bed1cd3b4926864c07a1384c7f2aff62df4b98a8
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 nir_foreach_variable(var, &nir->outputs) {
71 const int loc = var->data.driver_location;
72 if (outputs[loc].file == BAD_FILE) {
73 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s[loc]);
74 for (unsigned i = 0; i < vec4s[loc]; i++) {
75 outputs[loc + i] = offset(reg, bld, 4 * i);
76 }
77 }
78 }
79 }
80
81 void
82 fs_visitor::nir_setup_uniforms()
83 {
84 /* Only the first compile gets to set up uniforms. */
85 if (push_constant_loc) {
86 assert(pull_constant_loc);
87 return;
88 }
89
90 uniforms = nir->num_uniforms / 4;
91
92 if (stage == MESA_SHADER_COMPUTE) {
93 /* Add a uniform for the thread local id. It must be the last uniform
94 * on the list.
95 */
96 assert(uniforms == prog_data->nr_params);
97 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
98 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
99 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
100 }
101 }
102
103 static bool
104 emit_system_values_block(nir_block *block, fs_visitor *v)
105 {
106 fs_reg *reg;
107
108 nir_foreach_instr(instr, block) {
109 if (instr->type != nir_instr_type_intrinsic)
110 continue;
111
112 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
113 switch (intrin->intrinsic) {
114 case nir_intrinsic_load_vertex_id:
115 unreachable("should be lowered by lower_vertex_id().");
116
117 case nir_intrinsic_load_vertex_id_zero_base:
118 case nir_intrinsic_load_base_vertex:
119 case nir_intrinsic_load_instance_id:
120 case nir_intrinsic_load_base_instance:
121 case nir_intrinsic_load_draw_id:
122 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
123
124 case nir_intrinsic_load_invocation_id:
125 if (v->stage == MESA_SHADER_TESS_CTRL)
126 break;
127 assert(v->stage == MESA_SHADER_GEOMETRY);
128 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
129 if (reg->file == BAD_FILE) {
130 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
131 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
132 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
133 abld.SHR(iid, g1, brw_imm_ud(27u));
134 *reg = iid;
135 }
136 break;
137
138 case nir_intrinsic_load_sample_pos:
139 assert(v->stage == MESA_SHADER_FRAGMENT);
140 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
141 if (reg->file == BAD_FILE)
142 *reg = *v->emit_samplepos_setup();
143 break;
144
145 case nir_intrinsic_load_sample_id:
146 assert(v->stage == MESA_SHADER_FRAGMENT);
147 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
148 if (reg->file == BAD_FILE)
149 *reg = *v->emit_sampleid_setup();
150 break;
151
152 case nir_intrinsic_load_sample_mask_in:
153 assert(v->stage == MESA_SHADER_FRAGMENT);
154 assert(v->devinfo->gen >= 7);
155 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
156 if (reg->file == BAD_FILE)
157 *reg = *v->emit_samplemaskin_setup();
158 break;
159
160 case nir_intrinsic_load_work_group_id:
161 assert(v->stage == MESA_SHADER_COMPUTE);
162 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
163 if (reg->file == BAD_FILE)
164 *reg = *v->emit_cs_work_group_id_setup();
165 break;
166
167 case nir_intrinsic_load_helper_invocation:
168 assert(v->stage == MESA_SHADER_FRAGMENT);
169 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
170 if (reg->file == BAD_FILE) {
171 const fs_builder abld =
172 v->bld.annotate("gl_HelperInvocation", NULL);
173
174 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
175 * pixel mask is in g1.7 of the thread payload.
176 *
177 * We move the per-channel pixel enable bit to the low bit of each
178 * channel by shifting the byte containing the pixel mask by the
179 * vector immediate 0x76543210UV.
180 *
181 * The region of <1,8,0> reads only 1 byte (the pixel masks for
182 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
183 * masks for 2 and 3) in SIMD16.
184 */
185 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
186 abld.SHR(shifted,
187 stride(byte_offset(retype(brw_vec1_grf(1, 0),
188 BRW_REGISTER_TYPE_UB), 28),
189 1, 8, 0),
190 brw_imm_v(0x76543210));
191
192 /* A set bit in the pixel mask means the channel is enabled, but
193 * that is the opposite of gl_HelperInvocation so we need to invert
194 * the mask.
195 *
196 * The negate source-modifier bit of logical instructions on Gen8+
197 * performs 1's complement negation, so we can use that instead of
198 * a NOT instruction.
199 */
200 fs_reg inverted = negate(shifted);
201 if (v->devinfo->gen < 8) {
202 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
203 abld.NOT(inverted, shifted);
204 }
205
206 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
207 * with 1 and negating.
208 */
209 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
210 abld.AND(anded, inverted, brw_imm_uw(1));
211
212 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
213 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
214 *reg = dst;
215 }
216 break;
217
218 default:
219 break;
220 }
221 }
222
223 return true;
224 }
225
226 void
227 fs_visitor::nir_emit_system_values()
228 {
229 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
230 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
231 nir_system_values[i] = fs_reg();
232 }
233
234 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
235 * never end up using it.
236 */
237 {
238 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
239 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
240 reg = abld.vgrf(BRW_REGISTER_TYPE_W);
241
242 const fs_builder allbld8 = abld.group(8, 0).exec_all();
243 allbld8.MOV(reg, brw_imm_v(0x76543210));
244 if (dispatch_width > 8)
245 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
246 if (dispatch_width > 16) {
247 const fs_builder allbld16 = abld.group(16, 0).exec_all();
248 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
249 }
250 }
251
252 nir_foreach_function(function, nir) {
253 assert(strcmp(function->name, "main") == 0);
254 assert(function->impl);
255 nir_foreach_block(block, function->impl) {
256 emit_system_values_block(block, this);
257 }
258 }
259 }
260
261 /*
262 * Returns a type based on a reference_type (word, float, half-float) and a
263 * given bit_size.
264 *
265 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
266 *
267 * @FIXME: 64-bit return types are always DF on integer types to maintain
268 * compability with uses of DF previously to the introduction of int64
269 * support.
270 */
271 static brw_reg_type
272 brw_reg_type_from_bit_size(const unsigned bit_size,
273 const brw_reg_type reference_type)
274 {
275 switch(reference_type) {
276 case BRW_REGISTER_TYPE_HF:
277 case BRW_REGISTER_TYPE_F:
278 case BRW_REGISTER_TYPE_DF:
279 switch(bit_size) {
280 case 16:
281 return BRW_REGISTER_TYPE_HF;
282 case 32:
283 return BRW_REGISTER_TYPE_F;
284 case 64:
285 return BRW_REGISTER_TYPE_DF;
286 default:
287 unreachable("Invalid bit size");
288 }
289 case BRW_REGISTER_TYPE_W:
290 case BRW_REGISTER_TYPE_D:
291 case BRW_REGISTER_TYPE_Q:
292 switch(bit_size) {
293 case 16:
294 return BRW_REGISTER_TYPE_W;
295 case 32:
296 return BRW_REGISTER_TYPE_D;
297 case 64:
298 return BRW_REGISTER_TYPE_Q;
299 default:
300 unreachable("Invalid bit size");
301 }
302 case BRW_REGISTER_TYPE_UW:
303 case BRW_REGISTER_TYPE_UD:
304 case BRW_REGISTER_TYPE_UQ:
305 switch(bit_size) {
306 case 16:
307 return BRW_REGISTER_TYPE_UW;
308 case 32:
309 return BRW_REGISTER_TYPE_UD;
310 case 64:
311 return BRW_REGISTER_TYPE_UQ;
312 default:
313 unreachable("Invalid bit size");
314 }
315 default:
316 unreachable("Unknown type");
317 }
318 }
319
320 void
321 fs_visitor::nir_emit_impl(nir_function_impl *impl)
322 {
323 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
324 for (unsigned i = 0; i < impl->reg_alloc; i++) {
325 nir_locals[i] = fs_reg();
326 }
327
328 foreach_list_typed(nir_register, reg, node, &impl->registers) {
329 unsigned array_elems =
330 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
331 unsigned size = array_elems * reg->num_components;
332 const brw_reg_type reg_type =
333 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
334 nir_locals[reg->index] = bld.vgrf(reg_type, size);
335 }
336
337 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
338 impl->ssa_alloc);
339
340 nir_emit_cf_list(&impl->body);
341 }
342
343 void
344 fs_visitor::nir_emit_cf_list(exec_list *list)
345 {
346 exec_list_validate(list);
347 foreach_list_typed(nir_cf_node, node, node, list) {
348 switch (node->type) {
349 case nir_cf_node_if:
350 nir_emit_if(nir_cf_node_as_if(node));
351 break;
352
353 case nir_cf_node_loop:
354 nir_emit_loop(nir_cf_node_as_loop(node));
355 break;
356
357 case nir_cf_node_block:
358 nir_emit_block(nir_cf_node_as_block(node));
359 break;
360
361 default:
362 unreachable("Invalid CFG node block");
363 }
364 }
365 }
366
367 void
368 fs_visitor::nir_emit_if(nir_if *if_stmt)
369 {
370 /* first, put the condition into f0 */
371 fs_inst *inst = bld.MOV(bld.null_reg_d(),
372 retype(get_nir_src(if_stmt->condition),
373 BRW_REGISTER_TYPE_D));
374 inst->conditional_mod = BRW_CONDITIONAL_NZ;
375
376 bld.IF(BRW_PREDICATE_NORMAL);
377
378 nir_emit_cf_list(&if_stmt->then_list);
379
380 /* note: if the else is empty, dead CF elimination will remove it */
381 bld.emit(BRW_OPCODE_ELSE);
382
383 nir_emit_cf_list(&if_stmt->else_list);
384
385 bld.emit(BRW_OPCODE_ENDIF);
386 }
387
388 void
389 fs_visitor::nir_emit_loop(nir_loop *loop)
390 {
391 bld.emit(BRW_OPCODE_DO);
392
393 nir_emit_cf_list(&loop->body);
394
395 bld.emit(BRW_OPCODE_WHILE);
396 }
397
398 void
399 fs_visitor::nir_emit_block(nir_block *block)
400 {
401 nir_foreach_instr(instr, block) {
402 nir_emit_instr(instr);
403 }
404 }
405
406 void
407 fs_visitor::nir_emit_instr(nir_instr *instr)
408 {
409 const fs_builder abld = bld.annotate(NULL, instr);
410
411 switch (instr->type) {
412 case nir_instr_type_alu:
413 nir_emit_alu(abld, nir_instr_as_alu(instr));
414 break;
415
416 case nir_instr_type_intrinsic:
417 switch (stage) {
418 case MESA_SHADER_VERTEX:
419 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
420 break;
421 case MESA_SHADER_TESS_CTRL:
422 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
423 break;
424 case MESA_SHADER_TESS_EVAL:
425 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
426 break;
427 case MESA_SHADER_GEOMETRY:
428 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
429 break;
430 case MESA_SHADER_FRAGMENT:
431 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
432 break;
433 case MESA_SHADER_COMPUTE:
434 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
435 break;
436 default:
437 unreachable("unsupported shader stage");
438 }
439 break;
440
441 case nir_instr_type_tex:
442 nir_emit_texture(abld, nir_instr_as_tex(instr));
443 break;
444
445 case nir_instr_type_load_const:
446 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
447 break;
448
449 case nir_instr_type_ssa_undef:
450 /* We create a new VGRF for undefs on every use (by handling
451 * them in get_nir_src()), rather than for each definition.
452 * This helps register coalescing eliminate MOVs from undef.
453 */
454 break;
455
456 case nir_instr_type_jump:
457 nir_emit_jump(abld, nir_instr_as_jump(instr));
458 break;
459
460 default:
461 unreachable("unknown instruction type");
462 }
463 }
464
465 /**
466 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
467 * match instr.
468 */
469 bool
470 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
471 const fs_reg &result)
472 {
473 if (!instr->src[0].src.is_ssa ||
474 !instr->src[0].src.ssa->parent_instr)
475 return false;
476
477 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
478 return false;
479
480 nir_alu_instr *src0 =
481 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
482
483 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
484 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
485 return false;
486
487 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
488 assert(element != NULL);
489
490 /* Element type to extract.*/
491 const brw_reg_type type = brw_int_type(
492 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
493 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
494
495 fs_reg op0 = get_nir_src(src0->src[0].src);
496 op0.type = brw_type_for_nir_type(devinfo,
497 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
498 nir_src_bit_size(src0->src[0].src)));
499 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
500
501 set_saturate(instr->dest.saturate,
502 bld.MOV(result, subscript(op0, type, element->u32[0])));
503 return true;
504 }
505
506 bool
507 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
508 const fs_reg &result)
509 {
510 if (!instr->src[0].src.is_ssa ||
511 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
512 return false;
513
514 nir_intrinsic_instr *src0 =
515 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
516
517 if (src0->intrinsic != nir_intrinsic_load_front_face)
518 return false;
519
520 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
521 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
522 return false;
523
524 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
525 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
526 return false;
527
528 fs_reg tmp = vgrf(glsl_type::int_type);
529
530 if (devinfo->gen >= 6) {
531 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
532 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
533
534 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
535 *
536 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
537 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
538 *
539 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
540 *
541 * This negation looks like it's safe in practice, because bits 0:4 will
542 * surely be TRIANGLES
543 */
544
545 if (value1->f32[0] == -1.0f) {
546 g0.negate = true;
547 }
548
549 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
550 g0, brw_imm_uw(0x3f80));
551 } else {
552 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
553 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
554
555 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
556 *
557 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
558 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
559 *
560 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
561 *
562 * This negation looks like it's safe in practice, because bits 0:4 will
563 * surely be TRIANGLES
564 */
565
566 if (value1->f32[0] == -1.0f) {
567 g1_6.negate = true;
568 }
569
570 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
571 }
572 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
573
574 return true;
575 }
576
577 static void
578 emit_find_msb_using_lzd(const fs_builder &bld,
579 const fs_reg &result,
580 const fs_reg &src,
581 bool is_signed)
582 {
583 fs_inst *inst;
584 fs_reg temp = src;
585
586 if (is_signed) {
587 /* LZD of an absolute value source almost always does the right
588 * thing. There are two problem values:
589 *
590 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
591 * 0. However, findMSB(int(0x80000000)) == 30.
592 *
593 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
594 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
595 *
596 * For a value of zero or negative one, -1 will be returned.
597 *
598 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
599 * findMSB(-(1<<x)) should return x-1.
600 *
601 * For all negative number cases, including 0x80000000 and
602 * 0xffffffff, the correct value is obtained from LZD if instead of
603 * negating the (already negative) value the logical-not is used. A
604 * conditonal logical-not can be achieved in two instructions.
605 */
606 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
607
608 bld.ASR(temp, src, brw_imm_d(31));
609 bld.XOR(temp, temp, src);
610 }
611
612 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
613 retype(temp, BRW_REGISTER_TYPE_UD));
614
615 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
616 * from the LSB side. Subtract the result from 31 to convert the MSB
617 * count into an LSB count. If no bits are set, LZD will return 32.
618 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
619 */
620 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
621 inst->src[0].negate = true;
622 }
623
624 void
625 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
626 {
627 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
628 fs_inst *inst;
629
630 fs_reg result = get_nir_dest(instr->dest.dest);
631 result.type = brw_type_for_nir_type(devinfo,
632 (nir_alu_type)(nir_op_infos[instr->op].output_type |
633 nir_dest_bit_size(instr->dest.dest)));
634
635 fs_reg op[4];
636 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
637 op[i] = get_nir_src(instr->src[i].src);
638 op[i].type = brw_type_for_nir_type(devinfo,
639 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
640 nir_src_bit_size(instr->src[i].src)));
641 op[i].abs = instr->src[i].abs;
642 op[i].negate = instr->src[i].negate;
643 }
644
645 /* We get a bunch of mov's out of the from_ssa pass and they may still
646 * be vectorized. We'll handle them as a special-case. We'll also
647 * handle vecN here because it's basically the same thing.
648 */
649 switch (instr->op) {
650 case nir_op_imov:
651 case nir_op_fmov:
652 case nir_op_vec2:
653 case nir_op_vec3:
654 case nir_op_vec4: {
655 fs_reg temp = result;
656 bool need_extra_copy = false;
657 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
658 if (!instr->src[i].src.is_ssa &&
659 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
660 need_extra_copy = true;
661 temp = bld.vgrf(result.type, 4);
662 break;
663 }
664 }
665
666 for (unsigned i = 0; i < 4; i++) {
667 if (!(instr->dest.write_mask & (1 << i)))
668 continue;
669
670 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
671 inst = bld.MOV(offset(temp, bld, i),
672 offset(op[0], bld, instr->src[0].swizzle[i]));
673 } else {
674 inst = bld.MOV(offset(temp, bld, i),
675 offset(op[i], bld, instr->src[i].swizzle[0]));
676 }
677 inst->saturate = instr->dest.saturate;
678 }
679
680 /* In this case the source and destination registers were the same,
681 * so we need to insert an extra set of moves in order to deal with
682 * any swizzling.
683 */
684 if (need_extra_copy) {
685 for (unsigned i = 0; i < 4; i++) {
686 if (!(instr->dest.write_mask & (1 << i)))
687 continue;
688
689 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
690 }
691 }
692 return;
693 }
694 default:
695 break;
696 }
697
698 /* At this point, we have dealt with any instruction that operates on
699 * more than a single channel. Therefore, we can just adjust the source
700 * and destination registers for that channel and emit the instruction.
701 */
702 unsigned channel = 0;
703 if (nir_op_infos[instr->op].output_size == 0) {
704 /* Since NIR is doing the scalarizing for us, we should only ever see
705 * vectorized operations with a single channel.
706 */
707 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
708 channel = ffs(instr->dest.write_mask) - 1;
709
710 result = offset(result, bld, channel);
711 }
712
713 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
714 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
715 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
716 }
717
718 switch (instr->op) {
719 case nir_op_i2f32:
720 case nir_op_u2f32:
721 if (optimize_extract_to_float(instr, result))
722 return;
723 inst = bld.MOV(result, op[0]);
724 inst->saturate = instr->dest.saturate;
725 break;
726
727 case nir_op_f2f64:
728 case nir_op_f2i64:
729 case nir_op_f2u64:
730 case nir_op_i2f64:
731 case nir_op_i2i64:
732 case nir_op_u2f64:
733 case nir_op_u2u64:
734 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
735 *
736 * "When source or destination is 64b (...), regioning in Align1
737 * must follow these rules:
738 *
739 * 1. Source and destination horizontal stride must be aligned to
740 * the same qword.
741 * (...)"
742 *
743 * This means that 32-bit to 64-bit conversions need to have the 32-bit
744 * data elements aligned to 64-bit. This restriction does not apply to
745 * BDW and later.
746 */
747 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
748 nir_src_bit_size(instr->src[0].src) == 32 &&
749 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
750 fs_reg tmp = bld.vgrf(result.type, 1);
751 tmp = subscript(tmp, op[0].type, 0);
752 inst = bld.MOV(tmp, op[0]);
753 inst = bld.MOV(result, tmp);
754 inst->saturate = instr->dest.saturate;
755 break;
756 }
757 /* fallthrough */
758 case nir_op_f2f32:
759 case nir_op_f2i32:
760 case nir_op_f2u32:
761 case nir_op_i2i32:
762 case nir_op_u2u32:
763 inst = bld.MOV(result, op[0]);
764 inst->saturate = instr->dest.saturate;
765 break;
766
767 case nir_op_fsign: {
768 if (op[0].abs) {
769 /* Straightforward since the source can be assumed to be
770 * non-negative.
771 */
772 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
773 set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
774
775 } else if (type_sz(op[0].type) < 8) {
776 /* AND(val, 0x80000000) gives the sign bit.
777 *
778 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
779 * zero.
780 */
781 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
782
783 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
784 op[0].type = BRW_REGISTER_TYPE_UD;
785 result.type = BRW_REGISTER_TYPE_UD;
786 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
787
788 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
789 inst->predicate = BRW_PREDICATE_NORMAL;
790 if (instr->dest.saturate) {
791 inst = bld.MOV(result, result);
792 inst->saturate = true;
793 }
794 } else {
795 /* For doubles we do the same but we need to consider:
796 *
797 * - 2-src instructions can't operate with 64-bit immediates
798 * - The sign is encoded in the high 32-bit of each DF
799 * - We need to produce a DF result.
800 */
801
802 fs_reg zero = vgrf(glsl_type::double_type);
803 bld.MOV(zero, setup_imm_df(bld, 0.0));
804 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
805
806 bld.MOV(result, zero);
807
808 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
809 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
810 brw_imm_ud(0x80000000u));
811
812 set_predicate(BRW_PREDICATE_NORMAL,
813 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
814
815 if (instr->dest.saturate) {
816 inst = bld.MOV(result, result);
817 inst->saturate = true;
818 }
819 }
820 break;
821 }
822
823 case nir_op_isign:
824 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
825 * -> non-negative val generates 0x00000000.
826 * Predicated OR sets 1 if val is positive.
827 */
828 assert(nir_dest_bit_size(instr->dest.dest) < 64);
829 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
830 bld.ASR(result, op[0], brw_imm_d(31));
831 inst = bld.OR(result, result, brw_imm_d(1));
832 inst->predicate = BRW_PREDICATE_NORMAL;
833 break;
834
835 case nir_op_frcp:
836 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
837 inst->saturate = instr->dest.saturate;
838 break;
839
840 case nir_op_fexp2:
841 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
842 inst->saturate = instr->dest.saturate;
843 break;
844
845 case nir_op_flog2:
846 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
847 inst->saturate = instr->dest.saturate;
848 break;
849
850 case nir_op_fsin:
851 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
852 inst->saturate = instr->dest.saturate;
853 break;
854
855 case nir_op_fcos:
856 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
857 inst->saturate = instr->dest.saturate;
858 break;
859
860 case nir_op_fddx:
861 if (fs_key->high_quality_derivatives) {
862 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
863 } else {
864 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
865 }
866 inst->saturate = instr->dest.saturate;
867 break;
868 case nir_op_fddx_fine:
869 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
870 inst->saturate = instr->dest.saturate;
871 break;
872 case nir_op_fddx_coarse:
873 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
874 inst->saturate = instr->dest.saturate;
875 break;
876 case nir_op_fddy:
877 if (fs_key->high_quality_derivatives) {
878 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
879 } else {
880 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
881 }
882 inst->saturate = instr->dest.saturate;
883 break;
884 case nir_op_fddy_fine:
885 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
886 inst->saturate = instr->dest.saturate;
887 break;
888 case nir_op_fddy_coarse:
889 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
890 inst->saturate = instr->dest.saturate;
891 break;
892
893 case nir_op_iadd:
894 case nir_op_fadd:
895 inst = bld.ADD(result, op[0], op[1]);
896 inst->saturate = instr->dest.saturate;
897 break;
898
899 case nir_op_fmul:
900 inst = bld.MUL(result, op[0], op[1]);
901 inst->saturate = instr->dest.saturate;
902 break;
903
904 case nir_op_imul:
905 assert(nir_dest_bit_size(instr->dest.dest) < 64);
906 bld.MUL(result, op[0], op[1]);
907 break;
908
909 case nir_op_imul_high:
910 case nir_op_umul_high:
911 assert(nir_dest_bit_size(instr->dest.dest) < 64);
912 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
913 break;
914
915 case nir_op_idiv:
916 case nir_op_udiv:
917 assert(nir_dest_bit_size(instr->dest.dest) < 64);
918 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
919 break;
920
921 case nir_op_uadd_carry:
922 unreachable("Should have been lowered by carry_to_arith().");
923
924 case nir_op_usub_borrow:
925 unreachable("Should have been lowered by borrow_to_arith().");
926
927 case nir_op_umod:
928 case nir_op_irem:
929 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
930 * appears that our hardware just does the right thing for signed
931 * remainder.
932 */
933 assert(nir_dest_bit_size(instr->dest.dest) < 64);
934 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
935 break;
936
937 case nir_op_imod: {
938 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
939 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
940
941 /* Math instructions don't support conditional mod */
942 inst = bld.MOV(bld.null_reg_d(), result);
943 inst->conditional_mod = BRW_CONDITIONAL_NZ;
944
945 /* Now, we need to determine if signs of the sources are different.
946 * When we XOR the sources, the top bit is 0 if they are the same and 1
947 * if they are different. We can then use a conditional modifier to
948 * turn that into a predicate. This leads us to an XOR.l instruction.
949 *
950 * Technically, according to the PRM, you're not allowed to use .l on a
951 * XOR instruction. However, emperical experiments and Curro's reading
952 * of the simulator source both indicate that it's safe.
953 */
954 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
955 inst = bld.XOR(tmp, op[0], op[1]);
956 inst->predicate = BRW_PREDICATE_NORMAL;
957 inst->conditional_mod = BRW_CONDITIONAL_L;
958
959 /* If the result of the initial remainder operation is non-zero and the
960 * two sources have different signs, add in a copy of op[1] to get the
961 * final integer modulus value.
962 */
963 inst = bld.ADD(result, result, op[1]);
964 inst->predicate = BRW_PREDICATE_NORMAL;
965 break;
966 }
967
968 case nir_op_flt:
969 case nir_op_fge:
970 case nir_op_feq:
971 case nir_op_fne: {
972 fs_reg dest = result;
973 if (nir_src_bit_size(instr->src[0].src) > 32) {
974 dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
975 }
976 brw_conditional_mod cond;
977 switch (instr->op) {
978 case nir_op_flt:
979 cond = BRW_CONDITIONAL_L;
980 break;
981 case nir_op_fge:
982 cond = BRW_CONDITIONAL_GE;
983 break;
984 case nir_op_feq:
985 cond = BRW_CONDITIONAL_Z;
986 break;
987 case nir_op_fne:
988 cond = BRW_CONDITIONAL_NZ;
989 break;
990 default:
991 unreachable("bad opcode");
992 }
993 bld.CMP(dest, op[0], op[1], cond);
994 if (nir_src_bit_size(instr->src[0].src) > 32) {
995 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
996 }
997 break;
998 }
999
1000 case nir_op_ilt:
1001 case nir_op_ult:
1002 case nir_op_ige:
1003 case nir_op_uge:
1004 case nir_op_ieq:
1005 case nir_op_ine: {
1006 fs_reg dest = result;
1007 if (nir_src_bit_size(instr->src[0].src) > 32) {
1008 dest = bld.vgrf(BRW_REGISTER_TYPE_UQ, 1);
1009 }
1010
1011 brw_conditional_mod cond;
1012 switch (instr->op) {
1013 case nir_op_ilt:
1014 case nir_op_ult:
1015 cond = BRW_CONDITIONAL_L;
1016 break;
1017 case nir_op_ige:
1018 case nir_op_uge:
1019 cond = BRW_CONDITIONAL_GE;
1020 break;
1021 case nir_op_ieq:
1022 cond = BRW_CONDITIONAL_Z;
1023 break;
1024 case nir_op_ine:
1025 cond = BRW_CONDITIONAL_NZ;
1026 break;
1027 default:
1028 unreachable("bad opcode");
1029 }
1030 bld.CMP(dest, op[0], op[1], cond);
1031 if (nir_src_bit_size(instr->src[0].src) > 32) {
1032 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1033 }
1034 break;
1035 }
1036
1037 case nir_op_inot:
1038 if (devinfo->gen >= 8) {
1039 op[0] = resolve_source_modifiers(op[0]);
1040 }
1041 bld.NOT(result, op[0]);
1042 break;
1043 case nir_op_ixor:
1044 if (devinfo->gen >= 8) {
1045 op[0] = resolve_source_modifiers(op[0]);
1046 op[1] = resolve_source_modifiers(op[1]);
1047 }
1048 bld.XOR(result, op[0], op[1]);
1049 break;
1050 case nir_op_ior:
1051 if (devinfo->gen >= 8) {
1052 op[0] = resolve_source_modifiers(op[0]);
1053 op[1] = resolve_source_modifiers(op[1]);
1054 }
1055 bld.OR(result, op[0], op[1]);
1056 break;
1057 case nir_op_iand:
1058 if (devinfo->gen >= 8) {
1059 op[0] = resolve_source_modifiers(op[0]);
1060 op[1] = resolve_source_modifiers(op[1]);
1061 }
1062 bld.AND(result, op[0], op[1]);
1063 break;
1064
1065 case nir_op_fdot2:
1066 case nir_op_fdot3:
1067 case nir_op_fdot4:
1068 case nir_op_ball_fequal2:
1069 case nir_op_ball_iequal2:
1070 case nir_op_ball_fequal3:
1071 case nir_op_ball_iequal3:
1072 case nir_op_ball_fequal4:
1073 case nir_op_ball_iequal4:
1074 case nir_op_bany_fnequal2:
1075 case nir_op_bany_inequal2:
1076 case nir_op_bany_fnequal3:
1077 case nir_op_bany_inequal3:
1078 case nir_op_bany_fnequal4:
1079 case nir_op_bany_inequal4:
1080 unreachable("Lowered by nir_lower_alu_reductions");
1081
1082 case nir_op_fnoise1_1:
1083 case nir_op_fnoise1_2:
1084 case nir_op_fnoise1_3:
1085 case nir_op_fnoise1_4:
1086 case nir_op_fnoise2_1:
1087 case nir_op_fnoise2_2:
1088 case nir_op_fnoise2_3:
1089 case nir_op_fnoise2_4:
1090 case nir_op_fnoise3_1:
1091 case nir_op_fnoise3_2:
1092 case nir_op_fnoise3_3:
1093 case nir_op_fnoise3_4:
1094 case nir_op_fnoise4_1:
1095 case nir_op_fnoise4_2:
1096 case nir_op_fnoise4_3:
1097 case nir_op_fnoise4_4:
1098 unreachable("not reached: should be handled by lower_noise");
1099
1100 case nir_op_ldexp:
1101 unreachable("not reached: should be handled by ldexp_to_arith()");
1102
1103 case nir_op_fsqrt:
1104 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1105 inst->saturate = instr->dest.saturate;
1106 break;
1107
1108 case nir_op_frsq:
1109 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1110 inst->saturate = instr->dest.saturate;
1111 break;
1112
1113 case nir_op_b2i:
1114 case nir_op_b2f:
1115 bld.MOV(result, negate(op[0]));
1116 break;
1117
1118 case nir_op_i2b:
1119 case nir_op_f2b:
1120 if (nir_src_bit_size(instr->src[0].src) == 64) {
1121 /* two-argument instructions can't take 64-bit immediates */
1122 fs_reg zero;
1123 fs_reg tmp;
1124
1125 if (instr->op == nir_op_f2b) {
1126 zero = vgrf(glsl_type::double_type);
1127 tmp = vgrf(glsl_type::double_type);
1128 bld.MOV(zero, setup_imm_df(bld, 0.0));
1129 } else {
1130 zero = vgrf(glsl_type::int64_t_type);
1131 tmp = vgrf(glsl_type::int64_t_type);
1132 bld.MOV(zero, brw_imm_q(0));
1133 }
1134
1135 /* A SIMD16 execution needs to be split in two instructions, so use
1136 * a vgrf instead of the flag register as dst so instruction splitting
1137 * works
1138 */
1139 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1140 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1141 } else {
1142 if (instr->op == nir_op_f2b) {
1143 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
1144 } else {
1145 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1146 }
1147 }
1148 break;
1149
1150 case nir_op_ftrunc:
1151 inst = bld.RNDZ(result, op[0]);
1152 inst->saturate = instr->dest.saturate;
1153 break;
1154
1155 case nir_op_fceil: {
1156 op[0].negate = !op[0].negate;
1157 fs_reg temp = vgrf(glsl_type::float_type);
1158 bld.RNDD(temp, op[0]);
1159 temp.negate = true;
1160 inst = bld.MOV(result, temp);
1161 inst->saturate = instr->dest.saturate;
1162 break;
1163 }
1164 case nir_op_ffloor:
1165 inst = bld.RNDD(result, op[0]);
1166 inst->saturate = instr->dest.saturate;
1167 break;
1168 case nir_op_ffract:
1169 inst = bld.FRC(result, op[0]);
1170 inst->saturate = instr->dest.saturate;
1171 break;
1172 case nir_op_fround_even:
1173 inst = bld.RNDE(result, op[0]);
1174 inst->saturate = instr->dest.saturate;
1175 break;
1176
1177 case nir_op_fquantize2f16: {
1178 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1179 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1180 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1181
1182 /* The destination stride must be at least as big as the source stride. */
1183 tmp16.type = BRW_REGISTER_TYPE_W;
1184 tmp16.stride = 2;
1185
1186 /* Check for denormal */
1187 fs_reg abs_src0 = op[0];
1188 abs_src0.abs = true;
1189 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1190 BRW_CONDITIONAL_L);
1191 /* Get the appropriately signed zero */
1192 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1193 retype(op[0], BRW_REGISTER_TYPE_UD),
1194 brw_imm_ud(0x80000000));
1195 /* Do the actual F32 -> F16 -> F32 conversion */
1196 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1197 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1198 /* Select that or zero based on normal status */
1199 inst = bld.SEL(result, zero, tmp32);
1200 inst->predicate = BRW_PREDICATE_NORMAL;
1201 inst->saturate = instr->dest.saturate;
1202 break;
1203 }
1204
1205 case nir_op_imin:
1206 case nir_op_umin:
1207 case nir_op_fmin:
1208 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1209 inst->saturate = instr->dest.saturate;
1210 break;
1211
1212 case nir_op_imax:
1213 case nir_op_umax:
1214 case nir_op_fmax:
1215 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1216 inst->saturate = instr->dest.saturate;
1217 break;
1218
1219 case nir_op_pack_snorm_2x16:
1220 case nir_op_pack_snorm_4x8:
1221 case nir_op_pack_unorm_2x16:
1222 case nir_op_pack_unorm_4x8:
1223 case nir_op_unpack_snorm_2x16:
1224 case nir_op_unpack_snorm_4x8:
1225 case nir_op_unpack_unorm_2x16:
1226 case nir_op_unpack_unorm_4x8:
1227 case nir_op_unpack_half_2x16:
1228 case nir_op_pack_half_2x16:
1229 unreachable("not reached: should be handled by lower_packing_builtins");
1230
1231 case nir_op_unpack_half_2x16_split_x:
1232 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1233 inst->saturate = instr->dest.saturate;
1234 break;
1235 case nir_op_unpack_half_2x16_split_y:
1236 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1237 inst->saturate = instr->dest.saturate;
1238 break;
1239
1240 case nir_op_pack_64_2x32_split:
1241 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1242 break;
1243
1244 case nir_op_unpack_64_2x32_split_x:
1245 case nir_op_unpack_64_2x32_split_y: {
1246 if (instr->op == nir_op_unpack_64_2x32_split_x)
1247 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1248 else
1249 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1250 break;
1251 }
1252
1253 case nir_op_fpow:
1254 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1255 inst->saturate = instr->dest.saturate;
1256 break;
1257
1258 case nir_op_bitfield_reverse:
1259 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1260 bld.BFREV(result, op[0]);
1261 break;
1262
1263 case nir_op_bit_count:
1264 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1265 bld.CBIT(result, op[0]);
1266 break;
1267
1268 case nir_op_ufind_msb: {
1269 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1270 emit_find_msb_using_lzd(bld, result, op[0], false);
1271 break;
1272 }
1273
1274 case nir_op_ifind_msb: {
1275 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1276
1277 if (devinfo->gen < 7) {
1278 emit_find_msb_using_lzd(bld, result, op[0], true);
1279 } else {
1280 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1281
1282 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1283 * count from the LSB side. If FBH didn't return an error
1284 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1285 * count into an LSB count.
1286 */
1287 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1288
1289 inst = bld.ADD(result, result, brw_imm_d(31));
1290 inst->predicate = BRW_PREDICATE_NORMAL;
1291 inst->src[0].negate = true;
1292 }
1293 break;
1294 }
1295
1296 case nir_op_find_lsb:
1297 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1298
1299 if (devinfo->gen < 7) {
1300 fs_reg temp = vgrf(glsl_type::int_type);
1301
1302 /* (x & -x) generates a value that consists of only the LSB of x.
1303 * For all powers of 2, findMSB(y) == findLSB(y).
1304 */
1305 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1306 fs_reg negated_src = src;
1307
1308 /* One must be negated, and the other must be non-negated. It
1309 * doesn't matter which is which.
1310 */
1311 negated_src.negate = true;
1312 src.negate = false;
1313
1314 bld.AND(temp, src, negated_src);
1315 emit_find_msb_using_lzd(bld, result, temp, false);
1316 } else {
1317 bld.FBL(result, op[0]);
1318 }
1319 break;
1320
1321 case nir_op_ubitfield_extract:
1322 case nir_op_ibitfield_extract:
1323 unreachable("should have been lowered");
1324 case nir_op_ubfe:
1325 case nir_op_ibfe:
1326 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1327 bld.BFE(result, op[2], op[1], op[0]);
1328 break;
1329 case nir_op_bfm:
1330 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1331 bld.BFI1(result, op[0], op[1]);
1332 break;
1333 case nir_op_bfi:
1334 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1335 bld.BFI2(result, op[0], op[1], op[2]);
1336 break;
1337
1338 case nir_op_bitfield_insert:
1339 unreachable("not reached: should have been lowered");
1340
1341 case nir_op_ishl:
1342 case nir_op_ishr:
1343 case nir_op_ushr: {
1344 fs_reg shift_count = op[1];
1345
1346 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1347 if (op[1].file == VGRF &&
1348 (result.type == BRW_REGISTER_TYPE_Q ||
1349 result.type == BRW_REGISTER_TYPE_UQ)) {
1350 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1351 BRW_REGISTER_TYPE_UD);
1352 shift_count.stride = 2;
1353 bld.MOV(shift_count, op[1]);
1354 }
1355 }
1356
1357 switch (instr->op) {
1358 case nir_op_ishl:
1359 bld.SHL(result, op[0], shift_count);
1360 break;
1361 case nir_op_ishr:
1362 bld.ASR(result, op[0], shift_count);
1363 break;
1364 case nir_op_ushr:
1365 bld.SHR(result, op[0], shift_count);
1366 break;
1367 default:
1368 unreachable("not reached");
1369 }
1370 break;
1371 }
1372
1373 case nir_op_pack_half_2x16_split:
1374 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1375 break;
1376
1377 case nir_op_ffma:
1378 inst = bld.MAD(result, op[2], op[1], op[0]);
1379 inst->saturate = instr->dest.saturate;
1380 break;
1381
1382 case nir_op_flrp:
1383 inst = bld.LRP(result, op[0], op[1], op[2]);
1384 inst->saturate = instr->dest.saturate;
1385 break;
1386
1387 case nir_op_bcsel:
1388 if (optimize_frontfacing_ternary(instr, result))
1389 return;
1390
1391 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1392 inst = bld.SEL(result, op[1], op[2]);
1393 inst->predicate = BRW_PREDICATE_NORMAL;
1394 break;
1395
1396 case nir_op_extract_u8:
1397 case nir_op_extract_i8: {
1398 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1399 assert(byte != NULL);
1400
1401 /* The PRMs say:
1402 *
1403 * BDW+
1404 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1405 * Use two instructions and a word or DWord intermediate integer type.
1406 */
1407 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1408 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1409
1410 if (instr->op == nir_op_extract_i8) {
1411 /* If we need to sign extend, extract to a word first */
1412 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1413 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1414 bld.MOV(result, w_temp);
1415 } else {
1416 /* Otherwise use an AND with 0xff and a word type */
1417 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1418 }
1419 } else {
1420 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1421 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1422 }
1423 break;
1424 }
1425
1426 case nir_op_extract_u16:
1427 case nir_op_extract_i16: {
1428 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1429 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1430 assert(word != NULL);
1431 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1432 break;
1433 }
1434
1435 default:
1436 unreachable("unhandled instruction");
1437 }
1438
1439 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1440 * to sign extend the low bit to 0/~0
1441 */
1442 if (devinfo->gen <= 5 &&
1443 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1444 fs_reg masked = vgrf(glsl_type::int_type);
1445 bld.AND(masked, result, brw_imm_d(1));
1446 masked.negate = true;
1447 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1448 }
1449 }
1450
1451 void
1452 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1453 nir_load_const_instr *instr)
1454 {
1455 const brw_reg_type reg_type =
1456 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1457 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1458
1459 switch (instr->def.bit_size) {
1460 case 32:
1461 for (unsigned i = 0; i < instr->def.num_components; i++)
1462 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1463 break;
1464
1465 case 64:
1466 assert(devinfo->gen >= 7);
1467 if (devinfo->gen == 7) {
1468 /* We don't get 64-bit integer types until gen8 */
1469 for (unsigned i = 0; i < instr->def.num_components; i++) {
1470 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1471 setup_imm_df(bld, instr->value.f64[i]));
1472 }
1473 } else {
1474 for (unsigned i = 0; i < instr->def.num_components; i++)
1475 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1476 }
1477 break;
1478
1479 default:
1480 unreachable("Invalid bit size");
1481 }
1482
1483 nir_ssa_values[instr->def.index] = reg;
1484 }
1485
1486 fs_reg
1487 fs_visitor::get_nir_src(const nir_src &src)
1488 {
1489 fs_reg reg;
1490 if (src.is_ssa) {
1491 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1492 const brw_reg_type reg_type =
1493 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1494 reg = bld.vgrf(reg_type, src.ssa->num_components);
1495 } else {
1496 reg = nir_ssa_values[src.ssa->index];
1497 }
1498 } else {
1499 /* We don't handle indirects on locals */
1500 assert(src.reg.indirect == NULL);
1501 reg = offset(nir_locals[src.reg.reg->index], bld,
1502 src.reg.base_offset * src.reg.reg->num_components);
1503 }
1504
1505 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1506 /* The only 64-bit type available on gen7 is DF, so use that. */
1507 reg.type = BRW_REGISTER_TYPE_DF;
1508 } else {
1509 /* To avoid floating-point denorm flushing problems, set the type by
1510 * default to an integer type - instructions that need floating point
1511 * semantics will set this to F if they need to
1512 */
1513 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1514 BRW_REGISTER_TYPE_D);
1515 }
1516
1517 return reg;
1518 }
1519
1520 /**
1521 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1522 *
1523 * This function should not be called on any value which may be 64 bits.
1524 * We could theoretically support 64-bit on gen8+ but we choose not to
1525 * because it wouldn't work in general (no gen7 support) and there are
1526 * enough restrictions in 64-bit immediates that you can't take the return
1527 * value and treat it the same as the result of get_nir_src().
1528 */
1529 fs_reg
1530 fs_visitor::get_nir_src_imm(const nir_src &src)
1531 {
1532 nir_const_value *val = nir_src_as_const_value(src);
1533 assert(nir_src_bit_size(src) == 32);
1534 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1535 }
1536
1537 fs_reg
1538 fs_visitor::get_nir_dest(const nir_dest &dest)
1539 {
1540 if (dest.is_ssa) {
1541 const brw_reg_type reg_type =
1542 brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
1543 nir_ssa_values[dest.ssa.index] =
1544 bld.vgrf(reg_type, dest.ssa.num_components);
1545 return nir_ssa_values[dest.ssa.index];
1546 } else {
1547 /* We don't handle indirects on locals */
1548 assert(dest.reg.indirect == NULL);
1549 return offset(nir_locals[dest.reg.reg->index], bld,
1550 dest.reg.base_offset * dest.reg.reg->num_components);
1551 }
1552 }
1553
1554 fs_reg
1555 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1556 {
1557 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1558 BRW_REGISTER_TYPE_UD);
1559 fs_reg indirect;
1560 unsigned indirect_max = 0;
1561
1562 for (const nir_deref *tail = &deref->deref; tail->child;
1563 tail = tail->child) {
1564 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1565 assert(tail->child->deref_type == nir_deref_type_array);
1566 const unsigned size = glsl_get_length(tail->type);
1567 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1568 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1569 image = offset(image, bld, base * element_size);
1570
1571 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1572 fs_reg tmp = vgrf(glsl_type::uint_type);
1573
1574 /* Accessing an invalid surface index with the dataport can result
1575 * in a hang. According to the spec "if the index used to
1576 * select an individual element is negative or greater than or
1577 * equal to the size of the array, the results of the operation
1578 * are undefined but may not lead to termination" -- which is one
1579 * of the possible outcomes of the hang. Clamp the index to
1580 * prevent access outside of the array bounds.
1581 */
1582 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1583 BRW_REGISTER_TYPE_UD),
1584 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1585
1586 indirect_max += element_size * (tail->type->length - 1);
1587
1588 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1589 if (indirect.file == BAD_FILE) {
1590 indirect = tmp;
1591 } else {
1592 bld.ADD(indirect, indirect, tmp);
1593 }
1594 }
1595 }
1596
1597 if (indirect.file == BAD_FILE) {
1598 return image;
1599 } else {
1600 /* Emit a pile of MOVs to load the uniform into a temporary. The
1601 * dead-code elimination pass will get rid of what we don't use.
1602 */
1603 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1604 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1605 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1606 offset(tmp, bld, j), offset(image, bld, j),
1607 indirect, brw_imm_ud((indirect_max + 1) * 4));
1608 }
1609 return tmp;
1610 }
1611 }
1612
1613 void
1614 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1615 unsigned wr_mask)
1616 {
1617 for (unsigned i = 0; i < 4; i++) {
1618 if (!((wr_mask >> i) & 1))
1619 continue;
1620
1621 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1622 new_inst->dst = offset(new_inst->dst, bld, i);
1623 for (unsigned j = 0; j < new_inst->sources; j++)
1624 if (new_inst->src[j].file == VGRF)
1625 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1626
1627 bld.emit(new_inst);
1628 }
1629 }
1630
1631 /**
1632 * Get the matching channel register datatype for an image intrinsic of the
1633 * specified GLSL image type.
1634 */
1635 static brw_reg_type
1636 get_image_base_type(const glsl_type *type)
1637 {
1638 switch ((glsl_base_type)type->sampled_type) {
1639 case GLSL_TYPE_UINT:
1640 return BRW_REGISTER_TYPE_UD;
1641 case GLSL_TYPE_INT:
1642 return BRW_REGISTER_TYPE_D;
1643 case GLSL_TYPE_FLOAT:
1644 return BRW_REGISTER_TYPE_F;
1645 default:
1646 unreachable("Not reached.");
1647 }
1648 }
1649
1650 /**
1651 * Get the appropriate atomic op for an image atomic intrinsic.
1652 */
1653 static unsigned
1654 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1655 {
1656 switch (op) {
1657 case nir_intrinsic_image_atomic_add:
1658 return BRW_AOP_ADD;
1659 case nir_intrinsic_image_atomic_min:
1660 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1661 BRW_AOP_IMIN : BRW_AOP_UMIN);
1662 case nir_intrinsic_image_atomic_max:
1663 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1664 BRW_AOP_IMAX : BRW_AOP_UMAX);
1665 case nir_intrinsic_image_atomic_and:
1666 return BRW_AOP_AND;
1667 case nir_intrinsic_image_atomic_or:
1668 return BRW_AOP_OR;
1669 case nir_intrinsic_image_atomic_xor:
1670 return BRW_AOP_XOR;
1671 case nir_intrinsic_image_atomic_exchange:
1672 return BRW_AOP_MOV;
1673 case nir_intrinsic_image_atomic_comp_swap:
1674 return BRW_AOP_CMPWR;
1675 default:
1676 unreachable("Not reachable.");
1677 }
1678 }
1679
1680 static fs_inst *
1681 emit_pixel_interpolater_send(const fs_builder &bld,
1682 enum opcode opcode,
1683 const fs_reg &dst,
1684 const fs_reg &src,
1685 const fs_reg &desc,
1686 glsl_interp_mode interpolation)
1687 {
1688 struct brw_wm_prog_data *wm_prog_data =
1689 brw_wm_prog_data(bld.shader->stage_prog_data);
1690 fs_inst *inst;
1691 fs_reg payload;
1692 int mlen;
1693
1694 if (src.file == BAD_FILE) {
1695 /* Dummy payload */
1696 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1697 mlen = 1;
1698 } else {
1699 payload = src;
1700 mlen = 2 * bld.dispatch_width() / 8;
1701 }
1702
1703 inst = bld.emit(opcode, dst, payload, desc);
1704 inst->mlen = mlen;
1705 /* 2 floats per slot returned */
1706 inst->size_written = 2 * dst.component_size(inst->exec_size);
1707 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1708
1709 wm_prog_data->pulls_bary = true;
1710
1711 return inst;
1712 }
1713
1714 /**
1715 * Computes 1 << x, given a D/UD register containing some value x.
1716 */
1717 static fs_reg
1718 intexp2(const fs_builder &bld, const fs_reg &x)
1719 {
1720 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1721
1722 fs_reg result = bld.vgrf(x.type, 1);
1723 fs_reg one = bld.vgrf(x.type, 1);
1724
1725 bld.MOV(one, retype(brw_imm_d(1), one.type));
1726 bld.SHL(result, one, x);
1727 return result;
1728 }
1729
1730 void
1731 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1732 {
1733 assert(stage == MESA_SHADER_GEOMETRY);
1734
1735 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1736
1737 if (gs_compile->control_data_header_size_bits == 0)
1738 return;
1739
1740 /* We can only do EndPrimitive() functionality when the control data
1741 * consists of cut bits. Fortunately, the only time it isn't is when the
1742 * output type is points, in which case EndPrimitive() is a no-op.
1743 */
1744 if (gs_prog_data->control_data_format !=
1745 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1746 return;
1747 }
1748
1749 /* Cut bits use one bit per vertex. */
1750 assert(gs_compile->control_data_bits_per_vertex == 1);
1751
1752 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1753 vertex_count.type = BRW_REGISTER_TYPE_UD;
1754
1755 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1756 * vertex n, 0 otherwise. So all we need to do here is mark bit
1757 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1758 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1759 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1760 *
1761 * Note that if EndPrimitive() is called before emitting any vertices, this
1762 * will cause us to set bit 31 of the control_data_bits register to 1.
1763 * That's fine because:
1764 *
1765 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1766 * output, so the hardware will ignore cut bit 31.
1767 *
1768 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1769 * last vertex, so setting cut bit 31 has no effect (since the primitive
1770 * is automatically ended when the GS terminates).
1771 *
1772 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1773 * control_data_bits register to 0 when the first vertex is emitted.
1774 */
1775
1776 const fs_builder abld = bld.annotate("end primitive");
1777
1778 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1779 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1780 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1781 fs_reg mask = intexp2(abld, prev_count);
1782 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1783 * attention to the lower 5 bits of its second source argument, so on this
1784 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1785 * ((vertex_count - 1) % 32).
1786 */
1787 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1788 }
1789
1790 void
1791 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1792 {
1793 assert(stage == MESA_SHADER_GEOMETRY);
1794 assert(gs_compile->control_data_bits_per_vertex != 0);
1795
1796 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1797
1798 const fs_builder abld = bld.annotate("emit control data bits");
1799 const fs_builder fwa_bld = bld.exec_all();
1800
1801 /* We use a single UD register to accumulate control data bits (32 bits
1802 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1803 * at a time.
1804 *
1805 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1806 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1807 * use the Channel Mask phase to enable/disable which DWord within that
1808 * group to write. (Remember, different SIMD8 channels may have emitted
1809 * different numbers of vertices, so we may need per-slot offsets.)
1810 *
1811 * Channel masking presents an annoying problem: we may have to replicate
1812 * the data up to 4 times:
1813 *
1814 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1815 *
1816 * To avoid penalizing shaders that emit a small number of vertices, we
1817 * can avoid these sometimes: if the size of the control data header is
1818 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1819 * land in the same 128-bit group, so we can skip per-slot offsets.
1820 *
1821 * Similarly, if the control data header is <= 32 bits, there is only one
1822 * DWord, so we can skip channel masks.
1823 */
1824 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1825
1826 fs_reg channel_mask, per_slot_offset;
1827
1828 if (gs_compile->control_data_header_size_bits > 32) {
1829 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1830 channel_mask = vgrf(glsl_type::uint_type);
1831 }
1832
1833 if (gs_compile->control_data_header_size_bits > 128) {
1834 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1835 per_slot_offset = vgrf(glsl_type::uint_type);
1836 }
1837
1838 /* Figure out which DWord we're trying to write to using the formula:
1839 *
1840 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1841 *
1842 * Since bits_per_vertex is a power of two, and is known at compile
1843 * time, this can be optimized to:
1844 *
1845 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1846 */
1847 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1848 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1849 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1850 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1851 unsigned log2_bits_per_vertex =
1852 util_last_bit(gs_compile->control_data_bits_per_vertex);
1853 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1854
1855 if (per_slot_offset.file != BAD_FILE) {
1856 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1857 * the appropriate OWord within the control data header.
1858 */
1859 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1860 }
1861
1862 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1863 * write to the appropriate DWORD within the OWORD.
1864 */
1865 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1866 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1867 channel_mask = intexp2(fwa_bld, channel);
1868 /* Then the channel masks need to be in bits 23:16. */
1869 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1870 }
1871
1872 /* Store the control data bits in the message payload and send it. */
1873 int mlen = 2;
1874 if (channel_mask.file != BAD_FILE)
1875 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1876 if (per_slot_offset.file != BAD_FILE)
1877 mlen++;
1878
1879 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1880 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1881 int i = 0;
1882 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1883 if (per_slot_offset.file != BAD_FILE)
1884 sources[i++] = per_slot_offset;
1885 if (channel_mask.file != BAD_FILE)
1886 sources[i++] = channel_mask;
1887 while (i < mlen) {
1888 sources[i++] = this->control_data_bits;
1889 }
1890
1891 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1892 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1893 inst->mlen = mlen;
1894 /* We need to increment Global Offset by 256-bits to make room for
1895 * Broadwell's extra "Vertex Count" payload at the beginning of the
1896 * URB entry. Since this is an OWord message, Global Offset is counted
1897 * in 128-bit units, so we must set it to 2.
1898 */
1899 if (gs_prog_data->static_vertex_count == -1)
1900 inst->offset = 2;
1901 }
1902
1903 void
1904 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1905 unsigned stream_id)
1906 {
1907 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1908
1909 /* Note: we are calling this *before* increasing vertex_count, so
1910 * this->vertex_count == vertex_count - 1 in the formula above.
1911 */
1912
1913 /* Stream mode uses 2 bits per vertex */
1914 assert(gs_compile->control_data_bits_per_vertex == 2);
1915
1916 /* Must be a valid stream */
1917 assert(stream_id < MAX_VERTEX_STREAMS);
1918
1919 /* Control data bits are initialized to 0 so we don't have to set any
1920 * bits when sending vertices to stream 0.
1921 */
1922 if (stream_id == 0)
1923 return;
1924
1925 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1926
1927 /* reg::sid = stream_id */
1928 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1929 abld.MOV(sid, brw_imm_ud(stream_id));
1930
1931 /* reg:shift_count = 2 * (vertex_count - 1) */
1932 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1933 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1934
1935 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1936 * attention to the lower 5 bits of its second source argument, so on this
1937 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1938 * stream_id << ((2 * (vertex_count - 1)) % 32).
1939 */
1940 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1941 abld.SHL(mask, sid, shift_count);
1942 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1943 }
1944
1945 void
1946 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1947 unsigned stream_id)
1948 {
1949 assert(stage == MESA_SHADER_GEOMETRY);
1950
1951 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1952
1953 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1954 vertex_count.type = BRW_REGISTER_TYPE_UD;
1955
1956 /* Haswell and later hardware ignores the "Render Stream Select" bits
1957 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1958 * and instead sends all primitives down the pipeline for rasterization.
1959 * If the SOL stage is enabled, "Render Stream Select" is honored and
1960 * primitives bound to non-zero streams are discarded after stream output.
1961 *
1962 * Since the only purpose of primives sent to non-zero streams is to
1963 * be recorded by transform feedback, we can simply discard all geometry
1964 * bound to these streams when transform feedback is disabled.
1965 */
1966 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1967 return;
1968
1969 /* If we're outputting 32 control data bits or less, then we can wait
1970 * until the shader is over to output them all. Otherwise we need to
1971 * output them as we go. Now is the time to do it, since we're about to
1972 * output the vertex_count'th vertex, so it's guaranteed that the
1973 * control data bits associated with the (vertex_count - 1)th vertex are
1974 * correct.
1975 */
1976 if (gs_compile->control_data_header_size_bits > 32) {
1977 const fs_builder abld =
1978 bld.annotate("emit vertex: emit control data bits");
1979
1980 /* Only emit control data bits if we've finished accumulating a batch
1981 * of 32 bits. This is the case when:
1982 *
1983 * (vertex_count * bits_per_vertex) % 32 == 0
1984 *
1985 * (in other words, when the last 5 bits of vertex_count *
1986 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1987 * integer n (which is always the case, since bits_per_vertex is
1988 * always 1 or 2), this is equivalent to requiring that the last 5-n
1989 * bits of vertex_count are 0:
1990 *
1991 * vertex_count & (2^(5-n) - 1) == 0
1992 *
1993 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1994 * equivalent to:
1995 *
1996 * vertex_count & (32 / bits_per_vertex - 1) == 0
1997 *
1998 * TODO: If vertex_count is an immediate, we could do some of this math
1999 * at compile time...
2000 */
2001 fs_inst *inst =
2002 abld.AND(bld.null_reg_d(), vertex_count,
2003 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2004 inst->conditional_mod = BRW_CONDITIONAL_Z;
2005
2006 abld.IF(BRW_PREDICATE_NORMAL);
2007 /* If vertex_count is 0, then no control data bits have been
2008 * accumulated yet, so we can skip emitting them.
2009 */
2010 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2011 BRW_CONDITIONAL_NEQ);
2012 abld.IF(BRW_PREDICATE_NORMAL);
2013 emit_gs_control_data_bits(vertex_count);
2014 abld.emit(BRW_OPCODE_ENDIF);
2015
2016 /* Reset control_data_bits to 0 so we can start accumulating a new
2017 * batch.
2018 *
2019 * Note: in the case where vertex_count == 0, this neutralizes the
2020 * effect of any call to EndPrimitive() that the shader may have
2021 * made before outputting its first vertex.
2022 */
2023 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2024 inst->force_writemask_all = true;
2025 abld.emit(BRW_OPCODE_ENDIF);
2026 }
2027
2028 emit_urb_writes(vertex_count);
2029
2030 /* In stream mode we have to set control data bits for all vertices
2031 * unless we have disabled control data bits completely (which we do
2032 * do for GL_POINTS outputs that don't use streams).
2033 */
2034 if (gs_compile->control_data_header_size_bits > 0 &&
2035 gs_prog_data->control_data_format ==
2036 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2037 set_gs_stream_control_data_bits(vertex_count, stream_id);
2038 }
2039 }
2040
2041 void
2042 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2043 const nir_src &vertex_src,
2044 unsigned base_offset,
2045 const nir_src &offset_src,
2046 unsigned num_components,
2047 unsigned first_component)
2048 {
2049 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2050
2051 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2052 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2053 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2054
2055 /* TODO: figure out push input layout for invocations == 1 */
2056 /* TODO: make this work with 64-bit inputs */
2057 if (gs_prog_data->invocations == 1 &&
2058 type_sz(dst.type) <= 4 &&
2059 offset_const != NULL && vertex_const != NULL &&
2060 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2061 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2062 vertex_const->u32[0] * push_reg_count;
2063 for (unsigned i = 0; i < num_components; i++) {
2064 bld.MOV(offset(dst, bld, i),
2065 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2066 }
2067 return;
2068 }
2069
2070 /* Resort to the pull model. Ensure the VUE handles are provided. */
2071 assert(gs_prog_data->base.include_vue_handles);
2072
2073 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2074 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2075
2076 if (gs_prog_data->invocations == 1) {
2077 if (vertex_const) {
2078 /* The vertex index is constant; just select the proper URB handle. */
2079 icp_handle =
2080 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2081 BRW_REGISTER_TYPE_UD);
2082 } else {
2083 /* The vertex index is non-constant. We need to use indirect
2084 * addressing to fetch the proper URB handle.
2085 *
2086 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2087 * indicating that channel <n> should read the handle from
2088 * DWord <n>. We convert that to bytes by multiplying by 4.
2089 *
2090 * Next, we convert the vertex index to bytes by multiplying
2091 * by 32 (shifting by 5), and add the two together. This is
2092 * the final indirect byte offset.
2093 */
2094 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
2095 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2096 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2097 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2098
2099 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2100 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2101 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2102 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2103 /* Convert vertex_index to bytes (multiply by 32) */
2104 bld.SHL(vertex_offset_bytes,
2105 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2106 brw_imm_ud(5u));
2107 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2108
2109 /* Use first_icp_handle as the base offset. There is one register
2110 * of URB handles per vertex, so inform the register allocator that
2111 * we might read up to nir->info.gs.vertices_in registers.
2112 */
2113 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2114 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2115 fs_reg(icp_offset_bytes),
2116 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2117 }
2118 } else {
2119 assert(gs_prog_data->invocations > 1);
2120
2121 if (vertex_const) {
2122 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2123 bld.MOV(icp_handle,
2124 retype(brw_vec1_grf(first_icp_handle +
2125 vertex_const->i32[0] / 8,
2126 vertex_const->i32[0] % 8),
2127 BRW_REGISTER_TYPE_UD));
2128 } else {
2129 /* The vertex index is non-constant. We need to use indirect
2130 * addressing to fetch the proper URB handle.
2131 *
2132 */
2133 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2134
2135 /* Convert vertex_index to bytes (multiply by 4) */
2136 bld.SHL(icp_offset_bytes,
2137 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2138 brw_imm_ud(2u));
2139
2140 /* Use first_icp_handle as the base offset. There is one DWord
2141 * of URB handles per vertex, so inform the register allocator that
2142 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2143 */
2144 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2145 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2146 fs_reg(icp_offset_bytes),
2147 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2148 REG_SIZE));
2149 }
2150 }
2151
2152 fs_inst *inst;
2153
2154 fs_reg tmp_dst = dst;
2155 fs_reg indirect_offset = get_nir_src(offset_src);
2156 unsigned num_iterations = 1;
2157 unsigned orig_num_components = num_components;
2158
2159 if (type_sz(dst.type) == 8) {
2160 if (num_components > 2) {
2161 num_iterations = 2;
2162 num_components = 2;
2163 }
2164 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2165 tmp_dst = tmp;
2166 first_component = first_component / 2;
2167 }
2168
2169 for (unsigned iter = 0; iter < num_iterations; iter++) {
2170 if (offset_const) {
2171 /* Constant indexing - use global offset. */
2172 if (first_component != 0) {
2173 unsigned read_components = num_components + first_component;
2174 fs_reg tmp = bld.vgrf(dst.type, read_components);
2175 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2176 inst->size_written = read_components *
2177 tmp.component_size(inst->exec_size);
2178 for (unsigned i = 0; i < num_components; i++) {
2179 bld.MOV(offset(tmp_dst, bld, i),
2180 offset(tmp, bld, i + first_component));
2181 }
2182 } else {
2183 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2184 icp_handle);
2185 inst->size_written = num_components *
2186 tmp_dst.component_size(inst->exec_size);
2187 }
2188 inst->offset = base_offset + offset_const->u32[0];
2189 inst->mlen = 1;
2190 } else {
2191 /* Indirect indexing - use per-slot offsets as well. */
2192 const fs_reg srcs[] = { icp_handle, indirect_offset };
2193 unsigned read_components = num_components + first_component;
2194 fs_reg tmp = bld.vgrf(dst.type, read_components);
2195 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2196 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2197 if (first_component != 0) {
2198 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2199 payload);
2200 inst->size_written = read_components *
2201 tmp.component_size(inst->exec_size);
2202 for (unsigned i = 0; i < num_components; i++) {
2203 bld.MOV(offset(tmp_dst, bld, i),
2204 offset(tmp, bld, i + first_component));
2205 }
2206 } else {
2207 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2208 payload);
2209 inst->size_written = num_components *
2210 tmp_dst.component_size(inst->exec_size);
2211 }
2212 inst->offset = base_offset;
2213 inst->mlen = 2;
2214 }
2215
2216 if (type_sz(dst.type) == 8) {
2217 shuffle_32bit_load_result_to_64bit_data(
2218 bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
2219
2220 for (unsigned c = 0; c < num_components; c++)
2221 bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
2222 }
2223
2224 if (num_iterations > 1) {
2225 num_components = orig_num_components - 2;
2226 if(offset_const) {
2227 base_offset++;
2228 } else {
2229 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2230 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2231 indirect_offset = new_indirect;
2232 }
2233 }
2234 }
2235 }
2236
2237 fs_reg
2238 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2239 {
2240 nir_src *offset_src = nir_get_io_offset_src(instr);
2241 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2242
2243 if (const_value) {
2244 /* The only constant offset we should find is 0. brw_nir.c's
2245 * add_const_offset_to_base() will fold other constant offsets
2246 * into instr->const_index[0].
2247 */
2248 assert(const_value->u32[0] == 0);
2249 return fs_reg();
2250 }
2251
2252 return get_nir_src(*offset_src);
2253 }
2254
2255 static void
2256 do_untyped_vector_read(const fs_builder &bld,
2257 const fs_reg dest,
2258 const fs_reg surf_index,
2259 const fs_reg offset_reg,
2260 unsigned num_components)
2261 {
2262 if (type_sz(dest.type) == 4) {
2263 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2264 1 /* dims */,
2265 num_components,
2266 BRW_PREDICATE_NONE);
2267 read_result.type = dest.type;
2268 for (unsigned i = 0; i < num_components; i++)
2269 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2270 } else if (type_sz(dest.type) == 8) {
2271 /* Reading a dvec, so we need to:
2272 *
2273 * 1. Multiply num_components by 2, to account for the fact that we
2274 * need to read 64-bit components.
2275 * 2. Shuffle the result of the load to form valid 64-bit elements
2276 * 3. Emit a second load (for components z/w) if needed.
2277 */
2278 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2279 bld.MOV(read_offset, offset_reg);
2280
2281 int iters = num_components <= 2 ? 1 : 2;
2282
2283 /* Load the dvec, the first iteration loads components x/y, the second
2284 * iteration, if needed, loads components z/w
2285 */
2286 for (int it = 0; it < iters; it++) {
2287 /* Compute number of components to read in this iteration */
2288 int iter_components = MIN2(2, num_components);
2289 num_components -= iter_components;
2290
2291 /* Read. Since this message reads 32-bit components, we need to
2292 * read twice as many components.
2293 */
2294 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2295 1 /* dims */,
2296 iter_components * 2,
2297 BRW_PREDICATE_NONE);
2298
2299 /* Shuffle the 32-bit load result into valid 64-bit data */
2300 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2301 shuffle_32bit_load_result_to_64bit_data(
2302 bld, packed_result, read_result, iter_components);
2303
2304 /* Move each component to its destination */
2305 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2306 for (int c = 0; c < iter_components; c++) {
2307 bld.MOV(offset(dest, bld, it * 2 + c),
2308 offset(packed_result, bld, c));
2309 }
2310
2311 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2312 }
2313 } else {
2314 unreachable("Unsupported type");
2315 }
2316 }
2317
2318 void
2319 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2320 nir_intrinsic_instr *instr)
2321 {
2322 assert(stage == MESA_SHADER_VERTEX);
2323
2324 fs_reg dest;
2325 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2326 dest = get_nir_dest(instr->dest);
2327
2328 switch (instr->intrinsic) {
2329 case nir_intrinsic_load_vertex_id:
2330 unreachable("should be lowered by lower_vertex_id()");
2331
2332 case nir_intrinsic_load_vertex_id_zero_base:
2333 case nir_intrinsic_load_base_vertex:
2334 case nir_intrinsic_load_instance_id:
2335 case nir_intrinsic_load_base_instance:
2336 case nir_intrinsic_load_draw_id: {
2337 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2338 fs_reg val = nir_system_values[sv];
2339 assert(val.file != BAD_FILE);
2340 dest.type = val.type;
2341 bld.MOV(dest, val);
2342 break;
2343 }
2344
2345 case nir_intrinsic_load_input: {
2346 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2347 unsigned first_component = nir_intrinsic_component(instr);
2348 unsigned num_components = instr->num_components;
2349 enum brw_reg_type type = dest.type;
2350
2351 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2352 assert(const_offset && "Indirect input loads not allowed");
2353 src = offset(src, bld, const_offset->u32[0]);
2354
2355 for (unsigned j = 0; j < num_components; j++) {
2356 bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
2357 }
2358
2359 if (type == BRW_REGISTER_TYPE_DF) {
2360 /* Once the double vector is read, set again its original register
2361 * type to continue with normal execution.
2362 */
2363 src = retype(src, type);
2364 dest = retype(dest, type);
2365 }
2366
2367 if (type_sz(src.type) == 8) {
2368 shuffle_32bit_load_result_to_64bit_data(bld,
2369 dest,
2370 retype(dest, BRW_REGISTER_TYPE_F),
2371 instr->num_components);
2372 }
2373 break;
2374 }
2375
2376 default:
2377 nir_emit_intrinsic(bld, instr);
2378 break;
2379 }
2380 }
2381
2382 void
2383 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2384 nir_intrinsic_instr *instr)
2385 {
2386 assert(stage == MESA_SHADER_TESS_CTRL);
2387 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2388 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2389
2390 fs_reg dst;
2391 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2392 dst = get_nir_dest(instr->dest);
2393
2394 switch (instr->intrinsic) {
2395 case nir_intrinsic_load_primitive_id:
2396 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2397 break;
2398 case nir_intrinsic_load_invocation_id:
2399 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2400 break;
2401 case nir_intrinsic_load_patch_vertices_in:
2402 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2403 brw_imm_d(tcs_key->input_vertices));
2404 break;
2405
2406 case nir_intrinsic_barrier: {
2407 if (tcs_prog_data->instances == 1)
2408 break;
2409
2410 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2411 fs_reg m0_2 = component(m0, 2);
2412
2413 const fs_builder chanbld = bld.exec_all().group(1, 0);
2414
2415 /* Zero the message header */
2416 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2417
2418 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2419 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2420 brw_imm_ud(INTEL_MASK(16, 13)));
2421
2422 /* Shift it up to bits 27:24. */
2423 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2424
2425 /* Set the Barrier Count and the enable bit */
2426 chanbld.OR(m0_2, m0_2,
2427 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2428
2429 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2430 break;
2431 }
2432
2433 case nir_intrinsic_load_input:
2434 unreachable("nir_lower_io should never give us these.");
2435 break;
2436
2437 case nir_intrinsic_load_per_vertex_input: {
2438 fs_reg indirect_offset = get_indirect_offset(instr);
2439 unsigned imm_offset = instr->const_index[0];
2440
2441 const nir_src &vertex_src = instr->src[0];
2442 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2443
2444 fs_inst *inst;
2445
2446 fs_reg icp_handle;
2447
2448 if (vertex_const) {
2449 /* Emit a MOV to resolve <0,1,0> regioning. */
2450 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2451 bld.MOV(icp_handle,
2452 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2453 vertex_const->i32[0] & 7),
2454 BRW_REGISTER_TYPE_UD));
2455 } else if (tcs_prog_data->instances == 1 &&
2456 vertex_src.is_ssa &&
2457 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2458 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2459 /* For the common case of only 1 instance, an array index of
2460 * gl_InvocationID means reading g1. Skip all the indirect work.
2461 */
2462 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2463 } else {
2464 /* The vertex index is non-constant. We need to use indirect
2465 * addressing to fetch the proper URB handle.
2466 */
2467 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2468
2469 /* Each ICP handle is a single DWord (4 bytes) */
2470 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2471 bld.SHL(vertex_offset_bytes,
2472 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2473 brw_imm_ud(2u));
2474
2475 /* Start at g1. We might read up to 4 registers. */
2476 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2477 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2478 brw_imm_ud(4 * REG_SIZE));
2479 }
2480
2481 /* We can only read two double components with each URB read, so
2482 * we send two read messages in that case, each one loading up to
2483 * two double components.
2484 */
2485 unsigned num_iterations = 1;
2486 unsigned num_components = instr->num_components;
2487 unsigned first_component = nir_intrinsic_component(instr);
2488 fs_reg orig_dst = dst;
2489 if (type_sz(dst.type) == 8) {
2490 first_component = first_component / 2;
2491 if (instr->num_components > 2) {
2492 num_iterations = 2;
2493 num_components = 2;
2494 }
2495
2496 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2497 dst = tmp;
2498 }
2499
2500 for (unsigned iter = 0; iter < num_iterations; iter++) {
2501 if (indirect_offset.file == BAD_FILE) {
2502 /* Constant indexing - use global offset. */
2503 if (first_component != 0) {
2504 unsigned read_components = num_components + first_component;
2505 fs_reg tmp = bld.vgrf(dst.type, read_components);
2506 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2507 for (unsigned i = 0; i < num_components; i++) {
2508 bld.MOV(offset(dst, bld, i),
2509 offset(tmp, bld, i + first_component));
2510 }
2511 } else {
2512 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2513 }
2514 inst->offset = imm_offset;
2515 inst->mlen = 1;
2516 } else {
2517 /* Indirect indexing - use per-slot offsets as well. */
2518 const fs_reg srcs[] = { icp_handle, indirect_offset };
2519 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2520 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2521 if (first_component != 0) {
2522 unsigned read_components = num_components + first_component;
2523 fs_reg tmp = bld.vgrf(dst.type, read_components);
2524 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2525 payload);
2526 for (unsigned i = 0; i < num_components; i++) {
2527 bld.MOV(offset(dst, bld, i),
2528 offset(tmp, bld, i + first_component));
2529 }
2530 } else {
2531 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2532 payload);
2533 }
2534 inst->offset = imm_offset;
2535 inst->mlen = 2;
2536 }
2537 inst->size_written = (num_components + first_component) *
2538 inst->dst.component_size(inst->exec_size);
2539
2540 /* If we are reading 64-bit data using 32-bit read messages we need
2541 * build proper 64-bit data elements by shuffling the low and high
2542 * 32-bit components around like we do for other things like UBOs
2543 * or SSBOs.
2544 */
2545 if (type_sz(dst.type) == 8) {
2546 shuffle_32bit_load_result_to_64bit_data(
2547 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2548
2549 for (unsigned c = 0; c < num_components; c++) {
2550 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2551 offset(dst, bld, c));
2552 }
2553 }
2554
2555 /* Copy the temporary to the destination to deal with writemasking.
2556 *
2557 * Also attempt to deal with gl_PointSize being in the .w component.
2558 */
2559 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2560 assert(type_sz(dst.type) < 8);
2561 inst->dst = bld.vgrf(dst.type, 4);
2562 inst->size_written = 4 * REG_SIZE;
2563 bld.MOV(dst, offset(inst->dst, bld, 3));
2564 }
2565
2566 /* If we are loading double data and we need a second read message
2567 * adjust the write offset
2568 */
2569 if (num_iterations > 1) {
2570 num_components = instr->num_components - 2;
2571 imm_offset++;
2572 }
2573 }
2574 break;
2575 }
2576
2577 case nir_intrinsic_load_output:
2578 case nir_intrinsic_load_per_vertex_output: {
2579 fs_reg indirect_offset = get_indirect_offset(instr);
2580 unsigned imm_offset = instr->const_index[0];
2581 unsigned first_component = nir_intrinsic_component(instr);
2582
2583 fs_inst *inst;
2584 if (indirect_offset.file == BAD_FILE) {
2585 /* Replicate the patch handle to all enabled channels */
2586 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2587 bld.MOV(patch_handle,
2588 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2589
2590 {
2591 if (first_component != 0) {
2592 unsigned read_components =
2593 instr->num_components + first_component;
2594 fs_reg tmp = bld.vgrf(dst.type, read_components);
2595 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2596 patch_handle);
2597 inst->size_written = read_components * REG_SIZE;
2598 for (unsigned i = 0; i < instr->num_components; i++) {
2599 bld.MOV(offset(dst, bld, i),
2600 offset(tmp, bld, i + first_component));
2601 }
2602 } else {
2603 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2604 patch_handle);
2605 inst->size_written = instr->num_components * REG_SIZE;
2606 }
2607 inst->offset = imm_offset;
2608 inst->mlen = 1;
2609 }
2610 } else {
2611 /* Indirect indexing - use per-slot offsets as well. */
2612 const fs_reg srcs[] = {
2613 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2614 indirect_offset
2615 };
2616 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2617 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2618 if (first_component != 0) {
2619 unsigned read_components =
2620 instr->num_components + first_component;
2621 fs_reg tmp = bld.vgrf(dst.type, read_components);
2622 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2623 payload);
2624 inst->size_written = read_components * REG_SIZE;
2625 for (unsigned i = 0; i < instr->num_components; i++) {
2626 bld.MOV(offset(dst, bld, i),
2627 offset(tmp, bld, i + first_component));
2628 }
2629 } else {
2630 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2631 payload);
2632 inst->size_written = instr->num_components * REG_SIZE;
2633 }
2634 inst->offset = imm_offset;
2635 inst->mlen = 2;
2636 }
2637 break;
2638 }
2639
2640 case nir_intrinsic_store_output:
2641 case nir_intrinsic_store_per_vertex_output: {
2642 fs_reg value = get_nir_src(instr->src[0]);
2643 bool is_64bit = (instr->src[0].is_ssa ?
2644 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2645 fs_reg indirect_offset = get_indirect_offset(instr);
2646 unsigned imm_offset = instr->const_index[0];
2647 unsigned mask = instr->const_index[1];
2648 unsigned header_regs = 0;
2649 fs_reg srcs[7];
2650 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2651
2652 if (indirect_offset.file != BAD_FILE) {
2653 srcs[header_regs++] = indirect_offset;
2654 }
2655
2656 if (mask == 0)
2657 break;
2658
2659 unsigned num_components = util_last_bit(mask);
2660 enum opcode opcode;
2661
2662 /* We can only pack two 64-bit components in a single message, so send
2663 * 2 messages if we have more components
2664 */
2665 unsigned num_iterations = 1;
2666 unsigned iter_components = num_components;
2667 unsigned first_component = nir_intrinsic_component(instr);
2668 if (is_64bit) {
2669 first_component = first_component / 2;
2670 if (instr->num_components > 2) {
2671 num_iterations = 2;
2672 iter_components = 2;
2673 }
2674 }
2675
2676 mask = mask << first_component;
2677
2678 for (unsigned iter = 0; iter < num_iterations; iter++) {
2679 if (!is_64bit && mask != WRITEMASK_XYZW) {
2680 srcs[header_regs++] = brw_imm_ud(mask << 16);
2681 opcode = indirect_offset.file != BAD_FILE ?
2682 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2683 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2684 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2685 /* Expand the 64-bit mask to 32-bit channels. We only handle
2686 * two channels in each iteration, so we only care about X/Y.
2687 */
2688 unsigned mask32 = 0;
2689 if (mask & WRITEMASK_X)
2690 mask32 |= WRITEMASK_XY;
2691 if (mask & WRITEMASK_Y)
2692 mask32 |= WRITEMASK_ZW;
2693
2694 /* If the mask does not include any of the channels X or Y there
2695 * is nothing to do in this iteration. Move on to the next couple
2696 * of 64-bit channels.
2697 */
2698 if (!mask32) {
2699 mask >>= 2;
2700 imm_offset++;
2701 continue;
2702 }
2703
2704 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2705 opcode = indirect_offset.file != BAD_FILE ?
2706 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2707 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2708 } else {
2709 opcode = indirect_offset.file != BAD_FILE ?
2710 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2711 SHADER_OPCODE_URB_WRITE_SIMD8;
2712 }
2713
2714 for (unsigned i = 0; i < iter_components; i++) {
2715 if (!(mask & (1 << (i + first_component))))
2716 continue;
2717
2718 if (!is_64bit) {
2719 srcs[header_regs + i + first_component] = offset(value, bld, i);
2720 } else {
2721 /* We need to shuffle the 64-bit data to match the layout
2722 * expected by our 32-bit URB write messages. We use a temporary
2723 * for that.
2724 */
2725 unsigned channel = iter * 2 + i;
2726 fs_reg dest = shuffle_64bit_data_for_32bit_write(bld,
2727 offset(value, bld, channel), 1);
2728
2729 srcs[header_regs + (i + first_component) * 2] = dest;
2730 srcs[header_regs + (i + first_component) * 2 + 1] =
2731 offset(dest, bld, 1);
2732 }
2733 }
2734
2735 unsigned mlen =
2736 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2737 (is_64bit ? 2 * first_component : first_component);
2738 fs_reg payload =
2739 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2740 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2741
2742 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2743 inst->offset = imm_offset;
2744 inst->mlen = mlen;
2745
2746 /* If this is a 64-bit attribute, select the next two 64-bit channels
2747 * to be handled in the next iteration.
2748 */
2749 if (is_64bit) {
2750 mask >>= 2;
2751 imm_offset++;
2752 }
2753 }
2754 break;
2755 }
2756
2757 default:
2758 nir_emit_intrinsic(bld, instr);
2759 break;
2760 }
2761 }
2762
2763 void
2764 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2765 nir_intrinsic_instr *instr)
2766 {
2767 assert(stage == MESA_SHADER_TESS_EVAL);
2768 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2769
2770 fs_reg dest;
2771 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2772 dest = get_nir_dest(instr->dest);
2773
2774 switch (instr->intrinsic) {
2775 case nir_intrinsic_load_primitive_id:
2776 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2777 break;
2778 case nir_intrinsic_load_tess_coord:
2779 /* gl_TessCoord is part of the payload in g1-3 */
2780 for (unsigned i = 0; i < 3; i++) {
2781 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2782 }
2783 break;
2784
2785 case nir_intrinsic_load_input:
2786 case nir_intrinsic_load_per_vertex_input: {
2787 fs_reg indirect_offset = get_indirect_offset(instr);
2788 unsigned imm_offset = instr->const_index[0];
2789 unsigned first_component = nir_intrinsic_component(instr);
2790
2791 if (type_sz(dest.type) == 8) {
2792 first_component = first_component / 2;
2793 }
2794
2795 fs_inst *inst;
2796 if (indirect_offset.file == BAD_FILE) {
2797 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2798 * which is 16 registers (since each holds 2 vec4 slots).
2799 */
2800 unsigned slot_count = 1;
2801 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2802 slot_count++;
2803
2804 const unsigned max_push_slots = 32;
2805 if (imm_offset + slot_count <= max_push_slots) {
2806 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2807 for (int i = 0; i < instr->num_components; i++) {
2808 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2809 i + first_component;
2810 bld.MOV(offset(dest, bld, i), component(src, comp));
2811 }
2812
2813 tes_prog_data->base.urb_read_length =
2814 MAX2(tes_prog_data->base.urb_read_length,
2815 DIV_ROUND_UP(imm_offset + slot_count, 2));
2816 } else {
2817 /* Replicate the patch handle to all enabled channels */
2818 const fs_reg srcs[] = {
2819 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2820 };
2821 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2822 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2823
2824 if (first_component != 0) {
2825 unsigned read_components =
2826 instr->num_components + first_component;
2827 fs_reg tmp = bld.vgrf(dest.type, read_components);
2828 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2829 patch_handle);
2830 inst->size_written = read_components * REG_SIZE;
2831 for (unsigned i = 0; i < instr->num_components; i++) {
2832 bld.MOV(offset(dest, bld, i),
2833 offset(tmp, bld, i + first_component));
2834 }
2835 } else {
2836 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2837 patch_handle);
2838 inst->size_written = instr->num_components * REG_SIZE;
2839 }
2840 inst->mlen = 1;
2841 inst->offset = imm_offset;
2842 }
2843 } else {
2844 /* Indirect indexing - use per-slot offsets as well. */
2845
2846 /* We can only read two double components with each URB read, so
2847 * we send two read messages in that case, each one loading up to
2848 * two double components.
2849 */
2850 unsigned num_iterations = 1;
2851 unsigned num_components = instr->num_components;
2852 fs_reg orig_dest = dest;
2853 if (type_sz(dest.type) == 8) {
2854 if (instr->num_components > 2) {
2855 num_iterations = 2;
2856 num_components = 2;
2857 }
2858 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2859 dest = tmp;
2860 }
2861
2862 for (unsigned iter = 0; iter < num_iterations; iter++) {
2863 const fs_reg srcs[] = {
2864 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2865 indirect_offset
2866 };
2867 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2868 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2869
2870 if (first_component != 0) {
2871 unsigned read_components =
2872 num_components + first_component;
2873 fs_reg tmp = bld.vgrf(dest.type, read_components);
2874 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2875 payload);
2876 for (unsigned i = 0; i < num_components; i++) {
2877 bld.MOV(offset(dest, bld, i),
2878 offset(tmp, bld, i + first_component));
2879 }
2880 } else {
2881 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2882 payload);
2883 }
2884 inst->mlen = 2;
2885 inst->offset = imm_offset;
2886 inst->size_written = (num_components + first_component) *
2887 inst->dst.component_size(inst->exec_size);
2888
2889 /* If we are reading 64-bit data using 32-bit read messages we need
2890 * build proper 64-bit data elements by shuffling the low and high
2891 * 32-bit components around like we do for other things like UBOs
2892 * or SSBOs.
2893 */
2894 if (type_sz(dest.type) == 8) {
2895 shuffle_32bit_load_result_to_64bit_data(
2896 bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
2897
2898 for (unsigned c = 0; c < num_components; c++) {
2899 bld.MOV(offset(orig_dest, bld, iter * 2 + c),
2900 offset(dest, bld, c));
2901 }
2902 }
2903
2904 /* If we are loading double data and we need a second read message
2905 * adjust the offset
2906 */
2907 if (num_iterations > 1) {
2908 num_components = instr->num_components - 2;
2909 imm_offset++;
2910 }
2911 }
2912 }
2913 break;
2914 }
2915 default:
2916 nir_emit_intrinsic(bld, instr);
2917 break;
2918 }
2919 }
2920
2921 void
2922 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2923 nir_intrinsic_instr *instr)
2924 {
2925 assert(stage == MESA_SHADER_GEOMETRY);
2926 fs_reg indirect_offset;
2927
2928 fs_reg dest;
2929 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2930 dest = get_nir_dest(instr->dest);
2931
2932 switch (instr->intrinsic) {
2933 case nir_intrinsic_load_primitive_id:
2934 assert(stage == MESA_SHADER_GEOMETRY);
2935 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2936 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2937 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2938 break;
2939
2940 case nir_intrinsic_load_input:
2941 unreachable("load_input intrinsics are invalid for the GS stage");
2942
2943 case nir_intrinsic_load_per_vertex_input:
2944 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2945 instr->src[1], instr->num_components,
2946 nir_intrinsic_component(instr));
2947 break;
2948
2949 case nir_intrinsic_emit_vertex_with_counter:
2950 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2951 break;
2952
2953 case nir_intrinsic_end_primitive_with_counter:
2954 emit_gs_end_primitive(instr->src[0]);
2955 break;
2956
2957 case nir_intrinsic_set_vertex_count:
2958 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2959 break;
2960
2961 case nir_intrinsic_load_invocation_id: {
2962 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2963 assert(val.file != BAD_FILE);
2964 dest.type = val.type;
2965 bld.MOV(dest, val);
2966 break;
2967 }
2968
2969 default:
2970 nir_emit_intrinsic(bld, instr);
2971 break;
2972 }
2973 }
2974
2975 /**
2976 * Fetch the current render target layer index.
2977 */
2978 static fs_reg
2979 fetch_render_target_array_index(const fs_builder &bld)
2980 {
2981 if (bld.shader->devinfo->gen >= 6) {
2982 /* The render target array index is provided in the thread payload as
2983 * bits 26:16 of r0.0.
2984 */
2985 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
2986 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
2987 brw_imm_uw(0x7ff));
2988 return idx;
2989 } else {
2990 /* Pre-SNB we only ever render into the first layer of the framebuffer
2991 * since layered rendering is not implemented.
2992 */
2993 return brw_imm_ud(0);
2994 }
2995 }
2996
2997 /**
2998 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
2999 * framebuffer at the current fragment coordinates and sample index.
3000 */
3001 fs_inst *
3002 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3003 unsigned target)
3004 {
3005 const struct gen_device_info *devinfo = bld.shader->devinfo;
3006
3007 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3008 const brw_wm_prog_key *wm_key =
3009 reinterpret_cast<const brw_wm_prog_key *>(key);
3010 assert(!wm_key->coherent_fb_fetch);
3011 const struct brw_wm_prog_data *wm_prog_data =
3012 brw_wm_prog_data(stage_prog_data);
3013
3014 /* Calculate the surface index relative to the start of the texture binding
3015 * table block, since that's what the texturing messages expect.
3016 */
3017 const unsigned surface = target +
3018 wm_prog_data->binding_table.render_target_read_start -
3019 wm_prog_data->base.binding_table.texture_start;
3020
3021 brw_mark_surface_used(
3022 bld.shader->stage_prog_data,
3023 wm_prog_data->binding_table.render_target_read_start + target);
3024
3025 /* Calculate the fragment coordinates. */
3026 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3027 bld.MOV(offset(coords, bld, 0), pixel_x);
3028 bld.MOV(offset(coords, bld, 1), pixel_y);
3029 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3030
3031 /* Calculate the sample index and MCS payload when multisampling. Luckily
3032 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3033 * shouldn't be necessary to recompile based on whether the framebuffer is
3034 * CMS or UMS.
3035 */
3036 if (wm_key->multisample_fbo &&
3037 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3038 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3039
3040 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3041 const fs_reg mcs = wm_key->multisample_fbo ?
3042 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3043
3044 /* Use either a normal or a CMS texel fetch message depending on whether
3045 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3046 * message just in case the framebuffer uses 16x multisampling, it should
3047 * be equivalent to the normal CMS fetch for lower multisampling modes.
3048 */
3049 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3050 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3051 SHADER_OPCODE_TXF_CMS_LOGICAL;
3052
3053 /* Emit the instruction. */
3054 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3055 sample, mcs,
3056 brw_imm_ud(surface), brw_imm_ud(0),
3057 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3058 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3059
3060 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3061 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3062
3063 return inst;
3064 }
3065
3066 /**
3067 * Actual coherent framebuffer read implemented using the native render target
3068 * read message. Requires SKL+.
3069 */
3070 static fs_inst *
3071 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3072 {
3073 assert(bld.shader->devinfo->gen >= 9);
3074 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3075 inst->target = target;
3076 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3077
3078 return inst;
3079 }
3080
3081 static fs_reg
3082 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3083 {
3084 if (n && regs[0].file != BAD_FILE) {
3085 return regs[0];
3086
3087 } else {
3088 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3089
3090 for (unsigned i = 0; i < n; i++)
3091 regs[i] = tmp;
3092
3093 return tmp;
3094 }
3095 }
3096
3097 static fs_reg
3098 alloc_frag_output(fs_visitor *v, unsigned location)
3099 {
3100 assert(v->stage == MESA_SHADER_FRAGMENT);
3101 const brw_wm_prog_key *const key =
3102 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3103 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3104 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3105
3106 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3107 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3108
3109 else if (l == FRAG_RESULT_COLOR)
3110 return alloc_temporary(v->bld, 4, v->outputs,
3111 MAX2(key->nr_color_regions, 1));
3112
3113 else if (l == FRAG_RESULT_DEPTH)
3114 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3115
3116 else if (l == FRAG_RESULT_STENCIL)
3117 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3118
3119 else if (l == FRAG_RESULT_SAMPLE_MASK)
3120 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3121
3122 else if (l >= FRAG_RESULT_DATA0 &&
3123 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3124 return alloc_temporary(v->bld, 4,
3125 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3126
3127 else
3128 unreachable("Invalid location");
3129 }
3130
3131 void
3132 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3133 nir_intrinsic_instr *instr)
3134 {
3135 assert(stage == MESA_SHADER_FRAGMENT);
3136
3137 fs_reg dest;
3138 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3139 dest = get_nir_dest(instr->dest);
3140
3141 switch (instr->intrinsic) {
3142 case nir_intrinsic_load_front_face:
3143 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3144 *emit_frontfacing_interpolation());
3145 break;
3146
3147 case nir_intrinsic_load_sample_pos: {
3148 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3149 assert(sample_pos.file != BAD_FILE);
3150 dest.type = sample_pos.type;
3151 bld.MOV(dest, sample_pos);
3152 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3153 break;
3154 }
3155
3156 case nir_intrinsic_load_layer_id:
3157 dest.type = BRW_REGISTER_TYPE_UD;
3158 bld.MOV(dest, fetch_render_target_array_index(bld));
3159 break;
3160
3161 case nir_intrinsic_load_helper_invocation:
3162 case nir_intrinsic_load_sample_mask_in:
3163 case nir_intrinsic_load_sample_id: {
3164 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3165 fs_reg val = nir_system_values[sv];
3166 assert(val.file != BAD_FILE);
3167 dest.type = val.type;
3168 bld.MOV(dest, val);
3169 break;
3170 }
3171
3172 case nir_intrinsic_store_output: {
3173 const fs_reg src = get_nir_src(instr->src[0]);
3174 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3175 assert(const_offset && "Indirect output stores not allowed");
3176 const unsigned location = nir_intrinsic_base(instr) +
3177 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3178 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3179 src.type);
3180
3181 for (unsigned j = 0; j < instr->num_components; j++)
3182 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3183 offset(src, bld, j));
3184
3185 break;
3186 }
3187
3188 case nir_intrinsic_load_output: {
3189 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3190 BRW_NIR_FRAG_OUTPUT_LOCATION);
3191 assert(l >= FRAG_RESULT_DATA0);
3192 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3193 assert(const_offset && "Indirect output loads not allowed");
3194 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3195 const fs_reg tmp = bld.vgrf(dest.type, 4);
3196
3197 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3198 emit_coherent_fb_read(bld, tmp, target);
3199 else
3200 emit_non_coherent_fb_read(bld, tmp, target);
3201
3202 for (unsigned j = 0; j < instr->num_components; j++) {
3203 bld.MOV(offset(dest, bld, j),
3204 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3205 }
3206
3207 break;
3208 }
3209
3210 case nir_intrinsic_discard:
3211 case nir_intrinsic_discard_if: {
3212 /* We track our discarded pixels in f0.1. By predicating on it, we can
3213 * update just the flag bits that aren't yet discarded. If there's no
3214 * condition, we emit a CMP of g0 != g0, so all currently executing
3215 * channels will get turned off.
3216 */
3217 fs_inst *cmp;
3218 if (instr->intrinsic == nir_intrinsic_discard_if) {
3219 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3220 brw_imm_d(0), BRW_CONDITIONAL_Z);
3221 } else {
3222 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3223 BRW_REGISTER_TYPE_UW));
3224 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3225 }
3226 cmp->predicate = BRW_PREDICATE_NORMAL;
3227 cmp->flag_subreg = 1;
3228
3229 if (devinfo->gen >= 6) {
3230 emit_discard_jump();
3231 }
3232 break;
3233 }
3234
3235 case nir_intrinsic_load_input: {
3236 /* load_input is only used for flat inputs */
3237 unsigned base = nir_intrinsic_base(instr);
3238 unsigned component = nir_intrinsic_component(instr);
3239 unsigned num_components = instr->num_components;
3240 enum brw_reg_type type = dest.type;
3241
3242 /* Special case fields in the VUE header */
3243 if (base == VARYING_SLOT_LAYER)
3244 component = 1;
3245 else if (base == VARYING_SLOT_VIEWPORT)
3246 component = 2;
3247
3248 if (nir_dest_bit_size(instr->dest) == 64) {
3249 /* const_index is in 32-bit type size units that could not be aligned
3250 * with DF. We need to read the double vector as if it was a float
3251 * vector of twice the number of components to fetch the right data.
3252 */
3253 type = BRW_REGISTER_TYPE_F;
3254 num_components *= 2;
3255 }
3256
3257 for (unsigned int i = 0; i < num_components; i++) {
3258 struct brw_reg interp = interp_reg(base, component + i);
3259 interp = suboffset(interp, 3);
3260 bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i),
3261 retype(fs_reg(interp), type));
3262 }
3263
3264 if (nir_dest_bit_size(instr->dest) == 64) {
3265 shuffle_32bit_load_result_to_64bit_data(bld,
3266 dest,
3267 retype(dest, type),
3268 instr->num_components);
3269 }
3270 break;
3271 }
3272
3273 case nir_intrinsic_load_barycentric_pixel:
3274 case nir_intrinsic_load_barycentric_centroid:
3275 case nir_intrinsic_load_barycentric_sample:
3276 /* Do nothing - load_interpolated_input handling will handle it later. */
3277 break;
3278
3279 case nir_intrinsic_load_barycentric_at_sample: {
3280 const glsl_interp_mode interpolation =
3281 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3282
3283 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3284
3285 if (const_sample) {
3286 unsigned msg_data = const_sample->i32[0] << 4;
3287
3288 emit_pixel_interpolater_send(bld,
3289 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3290 dest,
3291 fs_reg(), /* src */
3292 brw_imm_ud(msg_data),
3293 interpolation);
3294 } else {
3295 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3296 BRW_REGISTER_TYPE_UD);
3297
3298 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3299 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3300 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3301 bld.exec_all().group(1, 0)
3302 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3303 emit_pixel_interpolater_send(bld,
3304 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3305 dest,
3306 fs_reg(), /* src */
3307 msg_data,
3308 interpolation);
3309 } else {
3310 /* Make a loop that sends a message to the pixel interpolater
3311 * for the sample number in each live channel. If there are
3312 * multiple channels with the same sample number then these
3313 * will be handled simultaneously with a single interation of
3314 * the loop.
3315 */
3316 bld.emit(BRW_OPCODE_DO);
3317
3318 /* Get the next live sample number into sample_id_reg */
3319 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3320
3321 /* Set the flag register so that we can perform the send
3322 * message on all channels that have the same sample number
3323 */
3324 bld.CMP(bld.null_reg_ud(),
3325 sample_src, sample_id,
3326 BRW_CONDITIONAL_EQ);
3327 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3328 bld.exec_all().group(1, 0)
3329 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3330 fs_inst *inst =
3331 emit_pixel_interpolater_send(bld,
3332 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3333 dest,
3334 fs_reg(), /* src */
3335 msg_data,
3336 interpolation);
3337 set_predicate(BRW_PREDICATE_NORMAL, inst);
3338
3339 /* Continue the loop if there are any live channels left */
3340 set_predicate_inv(BRW_PREDICATE_NORMAL,
3341 true, /* inverse */
3342 bld.emit(BRW_OPCODE_WHILE));
3343 }
3344 }
3345 break;
3346 }
3347
3348 case nir_intrinsic_load_barycentric_at_offset: {
3349 const glsl_interp_mode interpolation =
3350 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3351
3352 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3353
3354 if (const_offset) {
3355 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3356 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3357
3358 emit_pixel_interpolater_send(bld,
3359 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3360 dest,
3361 fs_reg(), /* src */
3362 brw_imm_ud(off_x | (off_y << 4)),
3363 interpolation);
3364 } else {
3365 fs_reg src = vgrf(glsl_type::ivec2_type);
3366 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3367 BRW_REGISTER_TYPE_F);
3368 for (int i = 0; i < 2; i++) {
3369 fs_reg temp = vgrf(glsl_type::float_type);
3370 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3371 fs_reg itemp = vgrf(glsl_type::int_type);
3372 /* float to int */
3373 bld.MOV(itemp, temp);
3374
3375 /* Clamp the upper end of the range to +7/16.
3376 * ARB_gpu_shader5 requires that we support a maximum offset
3377 * of +0.5, which isn't representable in a S0.4 value -- if
3378 * we didn't clamp it, we'd end up with -8/16, which is the
3379 * opposite of what the shader author wanted.
3380 *
3381 * This is legal due to ARB_gpu_shader5's quantization
3382 * rules:
3383 *
3384 * "Not all values of <offset> may be supported; x and y
3385 * offsets may be rounded to fixed-point values with the
3386 * number of fraction bits given by the
3387 * implementation-dependent constant
3388 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3389 */
3390 set_condmod(BRW_CONDITIONAL_L,
3391 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3392 }
3393
3394 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3395 emit_pixel_interpolater_send(bld,
3396 opcode,
3397 dest,
3398 src,
3399 brw_imm_ud(0u),
3400 interpolation);
3401 }
3402 break;
3403 }
3404
3405 case nir_intrinsic_load_interpolated_input: {
3406 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3407 emit_fragcoord_interpolation(dest);
3408 break;
3409 }
3410
3411 assert(instr->src[0].ssa &&
3412 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3413 nir_intrinsic_instr *bary_intrinsic =
3414 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3415 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3416 enum glsl_interp_mode interp_mode =
3417 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3418 fs_reg dst_xy;
3419
3420 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3421 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3422 /* Use the result of the PI message */
3423 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3424 } else {
3425 /* Use the delta_xy values computed from the payload */
3426 enum brw_barycentric_mode bary =
3427 brw_barycentric_mode(interp_mode, bary_intrin);
3428
3429 dst_xy = this->delta_xy[bary];
3430 }
3431
3432 for (unsigned int i = 0; i < instr->num_components; i++) {
3433 fs_reg interp =
3434 fs_reg(interp_reg(nir_intrinsic_base(instr),
3435 nir_intrinsic_component(instr) + i));
3436 interp.type = BRW_REGISTER_TYPE_F;
3437 dest.type = BRW_REGISTER_TYPE_F;
3438
3439 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3440 fs_reg tmp = vgrf(glsl_type::float_type);
3441 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3442 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3443 } else {
3444 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3445 }
3446 }
3447 break;
3448 }
3449
3450 default:
3451 nir_emit_intrinsic(bld, instr);
3452 break;
3453 }
3454 }
3455
3456 void
3457 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3458 nir_intrinsic_instr *instr)
3459 {
3460 assert(stage == MESA_SHADER_COMPUTE);
3461 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3462
3463 fs_reg dest;
3464 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3465 dest = get_nir_dest(instr->dest);
3466
3467 switch (instr->intrinsic) {
3468 case nir_intrinsic_barrier:
3469 emit_barrier();
3470 cs_prog_data->uses_barrier = true;
3471 break;
3472
3473 case nir_intrinsic_load_subgroup_id:
3474 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3475 break;
3476
3477 case nir_intrinsic_load_local_invocation_id:
3478 case nir_intrinsic_load_work_group_id: {
3479 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3480 fs_reg val = nir_system_values[sv];
3481 assert(val.file != BAD_FILE);
3482 dest.type = val.type;
3483 for (unsigned i = 0; i < 3; i++)
3484 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3485 break;
3486 }
3487
3488 case nir_intrinsic_load_num_work_groups: {
3489 const unsigned surface =
3490 cs_prog_data->binding_table.work_groups_start;
3491
3492 cs_prog_data->uses_num_work_groups = true;
3493
3494 fs_reg surf_index = brw_imm_ud(surface);
3495 brw_mark_surface_used(prog_data, surface);
3496
3497 /* Read the 3 GLuint components of gl_NumWorkGroups */
3498 for (unsigned i = 0; i < 3; i++) {
3499 fs_reg read_result =
3500 emit_untyped_read(bld, surf_index,
3501 brw_imm_ud(i << 2),
3502 1 /* dims */, 1 /* size */,
3503 BRW_PREDICATE_NONE);
3504 read_result.type = dest.type;
3505 bld.MOV(dest, read_result);
3506 dest = offset(dest, bld, 1);
3507 }
3508 break;
3509 }
3510
3511 case nir_intrinsic_shared_atomic_add:
3512 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3513 break;
3514 case nir_intrinsic_shared_atomic_imin:
3515 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3516 break;
3517 case nir_intrinsic_shared_atomic_umin:
3518 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3519 break;
3520 case nir_intrinsic_shared_atomic_imax:
3521 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3522 break;
3523 case nir_intrinsic_shared_atomic_umax:
3524 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3525 break;
3526 case nir_intrinsic_shared_atomic_and:
3527 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3528 break;
3529 case nir_intrinsic_shared_atomic_or:
3530 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3531 break;
3532 case nir_intrinsic_shared_atomic_xor:
3533 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3534 break;
3535 case nir_intrinsic_shared_atomic_exchange:
3536 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3537 break;
3538 case nir_intrinsic_shared_atomic_comp_swap:
3539 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3540 break;
3541
3542 case nir_intrinsic_load_shared: {
3543 assert(devinfo->gen >= 7);
3544
3545 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3546
3547 /* Get the offset to read from */
3548 fs_reg offset_reg;
3549 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3550 if (const_offset) {
3551 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3552 } else {
3553 offset_reg = vgrf(glsl_type::uint_type);
3554 bld.ADD(offset_reg,
3555 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3556 brw_imm_ud(instr->const_index[0]));
3557 }
3558
3559 /* Read the vector */
3560 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3561 instr->num_components);
3562 break;
3563 }
3564
3565 case nir_intrinsic_store_shared: {
3566 assert(devinfo->gen >= 7);
3567
3568 /* Block index */
3569 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3570
3571 /* Value */
3572 fs_reg val_reg = get_nir_src(instr->src[0]);
3573
3574 /* Writemask */
3575 unsigned writemask = instr->const_index[1];
3576
3577 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3578 * since the untyped writes below operate in units of 32-bits, which
3579 * means that we need to write twice as many components each time.
3580 * Also, we have to suffle 64-bit data to be in the appropriate layout
3581 * expected by our 32-bit write messages.
3582 */
3583 unsigned type_size = 4;
3584 if (nir_src_bit_size(instr->src[0]) == 64) {
3585 type_size = 8;
3586 val_reg = shuffle_64bit_data_for_32bit_write(bld,
3587 val_reg, instr->num_components);
3588 }
3589
3590 unsigned type_slots = type_size / 4;
3591
3592 /* Combine groups of consecutive enabled channels in one write
3593 * message. We use ffs to find the first enabled channel and then ffs on
3594 * the bit-inverse, down-shifted writemask to determine the length of
3595 * the block of enabled bits.
3596 */
3597 while (writemask) {
3598 unsigned first_component = ffs(writemask) - 1;
3599 unsigned length = ffs(~(writemask >> first_component)) - 1;
3600
3601 /* We can't write more than 2 64-bit components at once. Limit the
3602 * length of the write to what we can do and let the next iteration
3603 * handle the rest
3604 */
3605 if (type_size > 4)
3606 length = MIN2(2, length);
3607
3608 fs_reg offset_reg;
3609 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3610 if (const_offset) {
3611 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3612 type_size * first_component);
3613 } else {
3614 offset_reg = vgrf(glsl_type::uint_type);
3615 bld.ADD(offset_reg,
3616 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3617 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3618 }
3619
3620 emit_untyped_write(bld, surf_index, offset_reg,
3621 offset(val_reg, bld, first_component * type_slots),
3622 1 /* dims */, length * type_slots,
3623 BRW_PREDICATE_NONE);
3624
3625 /* Clear the bits in the writemask that we just wrote, then try
3626 * again to see if more channels are left.
3627 */
3628 writemask &= (15 << (first_component + length));
3629 }
3630
3631 break;
3632 }
3633
3634 default:
3635 nir_emit_intrinsic(bld, instr);
3636 break;
3637 }
3638 }
3639
3640 void
3641 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3642 {
3643 fs_reg dest;
3644 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3645 dest = get_nir_dest(instr->dest);
3646
3647 switch (instr->intrinsic) {
3648 case nir_intrinsic_image_load:
3649 case nir_intrinsic_image_store:
3650 case nir_intrinsic_image_atomic_add:
3651 case nir_intrinsic_image_atomic_min:
3652 case nir_intrinsic_image_atomic_max:
3653 case nir_intrinsic_image_atomic_and:
3654 case nir_intrinsic_image_atomic_or:
3655 case nir_intrinsic_image_atomic_xor:
3656 case nir_intrinsic_image_atomic_exchange:
3657 case nir_intrinsic_image_atomic_comp_swap: {
3658 using namespace image_access;
3659
3660 if (stage == MESA_SHADER_FRAGMENT &&
3661 instr->intrinsic != nir_intrinsic_image_load)
3662 brw_wm_prog_data(prog_data)->has_side_effects = true;
3663
3664 /* Get the referenced image variable and type. */
3665 const nir_variable *var = instr->variables[0]->var;
3666 const glsl_type *type = var->type->without_array();
3667 const brw_reg_type base_type = get_image_base_type(type);
3668
3669 /* Get some metadata from the image intrinsic. */
3670 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3671 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3672 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3673 const unsigned format = var->data.image.format;
3674
3675 /* Get the arguments of the image intrinsic. */
3676 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3677 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3678 BRW_REGISTER_TYPE_UD);
3679 const fs_reg src0 = (info->num_srcs >= 3 ?
3680 retype(get_nir_src(instr->src[2]), base_type) :
3681 fs_reg());
3682 const fs_reg src1 = (info->num_srcs >= 4 ?
3683 retype(get_nir_src(instr->src[3]), base_type) :
3684 fs_reg());
3685 fs_reg tmp;
3686
3687 /* Emit an image load, store or atomic op. */
3688 if (instr->intrinsic == nir_intrinsic_image_load)
3689 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3690
3691 else if (instr->intrinsic == nir_intrinsic_image_store)
3692 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3693 var->data.image.write_only ? GL_NONE : format);
3694
3695 else
3696 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3697 surf_dims, arr_dims, info->dest_components,
3698 get_image_atomic_op(instr->intrinsic, type));
3699
3700 /* Assign the result. */
3701 for (unsigned c = 0; c < info->dest_components; ++c)
3702 bld.MOV(offset(retype(dest, base_type), bld, c),
3703 offset(tmp, bld, c));
3704 break;
3705 }
3706
3707 case nir_intrinsic_memory_barrier_atomic_counter:
3708 case nir_intrinsic_memory_barrier_buffer:
3709 case nir_intrinsic_memory_barrier_image:
3710 case nir_intrinsic_memory_barrier: {
3711 const fs_builder ubld = bld.group(8, 0);
3712 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3713 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3714 ->size_written = 2 * REG_SIZE;
3715 break;
3716 }
3717
3718 case nir_intrinsic_group_memory_barrier:
3719 case nir_intrinsic_memory_barrier_shared:
3720 /* We treat these workgroup-level barriers as no-ops. This should be
3721 * safe at present and as long as:
3722 *
3723 * - Memory access instructions are not subsequently reordered by the
3724 * compiler back-end.
3725 *
3726 * - All threads from a given compute shader workgroup fit within a
3727 * single subslice and therefore talk to the same HDC shared unit
3728 * what supposedly guarantees ordering and coherency between threads
3729 * from the same workgroup. This may change in the future when we
3730 * start splitting workgroups across multiple subslices.
3731 *
3732 * - The context is not in fault-and-stream mode, which could cause
3733 * memory transactions (including to SLM) prior to the barrier to be
3734 * replayed after the barrier if a pagefault occurs. This shouldn't
3735 * be a problem up to and including SKL because fault-and-stream is
3736 * not usable due to hardware issues, but that's likely to change in
3737 * the future.
3738 */
3739 break;
3740
3741 case nir_intrinsic_shader_clock: {
3742 /* We cannot do anything if there is an event, so ignore it for now */
3743 const fs_reg shader_clock = get_timestamp(bld);
3744 const fs_reg srcs[] = { component(shader_clock, 0),
3745 component(shader_clock, 1) };
3746 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3747 break;
3748 }
3749
3750 case nir_intrinsic_image_size: {
3751 /* Get the referenced image variable and type. */
3752 const nir_variable *var = instr->variables[0]->var;
3753 const glsl_type *type = var->type->without_array();
3754
3755 /* Get the size of the image. */
3756 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3757 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3758
3759 /* For 1DArray image types, the array index is stored in the Z component.
3760 * Fix this by swizzling the Z component to the Y component.
3761 */
3762 const bool is_1d_array_image =
3763 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3764 type->sampler_array;
3765
3766 /* For CubeArray images, we should count the number of cubes instead
3767 * of the number of faces. Fix it by dividing the (Z component) by 6.
3768 */
3769 const bool is_cube_array_image =
3770 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3771 type->sampler_array;
3772
3773 /* Copy all the components. */
3774 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3775 if ((int)c >= type->coordinate_components()) {
3776 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3777 brw_imm_d(1));
3778 } else if (c == 1 && is_1d_array_image) {
3779 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3780 offset(size, bld, 2));
3781 } else if (c == 2 && is_cube_array_image) {
3782 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3783 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3784 offset(size, bld, c), brw_imm_d(6));
3785 } else {
3786 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3787 offset(size, bld, c));
3788 }
3789 }
3790
3791 break;
3792 }
3793
3794 case nir_intrinsic_image_samples:
3795 /* The driver does not support multi-sampled images. */
3796 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3797 break;
3798
3799 case nir_intrinsic_load_uniform: {
3800 /* Offsets are in bytes but they should always be multiples of 4 */
3801 assert(instr->const_index[0] % 4 == 0);
3802
3803 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3804
3805 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3806 if (const_offset) {
3807 /* Offsets are in bytes but they should always be multiples of 4 */
3808 assert(const_offset->u32[0] % 4 == 0);
3809 src.offset = const_offset->u32[0];
3810
3811 for (unsigned j = 0; j < instr->num_components; j++) {
3812 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3813 }
3814 } else {
3815 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3816 BRW_REGISTER_TYPE_UD);
3817
3818 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3819 * go past the end of the uniform. In order to keep the n'th
3820 * component from running past, we subtract off the size of all but
3821 * one component of the vector.
3822 */
3823 assert(instr->const_index[1] >=
3824 instr->num_components * (int) type_sz(dest.type));
3825 unsigned read_size = instr->const_index[1] -
3826 (instr->num_components - 1) * type_sz(dest.type);
3827
3828 bool supports_64bit_indirects =
3829 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
3830
3831 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
3832 for (unsigned j = 0; j < instr->num_components; j++) {
3833 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3834 offset(dest, bld, j), offset(src, bld, j),
3835 indirect, brw_imm_ud(read_size));
3836 }
3837 } else {
3838 const unsigned num_mov_indirects =
3839 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
3840 /* We read a little bit less per MOV INDIRECT, as they are now
3841 * 32-bits ones instead of 64-bit. Fix read_size then.
3842 */
3843 const unsigned read_size_32bit = read_size -
3844 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
3845 for (unsigned j = 0; j < instr->num_components; j++) {
3846 for (unsigned i = 0; i < num_mov_indirects; i++) {
3847 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3848 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
3849 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
3850 indirect, brw_imm_ud(read_size_32bit));
3851 }
3852 }
3853 }
3854 }
3855 break;
3856 }
3857
3858 case nir_intrinsic_load_ubo: {
3859 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
3860 fs_reg surf_index;
3861
3862 if (const_index) {
3863 const unsigned index = stage_prog_data->binding_table.ubo_start +
3864 const_index->u32[0];
3865 surf_index = brw_imm_ud(index);
3866 brw_mark_surface_used(prog_data, index);
3867 } else {
3868 /* The block index is not a constant. Evaluate the index expression
3869 * per-channel and add the base UBO index; we have to select a value
3870 * from any live channel.
3871 */
3872 surf_index = vgrf(glsl_type::uint_type);
3873 bld.ADD(surf_index, get_nir_src(instr->src[0]),
3874 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
3875 surf_index = bld.emit_uniformize(surf_index);
3876
3877 /* Assume this may touch any UBO. It would be nice to provide
3878 * a tighter bound, but the array information is already lowered away.
3879 */
3880 brw_mark_surface_used(prog_data,
3881 stage_prog_data->binding_table.ubo_start +
3882 nir->info.num_ubos - 1);
3883 }
3884
3885 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3886 if (const_offset == NULL) {
3887 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
3888 BRW_REGISTER_TYPE_UD);
3889
3890 for (int i = 0; i < instr->num_components; i++)
3891 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
3892 base_offset, i * type_sz(dest.type));
3893 } else {
3894 /* Even if we are loading doubles, a pull constant load will load
3895 * a 32-bit vec4, so should only reserve vgrf space for that. If we
3896 * need to load a full dvec4 we will have to emit 2 loads. This is
3897 * similar to demote_pull_constants(), except that in that case we
3898 * see individual accesses to each component of the vector and then
3899 * we let CSE deal with duplicate loads. Here we see a vector access
3900 * and we have to split it if necessary.
3901 */
3902 const unsigned type_size = type_sz(dest.type);
3903
3904 /* See if we've selected this as a push constant candidate */
3905 if (const_index) {
3906 const unsigned ubo_block = const_index->u32[0];
3907 const unsigned offset_256b = const_offset->u32[0] / 32;
3908
3909 fs_reg push_reg;
3910 for (int i = 0; i < 4; i++) {
3911 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3912 if (range->block == ubo_block &&
3913 offset_256b >= range->start &&
3914 offset_256b < range->start + range->length) {
3915
3916 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
3917 push_reg.offset = const_offset->u32[0] - 32 * range->start;
3918 break;
3919 }
3920 }
3921
3922 if (push_reg.file != BAD_FILE) {
3923 for (unsigned i = 0; i < instr->num_components; i++) {
3924 bld.MOV(offset(dest, bld, i),
3925 byte_offset(push_reg, i * type_size));
3926 }
3927 break;
3928 }
3929 }
3930
3931 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
3932 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
3933 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3934
3935 for (unsigned c = 0; c < instr->num_components;) {
3936 const unsigned base = const_offset->u32[0] + c * type_size;
3937 /* Number of usable components in the next block-aligned load. */
3938 const unsigned count = MIN2(instr->num_components - c,
3939 (block_sz - base % block_sz) / type_size);
3940
3941 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
3942 packed_consts, surf_index,
3943 brw_imm_ud(base & ~(block_sz - 1)));
3944
3945 const fs_reg consts =
3946 retype(byte_offset(packed_consts, base & (block_sz - 1)),
3947 dest.type);
3948
3949 for (unsigned d = 0; d < count; d++)
3950 bld.MOV(offset(dest, bld, c + d), component(consts, d));
3951
3952 c += count;
3953 }
3954 }
3955 break;
3956 }
3957
3958 case nir_intrinsic_load_ssbo: {
3959 assert(devinfo->gen >= 7);
3960
3961 nir_const_value *const_uniform_block =
3962 nir_src_as_const_value(instr->src[0]);
3963
3964 fs_reg surf_index;
3965 if (const_uniform_block) {
3966 unsigned index = stage_prog_data->binding_table.ssbo_start +
3967 const_uniform_block->u32[0];
3968 surf_index = brw_imm_ud(index);
3969 brw_mark_surface_used(prog_data, index);
3970 } else {
3971 surf_index = vgrf(glsl_type::uint_type);
3972 bld.ADD(surf_index, get_nir_src(instr->src[0]),
3973 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3974
3975 /* Assume this may touch any UBO. It would be nice to provide
3976 * a tighter bound, but the array information is already lowered away.
3977 */
3978 brw_mark_surface_used(prog_data,
3979 stage_prog_data->binding_table.ssbo_start +
3980 nir->info.num_ssbos - 1);
3981 }
3982
3983 fs_reg offset_reg;
3984 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3985 if (const_offset) {
3986 offset_reg = brw_imm_ud(const_offset->u32[0]);
3987 } else {
3988 offset_reg = get_nir_src(instr->src[1]);
3989 }
3990
3991 /* Read the vector */
3992 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3993 instr->num_components);
3994
3995 break;
3996 }
3997
3998 case nir_intrinsic_store_ssbo: {
3999 assert(devinfo->gen >= 7);
4000
4001 if (stage == MESA_SHADER_FRAGMENT)
4002 brw_wm_prog_data(prog_data)->has_side_effects = true;
4003
4004 /* Block index */
4005 fs_reg surf_index;
4006 nir_const_value *const_uniform_block =
4007 nir_src_as_const_value(instr->src[1]);
4008 if (const_uniform_block) {
4009 unsigned index = stage_prog_data->binding_table.ssbo_start +
4010 const_uniform_block->u32[0];
4011 surf_index = brw_imm_ud(index);
4012 brw_mark_surface_used(prog_data, index);
4013 } else {
4014 surf_index = vgrf(glsl_type::uint_type);
4015 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4016 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4017
4018 brw_mark_surface_used(prog_data,
4019 stage_prog_data->binding_table.ssbo_start +
4020 nir->info.num_ssbos - 1);
4021 }
4022
4023 /* Value */
4024 fs_reg val_reg = get_nir_src(instr->src[0]);
4025
4026 /* Writemask */
4027 unsigned writemask = instr->const_index[0];
4028
4029 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4030 * since the untyped writes below operate in units of 32-bits, which
4031 * means that we need to write twice as many components each time.
4032 * Also, we have to suffle 64-bit data to be in the appropriate layout
4033 * expected by our 32-bit write messages.
4034 */
4035 unsigned type_size = 4;
4036 if (nir_src_bit_size(instr->src[0]) == 64) {
4037 type_size = 8;
4038 val_reg = shuffle_64bit_data_for_32bit_write(bld,
4039 val_reg, instr->num_components);
4040 }
4041
4042 unsigned type_slots = type_size / 4;
4043
4044 /* Combine groups of consecutive enabled channels in one write
4045 * message. We use ffs to find the first enabled channel and then ffs on
4046 * the bit-inverse, down-shifted writemask to determine the length of
4047 * the block of enabled bits.
4048 */
4049 while (writemask) {
4050 unsigned first_component = ffs(writemask) - 1;
4051 unsigned length = ffs(~(writemask >> first_component)) - 1;
4052
4053 /* We can't write more than 2 64-bit components at once. Limit the
4054 * length of the write to what we can do and let the next iteration
4055 * handle the rest
4056 */
4057 if (type_size > 4)
4058 length = MIN2(2, length);
4059
4060 fs_reg offset_reg;
4061 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4062 if (const_offset) {
4063 offset_reg = brw_imm_ud(const_offset->u32[0] +
4064 type_size * first_component);
4065 } else {
4066 offset_reg = vgrf(glsl_type::uint_type);
4067 bld.ADD(offset_reg,
4068 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4069 brw_imm_ud(type_size * first_component));
4070 }
4071
4072
4073 emit_untyped_write(bld, surf_index, offset_reg,
4074 offset(val_reg, bld, first_component * type_slots),
4075 1 /* dims */, length * type_slots,
4076 BRW_PREDICATE_NONE);
4077
4078 /* Clear the bits in the writemask that we just wrote, then try
4079 * again to see if more channels are left.
4080 */
4081 writemask &= (15 << (first_component + length));
4082 }
4083 break;
4084 }
4085
4086 case nir_intrinsic_store_output: {
4087 fs_reg src = get_nir_src(instr->src[0]);
4088
4089 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4090 assert(const_offset && "Indirect output stores not allowed");
4091
4092 unsigned num_components = instr->num_components;
4093 unsigned first_component = nir_intrinsic_component(instr);
4094 if (nir_src_bit_size(instr->src[0]) == 64) {
4095 src = shuffle_64bit_data_for_32bit_write(bld, src, num_components);
4096 num_components *= 2;
4097 }
4098
4099 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4100 4 * const_offset->u32[0]), src.type);
4101 for (unsigned j = 0; j < num_components; j++) {
4102 bld.MOV(offset(new_dest, bld, j + first_component),
4103 offset(src, bld, j));
4104 }
4105 break;
4106 }
4107
4108 case nir_intrinsic_ssbo_atomic_add:
4109 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4110 break;
4111 case nir_intrinsic_ssbo_atomic_imin:
4112 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4113 break;
4114 case nir_intrinsic_ssbo_atomic_umin:
4115 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4116 break;
4117 case nir_intrinsic_ssbo_atomic_imax:
4118 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4119 break;
4120 case nir_intrinsic_ssbo_atomic_umax:
4121 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4122 break;
4123 case nir_intrinsic_ssbo_atomic_and:
4124 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4125 break;
4126 case nir_intrinsic_ssbo_atomic_or:
4127 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4128 break;
4129 case nir_intrinsic_ssbo_atomic_xor:
4130 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4131 break;
4132 case nir_intrinsic_ssbo_atomic_exchange:
4133 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4134 break;
4135 case nir_intrinsic_ssbo_atomic_comp_swap:
4136 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4137 break;
4138
4139 case nir_intrinsic_get_buffer_size: {
4140 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4141 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4142
4143 /* A resinfo's sampler message is used to get the buffer size. The
4144 * SIMD8's writeback message consists of four registers and SIMD16's
4145 * writeback message consists of 8 destination registers (two per each
4146 * component). Because we are only interested on the first channel of
4147 * the first returned component, where resinfo returns the buffer size
4148 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4149 * the dispatch width.
4150 */
4151 const fs_builder ubld = bld.exec_all().group(8, 0);
4152 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4153 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4154
4155 /* Set LOD = 0 */
4156 ubld.MOV(src_payload, brw_imm_d(0));
4157
4158 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4159 fs_inst *inst = ubld.emit(FS_OPCODE_GET_BUFFER_SIZE, ret_payload,
4160 src_payload, brw_imm_ud(index));
4161 inst->header_size = 0;
4162 inst->mlen = 1;
4163 inst->size_written = 4 * REG_SIZE;
4164
4165 bld.MOV(retype(dest, ret_payload.type), component(ret_payload, 0));
4166 brw_mark_surface_used(prog_data, index);
4167 break;
4168 }
4169
4170 case nir_intrinsic_load_subgroup_invocation:
4171 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4172 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4173 break;
4174
4175 case nir_intrinsic_load_subgroup_eq_mask:
4176 case nir_intrinsic_load_subgroup_ge_mask:
4177 case nir_intrinsic_load_subgroup_gt_mask:
4178 case nir_intrinsic_load_subgroup_le_mask:
4179 case nir_intrinsic_load_subgroup_lt_mask:
4180 unreachable("not reached");
4181
4182 case nir_intrinsic_vote_any: {
4183 const fs_builder ubld = bld.exec_all().group(1, 0);
4184
4185 /* The any/all predicates do not consider channel enables. To prevent
4186 * dead channels from affecting the result, we initialize the flag with
4187 * with the identity value for the logical operation.
4188 */
4189 if (dispatch_width == 32) {
4190 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4191 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4192 brw_imm_ud(0));
4193 } else {
4194 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4195 }
4196 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4197
4198 /* For some reason, the any/all predicates don't work properly with
4199 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4200 * doesn't read the correct subset of the flag register and you end up
4201 * getting garbage in the second half. Work around this by using a pair
4202 * of 1-wide MOVs and scattering the result.
4203 */
4204 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4205 ubld.MOV(res1, brw_imm_d(0));
4206 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4207 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4208 BRW_PREDICATE_ALIGN1_ANY32H,
4209 ubld.MOV(res1, brw_imm_d(-1)));
4210
4211 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4212 break;
4213 }
4214 case nir_intrinsic_vote_all: {
4215 const fs_builder ubld = bld.exec_all().group(1, 0);
4216
4217 /* The any/all predicates do not consider channel enables. To prevent
4218 * dead channels from affecting the result, we initialize the flag with
4219 * with the identity value for the logical operation.
4220 */
4221 if (dispatch_width == 32) {
4222 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4223 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4224 brw_imm_ud(0xffffffff));
4225 } else {
4226 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4227 }
4228 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4229
4230 /* For some reason, the any/all predicates don't work properly with
4231 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4232 * doesn't read the correct subset of the flag register and you end up
4233 * getting garbage in the second half. Work around this by using a pair
4234 * of 1-wide MOVs and scattering the result.
4235 */
4236 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4237 ubld.MOV(res1, brw_imm_d(0));
4238 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4239 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4240 BRW_PREDICATE_ALIGN1_ALL32H,
4241 ubld.MOV(res1, brw_imm_d(-1)));
4242
4243 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4244 break;
4245 }
4246 case nir_intrinsic_vote_eq: {
4247 fs_reg value = get_nir_src(instr->src[0]);
4248 fs_reg uniformized = bld.emit_uniformize(value);
4249 const fs_builder ubld = bld.exec_all().group(1, 0);
4250
4251 /* The any/all predicates do not consider channel enables. To prevent
4252 * dead channels from affecting the result, we initialize the flag with
4253 * with the identity value for the logical operation.
4254 */
4255 if (dispatch_width == 32) {
4256 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4257 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4258 brw_imm_ud(0xffffffff));
4259 } else {
4260 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4261 }
4262 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4263
4264 /* For some reason, the any/all predicates don't work properly with
4265 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4266 * doesn't read the correct subset of the flag register and you end up
4267 * getting garbage in the second half. Work around this by using a pair
4268 * of 1-wide MOVs and scattering the result.
4269 */
4270 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4271 ubld.MOV(res1, brw_imm_d(0));
4272 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4273 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4274 BRW_PREDICATE_ALIGN1_ALL32H,
4275 ubld.MOV(res1, brw_imm_d(-1)));
4276
4277 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4278 break;
4279 }
4280
4281 case nir_intrinsic_ballot: {
4282 const fs_reg value = retype(get_nir_src(instr->src[0]),
4283 BRW_REGISTER_TYPE_UD);
4284 struct brw_reg flag = brw_flag_reg(0, 0);
4285 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4286 * as f0.0. This is a problem for fragment programs as we currently use
4287 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4288 * programs yet so this isn't a problem. When we do, something will
4289 * have to change.
4290 */
4291 if (dispatch_width == 32)
4292 flag.type = BRW_REGISTER_TYPE_UD;
4293
4294 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4295 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4296
4297 if (instr->dest.ssa.bit_size > 32) {
4298 dest.type = BRW_REGISTER_TYPE_UQ;
4299 } else {
4300 dest.type = BRW_REGISTER_TYPE_UD;
4301 }
4302 bld.MOV(dest, flag);
4303 break;
4304 }
4305
4306 case nir_intrinsic_read_invocation: {
4307 const fs_reg value = get_nir_src(instr->src[0]);
4308 const fs_reg invocation = get_nir_src(instr->src[1]);
4309 fs_reg tmp = bld.vgrf(value.type);
4310
4311 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4312 bld.emit_uniformize(invocation));
4313
4314 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4315 break;
4316 }
4317
4318 case nir_intrinsic_read_first_invocation: {
4319 const fs_reg value = get_nir_src(instr->src[0]);
4320 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4321 break;
4322 }
4323
4324 default:
4325 unreachable("unknown intrinsic");
4326 }
4327 }
4328
4329 void
4330 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4331 int op, nir_intrinsic_instr *instr)
4332 {
4333 if (stage == MESA_SHADER_FRAGMENT)
4334 brw_wm_prog_data(prog_data)->has_side_effects = true;
4335
4336 fs_reg dest;
4337 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4338 dest = get_nir_dest(instr->dest);
4339
4340 fs_reg surface;
4341 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4342 if (const_surface) {
4343 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4344 const_surface->u32[0];
4345 surface = brw_imm_ud(surf_index);
4346 brw_mark_surface_used(prog_data, surf_index);
4347 } else {
4348 surface = vgrf(glsl_type::uint_type);
4349 bld.ADD(surface, get_nir_src(instr->src[0]),
4350 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4351
4352 /* Assume this may touch any SSBO. This is the same we do for other
4353 * UBO/SSBO accesses with non-constant surface.
4354 */
4355 brw_mark_surface_used(prog_data,
4356 stage_prog_data->binding_table.ssbo_start +
4357 nir->info.num_ssbos - 1);
4358 }
4359
4360 fs_reg offset = get_nir_src(instr->src[1]);
4361 fs_reg data1 = get_nir_src(instr->src[2]);
4362 fs_reg data2;
4363 if (op == BRW_AOP_CMPWR)
4364 data2 = get_nir_src(instr->src[3]);
4365
4366 /* Emit the actual atomic operation */
4367
4368 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4369 data1, data2,
4370 1 /* dims */, 1 /* rsize */,
4371 op,
4372 BRW_PREDICATE_NONE);
4373 dest.type = atomic_result.type;
4374 bld.MOV(dest, atomic_result);
4375 }
4376
4377 void
4378 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4379 int op, nir_intrinsic_instr *instr)
4380 {
4381 fs_reg dest;
4382 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4383 dest = get_nir_dest(instr->dest);
4384
4385 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4386 fs_reg offset;
4387 fs_reg data1 = get_nir_src(instr->src[1]);
4388 fs_reg data2;
4389 if (op == BRW_AOP_CMPWR)
4390 data2 = get_nir_src(instr->src[2]);
4391
4392 /* Get the offset */
4393 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4394 if (const_offset) {
4395 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4396 } else {
4397 offset = vgrf(glsl_type::uint_type);
4398 bld.ADD(offset,
4399 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4400 brw_imm_ud(instr->const_index[0]));
4401 }
4402
4403 /* Emit the actual atomic operation operation */
4404
4405 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4406 data1, data2,
4407 1 /* dims */, 1 /* rsize */,
4408 op,
4409 BRW_PREDICATE_NONE);
4410 dest.type = atomic_result.type;
4411 bld.MOV(dest, atomic_result);
4412 }
4413
4414 void
4415 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4416 {
4417 unsigned texture = instr->texture_index;
4418 unsigned sampler = instr->sampler_index;
4419
4420 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4421
4422 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4423 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4424
4425 int lod_components = 0;
4426
4427 /* The hardware requires a LOD for buffer textures */
4428 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4429 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4430
4431 uint32_t header_bits = 0;
4432 for (unsigned i = 0; i < instr->num_srcs; i++) {
4433 fs_reg src = get_nir_src(instr->src[i].src);
4434 switch (instr->src[i].src_type) {
4435 case nir_tex_src_bias:
4436 srcs[TEX_LOGICAL_SRC_LOD] =
4437 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4438 break;
4439 case nir_tex_src_comparator:
4440 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4441 break;
4442 case nir_tex_src_coord:
4443 switch (instr->op) {
4444 case nir_texop_txf:
4445 case nir_texop_txf_ms:
4446 case nir_texop_txf_ms_mcs:
4447 case nir_texop_samples_identical:
4448 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4449 break;
4450 default:
4451 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4452 break;
4453 }
4454 break;
4455 case nir_tex_src_ddx:
4456 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4457 lod_components = nir_tex_instr_src_size(instr, i);
4458 break;
4459 case nir_tex_src_ddy:
4460 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4461 break;
4462 case nir_tex_src_lod:
4463 switch (instr->op) {
4464 case nir_texop_txs:
4465 srcs[TEX_LOGICAL_SRC_LOD] =
4466 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4467 break;
4468 case nir_texop_txf:
4469 srcs[TEX_LOGICAL_SRC_LOD] =
4470 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4471 break;
4472 default:
4473 srcs[TEX_LOGICAL_SRC_LOD] =
4474 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4475 break;
4476 }
4477 break;
4478 case nir_tex_src_ms_index:
4479 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4480 break;
4481
4482 case nir_tex_src_offset: {
4483 nir_const_value *const_offset =
4484 nir_src_as_const_value(instr->src[i].src);
4485 unsigned offset_bits = 0;
4486 if (const_offset &&
4487 brw_texture_offset(const_offset->i32,
4488 nir_tex_instr_src_size(instr, i),
4489 &offset_bits)) {
4490 header_bits |= offset_bits;
4491 } else {
4492 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
4493 retype(src, BRW_REGISTER_TYPE_D);
4494 }
4495 break;
4496 }
4497
4498 case nir_tex_src_projector:
4499 unreachable("should be lowered");
4500
4501 case nir_tex_src_texture_offset: {
4502 /* Figure out the highest possible texture index and mark it as used */
4503 uint32_t max_used = texture + instr->texture_array_size - 1;
4504 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
4505 max_used += stage_prog_data->binding_table.gather_texture_start;
4506 } else {
4507 max_used += stage_prog_data->binding_table.texture_start;
4508 }
4509 brw_mark_surface_used(prog_data, max_used);
4510
4511 /* Emit code to evaluate the actual indexing expression */
4512 fs_reg tmp = vgrf(glsl_type::uint_type);
4513 bld.ADD(tmp, src, brw_imm_ud(texture));
4514 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4515 break;
4516 }
4517
4518 case nir_tex_src_sampler_offset: {
4519 /* Emit code to evaluate the actual indexing expression */
4520 fs_reg tmp = vgrf(glsl_type::uint_type);
4521 bld.ADD(tmp, src, brw_imm_ud(sampler));
4522 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4523 break;
4524 }
4525
4526 case nir_tex_src_ms_mcs:
4527 assert(instr->op == nir_texop_txf_ms);
4528 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
4529 break;
4530
4531 case nir_tex_src_plane: {
4532 nir_const_value *const_plane =
4533 nir_src_as_const_value(instr->src[i].src);
4534 const uint32_t plane = const_plane->u32[0];
4535 const uint32_t texture_index =
4536 instr->texture_index +
4537 stage_prog_data->binding_table.plane_start[plane] -
4538 stage_prog_data->binding_table.texture_start;
4539
4540 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
4541 break;
4542 }
4543
4544 default:
4545 unreachable("unknown texture source");
4546 }
4547 }
4548
4549 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
4550 (instr->op == nir_texop_txf_ms ||
4551 instr->op == nir_texop_samples_identical)) {
4552 if (devinfo->gen >= 7 &&
4553 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
4554 srcs[TEX_LOGICAL_SRC_MCS] =
4555 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
4556 instr->coord_components,
4557 srcs[TEX_LOGICAL_SRC_SURFACE]);
4558 } else {
4559 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
4560 }
4561 }
4562
4563 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
4564 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
4565
4566 enum opcode opcode;
4567 switch (instr->op) {
4568 case nir_texop_tex:
4569 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
4570 SHADER_OPCODE_TXL_LOGICAL);
4571 break;
4572 case nir_texop_txb:
4573 opcode = FS_OPCODE_TXB_LOGICAL;
4574 break;
4575 case nir_texop_txl:
4576 opcode = SHADER_OPCODE_TXL_LOGICAL;
4577 break;
4578 case nir_texop_txd:
4579 opcode = SHADER_OPCODE_TXD_LOGICAL;
4580 break;
4581 case nir_texop_txf:
4582 opcode = SHADER_OPCODE_TXF_LOGICAL;
4583 break;
4584 case nir_texop_txf_ms:
4585 if ((key_tex->msaa_16 & (1 << sampler)))
4586 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
4587 else
4588 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
4589 break;
4590 case nir_texop_txf_ms_mcs:
4591 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
4592 break;
4593 case nir_texop_query_levels:
4594 case nir_texop_txs:
4595 opcode = SHADER_OPCODE_TXS_LOGICAL;
4596 break;
4597 case nir_texop_lod:
4598 opcode = SHADER_OPCODE_LOD_LOGICAL;
4599 break;
4600 case nir_texop_tg4:
4601 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
4602 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
4603 else
4604 opcode = SHADER_OPCODE_TG4_LOGICAL;
4605 break;
4606 case nir_texop_texture_samples:
4607 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
4608 break;
4609 case nir_texop_samples_identical: {
4610 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
4611
4612 /* If mcs is an immediate value, it means there is no MCS. In that case
4613 * just return false.
4614 */
4615 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
4616 bld.MOV(dst, brw_imm_ud(0u));
4617 } else if ((key_tex->msaa_16 & (1 << sampler))) {
4618 fs_reg tmp = vgrf(glsl_type::uint_type);
4619 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
4620 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
4621 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
4622 } else {
4623 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
4624 BRW_CONDITIONAL_EQ);
4625 }
4626 return;
4627 }
4628 default:
4629 unreachable("unknown texture opcode");
4630 }
4631
4632 if (instr->op == nir_texop_tg4) {
4633 if (instr->component == 1 &&
4634 key_tex->gather_channel_quirk_mask & (1 << texture)) {
4635 /* gather4 sampler is broken for green channel on RG32F --
4636 * we must ask for blue instead.
4637 */
4638 header_bits |= 2 << 16;
4639 } else {
4640 header_bits |= instr->component << 16;
4641 }
4642 }
4643
4644 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
4645 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
4646 inst->offset = header_bits;
4647
4648 const unsigned dest_size = nir_tex_instr_dest_size(instr);
4649 if (devinfo->gen >= 9 &&
4650 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
4651 unsigned write_mask = instr->dest.is_ssa ?
4652 nir_ssa_def_components_read(&instr->dest.ssa):
4653 (1 << dest_size) - 1;
4654 assert(write_mask != 0); /* dead code should have been eliminated */
4655 inst->size_written = util_last_bit(write_mask) *
4656 inst->dst.component_size(inst->exec_size);
4657 } else {
4658 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
4659 }
4660
4661 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
4662 inst->shadow_compare = true;
4663
4664 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
4665 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
4666
4667 fs_reg nir_dest[4];
4668 for (unsigned i = 0; i < dest_size; i++)
4669 nir_dest[i] = offset(dst, bld, i);
4670
4671 if (instr->op == nir_texop_query_levels) {
4672 /* # levels is in .w */
4673 nir_dest[0] = offset(dst, bld, 3);
4674 } else if (instr->op == nir_texop_txs &&
4675 dest_size >= 3 && devinfo->gen < 7) {
4676 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
4677 fs_reg depth = offset(dst, bld, 2);
4678 nir_dest[2] = vgrf(glsl_type::int_type);
4679 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
4680 }
4681
4682 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
4683 }
4684
4685 void
4686 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
4687 {
4688 switch (instr->type) {
4689 case nir_jump_break:
4690 bld.emit(BRW_OPCODE_BREAK);
4691 break;
4692 case nir_jump_continue:
4693 bld.emit(BRW_OPCODE_CONTINUE);
4694 break;
4695 case nir_jump_return:
4696 default:
4697 unreachable("unknown jump");
4698 }
4699 }
4700
4701 /**
4702 * This helper takes the result of a load operation that reads 32-bit elements
4703 * in this format:
4704 *
4705 * x x x x x x x x
4706 * y y y y y y y y
4707 * z z z z z z z z
4708 * w w w w w w w w
4709 *
4710 * and shuffles the data to get this:
4711 *
4712 * x y x y x y x y
4713 * x y x y x y x y
4714 * z w z w z w z w
4715 * z w z w z w z w
4716 *
4717 * Which is exactly what we want if the load is reading 64-bit components
4718 * like doubles, where x represents the low 32-bit of the x double component
4719 * and y represents the high 32-bit of the x double component (likewise with
4720 * z and w for double component y). The parameter @components represents
4721 * the number of 64-bit components present in @src. This would typically be
4722 * 2 at most, since we can only fit 2 double elements in the result of a
4723 * vec4 load.
4724 *
4725 * Notice that @dst and @src can be the same register.
4726 */
4727 void
4728 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
4729 const fs_reg &dst,
4730 const fs_reg &src,
4731 uint32_t components)
4732 {
4733 assert(type_sz(src.type) == 4);
4734 assert(type_sz(dst.type) == 8);
4735
4736 /* A temporary that we will use to shuffle the 32-bit data of each
4737 * component in the vector into valid 64-bit data. We can't write directly
4738 * to dst because dst can be (and would usually be) the same as src
4739 * and in that case the first MOV in the loop below would overwrite the
4740 * data read in the second MOV.
4741 */
4742 fs_reg tmp = bld.vgrf(dst.type);
4743
4744 for (unsigned i = 0; i < components; i++) {
4745 const fs_reg component_i = offset(src, bld, 2 * i);
4746
4747 bld.MOV(subscript(tmp, src.type, 0), component_i);
4748 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
4749
4750 bld.MOV(offset(dst, bld, i), tmp);
4751 }
4752 }
4753
4754 /**
4755 * This helper does the inverse operation of
4756 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
4757 *
4758 * We need to do this when we are going to use untyped write messsages that
4759 * operate with 32-bit components in order to arrange our 64-bit data to be
4760 * in the expected layout.
4761 *
4762 * Notice that callers of this function, unlike in the case of the inverse
4763 * operation, would typically need to call this with dst and src being
4764 * different registers, since they would otherwise corrupt the original
4765 * 64-bit data they are about to write. Because of this the function checks
4766 * that the src and dst regions involved in the operation do not overlap.
4767 */
4768 fs_reg
4769 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
4770 const fs_reg &src,
4771 uint32_t components)
4772 {
4773 assert(type_sz(src.type) == 8);
4774
4775 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D, 2 * components);
4776
4777 for (unsigned i = 0; i < components; i++) {
4778 const fs_reg component_i = offset(src, bld, i);
4779 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
4780 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
4781 }
4782
4783 return dst;
4784 }
4785
4786 fs_reg
4787 setup_imm_df(const fs_builder &bld, double v)
4788 {
4789 const struct gen_device_info *devinfo = bld.shader->devinfo;
4790 assert(devinfo->gen >= 7);
4791
4792 if (devinfo->gen >= 8)
4793 return brw_imm_df(v);
4794
4795 /* gen7.5 does not support DF immediates straighforward but the DIM
4796 * instruction allows to set the 64-bit immediate value.
4797 */
4798 if (devinfo->is_haswell) {
4799 const fs_builder ubld = bld.exec_all().group(1, 0);
4800 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
4801 ubld.DIM(dst, brw_imm_df(v));
4802 return component(dst, 0);
4803 }
4804
4805 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
4806 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
4807 * the high 32-bit to suboffset 4 and then applying a stride of 0.
4808 *
4809 * Alternatively, we could also produce a normal VGRF (without stride 0)
4810 * by writing to all the channels in the VGRF, however, that would hit the
4811 * gen7 bug where we have to split writes that span more than 1 register
4812 * into instructions with a width of 4 (otherwise the write to the second
4813 * register written runs into an execmask hardware bug) which isn't very
4814 * nice.
4815 */
4816 union {
4817 double d;
4818 struct {
4819 uint32_t i1;
4820 uint32_t i2;
4821 };
4822 } di;
4823
4824 di.d = v;
4825
4826 const fs_builder ubld = bld.exec_all().group(1, 0);
4827 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4828 ubld.MOV(tmp, brw_imm_ud(di.i1));
4829 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
4830
4831 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
4832 }