 break;
2303
2304 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2305 fs_reg m0_2 = component(m0, 2);
2306
2307 const fs_builder chanbld = bld.exec_all().group(1, 0);
2308
2309 /* Zero the message header */
2310 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2311
2312 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2313 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2314 brw_imm_ud(INTEL_MASK(16, 13)));
2315
2316 /* Shift it up to bits 27:24. */
2317 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2318
2319 /* Set the Barrier Count and the enable bit */
2320 chanbld.OR(m0_2, m0_2,
2321 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2322
2323 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2324 break;
2325 }
2326
2327 case nir_intrinsic_load_input:
2328 unreachable("nir_lower_io should never give us these.");
2329 break;
2330
2331 case nir_intrinsic_load_per_vertex_input: {
2332 fs_reg indirect_offset = get_indirect_offset(instr);
2333 unsigned imm_offset = instr->const_index[0];
2334
2335 const nir_src &vertex_src = instr->src[0];
2336
2337 fs_inst *inst;
2338
2339 fs_reg icp_handle;
2340
2341 if (nir_src_is_const(vertex_src)) {
2342 /* Emit a MOV to resolve <0,1,0> regioning. */
2343 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2344 unsigned vertex = nir_src_as_uint(vertex_src);
2345 bld.MOV(icp_handle,
2346 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2347 BRW_REGISTER_TYPE_UD));
2348 } else if (tcs_prog_data->instances == 1 &&
2349 vertex_src.is_ssa &&
2350 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2351 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2352 /* For the common case of only 1 instance, an array index of
2353 * gl_InvocationID means reading g1. Skip all the indirect work.
2354 */
2355 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2356 } else {
2357 /* The vertex index is non-constant. We need to use indirect
2358 * addressing to fetch the proper URB handle.
2359 */
2360 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2361
2362 /* Each ICP handle is a single DWord (4 bytes) */
2363 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2364 bld.SHL(vertex_offset_bytes,
2365 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2366 brw_imm_ud(2u));
2367
2368 /* Start at g1. We might read up to 4 registers. */
2369 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2370 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2371 brw_imm_ud(4 * REG_SIZE));
2372 }
2373
2374 /* We can only read two double components with each URB read, so
2375 * we send two read messages in that case, each one loading up to
2376 * two double components.
2377 */
2378 unsigned num_iterations = 1;
2379 unsigned num_components = instr->num_components;
2380 unsigned first_component = nir_intrinsic_component(instr);
2381 fs_reg orig_dst = dst;
2382 if (type_sz(dst.type) == 8) {
2383 first_component = first_component / 2;
2384 if (instr->num_components > 2) {
2385 num_iterations = 2;
2386 num_components = 2;
2387 }
2388
2389 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2390 dst = tmp;
2391 }
2392
2393 for (unsigned iter = 0; iter < num_iterations; iter++) {
2394 if (indirect_offset.file == BAD_FILE) {
2395 /* Constant indexing - use global offset. */
2396 if (first_component != 0) {
2397 unsigned read_components = num_components + first_component;
2398 fs_reg tmp = bld.vgrf(dst.type, read_components);
2399 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2400 for (unsigned i = 0; i < num_components; i++) {
2401 bld.MOV(offset(dst, bld, i),
2402 offset(tmp, bld, i + first_component));
2403 }
2404 } else {
2405 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2406 }
2407 inst->offset = imm_offset;
2408 inst->mlen = 1;
2409 } else {
2410 /* Indirect indexing - use per-slot offsets as well. */
2411 const fs_reg srcs[] = { icp_handle, indirect_offset };
2412 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2413 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2414 if (first_component != 0) {
2415 unsigned read_components = num_components + first_component;
2416 fs_reg tmp = bld.vgrf(dst.type, read_components);
2417 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2418 payload);
2419 for (unsigned i = 0; i < num_components; i++) {
2420 bld.MOV(offset(dst, bld, i),
2421 offset(tmp, bld, i + first_component));
2422 }
2423 } else {
2424 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2425 payload);
2426 }
2427 inst->offset = imm_offset;
2428 inst->mlen = 2;
2429 }
2430 inst->size_written = (num_components + first_component) *
2431 inst->dst.component_size(inst->exec_size);
2432
2433 /* If we are reading 64-bit data using 32-bit read messages we need
2434 * build proper 64-bit data elements by shuffling the low and high
2435 * 32-bit components around like we do for other things like UBOs
2436 * or SSBOs.
2437 */
2438 if (type_sz(dst.type) == 8) {
2439 shuffle_from_32bit_read(bld,
2440 offset(orig_dst, bld, iter * 2),
2441 retype(dst, BRW_REGISTER_TYPE_D),
2442 0, num_components);
2443 }
2444
2445 /* Copy the temporary to the destination to deal with writemasking.
2446 *
2447 * Also attempt to deal with gl_PointSize being in the .w component.
2448 */
2449 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2450 assert(type_sz(dst.type) < 8);
2451 inst->dst = bld.vgrf(dst.type, 4);
2452 inst->size_written = 4 * REG_SIZE;
2453 bld.MOV(dst, offset(inst->dst, bld, 3));
2454 }
2455
2456 /* If we are loading double data and we need a second read message
2457 * adjust the write offset
2458 */
2459 if (num_iterations > 1) {
2460 num_components = instr->num_components - 2;
2461 imm_offset++;
2462 }
2463 }
2464 break;
2465 }
2466
2467 case nir_intrinsic_load_output:
2468 case nir_intrinsic_load_per_vertex_output: {
2469 fs_reg indirect_offset = get_indirect_offset(instr);
2470 unsigned imm_offset = instr->const_index[0];
2471 unsigned first_component = nir_intrinsic_component(instr);
2472
2473 fs_inst *inst;
2474 if (indirect_offset.file == BAD_FILE) {
2475 /* Replicate the patch handle to all enabled channels */
2476 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2477 bld.MOV(patch_handle,
2478 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2479
2480 {
2481 if (first_component != 0) {
2482 unsigned read_components =
2483 instr->num_components + first_component;
2484 fs_reg tmp = bld.vgrf(dst.type, read_components);
2485 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2486 patch_handle);
2487 inst->size_written = read_components * REG_SIZE;
2488 for (unsigned i = 0; i < instr->num_components; i++) {
2489 bld.MOV(offset(dst, bld, i),
2490 offset(tmp, bld, i + first_component));
2491 }
2492 } else {
2493 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2494 patch_handle);
2495 inst->size_written = instr->num_components * REG_SIZE;
2496 }
2497 inst->offset = imm_offset;
2498 inst->mlen = 1;
2499 }
2500 } else {
2501 /* Indirect indexing - use per-slot offsets as well. */
2502 const fs_reg srcs[] = {
2503 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2504 indirect_offset
2505 };
2506 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2507 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2508 if (first_component != 0) {
2509 unsigned read_components =
2510 instr->num_components + first_component;
2511 fs_reg tmp = bld.vgrf(dst.type, read_components);
2512 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2513 payload);
2514 inst->size_written = read_components * REG_SIZE;
2515 for (unsigned i = 0; i < instr->num_components; i++) {
2516 bld.MOV(offset(dst, bld, i),
2517 offset(tmp, bld, i + first_component));
2518 }
2519 } else {
2520 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2521 payload);
2522 inst->size_written = instr->num_components * REG_SIZE;
2523 }
2524 inst->offset = imm_offset;
2525 inst->mlen = 2;
2526 }
2527 break;
2528 }
2529
2530 case nir_intrinsic_store_output:
2531 case nir_intrinsic_store_per_vertex_output: {
2532 fs_reg value = get_nir_src(instr->src[0]);
2533 bool is_64bit = (instr->src[0].is_ssa ?
2534 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2535 fs_reg indirect_offset = get_indirect_offset(instr);
2536 unsigned imm_offset = instr->const_index[0];
2537 unsigned mask = instr->const_index[1];
2538 unsigned header_regs = 0;
2539 fs_reg srcs[7];
2540 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2541
2542 if (indirect_offset.file != BAD_FILE) {
2543 srcs[header_regs++] = indirect_offset;
2544 }
2545
2546 if (mask == 0)
2547 break;
2548
2549 unsigned num_components = util_last_bit(mask);
2550 enum opcode opcode;
2551
2552 /* We can only pack two 64-bit components in a single message, so send
2553 * 2 messages if we have more components
2554 */
2555 unsigned num_iterations = 1;
2556 unsigned iter_components = num_components;
2557 unsigned first_component = nir_intrinsic_component(instr);
2558 if (is_64bit) {
2559 first_component = first_component / 2;
2560 if (instr->num_components > 2) {
2561 num_iterations = 2;
2562 iter_components = 2;
2563 }
2564 }
2565
2566 mask = mask << first_component;
2567
2568 for (unsigned iter = 0; iter < num_iterations; iter++) {
2569 if (!is_64bit && mask != WRITEMASK_XYZW) {
2570 srcs[header_regs++] = brw_imm_ud(mask << 16);
2571 opcode = indirect_offset.file != BAD_FILE ?
2572 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2573 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2574 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2575 /* Expand the 64-bit mask to 32-bit channels. We only handle
2576 * two channels in each iteration, so we only care about X/Y.
2577 */
2578 unsigned mask32 = 0;
2579 if (mask & WRITEMASK_X)
2580 mask32 |= WRITEMASK_XY;
2581 if (mask & WRITEMASK_Y)
2582 mask32 |= WRITEMASK_ZW;
2583
2584 /* If the mask does not include any of the channels X or Y there
2585 * is nothing to do in this iteration. Move on to the next couple
2586 * of 64-bit channels.
2587 */
2588 if (!mask32) {
2589 mask >>= 2;
2590 imm_offset++;
2591 continue;
2592 }
2593
2594 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2595 opcode = indirect_offset.file != BAD_FILE ?
2596 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2597 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2598 } else {
2599 opcode = indirect_offset.file != BAD_FILE ?
2600 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2601 SHADER_OPCODE_URB_WRITE_SIMD8;
2602 }
2603
2604 for (unsigned i = 0; i < iter_components; i++) {
2605 if (!(mask & (1 << (i + first_component))))
2606 continue;
2607
2608 if (!is_64bit) {
2609 srcs[header_regs + i + first_component] = offset(value, bld, i);
2610 } else {
2611 /* We need to shuffle the 64-bit data to match the layout
2612 * expected by our 32-bit URB write messages. We use a temporary
2613 * for that.
2614 */
2615 unsigned channel = iter * 2 + i;
2616 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2617
2618 srcs[header_regs + (i + first_component) * 2] = dest;
2619 srcs[header_regs + (i + first_component) * 2 + 1] =
2620 offset(dest, bld, 1);
2621 }
2622 }
2623
2624 unsigned mlen =
2625 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2626 (is_64bit ? 2 * first_component : first_component);
2627 fs_reg payload =
2628 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2629 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2630
2631 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2632 inst->offset = imm_offset;
2633 inst->mlen = mlen;
2634
2635 /* If this is a 64-bit attribute, select the next two 64-bit channels
2636 * to be handled in the next iteration.
2637 */
2638 if (is_64bit) {
2639 mask >>= 2;
2640 imm_offset++;
2641 }
2642 }
2643 break;
2644 }
2645
2646 default:
2647 nir_emit_intrinsic(bld, instr);
2648 break;
2649 }
2650 }
2651
2652 void
2653 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2654 nir_intrinsic_instr *instr)
2655 {
2656 assert(stage == MESA_SHADER_TESS_EVAL);
2657 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2658
2659 fs_reg dest;
2660 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2661 dest = get_nir_dest(instr->dest);
2662
2663 switch (instr->intrinsic) {
2664 case nir_intrinsic_load_primitive_id:
2665 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2666 break;
2667 case nir_intrinsic_load_tess_coord:
2668 /* gl_TessCoord is part of the payload in g1-3 */
2669 for (unsigned i = 0; i < 3; i++) {
2670 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2671 }
2672 break;
2673
2674 case nir_intrinsic_load_input:
2675 case nir_intrinsic_load_per_vertex_input: {
2676 fs_reg indirect_offset = get_indirect_offset(instr);
2677 unsigned imm_offset = instr->const_index[0];
2678 unsigned first_component = nir_intrinsic_component(instr);
2679
2680 if (type_sz(dest.type) == 8) {
2681 first_component = first_component / 2;
2682 }
2683
2684 fs_inst *inst;
2685 if (indirect_offset.file == BAD_FILE) {
2686 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2687 * which is 16 registers (since each holds 2 vec4 slots).
2688 */
2689 unsigned slot_count = 1;
2690 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2691 slot_count++;
2692
2693 const unsigned max_push_slots = 32;
2694 if (imm_offset + slot_count <= max_push_slots) {
2695 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2696 for (int i = 0; i < instr->num_components; i++) {
2697 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2698 i + first_component;
2699 bld.MOV(offset(dest, bld, i), component(src, comp));
2700 }
2701
2702 tes_prog_data->base.urb_read_length =
2703 MAX2(tes_prog_data->base.urb_read_length,
2704 DIV_ROUND_UP(imm_offset + slot_count, 2));
2705 } else {
2706 /* Replicate the patch handle to all enabled channels */
2707 const fs_reg srcs[] = {
2708 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2709 };
2710 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2711 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2712
2713 if (first_component != 0) {
2714 unsigned read_components =
2715 instr->num_components + first_component;
2716 fs_reg tmp = bld.vgrf(dest.type, read_components);
2717 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2718 patch_handle);
2719 inst->size_written = read_components * REG_SIZE;
2720 for (unsigned i = 0; i < instr->num_components; i++) {
2721 bld.MOV(offset(dest, bld, i),
2722 offset(tmp, bld, i + first_component));
2723 }
2724 } else {
2725 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2726 patch_handle);
2727 inst->size_written = instr->num_components * REG_SIZE;
2728 }
2729 inst->mlen = 1;
2730 inst->offset = imm_offset;
2731 }
2732 } else {
2733 /* Indirect indexing - use per-slot offsets as well. */
2734
2735 /* We can only read two double components with each URB read, so
2736 * we send two read messages in that case, each one loading up to
2737 * two double components.
2738 */
2739 unsigned num_iterations = 1;
2740 unsigned num_components = instr->num_components;
2741 fs_reg orig_dest = dest;
2742 if (type_sz(dest.type) == 8) {
2743 if (instr->num_components > 2) {
2744 num_iterations = 2;
2745 num_components = 2;
2746 }
2747 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2748 dest = tmp;
2749 }
2750
2751 for (unsigned iter = 0; iter < num_iterations; iter++) {
2752 const fs_reg srcs[] = {
2753 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2754 indirect_offset
2755 };
2756 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2757 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2758
2759 if (first_component != 0) {
2760 unsigned read_components =
2761 num_components + first_component;
2762 fs_reg tmp = bld.vgrf(dest.type, read_components);
2763 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2764 payload);
2765 for (unsigned i = 0; i < num_components; i++) {
2766 bld.MOV(offset(dest, bld, i),
2767 offset(tmp, bld, i + first_component));
2768 }
2769 } else {
2770 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2771 payload);
2772 }
2773 inst->mlen = 2;
2774 inst->offset = imm_offset;
2775 inst->size_written = (num_components + first_component) *
2776 inst->dst.component_size(inst->exec_size);
2777
2778 /* If we are reading 64-bit data using 32-bit read messages we need
2779 * build proper 64-bit data elements by shuffling the low and high
2780 * 32-bit components around like we do for other things like UBOs
2781 * or SSBOs.
2782 */
2783 if (type_sz(dest.type) == 8) {
2784 shuffle_from_32bit_read(bld,
2785 offset(orig_dest, bld, iter * 2),
2786 retype(dest, BRW_REGISTER_TYPE_D),
2787 0, num_components);
2788 }
2789
2790 /* If we are loading double data and we need a second read message
2791 * adjust the offset
2792 */
2793 if (num_iterations > 1) {
2794 num_components = instr->num_components - 2;
2795 imm_offset++;
2796 }
2797 }
2798 }
2799 break;
2800 }
2801 default:
2802 nir_emit_intrinsic(bld, instr);
2803 break;
2804 }
2805 }
2806
2807 void
2808 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2809 nir_intrinsic_instr *instr)
2810 {
2811 assert(stage == MESA_SHADER_GEOMETRY);
2812 fs_reg indirect_offset;
2813
2814 fs_reg dest;
2815 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2816 dest = get_nir_dest(instr->dest);
2817
2818 switch (instr->intrinsic) {
2819 case nir_intrinsic_load_primitive_id:
2820 assert(stage == MESA_SHADER_GEOMETRY);
2821 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2822 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2823 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2824 break;
2825
2826 case nir_intrinsic_load_input:
2827 unreachable("load_input intrinsics are invalid for the GS stage");
2828
2829 case nir_intrinsic_load_per_vertex_input:
2830 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2831 instr->src[1], instr->num_components,
2832 nir_intrinsic_component(instr));
2833 break;
2834
2835 case nir_intrinsic_emit_vertex_with_counter:
2836 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2837 break;
2838
2839 case nir_intrinsic_end_primitive_with_counter:
2840 emit_gs_end_primitive(instr->src[0]);
2841 break;
2842
2843 case nir_intrinsic_set_vertex_count:
2844 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2845 break;
2846
2847 case nir_intrinsic_load_invocation_id: {
2848 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2849 assert(val.file != BAD_FILE);
2850 dest.type = val.type;
2851 bld.MOV(dest, val);
2852 break;
2853 }
2854
2855 default:
2856 nir_emit_intrinsic(bld, instr);
2857 break;
2858 }
2859 }
2860
2861 /**
2862 * Fetch the current render target layer index.
2863 */
2864 static fs_reg
2865 fetch_render_target_array_index(const fs_builder &bld)
2866 {
2867 if (bld.shader->devinfo->gen >= 6) {
2868 /* The render target array index is provided in the thread payload as
2869 * bits 26:16 of r0.0.
2870 */
2871 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
2872 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
2873 brw_imm_uw(0x7ff));
2874 return idx;
2875 } else {
2876 /* Pre-SNB we only ever render into the first layer of the framebuffer
2877 * since layered rendering is not implemented.
2878 */
2879 return brw_imm_ud(0);
2880 }
2881 }
2882
2883 /**
2884 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
2885 * framebuffer at the current fragment coordinates and sample index.
2886 */
2887 fs_inst *
2888 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
2889 unsigned target)
2890 {
2891 const struct gen_device_info *devinfo = bld.shader->devinfo;
2892
2893 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
2894 const brw_wm_prog_key *wm_key =
2895 reinterpret_cast<const brw_wm_prog_key *>(key);
2896 assert(!wm_key->coherent_fb_fetch);
2897 const struct brw_wm_prog_data *wm_prog_data =
2898 brw_wm_prog_data(stage_prog_data);
2899
2900 /* Calculate the surface index relative to the start of the texture binding
2901 * table block, since that's what the texturing messages expect.
2902 */
2903 const unsigned surface = target +
2904 wm_prog_data->binding_table.render_target_read_start -
2905 wm_prog_data->base.binding_table.texture_start;
2906
2907 /* Calculate the fragment coordinates. */
2908 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
2909 bld.MOV(offset(coords, bld, 0), pixel_x);
2910 bld.MOV(offset(coords, bld, 1), pixel_y);
2911 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
2912
2913 /* Calculate the sample index and MCS payload when multisampling. Luckily
2914 * the MCS fetch message behaves deterministically for UMS surfaces, so it
2915 * shouldn't be necessary to recompile based on whether the framebuffer is
2916 * CMS or UMS.
2917 */
2918 if (wm_key->multisample_fbo &&
2919 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
2920 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
2921
2922 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
2923 const fs_reg mcs = wm_key->multisample_fbo ?
2924 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
2925
2926 /* Use either a normal or a CMS texel fetch message depending on whether
2927 * the framebuffer is single or multisample. On SKL+ use the wide CMS
2928 * message just in case the framebuffer uses 16x multisampling, it should
2929 * be equivalent to the normal CMS fetch for lower multisampling modes.
2930 */
2931 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
2932 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
2933 SHADER_OPCODE_TXF_CMS_LOGICAL;
2934
2935 /* Emit the instruction. */
2936 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
2937 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
2938 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
2939 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
2940 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
2941 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
2942 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
2943 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
2944 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
2945
2946 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
2947 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
2948
2949 return inst;
2950 }
2951
2952 /**
2953 * Actual coherent framebuffer read implemented using the native render target
2954 * read message. Requires SKL+.
2955 */
2956 static fs_inst *
2957 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
2958 {
2959 assert(bld.shader->devinfo->gen >= 9);
2960 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
2961 inst->target = target;
2962 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
2963
2964 return inst;
2965 }
2966
2967 static fs_reg
2968 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
2969 {
2970 if (n && regs[0].file != BAD_FILE) {
2971 return regs[0];
2972
2973 } else {
2974 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
2975
2976 for (unsigned i = 0; i < n; i++)
2977 regs[i] = tmp;
2978
2979 return tmp;
2980 }
2981 }
2982
2983 static fs_reg
2984 alloc_frag_output(fs_visitor *v, unsigned location)
2985 {
2986 assert(v->stage == MESA_SHADER_FRAGMENT);
2987 const brw_wm_prog_key *const key =
2988 reinterpret_cast<const brw_wm_prog_key *>(v->key);
2989 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
2990 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
2991
2992 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
2993 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
2994
2995 else if (l == FRAG_RESULT_COLOR)
2996 return alloc_temporary(v->bld, 4, v->outputs,
2997 MAX2(key->nr_color_regions, 1));
2998
2999 else if (l == FRAG_RESULT_DEPTH)
3000 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3001
3002 else if (l == FRAG_RESULT_STENCIL)
3003 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3004
3005 else if (l == FRAG_RESULT_SAMPLE_MASK)
3006 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3007
3008 else if (l >= FRAG_RESULT_DATA0 &&
3009 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3010 return alloc_temporary(v->bld, 4,
3011 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3012
3013 else
3014 unreachable("Invalid location");
3015 }
3016
3017 void
3018 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3019 nir_intrinsic_instr *instr)
3020 {
3021 assert(stage == MESA_SHADER_FRAGMENT);
3022
3023 fs_reg dest;
3024 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3025 dest = get_nir_dest(instr->dest);
3026
3027 switch (instr->intrinsic) {
3028 case nir_intrinsic_load_front_face:
3029 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3030 *emit_frontfacing_interpolation());
3031 break;
3032
3033 case nir_intrinsic_load_sample_pos: {
3034 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3035 assert(sample_pos.file != BAD_FILE);
3036 dest.type = sample_pos.type;
3037 bld.MOV(dest, sample_pos);
3038 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3039 break;
3040 }
3041
3042 case nir_intrinsic_load_layer_id:
3043 dest.type = BRW_REGISTER_TYPE_UD;
3044 bld.MOV(dest, fetch_render_target_array_index(bld));
3045 break;
3046
3047 case nir_intrinsic_load_helper_invocation:
3048 case nir_intrinsic_load_sample_mask_in:
3049 case nir_intrinsic_load_sample_id: {
3050 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3051 fs_reg val = nir_system_values[sv];
3052 assert(val.file != BAD_FILE);
3053 dest.type = val.type;
3054 bld.MOV(dest, val);
3055 break;
3056 }
3057
3058 case nir_intrinsic_store_output: {
3059 const fs_reg src = get_nir_src(instr->src[0]);
3060 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3061 const unsigned location = nir_intrinsic_base(instr) +
3062 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3063 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3064 src.type);
3065
3066 for (unsigned j = 0; j < instr->num_components; j++)
3067 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3068 offset(src, bld, j));
3069
3070 break;
3071 }
3072
3073 case nir_intrinsic_load_output: {
3074 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3075 BRW_NIR_FRAG_OUTPUT_LOCATION);
3076 assert(l >= FRAG_RESULT_DATA0);
3077 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3078 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3079 const fs_reg tmp = bld.vgrf(dest.type, 4);
3080
3081 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3082 emit_coherent_fb_read(bld, tmp, target);
3083 else
3084 emit_non_coherent_fb_read(bld, tmp, target);
3085
3086 for (unsigned j = 0; j < instr->num_components; j++) {
3087 bld.MOV(offset(dest, bld, j),
3088 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3089 }
3090
3091 break;
3092 }
3093
3094 case nir_intrinsic_discard:
3095 case nir_intrinsic_discard_if: {
3096 /* We track our discarded pixels in f0.1. By predicating on it, we can
3097 * update just the flag bits that aren't yet discarded. If there's no
3098 * condition, we emit a CMP of g0 != g0, so all currently executing
3099 * channels will get turned off.
3100 */
3101 fs_inst *cmp;
3102 if (instr->intrinsic == nir_intrinsic_discard_if) {
3103 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3104 brw_imm_d(0), BRW_CONDITIONAL_Z);
3105 } else {
3106 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3107 BRW_REGISTER_TYPE_UW));
3108 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3109 }
3110 cmp->predicate = BRW_PREDICATE_NORMAL;
3111 cmp->flag_subreg = 1;
3112
3113 if (devinfo->gen >= 6) {
3114 emit_discard_jump();
3115 }
3116
3117 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3118 break;
3119 }
3120
3121 case nir_intrinsic_load_input: {
3122 /* load_input is only used for flat inputs */
3123 unsigned base = nir_intrinsic_base(instr);
3124 unsigned comp = nir_intrinsic_component(instr);
3125 unsigned num_components = instr->num_components;
3126 fs_reg orig_dest = dest;
3127 enum brw_reg_type type = dest.type;
3128
3129 /* Special case fields in the VUE header */
3130 if (base == VARYING_SLOT_LAYER)
3131 comp = 1;
3132 else if (base == VARYING_SLOT_VIEWPORT)
3133 comp = 2;
3134
3135 if (nir_dest_bit_size(instr->dest) == 64) {
3136 /* const_index is in 32-bit type size units that could not be aligned
3137 * with DF. We need to read the double vector as if it was a float
3138 * vector of twice the number of components to fetch the right data.
3139 */
3140 type = BRW_REGISTER_TYPE_F;
3141 num_components *= 2;
3142 dest = bld.vgrf(type, num_components);
3143 }
3144
3145 for (unsigned int i = 0; i < num_components; i++) {
3146 bld.MOV(offset(retype(dest, type), bld, i),
3147 retype(component(interp_reg(base, comp + i), 3), type));
3148 }
3149
3150 if (nir_dest_bit_size(instr->dest) == 64) {
3151 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3152 instr->num_components);
3153 }
3154 break;
3155 }
3156
3157 case nir_intrinsic_load_barycentric_pixel:
3158 case nir_intrinsic_load_barycentric_centroid:
3159 case nir_intrinsic_load_barycentric_sample:
3160 /* Do nothing - load_interpolated_input handling will handle it later. */
3161 break;
3162
3163 case nir_intrinsic_load_barycentric_at_sample: {
3164 const glsl_interp_mode interpolation =
3165 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3166
3167 if (nir_src_is_const(instr->src[0])) {
3168 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3169
3170 emit_pixel_interpolater_send(bld,
3171 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3172 dest,
3173 fs_reg(), /* src */
3174 brw_imm_ud(msg_data),
3175 interpolation);
3176 } else {
3177 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3178 BRW_REGISTER_TYPE_UD);
3179
3180 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3181 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3182 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3183 bld.exec_all().group(1, 0)
3184 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3185 emit_pixel_interpolater_send(bld,
3186 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3187 dest,
3188 fs_reg(), /* src */
3189 msg_data,
3190 interpolation);
3191 } else {
3192 /* Make a loop that sends a message to the pixel interpolater
3193 * for the sample number in each live channel. If there are
3194 * multiple channels with the same sample number then these
3195 * will be handled simultaneously with a single interation of
3196 * the loop.
3197 */
3198 bld.emit(BRW_OPCODE_DO);
3199
3200 /* Get the next live sample number into sample_id_reg */
3201 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3202
3203 /* Set the flag register so that we can perform the send
3204 * message on all channels that have the same sample number
3205 */
3206 bld.CMP(bld.null_reg_ud(),
3207 sample_src, sample_id,
3208 BRW_CONDITIONAL_EQ);
3209 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3210 bld.exec_all().group(1, 0)
3211 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3212 fs_inst *inst =
3213 emit_pixel_interpolater_send(bld,
3214 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3215 dest,
3216 fs_reg(), /* src */
3217 component(msg_data, 0),
3218 interpolation);
3219 set_predicate(BRW_PREDICATE_NORMAL, inst);
3220
3221 /* Continue the loop if there are any live channels left */
3222 set_predicate_inv(BRW_PREDICATE_NORMAL,
3223 true, /* inverse */
3224 bld.emit(BRW_OPCODE_WHILE));
3225 }
3226 }
3227 break;
3228 }
3229
3230 case nir_intrinsic_load_barycentric_at_offset: {
3231 const glsl_interp_mode interpolation =
3232 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3233
3234 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3235
3236 if (const_offset) {
3237 assert(nir_src_bit_size(instr->src[0]) == 32);
3238 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3239 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3240
3241 emit_pixel_interpolater_send(bld,
3242 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3243 dest,
3244 fs_reg(), /* src */
3245 brw_imm_ud(off_x | (off_y << 4)),
3246 interpolation);
3247 } else {
3248 fs_reg src = vgrf(glsl_type::ivec2_type);
3249 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3250 BRW_REGISTER_TYPE_F);
3251 for (int i = 0; i < 2; i++) {
3252 fs_reg temp = vgrf(glsl_type::float_type);
3253 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3254 fs_reg itemp = vgrf(glsl_type::int_type);
3255 /* float to int */
3256 bld.MOV(itemp, temp);
3257
3258 /* Clamp the upper end of the range to +7/16.
3259 * ARB_gpu_shader5 requires that we support a maximum offset
3260 * of +0.5, which isn't representable in a S0.4 value -- if
3261 * we didn't clamp it, we'd end up with -8/16, which is the
3262 * opposite of what the shader author wanted.
3263 *
3264 * This is legal due to ARB_gpu_shader5's quantization
3265 * rules:
3266 *
3267 * "Not all values of <offset> may be supported; x and y
3268 * offsets may be rounded to fixed-point values with the
3269 * number of fraction bits given by the
3270 * implementation-dependent constant
3271 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3272 */
3273 set_condmod(BRW_CONDITIONAL_L,
3274 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3275 }
3276
3277 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3278 emit_pixel_interpolater_send(bld,
3279 opcode,
3280 dest,
3281 src,
3282 brw_imm_ud(0u),
3283 interpolation);
3284 }
3285 break;
3286 }
3287
3288 case nir_intrinsic_load_interpolated_input: {
3289 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3290 emit_fragcoord_interpolation(dest);
3291 break;
3292 }
3293
3294 assert(instr->src[0].ssa &&
3295 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3296 nir_intrinsic_instr *bary_intrinsic =
3297 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3298 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3299 enum glsl_interp_mode interp_mode =
3300 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3301 fs_reg dst_xy;
3302
3303 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3304 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3305 /* Use the result of the PI message */
3306 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3307 } else {
3308 /* Use the delta_xy values computed from the payload */
3309 enum brw_barycentric_mode bary =
3310 brw_barycentric_mode(interp_mode, bary_intrin);
3311
3312 dst_xy = this->delta_xy[bary];
3313 }
3314
3315 for (unsigned int i = 0; i < instr->num_components; i++) {
3316 fs_reg interp =
3317 component(interp_reg(nir_intrinsic_base(instr),
3318 nir_intrinsic_component(instr) + i), 0);
3319 interp.type = BRW_REGISTER_TYPE_F;
3320 dest.type = BRW_REGISTER_TYPE_F;
3321
3322 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3323 fs_reg tmp = vgrf(glsl_type::float_type);
3324 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3325 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3326 } else {
3327 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3328 }
3329 }
3330 break;
3331 }
3332
3333 default:
3334 nir_emit_intrinsic(bld, instr);
3335 break;
3336 }
3337 }
3338
3339 static int
3340 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3341 {
3342 if (nir_src_is_const(instr->src[src])) {
3343 int64_t add_val = nir_src_as_int(instr->src[src]);
3344 if (add_val == 1)
3345 return BRW_AOP_INC;
3346 else if (add_val == -1)
3347 return BRW_AOP_DEC;
3348 }
3349
3350 return BRW_AOP_ADD;
3351 }
3352
3353 void
3354 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3355 nir_intrinsic_instr *instr)
3356 {
3357 assert(stage == MESA_SHADER_COMPUTE);
3358 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3359
3360 fs_reg dest;
3361 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3362 dest = get_nir_dest(instr->dest);
3363
3364 switch (instr->intrinsic) {
3365 case nir_intrinsic_barrier:
3366 emit_barrier();
3367 cs_prog_data->uses_barrier = true;
3368 break;
3369
3370 case nir_intrinsic_load_subgroup_id:
3371 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3372 break;
3373
3374 case nir_intrinsic_load_local_invocation_id:
3375 case nir_intrinsic_load_work_group_id: {
3376 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3377 fs_reg val = nir_system_values[sv];
3378 assert(val.file != BAD_FILE);
3379 dest.type = val.type;
3380 for (unsigned i = 0; i < 3; i++)
3381 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3382 break;
3383 }
3384
3385 case nir_intrinsic_load_num_work_groups: {
3386 const unsigned surface =
3387 cs_prog_data->binding_table.work_groups_start;
3388
3389 cs_prog_data->uses_num_work_groups = true;
3390
3391 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3392 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3393 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3394 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3395
3396 /* Read the 3 GLuint components of gl_NumWorkGroups */
3397 for (unsigned i = 0; i < 3; i++) {
3398 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3399 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3400 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3401 }
3402 break;
3403 }
3404
3405 case nir_intrinsic_shared_atomic_add:
3406 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3407 break;
3408 case nir_intrinsic_shared_atomic_imin:
3409 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3410 break;
3411 case nir_intrinsic_shared_atomic_umin:
3412 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3413 break;
3414 case nir_intrinsic_shared_atomic_imax:
3415 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3416 break;
3417 case nir_intrinsic_shared_atomic_umax:
3418 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3419 break;
3420 case nir_intrinsic_shared_atomic_and:
3421 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3422 break;
3423 case nir_intrinsic_shared_atomic_or:
3424 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3425 break;
3426 case nir_intrinsic_shared_atomic_xor:
3427 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3428 break;
3429 case nir_intrinsic_shared_atomic_exchange:
3430 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3431 break;
3432 case nir_intrinsic_shared_atomic_comp_swap:
3433 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3434 break;
3435 case nir_intrinsic_shared_atomic_fmin:
3436 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3437 break;
3438 case nir_intrinsic_shared_atomic_fmax:
3439 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3440 break;
3441 case nir_intrinsic_shared_atomic_fcomp_swap:
3442 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3443 break;
3444
3445 case nir_intrinsic_load_shared: {
3446 assert(devinfo->gen >= 7);
3447 assert(stage == MESA_SHADER_COMPUTE);
3448
3449 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3450 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3451 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3452 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3453 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3454
3455 /* Make dest unsigned because that's what the temporary will be */
3456 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3457
3458 /* Read the vector */
3459 if (nir_intrinsic_align(instr) >= 4) {
3460 assert(nir_dest_bit_size(instr->dest) == 32);
3461 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3462 fs_inst *inst =
3463 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3464 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3465 inst->size_written = instr->num_components * dispatch_width * 4;
3466 } else {
3467 assert(nir_dest_bit_size(instr->dest) <= 32);
3468 assert(nir_dest_num_components(instr->dest) == 1);
3469 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3470
3471 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3472 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3473 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3474 bld.MOV(dest, read_result);
3475 }
3476 break;
3477 }
3478
3479 case nir_intrinsic_store_shared: {
3480 assert(devinfo->gen >= 7);
3481 assert(stage == MESA_SHADER_COMPUTE);
3482
3483 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3484 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3485 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3486 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3487 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3488
3489 fs_reg data = get_nir_src(instr->src[0]);
3490 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3491
3492 assert(nir_intrinsic_write_mask(instr) ==
3493 (1u << instr->num_components) - 1);
3494 if (nir_intrinsic_align(instr) >= 4) {
3495 assert(nir_src_bit_size(instr->src[0]) == 32);
3496 assert(nir_src_num_components(instr->src[0]) <= 4);
3497 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3498 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3499 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3500 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3501 } else {
3502 assert(nir_src_bit_size(instr->src[0]) <= 32);
3503 assert(nir_src_num_components(instr->src[0]) == 1);
3504 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3505
3506 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3507 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3508
3509 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3510 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3511 }
3512 break;
3513 }
3514
3515 default:
3516 nir_emit_intrinsic(bld, instr);
3517 break;
3518 }
3519 }
3520
3521 static fs_reg
3522 brw_nir_reduction_op_identity(const fs_builder &bld,
3523 nir_op op, brw_reg_type type)
3524 {
3525 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3526 switch (type_sz(type)) {
3527 case 2:
3528 assert(type != BRW_REGISTER_TYPE_HF);
3529 return retype(brw_imm_uw(value.u16[0]), type);
3530 case 4:
3531 return retype(brw_imm_ud(value.u32[0]), type);
3532 case 8:
3533 if (type == BRW_REGISTER_TYPE_DF)
3534 return setup_imm_df(bld, value.f64[0]);
3535 else
3536 return retype(brw_imm_u64(value.u64[0]), type);
3537 default:
3538 unreachable("Invalid type size");
3539 }
3540 }
3541
3542 static opcode
3543 brw_op_for_nir_reduction_op(nir_op op)
3544 {
3545 switch (op) {
3546 case nir_op_iadd: return BRW_OPCODE_ADD;
3547 case nir_op_fadd: return BRW_OPCODE_ADD;
3548 case nir_op_imul: return BRW_OPCODE_MUL;
3549 case nir_op_fmul: return BRW_OPCODE_MUL;
3550 case nir_op_imin: return BRW_OPCODE_SEL;
3551 case nir_op_umin: return BRW_OPCODE_SEL;
3552 case nir_op_fmin: return BRW_OPCODE_SEL;
3553 case nir_op_imax: return BRW_OPCODE_SEL;
3554 case nir_op_umax: return BRW_OPCODE_SEL;
3555 case nir_op_fmax: return BRW_OPCODE_SEL;
3556 case nir_op_iand: return BRW_OPCODE_AND;
3557 case nir_op_ior: return BRW_OPCODE_OR;
3558 case nir_op_ixor: return BRW_OPCODE_XOR;
3559 default:
3560 unreachable("Invalid reduction operation");
3561 }
3562 }
3563
3564 static brw_conditional_mod
3565 brw_cond_mod_for_nir_reduction_op(nir_op op)
3566 {
3567 switch (op) {
3568 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3569 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3570 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3571 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3572 case nir_op_imin: return BRW_CONDITIONAL_L;
3573 case nir_op_umin: return BRW_CONDITIONAL_L;
3574 case nir_op_fmin: return BRW_CONDITIONAL_L;
3575 case nir_op_imax: return BRW_CONDITIONAL_GE;
3576 case nir_op_umax: return BRW_CONDITIONAL_GE;
3577 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3578 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3579 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3580 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3581 default:
3582 unreachable("Invalid reduction operation");
3583 }
3584 }
3585
3586 fs_reg
3587 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3588 nir_intrinsic_instr *instr)
3589 {
3590 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3591
3592 if (stage_prog_data->binding_table.image_start > 0) {
3593 if (image.file == BRW_IMMEDIATE_VALUE) {
3594 image.d += stage_prog_data->binding_table.image_start;
3595 } else {
3596 bld.ADD(image, image,
3597 brw_imm_d(stage_prog_data->binding_table.image_start));
3598 }
3599 }
3600
3601 return bld.emit_uniformize(image);
3602 }
3603
3604 fs_reg
3605 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3606 nir_intrinsic_instr *instr)
3607 {
3608 /* SSBO stores are weird in that their index is in src[1] */
3609 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3610
3611 fs_reg surf_index;
3612 if (nir_src_is_const(instr->src[src])) {
3613 unsigned index = stage_prog_data->binding_table.ssbo_start +
3614 nir_src_as_uint(instr->src[src]);
3615 surf_index = brw_imm_ud(index);
3616 } else {
3617 surf_index = vgrf(glsl_type::uint_type);
3618 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3619 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3620 }
3621
3622 return bld.emit_uniformize(surf_index);
3623 }
3624
3625 static unsigned
3626 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3627 {
3628 switch (nir_intrinsic_image_dim(instr)) {
3629 case GLSL_SAMPLER_DIM_1D:
3630 return 1 + nir_intrinsic_image_array(instr);
3631 case GLSL_SAMPLER_DIM_2D:
3632 case GLSL_SAMPLER_DIM_RECT:
3633 return 2 + nir_intrinsic_image_array(instr);
3634 case GLSL_SAMPLER_DIM_3D:
3635 case GLSL_SAMPLER_DIM_CUBE:
3636 return 3;
3637 case GLSL_SAMPLER_DIM_BUF:
3638 return 1;
3639 case GLSL_SAMPLER_DIM_MS:
3640 return 2 + nir_intrinsic_image_array(instr);
3641 default:
3642 unreachable("Invalid image dimension");
3643 }
3644 }
3645
3646 void
3647 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3648 {
3649 fs_reg dest;
3650 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3651 dest = get_nir_dest(instr->dest);
3652
3653 switch (instr->intrinsic) {
3654 case nir_intrinsic_image_load:
3655 case nir_intrinsic_image_store:
3656 case nir_intrinsic_image_atomic_add:
3657 case nir_intrinsic_image_atomic_min:
3658 case nir_intrinsic_image_atomic_max:
3659 case nir_intrinsic_image_atomic_and:
3660 case nir_intrinsic_image_atomic_or:
3661 case nir_intrinsic_image_atomic_xor:
3662 case nir_intrinsic_image_atomic_exchange:
3663 case nir_intrinsic_image_atomic_comp_swap: {
3664 if (stage == MESA_SHADER_FRAGMENT &&
3665 instr->intrinsic != nir_intrinsic_image_load)
3666 brw_wm_prog_data(prog_data)->has_side_effects = true;
3667
3668 /* Get some metadata from the image intrinsic. */
3669 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3670 const GLenum format = nir_intrinsic_format(instr);
3671
3672 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3673 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3674 get_nir_image_intrinsic_image(bld, instr);
3675 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3676 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
3677 brw_imm_ud(image_intrinsic_coord_components(instr));
3678
3679 /* Emit an image load, store or atomic op. */
3680 if (instr->intrinsic == nir_intrinsic_image_load) {
3681 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3682 fs_inst *inst =
3683 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
3684 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3685 inst->size_written = instr->num_components * dispatch_width * 4;
3686 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3687 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3688 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
3689 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
3690 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3691 } else {
3692 int op;
3693 unsigned num_srcs = info->num_srcs;
3694
3695 switch (instr->intrinsic) {
3696 case nir_intrinsic_image_atomic_add:
3697 assert(num_srcs == 4);
3698
3699 op = get_op_for_atomic_add(instr, 3);
3700
3701 if (op != BRW_AOP_ADD)
3702 num_srcs = 3;
3703 break;
3704 case nir_intrinsic_image_atomic_min:
3705 assert(format == GL_R32UI || format == GL_R32I);
3706 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3707 break;
3708 case nir_intrinsic_image_atomic_max:
3709 assert(format == GL_R32UI || format == GL_R32I);
3710 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3711 break;
3712 case nir_intrinsic_image_atomic_and:
3713 op = BRW_AOP_AND;
3714 break;
3715 case nir_intrinsic_image_atomic_or:
3716 op = BRW_AOP_OR;
3717 break;
3718 case nir_intrinsic_image_atomic_xor:
3719 op = BRW_AOP_XOR;
3720 break;
3721 case nir_intrinsic_image_atomic_exchange:
3722 op = BRW_AOP_MOV;
3723 break;
3724 case nir_intrinsic_image_atomic_comp_swap:
3725 op = BRW_AOP_CMPWR;
3726 break;
3727 default:
3728 unreachable("Not reachable.");
3729 }
3730
3731 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
3732
3733 fs_reg data;
3734 if (num_srcs >= 4)
3735 data = get_nir_src(instr->src[3]);
3736 if (num_srcs >= 5) {
3737 fs_reg tmp = bld.vgrf(data.type, 2);
3738 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
3739 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
3740 data = tmp;
3741 }
3742 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3743
3744 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
3745 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3746 }
3747 break;
3748 }
3749
3750 case nir_intrinsic_image_size: {
3751 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3752 * into will handle the binding table index for us in the geneerator.
3753 */
3754 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3755 BRW_REGISTER_TYPE_UD);
3756 image = bld.emit_uniformize(image);
3757
3758 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3759 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
3760 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
3761 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
3762 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
3763
3764 /* Since the image size is always uniform, we can just emit a SIMD8
3765 * query instruction and splat the result out.
3766 */
3767 const fs_builder ubld = bld.exec_all().group(8, 0);
3768
3769 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3770 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
3771 tmp, srcs, ARRAY_SIZE(srcs));
3772 inst->size_written = 4 * REG_SIZE;
3773
3774 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3775 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3776 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3777 offset(retype(dest, tmp.type), bld, c),
3778 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3779 } else {
3780 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3781 component(offset(tmp, ubld, c), 0));
3782 }
3783 }
3784 break;
3785 }
3786
3787 case nir_intrinsic_image_load_raw_intel: {
3788 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3789 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3790 get_nir_image_intrinsic_image(bld, instr);
3791 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3792 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3793 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3794
3795 fs_inst *inst =
3796 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3797 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3798 inst->size_written = instr->num_components * dispatch_width * 4;
3799 break;
3800 }
3801
3802 case nir_intrinsic_image_store_raw_intel: {
3803 if (stage == MESA_SHADER_FRAGMENT)
3804 brw_wm_prog_data(prog_data)->has_side_effects = true;
3805
3806 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3807 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3808 get_nir_image_intrinsic_image(bld, instr);
3809 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3810 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
3811 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3812 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3813
3814 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3815 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3816 break;
3817 }
3818
3819 case nir_intrinsic_group_memory_barrier:
3820 case nir_intrinsic_memory_barrier_shared:
3821 case nir_intrinsic_memory_barrier_atomic_counter:
3822 case nir_intrinsic_memory_barrier_buffer:
3823 case nir_intrinsic_memory_barrier_image:
3824 case nir_intrinsic_memory_barrier: {
3825 const fs_builder ubld = bld.group(8, 0);
3826 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3827 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3828 ->size_written = 2 * REG_SIZE;
3829 break;
3830 }
3831
3832 case nir_intrinsic_shader_clock: {
3833 /* We cannot do anything if there is an event, so ignore it for now */
3834 const fs_reg shader_clock = get_timestamp(bld);
3835 const fs_reg srcs[] = { component(shader_clock, 0),
3836 component(shader_clock, 1) };
3837 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3838 break;
3839 }
3840
3841 case nir_intrinsic_image_samples:
3842 /* The driver does not support multi-sampled images. */
3843 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3844 break;
3845
3846 case nir_intrinsic_load_uniform: {
3847 /* Offsets are in bytes but they should always aligned to
3848 * the type size
3849 */
3850 assert(instr->const_index[0] % 4 == 0 ||
3851 instr->const_index[0] % type_sz(dest.type) == 0);
3852
3853 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3854
3855 if (nir_src_is_const(instr->src[0])) {
3856 unsigned load_offset = nir_src_as_uint(instr->src[0]);
3857 assert(load_offset % type_sz(dest.type) == 0);
3858 /* For 16-bit types we add the module of the const_index[0]
3859 * offset to access to not 32-bit aligned element
3860 */
3861 src.offset = load_offset + instr->const_index[0] % 4;
3862
3863 for (unsigned j = 0; j < instr->num_components; j++) {
3864 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3865 }
3866 } else {
3867 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3868 BRW_REGISTER_TYPE_UD);
3869
3870 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3871 * go past the end of the uniform. In order to keep the n'th
3872 * component from running past, we subtract off the size of all but
3873 * one component of the vector.
3874 */
3875 assert(instr->const_index[1] >=
3876 instr->num_components * (int) type_sz(dest.type));
3877 unsigned read_size = instr->const_index[1] -
3878 (instr->num_components - 1) * type_sz(dest.type);
3879
3880 bool supports_64bit_indirects =
3881 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
3882
3883 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
3884 for (unsigned j = 0; j < instr->num_components; j++) {
3885 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3886 offset(dest, bld, j), offset(src, bld, j),
3887 indirect, brw_imm_ud(read_size));
3888 }
3889 } else {
3890 const unsigned num_mov_indirects =
3891 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
3892 /* We read a little bit less per MOV INDIRECT, as they are now
3893 * 32-bits ones instead of 64-bit. Fix read_size then.
3894 */
3895 const unsigned read_size_32bit = read_size -
3896 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
3897 for (unsigned j = 0; j < instr->num_components; j++) {
3898 for (unsigned i = 0; i < num_mov_indirects; i++) {
3899 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3900 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
3901 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
3902 indirect, brw_imm_ud(read_size_32bit));
3903 }
3904 }
3905 }
3906 }
3907 break;
3908 }
3909
3910 case nir_intrinsic_load_ubo: {
3911 fs_reg surf_index;
3912 if (nir_src_is_const(instr->src[0])) {
3913 const unsigned index = stage_prog_data->binding_table.ubo_start +
3914 nir_src_as_uint(instr->src[0]);
3915 surf_index = brw_imm_ud(index);
3916 } else {
3917 /* The block index is not a constant. Evaluate the index expression
3918 * per-channel and add the base UBO index; we have to select a value
3919 * from any live channel.
3920 */
3921 surf_index = vgrf(glsl_type::uint_type);
3922 bld.ADD(surf_index, get_nir_src(instr->src[0]),
3923 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
3924 surf_index = bld.emit_uniformize(surf_index);
3925 }
3926
3927 if (!nir_src_is_const(instr->src[1])) {
3928 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
3929 BRW_REGISTER_TYPE_UD);
3930
3931 for (int i = 0; i < instr->num_components; i++)
3932 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
3933 base_offset, i * type_sz(dest.type));
3934 } else {
3935 /* Even if we are loading doubles, a pull constant load will load
3936 * a 32-bit vec4, so should only reserve vgrf space for that. If we
3937 * need to load a full dvec4 we will have to emit 2 loads. This is
3938 * similar to demote_pull_constants(), except that in that case we
3939 * see individual accesses to each component of the vector and then
3940 * we let CSE deal with duplicate loads. Here we see a vector access
3941 * and we have to split it if necessary.
3942 */
3943 const unsigned type_size = type_sz(dest.type);
3944 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
3945
3946 /* See if we've selected this as a push constant candidate */
3947 if (nir_src_is_const(instr->src[0])) {
3948 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
3949 const unsigned offset_256b = load_offset / 32;
3950
3951 fs_reg push_reg;
3952 for (int i = 0; i < 4; i++) {
3953 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3954 if (range->block == ubo_block &&
3955 offset_256b >= range->start &&
3956 offset_256b < range->start + range->length) {
3957
3958 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
3959 push_reg.offset = load_offset - 32 * range->start;
3960 break;
3961 }
3962 }
3963
3964 if (push_reg.file != BAD_FILE) {
3965 for (unsigned i = 0; i < instr->num_components; i++) {
3966 bld.MOV(offset(dest, bld, i),
3967 byte_offset(push_reg, i * type_size));
3968 }
3969 break;
3970 }
3971 }
3972
3973 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
3974 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
3975 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3976
3977 for (unsigned c = 0; c < instr->num_components;) {
3978 const unsigned base = load_offset + c * type_size;
3979 /* Number of usable components in the next block-aligned load. */
3980 const unsigned count = MIN2(instr->num_components - c,
3981 (block_sz - base % block_sz) / type_size);
3982
3983 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
3984 packed_consts, surf_index,
3985 brw_imm_ud(base & ~(block_sz - 1)));
3986
3987 const fs_reg consts =
3988 retype(byte_offset(packed_consts, base & (block_sz - 1)),
3989 dest.type);
3990
3991 for (unsigned d = 0; d < count; d++)
3992 bld.MOV(offset(dest, bld, c + d), component(consts, d));
3993
3994 c += count;
3995 }
3996 }
3997 break;
3998 }
3999
4000 case nir_intrinsic_load_global: {
4001 assert(devinfo->gen >= 8);
4002
4003 if (nir_intrinsic_align(instr) >= 4) {
4004 assert(nir_dest_bit_size(instr->dest) == 32);
4005 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4006 dest,
4007 get_nir_src(instr->src[0]), /* Address */
4008 fs_reg(), /* No source data */
4009 brw_imm_ud(instr->num_components));
4010 inst->size_written = instr->num_components *
4011 inst->dst.component_size(inst->exec_size);
4012 } else {
4013 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4014 assert(bit_size <= 32);
4015 assert(nir_dest_num_components(instr->dest) == 1);
4016 brw_reg_type data_type =
4017 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4018 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4019 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4020 tmp,
4021 get_nir_src(instr->src[0]), /* Address */
4022 fs_reg(), /* No source data */
4023 brw_imm_ud(bit_size));
4024 bld.MOV(retype(dest, data_type), tmp);
4025 }
4026 break;
4027 }
4028
4029 case nir_intrinsic_store_global:
4030 assert(devinfo->gen >= 8);
4031
4032 if (stage == MESA_SHADER_FRAGMENT)
4033 brw_wm_prog_data(prog_data)->has_side_effects = true;
4034
4035 if (nir_intrinsic_align(instr) >= 4) {
4036 assert(nir_src_bit_size(instr->src[0]) == 32);
4037 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4038 fs_reg(),
4039 get_nir_src(instr->src[1]), /* Address */
4040 get_nir_src(instr->src[0]), /* Data */
4041 brw_imm_ud(instr->num_components));
4042 } else {
4043 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4044 assert(bit_size <= 32);
4045 assert(nir_src_num_components(instr->src[0]) == 1);
4046 brw_reg_type data_type =
4047 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4048 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4049 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4050 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4051 fs_reg(),
4052 get_nir_src(instr->src[1]), /* Address */
4053 tmp, /* Data */
4054 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4055 }
4056 break;
4057
4058 case nir_intrinsic_global_atomic_add:
4059 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4060 break;
4061 case nir_intrinsic_global_atomic_imin:
4062 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4063 break;
4064 case nir_intrinsic_global_atomic_umin:
4065 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4066 break;
4067 case nir_intrinsic_global_atomic_imax:
4068 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4069 break;
4070 case nir_intrinsic_global_atomic_umax:
4071 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4072 break;
4073 case nir_intrinsic_global_atomic_and:
4074 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4075 break;
4076 case nir_intrinsic_global_atomic_or:
4077 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4078 break;
4079 case nir_intrinsic_global_atomic_xor:
4080 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4081 break;
4082 case nir_intrinsic_global_atomic_exchange:
4083 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4084 break;
4085 case nir_intrinsic_global_atomic_comp_swap:
4086 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4087 break;
4088 case nir_intrinsic_global_atomic_fmin:
4089 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4090 break;
4091 case nir_intrinsic_global_atomic_fmax:
4092 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4093 break;
4094 case nir_intrinsic_global_atomic_fcomp_swap:
4095 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4096 break;
4097
4098 case nir_intrinsic_load_ssbo: {
4099 assert(devinfo->gen >= 7);
4100
4101 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4102 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4103 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4104 get_nir_ssbo_intrinsic_index(bld, instr);
4105 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4106 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4107
4108 /* Make dest unsigned because that's what the temporary will be */
4109 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4110
4111 /* Read the vector */
4112 if (nir_intrinsic_align(instr) >= 4) {
4113 assert(nir_dest_bit_size(instr->dest) == 32);
4114 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4115 fs_inst *inst =
4116 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4117 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4118 inst->size_written = instr->num_components * dispatch_width * 4;
4119 } else {
4120 assert(nir_dest_bit_size(instr->dest) <= 32);
4121 assert(nir_dest_num_components(instr->dest) == 1);
4122 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4123
4124 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4125 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4126 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4127 bld.MOV(dest, read_result);
4128 }
4129 break;
4130 }
4131
4132 case nir_intrinsic_store_ssbo: {
4133 assert(devinfo->gen >= 7);
4134
4135 if (stage == MESA_SHADER_FRAGMENT)
4136 brw_wm_prog_data(prog_data)->has_side_effects = true;
4137
4138 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4139 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4140 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4141 get_nir_ssbo_intrinsic_index(bld, instr);
4142 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4143 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4144
4145 fs_reg data = get_nir_src(instr->src[0]);
4146 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4147
4148 assert(nir_intrinsic_write_mask(instr) ==
4149 (1u << instr->num_components) - 1);
4150 if (nir_intrinsic_align(instr) >= 4) {
4151 assert(nir_src_bit_size(instr->src[0]) == 32);
4152 assert(nir_src_num_components(instr->src[0]) <= 4);
4153 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4154 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4155 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4156 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4157 } else {
4158 assert(nir_src_bit_size(instr->src[0]) <= 32);
4159 assert(nir_src_num_components(instr->src[0]) == 1);
4160 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4161
4162 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4163 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4164
4165 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4166 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4167 }
4168 break;
4169 }
4170
4171 case nir_intrinsic_store_output: {
4172 fs_reg src = get_nir_src(instr->src[0]);
4173
4174 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4175 unsigned num_components = instr->num_components;
4176 unsigned first_component = nir_intrinsic_component(instr);
4177 if (nir_src_bit_size(instr->src[0]) == 64) {
4178 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4179 num_components *= 2;
4180 }
4181
4182 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4183 4 * store_offset), src.type);
4184 for (unsigned j = 0; j < num_components; j++) {
4185 bld.MOV(offset(new_dest, bld, j + first_component),
4186 offset(src, bld, j));
4187 }
4188 break;
4189 }
4190
4191 case nir_intrinsic_ssbo_atomic_add:
4192 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4193 break;
4194 case nir_intrinsic_ssbo_atomic_imin:
4195 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4196 break;
4197 case nir_intrinsic_ssbo_atomic_umin:
4198 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4199 break;
4200 case nir_intrinsic_ssbo_atomic_imax:
4201 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4202 break;
4203 case nir_intrinsic_ssbo_atomic_umax:
4204 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4205 break;
4206 case nir_intrinsic_ssbo_atomic_and:
4207 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4208 break;
4209 case nir_intrinsic_ssbo_atomic_or:
4210 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4211 break;
4212 case nir_intrinsic_ssbo_atomic_xor:
4213 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4214 break;
4215 case nir_intrinsic_ssbo_atomic_exchange:
4216 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4217 break;
4218 case nir_intrinsic_ssbo_atomic_comp_swap:
4219 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4220 break;
4221 case nir_intrinsic_ssbo_atomic_fmin:
4222 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4223 break;
4224 case nir_intrinsic_ssbo_atomic_fmax:
4225 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4226 break;
4227 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4228 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4229 break;
4230
4231 case nir_intrinsic_get_buffer_size: {
4232 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4233 nir_src_as_uint(instr->src[0]) : 0;
4234
4235 /* A resinfo's sampler message is used to get the buffer size. The
4236 * SIMD8's writeback message consists of four registers and SIMD16's
4237 * writeback message consists of 8 destination registers (two per each
4238 * component). Because we are only interested on the first channel of
4239 * the first returned component, where resinfo returns the buffer size
4240 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4241 * the dispatch width.
4242 */
4243 const fs_builder ubld = bld.exec_all().group(8, 0);
4244 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4245 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4246
4247 /* Set LOD = 0 */
4248 ubld.MOV(src_payload, brw_imm_d(0));
4249
4250 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4251 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4252 src_payload, brw_imm_ud(index));
4253 inst->header_size = 0;
4254 inst->mlen = 1;
4255 inst->size_written = 4 * REG_SIZE;
4256
4257 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4258 *
4259 * "Out-of-bounds checking is always performed at a DWord granularity. If
4260 * any part of the DWord is out-of-bounds then the whole DWord is
4261 * considered out-of-bounds."
4262 *
4263 * This implies that types with size smaller than 4-bytes need to be
4264 * padded if they don't complete the last dword of the buffer. But as we
4265 * need to maintain the original size we need to reverse the padding
4266 * calculation to return the correct size to know the number of elements
4267 * of an unsized array. As we stored in the last two bits of the surface
4268 * size the needed padding for the buffer, we calculate here the
4269 * original buffer_size reversing the surface_size calculation:
4270 *
4271 * surface_size = isl_align(buffer_size, 4) +
4272 * (isl_align(buffer_size) - buffer_size)
4273 *
4274 * buffer_size = surface_size & ~3 - surface_size & 3
4275 */
4276
4277 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4278 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4279 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4280
4281 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4282 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4283 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4284
4285 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4286 break;
4287 }
4288
4289 case nir_intrinsic_load_subgroup_invocation:
4290 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4291 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4292 break;
4293
4294 case nir_intrinsic_load_subgroup_eq_mask:
4295 case nir_intrinsic_load_subgroup_ge_mask:
4296 case nir_intrinsic_load_subgroup_gt_mask:
4297 case nir_intrinsic_load_subgroup_le_mask:
4298 case nir_intrinsic_load_subgroup_lt_mask:
4299 unreachable("not reached");
4300
4301 case nir_intrinsic_vote_any: {
4302 const fs_builder ubld = bld.exec_all().group(1, 0);
4303
4304 /* The any/all predicates do not consider channel enables. To prevent
4305 * dead channels from affecting the result, we initialize the flag with
4306 * with the identity value for the logical operation.
4307 */
4308 if (dispatch_width == 32) {
4309 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4310 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4311 brw_imm_ud(0));
4312 } else {
4313 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4314 }
4315 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4316
4317 /* For some reason, the any/all predicates don't work properly with
4318 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4319 * doesn't read the correct subset of the flag register and you end up
4320 * getting garbage in the second half. Work around this by using a pair
4321 * of 1-wide MOVs and scattering the result.
4322 */
4323 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4324 ubld.MOV(res1, brw_imm_d(0));
4325 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4326 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4327 BRW_PREDICATE_ALIGN1_ANY32H,
4328 ubld.MOV(res1, brw_imm_d(-1)));
4329
4330 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4331 break;
4332 }
4333 case nir_intrinsic_vote_all: {
4334 const fs_builder ubld = bld.exec_all().group(1, 0);
4335
4336 /* The any/all predicates do not consider channel enables. To prevent
4337 * dead channels from affecting the result, we initialize the flag with
4338 * with the identity value for the logical operation.
4339 */
4340 if (dispatch_width == 32) {
4341 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4342 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4343 brw_imm_ud(0xffffffff));
4344 } else {
4345 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4346 }
4347 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4348
4349 /* For some reason, the any/all predicates don't work properly with
4350 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4351 * doesn't read the correct subset of the flag register and you end up
4352 * getting garbage in the second half. Work around this by using a pair
4353 * of 1-wide MOVs and scattering the result.
4354 */
4355 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4356 ubld.MOV(res1, brw_imm_d(0));
4357 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4358 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4359 BRW_PREDICATE_ALIGN1_ALL32H,
4360 ubld.MOV(res1, brw_imm_d(-1)));
4361
4362 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4363 break;
4364 }
4365 case nir_intrinsic_vote_feq:
4366 case nir_intrinsic_vote_ieq: {
4367 fs_reg value = get_nir_src(instr->src[0]);
4368 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4369 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4370 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4371 }
4372
4373 fs_reg uniformized = bld.emit_uniformize(value);
4374 const fs_builder ubld = bld.exec_all().group(1, 0);
4375
4376 /* The any/all predicates do not consider channel enables. To prevent
4377 * dead channels from affecting the result, we initialize the flag with
4378 * with the identity value for the logical operation.
4379 */
4380 if (dispatch_width == 32) {
4381 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4382 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4383 brw_imm_ud(0xffffffff));
4384 } else {
4385 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4386 }
4387 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4388
4389 /* For some reason, the any/all predicates don't work properly with
4390 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4391 * doesn't read the correct subset of the flag register and you end up
4392 * getting garbage in the second half. Work around this by using a pair
4393 * of 1-wide MOVs and scattering the result.
4394 */
4395 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4396 ubld.MOV(res1, brw_imm_d(0));
4397 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4398 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4399 BRW_PREDICATE_ALIGN1_ALL32H,
4400 ubld.MOV(res1, brw_imm_d(-1)));
4401
4402 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4403 break;
4404 }
4405
4406 case nir_intrinsic_ballot: {
4407 const fs_reg value = retype(get_nir_src(instr->src[0]),
4408 BRW_REGISTER_TYPE_UD);
4409 struct brw_reg flag = brw_flag_reg(0, 0);
4410 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4411 * as f0.0. This is a problem for fragment programs as we currently use
4412 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4413 * programs yet so this isn't a problem. When we do, something will
4414 * have to change.
4415 */
4416 if (dispatch_width == 32)
4417 flag.type = BRW_REGISTER_TYPE_UD;
4418
4419 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4420 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4421
4422 if (instr->dest.ssa.bit_size > 32) {
4423 dest.type = BRW_REGISTER_TYPE_UQ;
4424 } else {
4425 dest.type = BRW_REGISTER_TYPE_UD;
4426 }
4427 bld.MOV(dest, flag);
4428 break;
4429 }
4430
4431 case nir_intrinsic_read_invocation: {
4432 const fs_reg value = get_nir_src(instr->src[0]);
4433 const fs_reg invocation = get_nir_src(instr->src[1]);
4434 fs_reg tmp = bld.vgrf(value.type);
4435
4436 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4437 bld.emit_uniformize(invocation));
4438
4439 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4440 break;
4441 }
4442
4443 case nir_intrinsic_read_first_invocation: {
4444 const fs_reg value = get_nir_src(instr->src[0]);
4445 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4446 break;
4447 }
4448
4449 case nir_intrinsic_shuffle: {
4450 const fs_reg value = get_nir_src(instr->src[0]);
4451 const fs_reg index = get_nir_src(instr->src[1]);
4452
4453 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4454 break;
4455 }
4456
4457 case nir_intrinsic_first_invocation: {
4458 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4459 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4460 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4461 fs_reg(component(tmp, 0)));
4462 break;
4463 }
4464
4465 case nir_intrinsic_quad_broadcast: {
4466 const fs_reg value = get_nir_src(instr->src[0]);
4467 const unsigned index = nir_src_as_uint(instr->src[1]);
4468
4469 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4470 value, brw_imm_ud(index), brw_imm_ud(4));
4471 break;
4472 }
4473
4474 case nir_intrinsic_quad_swap_horizontal: {
4475 const fs_reg value = get_nir_src(instr->src[0]);
4476 const fs_reg tmp = bld.vgrf(value.type);
4477 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4478
4479 const fs_reg src_left = horiz_stride(value, 2);
4480 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4481 const fs_reg tmp_left = horiz_stride(tmp, 2);
4482 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4483
4484 ubld.MOV(tmp_left, src_right);
4485 ubld.MOV(tmp_right, src_left);
4486
4487 bld.MOV(retype(dest, value.type), tmp);
4488 break;
4489 }
4490
4491 case nir_intrinsic_quad_swap_vertical: {
4492 const fs_reg value = get_nir_src(instr->src[0]);
4493 if (nir_src_bit_size(instr->src[0]) == 32) {
4494 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4495 const fs_reg tmp = bld.vgrf(value.type);
4496 const fs_builder ubld = bld.exec_all();
4497 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4498 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4499 bld.MOV(retype(dest, value.type), tmp);
4500 } else {
4501 /* For larger data types, we have to either emit dispatch_width many
4502 * MOVs or else fall back to doing indirects.
4503 */
4504 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4505 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4506 brw_imm_w(0x2));
4507 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4508 }
4509 break;
4510 }
4511
4512 case nir_intrinsic_quad_swap_diagonal: {
4513 const fs_reg value = get_nir_src(instr->src[0]);
4514 if (nir_src_bit_size(instr->src[0]) == 32) {
4515 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4516 const fs_reg tmp = bld.vgrf(value.type);
4517 const fs_builder ubld = bld.exec_all();
4518 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4519 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4520 bld.MOV(retype(dest, value.type), tmp);
4521 } else {
4522 /* For larger data types, we have to either emit dispatch_width many
4523 * MOVs or else fall back to doing indirects.
4524 */
4525 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4526 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4527 brw_imm_w(0x3));
4528 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4529 }
4530 break;
4531 }
4532
4533 case nir_intrinsic_reduce: {
4534 fs_reg src = get_nir_src(instr->src[0]);
4535 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4536 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4537 if (cluster_size == 0 || cluster_size > dispatch_width)
4538 cluster_size = dispatch_width;
4539
4540 /* Figure out the source type */
4541 src.type = brw_type_for_nir_type(devinfo,
4542 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4543 nir_src_bit_size(instr->src[0])));
4544
4545 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4546 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4547 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4548
4549 /* Set up a register for all of our scratching around and initialize it
4550 * to reduction operation's identity value.
4551 */
4552 fs_reg scan = bld.vgrf(src.type);
4553 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4554
4555 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4556
4557 dest.type = src.type;
4558 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4559 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4560 * the distance between clusters is at least 2 GRFs. In this case,
4561 * we don't need the weird striding of the CLUSTER_BROADCAST
4562 * instruction and can just do regular MOVs.
4563 */
4564 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4565 const unsigned groups =
4566 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4567 const unsigned group_size = dispatch_width / groups;
4568 for (unsigned i = 0; i < groups; i++) {
4569 const unsigned cluster = (i * group_size) / cluster_size;
4570 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4571 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4572 component(scan, comp));
4573 }
4574 } else {
4575 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4576 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4577 }
4578 break;
4579 }
4580
4581 case nir_intrinsic_inclusive_scan:
4582 case nir_intrinsic_exclusive_scan: {
4583 fs_reg src = get_nir_src(instr->src[0]);
4584 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4585
4586 /* Figure out the source type */
4587 src.type = brw_type_for_nir_type(devinfo,
4588 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4589 nir_src_bit_size(instr->src[0])));
4590
4591 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4592 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4593 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4594
4595 /* Set up a register for all of our scratching around and initialize it
4596 * to reduction operation's identity value.
4597 */
4598 fs_reg scan = bld.vgrf(src.type);
4599 const fs_builder allbld = bld.exec_all();
4600 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4601
4602 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4603 /* Exclusive scan is a bit harder because we have to do an annoying
4604 * shift of the contents before we can begin. To make things worse,
4605 * we can't do this with a normal stride; we have to use indirects.
4606 */
4607 fs_reg shifted = bld.vgrf(src.type);
4608 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4609 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4610 brw_imm_w(-1));
4611 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4612 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4613 scan = shifted;
4614 }
4615
4616 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4617
4618 bld.MOV(retype(dest, src.type), scan);
4619 break;
4620 }
4621
4622 case nir_intrinsic_begin_invocation_interlock: {
4623 const fs_builder ubld = bld.group(8, 0);
4624 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4625
4626 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4627 REG_SIZE;
4628
4629 break;
4630 }
4631
4632 case nir_intrinsic_end_invocation_interlock: {
4633 /* We don't need to do anything here */
4634 break;
4635 }
4636
4637 default:
4638 unreachable("unknown intrinsic");
4639 }
4640 }
4641
4642 void
4643 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4644 int op, nir_intrinsic_instr *instr)
4645 {
4646 if (stage == MESA_SHADER_FRAGMENT)
4647 brw_wm_prog_data(prog_data)->has_side_effects = true;
4648
4649 fs_reg dest;
4650 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4651 dest = get_nir_dest(instr->dest);
4652
4653 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4654 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4655 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4656 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4657 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4658
4659 fs_reg data;
4660 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4661 data = get_nir_src(instr->src[2]);
4662
4663 if (op == BRW_AOP_CMPWR) {
4664 fs_reg tmp = bld.vgrf(data.type, 2);
4665 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4666 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4667 data = tmp;
4668 }
4669 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4670
4671 /* Emit the actual atomic operation */
4672
4673 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4674 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4675 }
4676
4677 void
4678 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4679 int op, nir_intrinsic_instr *instr)
4680 {
4681 if (stage == MESA_SHADER_FRAGMENT)
4682 brw_wm_prog_data(prog_data)->has_side_effects = true;
4683
4684 fs_reg dest;
4685 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4686 dest = get_nir_dest(instr->dest);
4687
4688 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4689 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4690 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4691 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4692 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4693
4694 fs_reg data = get_nir_src(instr->src[2]);
4695 if (op == BRW_AOP_FCMPWR) {
4696 fs_reg tmp = bld.vgrf(data.type, 2);
4697 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4698 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4699 data = tmp;
4700 }
4701 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4702
4703 /* Emit the actual atomic operation */
4704
4705 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4706 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4707 }
4708
4709 void
4710 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4711 int op, nir_intrinsic_instr *instr)
4712 {
4713 fs_reg dest;
4714 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4715 dest = get_nir_dest(instr->dest);
4716
4717 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4718 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4719 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4720 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4721
4722 fs_reg data;
4723 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4724 data = get_nir_src(instr->src[1]);
4725 if (op == BRW_AOP_CMPWR) {
4726 fs_reg tmp = bld.vgrf(data.type, 2);
4727 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4728 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4729 data = tmp;
4730 }
4731 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4732
4733 /* Get the offset */
4734 if (nir_src_is_const(instr->src[0])) {
4735 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4736 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4737 } else {
4738 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4739 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4740 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4741 brw_imm_ud(instr->const_index[0]));
4742 }
4743
4744 /* Emit the actual atomic operation operation */
4745
4746 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4747 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4748 }
4749
4750 void
4751 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4752 int op, nir_intrinsic_instr *instr)
4753 {
4754 fs_reg dest;
4755 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4756 dest = get_nir_dest(instr->dest);
4757
4758 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4759 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4760 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4761 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4762
4763 fs_reg data = get_nir_src(instr->src[1]);
4764 if (op == BRW_AOP_FCMPWR) {
4765 fs_reg tmp = bld.vgrf(data.type, 2);
4766 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4767 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4768 data = tmp;
4769 }
4770 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4771
4772 /* Get the offset */
4773 if (nir_src_is_const(instr->src[0])) {
4774 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4775 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4776 } else {
4777 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4778 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4779 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4780 brw_imm_ud(instr->const_index[0]));
4781 }
4782
4783 /* Emit the actual atomic operation operation */
4784
4785 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4786 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4787 }
4788
4789 void
4790 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
4791 int op, nir_intrinsic_instr *instr)
4792 {
4793 if (stage == MESA_SHADER_FRAGMENT)
4794 brw_wm_prog_data(prog_data)->has_side_effects = true;
4795
4796 fs_reg dest;
4797 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4798 dest = get_nir_dest(instr->dest);
4799
4800 fs_reg addr = get_nir_src(instr->src[0]);
4801
4802 fs_reg data;
4803 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4804 data = get_nir_src(instr->src[1]);
4805
4806 if (op == BRW_AOP_CMPWR) {
4807 fs_reg tmp = bld.vgrf(data.type, 2);
4808 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4809 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4810 data = tmp;
4811 }
4812
4813 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4814 dest, addr, data, brw_imm_ud(op));
4815 }
4816
4817 void
4818 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
4819 int op, nir_intrinsic_instr *instr)
4820 {
4821 if (stage == MESA_SHADER_FRAGMENT)
4822 brw_wm_prog_data(prog_data)->has_side_effects = true;
4823
4824 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
4825 fs_reg dest = get_nir_dest(instr->dest);
4826
4827 fs_reg addr = get_nir_src(instr->src[0]);
4828
4829 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
4830 fs_reg data = get_nir_src(instr->src[1]);
4831
4832 if (op == BRW_AOP_FCMPWR) {
4833 fs_reg tmp = bld.vgrf(data.type, 2);
4834 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4835 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4836 data = tmp;
4837 }
4838
4839 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4840 dest, addr, data, brw_imm_ud(op));
4841 }
4842
4843 void
4844 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4845 {
4846 unsigned texture = instr->texture_index;
4847 unsigned sampler = instr->sampler_index;
4848
4849 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4850
4851 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4852 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4853
4854 int lod_components = 0;
4855
4856 /* The hardware requires a LOD for buffer textures */
4857 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4858 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4859
4860 uint32_t header_bits = 0;
4861 for (unsigned i = 0; i < instr->num_srcs; i++) {
4862 fs_reg src = get_nir_src(instr->src[i].src);
4863 switch (instr->src[i].src_type) {
4864 case nir_tex_src_bias:
4865 srcs[TEX_LOGICAL_SRC_LOD] =
4866 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4867 break;
4868 case nir_tex_src_comparator:
4869 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4870 break;
4871 case nir_tex_src_coord:
4872 switch (instr->op) {
4873 case nir_texop_txf:
4874 case nir_texop_txf_ms:
4875 case nir_texop_txf_ms_mcs:
4876 case nir_texop_samples_identical:
4877 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4878 break;
4879 default:
4880 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4881 break;
4882 }
4883 break;
4884 case nir_tex_src_ddx:
4885 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4886 lod_components = nir_tex_instr_src_size(instr, i);
4887 break;
4888 case nir_tex_src_ddy:
4889 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4890 break;
4891 case nir_tex_src_lod:
4892 switch (instr->op) {
4893 case nir_texop_txs:
4894 srcs[TEX_LOGICAL_SRC_LOD] =
4895 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4896 break;
4897 case nir_texop_txf:
4898 srcs[TEX_LOGICAL_SRC_LOD] =
4899 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4900 break;
4901 default:
4902 srcs[TEX_LOGICAL_SRC_LOD] =
4903 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4904 break;
4905 }
4906 break;
4907 case nir_tex_src_min_lod:
4908 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
4909 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4910 break;
4911 case nir_tex_src_ms_index:
4912 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4913 break;
4914
4915 case nir_tex_src_offset: {
4916 nir_const_value *const_offset =
4917 nir_src_as_const_value(instr->src[i].src);
4918 assert(nir_src_bit_size(instr->src[i].src) == 32);
4919 unsigned offset_bits = 0;
4920 if (const_offset &&
4921 brw_texture_offset(const_offset->i32,
4922 nir_tex_instr_src_size(instr, i),
4923 &offset_bits)) {
4924 header_bits |= offset_bits;
4925 } else {
4926 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
4927 retype(src, BRW_REGISTER_TYPE_D);
4928 }
4929 break;
4930 }
4931
4932 case nir_tex_src_projector:
4933 unreachable("should be lowered");
4934
4935 case nir_tex_src_texture_offset: {
4936 /* Emit code to evaluate the actual indexing expression */
4937 fs_reg tmp = vgrf(glsl_type::uint_type);
4938 bld.ADD(tmp, src, brw_imm_ud(texture));
4939 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4940 break;
4941 }
4942
4943 case nir_tex_src_sampler_offset: {
4944 /* Emit code to evaluate the actual indexing expression */
4945 fs_reg tmp = vgrf(glsl_type::uint_type);
4946 bld.ADD(tmp, src, brw_imm_ud(sampler));
4947 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4948 break;
4949 }
4950
4951 case nir_tex_src_ms_mcs:
4952 assert(instr->op == nir_texop_txf_ms);
4953 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
4954 break;
4955
4956 case nir_tex_src_plane: {
4957 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
4958 const uint32_t texture_index =
4959 instr->texture_index +
4960 stage_prog_data->binding_table.plane_start[plane] -
4961 stage_prog_data->binding_table.texture_start;
4962
4963 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
4964 break;
4965 }
4966
4967 default:
4968 unreachable("unknown texture source");
4969 }
4970 }
4971
4972 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
4973 (instr->op == nir_texop_txf_ms ||
4974 instr->op == nir_texop_samples_identical)) {
4975 if (devinfo->gen >= 7 &&
4976 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
4977 srcs[TEX_LOGICAL_SRC_MCS] =
4978 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
4979 instr->coord_components,
4980 srcs[TEX_LOGICAL_SRC_SURFACE]);
4981 } else {
4982 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
4983 }
4984 }
4985
4986 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
4987 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
4988
4989 enum opcode opcode;
4990 switch (instr->op) {
4991 case nir_texop_tex:
4992 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
4993 SHADER_OPCODE_TXL_LOGICAL);
4994 break;
4995 case nir_texop_txb:
4996 opcode = FS_OPCODE_TXB_LOGICAL;
4997 break;
4998 case nir_texop_txl:
4999 opcode = SHADER_OPCODE_TXL_LOGICAL;
5000 break;
5001 case nir_texop_txd:
5002 opcode = SHADER_OPCODE_TXD_LOGICAL;
5003 break;
5004 case nir_texop_txf:
5005 opcode = SHADER_OPCODE_TXF_LOGICAL;
5006 break;
5007 case nir_texop_txf_ms:
5008 if ((key_tex->msaa_16 & (1 << sampler)))
5009 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5010 else
5011 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5012 break;
5013 case nir_texop_txf_ms_mcs:
5014 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5015 break;
5016 case nir_texop_query_levels:
5017 case nir_texop_txs:
5018 opcode = SHADER_OPCODE_TXS_LOGICAL;
5019 break;
5020 case nir_texop_lod:
5021 opcode = SHADER_OPCODE_LOD_LOGICAL;
5022 break;
5023 case nir_texop_tg4:
5024 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5025 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5026 else
5027 opcode = SHADER_OPCODE_TG4_LOGICAL;
5028 break;
5029 case nir_texop_texture_samples:
5030 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5031 break;
5032 case nir_texop_samples_identical: {
5033 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5034
5035 /* If mcs is an immediate value, it means there is no MCS. In that case
5036 * just return false.
5037 */
5038 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5039 bld.MOV(dst, brw_imm_ud(0u));
5040 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5041 fs_reg tmp = vgrf(glsl_type::uint_type);
5042 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5043 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5044 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5045 } else {
5046 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5047 BRW_CONDITIONAL_EQ);
5048 }
5049 return;
5050 }
5051 default:
5052 unreachable("unknown texture opcode");
5053 }
5054
5055 if (instr->op == nir_texop_tg4) {
5056 if (instr->component == 1 &&
5057 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5058 /* gather4 sampler is broken for green channel on RG32F --
5059 * we must ask for blue instead.
5060 */
5061 header_bits |= 2 << 16;
5062 } else {
5063 header_bits |= instr->component << 16;
5064 }
5065 }
5066
5067 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5068 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5069 inst->offset = header_bits;
5070
5071 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5072 if (devinfo->gen >= 9 &&
5073 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5074 unsigned write_mask = instr->dest.is_ssa ?
5075 nir_ssa_def_components_read(&instr->dest.ssa):
5076 (1 << dest_size) - 1;
5077 assert(write_mask != 0); /* dead code should have been eliminated */
5078 inst->size_written = util_last_bit(write_mask) *
5079 inst->dst.component_size(inst->exec_size);
5080 } else {
5081 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5082 }
5083
5084 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5085 inst->shadow_compare = true;
5086
5087 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5088 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5089
5090 fs_reg nir_dest[4];
5091 for (unsigned i = 0; i < dest_size; i++)
5092 nir_dest[i] = offset(dst, bld, i);
5093
5094 if (instr->op == nir_texop_query_levels) {
5095 /* # levels is in .w */
5096 nir_dest[0] = offset(dst, bld, 3);
5097 } else if (instr->op == nir_texop_txs &&
5098 dest_size >= 3 && devinfo->gen < 7) {
5099 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5100 fs_reg depth = offset(dst, bld, 2);
5101 nir_dest[2] = vgrf(glsl_type::int_type);
5102 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5103 }
5104
5105 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5106 }
5107
5108 void
5109 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5110 {
5111 switch (instr->type) {
5112 case nir_jump_break:
5113 bld.emit(BRW_OPCODE_BREAK);
5114 break;
5115 case nir_jump_continue:
5116 bld.emit(BRW_OPCODE_CONTINUE);
5117 break;
5118 case nir_jump_return:
5119 default:
5120 unreachable("unknown jump");
5121 }
5122 }
5123
5124 /*
5125 * This helper takes a source register and un/shuffles it into the destination
5126 * register.
5127 *
5128 * If source type size is smaller than destination type size the operation
5129 * needed is a component shuffle. The opposite case would be an unshuffle. If
5130 * source/destination type size is equal a shuffle is done that would be
5131 * equivalent to a simple MOV.
5132 *
5133 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5134 * components .xyz 16-bit vector on SIMD8 would be.
5135 *
5136 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5137 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5138 *
5139 * This helper will return the following 2 32-bit components with the 16-bit
5140 * values shuffled:
5141 *
5142 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5143 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5144 *
5145 * For unshuffle, the example would be the opposite, a 64-bit type source
5146 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5147 * would be:
5148 *
5149 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5150 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5151 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5152 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5153 *
5154 * The returned result would be the following 4 32-bit components unshuffled:
5155 *
5156 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5157 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5158 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5159 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5160 *
5161 * - Source and destination register must not be overlapped.
5162 * - components units are measured in terms of the smaller type between
5163 * source and destination because we are un/shuffling the smaller
5164 * components from/into the bigger ones.
5165 * - first_component parameter allows skipping source components.
5166 */
5167 void
5168 shuffle_src_to_dst(const fs_builder &bld,
5169 const fs_reg &dst,
5170 const fs_reg &src,
5171 uint32_t first_component,
5172 uint32_t components)
5173 {
5174 if (type_sz(src.type) == type_sz(dst.type)) {
5175 assert(!regions_overlap(dst,
5176 type_sz(dst.type) * bld.dispatch_width() * components,
5177 offset(src, bld, first_component),
5178 type_sz(src.type) * bld.dispatch_width() * components));
5179 for (unsigned i = 0; i < components; i++) {
5180 bld.MOV(retype(offset(dst, bld, i), src.type),
5181 offset(src, bld, i + first_component));
5182 }
5183 } else if (type_sz(src.type) < type_sz(dst.type)) {
5184 /* Source is shuffled into destination */
5185 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5186 assert(!regions_overlap(dst,
5187 type_sz(dst.type) * bld.dispatch_width() *
5188 DIV_ROUND_UP(components, size_ratio),
5189 offset(src, bld, first_component),
5190 type_sz(src.type) * bld.dispatch_width() * components));
5191
5192 brw_reg_type shuffle_type =
5193 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5194 BRW_REGISTER_TYPE_D);
5195 for (unsigned i = 0; i < components; i++) {
5196 fs_reg shuffle_component_i =
5197 subscript(offset(dst, bld, i / size_ratio),
5198 shuffle_type, i % size_ratio);
5199 bld.MOV(shuffle_component_i,
5200 retype(offset(src, bld, i + first_component), shuffle_type));
5201 }
5202 } else {
5203 /* Source is unshuffled into destination */
5204 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5205 assert(!regions_overlap(dst,
5206 type_sz(dst.type) * bld.dispatch_width() * components,
5207 offset(src, bld, first_component / size_ratio),
5208 type_sz(src.type) * bld.dispatch_width() *
5209 DIV_ROUND_UP(components + (first_component % size_ratio),
5210 size_ratio)));
5211
5212 brw_reg_type shuffle_type =
5213 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5214 BRW_REGISTER_TYPE_D);
5215 for (unsigned i = 0; i < components; i++) {
5216 fs_reg shuffle_component_i =
5217 subscript(offset(src, bld, (first_component + i) / size_ratio),
5218 shuffle_type, (first_component + i) % size_ratio);
5219 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5220 shuffle_component_i);
5221 }
5222 }
5223 }
5224
5225 void
5226 shuffle_from_32bit_read(const fs_builder &bld,
5227 const fs_reg &dst,
5228 const fs_reg &src,
5229 uint32_t first_component,
5230 uint32_t components)
5231 {
5232 assert(type_sz(src.type) == 4);
5233
5234 /* This function takes components in units of the destination type while
5235 * shuffle_src_to_dst takes components in units of the smallest type
5236 */
5237 if (type_sz(dst.type) > 4) {
5238 assert(type_sz(dst.type) == 8);
5239 first_component *= 2;
5240 components *= 2;
5241 }
5242
5243 shuffle_src_to_dst(bld, dst, src, first_component, components);
5244 }
5245
5246 fs_reg
5247 shuffle_for_32bit_write(const fs_builder &bld,
5248 const fs_reg &src,
5249 uint32_t first_component,
5250 uint32_t components)
5251 {
5252 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5253 DIV_ROUND_UP (components * type_sz(src.type), 4));
5254 /* This function takes components in units of the source type while
5255 * shuffle_src_to_dst takes components in units of the smallest type
5256 */
5257 if (type_sz(src.type) > 4) {
5258 assert(type_sz(src.type) == 8);
5259 first_component *= 2;
5260 components *= 2;
5261 }
5262
5263 shuffle_src_to_dst(bld, dst, src, first_component, components);
5264
5265 return dst;
5266 }
5267
5268 fs_reg
5269 setup_imm_df(const fs_builder &bld, double v)
5270 {
5271 const struct gen_device_info *devinfo = bld.shader->devinfo;
5272 assert(devinfo->gen >= 7);
5273
5274 if (devinfo->gen >= 8)
5275 return brw_imm_df(v);
5276
5277 /* gen7.5 does not support DF immediates straighforward but the DIM
5278 * instruction allows to set the 64-bit immediate value.
5279 */
5280 if (devinfo->is_haswell) {
5281 const fs_builder ubld = bld.exec_all().group(1, 0);
5282 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5283 ubld.DIM(dst, brw_imm_df(v));
5284 return component(dst, 0);
5285 }
5286
5287 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5288 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5289 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5290 *
5291 * Alternatively, we could also produce a normal VGRF (without stride 0)
5292 * by writing to all the channels in the VGRF, however, that would hit the
5293 * gen7 bug where we have to split writes that span more than 1 register
5294 * into instructions with a width of 4 (otherwise the write to the second
5295 * register written runs into an execmask hardware bug) which isn't very
5296 * nice.
5297 */
5298 union {
5299 double d;
5300 struct {
5301 uint32_t i1;
5302 uint32_t i2;
5303 };
5304 } di;
5305
5306 di.d = v;
5307
5308 const fs_builder ubld = bld.exec_all().group(1, 0);
5309 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5310 ubld.MOV(tmp, brw_imm_ud(di.i1));
5311 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5312
5313 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5314 }
5315
5316 fs_reg
5317 setup_imm_b(const fs_builder &bld, int8_t v)
5318 {
5319 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5320 bld.MOV(tmp, brw_imm_w(v));
5321 return tmp;
5322 }
5323
5324 fs_reg
5325 setup_imm_ub(const fs_builder &bld, uint8_t v)
5326 {
5327 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5328 bld.MOV(tmp, brw_imm_uw(v));
5329 return tmp;
5330 }