intel/compiler: assert restrictions on conversions to half-float
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "util/u_math.h"
28 #include "util/bitscan.h"
29
30 using namespace brw;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
43 }
44
45 void
46 fs_visitor::nir_setup_outputs()
47 {
48 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
49 return;
50
51 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
52
53 /* Calculate the size of output registers in a separate pass, before
54 * allocating them. With ARB_enhanced_layouts, multiple output variables
55 * may occupy the same slot, but have different type sizes.
56 */
57 nir_foreach_variable(var, &nir->outputs) {
58 const int loc = var->data.driver_location;
59 const unsigned var_vec4s =
60 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
61 : type_size_vec4(var->type, true);
62 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
63 }
64
65 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
66 if (vec4s[loc] == 0) {
67 loc++;
68 continue;
69 }
70
71 unsigned reg_size = vec4s[loc];
72
73 /* Check if there are any ranges that start within this range and extend
74 * past it. If so, include them in this allocation.
75 */
76 for (unsigned i = 1; i < reg_size; i++)
77 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
78
79 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
80 for (unsigned i = 0; i < reg_size; i++)
81 outputs[loc + i] = offset(reg, bld, 4 * i);
82
83 loc += reg_size;
84 }
85 }
86
87 void
88 fs_visitor::nir_setup_uniforms()
89 {
90 /* Only the first compile gets to set up uniforms. */
91 if (push_constant_loc) {
92 assert(pull_constant_loc);
93 return;
94 }
95
96 uniforms = nir->num_uniforms / 4;
97
98 if (stage == MESA_SHADER_COMPUTE) {
99 /* Add a uniform for the thread local id. It must be the last uniform
100 * on the list.
101 */
102 assert(uniforms == prog_data->nr_params);
103 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
104 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
105 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
106 }
107 }
108
109 static bool
110 emit_system_values_block(nir_block *block, fs_visitor *v)
111 {
112 fs_reg *reg;
113
114 nir_foreach_instr(instr, block) {
115 if (instr->type != nir_instr_type_intrinsic)
116 continue;
117
118 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
119 switch (intrin->intrinsic) {
120 case nir_intrinsic_load_vertex_id:
121 case nir_intrinsic_load_base_vertex:
122 unreachable("should be lowered by nir_lower_system_values().");
123
124 case nir_intrinsic_load_vertex_id_zero_base:
125 case nir_intrinsic_load_is_indexed_draw:
126 case nir_intrinsic_load_first_vertex:
127 case nir_intrinsic_load_instance_id:
128 case nir_intrinsic_load_base_instance:
129 case nir_intrinsic_load_draw_id:
130 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
131
132 case nir_intrinsic_load_invocation_id:
133 if (v->stage == MESA_SHADER_TESS_CTRL)
134 break;
135 assert(v->stage == MESA_SHADER_GEOMETRY);
136 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
137 if (reg->file == BAD_FILE) {
138 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
139 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
140 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
141 abld.SHR(iid, g1, brw_imm_ud(27u));
142 *reg = iid;
143 }
144 break;
145
146 case nir_intrinsic_load_sample_pos:
147 assert(v->stage == MESA_SHADER_FRAGMENT);
148 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
149 if (reg->file == BAD_FILE)
150 *reg = *v->emit_samplepos_setup();
151 break;
152
153 case nir_intrinsic_load_sample_id:
154 assert(v->stage == MESA_SHADER_FRAGMENT);
155 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
156 if (reg->file == BAD_FILE)
157 *reg = *v->emit_sampleid_setup();
158 break;
159
160 case nir_intrinsic_load_sample_mask_in:
161 assert(v->stage == MESA_SHADER_FRAGMENT);
162 assert(v->devinfo->gen >= 7);
163 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
164 if (reg->file == BAD_FILE)
165 *reg = *v->emit_samplemaskin_setup();
166 break;
167
168 case nir_intrinsic_load_work_group_id:
169 assert(v->stage == MESA_SHADER_COMPUTE);
170 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
171 if (reg->file == BAD_FILE)
172 *reg = *v->emit_cs_work_group_id_setup();
173 break;
174
175 case nir_intrinsic_load_helper_invocation:
176 assert(v->stage == MESA_SHADER_FRAGMENT);
177 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
178 if (reg->file == BAD_FILE) {
179 const fs_builder abld =
180 v->bld.annotate("gl_HelperInvocation", NULL);
181
182 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
183 * pixel mask is in g1.7 of the thread payload.
184 *
185 * We move the per-channel pixel enable bit to the low bit of each
186 * channel by shifting the byte containing the pixel mask by the
187 * vector immediate 0x76543210UV.
188 *
189 * The region of <1,8,0> reads only 1 byte (the pixel masks for
190 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
191 * masks for 2 and 3) in SIMD16.
192 */
193 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
194
195 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
196 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
197 hbld.SHR(offset(shifted, hbld, i),
198 stride(retype(brw_vec1_grf(1 + i, 7),
199 BRW_REGISTER_TYPE_UB),
200 1, 8, 0),
201 brw_imm_v(0x76543210));
202 }
203
204 /* A set bit in the pixel mask means the channel is enabled, but
205 * that is the opposite of gl_HelperInvocation so we need to invert
206 * the mask.
207 *
208 * The negate source-modifier bit of logical instructions on Gen8+
209 * performs 1's complement negation, so we can use that instead of
210 * a NOT instruction.
211 */
212 fs_reg inverted = negate(shifted);
213 if (v->devinfo->gen < 8) {
214 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
215 abld.NOT(inverted, shifted);
216 }
217
218 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
219 * with 1 and negating.
220 */
221 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
222 abld.AND(anded, inverted, brw_imm_uw(1));
223
224 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
225 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
226 *reg = dst;
227 }
228 break;
229
230 default:
231 break;
232 }
233 }
234
235 return true;
236 }
237
238 void
239 fs_visitor::nir_emit_system_values()
240 {
241 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
242 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
243 nir_system_values[i] = fs_reg();
244 }
245
246 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
247 * never end up using it.
248 */
249 {
250 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
251 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
252 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
253
254 const fs_builder allbld8 = abld.group(8, 0).exec_all();
255 allbld8.MOV(reg, brw_imm_v(0x76543210));
256 if (dispatch_width > 8)
257 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
258 if (dispatch_width > 16) {
259 const fs_builder allbld16 = abld.group(16, 0).exec_all();
260 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
261 }
262 }
263
264 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
265 nir_foreach_block(block, impl)
266 emit_system_values_block(block, this);
267 }
268
269 /*
270 * Returns a type based on a reference_type (word, float, half-float) and a
271 * given bit_size.
272 *
273 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
274 *
275 * @FIXME: 64-bit return types are always DF on integer types to maintain
276 * compability with uses of DF previously to the introduction of int64
277 * support.
278 */
279 static brw_reg_type
280 brw_reg_type_from_bit_size(const unsigned bit_size,
281 const brw_reg_type reference_type)
282 {
283 switch(reference_type) {
284 case BRW_REGISTER_TYPE_HF:
285 case BRW_REGISTER_TYPE_F:
286 case BRW_REGISTER_TYPE_DF:
287 switch(bit_size) {
288 case 16:
289 return BRW_REGISTER_TYPE_HF;
290 case 32:
291 return BRW_REGISTER_TYPE_F;
292 case 64:
293 return BRW_REGISTER_TYPE_DF;
294 default:
295 unreachable("Invalid bit size");
296 }
297 case BRW_REGISTER_TYPE_B:
298 case BRW_REGISTER_TYPE_W:
299 case BRW_REGISTER_TYPE_D:
300 case BRW_REGISTER_TYPE_Q:
301 switch(bit_size) {
302 case 8:
303 return BRW_REGISTER_TYPE_B;
304 case 16:
305 return BRW_REGISTER_TYPE_W;
306 case 32:
307 return BRW_REGISTER_TYPE_D;
308 case 64:
309 return BRW_REGISTER_TYPE_Q;
310 default:
311 unreachable("Invalid bit size");
312 }
313 case BRW_REGISTER_TYPE_UB:
314 case BRW_REGISTER_TYPE_UW:
315 case BRW_REGISTER_TYPE_UD:
316 case BRW_REGISTER_TYPE_UQ:
317 switch(bit_size) {
318 case 8:
319 return BRW_REGISTER_TYPE_UB;
320 case 16:
321 return BRW_REGISTER_TYPE_UW;
322 case 32:
323 return BRW_REGISTER_TYPE_UD;
324 case 64:
325 return BRW_REGISTER_TYPE_UQ;
326 default:
327 unreachable("Invalid bit size");
328 }
329 default:
330 unreachable("Unknown type");
331 }
332 }
333
334 void
335 fs_visitor::nir_emit_impl(nir_function_impl *impl)
336 {
337 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
338 for (unsigned i = 0; i < impl->reg_alloc; i++) {
339 nir_locals[i] = fs_reg();
340 }
341
342 foreach_list_typed(nir_register, reg, node, &impl->registers) {
343 unsigned array_elems =
344 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
345 unsigned size = array_elems * reg->num_components;
346 const brw_reg_type reg_type =
347 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
348 nir_locals[reg->index] = bld.vgrf(reg_type, size);
349 }
350
351 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
352 impl->ssa_alloc);
353
354 nir_emit_cf_list(&impl->body);
355 }
356
357 void
358 fs_visitor::nir_emit_cf_list(exec_list *list)
359 {
360 exec_list_validate(list);
361 foreach_list_typed(nir_cf_node, node, node, list) {
362 switch (node->type) {
363 case nir_cf_node_if:
364 nir_emit_if(nir_cf_node_as_if(node));
365 break;
366
367 case nir_cf_node_loop:
368 nir_emit_loop(nir_cf_node_as_loop(node));
369 break;
370
371 case nir_cf_node_block:
372 nir_emit_block(nir_cf_node_as_block(node));
373 break;
374
375 default:
376 unreachable("Invalid CFG node block");
377 }
378 }
379 }
380
381 void
382 fs_visitor::nir_emit_if(nir_if *if_stmt)
383 {
384 bool invert;
385 fs_reg cond_reg;
386
387 /* If the condition has the form !other_condition, use other_condition as
388 * the source, but invert the predicate on the if instruction.
389 */
390 nir_alu_instr *const cond = nir_src_as_alu_instr(&if_stmt->condition);
391 if (cond != NULL && cond->op == nir_op_inot) {
392 assert(!cond->src[0].negate);
393 assert(!cond->src[0].abs);
394
395 invert = true;
396 cond_reg = get_nir_src(cond->src[0].src);
397 } else {
398 invert = false;
399 cond_reg = get_nir_src(if_stmt->condition);
400 }
401
402 /* first, put the condition into f0 */
403 fs_inst *inst = bld.MOV(bld.null_reg_d(),
404 retype(cond_reg, BRW_REGISTER_TYPE_D));
405 inst->conditional_mod = BRW_CONDITIONAL_NZ;
406
407 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
408
409 nir_emit_cf_list(&if_stmt->then_list);
410
411 /* note: if the else is empty, dead CF elimination will remove it */
412 bld.emit(BRW_OPCODE_ELSE);
413
414 nir_emit_cf_list(&if_stmt->else_list);
415
416 bld.emit(BRW_OPCODE_ENDIF);
417
418 if (devinfo->gen < 7)
419 limit_dispatch_width(16, "Non-uniform control flow unsupported "
420 "in SIMD32 mode.");
421 }
422
423 void
424 fs_visitor::nir_emit_loop(nir_loop *loop)
425 {
426 bld.emit(BRW_OPCODE_DO);
427
428 nir_emit_cf_list(&loop->body);
429
430 bld.emit(BRW_OPCODE_WHILE);
431
432 if (devinfo->gen < 7)
433 limit_dispatch_width(16, "Non-uniform control flow unsupported "
434 "in SIMD32 mode.");
435 }
436
437 void
438 fs_visitor::nir_emit_block(nir_block *block)
439 {
440 nir_foreach_instr(instr, block) {
441 nir_emit_instr(instr);
442 }
443 }
444
445 void
446 fs_visitor::nir_emit_instr(nir_instr *instr)
447 {
448 const fs_builder abld = bld.annotate(NULL, instr);
449
450 switch (instr->type) {
451 case nir_instr_type_alu:
452 nir_emit_alu(abld, nir_instr_as_alu(instr));
453 break;
454
455 case nir_instr_type_deref:
456 /* Derefs can exist for images but they do nothing */
457 break;
458
459 case nir_instr_type_intrinsic:
460 switch (stage) {
461 case MESA_SHADER_VERTEX:
462 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
463 break;
464 case MESA_SHADER_TESS_CTRL:
465 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
466 break;
467 case MESA_SHADER_TESS_EVAL:
468 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
469 break;
470 case MESA_SHADER_GEOMETRY:
471 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
472 break;
473 case MESA_SHADER_FRAGMENT:
474 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
475 break;
476 case MESA_SHADER_COMPUTE:
477 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
478 break;
479 default:
480 unreachable("unsupported shader stage");
481 }
482 break;
483
484 case nir_instr_type_tex:
485 nir_emit_texture(abld, nir_instr_as_tex(instr));
486 break;
487
488 case nir_instr_type_load_const:
489 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
490 break;
491
492 case nir_instr_type_ssa_undef:
493 /* We create a new VGRF for undefs on every use (by handling
494 * them in get_nir_src()), rather than for each definition.
495 * This helps register coalescing eliminate MOVs from undef.
496 */
497 break;
498
499 case nir_instr_type_jump:
500 nir_emit_jump(abld, nir_instr_as_jump(instr));
501 break;
502
503 default:
504 unreachable("unknown instruction type");
505 }
506 }
507
508 /**
509 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
510 * match instr.
511 */
512 bool
513 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
514 const fs_reg &result)
515 {
516 if (!instr->src[0].src.is_ssa ||
517 !instr->src[0].src.ssa->parent_instr)
518 return false;
519
520 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
521 return false;
522
523 nir_alu_instr *src0 =
524 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
525
526 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
527 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
528 return false;
529
530 /* If either opcode has source modifiers, bail.
531 *
532 * TODO: We can potentially handle source modifiers if both of the opcodes
533 * we're combining are signed integers.
534 */
535 if (instr->src[0].abs || instr->src[0].negate ||
536 src0->src[0].abs || src0->src[0].negate)
537 return false;
538
539 unsigned element = nir_src_as_uint(src0->src[1].src);
540
541 /* Element type to extract.*/
542 const brw_reg_type type = brw_int_type(
543 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
544 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
545
546 fs_reg op0 = get_nir_src(src0->src[0].src);
547 op0.type = brw_type_for_nir_type(devinfo,
548 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
549 nir_src_bit_size(src0->src[0].src)));
550 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
551
552 set_saturate(instr->dest.saturate,
553 bld.MOV(result, subscript(op0, type, element)));
554 return true;
555 }
556
557 bool
558 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
559 const fs_reg &result)
560 {
561 if (!instr->src[0].src.is_ssa ||
562 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
563 return false;
564
565 nir_intrinsic_instr *src0 =
566 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
567
568 if (src0->intrinsic != nir_intrinsic_load_front_face)
569 return false;
570
571 if (!nir_src_is_const(instr->src[1].src) ||
572 !nir_src_is_const(instr->src[2].src))
573 return false;
574
575 const float value1 = nir_src_as_float(instr->src[1].src);
576 const float value2 = nir_src_as_float(instr->src[2].src);
577 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
578 return false;
579
580 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
581 assert(value1 == -value2);
582
583 fs_reg tmp = vgrf(glsl_type::int_type);
584
585 if (devinfo->gen >= 6) {
586 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
587 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
588
589 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
590 *
591 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
592 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
593 *
594 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
595 *
596 * This negation looks like it's safe in practice, because bits 0:4 will
597 * surely be TRIANGLES
598 */
599
600 if (value1 == -1.0f) {
601 g0.negate = true;
602 }
603
604 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
605 g0, brw_imm_uw(0x3f80));
606 } else {
607 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
608 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
609
610 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
611 *
612 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
613 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
614 *
615 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
616 *
617 * This negation looks like it's safe in practice, because bits 0:4 will
618 * surely be TRIANGLES
619 */
620
621 if (value1 == -1.0f) {
622 g1_6.negate = true;
623 }
624
625 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
626 }
627 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
628
629 return true;
630 }
631
632 static void
633 emit_find_msb_using_lzd(const fs_builder &bld,
634 const fs_reg &result,
635 const fs_reg &src,
636 bool is_signed)
637 {
638 fs_inst *inst;
639 fs_reg temp = src;
640
641 if (is_signed) {
642 /* LZD of an absolute value source almost always does the right
643 * thing. There are two problem values:
644 *
645 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
646 * 0. However, findMSB(int(0x80000000)) == 30.
647 *
648 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
649 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
650 *
651 * For a value of zero or negative one, -1 will be returned.
652 *
653 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
654 * findMSB(-(1<<x)) should return x-1.
655 *
656 * For all negative number cases, including 0x80000000 and
657 * 0xffffffff, the correct value is obtained from LZD if instead of
658 * negating the (already negative) value the logical-not is used. A
659 * conditonal logical-not can be achieved in two instructions.
660 */
661 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
662
663 bld.ASR(temp, src, brw_imm_d(31));
664 bld.XOR(temp, temp, src);
665 }
666
667 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
668 retype(temp, BRW_REGISTER_TYPE_UD));
669
670 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
671 * from the LSB side. Subtract the result from 31 to convert the MSB
672 * count into an LSB count. If no bits are set, LZD will return 32.
673 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
674 */
675 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
676 inst->src[0].negate = true;
677 }
678
679 static brw_rnd_mode
680 brw_rnd_mode_from_nir_op (const nir_op op) {
681 switch (op) {
682 case nir_op_f2f16_rtz:
683 return BRW_RND_MODE_RTZ;
684 case nir_op_f2f16_rtne:
685 return BRW_RND_MODE_RTNE;
686 default:
687 unreachable("Operation doesn't support rounding mode");
688 }
689 }
690
691 fs_reg
692 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
693 nir_alu_instr *instr,
694 fs_reg *op,
695 bool need_dest)
696 {
697 fs_reg result =
698 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
699
700 result.type = brw_type_for_nir_type(devinfo,
701 (nir_alu_type)(nir_op_infos[instr->op].output_type |
702 nir_dest_bit_size(instr->dest.dest)));
703
704 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
705 op[i] = get_nir_src(instr->src[i].src);
706 op[i].type = brw_type_for_nir_type(devinfo,
707 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
708 nir_src_bit_size(instr->src[i].src)));
709 op[i].abs = instr->src[i].abs;
710 op[i].negate = instr->src[i].negate;
711 }
712
713 /* Move and vecN instrutions may still be vectored. Return the raw,
714 * vectored source and destination so that fs_visitor::nir_emit_alu can
715 * handle it. Other callers should not have to handle these kinds of
716 * instructions.
717 */
718 switch (instr->op) {
719 case nir_op_imov:
720 case nir_op_fmov:
721 case nir_op_vec2:
722 case nir_op_vec3:
723 case nir_op_vec4:
724 return result;
725 default:
726 break;
727 }
728
729 /* At this point, we have dealt with any instruction that operates on
730 * more than a single channel. Therefore, we can just adjust the source
731 * and destination registers for that channel and emit the instruction.
732 */
733 unsigned channel = 0;
734 if (nir_op_infos[instr->op].output_size == 0) {
735 /* Since NIR is doing the scalarizing for us, we should only ever see
736 * vectorized operations with a single channel.
737 */
738 assert(util_bitcount(instr->dest.write_mask) == 1);
739 channel = ffs(instr->dest.write_mask) - 1;
740
741 result = offset(result, bld, channel);
742 }
743
744 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
745 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
746 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
747 }
748
749 return result;
750 }
751
752 void
753 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
754 fs_reg *op)
755 {
756 for (unsigned i = 0; i < 2; i++) {
757 nir_alu_instr *const inot_instr =
758 nir_src_as_alu_instr(&instr->src[i].src);
759
760 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
761 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
762 /* The source of the inot is now the source of instr. */
763 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
764
765 assert(!op[i].negate);
766 op[i].negate = true;
767 } else {
768 op[i] = resolve_source_modifiers(op[i]);
769 }
770 }
771 }
772
773 bool
774 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
775 fs_reg result,
776 nir_alu_instr *instr)
777 {
778 if (devinfo->gen < 6 || devinfo->gen >= 12)
779 return false;
780
781 nir_alu_instr *const inot_instr = nir_src_as_alu_instr(&instr->src[0].src);
782
783 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
784 return false;
785
786 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
787 * of valid size-changing combinations is a bit more complex.
788 *
789 * The source restriction is just because I was lazy about generating the
790 * constant below.
791 */
792 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
793 nir_src_bit_size(inot_instr->src[0].src) != 32)
794 return false;
795
796 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
797 * this is float(1 + a).
798 */
799 fs_reg op;
800
801 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
802
803 /* Ignore the saturate modifier, if there is one. The result of the
804 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
805 */
806 bld.ADD(result, op, brw_imm_d(1));
807
808 return true;
809 }
810
811 void
812 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
813 {
814 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
815 fs_inst *inst;
816
817 fs_reg op[4];
818 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, true);
819
820 switch (instr->op) {
821 case nir_op_imov:
822 case nir_op_fmov:
823 case nir_op_vec2:
824 case nir_op_vec3:
825 case nir_op_vec4: {
826 fs_reg temp = result;
827 bool need_extra_copy = false;
828 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
829 if (!instr->src[i].src.is_ssa &&
830 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
831 need_extra_copy = true;
832 temp = bld.vgrf(result.type, 4);
833 break;
834 }
835 }
836
837 for (unsigned i = 0; i < 4; i++) {
838 if (!(instr->dest.write_mask & (1 << i)))
839 continue;
840
841 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
842 inst = bld.MOV(offset(temp, bld, i),
843 offset(op[0], bld, instr->src[0].swizzle[i]));
844 } else {
845 inst = bld.MOV(offset(temp, bld, i),
846 offset(op[i], bld, instr->src[i].swizzle[0]));
847 }
848 inst->saturate = instr->dest.saturate;
849 }
850
851 /* In this case the source and destination registers were the same,
852 * so we need to insert an extra set of moves in order to deal with
853 * any swizzling.
854 */
855 if (need_extra_copy) {
856 for (unsigned i = 0; i < 4; i++) {
857 if (!(instr->dest.write_mask & (1 << i)))
858 continue;
859
860 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
861 }
862 }
863 return;
864 }
865
866 case nir_op_i2f32:
867 case nir_op_u2f32:
868 if (optimize_extract_to_float(instr, result))
869 return;
870 inst = bld.MOV(result, op[0]);
871 inst->saturate = instr->dest.saturate;
872 break;
873
874 case nir_op_f2f16_rtne:
875 case nir_op_f2f16_rtz:
876 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
877 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
878 /* fallthrough */
879
880 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
881 * on the HW gen, it is a special hw opcode or just a MOV, and
882 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
883 *
884 * But if we want to use that opcode, we need to provide support on
885 * different optimizations and lowerings. As right now HF support is
886 * only for gen8+, it will be better to use directly the MOV, and use
887 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
888 */
889
890 case nir_op_f2f16:
891 case nir_op_i2f16:
892 case nir_op_u2f16:
893 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
894 inst = bld.MOV(result, op[0]);
895 inst->saturate = instr->dest.saturate;
896 break;
897
898 case nir_op_f2f64:
899 case nir_op_f2i64:
900 case nir_op_f2u64:
901 assert(type_sz(op[0].type) > 2); /* brw_nir_lower_conversions */
902 inst = bld.MOV(result, op[0]);
903 inst->saturate = instr->dest.saturate;
904 break;
905
906 case nir_op_b2i8:
907 case nir_op_b2i16:
908 case nir_op_b2i32:
909 case nir_op_b2i64:
910 case nir_op_b2f16:
911 case nir_op_b2f32:
912 case nir_op_b2f64:
913 if (try_emit_b2fi_of_inot(bld, result, instr))
914 break;
915 op[0].type = BRW_REGISTER_TYPE_D;
916 op[0].negate = !op[0].negate;
917 /* fallthrough */
918 case nir_op_i2f64:
919 case nir_op_i2i64:
920 case nir_op_u2f64:
921 case nir_op_u2u64:
922 assert(type_sz(op[0].type) > 1); /* brw_nir_lower_conversions */
923 /* fallthrough */
924 case nir_op_f2f32:
925 case nir_op_f2i32:
926 case nir_op_f2u32:
927 case nir_op_f2i16:
928 case nir_op_f2u16:
929 case nir_op_i2i32:
930 case nir_op_u2u32:
931 case nir_op_i2i16:
932 case nir_op_u2u16:
933 case nir_op_i2i8:
934 case nir_op_u2u8:
935 inst = bld.MOV(result, op[0]);
936 inst->saturate = instr->dest.saturate;
937 break;
938
939 case nir_op_fsign: {
940 assert(!instr->dest.saturate);
941 if (op[0].abs) {
942 /* Straightforward since the source can be assumed to be either
943 * strictly >= 0 or strictly <= 0 depending on the setting of the
944 * negate flag.
945 */
946 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
947
948 inst = (op[0].negate)
949 ? bld.MOV(result, brw_imm_f(-1.0f))
950 : bld.MOV(result, brw_imm_f(1.0f));
951
952 set_predicate(BRW_PREDICATE_NORMAL, inst);
953 } else if (type_sz(op[0].type) < 8) {
954 /* AND(val, 0x80000000) gives the sign bit.
955 *
956 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
957 * zero.
958 */
959 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
960
961 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
962 op[0].type = BRW_REGISTER_TYPE_UD;
963 result.type = BRW_REGISTER_TYPE_UD;
964 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
965
966 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
967 inst->predicate = BRW_PREDICATE_NORMAL;
968 } else {
969 /* For doubles we do the same but we need to consider:
970 *
971 * - 2-src instructions can't operate with 64-bit immediates
972 * - The sign is encoded in the high 32-bit of each DF
973 * - We need to produce a DF result.
974 */
975
976 fs_reg zero = vgrf(glsl_type::double_type);
977 bld.MOV(zero, setup_imm_df(bld, 0.0));
978 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
979
980 bld.MOV(result, zero);
981
982 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
983 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
984 brw_imm_ud(0x80000000u));
985
986 set_predicate(BRW_PREDICATE_NORMAL,
987 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
988 }
989 break;
990 }
991
992 case nir_op_frcp:
993 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
994 inst->saturate = instr->dest.saturate;
995 break;
996
997 case nir_op_fexp2:
998 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
999 inst->saturate = instr->dest.saturate;
1000 break;
1001
1002 case nir_op_flog2:
1003 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1004 inst->saturate = instr->dest.saturate;
1005 break;
1006
1007 case nir_op_fsin:
1008 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1009 inst->saturate = instr->dest.saturate;
1010 break;
1011
1012 case nir_op_fcos:
1013 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1014 inst->saturate = instr->dest.saturate;
1015 break;
1016
1017 case nir_op_fddx:
1018 if (fs_key->high_quality_derivatives) {
1019 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1020 } else {
1021 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1022 }
1023 inst->saturate = instr->dest.saturate;
1024 break;
1025 case nir_op_fddx_fine:
1026 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1027 inst->saturate = instr->dest.saturate;
1028 break;
1029 case nir_op_fddx_coarse:
1030 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1031 inst->saturate = instr->dest.saturate;
1032 break;
1033 case nir_op_fddy:
1034 if (fs_key->high_quality_derivatives) {
1035 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1036 } else {
1037 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1038 }
1039 inst->saturate = instr->dest.saturate;
1040 break;
1041 case nir_op_fddy_fine:
1042 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1043 inst->saturate = instr->dest.saturate;
1044 break;
1045 case nir_op_fddy_coarse:
1046 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1047 inst->saturate = instr->dest.saturate;
1048 break;
1049
1050 case nir_op_iadd:
1051 case nir_op_fadd:
1052 inst = bld.ADD(result, op[0], op[1]);
1053 inst->saturate = instr->dest.saturate;
1054 break;
1055
1056 case nir_op_uadd_sat:
1057 inst = bld.ADD(result, op[0], op[1]);
1058 inst->saturate = true;
1059 break;
1060
1061 case nir_op_fmul:
1062 inst = bld.MUL(result, op[0], op[1]);
1063 inst->saturate = instr->dest.saturate;
1064 break;
1065
1066 case nir_op_imul_2x32_64:
1067 case nir_op_umul_2x32_64:
1068 bld.MUL(result, op[0], op[1]);
1069 break;
1070
1071 case nir_op_imul:
1072 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1073 bld.MUL(result, op[0], op[1]);
1074 break;
1075
1076 case nir_op_imul_high:
1077 case nir_op_umul_high:
1078 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1079 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1080 break;
1081
1082 case nir_op_idiv:
1083 case nir_op_udiv:
1084 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1085 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1086 break;
1087
1088 case nir_op_uadd_carry:
1089 unreachable("Should have been lowered by carry_to_arith().");
1090
1091 case nir_op_usub_borrow:
1092 unreachable("Should have been lowered by borrow_to_arith().");
1093
1094 case nir_op_umod:
1095 case nir_op_irem:
1096 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1097 * appears that our hardware just does the right thing for signed
1098 * remainder.
1099 */
1100 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1101 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1102 break;
1103
1104 case nir_op_imod: {
1105 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1106 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1107
1108 /* Math instructions don't support conditional mod */
1109 inst = bld.MOV(bld.null_reg_d(), result);
1110 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1111
1112 /* Now, we need to determine if signs of the sources are different.
1113 * When we XOR the sources, the top bit is 0 if they are the same and 1
1114 * if they are different. We can then use a conditional modifier to
1115 * turn that into a predicate. This leads us to an XOR.l instruction.
1116 *
1117 * Technically, according to the PRM, you're not allowed to use .l on a
1118 * XOR instruction. However, emperical experiments and Curro's reading
1119 * of the simulator source both indicate that it's safe.
1120 */
1121 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1122 inst = bld.XOR(tmp, op[0], op[1]);
1123 inst->predicate = BRW_PREDICATE_NORMAL;
1124 inst->conditional_mod = BRW_CONDITIONAL_L;
1125
1126 /* If the result of the initial remainder operation is non-zero and the
1127 * two sources have different signs, add in a copy of op[1] to get the
1128 * final integer modulus value.
1129 */
1130 inst = bld.ADD(result, result, op[1]);
1131 inst->predicate = BRW_PREDICATE_NORMAL;
1132 break;
1133 }
1134
1135 case nir_op_flt32:
1136 case nir_op_fge32:
1137 case nir_op_feq32:
1138 case nir_op_fne32: {
1139 fs_reg dest = result;
1140
1141 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1142 if (bit_size != 32)
1143 dest = bld.vgrf(op[0].type, 1);
1144
1145 brw_conditional_mod cond;
1146 switch (instr->op) {
1147 case nir_op_flt32:
1148 cond = BRW_CONDITIONAL_L;
1149 break;
1150 case nir_op_fge32:
1151 cond = BRW_CONDITIONAL_GE;
1152 break;
1153 case nir_op_feq32:
1154 cond = BRW_CONDITIONAL_Z;
1155 break;
1156 case nir_op_fne32:
1157 cond = BRW_CONDITIONAL_NZ;
1158 break;
1159 default:
1160 unreachable("bad opcode");
1161 }
1162
1163 bld.CMP(dest, op[0], op[1], cond);
1164
1165 if (bit_size > 32) {
1166 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1167 } else if(bit_size < 32) {
1168 /* When we convert the result to 32-bit we need to be careful and do
1169 * it as a signed conversion to get sign extension (for 32-bit true)
1170 */
1171 const brw_reg_type src_type =
1172 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1173
1174 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1175 }
1176 break;
1177 }
1178
1179 case nir_op_ilt32:
1180 case nir_op_ult32:
1181 case nir_op_ige32:
1182 case nir_op_uge32:
1183 case nir_op_ieq32:
1184 case nir_op_ine32: {
1185 fs_reg dest = result;
1186
1187 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1188 if (bit_size != 32)
1189 dest = bld.vgrf(op[0].type, 1);
1190
1191 brw_conditional_mod cond;
1192 switch (instr->op) {
1193 case nir_op_ilt32:
1194 case nir_op_ult32:
1195 cond = BRW_CONDITIONAL_L;
1196 break;
1197 case nir_op_ige32:
1198 case nir_op_uge32:
1199 cond = BRW_CONDITIONAL_GE;
1200 break;
1201 case nir_op_ieq32:
1202 cond = BRW_CONDITIONAL_Z;
1203 break;
1204 case nir_op_ine32:
1205 cond = BRW_CONDITIONAL_NZ;
1206 break;
1207 default:
1208 unreachable("bad opcode");
1209 }
1210 bld.CMP(dest, op[0], op[1], cond);
1211
1212 if (bit_size > 32) {
1213 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1214 } else if (bit_size < 32) {
1215 /* When we convert the result to 32-bit we need to be careful and do
1216 * it as a signed conversion to get sign extension (for 32-bit true)
1217 */
1218 const brw_reg_type src_type =
1219 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1220
1221 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1222 }
1223 break;
1224 }
1225
1226 case nir_op_inot:
1227 if (devinfo->gen >= 8) {
1228 nir_alu_instr *const inot_src_instr =
1229 nir_src_as_alu_instr(&instr->src[0].src);
1230
1231 if (inot_src_instr != NULL &&
1232 (inot_src_instr->op == nir_op_ior ||
1233 inot_src_instr->op == nir_op_ixor ||
1234 inot_src_instr->op == nir_op_iand) &&
1235 !inot_src_instr->src[0].abs &&
1236 !inot_src_instr->src[0].negate &&
1237 !inot_src_instr->src[1].abs &&
1238 !inot_src_instr->src[1].negate) {
1239 /* The sources of the source logical instruction are now the
1240 * sources of the instruction that will be generated.
1241 */
1242 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1243 resolve_inot_sources(bld, inot_src_instr, op);
1244
1245 /* Smash all of the sources and destination to be signed. This
1246 * doesn't matter for the operation of the instruction, but cmod
1247 * propagation fails on unsigned sources with negation (due to
1248 * fs_inst::can_do_cmod returning false).
1249 */
1250 result.type =
1251 brw_type_for_nir_type(devinfo,
1252 (nir_alu_type)(nir_type_int |
1253 nir_dest_bit_size(instr->dest.dest)));
1254 op[0].type =
1255 brw_type_for_nir_type(devinfo,
1256 (nir_alu_type)(nir_type_int |
1257 nir_src_bit_size(inot_src_instr->src[0].src)));
1258 op[1].type =
1259 brw_type_for_nir_type(devinfo,
1260 (nir_alu_type)(nir_type_int |
1261 nir_src_bit_size(inot_src_instr->src[1].src)));
1262
1263 /* For XOR, only invert one of the sources. Arbitrarily choose
1264 * the first source.
1265 */
1266 op[0].negate = !op[0].negate;
1267 if (inot_src_instr->op != nir_op_ixor)
1268 op[1].negate = !op[1].negate;
1269
1270 switch (inot_src_instr->op) {
1271 case nir_op_ior:
1272 bld.AND(result, op[0], op[1]);
1273 return;
1274
1275 case nir_op_iand:
1276 bld.OR(result, op[0], op[1]);
1277 return;
1278
1279 case nir_op_ixor:
1280 bld.XOR(result, op[0], op[1]);
1281 return;
1282
1283 default:
1284 unreachable("impossible opcode");
1285 }
1286 }
1287 op[0] = resolve_source_modifiers(op[0]);
1288 }
1289 bld.NOT(result, op[0]);
1290 break;
1291 case nir_op_ixor:
1292 if (devinfo->gen >= 8) {
1293 resolve_inot_sources(bld, instr, op);
1294 }
1295 bld.XOR(result, op[0], op[1]);
1296 break;
1297 case nir_op_ior:
1298 if (devinfo->gen >= 8) {
1299 resolve_inot_sources(bld, instr, op);
1300 }
1301 bld.OR(result, op[0], op[1]);
1302 break;
1303 case nir_op_iand:
1304 if (devinfo->gen >= 8) {
1305 resolve_inot_sources(bld, instr, op);
1306 }
1307 bld.AND(result, op[0], op[1]);
1308 break;
1309
1310 case nir_op_fdot2:
1311 case nir_op_fdot3:
1312 case nir_op_fdot4:
1313 case nir_op_b32all_fequal2:
1314 case nir_op_b32all_iequal2:
1315 case nir_op_b32all_fequal3:
1316 case nir_op_b32all_iequal3:
1317 case nir_op_b32all_fequal4:
1318 case nir_op_b32all_iequal4:
1319 case nir_op_b32any_fnequal2:
1320 case nir_op_b32any_inequal2:
1321 case nir_op_b32any_fnequal3:
1322 case nir_op_b32any_inequal3:
1323 case nir_op_b32any_fnequal4:
1324 case nir_op_b32any_inequal4:
1325 unreachable("Lowered by nir_lower_alu_reductions");
1326
1327 case nir_op_fnoise1_1:
1328 case nir_op_fnoise1_2:
1329 case nir_op_fnoise1_3:
1330 case nir_op_fnoise1_4:
1331 case nir_op_fnoise2_1:
1332 case nir_op_fnoise2_2:
1333 case nir_op_fnoise2_3:
1334 case nir_op_fnoise2_4:
1335 case nir_op_fnoise3_1:
1336 case nir_op_fnoise3_2:
1337 case nir_op_fnoise3_3:
1338 case nir_op_fnoise3_4:
1339 case nir_op_fnoise4_1:
1340 case nir_op_fnoise4_2:
1341 case nir_op_fnoise4_3:
1342 case nir_op_fnoise4_4:
1343 unreachable("not reached: should be handled by lower_noise");
1344
1345 case nir_op_ldexp:
1346 unreachable("not reached: should be handled by ldexp_to_arith()");
1347
1348 case nir_op_fsqrt:
1349 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1350 inst->saturate = instr->dest.saturate;
1351 break;
1352
1353 case nir_op_frsq:
1354 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1355 inst->saturate = instr->dest.saturate;
1356 break;
1357
1358 case nir_op_i2b32:
1359 case nir_op_f2b32: {
1360 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1361 if (bit_size == 64) {
1362 /* two-argument instructions can't take 64-bit immediates */
1363 fs_reg zero;
1364 fs_reg tmp;
1365
1366 if (instr->op == nir_op_f2b32) {
1367 zero = vgrf(glsl_type::double_type);
1368 tmp = vgrf(glsl_type::double_type);
1369 bld.MOV(zero, setup_imm_df(bld, 0.0));
1370 } else {
1371 zero = vgrf(glsl_type::int64_t_type);
1372 tmp = vgrf(glsl_type::int64_t_type);
1373 bld.MOV(zero, brw_imm_q(0));
1374 }
1375
1376 /* A SIMD16 execution needs to be split in two instructions, so use
1377 * a vgrf instead of the flag register as dst so instruction splitting
1378 * works
1379 */
1380 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1381 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1382 } else {
1383 fs_reg zero;
1384 if (bit_size == 32) {
1385 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1386 } else {
1387 assert(bit_size == 16);
1388 zero = instr->op == nir_op_f2b32 ?
1389 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1390 }
1391 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1392 }
1393 break;
1394 }
1395
1396 case nir_op_ftrunc:
1397 inst = bld.RNDZ(result, op[0]);
1398 inst->saturate = instr->dest.saturate;
1399 break;
1400
1401 case nir_op_fceil: {
1402 op[0].negate = !op[0].negate;
1403 fs_reg temp = vgrf(glsl_type::float_type);
1404 bld.RNDD(temp, op[0]);
1405 temp.negate = true;
1406 inst = bld.MOV(result, temp);
1407 inst->saturate = instr->dest.saturate;
1408 break;
1409 }
1410 case nir_op_ffloor:
1411 inst = bld.RNDD(result, op[0]);
1412 inst->saturate = instr->dest.saturate;
1413 break;
1414 case nir_op_ffract:
1415 inst = bld.FRC(result, op[0]);
1416 inst->saturate = instr->dest.saturate;
1417 break;
1418 case nir_op_fround_even:
1419 inst = bld.RNDE(result, op[0]);
1420 inst->saturate = instr->dest.saturate;
1421 break;
1422
1423 case nir_op_fquantize2f16: {
1424 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1425 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1426 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1427
1428 /* The destination stride must be at least as big as the source stride. */
1429 tmp16.type = BRW_REGISTER_TYPE_W;
1430 tmp16.stride = 2;
1431
1432 /* Check for denormal */
1433 fs_reg abs_src0 = op[0];
1434 abs_src0.abs = true;
1435 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1436 BRW_CONDITIONAL_L);
1437 /* Get the appropriately signed zero */
1438 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1439 retype(op[0], BRW_REGISTER_TYPE_UD),
1440 brw_imm_ud(0x80000000));
1441 /* Do the actual F32 -> F16 -> F32 conversion */
1442 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1443 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1444 /* Select that or zero based on normal status */
1445 inst = bld.SEL(result, zero, tmp32);
1446 inst->predicate = BRW_PREDICATE_NORMAL;
1447 inst->saturate = instr->dest.saturate;
1448 break;
1449 }
1450
1451 case nir_op_imin:
1452 case nir_op_umin:
1453 case nir_op_fmin:
1454 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1455 inst->saturate = instr->dest.saturate;
1456 break;
1457
1458 case nir_op_imax:
1459 case nir_op_umax:
1460 case nir_op_fmax:
1461 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1462 inst->saturate = instr->dest.saturate;
1463 break;
1464
1465 case nir_op_pack_snorm_2x16:
1466 case nir_op_pack_snorm_4x8:
1467 case nir_op_pack_unorm_2x16:
1468 case nir_op_pack_unorm_4x8:
1469 case nir_op_unpack_snorm_2x16:
1470 case nir_op_unpack_snorm_4x8:
1471 case nir_op_unpack_unorm_2x16:
1472 case nir_op_unpack_unorm_4x8:
1473 case nir_op_unpack_half_2x16:
1474 case nir_op_pack_half_2x16:
1475 unreachable("not reached: should be handled by lower_packing_builtins");
1476
1477 case nir_op_unpack_half_2x16_split_x:
1478 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1479 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1480 inst->saturate = instr->dest.saturate;
1481 break;
1482 case nir_op_unpack_half_2x16_split_y:
1483 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1484 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1485 inst->saturate = instr->dest.saturate;
1486 break;
1487
1488 case nir_op_pack_64_2x32_split:
1489 case nir_op_pack_32_2x16_split:
1490 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1491 break;
1492
1493 case nir_op_unpack_64_2x32_split_x:
1494 case nir_op_unpack_64_2x32_split_y: {
1495 if (instr->op == nir_op_unpack_64_2x32_split_x)
1496 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1497 else
1498 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1499 break;
1500 }
1501
1502 case nir_op_unpack_32_2x16_split_x:
1503 case nir_op_unpack_32_2x16_split_y: {
1504 if (instr->op == nir_op_unpack_32_2x16_split_x)
1505 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1506 else
1507 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1508 break;
1509 }
1510
1511 case nir_op_fpow:
1512 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1513 inst->saturate = instr->dest.saturate;
1514 break;
1515
1516 case nir_op_bitfield_reverse:
1517 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1518 bld.BFREV(result, op[0]);
1519 break;
1520
1521 case nir_op_bit_count:
1522 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1523 bld.CBIT(result, op[0]);
1524 break;
1525
1526 case nir_op_ufind_msb: {
1527 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1528 emit_find_msb_using_lzd(bld, result, op[0], false);
1529 break;
1530 }
1531
1532 case nir_op_ifind_msb: {
1533 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1534
1535 if (devinfo->gen < 7) {
1536 emit_find_msb_using_lzd(bld, result, op[0], true);
1537 } else {
1538 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1539
1540 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1541 * count from the LSB side. If FBH didn't return an error
1542 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1543 * count into an LSB count.
1544 */
1545 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1546
1547 inst = bld.ADD(result, result, brw_imm_d(31));
1548 inst->predicate = BRW_PREDICATE_NORMAL;
1549 inst->src[0].negate = true;
1550 }
1551 break;
1552 }
1553
1554 case nir_op_find_lsb:
1555 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1556
1557 if (devinfo->gen < 7) {
1558 fs_reg temp = vgrf(glsl_type::int_type);
1559
1560 /* (x & -x) generates a value that consists of only the LSB of x.
1561 * For all powers of 2, findMSB(y) == findLSB(y).
1562 */
1563 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1564 fs_reg negated_src = src;
1565
1566 /* One must be negated, and the other must be non-negated. It
1567 * doesn't matter which is which.
1568 */
1569 negated_src.negate = true;
1570 src.negate = false;
1571
1572 bld.AND(temp, src, negated_src);
1573 emit_find_msb_using_lzd(bld, result, temp, false);
1574 } else {
1575 bld.FBL(result, op[0]);
1576 }
1577 break;
1578
1579 case nir_op_ubitfield_extract:
1580 case nir_op_ibitfield_extract:
1581 unreachable("should have been lowered");
1582 case nir_op_ubfe:
1583 case nir_op_ibfe:
1584 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1585 bld.BFE(result, op[2], op[1], op[0]);
1586 break;
1587 case nir_op_bfm:
1588 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1589 bld.BFI1(result, op[0], op[1]);
1590 break;
1591 case nir_op_bfi:
1592 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1593 bld.BFI2(result, op[0], op[1], op[2]);
1594 break;
1595
1596 case nir_op_bitfield_insert:
1597 unreachable("not reached: should have been lowered");
1598
1599 case nir_op_ishl:
1600 bld.SHL(result, op[0], op[1]);
1601 break;
1602 case nir_op_ishr:
1603 bld.ASR(result, op[0], op[1]);
1604 break;
1605 case nir_op_ushr:
1606 bld.SHR(result, op[0], op[1]);
1607 break;
1608
1609 case nir_op_pack_half_2x16_split:
1610 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1611 break;
1612
1613 case nir_op_ffma:
1614 inst = bld.MAD(result, op[2], op[1], op[0]);
1615 inst->saturate = instr->dest.saturate;
1616 break;
1617
1618 case nir_op_flrp:
1619 inst = bld.LRP(result, op[0], op[1], op[2]);
1620 inst->saturate = instr->dest.saturate;
1621 break;
1622
1623 case nir_op_b32csel:
1624 if (optimize_frontfacing_ternary(instr, result))
1625 return;
1626
1627 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1628 inst = bld.SEL(result, op[1], op[2]);
1629 inst->predicate = BRW_PREDICATE_NORMAL;
1630 break;
1631
1632 case nir_op_extract_u8:
1633 case nir_op_extract_i8: {
1634 unsigned byte = nir_src_as_uint(instr->src[1].src);
1635
1636 /* The PRMs say:
1637 *
1638 * BDW+
1639 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1640 * Use two instructions and a word or DWord intermediate integer type.
1641 */
1642 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1643 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1644
1645 if (instr->op == nir_op_extract_i8) {
1646 /* If we need to sign extend, extract to a word first */
1647 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1648 bld.MOV(w_temp, subscript(op[0], type, byte));
1649 bld.MOV(result, w_temp);
1650 } else if (byte & 1) {
1651 /* Extract the high byte from the word containing the desired byte
1652 * offset.
1653 */
1654 bld.SHR(result,
1655 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1656 brw_imm_uw(8));
1657 } else {
1658 /* Otherwise use an AND with 0xff and a word type */
1659 bld.AND(result,
1660 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1661 brw_imm_uw(0xff));
1662 }
1663 } else {
1664 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1665 bld.MOV(result, subscript(op[0], type, byte));
1666 }
1667 break;
1668 }
1669
1670 case nir_op_extract_u16:
1671 case nir_op_extract_i16: {
1672 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1673 unsigned word = nir_src_as_uint(instr->src[1].src);
1674 bld.MOV(result, subscript(op[0], type, word));
1675 break;
1676 }
1677
1678 default:
1679 unreachable("unhandled instruction");
1680 }
1681
1682 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1683 * to sign extend the low bit to 0/~0
1684 */
1685 if (devinfo->gen <= 5 &&
1686 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1687 fs_reg masked = vgrf(glsl_type::int_type);
1688 bld.AND(masked, result, brw_imm_d(1));
1689 masked.negate = true;
1690 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1691 }
1692 }
1693
1694 void
1695 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1696 nir_load_const_instr *instr)
1697 {
1698 const brw_reg_type reg_type =
1699 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1700 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1701
1702 switch (instr->def.bit_size) {
1703 case 8:
1704 for (unsigned i = 0; i < instr->def.num_components; i++)
1705 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1706 break;
1707
1708 case 16:
1709 for (unsigned i = 0; i < instr->def.num_components; i++)
1710 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1711 break;
1712
1713 case 32:
1714 for (unsigned i = 0; i < instr->def.num_components; i++)
1715 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1716 break;
1717
1718 case 64:
1719 assert(devinfo->gen >= 7);
1720 if (devinfo->gen == 7) {
1721 /* We don't get 64-bit integer types until gen8 */
1722 for (unsigned i = 0; i < instr->def.num_components; i++) {
1723 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1724 setup_imm_df(bld, instr->value[i].f64));
1725 }
1726 } else {
1727 for (unsigned i = 0; i < instr->def.num_components; i++)
1728 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1729 }
1730 break;
1731
1732 default:
1733 unreachable("Invalid bit size");
1734 }
1735
1736 nir_ssa_values[instr->def.index] = reg;
1737 }
1738
1739 fs_reg
1740 fs_visitor::get_nir_src(const nir_src &src)
1741 {
1742 fs_reg reg;
1743 if (src.is_ssa) {
1744 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1745 const brw_reg_type reg_type =
1746 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1747 reg = bld.vgrf(reg_type, src.ssa->num_components);
1748 } else {
1749 reg = nir_ssa_values[src.ssa->index];
1750 }
1751 } else {
1752 /* We don't handle indirects on locals */
1753 assert(src.reg.indirect == NULL);
1754 reg = offset(nir_locals[src.reg.reg->index], bld,
1755 src.reg.base_offset * src.reg.reg->num_components);
1756 }
1757
1758 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1759 /* The only 64-bit type available on gen7 is DF, so use that. */
1760 reg.type = BRW_REGISTER_TYPE_DF;
1761 } else {
1762 /* To avoid floating-point denorm flushing problems, set the type by
1763 * default to an integer type - instructions that need floating point
1764 * semantics will set this to F if they need to
1765 */
1766 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1767 BRW_REGISTER_TYPE_D);
1768 }
1769
1770 return reg;
1771 }
1772
1773 /**
1774 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1775 *
1776 * This function should not be called on any value which may be 64 bits.
1777 * We could theoretically support 64-bit on gen8+ but we choose not to
1778 * because it wouldn't work in general (no gen7 support) and there are
1779 * enough restrictions in 64-bit immediates that you can't take the return
1780 * value and treat it the same as the result of get_nir_src().
1781 */
1782 fs_reg
1783 fs_visitor::get_nir_src_imm(const nir_src &src)
1784 {
1785 assert(nir_src_bit_size(src) == 32);
1786 return nir_src_is_const(src) ?
1787 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1788 }
1789
1790 fs_reg
1791 fs_visitor::get_nir_dest(const nir_dest &dest)
1792 {
1793 if (dest.is_ssa) {
1794 const brw_reg_type reg_type =
1795 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1796 dest.ssa.bit_size == 8 ?
1797 BRW_REGISTER_TYPE_D :
1798 BRW_REGISTER_TYPE_F);
1799 nir_ssa_values[dest.ssa.index] =
1800 bld.vgrf(reg_type, dest.ssa.num_components);
1801 return nir_ssa_values[dest.ssa.index];
1802 } else {
1803 /* We don't handle indirects on locals */
1804 assert(dest.reg.indirect == NULL);
1805 return offset(nir_locals[dest.reg.reg->index], bld,
1806 dest.reg.base_offset * dest.reg.reg->num_components);
1807 }
1808 }
1809
1810 void
1811 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1812 unsigned wr_mask)
1813 {
1814 for (unsigned i = 0; i < 4; i++) {
1815 if (!((wr_mask >> i) & 1))
1816 continue;
1817
1818 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1819 new_inst->dst = offset(new_inst->dst, bld, i);
1820 for (unsigned j = 0; j < new_inst->sources; j++)
1821 if (new_inst->src[j].file == VGRF)
1822 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1823
1824 bld.emit(new_inst);
1825 }
1826 }
1827
1828 static fs_inst *
1829 emit_pixel_interpolater_send(const fs_builder &bld,
1830 enum opcode opcode,
1831 const fs_reg &dst,
1832 const fs_reg &src,
1833 const fs_reg &desc,
1834 glsl_interp_mode interpolation)
1835 {
1836 struct brw_wm_prog_data *wm_prog_data =
1837 brw_wm_prog_data(bld.shader->stage_prog_data);
1838
1839 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1840 /* 2 floats per slot returned */
1841 inst->size_written = 2 * dst.component_size(inst->exec_size);
1842 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1843
1844 wm_prog_data->pulls_bary = true;
1845
1846 return inst;
1847 }
1848
1849 /**
1850 * Computes 1 << x, given a D/UD register containing some value x.
1851 */
1852 static fs_reg
1853 intexp2(const fs_builder &bld, const fs_reg &x)
1854 {
1855 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1856
1857 fs_reg result = bld.vgrf(x.type, 1);
1858 fs_reg one = bld.vgrf(x.type, 1);
1859
1860 bld.MOV(one, retype(brw_imm_d(1), one.type));
1861 bld.SHL(result, one, x);
1862 return result;
1863 }
1864
1865 void
1866 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1867 {
1868 assert(stage == MESA_SHADER_GEOMETRY);
1869
1870 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1871
1872 if (gs_compile->control_data_header_size_bits == 0)
1873 return;
1874
1875 /* We can only do EndPrimitive() functionality when the control data
1876 * consists of cut bits. Fortunately, the only time it isn't is when the
1877 * output type is points, in which case EndPrimitive() is a no-op.
1878 */
1879 if (gs_prog_data->control_data_format !=
1880 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1881 return;
1882 }
1883
1884 /* Cut bits use one bit per vertex. */
1885 assert(gs_compile->control_data_bits_per_vertex == 1);
1886
1887 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1888 vertex_count.type = BRW_REGISTER_TYPE_UD;
1889
1890 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1891 * vertex n, 0 otherwise. So all we need to do here is mark bit
1892 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1893 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1894 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1895 *
1896 * Note that if EndPrimitive() is called before emitting any vertices, this
1897 * will cause us to set bit 31 of the control_data_bits register to 1.
1898 * That's fine because:
1899 *
1900 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1901 * output, so the hardware will ignore cut bit 31.
1902 *
1903 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1904 * last vertex, so setting cut bit 31 has no effect (since the primitive
1905 * is automatically ended when the GS terminates).
1906 *
1907 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1908 * control_data_bits register to 0 when the first vertex is emitted.
1909 */
1910
1911 const fs_builder abld = bld.annotate("end primitive");
1912
1913 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1914 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1915 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1916 fs_reg mask = intexp2(abld, prev_count);
1917 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1918 * attention to the lower 5 bits of its second source argument, so on this
1919 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1920 * ((vertex_count - 1) % 32).
1921 */
1922 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1923 }
1924
1925 void
1926 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1927 {
1928 assert(stage == MESA_SHADER_GEOMETRY);
1929 assert(gs_compile->control_data_bits_per_vertex != 0);
1930
1931 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1932
1933 const fs_builder abld = bld.annotate("emit control data bits");
1934 const fs_builder fwa_bld = bld.exec_all();
1935
1936 /* We use a single UD register to accumulate control data bits (32 bits
1937 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1938 * at a time.
1939 *
1940 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1941 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1942 * use the Channel Mask phase to enable/disable which DWord within that
1943 * group to write. (Remember, different SIMD8 channels may have emitted
1944 * different numbers of vertices, so we may need per-slot offsets.)
1945 *
1946 * Channel masking presents an annoying problem: we may have to replicate
1947 * the data up to 4 times:
1948 *
1949 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1950 *
1951 * To avoid penalizing shaders that emit a small number of vertices, we
1952 * can avoid these sometimes: if the size of the control data header is
1953 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1954 * land in the same 128-bit group, so we can skip per-slot offsets.
1955 *
1956 * Similarly, if the control data header is <= 32 bits, there is only one
1957 * DWord, so we can skip channel masks.
1958 */
1959 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1960
1961 fs_reg channel_mask, per_slot_offset;
1962
1963 if (gs_compile->control_data_header_size_bits > 32) {
1964 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1965 channel_mask = vgrf(glsl_type::uint_type);
1966 }
1967
1968 if (gs_compile->control_data_header_size_bits > 128) {
1969 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1970 per_slot_offset = vgrf(glsl_type::uint_type);
1971 }
1972
1973 /* Figure out which DWord we're trying to write to using the formula:
1974 *
1975 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1976 *
1977 * Since bits_per_vertex is a power of two, and is known at compile
1978 * time, this can be optimized to:
1979 *
1980 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1981 */
1982 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1983 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1984 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1985 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1986 unsigned log2_bits_per_vertex =
1987 util_last_bit(gs_compile->control_data_bits_per_vertex);
1988 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1989
1990 if (per_slot_offset.file != BAD_FILE) {
1991 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1992 * the appropriate OWord within the control data header.
1993 */
1994 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1995 }
1996
1997 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1998 * write to the appropriate DWORD within the OWORD.
1999 */
2000 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2001 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2002 channel_mask = intexp2(fwa_bld, channel);
2003 /* Then the channel masks need to be in bits 23:16. */
2004 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2005 }
2006
2007 /* Store the control data bits in the message payload and send it. */
2008 unsigned mlen = 2;
2009 if (channel_mask.file != BAD_FILE)
2010 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2011 if (per_slot_offset.file != BAD_FILE)
2012 mlen++;
2013
2014 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2015 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2016 unsigned i = 0;
2017 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2018 if (per_slot_offset.file != BAD_FILE)
2019 sources[i++] = per_slot_offset;
2020 if (channel_mask.file != BAD_FILE)
2021 sources[i++] = channel_mask;
2022 while (i < mlen) {
2023 sources[i++] = this->control_data_bits;
2024 }
2025
2026 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2027 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2028 inst->mlen = mlen;
2029 /* We need to increment Global Offset by 256-bits to make room for
2030 * Broadwell's extra "Vertex Count" payload at the beginning of the
2031 * URB entry. Since this is an OWord message, Global Offset is counted
2032 * in 128-bit units, so we must set it to 2.
2033 */
2034 if (gs_prog_data->static_vertex_count == -1)
2035 inst->offset = 2;
2036 }
2037
2038 void
2039 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2040 unsigned stream_id)
2041 {
2042 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2043
2044 /* Note: we are calling this *before* increasing vertex_count, so
2045 * this->vertex_count == vertex_count - 1 in the formula above.
2046 */
2047
2048 /* Stream mode uses 2 bits per vertex */
2049 assert(gs_compile->control_data_bits_per_vertex == 2);
2050
2051 /* Must be a valid stream */
2052 assert(stream_id < MAX_VERTEX_STREAMS);
2053
2054 /* Control data bits are initialized to 0 so we don't have to set any
2055 * bits when sending vertices to stream 0.
2056 */
2057 if (stream_id == 0)
2058 return;
2059
2060 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2061
2062 /* reg::sid = stream_id */
2063 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2064 abld.MOV(sid, brw_imm_ud(stream_id));
2065
2066 /* reg:shift_count = 2 * (vertex_count - 1) */
2067 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2068 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2069
2070 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2071 * attention to the lower 5 bits of its second source argument, so on this
2072 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2073 * stream_id << ((2 * (vertex_count - 1)) % 32).
2074 */
2075 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2076 abld.SHL(mask, sid, shift_count);
2077 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2078 }
2079
2080 void
2081 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2082 unsigned stream_id)
2083 {
2084 assert(stage == MESA_SHADER_GEOMETRY);
2085
2086 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2087
2088 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2089 vertex_count.type = BRW_REGISTER_TYPE_UD;
2090
2091 /* Haswell and later hardware ignores the "Render Stream Select" bits
2092 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2093 * and instead sends all primitives down the pipeline for rasterization.
2094 * If the SOL stage is enabled, "Render Stream Select" is honored and
2095 * primitives bound to non-zero streams are discarded after stream output.
2096 *
2097 * Since the only purpose of primives sent to non-zero streams is to
2098 * be recorded by transform feedback, we can simply discard all geometry
2099 * bound to these streams when transform feedback is disabled.
2100 */
2101 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2102 return;
2103
2104 /* If we're outputting 32 control data bits or less, then we can wait
2105 * until the shader is over to output them all. Otherwise we need to
2106 * output them as we go. Now is the time to do it, since we're about to
2107 * output the vertex_count'th vertex, so it's guaranteed that the
2108 * control data bits associated with the (vertex_count - 1)th vertex are
2109 * correct.
2110 */
2111 if (gs_compile->control_data_header_size_bits > 32) {
2112 const fs_builder abld =
2113 bld.annotate("emit vertex: emit control data bits");
2114
2115 /* Only emit control data bits if we've finished accumulating a batch
2116 * of 32 bits. This is the case when:
2117 *
2118 * (vertex_count * bits_per_vertex) % 32 == 0
2119 *
2120 * (in other words, when the last 5 bits of vertex_count *
2121 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2122 * integer n (which is always the case, since bits_per_vertex is
2123 * always 1 or 2), this is equivalent to requiring that the last 5-n
2124 * bits of vertex_count are 0:
2125 *
2126 * vertex_count & (2^(5-n) - 1) == 0
2127 *
2128 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2129 * equivalent to:
2130 *
2131 * vertex_count & (32 / bits_per_vertex - 1) == 0
2132 *
2133 * TODO: If vertex_count is an immediate, we could do some of this math
2134 * at compile time...
2135 */
2136 fs_inst *inst =
2137 abld.AND(bld.null_reg_d(), vertex_count,
2138 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2139 inst->conditional_mod = BRW_CONDITIONAL_Z;
2140
2141 abld.IF(BRW_PREDICATE_NORMAL);
2142 /* If vertex_count is 0, then no control data bits have been
2143 * accumulated yet, so we can skip emitting them.
2144 */
2145 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2146 BRW_CONDITIONAL_NEQ);
2147 abld.IF(BRW_PREDICATE_NORMAL);
2148 emit_gs_control_data_bits(vertex_count);
2149 abld.emit(BRW_OPCODE_ENDIF);
2150
2151 /* Reset control_data_bits to 0 so we can start accumulating a new
2152 * batch.
2153 *
2154 * Note: in the case where vertex_count == 0, this neutralizes the
2155 * effect of any call to EndPrimitive() that the shader may have
2156 * made before outputting its first vertex.
2157 */
2158 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2159 inst->force_writemask_all = true;
2160 abld.emit(BRW_OPCODE_ENDIF);
2161 }
2162
2163 emit_urb_writes(vertex_count);
2164
2165 /* In stream mode we have to set control data bits for all vertices
2166 * unless we have disabled control data bits completely (which we do
2167 * do for GL_POINTS outputs that don't use streams).
2168 */
2169 if (gs_compile->control_data_header_size_bits > 0 &&
2170 gs_prog_data->control_data_format ==
2171 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2172 set_gs_stream_control_data_bits(vertex_count, stream_id);
2173 }
2174 }
2175
2176 void
2177 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2178 const nir_src &vertex_src,
2179 unsigned base_offset,
2180 const nir_src &offset_src,
2181 unsigned num_components,
2182 unsigned first_component)
2183 {
2184 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2185 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2186
2187 /* TODO: figure out push input layout for invocations == 1 */
2188 /* TODO: make this work with 64-bit inputs */
2189 if (gs_prog_data->invocations == 1 &&
2190 type_sz(dst.type) <= 4 &&
2191 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2192 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2193 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2194 nir_src_as_uint(vertex_src) * push_reg_count;
2195 for (unsigned i = 0; i < num_components; i++) {
2196 bld.MOV(offset(dst, bld, i),
2197 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2198 }
2199 return;
2200 }
2201
2202 /* Resort to the pull model. Ensure the VUE handles are provided. */
2203 assert(gs_prog_data->base.include_vue_handles);
2204
2205 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2206 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2207
2208 if (gs_prog_data->invocations == 1) {
2209 if (nir_src_is_const(vertex_src)) {
2210 /* The vertex index is constant; just select the proper URB handle. */
2211 icp_handle =
2212 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2213 BRW_REGISTER_TYPE_UD);
2214 } else {
2215 /* The vertex index is non-constant. We need to use indirect
2216 * addressing to fetch the proper URB handle.
2217 *
2218 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2219 * indicating that channel <n> should read the handle from
2220 * DWord <n>. We convert that to bytes by multiplying by 4.
2221 *
2222 * Next, we convert the vertex index to bytes by multiplying
2223 * by 32 (shifting by 5), and add the two together. This is
2224 * the final indirect byte offset.
2225 */
2226 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2227 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2228 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2229 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2230
2231 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2232 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2233 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2234 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2235 /* Convert vertex_index to bytes (multiply by 32) */
2236 bld.SHL(vertex_offset_bytes,
2237 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2238 brw_imm_ud(5u));
2239 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2240
2241 /* Use first_icp_handle as the base offset. There is one register
2242 * of URB handles per vertex, so inform the register allocator that
2243 * we might read up to nir->info.gs.vertices_in registers.
2244 */
2245 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2246 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2247 fs_reg(icp_offset_bytes),
2248 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2249 }
2250 } else {
2251 assert(gs_prog_data->invocations > 1);
2252
2253 if (nir_src_is_const(vertex_src)) {
2254 unsigned vertex = nir_src_as_uint(vertex_src);
2255 assert(devinfo->gen >= 9 || vertex <= 5);
2256 bld.MOV(icp_handle,
2257 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2258 BRW_REGISTER_TYPE_UD));
2259 } else {
2260 /* The vertex index is non-constant. We need to use indirect
2261 * addressing to fetch the proper URB handle.
2262 *
2263 */
2264 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2265
2266 /* Convert vertex_index to bytes (multiply by 4) */
2267 bld.SHL(icp_offset_bytes,
2268 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2269 brw_imm_ud(2u));
2270
2271 /* Use first_icp_handle as the base offset. There is one DWord
2272 * of URB handles per vertex, so inform the register allocator that
2273 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2274 */
2275 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2276 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2277 fs_reg(icp_offset_bytes),
2278 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2279 REG_SIZE));
2280 }
2281 }
2282
2283 fs_inst *inst;
2284
2285 fs_reg tmp_dst = dst;
2286 fs_reg indirect_offset = get_nir_src(offset_src);
2287 unsigned num_iterations = 1;
2288 unsigned orig_num_components = num_components;
2289
2290 if (type_sz(dst.type) == 8) {
2291 if (num_components > 2) {
2292 num_iterations = 2;
2293 num_components = 2;
2294 }
2295 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2296 tmp_dst = tmp;
2297 first_component = first_component / 2;
2298 }
2299
2300 for (unsigned iter = 0; iter < num_iterations; iter++) {
2301 if (nir_src_is_const(offset_src)) {
2302 /* Constant indexing - use global offset. */
2303 if (first_component != 0) {
2304 unsigned read_components = num_components + first_component;
2305 fs_reg tmp = bld.vgrf(dst.type, read_components);
2306 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2307 inst->size_written = read_components *
2308 tmp.component_size(inst->exec_size);
2309 for (unsigned i = 0; i < num_components; i++) {
2310 bld.MOV(offset(tmp_dst, bld, i),
2311 offset(tmp, bld, i + first_component));
2312 }
2313 } else {
2314 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2315 icp_handle);
2316 inst->size_written = num_components *
2317 tmp_dst.component_size(inst->exec_size);
2318 }
2319 inst->offset = base_offset + nir_src_as_uint(offset_src);
2320 inst->mlen = 1;
2321 } else {
2322 /* Indirect indexing - use per-slot offsets as well. */
2323 const fs_reg srcs[] = { icp_handle, indirect_offset };
2324 unsigned read_components = num_components + first_component;
2325 fs_reg tmp = bld.vgrf(dst.type, read_components);
2326 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2327 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2328 if (first_component != 0) {
2329 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2330 payload);
2331 inst->size_written = read_components *
2332 tmp.component_size(inst->exec_size);
2333 for (unsigned i = 0; i < num_components; i++) {
2334 bld.MOV(offset(tmp_dst, bld, i),
2335 offset(tmp, bld, i + first_component));
2336 }
2337 } else {
2338 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2339 payload);
2340 inst->size_written = num_components *
2341 tmp_dst.component_size(inst->exec_size);
2342 }
2343 inst->offset = base_offset;
2344 inst->mlen = 2;
2345 }
2346
2347 if (type_sz(dst.type) == 8) {
2348 shuffle_from_32bit_read(bld,
2349 offset(dst, bld, iter * 2),
2350 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2351 0,
2352 num_components);
2353 }
2354
2355 if (num_iterations > 1) {
2356 num_components = orig_num_components - 2;
2357 if(nir_src_is_const(offset_src)) {
2358 base_offset++;
2359 } else {
2360 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2361 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2362 indirect_offset = new_indirect;
2363 }
2364 }
2365 }
2366 }
2367
2368 fs_reg
2369 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2370 {
2371 nir_src *offset_src = nir_get_io_offset_src(instr);
2372
2373 if (nir_src_is_const(*offset_src)) {
2374 /* The only constant offset we should find is 0. brw_nir.c's
2375 * add_const_offset_to_base() will fold other constant offsets
2376 * into instr->const_index[0].
2377 */
2378 assert(nir_src_as_uint(*offset_src) == 0);
2379 return fs_reg();
2380 }
2381
2382 return get_nir_src(*offset_src);
2383 }
2384
2385 void
2386 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2387 nir_intrinsic_instr *instr)
2388 {
2389 assert(stage == MESA_SHADER_VERTEX);
2390
2391 fs_reg dest;
2392 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2393 dest = get_nir_dest(instr->dest);
2394
2395 switch (instr->intrinsic) {
2396 case nir_intrinsic_load_vertex_id:
2397 case nir_intrinsic_load_base_vertex:
2398 unreachable("should be lowered by nir_lower_system_values()");
2399
2400 case nir_intrinsic_load_input: {
2401 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2402 unsigned first_component = nir_intrinsic_component(instr);
2403 unsigned num_components = instr->num_components;
2404
2405 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2406
2407 if (type_sz(dest.type) == 8)
2408 first_component /= 2;
2409
2410 /* For 16-bit support maybe a temporary will be needed to copy from
2411 * the ATTR file.
2412 */
2413 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2414 first_component, num_components);
2415 break;
2416 }
2417
2418 case nir_intrinsic_load_vertex_id_zero_base:
2419 case nir_intrinsic_load_instance_id:
2420 case nir_intrinsic_load_base_instance:
2421 case nir_intrinsic_load_draw_id:
2422 case nir_intrinsic_load_first_vertex:
2423 case nir_intrinsic_load_is_indexed_draw:
2424 unreachable("lowered by brw_nir_lower_vs_inputs");
2425
2426 default:
2427 nir_emit_intrinsic(bld, instr);
2428 break;
2429 }
2430 }
2431
2432 void
2433 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2434 nir_intrinsic_instr *instr)
2435 {
2436 assert(stage == MESA_SHADER_TESS_CTRL);
2437 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2438 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2439
2440 fs_reg dst;
2441 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2442 dst = get_nir_dest(instr->dest);
2443
2444 switch (instr->intrinsic) {
2445 case nir_intrinsic_load_primitive_id:
2446 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2447 break;
2448 case nir_intrinsic_load_invocation_id:
2449 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2450 break;
2451 case nir_intrinsic_load_patch_vertices_in:
2452 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2453 brw_imm_d(tcs_key->input_vertices));
2454 break;
2455
2456 case nir_intrinsic_barrier: {
2457 if (tcs_prog_data->instances == 1)
2458 break;
2459
2460 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2461 fs_reg m0_2 = component(m0, 2);
2462
2463 const fs_builder chanbld = bld.exec_all().group(1, 0);
2464
2465 /* Zero the message header */
2466 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2467
2468 if (devinfo->gen < 11) {
2469 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2470 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2471 brw_imm_ud(INTEL_MASK(16, 13)));
2472
2473 /* Shift it up to bits 27:24. */
2474 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2475 } else {
2476 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2477 brw_imm_ud(INTEL_MASK(30, 24)));
2478 }
2479
2480 /* Set the Barrier Count and the enable bit */
2481 if (devinfo->gen < 11) {
2482 chanbld.OR(m0_2, m0_2,
2483 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2484 } else {
2485 chanbld.OR(m0_2, m0_2,
2486 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2487 }
2488
2489 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2490 break;
2491 }
2492
2493 case nir_intrinsic_load_input:
2494 unreachable("nir_lower_io should never give us these.");
2495 break;
2496
2497 case nir_intrinsic_load_per_vertex_input: {
2498 fs_reg indirect_offset = get_indirect_offset(instr);
2499 unsigned imm_offset = instr->const_index[0];
2500
2501 const nir_src &vertex_src = instr->src[0];
2502
2503 fs_inst *inst;
2504
2505 fs_reg icp_handle;
2506
2507 if (nir_src_is_const(vertex_src)) {
2508 /* Emit a MOV to resolve <0,1,0> regioning. */
2509 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2510 unsigned vertex = nir_src_as_uint(vertex_src);
2511 bld.MOV(icp_handle,
2512 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2513 BRW_REGISTER_TYPE_UD));
2514 } else if (tcs_prog_data->instances == 1 &&
2515 vertex_src.is_ssa &&
2516 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2517 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2518 /* For the common case of only 1 instance, an array index of
2519 * gl_InvocationID means reading g1. Skip all the indirect work.
2520 */
2521 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2522 } else {
2523 /* The vertex index is non-constant. We need to use indirect
2524 * addressing to fetch the proper URB handle.
2525 */
2526 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2527
2528 /* Each ICP handle is a single DWord (4 bytes) */
2529 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2530 bld.SHL(vertex_offset_bytes,
2531 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2532 brw_imm_ud(2u));
2533
2534 /* Start at g1. We might read up to 4 registers. */
2535 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2536 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2537 brw_imm_ud(4 * REG_SIZE));
2538 }
2539
2540 /* We can only read two double components with each URB read, so
2541 * we send two read messages in that case, each one loading up to
2542 * two double components.
2543 */
2544 unsigned num_iterations = 1;
2545 unsigned num_components = instr->num_components;
2546 unsigned first_component = nir_intrinsic_component(instr);
2547 fs_reg orig_dst = dst;
2548 if (type_sz(dst.type) == 8) {
2549 first_component = first_component / 2;
2550 if (instr->num_components > 2) {
2551 num_iterations = 2;
2552 num_components = 2;
2553 }
2554
2555 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2556 dst = tmp;
2557 }
2558
2559 for (unsigned iter = 0; iter < num_iterations; iter++) {
2560 if (indirect_offset.file == BAD_FILE) {
2561 /* Constant indexing - use global offset. */
2562 if (first_component != 0) {
2563 unsigned read_components = num_components + first_component;
2564 fs_reg tmp = bld.vgrf(dst.type, read_components);
2565 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2566 for (unsigned i = 0; i < num_components; i++) {
2567 bld.MOV(offset(dst, bld, i),
2568 offset(tmp, bld, i + first_component));
2569 }
2570 } else {
2571 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2572 }
2573 inst->offset = imm_offset;
2574 inst->mlen = 1;
2575 } else {
2576 /* Indirect indexing - use per-slot offsets as well. */
2577 const fs_reg srcs[] = { icp_handle, indirect_offset };
2578 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2579 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2580 if (first_component != 0) {
2581 unsigned read_components = num_components + first_component;
2582 fs_reg tmp = bld.vgrf(dst.type, read_components);
2583 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2584 payload);
2585 for (unsigned i = 0; i < num_components; i++) {
2586 bld.MOV(offset(dst, bld, i),
2587 offset(tmp, bld, i + first_component));
2588 }
2589 } else {
2590 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2591 payload);
2592 }
2593 inst->offset = imm_offset;
2594 inst->mlen = 2;
2595 }
2596 inst->size_written = (num_components + first_component) *
2597 inst->dst.component_size(inst->exec_size);
2598
2599 /* If we are reading 64-bit data using 32-bit read messages we need
2600 * build proper 64-bit data elements by shuffling the low and high
2601 * 32-bit components around like we do for other things like UBOs
2602 * or SSBOs.
2603 */
2604 if (type_sz(dst.type) == 8) {
2605 shuffle_from_32bit_read(bld,
2606 offset(orig_dst, bld, iter * 2),
2607 retype(dst, BRW_REGISTER_TYPE_D),
2608 0, num_components);
2609 }
2610
2611 /* Copy the temporary to the destination to deal with writemasking.
2612 *
2613 * Also attempt to deal with gl_PointSize being in the .w component.
2614 */
2615 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2616 assert(type_sz(dst.type) < 8);
2617 inst->dst = bld.vgrf(dst.type, 4);
2618 inst->size_written = 4 * REG_SIZE;
2619 bld.MOV(dst, offset(inst->dst, bld, 3));
2620 }
2621
2622 /* If we are loading double data and we need a second read message
2623 * adjust the write offset
2624 */
2625 if (num_iterations > 1) {
2626 num_components = instr->num_components - 2;
2627 imm_offset++;
2628 }
2629 }
2630 break;
2631 }
2632
2633 case nir_intrinsic_load_output:
2634 case nir_intrinsic_load_per_vertex_output: {
2635 fs_reg indirect_offset = get_indirect_offset(instr);
2636 unsigned imm_offset = instr->const_index[0];
2637 unsigned first_component = nir_intrinsic_component(instr);
2638
2639 fs_inst *inst;
2640 if (indirect_offset.file == BAD_FILE) {
2641 /* Replicate the patch handle to all enabled channels */
2642 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2643 bld.MOV(patch_handle,
2644 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2645
2646 {
2647 if (first_component != 0) {
2648 unsigned read_components =
2649 instr->num_components + first_component;
2650 fs_reg tmp = bld.vgrf(dst.type, read_components);
2651 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2652 patch_handle);
2653 inst->size_written = read_components * REG_SIZE;
2654 for (unsigned i = 0; i < instr->num_components; i++) {
2655 bld.MOV(offset(dst, bld, i),
2656 offset(tmp, bld, i + first_component));
2657 }
2658 } else {
2659 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2660 patch_handle);
2661 inst->size_written = instr->num_components * REG_SIZE;
2662 }
2663 inst->offset = imm_offset;
2664 inst->mlen = 1;
2665 }
2666 } else {
2667 /* Indirect indexing - use per-slot offsets as well. */
2668 const fs_reg srcs[] = {
2669 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2670 indirect_offset
2671 };
2672 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2673 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2674 if (first_component != 0) {
2675 unsigned read_components =
2676 instr->num_components + first_component;
2677 fs_reg tmp = bld.vgrf(dst.type, read_components);
2678 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2679 payload);
2680 inst->size_written = read_components * REG_SIZE;
2681 for (unsigned i = 0; i < instr->num_components; i++) {
2682 bld.MOV(offset(dst, bld, i),
2683 offset(tmp, bld, i + first_component));
2684 }
2685 } else {
2686 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2687 payload);
2688 inst->size_written = instr->num_components * REG_SIZE;
2689 }
2690 inst->offset = imm_offset;
2691 inst->mlen = 2;
2692 }
2693 break;
2694 }
2695
2696 case nir_intrinsic_store_output:
2697 case nir_intrinsic_store_per_vertex_output: {
2698 fs_reg value = get_nir_src(instr->src[0]);
2699 bool is_64bit = (instr->src[0].is_ssa ?
2700 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2701 fs_reg indirect_offset = get_indirect_offset(instr);
2702 unsigned imm_offset = instr->const_index[0];
2703 unsigned mask = instr->const_index[1];
2704 unsigned header_regs = 0;
2705 fs_reg srcs[7];
2706 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2707
2708 if (indirect_offset.file != BAD_FILE) {
2709 srcs[header_regs++] = indirect_offset;
2710 }
2711
2712 if (mask == 0)
2713 break;
2714
2715 unsigned num_components = util_last_bit(mask);
2716 enum opcode opcode;
2717
2718 /* We can only pack two 64-bit components in a single message, so send
2719 * 2 messages if we have more components
2720 */
2721 unsigned num_iterations = 1;
2722 unsigned iter_components = num_components;
2723 unsigned first_component = nir_intrinsic_component(instr);
2724 if (is_64bit) {
2725 first_component = first_component / 2;
2726 if (instr->num_components > 2) {
2727 num_iterations = 2;
2728 iter_components = 2;
2729 }
2730 }
2731
2732 mask = mask << first_component;
2733
2734 for (unsigned iter = 0; iter < num_iterations; iter++) {
2735 if (!is_64bit && mask != WRITEMASK_XYZW) {
2736 srcs[header_regs++] = brw_imm_ud(mask << 16);
2737 opcode = indirect_offset.file != BAD_FILE ?
2738 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2739 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2740 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2741 /* Expand the 64-bit mask to 32-bit channels. We only handle
2742 * two channels in each iteration, so we only care about X/Y.
2743 */
2744 unsigned mask32 = 0;
2745 if (mask & WRITEMASK_X)
2746 mask32 |= WRITEMASK_XY;
2747 if (mask & WRITEMASK_Y)
2748 mask32 |= WRITEMASK_ZW;
2749
2750 /* If the mask does not include any of the channels X or Y there
2751 * is nothing to do in this iteration. Move on to the next couple
2752 * of 64-bit channels.
2753 */
2754 if (!mask32) {
2755 mask >>= 2;
2756 imm_offset++;
2757 continue;
2758 }
2759
2760 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2761 opcode = indirect_offset.file != BAD_FILE ?
2762 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2763 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2764 } else {
2765 opcode = indirect_offset.file != BAD_FILE ?
2766 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2767 SHADER_OPCODE_URB_WRITE_SIMD8;
2768 }
2769
2770 for (unsigned i = 0; i < iter_components; i++) {
2771 if (!(mask & (1 << (i + first_component))))
2772 continue;
2773
2774 if (!is_64bit) {
2775 srcs[header_regs + i + first_component] = offset(value, bld, i);
2776 } else {
2777 /* We need to shuffle the 64-bit data to match the layout
2778 * expected by our 32-bit URB write messages. We use a temporary
2779 * for that.
2780 */
2781 unsigned channel = iter * 2 + i;
2782 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2783
2784 srcs[header_regs + (i + first_component) * 2] = dest;
2785 srcs[header_regs + (i + first_component) * 2 + 1] =
2786 offset(dest, bld, 1);
2787 }
2788 }
2789
2790 unsigned mlen =
2791 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2792 (is_64bit ? 2 * first_component : first_component);
2793 fs_reg payload =
2794 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2795 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2796
2797 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2798 inst->offset = imm_offset;
2799 inst->mlen = mlen;
2800
2801 /* If this is a 64-bit attribute, select the next two 64-bit channels
2802 * to be handled in the next iteration.
2803 */
2804 if (is_64bit) {
2805 mask >>= 2;
2806 imm_offset++;
2807 }
2808 }
2809 break;
2810 }
2811
2812 default:
2813 nir_emit_intrinsic(bld, instr);
2814 break;
2815 }
2816 }
2817
2818 void
2819 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2820 nir_intrinsic_instr *instr)
2821 {
2822 assert(stage == MESA_SHADER_TESS_EVAL);
2823 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2824
2825 fs_reg dest;
2826 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2827 dest = get_nir_dest(instr->dest);
2828
2829 switch (instr->intrinsic) {
2830 case nir_intrinsic_load_primitive_id:
2831 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2832 break;
2833 case nir_intrinsic_load_tess_coord:
2834 /* gl_TessCoord is part of the payload in g1-3 */
2835 for (unsigned i = 0; i < 3; i++) {
2836 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2837 }
2838 break;
2839
2840 case nir_intrinsic_load_input:
2841 case nir_intrinsic_load_per_vertex_input: {
2842 fs_reg indirect_offset = get_indirect_offset(instr);
2843 unsigned imm_offset = instr->const_index[0];
2844 unsigned first_component = nir_intrinsic_component(instr);
2845
2846 if (type_sz(dest.type) == 8) {
2847 first_component = first_component / 2;
2848 }
2849
2850 fs_inst *inst;
2851 if (indirect_offset.file == BAD_FILE) {
2852 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2853 * which is 16 registers (since each holds 2 vec4 slots).
2854 */
2855 unsigned slot_count = 1;
2856 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2857 slot_count++;
2858
2859 const unsigned max_push_slots = 32;
2860 if (imm_offset + slot_count <= max_push_slots) {
2861 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2862 for (int i = 0; i < instr->num_components; i++) {
2863 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2864 i + first_component;
2865 bld.MOV(offset(dest, bld, i), component(src, comp));
2866 }
2867
2868 tes_prog_data->base.urb_read_length =
2869 MAX2(tes_prog_data->base.urb_read_length,
2870 DIV_ROUND_UP(imm_offset + slot_count, 2));
2871 } else {
2872 /* Replicate the patch handle to all enabled channels */
2873 const fs_reg srcs[] = {
2874 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2875 };
2876 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2877 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2878
2879 if (first_component != 0) {
2880 unsigned read_components =
2881 instr->num_components + first_component;
2882 fs_reg tmp = bld.vgrf(dest.type, read_components);
2883 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2884 patch_handle);
2885 inst->size_written = read_components * REG_SIZE;
2886 for (unsigned i = 0; i < instr->num_components; i++) {
2887 bld.MOV(offset(dest, bld, i),
2888 offset(tmp, bld, i + first_component));
2889 }
2890 } else {
2891 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2892 patch_handle);
2893 inst->size_written = instr->num_components * REG_SIZE;
2894 }
2895 inst->mlen = 1;
2896 inst->offset = imm_offset;
2897 }
2898 } else {
2899 /* Indirect indexing - use per-slot offsets as well. */
2900
2901 /* We can only read two double components with each URB read, so
2902 * we send two read messages in that case, each one loading up to
2903 * two double components.
2904 */
2905 unsigned num_iterations = 1;
2906 unsigned num_components = instr->num_components;
2907 fs_reg orig_dest = dest;
2908 if (type_sz(dest.type) == 8) {
2909 if (instr->num_components > 2) {
2910 num_iterations = 2;
2911 num_components = 2;
2912 }
2913 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2914 dest = tmp;
2915 }
2916
2917 for (unsigned iter = 0; iter < num_iterations; iter++) {
2918 const fs_reg srcs[] = {
2919 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2920 indirect_offset
2921 };
2922 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2923 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2924
2925 if (first_component != 0) {
2926 unsigned read_components =
2927 num_components + first_component;
2928 fs_reg tmp = bld.vgrf(dest.type, read_components);
2929 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2930 payload);
2931 for (unsigned i = 0; i < num_components; i++) {
2932 bld.MOV(offset(dest, bld, i),
2933 offset(tmp, bld, i + first_component));
2934 }
2935 } else {
2936 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2937 payload);
2938 }
2939 inst->mlen = 2;
2940 inst->offset = imm_offset;
2941 inst->size_written = (num_components + first_component) *
2942 inst->dst.component_size(inst->exec_size);
2943
2944 /* If we are reading 64-bit data using 32-bit read messages we need
2945 * build proper 64-bit data elements by shuffling the low and high
2946 * 32-bit components around like we do for other things like UBOs
2947 * or SSBOs.
2948 */
2949 if (type_sz(dest.type) == 8) {
2950 shuffle_from_32bit_read(bld,
2951 offset(orig_dest, bld, iter * 2),
2952 retype(dest, BRW_REGISTER_TYPE_D),
2953 0, num_components);
2954 }
2955
2956 /* If we are loading double data and we need a second read message
2957 * adjust the offset
2958 */
2959 if (num_iterations > 1) {
2960 num_components = instr->num_components - 2;
2961 imm_offset++;
2962 }
2963 }
2964 }
2965 break;
2966 }
2967 default:
2968 nir_emit_intrinsic(bld, instr);
2969 break;
2970 }
2971 }
2972
2973 void
2974 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2975 nir_intrinsic_instr *instr)
2976 {
2977 assert(stage == MESA_SHADER_GEOMETRY);
2978 fs_reg indirect_offset;
2979
2980 fs_reg dest;
2981 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2982 dest = get_nir_dest(instr->dest);
2983
2984 switch (instr->intrinsic) {
2985 case nir_intrinsic_load_primitive_id:
2986 assert(stage == MESA_SHADER_GEOMETRY);
2987 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2988 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2989 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2990 break;
2991
2992 case nir_intrinsic_load_input:
2993 unreachable("load_input intrinsics are invalid for the GS stage");
2994
2995 case nir_intrinsic_load_per_vertex_input:
2996 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2997 instr->src[1], instr->num_components,
2998 nir_intrinsic_component(instr));
2999 break;
3000
3001 case nir_intrinsic_emit_vertex_with_counter:
3002 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3003 break;
3004
3005 case nir_intrinsic_end_primitive_with_counter:
3006 emit_gs_end_primitive(instr->src[0]);
3007 break;
3008
3009 case nir_intrinsic_set_vertex_count:
3010 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3011 break;
3012
3013 case nir_intrinsic_load_invocation_id: {
3014 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3015 assert(val.file != BAD_FILE);
3016 dest.type = val.type;
3017 bld.MOV(dest, val);
3018 break;
3019 }
3020
3021 default:
3022 nir_emit_intrinsic(bld, instr);
3023 break;
3024 }
3025 }
3026
3027 /**
3028 * Fetch the current render target layer index.
3029 */
3030 static fs_reg
3031 fetch_render_target_array_index(const fs_builder &bld)
3032 {
3033 if (bld.shader->devinfo->gen >= 6) {
3034 /* The render target array index is provided in the thread payload as
3035 * bits 26:16 of r0.0.
3036 */
3037 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3038 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3039 brw_imm_uw(0x7ff));
3040 return idx;
3041 } else {
3042 /* Pre-SNB we only ever render into the first layer of the framebuffer
3043 * since layered rendering is not implemented.
3044 */
3045 return brw_imm_ud(0);
3046 }
3047 }
3048
3049 /**
3050 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3051 * framebuffer at the current fragment coordinates and sample index.
3052 */
3053 fs_inst *
3054 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3055 unsigned target)
3056 {
3057 const struct gen_device_info *devinfo = bld.shader->devinfo;
3058
3059 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3060 const brw_wm_prog_key *wm_key =
3061 reinterpret_cast<const brw_wm_prog_key *>(key);
3062 assert(!wm_key->coherent_fb_fetch);
3063 const struct brw_wm_prog_data *wm_prog_data =
3064 brw_wm_prog_data(stage_prog_data);
3065
3066 /* Calculate the surface index relative to the start of the texture binding
3067 * table block, since that's what the texturing messages expect.
3068 */
3069 const unsigned surface = target +
3070 wm_prog_data->binding_table.render_target_read_start -
3071 wm_prog_data->base.binding_table.texture_start;
3072
3073 /* Calculate the fragment coordinates. */
3074 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3075 bld.MOV(offset(coords, bld, 0), pixel_x);
3076 bld.MOV(offset(coords, bld, 1), pixel_y);
3077 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3078
3079 /* Calculate the sample index and MCS payload when multisampling. Luckily
3080 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3081 * shouldn't be necessary to recompile based on whether the framebuffer is
3082 * CMS or UMS.
3083 */
3084 if (wm_key->multisample_fbo &&
3085 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3086 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3087
3088 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3089 const fs_reg mcs = wm_key->multisample_fbo ?
3090 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3091
3092 /* Use either a normal or a CMS texel fetch message depending on whether
3093 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3094 * message just in case the framebuffer uses 16x multisampling, it should
3095 * be equivalent to the normal CMS fetch for lower multisampling modes.
3096 */
3097 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3098 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3099 SHADER_OPCODE_TXF_CMS_LOGICAL;
3100
3101 /* Emit the instruction. */
3102 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3103 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3104 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3105 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3106 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3107 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3108 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3109 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3110 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3111
3112 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3113 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3114
3115 return inst;
3116 }
3117
3118 /**
3119 * Actual coherent framebuffer read implemented using the native render target
3120 * read message. Requires SKL+.
3121 */
3122 static fs_inst *
3123 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3124 {
3125 assert(bld.shader->devinfo->gen >= 9);
3126 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3127 inst->target = target;
3128 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3129
3130 return inst;
3131 }
3132
3133 static fs_reg
3134 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3135 {
3136 if (n && regs[0].file != BAD_FILE) {
3137 return regs[0];
3138
3139 } else {
3140 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3141
3142 for (unsigned i = 0; i < n; i++)
3143 regs[i] = tmp;
3144
3145 return tmp;
3146 }
3147 }
3148
3149 static fs_reg
3150 alloc_frag_output(fs_visitor *v, unsigned location)
3151 {
3152 assert(v->stage == MESA_SHADER_FRAGMENT);
3153 const brw_wm_prog_key *const key =
3154 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3155 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3156 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3157
3158 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3159 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3160
3161 else if (l == FRAG_RESULT_COLOR)
3162 return alloc_temporary(v->bld, 4, v->outputs,
3163 MAX2(key->nr_color_regions, 1));
3164
3165 else if (l == FRAG_RESULT_DEPTH)
3166 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3167
3168 else if (l == FRAG_RESULT_STENCIL)
3169 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3170
3171 else if (l == FRAG_RESULT_SAMPLE_MASK)
3172 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3173
3174 else if (l >= FRAG_RESULT_DATA0 &&
3175 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3176 return alloc_temporary(v->bld, 4,
3177 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3178
3179 else
3180 unreachable("Invalid location");
3181 }
3182
3183 void
3184 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3185 nir_intrinsic_instr *instr)
3186 {
3187 assert(stage == MESA_SHADER_FRAGMENT);
3188
3189 fs_reg dest;
3190 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3191 dest = get_nir_dest(instr->dest);
3192
3193 switch (instr->intrinsic) {
3194 case nir_intrinsic_load_front_face:
3195 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3196 *emit_frontfacing_interpolation());
3197 break;
3198
3199 case nir_intrinsic_load_sample_pos: {
3200 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3201 assert(sample_pos.file != BAD_FILE);
3202 dest.type = sample_pos.type;
3203 bld.MOV(dest, sample_pos);
3204 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3205 break;
3206 }
3207
3208 case nir_intrinsic_load_layer_id:
3209 dest.type = BRW_REGISTER_TYPE_UD;
3210 bld.MOV(dest, fetch_render_target_array_index(bld));
3211 break;
3212
3213 case nir_intrinsic_load_helper_invocation:
3214 case nir_intrinsic_load_sample_mask_in:
3215 case nir_intrinsic_load_sample_id: {
3216 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3217 fs_reg val = nir_system_values[sv];
3218 assert(val.file != BAD_FILE);
3219 dest.type = val.type;
3220 bld.MOV(dest, val);
3221 break;
3222 }
3223
3224 case nir_intrinsic_store_output: {
3225 const fs_reg src = get_nir_src(instr->src[0]);
3226 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3227 const unsigned location = nir_intrinsic_base(instr) +
3228 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3229 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3230 src.type);
3231
3232 for (unsigned j = 0; j < instr->num_components; j++)
3233 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3234 offset(src, bld, j));
3235
3236 break;
3237 }
3238
3239 case nir_intrinsic_load_output: {
3240 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3241 BRW_NIR_FRAG_OUTPUT_LOCATION);
3242 assert(l >= FRAG_RESULT_DATA0);
3243 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3244 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3245 const fs_reg tmp = bld.vgrf(dest.type, 4);
3246
3247 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3248 emit_coherent_fb_read(bld, tmp, target);
3249 else
3250 emit_non_coherent_fb_read(bld, tmp, target);
3251
3252 for (unsigned j = 0; j < instr->num_components; j++) {
3253 bld.MOV(offset(dest, bld, j),
3254 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3255 }
3256
3257 break;
3258 }
3259
3260 case nir_intrinsic_discard:
3261 case nir_intrinsic_discard_if: {
3262 /* We track our discarded pixels in f0.1. By predicating on it, we can
3263 * update just the flag bits that aren't yet discarded. If there's no
3264 * condition, we emit a CMP of g0 != g0, so all currently executing
3265 * channels will get turned off.
3266 */
3267 fs_inst *cmp;
3268 if (instr->intrinsic == nir_intrinsic_discard_if) {
3269 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3270 brw_imm_d(0), BRW_CONDITIONAL_Z);
3271 } else {
3272 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3273 BRW_REGISTER_TYPE_UW));
3274 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3275 }
3276 cmp->predicate = BRW_PREDICATE_NORMAL;
3277 cmp->flag_subreg = 1;
3278
3279 if (devinfo->gen >= 6) {
3280 emit_discard_jump();
3281 }
3282
3283 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3284 break;
3285 }
3286
3287 case nir_intrinsic_load_input: {
3288 /* load_input is only used for flat inputs */
3289 unsigned base = nir_intrinsic_base(instr);
3290 unsigned comp = nir_intrinsic_component(instr);
3291 unsigned num_components = instr->num_components;
3292 fs_reg orig_dest = dest;
3293 enum brw_reg_type type = dest.type;
3294
3295 /* Special case fields in the VUE header */
3296 if (base == VARYING_SLOT_LAYER)
3297 comp = 1;
3298 else if (base == VARYING_SLOT_VIEWPORT)
3299 comp = 2;
3300
3301 if (nir_dest_bit_size(instr->dest) == 64) {
3302 /* const_index is in 32-bit type size units that could not be aligned
3303 * with DF. We need to read the double vector as if it was a float
3304 * vector of twice the number of components to fetch the right data.
3305 */
3306 type = BRW_REGISTER_TYPE_F;
3307 num_components *= 2;
3308 dest = bld.vgrf(type, num_components);
3309 }
3310
3311 for (unsigned int i = 0; i < num_components; i++) {
3312 bld.MOV(offset(retype(dest, type), bld, i),
3313 retype(component(interp_reg(base, comp + i), 3), type));
3314 }
3315
3316 if (nir_dest_bit_size(instr->dest) == 64) {
3317 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3318 instr->num_components);
3319 }
3320 break;
3321 }
3322
3323 case nir_intrinsic_load_barycentric_pixel:
3324 case nir_intrinsic_load_barycentric_centroid:
3325 case nir_intrinsic_load_barycentric_sample:
3326 /* Do nothing - load_interpolated_input handling will handle it later. */
3327 break;
3328
3329 case nir_intrinsic_load_barycentric_at_sample: {
3330 const glsl_interp_mode interpolation =
3331 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3332
3333 if (nir_src_is_const(instr->src[0])) {
3334 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3335
3336 emit_pixel_interpolater_send(bld,
3337 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3338 dest,
3339 fs_reg(), /* src */
3340 brw_imm_ud(msg_data),
3341 interpolation);
3342 } else {
3343 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3344 BRW_REGISTER_TYPE_UD);
3345
3346 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3347 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3348 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3349 bld.exec_all().group(1, 0)
3350 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3351 emit_pixel_interpolater_send(bld,
3352 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3353 dest,
3354 fs_reg(), /* src */
3355 msg_data,
3356 interpolation);
3357 } else {
3358 /* Make a loop that sends a message to the pixel interpolater
3359 * for the sample number in each live channel. If there are
3360 * multiple channels with the same sample number then these
3361 * will be handled simultaneously with a single interation of
3362 * the loop.
3363 */
3364 bld.emit(BRW_OPCODE_DO);
3365
3366 /* Get the next live sample number into sample_id_reg */
3367 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3368
3369 /* Set the flag register so that we can perform the send
3370 * message on all channels that have the same sample number
3371 */
3372 bld.CMP(bld.null_reg_ud(),
3373 sample_src, sample_id,
3374 BRW_CONDITIONAL_EQ);
3375 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3376 bld.exec_all().group(1, 0)
3377 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3378 fs_inst *inst =
3379 emit_pixel_interpolater_send(bld,
3380 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3381 dest,
3382 fs_reg(), /* src */
3383 component(msg_data, 0),
3384 interpolation);
3385 set_predicate(BRW_PREDICATE_NORMAL, inst);
3386
3387 /* Continue the loop if there are any live channels left */
3388 set_predicate_inv(BRW_PREDICATE_NORMAL,
3389 true, /* inverse */
3390 bld.emit(BRW_OPCODE_WHILE));
3391 }
3392 }
3393 break;
3394 }
3395
3396 case nir_intrinsic_load_barycentric_at_offset: {
3397 const glsl_interp_mode interpolation =
3398 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3399
3400 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3401
3402 if (const_offset) {
3403 assert(nir_src_bit_size(instr->src[0]) == 32);
3404 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3405 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3406
3407 emit_pixel_interpolater_send(bld,
3408 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3409 dest,
3410 fs_reg(), /* src */
3411 brw_imm_ud(off_x | (off_y << 4)),
3412 interpolation);
3413 } else {
3414 fs_reg src = vgrf(glsl_type::ivec2_type);
3415 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3416 BRW_REGISTER_TYPE_F);
3417 for (int i = 0; i < 2; i++) {
3418 fs_reg temp = vgrf(glsl_type::float_type);
3419 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3420 fs_reg itemp = vgrf(glsl_type::int_type);
3421 /* float to int */
3422 bld.MOV(itemp, temp);
3423
3424 /* Clamp the upper end of the range to +7/16.
3425 * ARB_gpu_shader5 requires that we support a maximum offset
3426 * of +0.5, which isn't representable in a S0.4 value -- if
3427 * we didn't clamp it, we'd end up with -8/16, which is the
3428 * opposite of what the shader author wanted.
3429 *
3430 * This is legal due to ARB_gpu_shader5's quantization
3431 * rules:
3432 *
3433 * "Not all values of <offset> may be supported; x and y
3434 * offsets may be rounded to fixed-point values with the
3435 * number of fraction bits given by the
3436 * implementation-dependent constant
3437 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3438 */
3439 set_condmod(BRW_CONDITIONAL_L,
3440 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3441 }
3442
3443 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3444 emit_pixel_interpolater_send(bld,
3445 opcode,
3446 dest,
3447 src,
3448 brw_imm_ud(0u),
3449 interpolation);
3450 }
3451 break;
3452 }
3453
3454 case nir_intrinsic_load_interpolated_input: {
3455 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3456 emit_fragcoord_interpolation(dest);
3457 break;
3458 }
3459
3460 assert(instr->src[0].ssa &&
3461 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3462 nir_intrinsic_instr *bary_intrinsic =
3463 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3464 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3465 enum glsl_interp_mode interp_mode =
3466 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3467 fs_reg dst_xy;
3468
3469 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3470 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3471 /* Use the result of the PI message */
3472 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3473 } else {
3474 /* Use the delta_xy values computed from the payload */
3475 enum brw_barycentric_mode bary =
3476 brw_barycentric_mode(interp_mode, bary_intrin);
3477
3478 dst_xy = this->delta_xy[bary];
3479 }
3480
3481 for (unsigned int i = 0; i < instr->num_components; i++) {
3482 fs_reg interp =
3483 component(interp_reg(nir_intrinsic_base(instr),
3484 nir_intrinsic_component(instr) + i), 0);
3485 interp.type = BRW_REGISTER_TYPE_F;
3486 dest.type = BRW_REGISTER_TYPE_F;
3487
3488 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3489 fs_reg tmp = vgrf(glsl_type::float_type);
3490 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3491 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3492 } else {
3493 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3494 }
3495 }
3496 break;
3497 }
3498
3499 default:
3500 nir_emit_intrinsic(bld, instr);
3501 break;
3502 }
3503 }
3504
3505 static int
3506 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3507 {
3508 if (nir_src_is_const(instr->src[src])) {
3509 int64_t add_val = nir_src_as_int(instr->src[src]);
3510 if (add_val == 1)
3511 return BRW_AOP_INC;
3512 else if (add_val == -1)
3513 return BRW_AOP_DEC;
3514 }
3515
3516 return BRW_AOP_ADD;
3517 }
3518
3519 void
3520 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3521 nir_intrinsic_instr *instr)
3522 {
3523 assert(stage == MESA_SHADER_COMPUTE);
3524 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3525
3526 fs_reg dest;
3527 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3528 dest = get_nir_dest(instr->dest);
3529
3530 switch (instr->intrinsic) {
3531 case nir_intrinsic_barrier:
3532 emit_barrier();
3533 cs_prog_data->uses_barrier = true;
3534 break;
3535
3536 case nir_intrinsic_load_subgroup_id:
3537 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3538 break;
3539
3540 case nir_intrinsic_load_local_invocation_id:
3541 case nir_intrinsic_load_work_group_id: {
3542 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3543 fs_reg val = nir_system_values[sv];
3544 assert(val.file != BAD_FILE);
3545 dest.type = val.type;
3546 for (unsigned i = 0; i < 3; i++)
3547 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3548 break;
3549 }
3550
3551 case nir_intrinsic_load_num_work_groups: {
3552 const unsigned surface =
3553 cs_prog_data->binding_table.work_groups_start;
3554
3555 cs_prog_data->uses_num_work_groups = true;
3556
3557 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3558 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3559 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3560 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3561
3562 /* Read the 3 GLuint components of gl_NumWorkGroups */
3563 for (unsigned i = 0; i < 3; i++) {
3564 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3565 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3566 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3567 }
3568 break;
3569 }
3570
3571 case nir_intrinsic_shared_atomic_add:
3572 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3573 break;
3574 case nir_intrinsic_shared_atomic_imin:
3575 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3576 break;
3577 case nir_intrinsic_shared_atomic_umin:
3578 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3579 break;
3580 case nir_intrinsic_shared_atomic_imax:
3581 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3582 break;
3583 case nir_intrinsic_shared_atomic_umax:
3584 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3585 break;
3586 case nir_intrinsic_shared_atomic_and:
3587 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3588 break;
3589 case nir_intrinsic_shared_atomic_or:
3590 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3591 break;
3592 case nir_intrinsic_shared_atomic_xor:
3593 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3594 break;
3595 case nir_intrinsic_shared_atomic_exchange:
3596 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3597 break;
3598 case nir_intrinsic_shared_atomic_comp_swap:
3599 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3600 break;
3601 case nir_intrinsic_shared_atomic_fmin:
3602 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3603 break;
3604 case nir_intrinsic_shared_atomic_fmax:
3605 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3606 break;
3607 case nir_intrinsic_shared_atomic_fcomp_swap:
3608 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3609 break;
3610
3611 case nir_intrinsic_load_shared: {
3612 assert(devinfo->gen >= 7);
3613 assert(stage == MESA_SHADER_COMPUTE);
3614
3615 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3616 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3617 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3618 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3619 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3620
3621 /* Make dest unsigned because that's what the temporary will be */
3622 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3623
3624 /* Read the vector */
3625 if (nir_intrinsic_align(instr) >= 4) {
3626 assert(nir_dest_bit_size(instr->dest) == 32);
3627 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3628 fs_inst *inst =
3629 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3630 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3631 inst->size_written = instr->num_components * dispatch_width * 4;
3632 } else {
3633 assert(nir_dest_bit_size(instr->dest) <= 32);
3634 assert(nir_dest_num_components(instr->dest) == 1);
3635 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3636
3637 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3638 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3639 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3640 bld.MOV(dest, read_result);
3641 }
3642 break;
3643 }
3644
3645 case nir_intrinsic_store_shared: {
3646 assert(devinfo->gen >= 7);
3647 assert(stage == MESA_SHADER_COMPUTE);
3648
3649 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3650 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3651 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3652 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3653 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3654
3655 fs_reg data = get_nir_src(instr->src[0]);
3656 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3657
3658 assert(nir_intrinsic_write_mask(instr) ==
3659 (1u << instr->num_components) - 1);
3660 if (nir_intrinsic_align(instr) >= 4) {
3661 assert(nir_src_bit_size(instr->src[0]) == 32);
3662 assert(nir_src_num_components(instr->src[0]) <= 4);
3663 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3664 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3665 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3666 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3667 } else {
3668 assert(nir_src_bit_size(instr->src[0]) <= 32);
3669 assert(nir_src_num_components(instr->src[0]) == 1);
3670 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3671
3672 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3673 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3674
3675 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3676 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3677 }
3678 break;
3679 }
3680
3681 default:
3682 nir_emit_intrinsic(bld, instr);
3683 break;
3684 }
3685 }
3686
3687 static fs_reg
3688 brw_nir_reduction_op_identity(const fs_builder &bld,
3689 nir_op op, brw_reg_type type)
3690 {
3691 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3692 switch (type_sz(type)) {
3693 case 2:
3694 assert(type != BRW_REGISTER_TYPE_HF);
3695 return retype(brw_imm_uw(value.u16), type);
3696 case 4:
3697 return retype(brw_imm_ud(value.u32), type);
3698 case 8:
3699 if (type == BRW_REGISTER_TYPE_DF)
3700 return setup_imm_df(bld, value.f64);
3701 else
3702 return retype(brw_imm_u64(value.u64), type);
3703 default:
3704 unreachable("Invalid type size");
3705 }
3706 }
3707
3708 static opcode
3709 brw_op_for_nir_reduction_op(nir_op op)
3710 {
3711 switch (op) {
3712 case nir_op_iadd: return BRW_OPCODE_ADD;
3713 case nir_op_fadd: return BRW_OPCODE_ADD;
3714 case nir_op_imul: return BRW_OPCODE_MUL;
3715 case nir_op_fmul: return BRW_OPCODE_MUL;
3716 case nir_op_imin: return BRW_OPCODE_SEL;
3717 case nir_op_umin: return BRW_OPCODE_SEL;
3718 case nir_op_fmin: return BRW_OPCODE_SEL;
3719 case nir_op_imax: return BRW_OPCODE_SEL;
3720 case nir_op_umax: return BRW_OPCODE_SEL;
3721 case nir_op_fmax: return BRW_OPCODE_SEL;
3722 case nir_op_iand: return BRW_OPCODE_AND;
3723 case nir_op_ior: return BRW_OPCODE_OR;
3724 case nir_op_ixor: return BRW_OPCODE_XOR;
3725 default:
3726 unreachable("Invalid reduction operation");
3727 }
3728 }
3729
3730 static brw_conditional_mod
3731 brw_cond_mod_for_nir_reduction_op(nir_op op)
3732 {
3733 switch (op) {
3734 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3735 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3736 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3737 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3738 case nir_op_imin: return BRW_CONDITIONAL_L;
3739 case nir_op_umin: return BRW_CONDITIONAL_L;
3740 case nir_op_fmin: return BRW_CONDITIONAL_L;
3741 case nir_op_imax: return BRW_CONDITIONAL_GE;
3742 case nir_op_umax: return BRW_CONDITIONAL_GE;
3743 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3744 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3745 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3746 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3747 default:
3748 unreachable("Invalid reduction operation");
3749 }
3750 }
3751
3752 fs_reg
3753 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3754 nir_intrinsic_instr *instr)
3755 {
3756 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3757
3758 if (stage_prog_data->binding_table.image_start > 0) {
3759 if (image.file == BRW_IMMEDIATE_VALUE) {
3760 image.d += stage_prog_data->binding_table.image_start;
3761 } else {
3762 bld.ADD(image, image,
3763 brw_imm_d(stage_prog_data->binding_table.image_start));
3764 }
3765 }
3766
3767 return bld.emit_uniformize(image);
3768 }
3769
3770 fs_reg
3771 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3772 nir_intrinsic_instr *instr)
3773 {
3774 /* SSBO stores are weird in that their index is in src[1] */
3775 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3776
3777 fs_reg surf_index;
3778 if (nir_src_is_const(instr->src[src])) {
3779 unsigned index = stage_prog_data->binding_table.ssbo_start +
3780 nir_src_as_uint(instr->src[src]);
3781 surf_index = brw_imm_ud(index);
3782 } else {
3783 surf_index = vgrf(glsl_type::uint_type);
3784 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3785 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3786 }
3787
3788 return bld.emit_uniformize(surf_index);
3789 }
3790
3791 static unsigned
3792 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3793 {
3794 switch (nir_intrinsic_image_dim(instr)) {
3795 case GLSL_SAMPLER_DIM_1D:
3796 return 1 + nir_intrinsic_image_array(instr);
3797 case GLSL_SAMPLER_DIM_2D:
3798 case GLSL_SAMPLER_DIM_RECT:
3799 return 2 + nir_intrinsic_image_array(instr);
3800 case GLSL_SAMPLER_DIM_3D:
3801 case GLSL_SAMPLER_DIM_CUBE:
3802 return 3;
3803 case GLSL_SAMPLER_DIM_BUF:
3804 return 1;
3805 case GLSL_SAMPLER_DIM_MS:
3806 return 2 + nir_intrinsic_image_array(instr);
3807 default:
3808 unreachable("Invalid image dimension");
3809 }
3810 }
3811
3812 void
3813 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3814 {
3815 fs_reg dest;
3816 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3817 dest = get_nir_dest(instr->dest);
3818
3819 switch (instr->intrinsic) {
3820 case nir_intrinsic_image_load:
3821 case nir_intrinsic_image_store:
3822 case nir_intrinsic_image_atomic_add:
3823 case nir_intrinsic_image_atomic_min:
3824 case nir_intrinsic_image_atomic_max:
3825 case nir_intrinsic_image_atomic_and:
3826 case nir_intrinsic_image_atomic_or:
3827 case nir_intrinsic_image_atomic_xor:
3828 case nir_intrinsic_image_atomic_exchange:
3829 case nir_intrinsic_image_atomic_comp_swap: {
3830 if (stage == MESA_SHADER_FRAGMENT &&
3831 instr->intrinsic != nir_intrinsic_image_load)
3832 brw_wm_prog_data(prog_data)->has_side_effects = true;
3833
3834 /* Get some metadata from the image intrinsic. */
3835 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3836 const GLenum format = nir_intrinsic_format(instr);
3837
3838 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3839 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3840 get_nir_image_intrinsic_image(bld, instr);
3841 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3842 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
3843 brw_imm_ud(image_intrinsic_coord_components(instr));
3844
3845 /* Emit an image load, store or atomic op. */
3846 if (instr->intrinsic == nir_intrinsic_image_load) {
3847 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3848 fs_inst *inst =
3849 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
3850 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3851 inst->size_written = instr->num_components * dispatch_width * 4;
3852 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3853 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3854 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
3855 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
3856 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3857 } else {
3858 int op;
3859 unsigned num_srcs = info->num_srcs;
3860
3861 switch (instr->intrinsic) {
3862 case nir_intrinsic_image_atomic_add:
3863 assert(num_srcs == 4);
3864
3865 op = get_op_for_atomic_add(instr, 3);
3866
3867 if (op != BRW_AOP_ADD)
3868 num_srcs = 3;
3869 break;
3870 case nir_intrinsic_image_atomic_min:
3871 assert(format == GL_R32UI || format == GL_R32I);
3872 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3873 break;
3874 case nir_intrinsic_image_atomic_max:
3875 assert(format == GL_R32UI || format == GL_R32I);
3876 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3877 break;
3878 case nir_intrinsic_image_atomic_and:
3879 op = BRW_AOP_AND;
3880 break;
3881 case nir_intrinsic_image_atomic_or:
3882 op = BRW_AOP_OR;
3883 break;
3884 case nir_intrinsic_image_atomic_xor:
3885 op = BRW_AOP_XOR;
3886 break;
3887 case nir_intrinsic_image_atomic_exchange:
3888 op = BRW_AOP_MOV;
3889 break;
3890 case nir_intrinsic_image_atomic_comp_swap:
3891 op = BRW_AOP_CMPWR;
3892 break;
3893 default:
3894 unreachable("Not reachable.");
3895 }
3896
3897 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
3898
3899 fs_reg data;
3900 if (num_srcs >= 4)
3901 data = get_nir_src(instr->src[3]);
3902 if (num_srcs >= 5) {
3903 fs_reg tmp = bld.vgrf(data.type, 2);
3904 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
3905 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
3906 data = tmp;
3907 }
3908 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3909
3910 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
3911 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3912 }
3913 break;
3914 }
3915
3916 case nir_intrinsic_image_size: {
3917 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3918 * into will handle the binding table index for us in the geneerator.
3919 */
3920 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3921 BRW_REGISTER_TYPE_UD);
3922 image = bld.emit_uniformize(image);
3923
3924 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3925 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
3926 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
3927 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
3928 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
3929
3930 /* Since the image size is always uniform, we can just emit a SIMD8
3931 * query instruction and splat the result out.
3932 */
3933 const fs_builder ubld = bld.exec_all().group(8, 0);
3934
3935 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3936 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
3937 tmp, srcs, ARRAY_SIZE(srcs));
3938 inst->size_written = 4 * REG_SIZE;
3939
3940 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3941 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3942 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3943 offset(retype(dest, tmp.type), bld, c),
3944 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3945 } else {
3946 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3947 component(offset(tmp, ubld, c), 0));
3948 }
3949 }
3950 break;
3951 }
3952
3953 case nir_intrinsic_image_load_raw_intel: {
3954 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3955 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3956 get_nir_image_intrinsic_image(bld, instr);
3957 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3958 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3959 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3960
3961 fs_inst *inst =
3962 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3963 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3964 inst->size_written = instr->num_components * dispatch_width * 4;
3965 break;
3966 }
3967
3968 case nir_intrinsic_image_store_raw_intel: {
3969 if (stage == MESA_SHADER_FRAGMENT)
3970 brw_wm_prog_data(prog_data)->has_side_effects = true;
3971
3972 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3973 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3974 get_nir_image_intrinsic_image(bld, instr);
3975 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3976 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
3977 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3978 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3979
3980 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3981 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3982 break;
3983 }
3984
3985 case nir_intrinsic_group_memory_barrier:
3986 case nir_intrinsic_memory_barrier_shared:
3987 case nir_intrinsic_memory_barrier_atomic_counter:
3988 case nir_intrinsic_memory_barrier_buffer:
3989 case nir_intrinsic_memory_barrier_image:
3990 case nir_intrinsic_memory_barrier: {
3991 const fs_builder ubld = bld.group(8, 0);
3992 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3993 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3994 ->size_written = 2 * REG_SIZE;
3995 break;
3996 }
3997
3998 case nir_intrinsic_shader_clock: {
3999 /* We cannot do anything if there is an event, so ignore it for now */
4000 const fs_reg shader_clock = get_timestamp(bld);
4001 const fs_reg srcs[] = { component(shader_clock, 0),
4002 component(shader_clock, 1) };
4003 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4004 break;
4005 }
4006
4007 case nir_intrinsic_image_samples:
4008 /* The driver does not support multi-sampled images. */
4009 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4010 break;
4011
4012 case nir_intrinsic_load_uniform: {
4013 /* Offsets are in bytes but they should always aligned to
4014 * the type size
4015 */
4016 assert(instr->const_index[0] % 4 == 0 ||
4017 instr->const_index[0] % type_sz(dest.type) == 0);
4018
4019 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4020
4021 if (nir_src_is_const(instr->src[0])) {
4022 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4023 assert(load_offset % type_sz(dest.type) == 0);
4024 /* For 16-bit types we add the module of the const_index[0]
4025 * offset to access to not 32-bit aligned element
4026 */
4027 src.offset = load_offset + instr->const_index[0] % 4;
4028
4029 for (unsigned j = 0; j < instr->num_components; j++) {
4030 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4031 }
4032 } else {
4033 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4034 BRW_REGISTER_TYPE_UD);
4035
4036 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4037 * go past the end of the uniform. In order to keep the n'th
4038 * component from running past, we subtract off the size of all but
4039 * one component of the vector.
4040 */
4041 assert(instr->const_index[1] >=
4042 instr->num_components * (int) type_sz(dest.type));
4043 unsigned read_size = instr->const_index[1] -
4044 (instr->num_components - 1) * type_sz(dest.type);
4045
4046 bool supports_64bit_indirects =
4047 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4048
4049 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4050 for (unsigned j = 0; j < instr->num_components; j++) {
4051 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4052 offset(dest, bld, j), offset(src, bld, j),
4053 indirect, brw_imm_ud(read_size));
4054 }
4055 } else {
4056 const unsigned num_mov_indirects =
4057 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4058 /* We read a little bit less per MOV INDIRECT, as they are now
4059 * 32-bits ones instead of 64-bit. Fix read_size then.
4060 */
4061 const unsigned read_size_32bit = read_size -
4062 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4063 for (unsigned j = 0; j < instr->num_components; j++) {
4064 for (unsigned i = 0; i < num_mov_indirects; i++) {
4065 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4066 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4067 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4068 indirect, brw_imm_ud(read_size_32bit));
4069 }
4070 }
4071 }
4072 }
4073 break;
4074 }
4075
4076 case nir_intrinsic_load_ubo: {
4077 fs_reg surf_index;
4078 if (nir_src_is_const(instr->src[0])) {
4079 const unsigned index = stage_prog_data->binding_table.ubo_start +
4080 nir_src_as_uint(instr->src[0]);
4081 surf_index = brw_imm_ud(index);
4082 } else {
4083 /* The block index is not a constant. Evaluate the index expression
4084 * per-channel and add the base UBO index; we have to select a value
4085 * from any live channel.
4086 */
4087 surf_index = vgrf(glsl_type::uint_type);
4088 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4089 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4090 surf_index = bld.emit_uniformize(surf_index);
4091 }
4092
4093 if (!nir_src_is_const(instr->src[1])) {
4094 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4095 BRW_REGISTER_TYPE_UD);
4096
4097 for (int i = 0; i < instr->num_components; i++)
4098 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4099 base_offset, i * type_sz(dest.type));
4100 } else {
4101 /* Even if we are loading doubles, a pull constant load will load
4102 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4103 * need to load a full dvec4 we will have to emit 2 loads. This is
4104 * similar to demote_pull_constants(), except that in that case we
4105 * see individual accesses to each component of the vector and then
4106 * we let CSE deal with duplicate loads. Here we see a vector access
4107 * and we have to split it if necessary.
4108 */
4109 const unsigned type_size = type_sz(dest.type);
4110 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4111
4112 /* See if we've selected this as a push constant candidate */
4113 if (nir_src_is_const(instr->src[0])) {
4114 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4115 const unsigned offset_256b = load_offset / 32;
4116
4117 fs_reg push_reg;
4118 for (int i = 0; i < 4; i++) {
4119 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4120 if (range->block == ubo_block &&
4121 offset_256b >= range->start &&
4122 offset_256b < range->start + range->length) {
4123
4124 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4125 push_reg.offset = load_offset - 32 * range->start;
4126 break;
4127 }
4128 }
4129
4130 if (push_reg.file != BAD_FILE) {
4131 for (unsigned i = 0; i < instr->num_components; i++) {
4132 bld.MOV(offset(dest, bld, i),
4133 byte_offset(push_reg, i * type_size));
4134 }
4135 break;
4136 }
4137 }
4138
4139 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4140 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4141 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4142
4143 for (unsigned c = 0; c < instr->num_components;) {
4144 const unsigned base = load_offset + c * type_size;
4145 /* Number of usable components in the next block-aligned load. */
4146 const unsigned count = MIN2(instr->num_components - c,
4147 (block_sz - base % block_sz) / type_size);
4148
4149 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4150 packed_consts, surf_index,
4151 brw_imm_ud(base & ~(block_sz - 1)));
4152
4153 const fs_reg consts =
4154 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4155 dest.type);
4156
4157 for (unsigned d = 0; d < count; d++)
4158 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4159
4160 c += count;
4161 }
4162 }
4163 break;
4164 }
4165
4166 case nir_intrinsic_load_global: {
4167 assert(devinfo->gen >= 8);
4168
4169 if (nir_intrinsic_align(instr) >= 4) {
4170 assert(nir_dest_bit_size(instr->dest) == 32);
4171 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4172 dest,
4173 get_nir_src(instr->src[0]), /* Address */
4174 fs_reg(), /* No source data */
4175 brw_imm_ud(instr->num_components));
4176 inst->size_written = instr->num_components *
4177 inst->dst.component_size(inst->exec_size);
4178 } else {
4179 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4180 assert(bit_size <= 32);
4181 assert(nir_dest_num_components(instr->dest) == 1);
4182 brw_reg_type data_type =
4183 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4184 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4185 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4186 tmp,
4187 get_nir_src(instr->src[0]), /* Address */
4188 fs_reg(), /* No source data */
4189 brw_imm_ud(bit_size));
4190 bld.MOV(retype(dest, data_type), tmp);
4191 }
4192 break;
4193 }
4194
4195 case nir_intrinsic_store_global:
4196 assert(devinfo->gen >= 8);
4197
4198 if (stage == MESA_SHADER_FRAGMENT)
4199 brw_wm_prog_data(prog_data)->has_side_effects = true;
4200
4201 if (nir_intrinsic_align(instr) >= 4) {
4202 assert(nir_src_bit_size(instr->src[0]) == 32);
4203 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4204 fs_reg(),
4205 get_nir_src(instr->src[1]), /* Address */
4206 get_nir_src(instr->src[0]), /* Data */
4207 brw_imm_ud(instr->num_components));
4208 } else {
4209 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4210 assert(bit_size <= 32);
4211 assert(nir_src_num_components(instr->src[0]) == 1);
4212 brw_reg_type data_type =
4213 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4214 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4215 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4216 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4217 fs_reg(),
4218 get_nir_src(instr->src[1]), /* Address */
4219 tmp, /* Data */
4220 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4221 }
4222 break;
4223
4224 case nir_intrinsic_global_atomic_add:
4225 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4226 break;
4227 case nir_intrinsic_global_atomic_imin:
4228 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4229 break;
4230 case nir_intrinsic_global_atomic_umin:
4231 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4232 break;
4233 case nir_intrinsic_global_atomic_imax:
4234 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4235 break;
4236 case nir_intrinsic_global_atomic_umax:
4237 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4238 break;
4239 case nir_intrinsic_global_atomic_and:
4240 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4241 break;
4242 case nir_intrinsic_global_atomic_or:
4243 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4244 break;
4245 case nir_intrinsic_global_atomic_xor:
4246 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4247 break;
4248 case nir_intrinsic_global_atomic_exchange:
4249 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4250 break;
4251 case nir_intrinsic_global_atomic_comp_swap:
4252 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4253 break;
4254 case nir_intrinsic_global_atomic_fmin:
4255 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4256 break;
4257 case nir_intrinsic_global_atomic_fmax:
4258 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4259 break;
4260 case nir_intrinsic_global_atomic_fcomp_swap:
4261 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4262 break;
4263
4264 case nir_intrinsic_load_ssbo: {
4265 assert(devinfo->gen >= 7);
4266
4267 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4268 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4269 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4270 get_nir_ssbo_intrinsic_index(bld, instr);
4271 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4272 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4273
4274 /* Make dest unsigned because that's what the temporary will be */
4275 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4276
4277 /* Read the vector */
4278 if (nir_intrinsic_align(instr) >= 4) {
4279 assert(nir_dest_bit_size(instr->dest) == 32);
4280 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4281 fs_inst *inst =
4282 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4283 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4284 inst->size_written = instr->num_components * dispatch_width * 4;
4285 } else {
4286 assert(nir_dest_bit_size(instr->dest) <= 32);
4287 assert(nir_dest_num_components(instr->dest) == 1);
4288 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4289
4290 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4291 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4292 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4293 bld.MOV(dest, read_result);
4294 }
4295 break;
4296 }
4297
4298 case nir_intrinsic_store_ssbo: {
4299 assert(devinfo->gen >= 7);
4300
4301 if (stage == MESA_SHADER_FRAGMENT)
4302 brw_wm_prog_data(prog_data)->has_side_effects = true;
4303
4304 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4305 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4306 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4307 get_nir_ssbo_intrinsic_index(bld, instr);
4308 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4309 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4310
4311 fs_reg data = get_nir_src(instr->src[0]);
4312 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4313
4314 assert(nir_intrinsic_write_mask(instr) ==
4315 (1u << instr->num_components) - 1);
4316 if (nir_intrinsic_align(instr) >= 4) {
4317 assert(nir_src_bit_size(instr->src[0]) == 32);
4318 assert(nir_src_num_components(instr->src[0]) <= 4);
4319 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4320 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4321 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4322 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4323 } else {
4324 assert(nir_src_bit_size(instr->src[0]) <= 32);
4325 assert(nir_src_num_components(instr->src[0]) == 1);
4326 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4327
4328 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4329 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4330
4331 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4332 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4333 }
4334 break;
4335 }
4336
4337 case nir_intrinsic_store_output: {
4338 fs_reg src = get_nir_src(instr->src[0]);
4339
4340 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4341 unsigned num_components = instr->num_components;
4342 unsigned first_component = nir_intrinsic_component(instr);
4343 if (nir_src_bit_size(instr->src[0]) == 64) {
4344 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4345 num_components *= 2;
4346 }
4347
4348 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4349 4 * store_offset), src.type);
4350 for (unsigned j = 0; j < num_components; j++) {
4351 bld.MOV(offset(new_dest, bld, j + first_component),
4352 offset(src, bld, j));
4353 }
4354 break;
4355 }
4356
4357 case nir_intrinsic_ssbo_atomic_add:
4358 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4359 break;
4360 case nir_intrinsic_ssbo_atomic_imin:
4361 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4362 break;
4363 case nir_intrinsic_ssbo_atomic_umin:
4364 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4365 break;
4366 case nir_intrinsic_ssbo_atomic_imax:
4367 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4368 break;
4369 case nir_intrinsic_ssbo_atomic_umax:
4370 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4371 break;
4372 case nir_intrinsic_ssbo_atomic_and:
4373 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4374 break;
4375 case nir_intrinsic_ssbo_atomic_or:
4376 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4377 break;
4378 case nir_intrinsic_ssbo_atomic_xor:
4379 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4380 break;
4381 case nir_intrinsic_ssbo_atomic_exchange:
4382 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4383 break;
4384 case nir_intrinsic_ssbo_atomic_comp_swap:
4385 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4386 break;
4387 case nir_intrinsic_ssbo_atomic_fmin:
4388 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4389 break;
4390 case nir_intrinsic_ssbo_atomic_fmax:
4391 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4392 break;
4393 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4394 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4395 break;
4396
4397 case nir_intrinsic_get_buffer_size: {
4398 assert(nir_src_num_components(instr->src[0]) == 1);
4399 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4400 nir_src_as_uint(instr->src[0]) : 0;
4401
4402 /* A resinfo's sampler message is used to get the buffer size. The
4403 * SIMD8's writeback message consists of four registers and SIMD16's
4404 * writeback message consists of 8 destination registers (two per each
4405 * component). Because we are only interested on the first channel of
4406 * the first returned component, where resinfo returns the buffer size
4407 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4408 * the dispatch width.
4409 */
4410 const fs_builder ubld = bld.exec_all().group(8, 0);
4411 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4412 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4413
4414 /* Set LOD = 0 */
4415 ubld.MOV(src_payload, brw_imm_d(0));
4416
4417 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4418 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4419 src_payload, brw_imm_ud(index));
4420 inst->header_size = 0;
4421 inst->mlen = 1;
4422 inst->size_written = 4 * REG_SIZE;
4423
4424 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4425 *
4426 * "Out-of-bounds checking is always performed at a DWord granularity. If
4427 * any part of the DWord is out-of-bounds then the whole DWord is
4428 * considered out-of-bounds."
4429 *
4430 * This implies that types with size smaller than 4-bytes need to be
4431 * padded if they don't complete the last dword of the buffer. But as we
4432 * need to maintain the original size we need to reverse the padding
4433 * calculation to return the correct size to know the number of elements
4434 * of an unsized array. As we stored in the last two bits of the surface
4435 * size the needed padding for the buffer, we calculate here the
4436 * original buffer_size reversing the surface_size calculation:
4437 *
4438 * surface_size = isl_align(buffer_size, 4) +
4439 * (isl_align(buffer_size) - buffer_size)
4440 *
4441 * buffer_size = surface_size & ~3 - surface_size & 3
4442 */
4443
4444 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4445 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4446 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4447
4448 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4449 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4450 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4451
4452 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4453 break;
4454 }
4455
4456 case nir_intrinsic_load_subgroup_invocation:
4457 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4458 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4459 break;
4460
4461 case nir_intrinsic_load_subgroup_eq_mask:
4462 case nir_intrinsic_load_subgroup_ge_mask:
4463 case nir_intrinsic_load_subgroup_gt_mask:
4464 case nir_intrinsic_load_subgroup_le_mask:
4465 case nir_intrinsic_load_subgroup_lt_mask:
4466 unreachable("not reached");
4467
4468 case nir_intrinsic_vote_any: {
4469 const fs_builder ubld = bld.exec_all().group(1, 0);
4470
4471 /* The any/all predicates do not consider channel enables. To prevent
4472 * dead channels from affecting the result, we initialize the flag with
4473 * with the identity value for the logical operation.
4474 */
4475 if (dispatch_width == 32) {
4476 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4477 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4478 brw_imm_ud(0));
4479 } else {
4480 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4481 }
4482 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4483
4484 /* For some reason, the any/all predicates don't work properly with
4485 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4486 * doesn't read the correct subset of the flag register and you end up
4487 * getting garbage in the second half. Work around this by using a pair
4488 * of 1-wide MOVs and scattering the result.
4489 */
4490 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4491 ubld.MOV(res1, brw_imm_d(0));
4492 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4493 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4494 BRW_PREDICATE_ALIGN1_ANY32H,
4495 ubld.MOV(res1, brw_imm_d(-1)));
4496
4497 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4498 break;
4499 }
4500 case nir_intrinsic_vote_all: {
4501 const fs_builder ubld = bld.exec_all().group(1, 0);
4502
4503 /* The any/all predicates do not consider channel enables. To prevent
4504 * dead channels from affecting the result, we initialize the flag with
4505 * with the identity value for the logical operation.
4506 */
4507 if (dispatch_width == 32) {
4508 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4509 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4510 brw_imm_ud(0xffffffff));
4511 } else {
4512 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4513 }
4514 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4515
4516 /* For some reason, the any/all predicates don't work properly with
4517 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4518 * doesn't read the correct subset of the flag register and you end up
4519 * getting garbage in the second half. Work around this by using a pair
4520 * of 1-wide MOVs and scattering the result.
4521 */
4522 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4523 ubld.MOV(res1, brw_imm_d(0));
4524 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4525 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4526 BRW_PREDICATE_ALIGN1_ALL32H,
4527 ubld.MOV(res1, brw_imm_d(-1)));
4528
4529 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4530 break;
4531 }
4532 case nir_intrinsic_vote_feq:
4533 case nir_intrinsic_vote_ieq: {
4534 fs_reg value = get_nir_src(instr->src[0]);
4535 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4536 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4537 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4538 }
4539
4540 fs_reg uniformized = bld.emit_uniformize(value);
4541 const fs_builder ubld = bld.exec_all().group(1, 0);
4542
4543 /* The any/all predicates do not consider channel enables. To prevent
4544 * dead channels from affecting the result, we initialize the flag with
4545 * with the identity value for the logical operation.
4546 */
4547 if (dispatch_width == 32) {
4548 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4549 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4550 brw_imm_ud(0xffffffff));
4551 } else {
4552 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4553 }
4554 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4555
4556 /* For some reason, the any/all predicates don't work properly with
4557 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4558 * doesn't read the correct subset of the flag register and you end up
4559 * getting garbage in the second half. Work around this by using a pair
4560 * of 1-wide MOVs and scattering the result.
4561 */
4562 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4563 ubld.MOV(res1, brw_imm_d(0));
4564 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4565 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4566 BRW_PREDICATE_ALIGN1_ALL32H,
4567 ubld.MOV(res1, brw_imm_d(-1)));
4568
4569 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4570 break;
4571 }
4572
4573 case nir_intrinsic_ballot: {
4574 const fs_reg value = retype(get_nir_src(instr->src[0]),
4575 BRW_REGISTER_TYPE_UD);
4576 struct brw_reg flag = brw_flag_reg(0, 0);
4577 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4578 * as f0.0. This is a problem for fragment programs as we currently use
4579 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4580 * programs yet so this isn't a problem. When we do, something will
4581 * have to change.
4582 */
4583 if (dispatch_width == 32)
4584 flag.type = BRW_REGISTER_TYPE_UD;
4585
4586 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4587 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4588
4589 if (instr->dest.ssa.bit_size > 32) {
4590 dest.type = BRW_REGISTER_TYPE_UQ;
4591 } else {
4592 dest.type = BRW_REGISTER_TYPE_UD;
4593 }
4594 bld.MOV(dest, flag);
4595 break;
4596 }
4597
4598 case nir_intrinsic_read_invocation: {
4599 const fs_reg value = get_nir_src(instr->src[0]);
4600 const fs_reg invocation = get_nir_src(instr->src[1]);
4601 fs_reg tmp = bld.vgrf(value.type);
4602
4603 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4604 bld.emit_uniformize(invocation));
4605
4606 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4607 break;
4608 }
4609
4610 case nir_intrinsic_read_first_invocation: {
4611 const fs_reg value = get_nir_src(instr->src[0]);
4612 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4613 break;
4614 }
4615
4616 case nir_intrinsic_shuffle: {
4617 const fs_reg value = get_nir_src(instr->src[0]);
4618 const fs_reg index = get_nir_src(instr->src[1]);
4619
4620 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4621 break;
4622 }
4623
4624 case nir_intrinsic_first_invocation: {
4625 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4626 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4627 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4628 fs_reg(component(tmp, 0)));
4629 break;
4630 }
4631
4632 case nir_intrinsic_quad_broadcast: {
4633 const fs_reg value = get_nir_src(instr->src[0]);
4634 const unsigned index = nir_src_as_uint(instr->src[1]);
4635
4636 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4637 value, brw_imm_ud(index), brw_imm_ud(4));
4638 break;
4639 }
4640
4641 case nir_intrinsic_quad_swap_horizontal: {
4642 const fs_reg value = get_nir_src(instr->src[0]);
4643 const fs_reg tmp = bld.vgrf(value.type);
4644 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4645
4646 const fs_reg src_left = horiz_stride(value, 2);
4647 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4648 const fs_reg tmp_left = horiz_stride(tmp, 2);
4649 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4650
4651 ubld.MOV(tmp_left, src_right);
4652 ubld.MOV(tmp_right, src_left);
4653
4654 bld.MOV(retype(dest, value.type), tmp);
4655 break;
4656 }
4657
4658 case nir_intrinsic_quad_swap_vertical: {
4659 const fs_reg value = get_nir_src(instr->src[0]);
4660 if (nir_src_bit_size(instr->src[0]) == 32) {
4661 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4662 const fs_reg tmp = bld.vgrf(value.type);
4663 const fs_builder ubld = bld.exec_all();
4664 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4665 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4666 bld.MOV(retype(dest, value.type), tmp);
4667 } else {
4668 /* For larger data types, we have to either emit dispatch_width many
4669 * MOVs or else fall back to doing indirects.
4670 */
4671 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4672 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4673 brw_imm_w(0x2));
4674 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4675 }
4676 break;
4677 }
4678
4679 case nir_intrinsic_quad_swap_diagonal: {
4680 const fs_reg value = get_nir_src(instr->src[0]);
4681 if (nir_src_bit_size(instr->src[0]) == 32) {
4682 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4683 const fs_reg tmp = bld.vgrf(value.type);
4684 const fs_builder ubld = bld.exec_all();
4685 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4686 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4687 bld.MOV(retype(dest, value.type), tmp);
4688 } else {
4689 /* For larger data types, we have to either emit dispatch_width many
4690 * MOVs or else fall back to doing indirects.
4691 */
4692 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4693 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4694 brw_imm_w(0x3));
4695 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4696 }
4697 break;
4698 }
4699
4700 case nir_intrinsic_reduce: {
4701 fs_reg src = get_nir_src(instr->src[0]);
4702 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4703 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4704 if (cluster_size == 0 || cluster_size > dispatch_width)
4705 cluster_size = dispatch_width;
4706
4707 /* Figure out the source type */
4708 src.type = brw_type_for_nir_type(devinfo,
4709 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4710 nir_src_bit_size(instr->src[0])));
4711
4712 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4713 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4714 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4715
4716 /* Set up a register for all of our scratching around and initialize it
4717 * to reduction operation's identity value.
4718 */
4719 fs_reg scan = bld.vgrf(src.type);
4720 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4721
4722 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4723
4724 dest.type = src.type;
4725 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4726 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4727 * the distance between clusters is at least 2 GRFs. In this case,
4728 * we don't need the weird striding of the CLUSTER_BROADCAST
4729 * instruction and can just do regular MOVs.
4730 */
4731 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4732 const unsigned groups =
4733 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4734 const unsigned group_size = dispatch_width / groups;
4735 for (unsigned i = 0; i < groups; i++) {
4736 const unsigned cluster = (i * group_size) / cluster_size;
4737 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4738 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4739 component(scan, comp));
4740 }
4741 } else {
4742 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4743 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4744 }
4745 break;
4746 }
4747
4748 case nir_intrinsic_inclusive_scan:
4749 case nir_intrinsic_exclusive_scan: {
4750 fs_reg src = get_nir_src(instr->src[0]);
4751 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4752
4753 /* Figure out the source type */
4754 src.type = brw_type_for_nir_type(devinfo,
4755 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4756 nir_src_bit_size(instr->src[0])));
4757
4758 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4759 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4760 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4761
4762 /* Set up a register for all of our scratching around and initialize it
4763 * to reduction operation's identity value.
4764 */
4765 fs_reg scan = bld.vgrf(src.type);
4766 const fs_builder allbld = bld.exec_all();
4767 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4768
4769 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4770 /* Exclusive scan is a bit harder because we have to do an annoying
4771 * shift of the contents before we can begin. To make things worse,
4772 * we can't do this with a normal stride; we have to use indirects.
4773 */
4774 fs_reg shifted = bld.vgrf(src.type);
4775 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4776 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4777 brw_imm_w(-1));
4778 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4779 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4780 scan = shifted;
4781 }
4782
4783 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4784
4785 bld.MOV(retype(dest, src.type), scan);
4786 break;
4787 }
4788
4789 case nir_intrinsic_begin_invocation_interlock: {
4790 const fs_builder ubld = bld.group(8, 0);
4791 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4792
4793 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4794 REG_SIZE;
4795
4796 break;
4797 }
4798
4799 case nir_intrinsic_end_invocation_interlock: {
4800 /* We don't need to do anything here */
4801 break;
4802 }
4803
4804 default:
4805 unreachable("unknown intrinsic");
4806 }
4807 }
4808
4809 void
4810 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4811 int op, nir_intrinsic_instr *instr)
4812 {
4813 if (stage == MESA_SHADER_FRAGMENT)
4814 brw_wm_prog_data(prog_data)->has_side_effects = true;
4815
4816 fs_reg dest;
4817 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4818 dest = get_nir_dest(instr->dest);
4819
4820 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4821 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4822 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4823 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4824 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4825
4826 fs_reg data;
4827 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4828 data = get_nir_src(instr->src[2]);
4829
4830 if (op == BRW_AOP_CMPWR) {
4831 fs_reg tmp = bld.vgrf(data.type, 2);
4832 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4833 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4834 data = tmp;
4835 }
4836 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4837
4838 /* Emit the actual atomic operation */
4839
4840 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4841 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4842 }
4843
4844 void
4845 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4846 int op, nir_intrinsic_instr *instr)
4847 {
4848 if (stage == MESA_SHADER_FRAGMENT)
4849 brw_wm_prog_data(prog_data)->has_side_effects = true;
4850
4851 fs_reg dest;
4852 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4853 dest = get_nir_dest(instr->dest);
4854
4855 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4856 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4857 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4858 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4859 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4860
4861 fs_reg data = get_nir_src(instr->src[2]);
4862 if (op == BRW_AOP_FCMPWR) {
4863 fs_reg tmp = bld.vgrf(data.type, 2);
4864 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4865 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4866 data = tmp;
4867 }
4868 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4869
4870 /* Emit the actual atomic operation */
4871
4872 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4873 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4874 }
4875
4876 void
4877 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4878 int op, nir_intrinsic_instr *instr)
4879 {
4880 fs_reg dest;
4881 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4882 dest = get_nir_dest(instr->dest);
4883
4884 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4885 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4886 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4887 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4888
4889 fs_reg data;
4890 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4891 data = get_nir_src(instr->src[1]);
4892 if (op == BRW_AOP_CMPWR) {
4893 fs_reg tmp = bld.vgrf(data.type, 2);
4894 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4895 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4896 data = tmp;
4897 }
4898 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4899
4900 /* Get the offset */
4901 if (nir_src_is_const(instr->src[0])) {
4902 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4903 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4904 } else {
4905 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4906 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4907 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4908 brw_imm_ud(instr->const_index[0]));
4909 }
4910
4911 /* Emit the actual atomic operation operation */
4912
4913 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4914 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4915 }
4916
4917 void
4918 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4919 int op, nir_intrinsic_instr *instr)
4920 {
4921 fs_reg dest;
4922 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4923 dest = get_nir_dest(instr->dest);
4924
4925 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4926 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4927 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4928 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4929
4930 fs_reg data = get_nir_src(instr->src[1]);
4931 if (op == BRW_AOP_FCMPWR) {
4932 fs_reg tmp = bld.vgrf(data.type, 2);
4933 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4934 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4935 data = tmp;
4936 }
4937 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4938
4939 /* Get the offset */
4940 if (nir_src_is_const(instr->src[0])) {
4941 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4942 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4943 } else {
4944 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4945 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4946 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4947 brw_imm_ud(instr->const_index[0]));
4948 }
4949
4950 /* Emit the actual atomic operation operation */
4951
4952 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4953 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4954 }
4955
4956 void
4957 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
4958 int op, nir_intrinsic_instr *instr)
4959 {
4960 if (stage == MESA_SHADER_FRAGMENT)
4961 brw_wm_prog_data(prog_data)->has_side_effects = true;
4962
4963 fs_reg dest;
4964 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4965 dest = get_nir_dest(instr->dest);
4966
4967 fs_reg addr = get_nir_src(instr->src[0]);
4968
4969 fs_reg data;
4970 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4971 data = get_nir_src(instr->src[1]);
4972
4973 if (op == BRW_AOP_CMPWR) {
4974 fs_reg tmp = bld.vgrf(data.type, 2);
4975 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4976 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4977 data = tmp;
4978 }
4979
4980 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4981 dest, addr, data, brw_imm_ud(op));
4982 }
4983
4984 void
4985 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
4986 int op, nir_intrinsic_instr *instr)
4987 {
4988 if (stage == MESA_SHADER_FRAGMENT)
4989 brw_wm_prog_data(prog_data)->has_side_effects = true;
4990
4991 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
4992 fs_reg dest = get_nir_dest(instr->dest);
4993
4994 fs_reg addr = get_nir_src(instr->src[0]);
4995
4996 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
4997 fs_reg data = get_nir_src(instr->src[1]);
4998
4999 if (op == BRW_AOP_FCMPWR) {
5000 fs_reg tmp = bld.vgrf(data.type, 2);
5001 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5002 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5003 data = tmp;
5004 }
5005
5006 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5007 dest, addr, data, brw_imm_ud(op));
5008 }
5009
5010 void
5011 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5012 {
5013 unsigned texture = instr->texture_index;
5014 unsigned sampler = instr->sampler_index;
5015
5016 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5017
5018 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5019 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5020
5021 int lod_components = 0;
5022
5023 /* The hardware requires a LOD for buffer textures */
5024 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5025 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5026
5027 uint32_t header_bits = 0;
5028 for (unsigned i = 0; i < instr->num_srcs; i++) {
5029 fs_reg src = get_nir_src(instr->src[i].src);
5030 switch (instr->src[i].src_type) {
5031 case nir_tex_src_bias:
5032 srcs[TEX_LOGICAL_SRC_LOD] =
5033 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5034 break;
5035 case nir_tex_src_comparator:
5036 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5037 break;
5038 case nir_tex_src_coord:
5039 switch (instr->op) {
5040 case nir_texop_txf:
5041 case nir_texop_txf_ms:
5042 case nir_texop_txf_ms_mcs:
5043 case nir_texop_samples_identical:
5044 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5045 break;
5046 default:
5047 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5048 break;
5049 }
5050 break;
5051 case nir_tex_src_ddx:
5052 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5053 lod_components = nir_tex_instr_src_size(instr, i);
5054 break;
5055 case nir_tex_src_ddy:
5056 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5057 break;
5058 case nir_tex_src_lod:
5059 switch (instr->op) {
5060 case nir_texop_txs:
5061 srcs[TEX_LOGICAL_SRC_LOD] =
5062 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5063 break;
5064 case nir_texop_txf:
5065 srcs[TEX_LOGICAL_SRC_LOD] =
5066 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5067 break;
5068 default:
5069 srcs[TEX_LOGICAL_SRC_LOD] =
5070 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5071 break;
5072 }
5073 break;
5074 case nir_tex_src_min_lod:
5075 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5076 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5077 break;
5078 case nir_tex_src_ms_index:
5079 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5080 break;
5081
5082 case nir_tex_src_offset: {
5083 uint32_t offset_bits = 0;
5084 if (brw_texture_offset(instr, i, &offset_bits)) {
5085 header_bits |= offset_bits;
5086 } else {
5087 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5088 retype(src, BRW_REGISTER_TYPE_D);
5089 }
5090 break;
5091 }
5092
5093 case nir_tex_src_projector:
5094 unreachable("should be lowered");
5095
5096 case nir_tex_src_texture_offset: {
5097 /* Emit code to evaluate the actual indexing expression */
5098 fs_reg tmp = vgrf(glsl_type::uint_type);
5099 bld.ADD(tmp, src, brw_imm_ud(texture));
5100 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5101 break;
5102 }
5103
5104 case nir_tex_src_sampler_offset: {
5105 /* Emit code to evaluate the actual indexing expression */
5106 fs_reg tmp = vgrf(glsl_type::uint_type);
5107 bld.ADD(tmp, src, brw_imm_ud(sampler));
5108 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5109 break;
5110 }
5111
5112 case nir_tex_src_ms_mcs:
5113 assert(instr->op == nir_texop_txf_ms);
5114 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5115 break;
5116
5117 case nir_tex_src_plane: {
5118 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5119 const uint32_t texture_index =
5120 instr->texture_index +
5121 stage_prog_data->binding_table.plane_start[plane] -
5122 stage_prog_data->binding_table.texture_start;
5123
5124 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5125 break;
5126 }
5127
5128 default:
5129 unreachable("unknown texture source");
5130 }
5131 }
5132
5133 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5134 (instr->op == nir_texop_txf_ms ||
5135 instr->op == nir_texop_samples_identical)) {
5136 if (devinfo->gen >= 7 &&
5137 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5138 srcs[TEX_LOGICAL_SRC_MCS] =
5139 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5140 instr->coord_components,
5141 srcs[TEX_LOGICAL_SRC_SURFACE]);
5142 } else {
5143 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5144 }
5145 }
5146
5147 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5148 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5149
5150 bool shader_supports_implicit_lod = stage == MESA_SHADER_FRAGMENT ||
5151 (stage == MESA_SHADER_COMPUTE &&
5152 nir->info.cs.derivative_group != DERIVATIVE_GROUP_NONE);
5153
5154 enum opcode opcode;
5155 switch (instr->op) {
5156 case nir_texop_tex:
5157 opcode = shader_supports_implicit_lod ?
5158 SHADER_OPCODE_TEX_LOGICAL : SHADER_OPCODE_TXL_LOGICAL;
5159 break;
5160 case nir_texop_txb:
5161 opcode = FS_OPCODE_TXB_LOGICAL;
5162 break;
5163 case nir_texop_txl:
5164 opcode = SHADER_OPCODE_TXL_LOGICAL;
5165 break;
5166 case nir_texop_txd:
5167 opcode = SHADER_OPCODE_TXD_LOGICAL;
5168 break;
5169 case nir_texop_txf:
5170 opcode = SHADER_OPCODE_TXF_LOGICAL;
5171 break;
5172 case nir_texop_txf_ms:
5173 if ((key_tex->msaa_16 & (1 << sampler)))
5174 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5175 else
5176 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5177 break;
5178 case nir_texop_txf_ms_mcs:
5179 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5180 break;
5181 case nir_texop_query_levels:
5182 case nir_texop_txs:
5183 opcode = SHADER_OPCODE_TXS_LOGICAL;
5184 break;
5185 case nir_texop_lod:
5186 opcode = SHADER_OPCODE_LOD_LOGICAL;
5187 break;
5188 case nir_texop_tg4:
5189 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5190 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5191 else
5192 opcode = SHADER_OPCODE_TG4_LOGICAL;
5193 break;
5194 case nir_texop_texture_samples:
5195 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5196 break;
5197 case nir_texop_samples_identical: {
5198 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5199
5200 /* If mcs is an immediate value, it means there is no MCS. In that case
5201 * just return false.
5202 */
5203 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5204 bld.MOV(dst, brw_imm_ud(0u));
5205 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5206 fs_reg tmp = vgrf(glsl_type::uint_type);
5207 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5208 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5209 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5210 } else {
5211 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5212 BRW_CONDITIONAL_EQ);
5213 }
5214 return;
5215 }
5216 default:
5217 unreachable("unknown texture opcode");
5218 }
5219
5220 if (instr->op == nir_texop_tg4) {
5221 if (instr->component == 1 &&
5222 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5223 /* gather4 sampler is broken for green channel on RG32F --
5224 * we must ask for blue instead.
5225 */
5226 header_bits |= 2 << 16;
5227 } else {
5228 header_bits |= instr->component << 16;
5229 }
5230 }
5231
5232 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5233 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5234 inst->offset = header_bits;
5235
5236 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5237 if (devinfo->gen >= 9 &&
5238 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5239 unsigned write_mask = instr->dest.is_ssa ?
5240 nir_ssa_def_components_read(&instr->dest.ssa):
5241 (1 << dest_size) - 1;
5242 assert(write_mask != 0); /* dead code should have been eliminated */
5243 inst->size_written = util_last_bit(write_mask) *
5244 inst->dst.component_size(inst->exec_size);
5245 } else {
5246 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5247 }
5248
5249 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5250 inst->shadow_compare = true;
5251
5252 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5253 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5254
5255 fs_reg nir_dest[4];
5256 for (unsigned i = 0; i < dest_size; i++)
5257 nir_dest[i] = offset(dst, bld, i);
5258
5259 if (instr->op == nir_texop_query_levels) {
5260 /* # levels is in .w */
5261 nir_dest[0] = offset(dst, bld, 3);
5262 } else if (instr->op == nir_texop_txs &&
5263 dest_size >= 3 && devinfo->gen < 7) {
5264 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5265 fs_reg depth = offset(dst, bld, 2);
5266 nir_dest[2] = vgrf(glsl_type::int_type);
5267 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5268 }
5269
5270 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5271 }
5272
5273 void
5274 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5275 {
5276 switch (instr->type) {
5277 case nir_jump_break:
5278 bld.emit(BRW_OPCODE_BREAK);
5279 break;
5280 case nir_jump_continue:
5281 bld.emit(BRW_OPCODE_CONTINUE);
5282 break;
5283 case nir_jump_return:
5284 default:
5285 unreachable("unknown jump");
5286 }
5287 }
5288
5289 /*
5290 * This helper takes a source register and un/shuffles it into the destination
5291 * register.
5292 *
5293 * If source type size is smaller than destination type size the operation
5294 * needed is a component shuffle. The opposite case would be an unshuffle. If
5295 * source/destination type size is equal a shuffle is done that would be
5296 * equivalent to a simple MOV.
5297 *
5298 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5299 * components .xyz 16-bit vector on SIMD8 would be.
5300 *
5301 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5302 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5303 *
5304 * This helper will return the following 2 32-bit components with the 16-bit
5305 * values shuffled:
5306 *
5307 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5308 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5309 *
5310 * For unshuffle, the example would be the opposite, a 64-bit type source
5311 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5312 * would be:
5313 *
5314 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5315 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5316 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5317 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5318 *
5319 * The returned result would be the following 4 32-bit components unshuffled:
5320 *
5321 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5322 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5323 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5324 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5325 *
5326 * - Source and destination register must not be overlapped.
5327 * - components units are measured in terms of the smaller type between
5328 * source and destination because we are un/shuffling the smaller
5329 * components from/into the bigger ones.
5330 * - first_component parameter allows skipping source components.
5331 */
5332 void
5333 shuffle_src_to_dst(const fs_builder &bld,
5334 const fs_reg &dst,
5335 const fs_reg &src,
5336 uint32_t first_component,
5337 uint32_t components)
5338 {
5339 if (type_sz(src.type) == type_sz(dst.type)) {
5340 assert(!regions_overlap(dst,
5341 type_sz(dst.type) * bld.dispatch_width() * components,
5342 offset(src, bld, first_component),
5343 type_sz(src.type) * bld.dispatch_width() * components));
5344 for (unsigned i = 0; i < components; i++) {
5345 bld.MOV(retype(offset(dst, bld, i), src.type),
5346 offset(src, bld, i + first_component));
5347 }
5348 } else if (type_sz(src.type) < type_sz(dst.type)) {
5349 /* Source is shuffled into destination */
5350 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5351 assert(!regions_overlap(dst,
5352 type_sz(dst.type) * bld.dispatch_width() *
5353 DIV_ROUND_UP(components, size_ratio),
5354 offset(src, bld, first_component),
5355 type_sz(src.type) * bld.dispatch_width() * components));
5356
5357 brw_reg_type shuffle_type =
5358 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5359 BRW_REGISTER_TYPE_D);
5360 for (unsigned i = 0; i < components; i++) {
5361 fs_reg shuffle_component_i =
5362 subscript(offset(dst, bld, i / size_ratio),
5363 shuffle_type, i % size_ratio);
5364 bld.MOV(shuffle_component_i,
5365 retype(offset(src, bld, i + first_component), shuffle_type));
5366 }
5367 } else {
5368 /* Source is unshuffled into destination */
5369 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5370 assert(!regions_overlap(dst,
5371 type_sz(dst.type) * bld.dispatch_width() * components,
5372 offset(src, bld, first_component / size_ratio),
5373 type_sz(src.type) * bld.dispatch_width() *
5374 DIV_ROUND_UP(components + (first_component % size_ratio),
5375 size_ratio)));
5376
5377 brw_reg_type shuffle_type =
5378 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5379 BRW_REGISTER_TYPE_D);
5380 for (unsigned i = 0; i < components; i++) {
5381 fs_reg shuffle_component_i =
5382 subscript(offset(src, bld, (first_component + i) / size_ratio),
5383 shuffle_type, (first_component + i) % size_ratio);
5384 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5385 shuffle_component_i);
5386 }
5387 }
5388 }
5389
5390 void
5391 shuffle_from_32bit_read(const fs_builder &bld,
5392 const fs_reg &dst,
5393 const fs_reg &src,
5394 uint32_t first_component,
5395 uint32_t components)
5396 {
5397 assert(type_sz(src.type) == 4);
5398
5399 /* This function takes components in units of the destination type while
5400 * shuffle_src_to_dst takes components in units of the smallest type
5401 */
5402 if (type_sz(dst.type) > 4) {
5403 assert(type_sz(dst.type) == 8);
5404 first_component *= 2;
5405 components *= 2;
5406 }
5407
5408 shuffle_src_to_dst(bld, dst, src, first_component, components);
5409 }
5410
5411 fs_reg
5412 shuffle_for_32bit_write(const fs_builder &bld,
5413 const fs_reg &src,
5414 uint32_t first_component,
5415 uint32_t components)
5416 {
5417 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5418 DIV_ROUND_UP (components * type_sz(src.type), 4));
5419 /* This function takes components in units of the source type while
5420 * shuffle_src_to_dst takes components in units of the smallest type
5421 */
5422 if (type_sz(src.type) > 4) {
5423 assert(type_sz(src.type) == 8);
5424 first_component *= 2;
5425 components *= 2;
5426 }
5427
5428 shuffle_src_to_dst(bld, dst, src, first_component, components);
5429
5430 return dst;
5431 }
5432
5433 fs_reg
5434 setup_imm_df(const fs_builder &bld, double v)
5435 {
5436 const struct gen_device_info *devinfo = bld.shader->devinfo;
5437 assert(devinfo->gen >= 7);
5438
5439 if (devinfo->gen >= 8)
5440 return brw_imm_df(v);
5441
5442 /* gen7.5 does not support DF immediates straighforward but the DIM
5443 * instruction allows to set the 64-bit immediate value.
5444 */
5445 if (devinfo->is_haswell) {
5446 const fs_builder ubld = bld.exec_all().group(1, 0);
5447 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5448 ubld.DIM(dst, brw_imm_df(v));
5449 return component(dst, 0);
5450 }
5451
5452 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5453 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5454 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5455 *
5456 * Alternatively, we could also produce a normal VGRF (without stride 0)
5457 * by writing to all the channels in the VGRF, however, that would hit the
5458 * gen7 bug where we have to split writes that span more than 1 register
5459 * into instructions with a width of 4 (otherwise the write to the second
5460 * register written runs into an execmask hardware bug) which isn't very
5461 * nice.
5462 */
5463 union {
5464 double d;
5465 struct {
5466 uint32_t i1;
5467 uint32_t i2;
5468 };
5469 } di;
5470
5471 di.d = v;
5472
5473 const fs_builder ubld = bld.exec_all().group(1, 0);
5474 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5475 ubld.MOV(tmp, brw_imm_ud(di.i1));
5476 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5477
5478 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5479 }
5480
5481 fs_reg
5482 setup_imm_b(const fs_builder &bld, int8_t v)
5483 {
5484 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5485 bld.MOV(tmp, brw_imm_w(v));
5486 return tmp;
5487 }
5488
5489 fs_reg
5490 setup_imm_ub(const fs_builder &bld, uint8_t v)
5491 {
5492 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5493 bld.MOV(tmp, brw_imm_uw(v));
5494 return tmp;
5495 }