f611b261784938919eebbc065487b961f098d639
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "util/u_math.h"
28 #include "util/bitscan.h"
29
30 using namespace brw;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
43 }
44
45 void
46 fs_visitor::nir_setup_outputs()
47 {
48 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
49 return;
50
51 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
52
53 /* Calculate the size of output registers in a separate pass, before
54 * allocating them. With ARB_enhanced_layouts, multiple output variables
55 * may occupy the same slot, but have different type sizes.
56 */
57 nir_foreach_variable(var, &nir->outputs) {
58 const int loc = var->data.driver_location;
59 const unsigned var_vec4s =
60 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
61 : type_size_vec4(var->type, true);
62 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
63 }
64
65 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
66 if (vec4s[loc] == 0) {
67 loc++;
68 continue;
69 }
70
71 unsigned reg_size = vec4s[loc];
72
73 /* Check if there are any ranges that start within this range and extend
74 * past it. If so, include them in this allocation.
75 */
76 for (unsigned i = 1; i < reg_size; i++)
77 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
78
79 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
80 for (unsigned i = 0; i < reg_size; i++)
81 outputs[loc + i] = offset(reg, bld, 4 * i);
82
83 loc += reg_size;
84 }
85 }
86
87 void
88 fs_visitor::nir_setup_uniforms()
89 {
90 /* Only the first compile gets to set up uniforms. */
91 if (push_constant_loc) {
92 assert(pull_constant_loc);
93 return;
94 }
95
96 uniforms = nir->num_uniforms / 4;
97
98 if (stage == MESA_SHADER_COMPUTE) {
99 /* Add a uniform for the thread local id. It must be the last uniform
100 * on the list.
101 */
102 assert(uniforms == prog_data->nr_params);
103 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
104 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
105 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
106 }
107 }
108
109 static bool
110 emit_system_values_block(nir_block *block, fs_visitor *v)
111 {
112 fs_reg *reg;
113
114 nir_foreach_instr(instr, block) {
115 if (instr->type != nir_instr_type_intrinsic)
116 continue;
117
118 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
119 switch (intrin->intrinsic) {
120 case nir_intrinsic_load_vertex_id:
121 case nir_intrinsic_load_base_vertex:
122 unreachable("should be lowered by nir_lower_system_values().");
123
124 case nir_intrinsic_load_vertex_id_zero_base:
125 case nir_intrinsic_load_is_indexed_draw:
126 case nir_intrinsic_load_first_vertex:
127 case nir_intrinsic_load_instance_id:
128 case nir_intrinsic_load_base_instance:
129 case nir_intrinsic_load_draw_id:
130 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
131
132 case nir_intrinsic_load_invocation_id:
133 if (v->stage == MESA_SHADER_TESS_CTRL)
134 break;
135 assert(v->stage == MESA_SHADER_GEOMETRY);
136 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
137 if (reg->file == BAD_FILE) {
138 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
139 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
140 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
141 abld.SHR(iid, g1, brw_imm_ud(27u));
142 *reg = iid;
143 }
144 break;
145
146 case nir_intrinsic_load_sample_pos:
147 assert(v->stage == MESA_SHADER_FRAGMENT);
148 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
149 if (reg->file == BAD_FILE)
150 *reg = *v->emit_samplepos_setup();
151 break;
152
153 case nir_intrinsic_load_sample_id:
154 assert(v->stage == MESA_SHADER_FRAGMENT);
155 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
156 if (reg->file == BAD_FILE)
157 *reg = *v->emit_sampleid_setup();
158 break;
159
160 case nir_intrinsic_load_sample_mask_in:
161 assert(v->stage == MESA_SHADER_FRAGMENT);
162 assert(v->devinfo->gen >= 7);
163 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
164 if (reg->file == BAD_FILE)
165 *reg = *v->emit_samplemaskin_setup();
166 break;
167
168 case nir_intrinsic_load_work_group_id:
169 assert(v->stage == MESA_SHADER_COMPUTE);
170 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
171 if (reg->file == BAD_FILE)
172 *reg = *v->emit_cs_work_group_id_setup();
173 break;
174
175 case nir_intrinsic_load_helper_invocation:
176 assert(v->stage == MESA_SHADER_FRAGMENT);
177 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
178 if (reg->file == BAD_FILE) {
179 const fs_builder abld =
180 v->bld.annotate("gl_HelperInvocation", NULL);
181
182 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
183 * pixel mask is in g1.7 of the thread payload.
184 *
185 * We move the per-channel pixel enable bit to the low bit of each
186 * channel by shifting the byte containing the pixel mask by the
187 * vector immediate 0x76543210UV.
188 *
189 * The region of <1,8,0> reads only 1 byte (the pixel masks for
190 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
191 * masks for 2 and 3) in SIMD16.
192 */
193 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
194
195 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
196 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
197 hbld.SHR(offset(shifted, hbld, i),
198 stride(retype(brw_vec1_grf(1 + i, 7),
199 BRW_REGISTER_TYPE_UB),
200 1, 8, 0),
201 brw_imm_v(0x76543210));
202 }
203
204 /* A set bit in the pixel mask means the channel is enabled, but
205 * that is the opposite of gl_HelperInvocation so we need to invert
206 * the mask.
207 *
208 * The negate source-modifier bit of logical instructions on Gen8+
209 * performs 1's complement negation, so we can use that instead of
210 * a NOT instruction.
211 */
212 fs_reg inverted = negate(shifted);
213 if (v->devinfo->gen < 8) {
214 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
215 abld.NOT(inverted, shifted);
216 }
217
218 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
219 * with 1 and negating.
220 */
221 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
222 abld.AND(anded, inverted, brw_imm_uw(1));
223
224 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
225 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
226 *reg = dst;
227 }
228 break;
229
230 default:
231 break;
232 }
233 }
234
235 return true;
236 }
237
238 void
239 fs_visitor::nir_emit_system_values()
240 {
241 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
242 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
243 nir_system_values[i] = fs_reg();
244 }
245
246 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
247 * never end up using it.
248 */
249 {
250 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
251 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
252 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
253
254 const fs_builder allbld8 = abld.group(8, 0).exec_all();
255 allbld8.MOV(reg, brw_imm_v(0x76543210));
256 if (dispatch_width > 8)
257 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
258 if (dispatch_width > 16) {
259 const fs_builder allbld16 = abld.group(16, 0).exec_all();
260 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
261 }
262 }
263
264 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
265 nir_foreach_block(block, impl)
266 emit_system_values_block(block, this);
267 }
268
269 /*
270 * Returns a type based on a reference_type (word, float, half-float) and a
271 * given bit_size.
272 *
273 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
274 *
275 * @FIXME: 64-bit return types are always DF on integer types to maintain
276 * compability with uses of DF previously to the introduction of int64
277 * support.
278 */
279 static brw_reg_type
280 brw_reg_type_from_bit_size(const unsigned bit_size,
281 const brw_reg_type reference_type)
282 {
283 switch(reference_type) {
284 case BRW_REGISTER_TYPE_HF:
285 case BRW_REGISTER_TYPE_F:
286 case BRW_REGISTER_TYPE_DF:
287 switch(bit_size) {
288 case 16:
289 return BRW_REGISTER_TYPE_HF;
290 case 32:
291 return BRW_REGISTER_TYPE_F;
292 case 64:
293 return BRW_REGISTER_TYPE_DF;
294 default:
295 unreachable("Invalid bit size");
296 }
297 case BRW_REGISTER_TYPE_B:
298 case BRW_REGISTER_TYPE_W:
299 case BRW_REGISTER_TYPE_D:
300 case BRW_REGISTER_TYPE_Q:
301 switch(bit_size) {
302 case 8:
303 return BRW_REGISTER_TYPE_B;
304 case 16:
305 return BRW_REGISTER_TYPE_W;
306 case 32:
307 return BRW_REGISTER_TYPE_D;
308 case 64:
309 return BRW_REGISTER_TYPE_Q;
310 default:
311 unreachable("Invalid bit size");
312 }
313 case BRW_REGISTER_TYPE_UB:
314 case BRW_REGISTER_TYPE_UW:
315 case BRW_REGISTER_TYPE_UD:
316 case BRW_REGISTER_TYPE_UQ:
317 switch(bit_size) {
318 case 8:
319 return BRW_REGISTER_TYPE_UB;
320 case 16:
321 return BRW_REGISTER_TYPE_UW;
322 case 32:
323 return BRW_REGISTER_TYPE_UD;
324 case 64:
325 return BRW_REGISTER_TYPE_UQ;
326 default:
327 unreachable("Invalid bit size");
328 }
329 default:
330 unreachable("Unknown type");
331 }
332 }
333
334 void
335 fs_visitor::nir_emit_impl(nir_function_impl *impl)
336 {
337 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
338 for (unsigned i = 0; i < impl->reg_alloc; i++) {
339 nir_locals[i] = fs_reg();
340 }
341
342 foreach_list_typed(nir_register, reg, node, &impl->registers) {
343 unsigned array_elems =
344 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
345 unsigned size = array_elems * reg->num_components;
346 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
347 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
348 nir_locals[reg->index] = bld.vgrf(reg_type, size);
349 }
350
351 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
352 impl->ssa_alloc);
353
354 nir_emit_cf_list(&impl->body);
355 }
356
357 void
358 fs_visitor::nir_emit_cf_list(exec_list *list)
359 {
360 exec_list_validate(list);
361 foreach_list_typed(nir_cf_node, node, node, list) {
362 switch (node->type) {
363 case nir_cf_node_if:
364 nir_emit_if(nir_cf_node_as_if(node));
365 break;
366
367 case nir_cf_node_loop:
368 nir_emit_loop(nir_cf_node_as_loop(node));
369 break;
370
371 case nir_cf_node_block:
372 nir_emit_block(nir_cf_node_as_block(node));
373 break;
374
375 default:
376 unreachable("Invalid CFG node block");
377 }
378 }
379 }
380
381 void
382 fs_visitor::nir_emit_if(nir_if *if_stmt)
383 {
384 bool invert;
385 fs_reg cond_reg;
386
387 /* If the condition has the form !other_condition, use other_condition as
388 * the source, but invert the predicate on the if instruction.
389 */
390 nir_alu_instr *const cond = nir_src_as_alu_instr(&if_stmt->condition);
391 if (cond != NULL && cond->op == nir_op_inot) {
392 assert(!cond->src[0].negate);
393 assert(!cond->src[0].abs);
394
395 invert = true;
396 cond_reg = get_nir_src(cond->src[0].src);
397 } else {
398 invert = false;
399 cond_reg = get_nir_src(if_stmt->condition);
400 }
401
402 /* first, put the condition into f0 */
403 fs_inst *inst = bld.MOV(bld.null_reg_d(),
404 retype(cond_reg, BRW_REGISTER_TYPE_D));
405 inst->conditional_mod = BRW_CONDITIONAL_NZ;
406
407 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
408
409 nir_emit_cf_list(&if_stmt->then_list);
410
411 /* note: if the else is empty, dead CF elimination will remove it */
412 bld.emit(BRW_OPCODE_ELSE);
413
414 nir_emit_cf_list(&if_stmt->else_list);
415
416 bld.emit(BRW_OPCODE_ENDIF);
417
418 if (devinfo->gen < 7)
419 limit_dispatch_width(16, "Non-uniform control flow unsupported "
420 "in SIMD32 mode.");
421 }
422
423 void
424 fs_visitor::nir_emit_loop(nir_loop *loop)
425 {
426 bld.emit(BRW_OPCODE_DO);
427
428 nir_emit_cf_list(&loop->body);
429
430 bld.emit(BRW_OPCODE_WHILE);
431
432 if (devinfo->gen < 7)
433 limit_dispatch_width(16, "Non-uniform control flow unsupported "
434 "in SIMD32 mode.");
435 }
436
437 void
438 fs_visitor::nir_emit_block(nir_block *block)
439 {
440 nir_foreach_instr(instr, block) {
441 nir_emit_instr(instr);
442 }
443 }
444
445 void
446 fs_visitor::nir_emit_instr(nir_instr *instr)
447 {
448 const fs_builder abld = bld.annotate(NULL, instr);
449
450 switch (instr->type) {
451 case nir_instr_type_alu:
452 nir_emit_alu(abld, nir_instr_as_alu(instr));
453 break;
454
455 case nir_instr_type_deref:
456 /* Derefs can exist for images but they do nothing */
457 break;
458
459 case nir_instr_type_intrinsic:
460 switch (stage) {
461 case MESA_SHADER_VERTEX:
462 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
463 break;
464 case MESA_SHADER_TESS_CTRL:
465 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
466 break;
467 case MESA_SHADER_TESS_EVAL:
468 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
469 break;
470 case MESA_SHADER_GEOMETRY:
471 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
472 break;
473 case MESA_SHADER_FRAGMENT:
474 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
475 break;
476 case MESA_SHADER_COMPUTE:
477 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
478 break;
479 default:
480 unreachable("unsupported shader stage");
481 }
482 break;
483
484 case nir_instr_type_tex:
485 nir_emit_texture(abld, nir_instr_as_tex(instr));
486 break;
487
488 case nir_instr_type_load_const:
489 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
490 break;
491
492 case nir_instr_type_ssa_undef:
493 /* We create a new VGRF for undefs on every use (by handling
494 * them in get_nir_src()), rather than for each definition.
495 * This helps register coalescing eliminate MOVs from undef.
496 */
497 break;
498
499 case nir_instr_type_jump:
500 nir_emit_jump(abld, nir_instr_as_jump(instr));
501 break;
502
503 default:
504 unreachable("unknown instruction type");
505 }
506 }
507
508 /**
509 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
510 * match instr.
511 */
512 bool
513 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
514 const fs_reg &result)
515 {
516 if (!instr->src[0].src.is_ssa ||
517 !instr->src[0].src.ssa->parent_instr)
518 return false;
519
520 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
521 return false;
522
523 nir_alu_instr *src0 =
524 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
525
526 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
527 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
528 return false;
529
530 /* If either opcode has source modifiers, bail.
531 *
532 * TODO: We can potentially handle source modifiers if both of the opcodes
533 * we're combining are signed integers.
534 */
535 if (instr->src[0].abs || instr->src[0].negate ||
536 src0->src[0].abs || src0->src[0].negate)
537 return false;
538
539 unsigned element = nir_src_as_uint(src0->src[1].src);
540
541 /* Element type to extract.*/
542 const brw_reg_type type = brw_int_type(
543 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
544 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
545
546 fs_reg op0 = get_nir_src(src0->src[0].src);
547 op0.type = brw_type_for_nir_type(devinfo,
548 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
549 nir_src_bit_size(src0->src[0].src)));
550 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
551
552 set_saturate(instr->dest.saturate,
553 bld.MOV(result, subscript(op0, type, element)));
554 return true;
555 }
556
557 bool
558 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
559 const fs_reg &result)
560 {
561 if (!instr->src[0].src.is_ssa ||
562 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
563 return false;
564
565 nir_intrinsic_instr *src0 =
566 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
567
568 if (src0->intrinsic != nir_intrinsic_load_front_face)
569 return false;
570
571 if (!nir_src_is_const(instr->src[1].src) ||
572 !nir_src_is_const(instr->src[2].src))
573 return false;
574
575 const float value1 = nir_src_as_float(instr->src[1].src);
576 const float value2 = nir_src_as_float(instr->src[2].src);
577 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
578 return false;
579
580 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
581 assert(value1 == -value2);
582
583 fs_reg tmp = vgrf(glsl_type::int_type);
584
585 if (devinfo->gen >= 6) {
586 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
587 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
588
589 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
590 *
591 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
592 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
593 *
594 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
595 *
596 * This negation looks like it's safe in practice, because bits 0:4 will
597 * surely be TRIANGLES
598 */
599
600 if (value1 == -1.0f) {
601 g0.negate = true;
602 }
603
604 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
605 g0, brw_imm_uw(0x3f80));
606 } else {
607 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
608 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
609
610 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
611 *
612 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
613 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
614 *
615 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
616 *
617 * This negation looks like it's safe in practice, because bits 0:4 will
618 * surely be TRIANGLES
619 */
620
621 if (value1 == -1.0f) {
622 g1_6.negate = true;
623 }
624
625 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
626 }
627 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
628
629 return true;
630 }
631
632 static void
633 emit_find_msb_using_lzd(const fs_builder &bld,
634 const fs_reg &result,
635 const fs_reg &src,
636 bool is_signed)
637 {
638 fs_inst *inst;
639 fs_reg temp = src;
640
641 if (is_signed) {
642 /* LZD of an absolute value source almost always does the right
643 * thing. There are two problem values:
644 *
645 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
646 * 0. However, findMSB(int(0x80000000)) == 30.
647 *
648 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
649 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
650 *
651 * For a value of zero or negative one, -1 will be returned.
652 *
653 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
654 * findMSB(-(1<<x)) should return x-1.
655 *
656 * For all negative number cases, including 0x80000000 and
657 * 0xffffffff, the correct value is obtained from LZD if instead of
658 * negating the (already negative) value the logical-not is used. A
659 * conditonal logical-not can be achieved in two instructions.
660 */
661 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
662
663 bld.ASR(temp, src, brw_imm_d(31));
664 bld.XOR(temp, temp, src);
665 }
666
667 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
668 retype(temp, BRW_REGISTER_TYPE_UD));
669
670 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
671 * from the LSB side. Subtract the result from 31 to convert the MSB
672 * count into an LSB count. If no bits are set, LZD will return 32.
673 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
674 */
675 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
676 inst->src[0].negate = true;
677 }
678
679 static brw_rnd_mode
680 brw_rnd_mode_from_nir_op (const nir_op op) {
681 switch (op) {
682 case nir_op_f2f16_rtz:
683 return BRW_RND_MODE_RTZ;
684 case nir_op_f2f16_rtne:
685 return BRW_RND_MODE_RTNE;
686 default:
687 unreachable("Operation doesn't support rounding mode");
688 }
689 }
690
691 fs_reg
692 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
693 nir_alu_instr *instr,
694 fs_reg *op,
695 bool need_dest)
696 {
697 fs_reg result =
698 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
699
700 result.type = brw_type_for_nir_type(devinfo,
701 (nir_alu_type)(nir_op_infos[instr->op].output_type |
702 nir_dest_bit_size(instr->dest.dest)));
703
704 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
705 op[i] = get_nir_src(instr->src[i].src);
706 op[i].type = brw_type_for_nir_type(devinfo,
707 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
708 nir_src_bit_size(instr->src[i].src)));
709 op[i].abs = instr->src[i].abs;
710 op[i].negate = instr->src[i].negate;
711 }
712
713 /* Move and vecN instrutions may still be vectored. Return the raw,
714 * vectored source and destination so that fs_visitor::nir_emit_alu can
715 * handle it. Other callers should not have to handle these kinds of
716 * instructions.
717 */
718 switch (instr->op) {
719 case nir_op_imov:
720 case nir_op_fmov:
721 case nir_op_vec2:
722 case nir_op_vec3:
723 case nir_op_vec4:
724 return result;
725 default:
726 break;
727 }
728
729 /* At this point, we have dealt with any instruction that operates on
730 * more than a single channel. Therefore, we can just adjust the source
731 * and destination registers for that channel and emit the instruction.
732 */
733 unsigned channel = 0;
734 if (nir_op_infos[instr->op].output_size == 0) {
735 /* Since NIR is doing the scalarizing for us, we should only ever see
736 * vectorized operations with a single channel.
737 */
738 assert(util_bitcount(instr->dest.write_mask) == 1);
739 channel = ffs(instr->dest.write_mask) - 1;
740
741 result = offset(result, bld, channel);
742 }
743
744 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
745 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
746 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
747 }
748
749 return result;
750 }
751
752 void
753 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
754 fs_reg *op)
755 {
756 for (unsigned i = 0; i < 2; i++) {
757 nir_alu_instr *const inot_instr =
758 nir_src_as_alu_instr(&instr->src[i].src);
759
760 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
761 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
762 /* The source of the inot is now the source of instr. */
763 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
764
765 assert(!op[i].negate);
766 op[i].negate = true;
767 } else {
768 op[i] = resolve_source_modifiers(op[i]);
769 }
770 }
771 }
772
773 bool
774 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
775 fs_reg result,
776 nir_alu_instr *instr)
777 {
778 if (devinfo->gen < 6 || devinfo->gen >= 12)
779 return false;
780
781 nir_alu_instr *const inot_instr = nir_src_as_alu_instr(&instr->src[0].src);
782
783 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
784 return false;
785
786 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
787 * of valid size-changing combinations is a bit more complex.
788 *
789 * The source restriction is just because I was lazy about generating the
790 * constant below.
791 */
792 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
793 nir_src_bit_size(inot_instr->src[0].src) != 32)
794 return false;
795
796 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
797 * this is float(1 + a).
798 */
799 fs_reg op;
800
801 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
802
803 /* Ignore the saturate modifier, if there is one. The result of the
804 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
805 */
806 bld.ADD(result, op, brw_imm_d(1));
807
808 return true;
809 }
810
811 void
812 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
813 {
814 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
815 fs_inst *inst;
816
817 fs_reg op[4];
818 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, true);
819
820 switch (instr->op) {
821 case nir_op_imov:
822 case nir_op_fmov:
823 case nir_op_vec2:
824 case nir_op_vec3:
825 case nir_op_vec4: {
826 fs_reg temp = result;
827 bool need_extra_copy = false;
828 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
829 if (!instr->src[i].src.is_ssa &&
830 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
831 need_extra_copy = true;
832 temp = bld.vgrf(result.type, 4);
833 break;
834 }
835 }
836
837 for (unsigned i = 0; i < 4; i++) {
838 if (!(instr->dest.write_mask & (1 << i)))
839 continue;
840
841 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
842 inst = bld.MOV(offset(temp, bld, i),
843 offset(op[0], bld, instr->src[0].swizzle[i]));
844 } else {
845 inst = bld.MOV(offset(temp, bld, i),
846 offset(op[i], bld, instr->src[i].swizzle[0]));
847 }
848 inst->saturate = instr->dest.saturate;
849 }
850
851 /* In this case the source and destination registers were the same,
852 * so we need to insert an extra set of moves in order to deal with
853 * any swizzling.
854 */
855 if (need_extra_copy) {
856 for (unsigned i = 0; i < 4; i++) {
857 if (!(instr->dest.write_mask & (1 << i)))
858 continue;
859
860 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
861 }
862 }
863 return;
864 }
865
866 case nir_op_i2f32:
867 case nir_op_u2f32:
868 if (optimize_extract_to_float(instr, result))
869 return;
870 inst = bld.MOV(result, op[0]);
871 inst->saturate = instr->dest.saturate;
872 break;
873
874 case nir_op_f2f16_rtne:
875 case nir_op_f2f16_rtz:
876 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
877 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
878 /* fallthrough */
879 case nir_op_f2f16:
880 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
881 * on the HW gen, it is a special hw opcode or just a MOV, and
882 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
883 *
884 * But if we want to use that opcode, we need to provide support on
885 * different optimizations and lowerings. As right now HF support is
886 * only for gen8+, it will be better to use directly the MOV, and use
887 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
888 */
889 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
890 inst = bld.MOV(result, op[0]);
891 inst->saturate = instr->dest.saturate;
892 break;
893
894 case nir_op_b2i8:
895 case nir_op_b2i16:
896 case nir_op_b2i32:
897 case nir_op_b2i64:
898 case nir_op_b2f16:
899 case nir_op_b2f32:
900 case nir_op_b2f64:
901 if (try_emit_b2fi_of_inot(bld, result, instr))
902 break;
903 op[0].type = BRW_REGISTER_TYPE_D;
904 op[0].negate = !op[0].negate;
905 /* fallthrough */
906 case nir_op_i2f64:
907 case nir_op_i2i64:
908 case nir_op_u2f64:
909 case nir_op_u2u64:
910 case nir_op_f2f64:
911 case nir_op_f2i64:
912 case nir_op_f2u64:
913 case nir_op_i2i32:
914 case nir_op_u2u32:
915 case nir_op_f2f32:
916 case nir_op_f2i32:
917 case nir_op_f2u32:
918 case nir_op_i2f16:
919 case nir_op_i2i16:
920 case nir_op_u2f16:
921 case nir_op_u2u16:
922 case nir_op_f2i16:
923 case nir_op_f2u16:
924 case nir_op_i2i8:
925 case nir_op_u2u8:
926 case nir_op_f2i8:
927 case nir_op_f2u8:
928 if (result.type == BRW_REGISTER_TYPE_B ||
929 result.type == BRW_REGISTER_TYPE_UB ||
930 result.type == BRW_REGISTER_TYPE_HF)
931 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
932
933 if (op[0].type == BRW_REGISTER_TYPE_B ||
934 op[0].type == BRW_REGISTER_TYPE_UB ||
935 op[0].type == BRW_REGISTER_TYPE_HF)
936 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
937
938 inst = bld.MOV(result, op[0]);
939 inst->saturate = instr->dest.saturate;
940 break;
941
942 case nir_op_fsign: {
943 assert(!instr->dest.saturate);
944 if (op[0].abs) {
945 /* Straightforward since the source can be assumed to be either
946 * strictly >= 0 or strictly <= 0 depending on the setting of the
947 * negate flag.
948 */
949 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
950
951 inst = (op[0].negate)
952 ? bld.MOV(result, brw_imm_f(-1.0f))
953 : bld.MOV(result, brw_imm_f(1.0f));
954
955 set_predicate(BRW_PREDICATE_NORMAL, inst);
956 } else if (type_sz(op[0].type) == 2) {
957 /* AND(val, 0x8000) gives the sign bit.
958 *
959 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
960 */
961 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
962 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
963
964 op[0].type = BRW_REGISTER_TYPE_UW;
965 result.type = BRW_REGISTER_TYPE_UW;
966 bld.AND(result, op[0], brw_imm_uw(0x8000u));
967
968 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
969 inst->predicate = BRW_PREDICATE_NORMAL;
970 } else if (type_sz(op[0].type) == 4) {
971 /* AND(val, 0x80000000) gives the sign bit.
972 *
973 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
974 * zero.
975 */
976 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
977
978 op[0].type = BRW_REGISTER_TYPE_UD;
979 result.type = BRW_REGISTER_TYPE_UD;
980 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
981
982 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
983 inst->predicate = BRW_PREDICATE_NORMAL;
984 } else {
985 /* For doubles we do the same but we need to consider:
986 *
987 * - 2-src instructions can't operate with 64-bit immediates
988 * - The sign is encoded in the high 32-bit of each DF
989 * - We need to produce a DF result.
990 */
991 assert(type_sz(op[0].type) == 8);
992
993 fs_reg zero = vgrf(glsl_type::double_type);
994 bld.MOV(zero, setup_imm_df(bld, 0.0));
995 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
996
997 bld.MOV(result, zero);
998
999 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
1000 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
1001 brw_imm_ud(0x80000000u));
1002
1003 set_predicate(BRW_PREDICATE_NORMAL,
1004 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
1005 }
1006 break;
1007 }
1008
1009 case nir_op_frcp:
1010 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1011 inst->saturate = instr->dest.saturate;
1012 break;
1013
1014 case nir_op_fexp2:
1015 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1016 inst->saturate = instr->dest.saturate;
1017 break;
1018
1019 case nir_op_flog2:
1020 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1021 inst->saturate = instr->dest.saturate;
1022 break;
1023
1024 case nir_op_fsin:
1025 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1026 inst->saturate = instr->dest.saturate;
1027 break;
1028
1029 case nir_op_fcos:
1030 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1031 inst->saturate = instr->dest.saturate;
1032 break;
1033
1034 case nir_op_fddx:
1035 if (fs_key->high_quality_derivatives) {
1036 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1037 } else {
1038 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1039 }
1040 inst->saturate = instr->dest.saturate;
1041 break;
1042 case nir_op_fddx_fine:
1043 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1044 inst->saturate = instr->dest.saturate;
1045 break;
1046 case nir_op_fddx_coarse:
1047 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1048 inst->saturate = instr->dest.saturate;
1049 break;
1050 case nir_op_fddy:
1051 if (fs_key->high_quality_derivatives) {
1052 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1053 } else {
1054 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1055 }
1056 inst->saturate = instr->dest.saturate;
1057 break;
1058 case nir_op_fddy_fine:
1059 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1060 inst->saturate = instr->dest.saturate;
1061 break;
1062 case nir_op_fddy_coarse:
1063 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1064 inst->saturate = instr->dest.saturate;
1065 break;
1066
1067 case nir_op_iadd:
1068 case nir_op_fadd:
1069 inst = bld.ADD(result, op[0], op[1]);
1070 inst->saturate = instr->dest.saturate;
1071 break;
1072
1073 case nir_op_uadd_sat:
1074 inst = bld.ADD(result, op[0], op[1]);
1075 inst->saturate = true;
1076 break;
1077
1078 case nir_op_fmul:
1079 inst = bld.MUL(result, op[0], op[1]);
1080 inst->saturate = instr->dest.saturate;
1081 break;
1082
1083 case nir_op_imul_2x32_64:
1084 case nir_op_umul_2x32_64:
1085 bld.MUL(result, op[0], op[1]);
1086 break;
1087
1088 case nir_op_imul:
1089 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1090 bld.MUL(result, op[0], op[1]);
1091 break;
1092
1093 case nir_op_imul_high:
1094 case nir_op_umul_high:
1095 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1096 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1097 break;
1098
1099 case nir_op_idiv:
1100 case nir_op_udiv:
1101 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1102 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1103 break;
1104
1105 case nir_op_uadd_carry:
1106 unreachable("Should have been lowered by carry_to_arith().");
1107
1108 case nir_op_usub_borrow:
1109 unreachable("Should have been lowered by borrow_to_arith().");
1110
1111 case nir_op_umod:
1112 case nir_op_irem:
1113 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1114 * appears that our hardware just does the right thing for signed
1115 * remainder.
1116 */
1117 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1118 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1119 break;
1120
1121 case nir_op_imod: {
1122 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1123 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1124
1125 /* Math instructions don't support conditional mod */
1126 inst = bld.MOV(bld.null_reg_d(), result);
1127 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1128
1129 /* Now, we need to determine if signs of the sources are different.
1130 * When we XOR the sources, the top bit is 0 if they are the same and 1
1131 * if they are different. We can then use a conditional modifier to
1132 * turn that into a predicate. This leads us to an XOR.l instruction.
1133 *
1134 * Technically, according to the PRM, you're not allowed to use .l on a
1135 * XOR instruction. However, emperical experiments and Curro's reading
1136 * of the simulator source both indicate that it's safe.
1137 */
1138 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1139 inst = bld.XOR(tmp, op[0], op[1]);
1140 inst->predicate = BRW_PREDICATE_NORMAL;
1141 inst->conditional_mod = BRW_CONDITIONAL_L;
1142
1143 /* If the result of the initial remainder operation is non-zero and the
1144 * two sources have different signs, add in a copy of op[1] to get the
1145 * final integer modulus value.
1146 */
1147 inst = bld.ADD(result, result, op[1]);
1148 inst->predicate = BRW_PREDICATE_NORMAL;
1149 break;
1150 }
1151
1152 case nir_op_flt32:
1153 case nir_op_fge32:
1154 case nir_op_feq32:
1155 case nir_op_fne32: {
1156 fs_reg dest = result;
1157
1158 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1159 if (bit_size != 32)
1160 dest = bld.vgrf(op[0].type, 1);
1161
1162 brw_conditional_mod cond;
1163 switch (instr->op) {
1164 case nir_op_flt32:
1165 cond = BRW_CONDITIONAL_L;
1166 break;
1167 case nir_op_fge32:
1168 cond = BRW_CONDITIONAL_GE;
1169 break;
1170 case nir_op_feq32:
1171 cond = BRW_CONDITIONAL_Z;
1172 break;
1173 case nir_op_fne32:
1174 cond = BRW_CONDITIONAL_NZ;
1175 break;
1176 default:
1177 unreachable("bad opcode");
1178 }
1179
1180 bld.CMP(dest, op[0], op[1], cond);
1181
1182 if (bit_size > 32) {
1183 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1184 } else if(bit_size < 32) {
1185 /* When we convert the result to 32-bit we need to be careful and do
1186 * it as a signed conversion to get sign extension (for 32-bit true)
1187 */
1188 const brw_reg_type src_type =
1189 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1190
1191 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1192 }
1193 break;
1194 }
1195
1196 case nir_op_ilt32:
1197 case nir_op_ult32:
1198 case nir_op_ige32:
1199 case nir_op_uge32:
1200 case nir_op_ieq32:
1201 case nir_op_ine32: {
1202 fs_reg dest = result;
1203
1204 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1205 if (bit_size != 32)
1206 dest = bld.vgrf(op[0].type, 1);
1207
1208 brw_conditional_mod cond;
1209 switch (instr->op) {
1210 case nir_op_ilt32:
1211 case nir_op_ult32:
1212 cond = BRW_CONDITIONAL_L;
1213 break;
1214 case nir_op_ige32:
1215 case nir_op_uge32:
1216 cond = BRW_CONDITIONAL_GE;
1217 break;
1218 case nir_op_ieq32:
1219 cond = BRW_CONDITIONAL_Z;
1220 break;
1221 case nir_op_ine32:
1222 cond = BRW_CONDITIONAL_NZ;
1223 break;
1224 default:
1225 unreachable("bad opcode");
1226 }
1227 bld.CMP(dest, op[0], op[1], cond);
1228
1229 if (bit_size > 32) {
1230 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1231 } else if (bit_size < 32) {
1232 /* When we convert the result to 32-bit we need to be careful and do
1233 * it as a signed conversion to get sign extension (for 32-bit true)
1234 */
1235 const brw_reg_type src_type =
1236 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1237
1238 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1239 }
1240 break;
1241 }
1242
1243 case nir_op_inot:
1244 if (devinfo->gen >= 8) {
1245 nir_alu_instr *const inot_src_instr =
1246 nir_src_as_alu_instr(&instr->src[0].src);
1247
1248 if (inot_src_instr != NULL &&
1249 (inot_src_instr->op == nir_op_ior ||
1250 inot_src_instr->op == nir_op_ixor ||
1251 inot_src_instr->op == nir_op_iand) &&
1252 !inot_src_instr->src[0].abs &&
1253 !inot_src_instr->src[0].negate &&
1254 !inot_src_instr->src[1].abs &&
1255 !inot_src_instr->src[1].negate) {
1256 /* The sources of the source logical instruction are now the
1257 * sources of the instruction that will be generated.
1258 */
1259 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1260 resolve_inot_sources(bld, inot_src_instr, op);
1261
1262 /* Smash all of the sources and destination to be signed. This
1263 * doesn't matter for the operation of the instruction, but cmod
1264 * propagation fails on unsigned sources with negation (due to
1265 * fs_inst::can_do_cmod returning false).
1266 */
1267 result.type =
1268 brw_type_for_nir_type(devinfo,
1269 (nir_alu_type)(nir_type_int |
1270 nir_dest_bit_size(instr->dest.dest)));
1271 op[0].type =
1272 brw_type_for_nir_type(devinfo,
1273 (nir_alu_type)(nir_type_int |
1274 nir_src_bit_size(inot_src_instr->src[0].src)));
1275 op[1].type =
1276 brw_type_for_nir_type(devinfo,
1277 (nir_alu_type)(nir_type_int |
1278 nir_src_bit_size(inot_src_instr->src[1].src)));
1279
1280 /* For XOR, only invert one of the sources. Arbitrarily choose
1281 * the first source.
1282 */
1283 op[0].negate = !op[0].negate;
1284 if (inot_src_instr->op != nir_op_ixor)
1285 op[1].negate = !op[1].negate;
1286
1287 switch (inot_src_instr->op) {
1288 case nir_op_ior:
1289 bld.AND(result, op[0], op[1]);
1290 return;
1291
1292 case nir_op_iand:
1293 bld.OR(result, op[0], op[1]);
1294 return;
1295
1296 case nir_op_ixor:
1297 bld.XOR(result, op[0], op[1]);
1298 return;
1299
1300 default:
1301 unreachable("impossible opcode");
1302 }
1303 }
1304 op[0] = resolve_source_modifiers(op[0]);
1305 }
1306 bld.NOT(result, op[0]);
1307 break;
1308 case nir_op_ixor:
1309 if (devinfo->gen >= 8) {
1310 resolve_inot_sources(bld, instr, op);
1311 }
1312 bld.XOR(result, op[0], op[1]);
1313 break;
1314 case nir_op_ior:
1315 if (devinfo->gen >= 8) {
1316 resolve_inot_sources(bld, instr, op);
1317 }
1318 bld.OR(result, op[0], op[1]);
1319 break;
1320 case nir_op_iand:
1321 if (devinfo->gen >= 8) {
1322 resolve_inot_sources(bld, instr, op);
1323 }
1324 bld.AND(result, op[0], op[1]);
1325 break;
1326
1327 case nir_op_fdot2:
1328 case nir_op_fdot3:
1329 case nir_op_fdot4:
1330 case nir_op_b32all_fequal2:
1331 case nir_op_b32all_iequal2:
1332 case nir_op_b32all_fequal3:
1333 case nir_op_b32all_iequal3:
1334 case nir_op_b32all_fequal4:
1335 case nir_op_b32all_iequal4:
1336 case nir_op_b32any_fnequal2:
1337 case nir_op_b32any_inequal2:
1338 case nir_op_b32any_fnequal3:
1339 case nir_op_b32any_inequal3:
1340 case nir_op_b32any_fnequal4:
1341 case nir_op_b32any_inequal4:
1342 unreachable("Lowered by nir_lower_alu_reductions");
1343
1344 case nir_op_fnoise1_1:
1345 case nir_op_fnoise1_2:
1346 case nir_op_fnoise1_3:
1347 case nir_op_fnoise1_4:
1348 case nir_op_fnoise2_1:
1349 case nir_op_fnoise2_2:
1350 case nir_op_fnoise2_3:
1351 case nir_op_fnoise2_4:
1352 case nir_op_fnoise3_1:
1353 case nir_op_fnoise3_2:
1354 case nir_op_fnoise3_3:
1355 case nir_op_fnoise3_4:
1356 case nir_op_fnoise4_1:
1357 case nir_op_fnoise4_2:
1358 case nir_op_fnoise4_3:
1359 case nir_op_fnoise4_4:
1360 unreachable("not reached: should be handled by lower_noise");
1361
1362 case nir_op_ldexp:
1363 unreachable("not reached: should be handled by ldexp_to_arith()");
1364
1365 case nir_op_fsqrt:
1366 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1367 inst->saturate = instr->dest.saturate;
1368 break;
1369
1370 case nir_op_frsq:
1371 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1372 inst->saturate = instr->dest.saturate;
1373 break;
1374
1375 case nir_op_i2b32:
1376 case nir_op_f2b32: {
1377 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1378 if (bit_size == 64) {
1379 /* two-argument instructions can't take 64-bit immediates */
1380 fs_reg zero;
1381 fs_reg tmp;
1382
1383 if (instr->op == nir_op_f2b32) {
1384 zero = vgrf(glsl_type::double_type);
1385 tmp = vgrf(glsl_type::double_type);
1386 bld.MOV(zero, setup_imm_df(bld, 0.0));
1387 } else {
1388 zero = vgrf(glsl_type::int64_t_type);
1389 tmp = vgrf(glsl_type::int64_t_type);
1390 bld.MOV(zero, brw_imm_q(0));
1391 }
1392
1393 /* A SIMD16 execution needs to be split in two instructions, so use
1394 * a vgrf instead of the flag register as dst so instruction splitting
1395 * works
1396 */
1397 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1398 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1399 } else {
1400 fs_reg zero;
1401 if (bit_size == 32) {
1402 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1403 } else {
1404 assert(bit_size == 16);
1405 zero = instr->op == nir_op_f2b32 ?
1406 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1407 }
1408 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1409 }
1410 break;
1411 }
1412
1413 case nir_op_ftrunc:
1414 inst = bld.RNDZ(result, op[0]);
1415 inst->saturate = instr->dest.saturate;
1416 break;
1417
1418 case nir_op_fceil: {
1419 op[0].negate = !op[0].negate;
1420 fs_reg temp = vgrf(glsl_type::float_type);
1421 bld.RNDD(temp, op[0]);
1422 temp.negate = true;
1423 inst = bld.MOV(result, temp);
1424 inst->saturate = instr->dest.saturate;
1425 break;
1426 }
1427 case nir_op_ffloor:
1428 inst = bld.RNDD(result, op[0]);
1429 inst->saturate = instr->dest.saturate;
1430 break;
1431 case nir_op_ffract:
1432 inst = bld.FRC(result, op[0]);
1433 inst->saturate = instr->dest.saturate;
1434 break;
1435 case nir_op_fround_even:
1436 inst = bld.RNDE(result, op[0]);
1437 inst->saturate = instr->dest.saturate;
1438 break;
1439
1440 case nir_op_fquantize2f16: {
1441 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1442 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1443 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1444
1445 /* The destination stride must be at least as big as the source stride. */
1446 tmp16.type = BRW_REGISTER_TYPE_W;
1447 tmp16.stride = 2;
1448
1449 /* Check for denormal */
1450 fs_reg abs_src0 = op[0];
1451 abs_src0.abs = true;
1452 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1453 BRW_CONDITIONAL_L);
1454 /* Get the appropriately signed zero */
1455 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1456 retype(op[0], BRW_REGISTER_TYPE_UD),
1457 brw_imm_ud(0x80000000));
1458 /* Do the actual F32 -> F16 -> F32 conversion */
1459 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1460 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1461 /* Select that or zero based on normal status */
1462 inst = bld.SEL(result, zero, tmp32);
1463 inst->predicate = BRW_PREDICATE_NORMAL;
1464 inst->saturate = instr->dest.saturate;
1465 break;
1466 }
1467
1468 case nir_op_imin:
1469 case nir_op_umin:
1470 case nir_op_fmin:
1471 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1472 inst->saturate = instr->dest.saturate;
1473 break;
1474
1475 case nir_op_imax:
1476 case nir_op_umax:
1477 case nir_op_fmax:
1478 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1479 inst->saturate = instr->dest.saturate;
1480 break;
1481
1482 case nir_op_pack_snorm_2x16:
1483 case nir_op_pack_snorm_4x8:
1484 case nir_op_pack_unorm_2x16:
1485 case nir_op_pack_unorm_4x8:
1486 case nir_op_unpack_snorm_2x16:
1487 case nir_op_unpack_snorm_4x8:
1488 case nir_op_unpack_unorm_2x16:
1489 case nir_op_unpack_unorm_4x8:
1490 case nir_op_unpack_half_2x16:
1491 case nir_op_pack_half_2x16:
1492 unreachable("not reached: should be handled by lower_packing_builtins");
1493
1494 case nir_op_unpack_half_2x16_split_x:
1495 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1496 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1497 inst->saturate = instr->dest.saturate;
1498 break;
1499 case nir_op_unpack_half_2x16_split_y:
1500 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1501 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1502 inst->saturate = instr->dest.saturate;
1503 break;
1504
1505 case nir_op_pack_64_2x32_split:
1506 case nir_op_pack_32_2x16_split:
1507 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1508 break;
1509
1510 case nir_op_unpack_64_2x32_split_x:
1511 case nir_op_unpack_64_2x32_split_y: {
1512 if (instr->op == nir_op_unpack_64_2x32_split_x)
1513 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1514 else
1515 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1516 break;
1517 }
1518
1519 case nir_op_unpack_32_2x16_split_x:
1520 case nir_op_unpack_32_2x16_split_y: {
1521 if (instr->op == nir_op_unpack_32_2x16_split_x)
1522 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1523 else
1524 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1525 break;
1526 }
1527
1528 case nir_op_fpow:
1529 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1530 inst->saturate = instr->dest.saturate;
1531 break;
1532
1533 case nir_op_bitfield_reverse:
1534 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1535 bld.BFREV(result, op[0]);
1536 break;
1537
1538 case nir_op_bit_count:
1539 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1540 bld.CBIT(result, op[0]);
1541 break;
1542
1543 case nir_op_ufind_msb: {
1544 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1545 emit_find_msb_using_lzd(bld, result, op[0], false);
1546 break;
1547 }
1548
1549 case nir_op_ifind_msb: {
1550 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1551
1552 if (devinfo->gen < 7) {
1553 emit_find_msb_using_lzd(bld, result, op[0], true);
1554 } else {
1555 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1556
1557 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1558 * count from the LSB side. If FBH didn't return an error
1559 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1560 * count into an LSB count.
1561 */
1562 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1563
1564 inst = bld.ADD(result, result, brw_imm_d(31));
1565 inst->predicate = BRW_PREDICATE_NORMAL;
1566 inst->src[0].negate = true;
1567 }
1568 break;
1569 }
1570
1571 case nir_op_find_lsb:
1572 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1573
1574 if (devinfo->gen < 7) {
1575 fs_reg temp = vgrf(glsl_type::int_type);
1576
1577 /* (x & -x) generates a value that consists of only the LSB of x.
1578 * For all powers of 2, findMSB(y) == findLSB(y).
1579 */
1580 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1581 fs_reg negated_src = src;
1582
1583 /* One must be negated, and the other must be non-negated. It
1584 * doesn't matter which is which.
1585 */
1586 negated_src.negate = true;
1587 src.negate = false;
1588
1589 bld.AND(temp, src, negated_src);
1590 emit_find_msb_using_lzd(bld, result, temp, false);
1591 } else {
1592 bld.FBL(result, op[0]);
1593 }
1594 break;
1595
1596 case nir_op_ubitfield_extract:
1597 case nir_op_ibitfield_extract:
1598 unreachable("should have been lowered");
1599 case nir_op_ubfe:
1600 case nir_op_ibfe:
1601 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1602 bld.BFE(result, op[2], op[1], op[0]);
1603 break;
1604 case nir_op_bfm:
1605 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1606 bld.BFI1(result, op[0], op[1]);
1607 break;
1608 case nir_op_bfi:
1609 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1610 bld.BFI2(result, op[0], op[1], op[2]);
1611 break;
1612
1613 case nir_op_bitfield_insert:
1614 unreachable("not reached: should have been lowered");
1615
1616 case nir_op_ishl:
1617 bld.SHL(result, op[0], op[1]);
1618 break;
1619 case nir_op_ishr:
1620 bld.ASR(result, op[0], op[1]);
1621 break;
1622 case nir_op_ushr:
1623 bld.SHR(result, op[0], op[1]);
1624 break;
1625
1626 case nir_op_pack_half_2x16_split:
1627 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1628 break;
1629
1630 case nir_op_ffma:
1631 inst = bld.MAD(result, op[2], op[1], op[0]);
1632 inst->saturate = instr->dest.saturate;
1633 break;
1634
1635 case nir_op_flrp:
1636 inst = bld.LRP(result, op[0], op[1], op[2]);
1637 inst->saturate = instr->dest.saturate;
1638 break;
1639
1640 case nir_op_b32csel:
1641 if (optimize_frontfacing_ternary(instr, result))
1642 return;
1643
1644 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1645 inst = bld.SEL(result, op[1], op[2]);
1646 inst->predicate = BRW_PREDICATE_NORMAL;
1647 break;
1648
1649 case nir_op_extract_u8:
1650 case nir_op_extract_i8: {
1651 unsigned byte = nir_src_as_uint(instr->src[1].src);
1652
1653 /* The PRMs say:
1654 *
1655 * BDW+
1656 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1657 * Use two instructions and a word or DWord intermediate integer type.
1658 */
1659 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1660 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1661
1662 if (instr->op == nir_op_extract_i8) {
1663 /* If we need to sign extend, extract to a word first */
1664 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1665 bld.MOV(w_temp, subscript(op[0], type, byte));
1666 bld.MOV(result, w_temp);
1667 } else if (byte & 1) {
1668 /* Extract the high byte from the word containing the desired byte
1669 * offset.
1670 */
1671 bld.SHR(result,
1672 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1673 brw_imm_uw(8));
1674 } else {
1675 /* Otherwise use an AND with 0xff and a word type */
1676 bld.AND(result,
1677 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1678 brw_imm_uw(0xff));
1679 }
1680 } else {
1681 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1682 bld.MOV(result, subscript(op[0], type, byte));
1683 }
1684 break;
1685 }
1686
1687 case nir_op_extract_u16:
1688 case nir_op_extract_i16: {
1689 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1690 unsigned word = nir_src_as_uint(instr->src[1].src);
1691 bld.MOV(result, subscript(op[0], type, word));
1692 break;
1693 }
1694
1695 default:
1696 unreachable("unhandled instruction");
1697 }
1698
1699 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1700 * to sign extend the low bit to 0/~0
1701 */
1702 if (devinfo->gen <= 5 &&
1703 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1704 fs_reg masked = vgrf(glsl_type::int_type);
1705 bld.AND(masked, result, brw_imm_d(1));
1706 masked.negate = true;
1707 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1708 }
1709 }
1710
1711 void
1712 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1713 nir_load_const_instr *instr)
1714 {
1715 const brw_reg_type reg_type =
1716 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1717 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1718
1719 switch (instr->def.bit_size) {
1720 case 8:
1721 for (unsigned i = 0; i < instr->def.num_components; i++)
1722 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1723 break;
1724
1725 case 16:
1726 for (unsigned i = 0; i < instr->def.num_components; i++)
1727 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1728 break;
1729
1730 case 32:
1731 for (unsigned i = 0; i < instr->def.num_components; i++)
1732 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1733 break;
1734
1735 case 64:
1736 assert(devinfo->gen >= 7);
1737 if (devinfo->gen == 7) {
1738 /* We don't get 64-bit integer types until gen8 */
1739 for (unsigned i = 0; i < instr->def.num_components; i++) {
1740 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1741 setup_imm_df(bld, instr->value[i].f64));
1742 }
1743 } else {
1744 for (unsigned i = 0; i < instr->def.num_components; i++)
1745 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1746 }
1747 break;
1748
1749 default:
1750 unreachable("Invalid bit size");
1751 }
1752
1753 nir_ssa_values[instr->def.index] = reg;
1754 }
1755
1756 fs_reg
1757 fs_visitor::get_nir_src(const nir_src &src)
1758 {
1759 fs_reg reg;
1760 if (src.is_ssa) {
1761 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1762 const brw_reg_type reg_type =
1763 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1764 reg = bld.vgrf(reg_type, src.ssa->num_components);
1765 } else {
1766 reg = nir_ssa_values[src.ssa->index];
1767 }
1768 } else {
1769 /* We don't handle indirects on locals */
1770 assert(src.reg.indirect == NULL);
1771 reg = offset(nir_locals[src.reg.reg->index], bld,
1772 src.reg.base_offset * src.reg.reg->num_components);
1773 }
1774
1775 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1776 /* The only 64-bit type available on gen7 is DF, so use that. */
1777 reg.type = BRW_REGISTER_TYPE_DF;
1778 } else {
1779 /* To avoid floating-point denorm flushing problems, set the type by
1780 * default to an integer type - instructions that need floating point
1781 * semantics will set this to F if they need to
1782 */
1783 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1784 BRW_REGISTER_TYPE_D);
1785 }
1786
1787 return reg;
1788 }
1789
1790 /**
1791 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1792 *
1793 * This function should not be called on any value which may be 64 bits.
1794 * We could theoretically support 64-bit on gen8+ but we choose not to
1795 * because it wouldn't work in general (no gen7 support) and there are
1796 * enough restrictions in 64-bit immediates that you can't take the return
1797 * value and treat it the same as the result of get_nir_src().
1798 */
1799 fs_reg
1800 fs_visitor::get_nir_src_imm(const nir_src &src)
1801 {
1802 assert(nir_src_bit_size(src) == 32);
1803 return nir_src_is_const(src) ?
1804 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1805 }
1806
1807 fs_reg
1808 fs_visitor::get_nir_dest(const nir_dest &dest)
1809 {
1810 if (dest.is_ssa) {
1811 const brw_reg_type reg_type =
1812 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1813 dest.ssa.bit_size == 8 ?
1814 BRW_REGISTER_TYPE_D :
1815 BRW_REGISTER_TYPE_F);
1816 nir_ssa_values[dest.ssa.index] =
1817 bld.vgrf(reg_type, dest.ssa.num_components);
1818 return nir_ssa_values[dest.ssa.index];
1819 } else {
1820 /* We don't handle indirects on locals */
1821 assert(dest.reg.indirect == NULL);
1822 return offset(nir_locals[dest.reg.reg->index], bld,
1823 dest.reg.base_offset * dest.reg.reg->num_components);
1824 }
1825 }
1826
1827 void
1828 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1829 unsigned wr_mask)
1830 {
1831 for (unsigned i = 0; i < 4; i++) {
1832 if (!((wr_mask >> i) & 1))
1833 continue;
1834
1835 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1836 new_inst->dst = offset(new_inst->dst, bld, i);
1837 for (unsigned j = 0; j < new_inst->sources; j++)
1838 if (new_inst->src[j].file == VGRF)
1839 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1840
1841 bld.emit(new_inst);
1842 }
1843 }
1844
1845 static fs_inst *
1846 emit_pixel_interpolater_send(const fs_builder &bld,
1847 enum opcode opcode,
1848 const fs_reg &dst,
1849 const fs_reg &src,
1850 const fs_reg &desc,
1851 glsl_interp_mode interpolation)
1852 {
1853 struct brw_wm_prog_data *wm_prog_data =
1854 brw_wm_prog_data(bld.shader->stage_prog_data);
1855
1856 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1857 /* 2 floats per slot returned */
1858 inst->size_written = 2 * dst.component_size(inst->exec_size);
1859 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1860
1861 wm_prog_data->pulls_bary = true;
1862
1863 return inst;
1864 }
1865
1866 /**
1867 * Computes 1 << x, given a D/UD register containing some value x.
1868 */
1869 static fs_reg
1870 intexp2(const fs_builder &bld, const fs_reg &x)
1871 {
1872 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1873
1874 fs_reg result = bld.vgrf(x.type, 1);
1875 fs_reg one = bld.vgrf(x.type, 1);
1876
1877 bld.MOV(one, retype(brw_imm_d(1), one.type));
1878 bld.SHL(result, one, x);
1879 return result;
1880 }
1881
1882 void
1883 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1884 {
1885 assert(stage == MESA_SHADER_GEOMETRY);
1886
1887 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1888
1889 if (gs_compile->control_data_header_size_bits == 0)
1890 return;
1891
1892 /* We can only do EndPrimitive() functionality when the control data
1893 * consists of cut bits. Fortunately, the only time it isn't is when the
1894 * output type is points, in which case EndPrimitive() is a no-op.
1895 */
1896 if (gs_prog_data->control_data_format !=
1897 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1898 return;
1899 }
1900
1901 /* Cut bits use one bit per vertex. */
1902 assert(gs_compile->control_data_bits_per_vertex == 1);
1903
1904 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1905 vertex_count.type = BRW_REGISTER_TYPE_UD;
1906
1907 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1908 * vertex n, 0 otherwise. So all we need to do here is mark bit
1909 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1910 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1911 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1912 *
1913 * Note that if EndPrimitive() is called before emitting any vertices, this
1914 * will cause us to set bit 31 of the control_data_bits register to 1.
1915 * That's fine because:
1916 *
1917 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1918 * output, so the hardware will ignore cut bit 31.
1919 *
1920 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1921 * last vertex, so setting cut bit 31 has no effect (since the primitive
1922 * is automatically ended when the GS terminates).
1923 *
1924 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1925 * control_data_bits register to 0 when the first vertex is emitted.
1926 */
1927
1928 const fs_builder abld = bld.annotate("end primitive");
1929
1930 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1931 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1932 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1933 fs_reg mask = intexp2(abld, prev_count);
1934 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1935 * attention to the lower 5 bits of its second source argument, so on this
1936 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1937 * ((vertex_count - 1) % 32).
1938 */
1939 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1940 }
1941
1942 void
1943 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1944 {
1945 assert(stage == MESA_SHADER_GEOMETRY);
1946 assert(gs_compile->control_data_bits_per_vertex != 0);
1947
1948 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1949
1950 const fs_builder abld = bld.annotate("emit control data bits");
1951 const fs_builder fwa_bld = bld.exec_all();
1952
1953 /* We use a single UD register to accumulate control data bits (32 bits
1954 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1955 * at a time.
1956 *
1957 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1958 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1959 * use the Channel Mask phase to enable/disable which DWord within that
1960 * group to write. (Remember, different SIMD8 channels may have emitted
1961 * different numbers of vertices, so we may need per-slot offsets.)
1962 *
1963 * Channel masking presents an annoying problem: we may have to replicate
1964 * the data up to 4 times:
1965 *
1966 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1967 *
1968 * To avoid penalizing shaders that emit a small number of vertices, we
1969 * can avoid these sometimes: if the size of the control data header is
1970 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1971 * land in the same 128-bit group, so we can skip per-slot offsets.
1972 *
1973 * Similarly, if the control data header is <= 32 bits, there is only one
1974 * DWord, so we can skip channel masks.
1975 */
1976 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1977
1978 fs_reg channel_mask, per_slot_offset;
1979
1980 if (gs_compile->control_data_header_size_bits > 32) {
1981 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1982 channel_mask = vgrf(glsl_type::uint_type);
1983 }
1984
1985 if (gs_compile->control_data_header_size_bits > 128) {
1986 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1987 per_slot_offset = vgrf(glsl_type::uint_type);
1988 }
1989
1990 /* Figure out which DWord we're trying to write to using the formula:
1991 *
1992 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1993 *
1994 * Since bits_per_vertex is a power of two, and is known at compile
1995 * time, this can be optimized to:
1996 *
1997 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1998 */
1999 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2000 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2001 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2002 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2003 unsigned log2_bits_per_vertex =
2004 util_last_bit(gs_compile->control_data_bits_per_vertex);
2005 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2006
2007 if (per_slot_offset.file != BAD_FILE) {
2008 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2009 * the appropriate OWord within the control data header.
2010 */
2011 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2012 }
2013
2014 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2015 * write to the appropriate DWORD within the OWORD.
2016 */
2017 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2018 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2019 channel_mask = intexp2(fwa_bld, channel);
2020 /* Then the channel masks need to be in bits 23:16. */
2021 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2022 }
2023
2024 /* Store the control data bits in the message payload and send it. */
2025 unsigned mlen = 2;
2026 if (channel_mask.file != BAD_FILE)
2027 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2028 if (per_slot_offset.file != BAD_FILE)
2029 mlen++;
2030
2031 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2032 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2033 unsigned i = 0;
2034 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2035 if (per_slot_offset.file != BAD_FILE)
2036 sources[i++] = per_slot_offset;
2037 if (channel_mask.file != BAD_FILE)
2038 sources[i++] = channel_mask;
2039 while (i < mlen) {
2040 sources[i++] = this->control_data_bits;
2041 }
2042
2043 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2044 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2045 inst->mlen = mlen;
2046 /* We need to increment Global Offset by 256-bits to make room for
2047 * Broadwell's extra "Vertex Count" payload at the beginning of the
2048 * URB entry. Since this is an OWord message, Global Offset is counted
2049 * in 128-bit units, so we must set it to 2.
2050 */
2051 if (gs_prog_data->static_vertex_count == -1)
2052 inst->offset = 2;
2053 }
2054
2055 void
2056 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2057 unsigned stream_id)
2058 {
2059 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2060
2061 /* Note: we are calling this *before* increasing vertex_count, so
2062 * this->vertex_count == vertex_count - 1 in the formula above.
2063 */
2064
2065 /* Stream mode uses 2 bits per vertex */
2066 assert(gs_compile->control_data_bits_per_vertex == 2);
2067
2068 /* Must be a valid stream */
2069 assert(stream_id < MAX_VERTEX_STREAMS);
2070
2071 /* Control data bits are initialized to 0 so we don't have to set any
2072 * bits when sending vertices to stream 0.
2073 */
2074 if (stream_id == 0)
2075 return;
2076
2077 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2078
2079 /* reg::sid = stream_id */
2080 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2081 abld.MOV(sid, brw_imm_ud(stream_id));
2082
2083 /* reg:shift_count = 2 * (vertex_count - 1) */
2084 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2085 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2086
2087 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2088 * attention to the lower 5 bits of its second source argument, so on this
2089 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2090 * stream_id << ((2 * (vertex_count - 1)) % 32).
2091 */
2092 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2093 abld.SHL(mask, sid, shift_count);
2094 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2095 }
2096
2097 void
2098 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2099 unsigned stream_id)
2100 {
2101 assert(stage == MESA_SHADER_GEOMETRY);
2102
2103 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2104
2105 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2106 vertex_count.type = BRW_REGISTER_TYPE_UD;
2107
2108 /* Haswell and later hardware ignores the "Render Stream Select" bits
2109 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2110 * and instead sends all primitives down the pipeline for rasterization.
2111 * If the SOL stage is enabled, "Render Stream Select" is honored and
2112 * primitives bound to non-zero streams are discarded after stream output.
2113 *
2114 * Since the only purpose of primives sent to non-zero streams is to
2115 * be recorded by transform feedback, we can simply discard all geometry
2116 * bound to these streams when transform feedback is disabled.
2117 */
2118 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2119 return;
2120
2121 /* If we're outputting 32 control data bits or less, then we can wait
2122 * until the shader is over to output them all. Otherwise we need to
2123 * output them as we go. Now is the time to do it, since we're about to
2124 * output the vertex_count'th vertex, so it's guaranteed that the
2125 * control data bits associated with the (vertex_count - 1)th vertex are
2126 * correct.
2127 */
2128 if (gs_compile->control_data_header_size_bits > 32) {
2129 const fs_builder abld =
2130 bld.annotate("emit vertex: emit control data bits");
2131
2132 /* Only emit control data bits if we've finished accumulating a batch
2133 * of 32 bits. This is the case when:
2134 *
2135 * (vertex_count * bits_per_vertex) % 32 == 0
2136 *
2137 * (in other words, when the last 5 bits of vertex_count *
2138 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2139 * integer n (which is always the case, since bits_per_vertex is
2140 * always 1 or 2), this is equivalent to requiring that the last 5-n
2141 * bits of vertex_count are 0:
2142 *
2143 * vertex_count & (2^(5-n) - 1) == 0
2144 *
2145 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2146 * equivalent to:
2147 *
2148 * vertex_count & (32 / bits_per_vertex - 1) == 0
2149 *
2150 * TODO: If vertex_count is an immediate, we could do some of this math
2151 * at compile time...
2152 */
2153 fs_inst *inst =
2154 abld.AND(bld.null_reg_d(), vertex_count,
2155 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2156 inst->conditional_mod = BRW_CONDITIONAL_Z;
2157
2158 abld.IF(BRW_PREDICATE_NORMAL);
2159 /* If vertex_count is 0, then no control data bits have been
2160 * accumulated yet, so we can skip emitting them.
2161 */
2162 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2163 BRW_CONDITIONAL_NEQ);
2164 abld.IF(BRW_PREDICATE_NORMAL);
2165 emit_gs_control_data_bits(vertex_count);
2166 abld.emit(BRW_OPCODE_ENDIF);
2167
2168 /* Reset control_data_bits to 0 so we can start accumulating a new
2169 * batch.
2170 *
2171 * Note: in the case where vertex_count == 0, this neutralizes the
2172 * effect of any call to EndPrimitive() that the shader may have
2173 * made before outputting its first vertex.
2174 */
2175 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2176 inst->force_writemask_all = true;
2177 abld.emit(BRW_OPCODE_ENDIF);
2178 }
2179
2180 emit_urb_writes(vertex_count);
2181
2182 /* In stream mode we have to set control data bits for all vertices
2183 * unless we have disabled control data bits completely (which we do
2184 * do for GL_POINTS outputs that don't use streams).
2185 */
2186 if (gs_compile->control_data_header_size_bits > 0 &&
2187 gs_prog_data->control_data_format ==
2188 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2189 set_gs_stream_control_data_bits(vertex_count, stream_id);
2190 }
2191 }
2192
2193 void
2194 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2195 const nir_src &vertex_src,
2196 unsigned base_offset,
2197 const nir_src &offset_src,
2198 unsigned num_components,
2199 unsigned first_component)
2200 {
2201 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2202 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2203
2204 /* TODO: figure out push input layout for invocations == 1 */
2205 /* TODO: make this work with 64-bit inputs */
2206 if (gs_prog_data->invocations == 1 &&
2207 type_sz(dst.type) <= 4 &&
2208 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2209 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2210 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2211 nir_src_as_uint(vertex_src) * push_reg_count;
2212 for (unsigned i = 0; i < num_components; i++) {
2213 bld.MOV(offset(dst, bld, i),
2214 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2215 }
2216 return;
2217 }
2218
2219 /* Resort to the pull model. Ensure the VUE handles are provided. */
2220 assert(gs_prog_data->base.include_vue_handles);
2221
2222 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2223 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2224
2225 if (gs_prog_data->invocations == 1) {
2226 if (nir_src_is_const(vertex_src)) {
2227 /* The vertex index is constant; just select the proper URB handle. */
2228 icp_handle =
2229 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2230 BRW_REGISTER_TYPE_UD);
2231 } else {
2232 /* The vertex index is non-constant. We need to use indirect
2233 * addressing to fetch the proper URB handle.
2234 *
2235 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2236 * indicating that channel <n> should read the handle from
2237 * DWord <n>. We convert that to bytes by multiplying by 4.
2238 *
2239 * Next, we convert the vertex index to bytes by multiplying
2240 * by 32 (shifting by 5), and add the two together. This is
2241 * the final indirect byte offset.
2242 */
2243 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2244 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2245 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2246 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2247
2248 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2249 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2250 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2251 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2252 /* Convert vertex_index to bytes (multiply by 32) */
2253 bld.SHL(vertex_offset_bytes,
2254 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2255 brw_imm_ud(5u));
2256 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2257
2258 /* Use first_icp_handle as the base offset. There is one register
2259 * of URB handles per vertex, so inform the register allocator that
2260 * we might read up to nir->info.gs.vertices_in registers.
2261 */
2262 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2263 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2264 fs_reg(icp_offset_bytes),
2265 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2266 }
2267 } else {
2268 assert(gs_prog_data->invocations > 1);
2269
2270 if (nir_src_is_const(vertex_src)) {
2271 unsigned vertex = nir_src_as_uint(vertex_src);
2272 assert(devinfo->gen >= 9 || vertex <= 5);
2273 bld.MOV(icp_handle,
2274 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2275 BRW_REGISTER_TYPE_UD));
2276 } else {
2277 /* The vertex index is non-constant. We need to use indirect
2278 * addressing to fetch the proper URB handle.
2279 *
2280 */
2281 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2282
2283 /* Convert vertex_index to bytes (multiply by 4) */
2284 bld.SHL(icp_offset_bytes,
2285 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2286 brw_imm_ud(2u));
2287
2288 /* Use first_icp_handle as the base offset. There is one DWord
2289 * of URB handles per vertex, so inform the register allocator that
2290 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2291 */
2292 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2293 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2294 fs_reg(icp_offset_bytes),
2295 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2296 REG_SIZE));
2297 }
2298 }
2299
2300 fs_inst *inst;
2301
2302 fs_reg tmp_dst = dst;
2303 fs_reg indirect_offset = get_nir_src(offset_src);
2304 unsigned num_iterations = 1;
2305 unsigned orig_num_components = num_components;
2306
2307 if (type_sz(dst.type) == 8) {
2308 if (num_components > 2) {
2309 num_iterations = 2;
2310 num_components = 2;
2311 }
2312 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2313 tmp_dst = tmp;
2314 first_component = first_component / 2;
2315 }
2316
2317 for (unsigned iter = 0; iter < num_iterations; iter++) {
2318 if (nir_src_is_const(offset_src)) {
2319 /* Constant indexing - use global offset. */
2320 if (first_component != 0) {
2321 unsigned read_components = num_components + first_component;
2322 fs_reg tmp = bld.vgrf(dst.type, read_components);
2323 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2324 inst->size_written = read_components *
2325 tmp.component_size(inst->exec_size);
2326 for (unsigned i = 0; i < num_components; i++) {
2327 bld.MOV(offset(tmp_dst, bld, i),
2328 offset(tmp, bld, i + first_component));
2329 }
2330 } else {
2331 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2332 icp_handle);
2333 inst->size_written = num_components *
2334 tmp_dst.component_size(inst->exec_size);
2335 }
2336 inst->offset = base_offset + nir_src_as_uint(offset_src);
2337 inst->mlen = 1;
2338 } else {
2339 /* Indirect indexing - use per-slot offsets as well. */
2340 const fs_reg srcs[] = { icp_handle, indirect_offset };
2341 unsigned read_components = num_components + first_component;
2342 fs_reg tmp = bld.vgrf(dst.type, read_components);
2343 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2344 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2345 if (first_component != 0) {
2346 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2347 payload);
2348 inst->size_written = read_components *
2349 tmp.component_size(inst->exec_size);
2350 for (unsigned i = 0; i < num_components; i++) {
2351 bld.MOV(offset(tmp_dst, bld, i),
2352 offset(tmp, bld, i + first_component));
2353 }
2354 } else {
2355 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2356 payload);
2357 inst->size_written = num_components *
2358 tmp_dst.component_size(inst->exec_size);
2359 }
2360 inst->offset = base_offset;
2361 inst->mlen = 2;
2362 }
2363
2364 if (type_sz(dst.type) == 8) {
2365 shuffle_from_32bit_read(bld,
2366 offset(dst, bld, iter * 2),
2367 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2368 0,
2369 num_components);
2370 }
2371
2372 if (num_iterations > 1) {
2373 num_components = orig_num_components - 2;
2374 if(nir_src_is_const(offset_src)) {
2375 base_offset++;
2376 } else {
2377 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2378 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2379 indirect_offset = new_indirect;
2380 }
2381 }
2382 }
2383 }
2384
2385 fs_reg
2386 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2387 {
2388 nir_src *offset_src = nir_get_io_offset_src(instr);
2389
2390 if (nir_src_is_const(*offset_src)) {
2391 /* The only constant offset we should find is 0. brw_nir.c's
2392 * add_const_offset_to_base() will fold other constant offsets
2393 * into instr->const_index[0].
2394 */
2395 assert(nir_src_as_uint(*offset_src) == 0);
2396 return fs_reg();
2397 }
2398
2399 return get_nir_src(*offset_src);
2400 }
2401
2402 void
2403 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2404 nir_intrinsic_instr *instr)
2405 {
2406 assert(stage == MESA_SHADER_VERTEX);
2407
2408 fs_reg dest;
2409 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2410 dest = get_nir_dest(instr->dest);
2411
2412 switch (instr->intrinsic) {
2413 case nir_intrinsic_load_vertex_id:
2414 case nir_intrinsic_load_base_vertex:
2415 unreachable("should be lowered by nir_lower_system_values()");
2416
2417 case nir_intrinsic_load_input: {
2418 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2419 unsigned first_component = nir_intrinsic_component(instr);
2420 unsigned num_components = instr->num_components;
2421
2422 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2423
2424 if (type_sz(dest.type) == 8)
2425 first_component /= 2;
2426
2427 /* For 16-bit support maybe a temporary will be needed to copy from
2428 * the ATTR file.
2429 */
2430 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2431 first_component, num_components);
2432 break;
2433 }
2434
2435 case nir_intrinsic_load_vertex_id_zero_base:
2436 case nir_intrinsic_load_instance_id:
2437 case nir_intrinsic_load_base_instance:
2438 case nir_intrinsic_load_draw_id:
2439 case nir_intrinsic_load_first_vertex:
2440 case nir_intrinsic_load_is_indexed_draw:
2441 unreachable("lowered by brw_nir_lower_vs_inputs");
2442
2443 default:
2444 nir_emit_intrinsic(bld, instr);
2445 break;
2446 }
2447 }
2448
2449 void
2450 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2451 nir_intrinsic_instr *instr)
2452 {
2453 assert(stage == MESA_SHADER_TESS_CTRL);
2454 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2455 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2456
2457 fs_reg dst;
2458 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2459 dst = get_nir_dest(instr->dest);
2460
2461 switch (instr->intrinsic) {
2462 case nir_intrinsic_load_primitive_id:
2463 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2464 break;
2465 case nir_intrinsic_load_invocation_id:
2466 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2467 break;
2468 case nir_intrinsic_load_patch_vertices_in:
2469 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2470 brw_imm_d(tcs_key->input_vertices));
2471 break;
2472
2473 case nir_intrinsic_barrier: {
2474 if (tcs_prog_data->instances == 1)
2475 break;
2476
2477 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2478 fs_reg m0_2 = component(m0, 2);
2479
2480 const fs_builder chanbld = bld.exec_all().group(1, 0);
2481
2482 /* Zero the message header */
2483 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2484
2485 if (devinfo->gen < 11) {
2486 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2487 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2488 brw_imm_ud(INTEL_MASK(16, 13)));
2489
2490 /* Shift it up to bits 27:24. */
2491 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2492 } else {
2493 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2494 brw_imm_ud(INTEL_MASK(30, 24)));
2495 }
2496
2497 /* Set the Barrier Count and the enable bit */
2498 if (devinfo->gen < 11) {
2499 chanbld.OR(m0_2, m0_2,
2500 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2501 } else {
2502 chanbld.OR(m0_2, m0_2,
2503 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2504 }
2505
2506 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2507 break;
2508 }
2509
2510 case nir_intrinsic_load_input:
2511 unreachable("nir_lower_io should never give us these.");
2512 break;
2513
2514 case nir_intrinsic_load_per_vertex_input: {
2515 fs_reg indirect_offset = get_indirect_offset(instr);
2516 unsigned imm_offset = instr->const_index[0];
2517
2518 const nir_src &vertex_src = instr->src[0];
2519
2520 fs_inst *inst;
2521
2522 fs_reg icp_handle;
2523
2524 if (nir_src_is_const(vertex_src)) {
2525 /* Emit a MOV to resolve <0,1,0> regioning. */
2526 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2527 unsigned vertex = nir_src_as_uint(vertex_src);
2528 bld.MOV(icp_handle,
2529 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2530 BRW_REGISTER_TYPE_UD));
2531 } else if (tcs_prog_data->instances == 1 &&
2532 vertex_src.is_ssa &&
2533 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2534 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2535 /* For the common case of only 1 instance, an array index of
2536 * gl_InvocationID means reading g1. Skip all the indirect work.
2537 */
2538 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2539 } else {
2540 /* The vertex index is non-constant. We need to use indirect
2541 * addressing to fetch the proper URB handle.
2542 */
2543 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2544
2545 /* Each ICP handle is a single DWord (4 bytes) */
2546 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2547 bld.SHL(vertex_offset_bytes,
2548 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2549 brw_imm_ud(2u));
2550
2551 /* Start at g1. We might read up to 4 registers. */
2552 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2553 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2554 brw_imm_ud(4 * REG_SIZE));
2555 }
2556
2557 /* We can only read two double components with each URB read, so
2558 * we send two read messages in that case, each one loading up to
2559 * two double components.
2560 */
2561 unsigned num_iterations = 1;
2562 unsigned num_components = instr->num_components;
2563 unsigned first_component = nir_intrinsic_component(instr);
2564 fs_reg orig_dst = dst;
2565 if (type_sz(dst.type) == 8) {
2566 first_component = first_component / 2;
2567 if (instr->num_components > 2) {
2568 num_iterations = 2;
2569 num_components = 2;
2570 }
2571
2572 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2573 dst = tmp;
2574 }
2575
2576 for (unsigned iter = 0; iter < num_iterations; iter++) {
2577 if (indirect_offset.file == BAD_FILE) {
2578 /* Constant indexing - use global offset. */
2579 if (first_component != 0) {
2580 unsigned read_components = num_components + first_component;
2581 fs_reg tmp = bld.vgrf(dst.type, read_components);
2582 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2583 for (unsigned i = 0; i < num_components; i++) {
2584 bld.MOV(offset(dst, bld, i),
2585 offset(tmp, bld, i + first_component));
2586 }
2587 } else {
2588 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2589 }
2590 inst->offset = imm_offset;
2591 inst->mlen = 1;
2592 } else {
2593 /* Indirect indexing - use per-slot offsets as well. */
2594 const fs_reg srcs[] = { icp_handle, indirect_offset };
2595 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2596 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2597 if (first_component != 0) {
2598 unsigned read_components = num_components + first_component;
2599 fs_reg tmp = bld.vgrf(dst.type, read_components);
2600 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2601 payload);
2602 for (unsigned i = 0; i < num_components; i++) {
2603 bld.MOV(offset(dst, bld, i),
2604 offset(tmp, bld, i + first_component));
2605 }
2606 } else {
2607 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2608 payload);
2609 }
2610 inst->offset = imm_offset;
2611 inst->mlen = 2;
2612 }
2613 inst->size_written = (num_components + first_component) *
2614 inst->dst.component_size(inst->exec_size);
2615
2616 /* If we are reading 64-bit data using 32-bit read messages we need
2617 * build proper 64-bit data elements by shuffling the low and high
2618 * 32-bit components around like we do for other things like UBOs
2619 * or SSBOs.
2620 */
2621 if (type_sz(dst.type) == 8) {
2622 shuffle_from_32bit_read(bld,
2623 offset(orig_dst, bld, iter * 2),
2624 retype(dst, BRW_REGISTER_TYPE_D),
2625 0, num_components);
2626 }
2627
2628 /* Copy the temporary to the destination to deal with writemasking.
2629 *
2630 * Also attempt to deal with gl_PointSize being in the .w component.
2631 */
2632 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2633 assert(type_sz(dst.type) < 8);
2634 inst->dst = bld.vgrf(dst.type, 4);
2635 inst->size_written = 4 * REG_SIZE;
2636 bld.MOV(dst, offset(inst->dst, bld, 3));
2637 }
2638
2639 /* If we are loading double data and we need a second read message
2640 * adjust the write offset
2641 */
2642 if (num_iterations > 1) {
2643 num_components = instr->num_components - 2;
2644 imm_offset++;
2645 }
2646 }
2647 break;
2648 }
2649
2650 case nir_intrinsic_load_output:
2651 case nir_intrinsic_load_per_vertex_output: {
2652 fs_reg indirect_offset = get_indirect_offset(instr);
2653 unsigned imm_offset = instr->const_index[0];
2654 unsigned first_component = nir_intrinsic_component(instr);
2655
2656 fs_inst *inst;
2657 if (indirect_offset.file == BAD_FILE) {
2658 /* Replicate the patch handle to all enabled channels */
2659 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2660 bld.MOV(patch_handle,
2661 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2662
2663 {
2664 if (first_component != 0) {
2665 unsigned read_components =
2666 instr->num_components + first_component;
2667 fs_reg tmp = bld.vgrf(dst.type, read_components);
2668 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2669 patch_handle);
2670 inst->size_written = read_components * REG_SIZE;
2671 for (unsigned i = 0; i < instr->num_components; i++) {
2672 bld.MOV(offset(dst, bld, i),
2673 offset(tmp, bld, i + first_component));
2674 }
2675 } else {
2676 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2677 patch_handle);
2678 inst->size_written = instr->num_components * REG_SIZE;
2679 }
2680 inst->offset = imm_offset;
2681 inst->mlen = 1;
2682 }
2683 } else {
2684 /* Indirect indexing - use per-slot offsets as well. */
2685 const fs_reg srcs[] = {
2686 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2687 indirect_offset
2688 };
2689 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2690 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2691 if (first_component != 0) {
2692 unsigned read_components =
2693 instr->num_components + first_component;
2694 fs_reg tmp = bld.vgrf(dst.type, read_components);
2695 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2696 payload);
2697 inst->size_written = read_components * REG_SIZE;
2698 for (unsigned i = 0; i < instr->num_components; i++) {
2699 bld.MOV(offset(dst, bld, i),
2700 offset(tmp, bld, i + first_component));
2701 }
2702 } else {
2703 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2704 payload);
2705 inst->size_written = instr->num_components * REG_SIZE;
2706 }
2707 inst->offset = imm_offset;
2708 inst->mlen = 2;
2709 }
2710 break;
2711 }
2712
2713 case nir_intrinsic_store_output:
2714 case nir_intrinsic_store_per_vertex_output: {
2715 fs_reg value = get_nir_src(instr->src[0]);
2716 bool is_64bit = (instr->src[0].is_ssa ?
2717 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2718 fs_reg indirect_offset = get_indirect_offset(instr);
2719 unsigned imm_offset = instr->const_index[0];
2720 unsigned mask = instr->const_index[1];
2721 unsigned header_regs = 0;
2722 fs_reg srcs[7];
2723 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2724
2725 if (indirect_offset.file != BAD_FILE) {
2726 srcs[header_regs++] = indirect_offset;
2727 }
2728
2729 if (mask == 0)
2730 break;
2731
2732 unsigned num_components = util_last_bit(mask);
2733 enum opcode opcode;
2734
2735 /* We can only pack two 64-bit components in a single message, so send
2736 * 2 messages if we have more components
2737 */
2738 unsigned num_iterations = 1;
2739 unsigned iter_components = num_components;
2740 unsigned first_component = nir_intrinsic_component(instr);
2741 if (is_64bit) {
2742 first_component = first_component / 2;
2743 if (instr->num_components > 2) {
2744 num_iterations = 2;
2745 iter_components = 2;
2746 }
2747 }
2748
2749 mask = mask << first_component;
2750
2751 for (unsigned iter = 0; iter < num_iterations; iter++) {
2752 if (!is_64bit && mask != WRITEMASK_XYZW) {
2753 srcs[header_regs++] = brw_imm_ud(mask << 16);
2754 opcode = indirect_offset.file != BAD_FILE ?
2755 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2756 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2757 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2758 /* Expand the 64-bit mask to 32-bit channels. We only handle
2759 * two channels in each iteration, so we only care about X/Y.
2760 */
2761 unsigned mask32 = 0;
2762 if (mask & WRITEMASK_X)
2763 mask32 |= WRITEMASK_XY;
2764 if (mask & WRITEMASK_Y)
2765 mask32 |= WRITEMASK_ZW;
2766
2767 /* If the mask does not include any of the channels X or Y there
2768 * is nothing to do in this iteration. Move on to the next couple
2769 * of 64-bit channels.
2770 */
2771 if (!mask32) {
2772 mask >>= 2;
2773 imm_offset++;
2774 continue;
2775 }
2776
2777 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2778 opcode = indirect_offset.file != BAD_FILE ?
2779 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2780 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2781 } else {
2782 opcode = indirect_offset.file != BAD_FILE ?
2783 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2784 SHADER_OPCODE_URB_WRITE_SIMD8;
2785 }
2786
2787 for (unsigned i = 0; i < iter_components; i++) {
2788 if (!(mask & (1 << (i + first_component))))
2789 continue;
2790
2791 if (!is_64bit) {
2792 srcs[header_regs + i + first_component] = offset(value, bld, i);
2793 } else {
2794 /* We need to shuffle the 64-bit data to match the layout
2795 * expected by our 32-bit URB write messages. We use a temporary
2796 * for that.
2797 */
2798 unsigned channel = iter * 2 + i;
2799 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2800
2801 srcs[header_regs + (i + first_component) * 2] = dest;
2802 srcs[header_regs + (i + first_component) * 2 + 1] =
2803 offset(dest, bld, 1);
2804 }
2805 }
2806
2807 unsigned mlen =
2808 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2809 (is_64bit ? 2 * first_component : first_component);
2810 fs_reg payload =
2811 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2812 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2813
2814 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2815 inst->offset = imm_offset;
2816 inst->mlen = mlen;
2817
2818 /* If this is a 64-bit attribute, select the next two 64-bit channels
2819 * to be handled in the next iteration.
2820 */
2821 if (is_64bit) {
2822 mask >>= 2;
2823 imm_offset++;
2824 }
2825 }
2826 break;
2827 }
2828
2829 default:
2830 nir_emit_intrinsic(bld, instr);
2831 break;
2832 }
2833 }
2834
2835 void
2836 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2837 nir_intrinsic_instr *instr)
2838 {
2839 assert(stage == MESA_SHADER_TESS_EVAL);
2840 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2841
2842 fs_reg dest;
2843 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2844 dest = get_nir_dest(instr->dest);
2845
2846 switch (instr->intrinsic) {
2847 case nir_intrinsic_load_primitive_id:
2848 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2849 break;
2850 case nir_intrinsic_load_tess_coord:
2851 /* gl_TessCoord is part of the payload in g1-3 */
2852 for (unsigned i = 0; i < 3; i++) {
2853 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2854 }
2855 break;
2856
2857 case nir_intrinsic_load_input:
2858 case nir_intrinsic_load_per_vertex_input: {
2859 fs_reg indirect_offset = get_indirect_offset(instr);
2860 unsigned imm_offset = instr->const_index[0];
2861 unsigned first_component = nir_intrinsic_component(instr);
2862
2863 if (type_sz(dest.type) == 8) {
2864 first_component = first_component / 2;
2865 }
2866
2867 fs_inst *inst;
2868 if (indirect_offset.file == BAD_FILE) {
2869 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2870 * which is 16 registers (since each holds 2 vec4 slots).
2871 */
2872 unsigned slot_count = 1;
2873 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2874 slot_count++;
2875
2876 const unsigned max_push_slots = 32;
2877 if (imm_offset + slot_count <= max_push_slots) {
2878 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2879 for (int i = 0; i < instr->num_components; i++) {
2880 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2881 i + first_component;
2882 bld.MOV(offset(dest, bld, i), component(src, comp));
2883 }
2884
2885 tes_prog_data->base.urb_read_length =
2886 MAX2(tes_prog_data->base.urb_read_length,
2887 DIV_ROUND_UP(imm_offset + slot_count, 2));
2888 } else {
2889 /* Replicate the patch handle to all enabled channels */
2890 const fs_reg srcs[] = {
2891 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2892 };
2893 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2894 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2895
2896 if (first_component != 0) {
2897 unsigned read_components =
2898 instr->num_components + first_component;
2899 fs_reg tmp = bld.vgrf(dest.type, read_components);
2900 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2901 patch_handle);
2902 inst->size_written = read_components * REG_SIZE;
2903 for (unsigned i = 0; i < instr->num_components; i++) {
2904 bld.MOV(offset(dest, bld, i),
2905 offset(tmp, bld, i + first_component));
2906 }
2907 } else {
2908 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2909 patch_handle);
2910 inst->size_written = instr->num_components * REG_SIZE;
2911 }
2912 inst->mlen = 1;
2913 inst->offset = imm_offset;
2914 }
2915 } else {
2916 /* Indirect indexing - use per-slot offsets as well. */
2917
2918 /* We can only read two double components with each URB read, so
2919 * we send two read messages in that case, each one loading up to
2920 * two double components.
2921 */
2922 unsigned num_iterations = 1;
2923 unsigned num_components = instr->num_components;
2924 fs_reg orig_dest = dest;
2925 if (type_sz(dest.type) == 8) {
2926 if (instr->num_components > 2) {
2927 num_iterations = 2;
2928 num_components = 2;
2929 }
2930 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2931 dest = tmp;
2932 }
2933
2934 for (unsigned iter = 0; iter < num_iterations; iter++) {
2935 const fs_reg srcs[] = {
2936 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2937 indirect_offset
2938 };
2939 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2940 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2941
2942 if (first_component != 0) {
2943 unsigned read_components =
2944 num_components + first_component;
2945 fs_reg tmp = bld.vgrf(dest.type, read_components);
2946 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2947 payload);
2948 for (unsigned i = 0; i < num_components; i++) {
2949 bld.MOV(offset(dest, bld, i),
2950 offset(tmp, bld, i + first_component));
2951 }
2952 } else {
2953 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2954 payload);
2955 }
2956 inst->mlen = 2;
2957 inst->offset = imm_offset;
2958 inst->size_written = (num_components + first_component) *
2959 inst->dst.component_size(inst->exec_size);
2960
2961 /* If we are reading 64-bit data using 32-bit read messages we need
2962 * build proper 64-bit data elements by shuffling the low and high
2963 * 32-bit components around like we do for other things like UBOs
2964 * or SSBOs.
2965 */
2966 if (type_sz(dest.type) == 8) {
2967 shuffle_from_32bit_read(bld,
2968 offset(orig_dest, bld, iter * 2),
2969 retype(dest, BRW_REGISTER_TYPE_D),
2970 0, num_components);
2971 }
2972
2973 /* If we are loading double data and we need a second read message
2974 * adjust the offset
2975 */
2976 if (num_iterations > 1) {
2977 num_components = instr->num_components - 2;
2978 imm_offset++;
2979 }
2980 }
2981 }
2982 break;
2983 }
2984 default:
2985 nir_emit_intrinsic(bld, instr);
2986 break;
2987 }
2988 }
2989
2990 void
2991 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2992 nir_intrinsic_instr *instr)
2993 {
2994 assert(stage == MESA_SHADER_GEOMETRY);
2995 fs_reg indirect_offset;
2996
2997 fs_reg dest;
2998 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2999 dest = get_nir_dest(instr->dest);
3000
3001 switch (instr->intrinsic) {
3002 case nir_intrinsic_load_primitive_id:
3003 assert(stage == MESA_SHADER_GEOMETRY);
3004 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3005 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3006 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3007 break;
3008
3009 case nir_intrinsic_load_input:
3010 unreachable("load_input intrinsics are invalid for the GS stage");
3011
3012 case nir_intrinsic_load_per_vertex_input:
3013 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3014 instr->src[1], instr->num_components,
3015 nir_intrinsic_component(instr));
3016 break;
3017
3018 case nir_intrinsic_emit_vertex_with_counter:
3019 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3020 break;
3021
3022 case nir_intrinsic_end_primitive_with_counter:
3023 emit_gs_end_primitive(instr->src[0]);
3024 break;
3025
3026 case nir_intrinsic_set_vertex_count:
3027 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3028 break;
3029
3030 case nir_intrinsic_load_invocation_id: {
3031 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3032 assert(val.file != BAD_FILE);
3033 dest.type = val.type;
3034 bld.MOV(dest, val);
3035 break;
3036 }
3037
3038 default:
3039 nir_emit_intrinsic(bld, instr);
3040 break;
3041 }
3042 }
3043
3044 /**
3045 * Fetch the current render target layer index.
3046 */
3047 static fs_reg
3048 fetch_render_target_array_index(const fs_builder &bld)
3049 {
3050 if (bld.shader->devinfo->gen >= 6) {
3051 /* The render target array index is provided in the thread payload as
3052 * bits 26:16 of r0.0.
3053 */
3054 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3055 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3056 brw_imm_uw(0x7ff));
3057 return idx;
3058 } else {
3059 /* Pre-SNB we only ever render into the first layer of the framebuffer
3060 * since layered rendering is not implemented.
3061 */
3062 return brw_imm_ud(0);
3063 }
3064 }
3065
3066 /**
3067 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3068 * framebuffer at the current fragment coordinates and sample index.
3069 */
3070 fs_inst *
3071 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3072 unsigned target)
3073 {
3074 const struct gen_device_info *devinfo = bld.shader->devinfo;
3075
3076 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3077 const brw_wm_prog_key *wm_key =
3078 reinterpret_cast<const brw_wm_prog_key *>(key);
3079 assert(!wm_key->coherent_fb_fetch);
3080 const struct brw_wm_prog_data *wm_prog_data =
3081 brw_wm_prog_data(stage_prog_data);
3082
3083 /* Calculate the surface index relative to the start of the texture binding
3084 * table block, since that's what the texturing messages expect.
3085 */
3086 const unsigned surface = target +
3087 wm_prog_data->binding_table.render_target_read_start -
3088 wm_prog_data->base.binding_table.texture_start;
3089
3090 /* Calculate the fragment coordinates. */
3091 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3092 bld.MOV(offset(coords, bld, 0), pixel_x);
3093 bld.MOV(offset(coords, bld, 1), pixel_y);
3094 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3095
3096 /* Calculate the sample index and MCS payload when multisampling. Luckily
3097 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3098 * shouldn't be necessary to recompile based on whether the framebuffer is
3099 * CMS or UMS.
3100 */
3101 if (wm_key->multisample_fbo &&
3102 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3103 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3104
3105 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3106 const fs_reg mcs = wm_key->multisample_fbo ?
3107 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3108
3109 /* Use either a normal or a CMS texel fetch message depending on whether
3110 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3111 * message just in case the framebuffer uses 16x multisampling, it should
3112 * be equivalent to the normal CMS fetch for lower multisampling modes.
3113 */
3114 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3115 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3116 SHADER_OPCODE_TXF_CMS_LOGICAL;
3117
3118 /* Emit the instruction. */
3119 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3120 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3121 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3122 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3123 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3124 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3125 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3126 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3127 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3128
3129 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3130 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3131
3132 return inst;
3133 }
3134
3135 /**
3136 * Actual coherent framebuffer read implemented using the native render target
3137 * read message. Requires SKL+.
3138 */
3139 static fs_inst *
3140 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3141 {
3142 assert(bld.shader->devinfo->gen >= 9);
3143 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3144 inst->target = target;
3145 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3146
3147 return inst;
3148 }
3149
3150 static fs_reg
3151 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3152 {
3153 if (n && regs[0].file != BAD_FILE) {
3154 return regs[0];
3155
3156 } else {
3157 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3158
3159 for (unsigned i = 0; i < n; i++)
3160 regs[i] = tmp;
3161
3162 return tmp;
3163 }
3164 }
3165
3166 static fs_reg
3167 alloc_frag_output(fs_visitor *v, unsigned location)
3168 {
3169 assert(v->stage == MESA_SHADER_FRAGMENT);
3170 const brw_wm_prog_key *const key =
3171 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3172 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3173 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3174
3175 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3176 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3177
3178 else if (l == FRAG_RESULT_COLOR)
3179 return alloc_temporary(v->bld, 4, v->outputs,
3180 MAX2(key->nr_color_regions, 1));
3181
3182 else if (l == FRAG_RESULT_DEPTH)
3183 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3184
3185 else if (l == FRAG_RESULT_STENCIL)
3186 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3187
3188 else if (l == FRAG_RESULT_SAMPLE_MASK)
3189 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3190
3191 else if (l >= FRAG_RESULT_DATA0 &&
3192 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3193 return alloc_temporary(v->bld, 4,
3194 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3195
3196 else
3197 unreachable("Invalid location");
3198 }
3199
3200 void
3201 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3202 nir_intrinsic_instr *instr)
3203 {
3204 assert(stage == MESA_SHADER_FRAGMENT);
3205
3206 fs_reg dest;
3207 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3208 dest = get_nir_dest(instr->dest);
3209
3210 switch (instr->intrinsic) {
3211 case nir_intrinsic_load_front_face:
3212 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3213 *emit_frontfacing_interpolation());
3214 break;
3215
3216 case nir_intrinsic_load_sample_pos: {
3217 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3218 assert(sample_pos.file != BAD_FILE);
3219 dest.type = sample_pos.type;
3220 bld.MOV(dest, sample_pos);
3221 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3222 break;
3223 }
3224
3225 case nir_intrinsic_load_layer_id:
3226 dest.type = BRW_REGISTER_TYPE_UD;
3227 bld.MOV(dest, fetch_render_target_array_index(bld));
3228 break;
3229
3230 case nir_intrinsic_load_helper_invocation:
3231 case nir_intrinsic_load_sample_mask_in:
3232 case nir_intrinsic_load_sample_id: {
3233 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3234 fs_reg val = nir_system_values[sv];
3235 assert(val.file != BAD_FILE);
3236 dest.type = val.type;
3237 bld.MOV(dest, val);
3238 break;
3239 }
3240
3241 case nir_intrinsic_store_output: {
3242 const fs_reg src = get_nir_src(instr->src[0]);
3243 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3244 const unsigned location = nir_intrinsic_base(instr) +
3245 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3246 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3247 src.type);
3248
3249 for (unsigned j = 0; j < instr->num_components; j++)
3250 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3251 offset(src, bld, j));
3252
3253 break;
3254 }
3255
3256 case nir_intrinsic_load_output: {
3257 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3258 BRW_NIR_FRAG_OUTPUT_LOCATION);
3259 assert(l >= FRAG_RESULT_DATA0);
3260 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3261 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3262 const fs_reg tmp = bld.vgrf(dest.type, 4);
3263
3264 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3265 emit_coherent_fb_read(bld, tmp, target);
3266 else
3267 emit_non_coherent_fb_read(bld, tmp, target);
3268
3269 for (unsigned j = 0; j < instr->num_components; j++) {
3270 bld.MOV(offset(dest, bld, j),
3271 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3272 }
3273
3274 break;
3275 }
3276
3277 case nir_intrinsic_discard:
3278 case nir_intrinsic_discard_if: {
3279 /* We track our discarded pixels in f0.1. By predicating on it, we can
3280 * update just the flag bits that aren't yet discarded. If there's no
3281 * condition, we emit a CMP of g0 != g0, so all currently executing
3282 * channels will get turned off.
3283 */
3284 fs_inst *cmp;
3285 if (instr->intrinsic == nir_intrinsic_discard_if) {
3286 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3287 brw_imm_d(0), BRW_CONDITIONAL_Z);
3288 } else {
3289 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3290 BRW_REGISTER_TYPE_UW));
3291 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3292 }
3293 cmp->predicate = BRW_PREDICATE_NORMAL;
3294 cmp->flag_subreg = 1;
3295
3296 if (devinfo->gen >= 6) {
3297 emit_discard_jump();
3298 }
3299
3300 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3301 break;
3302 }
3303
3304 case nir_intrinsic_load_input: {
3305 /* load_input is only used for flat inputs */
3306 unsigned base = nir_intrinsic_base(instr);
3307 unsigned comp = nir_intrinsic_component(instr);
3308 unsigned num_components = instr->num_components;
3309 fs_reg orig_dest = dest;
3310 enum brw_reg_type type = dest.type;
3311
3312 /* Special case fields in the VUE header */
3313 if (base == VARYING_SLOT_LAYER)
3314 comp = 1;
3315 else if (base == VARYING_SLOT_VIEWPORT)
3316 comp = 2;
3317
3318 if (nir_dest_bit_size(instr->dest) == 64) {
3319 /* const_index is in 32-bit type size units that could not be aligned
3320 * with DF. We need to read the double vector as if it was a float
3321 * vector of twice the number of components to fetch the right data.
3322 */
3323 type = BRW_REGISTER_TYPE_F;
3324 num_components *= 2;
3325 dest = bld.vgrf(type, num_components);
3326 }
3327
3328 for (unsigned int i = 0; i < num_components; i++) {
3329 bld.MOV(offset(retype(dest, type), bld, i),
3330 retype(component(interp_reg(base, comp + i), 3), type));
3331 }
3332
3333 if (nir_dest_bit_size(instr->dest) == 64) {
3334 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3335 instr->num_components);
3336 }
3337 break;
3338 }
3339
3340 case nir_intrinsic_load_barycentric_pixel:
3341 case nir_intrinsic_load_barycentric_centroid:
3342 case nir_intrinsic_load_barycentric_sample:
3343 /* Do nothing - load_interpolated_input handling will handle it later. */
3344 break;
3345
3346 case nir_intrinsic_load_barycentric_at_sample: {
3347 const glsl_interp_mode interpolation =
3348 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3349
3350 if (nir_src_is_const(instr->src[0])) {
3351 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3352
3353 emit_pixel_interpolater_send(bld,
3354 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3355 dest,
3356 fs_reg(), /* src */
3357 brw_imm_ud(msg_data),
3358 interpolation);
3359 } else {
3360 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3361 BRW_REGISTER_TYPE_UD);
3362
3363 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3364 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3365 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3366 bld.exec_all().group(1, 0)
3367 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3368 emit_pixel_interpolater_send(bld,
3369 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3370 dest,
3371 fs_reg(), /* src */
3372 msg_data,
3373 interpolation);
3374 } else {
3375 /* Make a loop that sends a message to the pixel interpolater
3376 * for the sample number in each live channel. If there are
3377 * multiple channels with the same sample number then these
3378 * will be handled simultaneously with a single interation of
3379 * the loop.
3380 */
3381 bld.emit(BRW_OPCODE_DO);
3382
3383 /* Get the next live sample number into sample_id_reg */
3384 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3385
3386 /* Set the flag register so that we can perform the send
3387 * message on all channels that have the same sample number
3388 */
3389 bld.CMP(bld.null_reg_ud(),
3390 sample_src, sample_id,
3391 BRW_CONDITIONAL_EQ);
3392 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3393 bld.exec_all().group(1, 0)
3394 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3395 fs_inst *inst =
3396 emit_pixel_interpolater_send(bld,
3397 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3398 dest,
3399 fs_reg(), /* src */
3400 component(msg_data, 0),
3401 interpolation);
3402 set_predicate(BRW_PREDICATE_NORMAL, inst);
3403
3404 /* Continue the loop if there are any live channels left */
3405 set_predicate_inv(BRW_PREDICATE_NORMAL,
3406 true, /* inverse */
3407 bld.emit(BRW_OPCODE_WHILE));
3408 }
3409 }
3410 break;
3411 }
3412
3413 case nir_intrinsic_load_barycentric_at_offset: {
3414 const glsl_interp_mode interpolation =
3415 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3416
3417 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3418
3419 if (const_offset) {
3420 assert(nir_src_bit_size(instr->src[0]) == 32);
3421 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3422 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3423
3424 emit_pixel_interpolater_send(bld,
3425 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3426 dest,
3427 fs_reg(), /* src */
3428 brw_imm_ud(off_x | (off_y << 4)),
3429 interpolation);
3430 } else {
3431 fs_reg src = vgrf(glsl_type::ivec2_type);
3432 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3433 BRW_REGISTER_TYPE_F);
3434 for (int i = 0; i < 2; i++) {
3435 fs_reg temp = vgrf(glsl_type::float_type);
3436 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3437 fs_reg itemp = vgrf(glsl_type::int_type);
3438 /* float to int */
3439 bld.MOV(itemp, temp);
3440
3441 /* Clamp the upper end of the range to +7/16.
3442 * ARB_gpu_shader5 requires that we support a maximum offset
3443 * of +0.5, which isn't representable in a S0.4 value -- if
3444 * we didn't clamp it, we'd end up with -8/16, which is the
3445 * opposite of what the shader author wanted.
3446 *
3447 * This is legal due to ARB_gpu_shader5's quantization
3448 * rules:
3449 *
3450 * "Not all values of <offset> may be supported; x and y
3451 * offsets may be rounded to fixed-point values with the
3452 * number of fraction bits given by the
3453 * implementation-dependent constant
3454 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3455 */
3456 set_condmod(BRW_CONDITIONAL_L,
3457 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3458 }
3459
3460 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3461 emit_pixel_interpolater_send(bld,
3462 opcode,
3463 dest,
3464 src,
3465 brw_imm_ud(0u),
3466 interpolation);
3467 }
3468 break;
3469 }
3470
3471 case nir_intrinsic_load_interpolated_input: {
3472 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3473 emit_fragcoord_interpolation(dest);
3474 break;
3475 }
3476
3477 assert(instr->src[0].ssa &&
3478 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3479 nir_intrinsic_instr *bary_intrinsic =
3480 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3481 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3482 enum glsl_interp_mode interp_mode =
3483 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3484 fs_reg dst_xy;
3485
3486 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3487 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3488 /* Use the result of the PI message */
3489 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3490 } else {
3491 /* Use the delta_xy values computed from the payload */
3492 enum brw_barycentric_mode bary =
3493 brw_barycentric_mode(interp_mode, bary_intrin);
3494
3495 dst_xy = this->delta_xy[bary];
3496 }
3497
3498 for (unsigned int i = 0; i < instr->num_components; i++) {
3499 fs_reg interp =
3500 component(interp_reg(nir_intrinsic_base(instr),
3501 nir_intrinsic_component(instr) + i), 0);
3502 interp.type = BRW_REGISTER_TYPE_F;
3503 dest.type = BRW_REGISTER_TYPE_F;
3504
3505 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3506 fs_reg tmp = vgrf(glsl_type::float_type);
3507 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3508 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3509 } else {
3510 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3511 }
3512 }
3513 break;
3514 }
3515
3516 default:
3517 nir_emit_intrinsic(bld, instr);
3518 break;
3519 }
3520 }
3521
3522 static int
3523 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3524 {
3525 if (nir_src_is_const(instr->src[src])) {
3526 int64_t add_val = nir_src_as_int(instr->src[src]);
3527 if (add_val == 1)
3528 return BRW_AOP_INC;
3529 else if (add_val == -1)
3530 return BRW_AOP_DEC;
3531 }
3532
3533 return BRW_AOP_ADD;
3534 }
3535
3536 void
3537 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3538 nir_intrinsic_instr *instr)
3539 {
3540 assert(stage == MESA_SHADER_COMPUTE);
3541 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3542
3543 fs_reg dest;
3544 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3545 dest = get_nir_dest(instr->dest);
3546
3547 switch (instr->intrinsic) {
3548 case nir_intrinsic_barrier:
3549 emit_barrier();
3550 cs_prog_data->uses_barrier = true;
3551 break;
3552
3553 case nir_intrinsic_load_subgroup_id:
3554 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3555 break;
3556
3557 case nir_intrinsic_load_local_invocation_id:
3558 case nir_intrinsic_load_work_group_id: {
3559 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3560 fs_reg val = nir_system_values[sv];
3561 assert(val.file != BAD_FILE);
3562 dest.type = val.type;
3563 for (unsigned i = 0; i < 3; i++)
3564 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3565 break;
3566 }
3567
3568 case nir_intrinsic_load_num_work_groups: {
3569 const unsigned surface =
3570 cs_prog_data->binding_table.work_groups_start;
3571
3572 cs_prog_data->uses_num_work_groups = true;
3573
3574 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3575 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3576 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3577 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3578
3579 /* Read the 3 GLuint components of gl_NumWorkGroups */
3580 for (unsigned i = 0; i < 3; i++) {
3581 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3582 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3583 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3584 }
3585 break;
3586 }
3587
3588 case nir_intrinsic_shared_atomic_add:
3589 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3590 break;
3591 case nir_intrinsic_shared_atomic_imin:
3592 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3593 break;
3594 case nir_intrinsic_shared_atomic_umin:
3595 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3596 break;
3597 case nir_intrinsic_shared_atomic_imax:
3598 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3599 break;
3600 case nir_intrinsic_shared_atomic_umax:
3601 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3602 break;
3603 case nir_intrinsic_shared_atomic_and:
3604 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3605 break;
3606 case nir_intrinsic_shared_atomic_or:
3607 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3608 break;
3609 case nir_intrinsic_shared_atomic_xor:
3610 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3611 break;
3612 case nir_intrinsic_shared_atomic_exchange:
3613 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3614 break;
3615 case nir_intrinsic_shared_atomic_comp_swap:
3616 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3617 break;
3618 case nir_intrinsic_shared_atomic_fmin:
3619 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3620 break;
3621 case nir_intrinsic_shared_atomic_fmax:
3622 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3623 break;
3624 case nir_intrinsic_shared_atomic_fcomp_swap:
3625 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3626 break;
3627
3628 case nir_intrinsic_load_shared: {
3629 assert(devinfo->gen >= 7);
3630 assert(stage == MESA_SHADER_COMPUTE);
3631
3632 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3633 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3634 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3635 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3636 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3637
3638 /* Make dest unsigned because that's what the temporary will be */
3639 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3640
3641 /* Read the vector */
3642 if (nir_intrinsic_align(instr) >= 4) {
3643 assert(nir_dest_bit_size(instr->dest) == 32);
3644 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3645 fs_inst *inst =
3646 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3647 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3648 inst->size_written = instr->num_components * dispatch_width * 4;
3649 } else {
3650 assert(nir_dest_bit_size(instr->dest) <= 32);
3651 assert(nir_dest_num_components(instr->dest) == 1);
3652 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3653
3654 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3655 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3656 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3657 bld.MOV(dest, read_result);
3658 }
3659 break;
3660 }
3661
3662 case nir_intrinsic_store_shared: {
3663 assert(devinfo->gen >= 7);
3664 assert(stage == MESA_SHADER_COMPUTE);
3665
3666 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3667 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3668 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3669 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3670 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3671
3672 fs_reg data = get_nir_src(instr->src[0]);
3673 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3674
3675 assert(nir_intrinsic_write_mask(instr) ==
3676 (1u << instr->num_components) - 1);
3677 if (nir_intrinsic_align(instr) >= 4) {
3678 assert(nir_src_bit_size(instr->src[0]) == 32);
3679 assert(nir_src_num_components(instr->src[0]) <= 4);
3680 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3681 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3682 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3683 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3684 } else {
3685 assert(nir_src_bit_size(instr->src[0]) <= 32);
3686 assert(nir_src_num_components(instr->src[0]) == 1);
3687 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3688
3689 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3690 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3691
3692 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3693 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3694 }
3695 break;
3696 }
3697
3698 default:
3699 nir_emit_intrinsic(bld, instr);
3700 break;
3701 }
3702 }
3703
3704 static fs_reg
3705 brw_nir_reduction_op_identity(const fs_builder &bld,
3706 nir_op op, brw_reg_type type)
3707 {
3708 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3709 switch (type_sz(type)) {
3710 case 2:
3711 assert(type != BRW_REGISTER_TYPE_HF);
3712 return retype(brw_imm_uw(value.u16), type);
3713 case 4:
3714 return retype(brw_imm_ud(value.u32), type);
3715 case 8:
3716 if (type == BRW_REGISTER_TYPE_DF)
3717 return setup_imm_df(bld, value.f64);
3718 else
3719 return retype(brw_imm_u64(value.u64), type);
3720 default:
3721 unreachable("Invalid type size");
3722 }
3723 }
3724
3725 static opcode
3726 brw_op_for_nir_reduction_op(nir_op op)
3727 {
3728 switch (op) {
3729 case nir_op_iadd: return BRW_OPCODE_ADD;
3730 case nir_op_fadd: return BRW_OPCODE_ADD;
3731 case nir_op_imul: return BRW_OPCODE_MUL;
3732 case nir_op_fmul: return BRW_OPCODE_MUL;
3733 case nir_op_imin: return BRW_OPCODE_SEL;
3734 case nir_op_umin: return BRW_OPCODE_SEL;
3735 case nir_op_fmin: return BRW_OPCODE_SEL;
3736 case nir_op_imax: return BRW_OPCODE_SEL;
3737 case nir_op_umax: return BRW_OPCODE_SEL;
3738 case nir_op_fmax: return BRW_OPCODE_SEL;
3739 case nir_op_iand: return BRW_OPCODE_AND;
3740 case nir_op_ior: return BRW_OPCODE_OR;
3741 case nir_op_ixor: return BRW_OPCODE_XOR;
3742 default:
3743 unreachable("Invalid reduction operation");
3744 }
3745 }
3746
3747 static brw_conditional_mod
3748 brw_cond_mod_for_nir_reduction_op(nir_op op)
3749 {
3750 switch (op) {
3751 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3752 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3753 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3754 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3755 case nir_op_imin: return BRW_CONDITIONAL_L;
3756 case nir_op_umin: return BRW_CONDITIONAL_L;
3757 case nir_op_fmin: return BRW_CONDITIONAL_L;
3758 case nir_op_imax: return BRW_CONDITIONAL_GE;
3759 case nir_op_umax: return BRW_CONDITIONAL_GE;
3760 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3761 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3762 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3763 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3764 default:
3765 unreachable("Invalid reduction operation");
3766 }
3767 }
3768
3769 fs_reg
3770 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3771 nir_intrinsic_instr *instr)
3772 {
3773 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3774
3775 if (stage_prog_data->binding_table.image_start > 0) {
3776 if (image.file == BRW_IMMEDIATE_VALUE) {
3777 image.d += stage_prog_data->binding_table.image_start;
3778 } else {
3779 bld.ADD(image, image,
3780 brw_imm_d(stage_prog_data->binding_table.image_start));
3781 }
3782 }
3783
3784 return bld.emit_uniformize(image);
3785 }
3786
3787 fs_reg
3788 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3789 nir_intrinsic_instr *instr)
3790 {
3791 /* SSBO stores are weird in that their index is in src[1] */
3792 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3793
3794 fs_reg surf_index;
3795 if (nir_src_is_const(instr->src[src])) {
3796 unsigned index = stage_prog_data->binding_table.ssbo_start +
3797 nir_src_as_uint(instr->src[src]);
3798 surf_index = brw_imm_ud(index);
3799 } else {
3800 surf_index = vgrf(glsl_type::uint_type);
3801 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3802 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3803 }
3804
3805 return bld.emit_uniformize(surf_index);
3806 }
3807
3808 static unsigned
3809 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3810 {
3811 switch (nir_intrinsic_image_dim(instr)) {
3812 case GLSL_SAMPLER_DIM_1D:
3813 return 1 + nir_intrinsic_image_array(instr);
3814 case GLSL_SAMPLER_DIM_2D:
3815 case GLSL_SAMPLER_DIM_RECT:
3816 return 2 + nir_intrinsic_image_array(instr);
3817 case GLSL_SAMPLER_DIM_3D:
3818 case GLSL_SAMPLER_DIM_CUBE:
3819 return 3;
3820 case GLSL_SAMPLER_DIM_BUF:
3821 return 1;
3822 case GLSL_SAMPLER_DIM_MS:
3823 return 2 + nir_intrinsic_image_array(instr);
3824 default:
3825 unreachable("Invalid image dimension");
3826 }
3827 }
3828
3829 void
3830 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3831 {
3832 fs_reg dest;
3833 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3834 dest = get_nir_dest(instr->dest);
3835
3836 switch (instr->intrinsic) {
3837 case nir_intrinsic_image_load:
3838 case nir_intrinsic_image_store:
3839 case nir_intrinsic_image_atomic_add:
3840 case nir_intrinsic_image_atomic_min:
3841 case nir_intrinsic_image_atomic_max:
3842 case nir_intrinsic_image_atomic_and:
3843 case nir_intrinsic_image_atomic_or:
3844 case nir_intrinsic_image_atomic_xor:
3845 case nir_intrinsic_image_atomic_exchange:
3846 case nir_intrinsic_image_atomic_comp_swap: {
3847 if (stage == MESA_SHADER_FRAGMENT &&
3848 instr->intrinsic != nir_intrinsic_image_load)
3849 brw_wm_prog_data(prog_data)->has_side_effects = true;
3850
3851 /* Get some metadata from the image intrinsic. */
3852 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3853 const GLenum format = nir_intrinsic_format(instr);
3854
3855 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3856 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3857 get_nir_image_intrinsic_image(bld, instr);
3858 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3859 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
3860 brw_imm_ud(image_intrinsic_coord_components(instr));
3861
3862 /* Emit an image load, store or atomic op. */
3863 if (instr->intrinsic == nir_intrinsic_image_load) {
3864 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3865 fs_inst *inst =
3866 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
3867 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3868 inst->size_written = instr->num_components * dispatch_width * 4;
3869 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3870 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3871 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
3872 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
3873 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3874 } else {
3875 int op;
3876 unsigned num_srcs = info->num_srcs;
3877
3878 switch (instr->intrinsic) {
3879 case nir_intrinsic_image_atomic_add:
3880 assert(num_srcs == 4);
3881
3882 op = get_op_for_atomic_add(instr, 3);
3883
3884 if (op != BRW_AOP_ADD)
3885 num_srcs = 3;
3886 break;
3887 case nir_intrinsic_image_atomic_min:
3888 assert(format == GL_R32UI || format == GL_R32I);
3889 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3890 break;
3891 case nir_intrinsic_image_atomic_max:
3892 assert(format == GL_R32UI || format == GL_R32I);
3893 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3894 break;
3895 case nir_intrinsic_image_atomic_and:
3896 op = BRW_AOP_AND;
3897 break;
3898 case nir_intrinsic_image_atomic_or:
3899 op = BRW_AOP_OR;
3900 break;
3901 case nir_intrinsic_image_atomic_xor:
3902 op = BRW_AOP_XOR;
3903 break;
3904 case nir_intrinsic_image_atomic_exchange:
3905 op = BRW_AOP_MOV;
3906 break;
3907 case nir_intrinsic_image_atomic_comp_swap:
3908 op = BRW_AOP_CMPWR;
3909 break;
3910 default:
3911 unreachable("Not reachable.");
3912 }
3913
3914 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
3915
3916 fs_reg data;
3917 if (num_srcs >= 4)
3918 data = get_nir_src(instr->src[3]);
3919 if (num_srcs >= 5) {
3920 fs_reg tmp = bld.vgrf(data.type, 2);
3921 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
3922 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
3923 data = tmp;
3924 }
3925 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3926
3927 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
3928 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3929 }
3930 break;
3931 }
3932
3933 case nir_intrinsic_image_size: {
3934 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3935 * into will handle the binding table index for us in the geneerator.
3936 */
3937 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3938 BRW_REGISTER_TYPE_UD);
3939 image = bld.emit_uniformize(image);
3940
3941 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3942 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
3943 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
3944 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
3945 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
3946
3947 /* Since the image size is always uniform, we can just emit a SIMD8
3948 * query instruction and splat the result out.
3949 */
3950 const fs_builder ubld = bld.exec_all().group(8, 0);
3951
3952 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3953 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
3954 tmp, srcs, ARRAY_SIZE(srcs));
3955 inst->size_written = 4 * REG_SIZE;
3956
3957 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3958 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3959 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3960 offset(retype(dest, tmp.type), bld, c),
3961 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3962 } else {
3963 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3964 component(offset(tmp, ubld, c), 0));
3965 }
3966 }
3967 break;
3968 }
3969
3970 case nir_intrinsic_image_load_raw_intel: {
3971 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3972 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3973 get_nir_image_intrinsic_image(bld, instr);
3974 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3975 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3976 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3977
3978 fs_inst *inst =
3979 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3980 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3981 inst->size_written = instr->num_components * dispatch_width * 4;
3982 break;
3983 }
3984
3985 case nir_intrinsic_image_store_raw_intel: {
3986 if (stage == MESA_SHADER_FRAGMENT)
3987 brw_wm_prog_data(prog_data)->has_side_effects = true;
3988
3989 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3990 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3991 get_nir_image_intrinsic_image(bld, instr);
3992 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3993 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
3994 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3995 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3996
3997 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3998 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3999 break;
4000 }
4001
4002 case nir_intrinsic_group_memory_barrier:
4003 case nir_intrinsic_memory_barrier_shared:
4004 case nir_intrinsic_memory_barrier_atomic_counter:
4005 case nir_intrinsic_memory_barrier_buffer:
4006 case nir_intrinsic_memory_barrier_image:
4007 case nir_intrinsic_memory_barrier: {
4008 const fs_builder ubld = bld.group(8, 0);
4009 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4010 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
4011 ->size_written = 2 * REG_SIZE;
4012 break;
4013 }
4014
4015 case nir_intrinsic_shader_clock: {
4016 /* We cannot do anything if there is an event, so ignore it for now */
4017 const fs_reg shader_clock = get_timestamp(bld);
4018 const fs_reg srcs[] = { component(shader_clock, 0),
4019 component(shader_clock, 1) };
4020 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4021 break;
4022 }
4023
4024 case nir_intrinsic_image_samples:
4025 /* The driver does not support multi-sampled images. */
4026 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4027 break;
4028
4029 case nir_intrinsic_load_uniform: {
4030 /* Offsets are in bytes but they should always aligned to
4031 * the type size
4032 */
4033 assert(instr->const_index[0] % 4 == 0 ||
4034 instr->const_index[0] % type_sz(dest.type) == 0);
4035
4036 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4037
4038 if (nir_src_is_const(instr->src[0])) {
4039 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4040 assert(load_offset % type_sz(dest.type) == 0);
4041 /* For 16-bit types we add the module of the const_index[0]
4042 * offset to access to not 32-bit aligned element
4043 */
4044 src.offset = load_offset + instr->const_index[0] % 4;
4045
4046 for (unsigned j = 0; j < instr->num_components; j++) {
4047 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4048 }
4049 } else {
4050 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4051 BRW_REGISTER_TYPE_UD);
4052
4053 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4054 * go past the end of the uniform. In order to keep the n'th
4055 * component from running past, we subtract off the size of all but
4056 * one component of the vector.
4057 */
4058 assert(instr->const_index[1] >=
4059 instr->num_components * (int) type_sz(dest.type));
4060 unsigned read_size = instr->const_index[1] -
4061 (instr->num_components - 1) * type_sz(dest.type);
4062
4063 bool supports_64bit_indirects =
4064 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4065
4066 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4067 for (unsigned j = 0; j < instr->num_components; j++) {
4068 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4069 offset(dest, bld, j), offset(src, bld, j),
4070 indirect, brw_imm_ud(read_size));
4071 }
4072 } else {
4073 const unsigned num_mov_indirects =
4074 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4075 /* We read a little bit less per MOV INDIRECT, as they are now
4076 * 32-bits ones instead of 64-bit. Fix read_size then.
4077 */
4078 const unsigned read_size_32bit = read_size -
4079 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4080 for (unsigned j = 0; j < instr->num_components; j++) {
4081 for (unsigned i = 0; i < num_mov_indirects; i++) {
4082 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4083 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4084 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4085 indirect, brw_imm_ud(read_size_32bit));
4086 }
4087 }
4088 }
4089 }
4090 break;
4091 }
4092
4093 case nir_intrinsic_load_ubo: {
4094 fs_reg surf_index;
4095 if (nir_src_is_const(instr->src[0])) {
4096 const unsigned index = stage_prog_data->binding_table.ubo_start +
4097 nir_src_as_uint(instr->src[0]);
4098 surf_index = brw_imm_ud(index);
4099 } else {
4100 /* The block index is not a constant. Evaluate the index expression
4101 * per-channel and add the base UBO index; we have to select a value
4102 * from any live channel.
4103 */
4104 surf_index = vgrf(glsl_type::uint_type);
4105 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4106 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4107 surf_index = bld.emit_uniformize(surf_index);
4108 }
4109
4110 if (!nir_src_is_const(instr->src[1])) {
4111 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4112 BRW_REGISTER_TYPE_UD);
4113
4114 for (int i = 0; i < instr->num_components; i++)
4115 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4116 base_offset, i * type_sz(dest.type));
4117 } else {
4118 /* Even if we are loading doubles, a pull constant load will load
4119 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4120 * need to load a full dvec4 we will have to emit 2 loads. This is
4121 * similar to demote_pull_constants(), except that in that case we
4122 * see individual accesses to each component of the vector and then
4123 * we let CSE deal with duplicate loads. Here we see a vector access
4124 * and we have to split it if necessary.
4125 */
4126 const unsigned type_size = type_sz(dest.type);
4127 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4128
4129 /* See if we've selected this as a push constant candidate */
4130 if (nir_src_is_const(instr->src[0])) {
4131 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4132 const unsigned offset_256b = load_offset / 32;
4133
4134 fs_reg push_reg;
4135 for (int i = 0; i < 4; i++) {
4136 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4137 if (range->block == ubo_block &&
4138 offset_256b >= range->start &&
4139 offset_256b < range->start + range->length) {
4140
4141 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4142 push_reg.offset = load_offset - 32 * range->start;
4143 break;
4144 }
4145 }
4146
4147 if (push_reg.file != BAD_FILE) {
4148 for (unsigned i = 0; i < instr->num_components; i++) {
4149 bld.MOV(offset(dest, bld, i),
4150 byte_offset(push_reg, i * type_size));
4151 }
4152 break;
4153 }
4154 }
4155
4156 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4157 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4158 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4159
4160 for (unsigned c = 0; c < instr->num_components;) {
4161 const unsigned base = load_offset + c * type_size;
4162 /* Number of usable components in the next block-aligned load. */
4163 const unsigned count = MIN2(instr->num_components - c,
4164 (block_sz - base % block_sz) / type_size);
4165
4166 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4167 packed_consts, surf_index,
4168 brw_imm_ud(base & ~(block_sz - 1)));
4169
4170 const fs_reg consts =
4171 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4172 dest.type);
4173
4174 for (unsigned d = 0; d < count; d++)
4175 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4176
4177 c += count;
4178 }
4179 }
4180 break;
4181 }
4182
4183 case nir_intrinsic_load_global: {
4184 assert(devinfo->gen >= 8);
4185
4186 if (nir_intrinsic_align(instr) >= 4) {
4187 assert(nir_dest_bit_size(instr->dest) == 32);
4188 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4189 dest,
4190 get_nir_src(instr->src[0]), /* Address */
4191 fs_reg(), /* No source data */
4192 brw_imm_ud(instr->num_components));
4193 inst->size_written = instr->num_components *
4194 inst->dst.component_size(inst->exec_size);
4195 } else {
4196 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4197 assert(bit_size <= 32);
4198 assert(nir_dest_num_components(instr->dest) == 1);
4199 brw_reg_type data_type =
4200 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4201 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4202 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4203 tmp,
4204 get_nir_src(instr->src[0]), /* Address */
4205 fs_reg(), /* No source data */
4206 brw_imm_ud(bit_size));
4207 bld.MOV(retype(dest, data_type), tmp);
4208 }
4209 break;
4210 }
4211
4212 case nir_intrinsic_store_global:
4213 assert(devinfo->gen >= 8);
4214
4215 if (stage == MESA_SHADER_FRAGMENT)
4216 brw_wm_prog_data(prog_data)->has_side_effects = true;
4217
4218 if (nir_intrinsic_align(instr) >= 4) {
4219 assert(nir_src_bit_size(instr->src[0]) == 32);
4220 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4221 fs_reg(),
4222 get_nir_src(instr->src[1]), /* Address */
4223 get_nir_src(instr->src[0]), /* Data */
4224 brw_imm_ud(instr->num_components));
4225 } else {
4226 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4227 assert(bit_size <= 32);
4228 assert(nir_src_num_components(instr->src[0]) == 1);
4229 brw_reg_type data_type =
4230 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4231 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4232 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4233 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4234 fs_reg(),
4235 get_nir_src(instr->src[1]), /* Address */
4236 tmp, /* Data */
4237 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4238 }
4239 break;
4240
4241 case nir_intrinsic_global_atomic_add:
4242 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4243 break;
4244 case nir_intrinsic_global_atomic_imin:
4245 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4246 break;
4247 case nir_intrinsic_global_atomic_umin:
4248 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4249 break;
4250 case nir_intrinsic_global_atomic_imax:
4251 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4252 break;
4253 case nir_intrinsic_global_atomic_umax:
4254 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4255 break;
4256 case nir_intrinsic_global_atomic_and:
4257 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4258 break;
4259 case nir_intrinsic_global_atomic_or:
4260 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4261 break;
4262 case nir_intrinsic_global_atomic_xor:
4263 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4264 break;
4265 case nir_intrinsic_global_atomic_exchange:
4266 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4267 break;
4268 case nir_intrinsic_global_atomic_comp_swap:
4269 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4270 break;
4271 case nir_intrinsic_global_atomic_fmin:
4272 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4273 break;
4274 case nir_intrinsic_global_atomic_fmax:
4275 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4276 break;
4277 case nir_intrinsic_global_atomic_fcomp_swap:
4278 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4279 break;
4280
4281 case nir_intrinsic_load_ssbo: {
4282 assert(devinfo->gen >= 7);
4283
4284 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4285 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4286 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4287 get_nir_ssbo_intrinsic_index(bld, instr);
4288 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4289 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4290
4291 /* Make dest unsigned because that's what the temporary will be */
4292 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4293
4294 /* Read the vector */
4295 if (nir_intrinsic_align(instr) >= 4) {
4296 assert(nir_dest_bit_size(instr->dest) == 32);
4297 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4298 fs_inst *inst =
4299 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4300 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4301 inst->size_written = instr->num_components * dispatch_width * 4;
4302 } else {
4303 assert(nir_dest_bit_size(instr->dest) <= 32);
4304 assert(nir_dest_num_components(instr->dest) == 1);
4305 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4306
4307 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4308 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4309 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4310 bld.MOV(dest, read_result);
4311 }
4312 break;
4313 }
4314
4315 case nir_intrinsic_store_ssbo: {
4316 assert(devinfo->gen >= 7);
4317
4318 if (stage == MESA_SHADER_FRAGMENT)
4319 brw_wm_prog_data(prog_data)->has_side_effects = true;
4320
4321 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4322 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4323 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4324 get_nir_ssbo_intrinsic_index(bld, instr);
4325 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4326 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4327
4328 fs_reg data = get_nir_src(instr->src[0]);
4329 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4330
4331 assert(nir_intrinsic_write_mask(instr) ==
4332 (1u << instr->num_components) - 1);
4333 if (nir_intrinsic_align(instr) >= 4) {
4334 assert(nir_src_bit_size(instr->src[0]) == 32);
4335 assert(nir_src_num_components(instr->src[0]) <= 4);
4336 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4337 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4338 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4339 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4340 } else {
4341 assert(nir_src_bit_size(instr->src[0]) <= 32);
4342 assert(nir_src_num_components(instr->src[0]) == 1);
4343 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4344
4345 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4346 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4347
4348 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4349 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4350 }
4351 break;
4352 }
4353
4354 case nir_intrinsic_store_output: {
4355 fs_reg src = get_nir_src(instr->src[0]);
4356
4357 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4358 unsigned num_components = instr->num_components;
4359 unsigned first_component = nir_intrinsic_component(instr);
4360 if (nir_src_bit_size(instr->src[0]) == 64) {
4361 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4362 num_components *= 2;
4363 }
4364
4365 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4366 4 * store_offset), src.type);
4367 for (unsigned j = 0; j < num_components; j++) {
4368 bld.MOV(offset(new_dest, bld, j + first_component),
4369 offset(src, bld, j));
4370 }
4371 break;
4372 }
4373
4374 case nir_intrinsic_ssbo_atomic_add:
4375 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4376 break;
4377 case nir_intrinsic_ssbo_atomic_imin:
4378 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4379 break;
4380 case nir_intrinsic_ssbo_atomic_umin:
4381 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4382 break;
4383 case nir_intrinsic_ssbo_atomic_imax:
4384 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4385 break;
4386 case nir_intrinsic_ssbo_atomic_umax:
4387 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4388 break;
4389 case nir_intrinsic_ssbo_atomic_and:
4390 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4391 break;
4392 case nir_intrinsic_ssbo_atomic_or:
4393 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4394 break;
4395 case nir_intrinsic_ssbo_atomic_xor:
4396 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4397 break;
4398 case nir_intrinsic_ssbo_atomic_exchange:
4399 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4400 break;
4401 case nir_intrinsic_ssbo_atomic_comp_swap:
4402 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4403 break;
4404 case nir_intrinsic_ssbo_atomic_fmin:
4405 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4406 break;
4407 case nir_intrinsic_ssbo_atomic_fmax:
4408 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4409 break;
4410 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4411 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4412 break;
4413
4414 case nir_intrinsic_get_buffer_size: {
4415 assert(nir_src_num_components(instr->src[0]) == 1);
4416 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4417 nir_src_as_uint(instr->src[0]) : 0;
4418
4419 /* A resinfo's sampler message is used to get the buffer size. The
4420 * SIMD8's writeback message consists of four registers and SIMD16's
4421 * writeback message consists of 8 destination registers (two per each
4422 * component). Because we are only interested on the first channel of
4423 * the first returned component, where resinfo returns the buffer size
4424 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4425 * the dispatch width.
4426 */
4427 const fs_builder ubld = bld.exec_all().group(8, 0);
4428 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4429 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4430
4431 /* Set LOD = 0 */
4432 ubld.MOV(src_payload, brw_imm_d(0));
4433
4434 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4435 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4436 src_payload, brw_imm_ud(index));
4437 inst->header_size = 0;
4438 inst->mlen = 1;
4439 inst->size_written = 4 * REG_SIZE;
4440
4441 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4442 *
4443 * "Out-of-bounds checking is always performed at a DWord granularity. If
4444 * any part of the DWord is out-of-bounds then the whole DWord is
4445 * considered out-of-bounds."
4446 *
4447 * This implies that types with size smaller than 4-bytes need to be
4448 * padded if they don't complete the last dword of the buffer. But as we
4449 * need to maintain the original size we need to reverse the padding
4450 * calculation to return the correct size to know the number of elements
4451 * of an unsized array. As we stored in the last two bits of the surface
4452 * size the needed padding for the buffer, we calculate here the
4453 * original buffer_size reversing the surface_size calculation:
4454 *
4455 * surface_size = isl_align(buffer_size, 4) +
4456 * (isl_align(buffer_size) - buffer_size)
4457 *
4458 * buffer_size = surface_size & ~3 - surface_size & 3
4459 */
4460
4461 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4462 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4463 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4464
4465 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4466 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4467 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4468
4469 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4470 break;
4471 }
4472
4473 case nir_intrinsic_load_subgroup_invocation:
4474 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4475 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4476 break;
4477
4478 case nir_intrinsic_load_subgroup_eq_mask:
4479 case nir_intrinsic_load_subgroup_ge_mask:
4480 case nir_intrinsic_load_subgroup_gt_mask:
4481 case nir_intrinsic_load_subgroup_le_mask:
4482 case nir_intrinsic_load_subgroup_lt_mask:
4483 unreachable("not reached");
4484
4485 case nir_intrinsic_vote_any: {
4486 const fs_builder ubld = bld.exec_all().group(1, 0);
4487
4488 /* The any/all predicates do not consider channel enables. To prevent
4489 * dead channels from affecting the result, we initialize the flag with
4490 * with the identity value for the logical operation.
4491 */
4492 if (dispatch_width == 32) {
4493 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4494 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4495 brw_imm_ud(0));
4496 } else {
4497 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4498 }
4499 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4500
4501 /* For some reason, the any/all predicates don't work properly with
4502 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4503 * doesn't read the correct subset of the flag register and you end up
4504 * getting garbage in the second half. Work around this by using a pair
4505 * of 1-wide MOVs and scattering the result.
4506 */
4507 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4508 ubld.MOV(res1, brw_imm_d(0));
4509 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4510 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4511 BRW_PREDICATE_ALIGN1_ANY32H,
4512 ubld.MOV(res1, brw_imm_d(-1)));
4513
4514 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4515 break;
4516 }
4517 case nir_intrinsic_vote_all: {
4518 const fs_builder ubld = bld.exec_all().group(1, 0);
4519
4520 /* The any/all predicates do not consider channel enables. To prevent
4521 * dead channels from affecting the result, we initialize the flag with
4522 * with the identity value for the logical operation.
4523 */
4524 if (dispatch_width == 32) {
4525 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4526 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4527 brw_imm_ud(0xffffffff));
4528 } else {
4529 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4530 }
4531 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4532
4533 /* For some reason, the any/all predicates don't work properly with
4534 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4535 * doesn't read the correct subset of the flag register and you end up
4536 * getting garbage in the second half. Work around this by using a pair
4537 * of 1-wide MOVs and scattering the result.
4538 */
4539 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4540 ubld.MOV(res1, brw_imm_d(0));
4541 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4542 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4543 BRW_PREDICATE_ALIGN1_ALL32H,
4544 ubld.MOV(res1, brw_imm_d(-1)));
4545
4546 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4547 break;
4548 }
4549 case nir_intrinsic_vote_feq:
4550 case nir_intrinsic_vote_ieq: {
4551 fs_reg value = get_nir_src(instr->src[0]);
4552 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4553 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4554 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
4555 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4556 }
4557
4558 fs_reg uniformized = bld.emit_uniformize(value);
4559 const fs_builder ubld = bld.exec_all().group(1, 0);
4560
4561 /* The any/all predicates do not consider channel enables. To prevent
4562 * dead channels from affecting the result, we initialize the flag with
4563 * with the identity value for the logical operation.
4564 */
4565 if (dispatch_width == 32) {
4566 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4567 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4568 brw_imm_ud(0xffffffff));
4569 } else {
4570 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4571 }
4572 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4573
4574 /* For some reason, the any/all predicates don't work properly with
4575 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4576 * doesn't read the correct subset of the flag register and you end up
4577 * getting garbage in the second half. Work around this by using a pair
4578 * of 1-wide MOVs and scattering the result.
4579 */
4580 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4581 ubld.MOV(res1, brw_imm_d(0));
4582 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4583 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4584 BRW_PREDICATE_ALIGN1_ALL32H,
4585 ubld.MOV(res1, brw_imm_d(-1)));
4586
4587 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4588 break;
4589 }
4590
4591 case nir_intrinsic_ballot: {
4592 const fs_reg value = retype(get_nir_src(instr->src[0]),
4593 BRW_REGISTER_TYPE_UD);
4594 struct brw_reg flag = brw_flag_reg(0, 0);
4595 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4596 * as f0.0. This is a problem for fragment programs as we currently use
4597 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4598 * programs yet so this isn't a problem. When we do, something will
4599 * have to change.
4600 */
4601 if (dispatch_width == 32)
4602 flag.type = BRW_REGISTER_TYPE_UD;
4603
4604 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4605 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4606
4607 if (instr->dest.ssa.bit_size > 32) {
4608 dest.type = BRW_REGISTER_TYPE_UQ;
4609 } else {
4610 dest.type = BRW_REGISTER_TYPE_UD;
4611 }
4612 bld.MOV(dest, flag);
4613 break;
4614 }
4615
4616 case nir_intrinsic_read_invocation: {
4617 const fs_reg value = get_nir_src(instr->src[0]);
4618 const fs_reg invocation = get_nir_src(instr->src[1]);
4619 fs_reg tmp = bld.vgrf(value.type);
4620
4621 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4622 bld.emit_uniformize(invocation));
4623
4624 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4625 break;
4626 }
4627
4628 case nir_intrinsic_read_first_invocation: {
4629 const fs_reg value = get_nir_src(instr->src[0]);
4630 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4631 break;
4632 }
4633
4634 case nir_intrinsic_shuffle: {
4635 const fs_reg value = get_nir_src(instr->src[0]);
4636 const fs_reg index = get_nir_src(instr->src[1]);
4637
4638 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4639 break;
4640 }
4641
4642 case nir_intrinsic_first_invocation: {
4643 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4644 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4645 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4646 fs_reg(component(tmp, 0)));
4647 break;
4648 }
4649
4650 case nir_intrinsic_quad_broadcast: {
4651 const fs_reg value = get_nir_src(instr->src[0]);
4652 const unsigned index = nir_src_as_uint(instr->src[1]);
4653
4654 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4655 value, brw_imm_ud(index), brw_imm_ud(4));
4656 break;
4657 }
4658
4659 case nir_intrinsic_quad_swap_horizontal: {
4660 const fs_reg value = get_nir_src(instr->src[0]);
4661 const fs_reg tmp = bld.vgrf(value.type);
4662 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4663
4664 const fs_reg src_left = horiz_stride(value, 2);
4665 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4666 const fs_reg tmp_left = horiz_stride(tmp, 2);
4667 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4668
4669 ubld.MOV(tmp_left, src_right);
4670 ubld.MOV(tmp_right, src_left);
4671
4672 bld.MOV(retype(dest, value.type), tmp);
4673 break;
4674 }
4675
4676 case nir_intrinsic_quad_swap_vertical: {
4677 const fs_reg value = get_nir_src(instr->src[0]);
4678 if (nir_src_bit_size(instr->src[0]) == 32) {
4679 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4680 const fs_reg tmp = bld.vgrf(value.type);
4681 const fs_builder ubld = bld.exec_all();
4682 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4683 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4684 bld.MOV(retype(dest, value.type), tmp);
4685 } else {
4686 /* For larger data types, we have to either emit dispatch_width many
4687 * MOVs or else fall back to doing indirects.
4688 */
4689 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4690 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4691 brw_imm_w(0x2));
4692 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4693 }
4694 break;
4695 }
4696
4697 case nir_intrinsic_quad_swap_diagonal: {
4698 const fs_reg value = get_nir_src(instr->src[0]);
4699 if (nir_src_bit_size(instr->src[0]) == 32) {
4700 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4701 const fs_reg tmp = bld.vgrf(value.type);
4702 const fs_builder ubld = bld.exec_all();
4703 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4704 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4705 bld.MOV(retype(dest, value.type), tmp);
4706 } else {
4707 /* For larger data types, we have to either emit dispatch_width many
4708 * MOVs or else fall back to doing indirects.
4709 */
4710 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4711 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4712 brw_imm_w(0x3));
4713 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4714 }
4715 break;
4716 }
4717
4718 case nir_intrinsic_reduce: {
4719 fs_reg src = get_nir_src(instr->src[0]);
4720 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4721 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4722 if (cluster_size == 0 || cluster_size > dispatch_width)
4723 cluster_size = dispatch_width;
4724
4725 /* Figure out the source type */
4726 src.type = brw_type_for_nir_type(devinfo,
4727 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4728 nir_src_bit_size(instr->src[0])));
4729
4730 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4731 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4732 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4733
4734 /* Set up a register for all of our scratching around and initialize it
4735 * to reduction operation's identity value.
4736 */
4737 fs_reg scan = bld.vgrf(src.type);
4738 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4739
4740 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4741
4742 dest.type = src.type;
4743 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4744 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4745 * the distance between clusters is at least 2 GRFs. In this case,
4746 * we don't need the weird striding of the CLUSTER_BROADCAST
4747 * instruction and can just do regular MOVs.
4748 */
4749 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4750 const unsigned groups =
4751 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4752 const unsigned group_size = dispatch_width / groups;
4753 for (unsigned i = 0; i < groups; i++) {
4754 const unsigned cluster = (i * group_size) / cluster_size;
4755 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4756 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4757 component(scan, comp));
4758 }
4759 } else {
4760 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4761 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4762 }
4763 break;
4764 }
4765
4766 case nir_intrinsic_inclusive_scan:
4767 case nir_intrinsic_exclusive_scan: {
4768 fs_reg src = get_nir_src(instr->src[0]);
4769 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4770
4771 /* Figure out the source type */
4772 src.type = brw_type_for_nir_type(devinfo,
4773 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4774 nir_src_bit_size(instr->src[0])));
4775
4776 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4777 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4778 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4779
4780 /* Set up a register for all of our scratching around and initialize it
4781 * to reduction operation's identity value.
4782 */
4783 fs_reg scan = bld.vgrf(src.type);
4784 const fs_builder allbld = bld.exec_all();
4785 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4786
4787 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4788 /* Exclusive scan is a bit harder because we have to do an annoying
4789 * shift of the contents before we can begin. To make things worse,
4790 * we can't do this with a normal stride; we have to use indirects.
4791 */
4792 fs_reg shifted = bld.vgrf(src.type);
4793 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4794 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4795 brw_imm_w(-1));
4796 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4797 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4798 scan = shifted;
4799 }
4800
4801 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4802
4803 bld.MOV(retype(dest, src.type), scan);
4804 break;
4805 }
4806
4807 case nir_intrinsic_begin_invocation_interlock: {
4808 const fs_builder ubld = bld.group(8, 0);
4809 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4810
4811 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4812 REG_SIZE;
4813
4814 break;
4815 }
4816
4817 case nir_intrinsic_end_invocation_interlock: {
4818 /* We don't need to do anything here */
4819 break;
4820 }
4821
4822 default:
4823 unreachable("unknown intrinsic");
4824 }
4825 }
4826
4827 void
4828 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4829 int op, nir_intrinsic_instr *instr)
4830 {
4831 if (stage == MESA_SHADER_FRAGMENT)
4832 brw_wm_prog_data(prog_data)->has_side_effects = true;
4833
4834 fs_reg dest;
4835 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4836 dest = get_nir_dest(instr->dest);
4837
4838 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4839 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4840 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4841 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4842 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4843
4844 fs_reg data;
4845 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4846 data = get_nir_src(instr->src[2]);
4847
4848 if (op == BRW_AOP_CMPWR) {
4849 fs_reg tmp = bld.vgrf(data.type, 2);
4850 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4851 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4852 data = tmp;
4853 }
4854 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4855
4856 /* Emit the actual atomic operation */
4857
4858 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4859 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4860 }
4861
4862 void
4863 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4864 int op, nir_intrinsic_instr *instr)
4865 {
4866 if (stage == MESA_SHADER_FRAGMENT)
4867 brw_wm_prog_data(prog_data)->has_side_effects = true;
4868
4869 fs_reg dest;
4870 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4871 dest = get_nir_dest(instr->dest);
4872
4873 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4874 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4875 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4876 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4877 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4878
4879 fs_reg data = get_nir_src(instr->src[2]);
4880 if (op == BRW_AOP_FCMPWR) {
4881 fs_reg tmp = bld.vgrf(data.type, 2);
4882 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4883 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4884 data = tmp;
4885 }
4886 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4887
4888 /* Emit the actual atomic operation */
4889
4890 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4891 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4892 }
4893
4894 void
4895 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4896 int op, nir_intrinsic_instr *instr)
4897 {
4898 fs_reg dest;
4899 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4900 dest = get_nir_dest(instr->dest);
4901
4902 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4903 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4904 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4905 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4906
4907 fs_reg data;
4908 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4909 data = get_nir_src(instr->src[1]);
4910 if (op == BRW_AOP_CMPWR) {
4911 fs_reg tmp = bld.vgrf(data.type, 2);
4912 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4913 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4914 data = tmp;
4915 }
4916 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4917
4918 /* Get the offset */
4919 if (nir_src_is_const(instr->src[0])) {
4920 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4921 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4922 } else {
4923 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4924 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4925 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4926 brw_imm_ud(instr->const_index[0]));
4927 }
4928
4929 /* Emit the actual atomic operation operation */
4930
4931 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4932 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4933 }
4934
4935 void
4936 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4937 int op, nir_intrinsic_instr *instr)
4938 {
4939 fs_reg dest;
4940 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4941 dest = get_nir_dest(instr->dest);
4942
4943 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4944 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4945 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4946 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4947
4948 fs_reg data = get_nir_src(instr->src[1]);
4949 if (op == BRW_AOP_FCMPWR) {
4950 fs_reg tmp = bld.vgrf(data.type, 2);
4951 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4952 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4953 data = tmp;
4954 }
4955 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4956
4957 /* Get the offset */
4958 if (nir_src_is_const(instr->src[0])) {
4959 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4960 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4961 } else {
4962 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4963 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4964 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4965 brw_imm_ud(instr->const_index[0]));
4966 }
4967
4968 /* Emit the actual atomic operation operation */
4969
4970 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4971 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4972 }
4973
4974 void
4975 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
4976 int op, nir_intrinsic_instr *instr)
4977 {
4978 if (stage == MESA_SHADER_FRAGMENT)
4979 brw_wm_prog_data(prog_data)->has_side_effects = true;
4980
4981 fs_reg dest;
4982 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4983 dest = get_nir_dest(instr->dest);
4984
4985 fs_reg addr = get_nir_src(instr->src[0]);
4986
4987 fs_reg data;
4988 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4989 data = get_nir_src(instr->src[1]);
4990
4991 if (op == BRW_AOP_CMPWR) {
4992 fs_reg tmp = bld.vgrf(data.type, 2);
4993 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4994 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4995 data = tmp;
4996 }
4997
4998 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4999 dest, addr, data, brw_imm_ud(op));
5000 }
5001
5002 void
5003 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5004 int op, nir_intrinsic_instr *instr)
5005 {
5006 if (stage == MESA_SHADER_FRAGMENT)
5007 brw_wm_prog_data(prog_data)->has_side_effects = true;
5008
5009 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5010 fs_reg dest = get_nir_dest(instr->dest);
5011
5012 fs_reg addr = get_nir_src(instr->src[0]);
5013
5014 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5015 fs_reg data = get_nir_src(instr->src[1]);
5016
5017 if (op == BRW_AOP_FCMPWR) {
5018 fs_reg tmp = bld.vgrf(data.type, 2);
5019 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5020 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5021 data = tmp;
5022 }
5023
5024 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5025 dest, addr, data, brw_imm_ud(op));
5026 }
5027
5028 void
5029 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5030 {
5031 unsigned texture = instr->texture_index;
5032 unsigned sampler = instr->sampler_index;
5033
5034 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5035
5036 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5037 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5038
5039 int lod_components = 0;
5040
5041 /* The hardware requires a LOD for buffer textures */
5042 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5043 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5044
5045 uint32_t header_bits = 0;
5046 for (unsigned i = 0; i < instr->num_srcs; i++) {
5047 fs_reg src = get_nir_src(instr->src[i].src);
5048 switch (instr->src[i].src_type) {
5049 case nir_tex_src_bias:
5050 srcs[TEX_LOGICAL_SRC_LOD] =
5051 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5052 break;
5053 case nir_tex_src_comparator:
5054 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5055 break;
5056 case nir_tex_src_coord:
5057 switch (instr->op) {
5058 case nir_texop_txf:
5059 case nir_texop_txf_ms:
5060 case nir_texop_txf_ms_mcs:
5061 case nir_texop_samples_identical:
5062 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5063 break;
5064 default:
5065 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5066 break;
5067 }
5068 break;
5069 case nir_tex_src_ddx:
5070 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5071 lod_components = nir_tex_instr_src_size(instr, i);
5072 break;
5073 case nir_tex_src_ddy:
5074 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5075 break;
5076 case nir_tex_src_lod:
5077 switch (instr->op) {
5078 case nir_texop_txs:
5079 srcs[TEX_LOGICAL_SRC_LOD] =
5080 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5081 break;
5082 case nir_texop_txf:
5083 srcs[TEX_LOGICAL_SRC_LOD] =
5084 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5085 break;
5086 default:
5087 srcs[TEX_LOGICAL_SRC_LOD] =
5088 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5089 break;
5090 }
5091 break;
5092 case nir_tex_src_min_lod:
5093 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5094 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5095 break;
5096 case nir_tex_src_ms_index:
5097 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5098 break;
5099
5100 case nir_tex_src_offset: {
5101 uint32_t offset_bits = 0;
5102 if (brw_texture_offset(instr, i, &offset_bits)) {
5103 header_bits |= offset_bits;
5104 } else {
5105 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5106 retype(src, BRW_REGISTER_TYPE_D);
5107 }
5108 break;
5109 }
5110
5111 case nir_tex_src_projector:
5112 unreachable("should be lowered");
5113
5114 case nir_tex_src_texture_offset: {
5115 /* Emit code to evaluate the actual indexing expression */
5116 fs_reg tmp = vgrf(glsl_type::uint_type);
5117 bld.ADD(tmp, src, brw_imm_ud(texture));
5118 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5119 break;
5120 }
5121
5122 case nir_tex_src_sampler_offset: {
5123 /* Emit code to evaluate the actual indexing expression */
5124 fs_reg tmp = vgrf(glsl_type::uint_type);
5125 bld.ADD(tmp, src, brw_imm_ud(sampler));
5126 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5127 break;
5128 }
5129
5130 case nir_tex_src_ms_mcs:
5131 assert(instr->op == nir_texop_txf_ms);
5132 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5133 break;
5134
5135 case nir_tex_src_plane: {
5136 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5137 const uint32_t texture_index =
5138 instr->texture_index +
5139 stage_prog_data->binding_table.plane_start[plane] -
5140 stage_prog_data->binding_table.texture_start;
5141
5142 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5143 break;
5144 }
5145
5146 default:
5147 unreachable("unknown texture source");
5148 }
5149 }
5150
5151 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5152 (instr->op == nir_texop_txf_ms ||
5153 instr->op == nir_texop_samples_identical)) {
5154 if (devinfo->gen >= 7 &&
5155 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5156 srcs[TEX_LOGICAL_SRC_MCS] =
5157 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5158 instr->coord_components,
5159 srcs[TEX_LOGICAL_SRC_SURFACE]);
5160 } else {
5161 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5162 }
5163 }
5164
5165 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5166 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5167
5168 bool shader_supports_implicit_lod = stage == MESA_SHADER_FRAGMENT ||
5169 (stage == MESA_SHADER_COMPUTE &&
5170 nir->info.cs.derivative_group != DERIVATIVE_GROUP_NONE);
5171
5172 enum opcode opcode;
5173 switch (instr->op) {
5174 case nir_texop_tex:
5175 opcode = shader_supports_implicit_lod ?
5176 SHADER_OPCODE_TEX_LOGICAL : SHADER_OPCODE_TXL_LOGICAL;
5177 break;
5178 case nir_texop_txb:
5179 opcode = FS_OPCODE_TXB_LOGICAL;
5180 break;
5181 case nir_texop_txl:
5182 opcode = SHADER_OPCODE_TXL_LOGICAL;
5183 break;
5184 case nir_texop_txd:
5185 opcode = SHADER_OPCODE_TXD_LOGICAL;
5186 break;
5187 case nir_texop_txf:
5188 opcode = SHADER_OPCODE_TXF_LOGICAL;
5189 break;
5190 case nir_texop_txf_ms:
5191 if ((key_tex->msaa_16 & (1 << sampler)))
5192 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5193 else
5194 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5195 break;
5196 case nir_texop_txf_ms_mcs:
5197 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5198 break;
5199 case nir_texop_query_levels:
5200 case nir_texop_txs:
5201 opcode = SHADER_OPCODE_TXS_LOGICAL;
5202 break;
5203 case nir_texop_lod:
5204 opcode = SHADER_OPCODE_LOD_LOGICAL;
5205 break;
5206 case nir_texop_tg4:
5207 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5208 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5209 else
5210 opcode = SHADER_OPCODE_TG4_LOGICAL;
5211 break;
5212 case nir_texop_texture_samples:
5213 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5214 break;
5215 case nir_texop_samples_identical: {
5216 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5217
5218 /* If mcs is an immediate value, it means there is no MCS. In that case
5219 * just return false.
5220 */
5221 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5222 bld.MOV(dst, brw_imm_ud(0u));
5223 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5224 fs_reg tmp = vgrf(glsl_type::uint_type);
5225 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5226 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5227 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5228 } else {
5229 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5230 BRW_CONDITIONAL_EQ);
5231 }
5232 return;
5233 }
5234 default:
5235 unreachable("unknown texture opcode");
5236 }
5237
5238 if (instr->op == nir_texop_tg4) {
5239 if (instr->component == 1 &&
5240 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5241 /* gather4 sampler is broken for green channel on RG32F --
5242 * we must ask for blue instead.
5243 */
5244 header_bits |= 2 << 16;
5245 } else {
5246 header_bits |= instr->component << 16;
5247 }
5248 }
5249
5250 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5251 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5252 inst->offset = header_bits;
5253
5254 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5255 if (devinfo->gen >= 9 &&
5256 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5257 unsigned write_mask = instr->dest.is_ssa ?
5258 nir_ssa_def_components_read(&instr->dest.ssa):
5259 (1 << dest_size) - 1;
5260 assert(write_mask != 0); /* dead code should have been eliminated */
5261 inst->size_written = util_last_bit(write_mask) *
5262 inst->dst.component_size(inst->exec_size);
5263 } else {
5264 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5265 }
5266
5267 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5268 inst->shadow_compare = true;
5269
5270 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5271 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5272
5273 fs_reg nir_dest[4];
5274 for (unsigned i = 0; i < dest_size; i++)
5275 nir_dest[i] = offset(dst, bld, i);
5276
5277 if (instr->op == nir_texop_query_levels) {
5278 /* # levels is in .w */
5279 nir_dest[0] = offset(dst, bld, 3);
5280 } else if (instr->op == nir_texop_txs &&
5281 dest_size >= 3 && devinfo->gen < 7) {
5282 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5283 fs_reg depth = offset(dst, bld, 2);
5284 nir_dest[2] = vgrf(glsl_type::int_type);
5285 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5286 }
5287
5288 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5289 }
5290
5291 void
5292 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5293 {
5294 switch (instr->type) {
5295 case nir_jump_break:
5296 bld.emit(BRW_OPCODE_BREAK);
5297 break;
5298 case nir_jump_continue:
5299 bld.emit(BRW_OPCODE_CONTINUE);
5300 break;
5301 case nir_jump_return:
5302 default:
5303 unreachable("unknown jump");
5304 }
5305 }
5306
5307 /*
5308 * This helper takes a source register and un/shuffles it into the destination
5309 * register.
5310 *
5311 * If source type size is smaller than destination type size the operation
5312 * needed is a component shuffle. The opposite case would be an unshuffle. If
5313 * source/destination type size is equal a shuffle is done that would be
5314 * equivalent to a simple MOV.
5315 *
5316 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5317 * components .xyz 16-bit vector on SIMD8 would be.
5318 *
5319 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5320 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5321 *
5322 * This helper will return the following 2 32-bit components with the 16-bit
5323 * values shuffled:
5324 *
5325 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5326 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5327 *
5328 * For unshuffle, the example would be the opposite, a 64-bit type source
5329 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5330 * would be:
5331 *
5332 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5333 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5334 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5335 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5336 *
5337 * The returned result would be the following 4 32-bit components unshuffled:
5338 *
5339 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5340 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5341 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5342 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5343 *
5344 * - Source and destination register must not be overlapped.
5345 * - components units are measured in terms of the smaller type between
5346 * source and destination because we are un/shuffling the smaller
5347 * components from/into the bigger ones.
5348 * - first_component parameter allows skipping source components.
5349 */
5350 void
5351 shuffle_src_to_dst(const fs_builder &bld,
5352 const fs_reg &dst,
5353 const fs_reg &src,
5354 uint32_t first_component,
5355 uint32_t components)
5356 {
5357 if (type_sz(src.type) == type_sz(dst.type)) {
5358 assert(!regions_overlap(dst,
5359 type_sz(dst.type) * bld.dispatch_width() * components,
5360 offset(src, bld, first_component),
5361 type_sz(src.type) * bld.dispatch_width() * components));
5362 for (unsigned i = 0; i < components; i++) {
5363 bld.MOV(retype(offset(dst, bld, i), src.type),
5364 offset(src, bld, i + first_component));
5365 }
5366 } else if (type_sz(src.type) < type_sz(dst.type)) {
5367 /* Source is shuffled into destination */
5368 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5369 assert(!regions_overlap(dst,
5370 type_sz(dst.type) * bld.dispatch_width() *
5371 DIV_ROUND_UP(components, size_ratio),
5372 offset(src, bld, first_component),
5373 type_sz(src.type) * bld.dispatch_width() * components));
5374
5375 brw_reg_type shuffle_type =
5376 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5377 BRW_REGISTER_TYPE_D);
5378 for (unsigned i = 0; i < components; i++) {
5379 fs_reg shuffle_component_i =
5380 subscript(offset(dst, bld, i / size_ratio),
5381 shuffle_type, i % size_ratio);
5382 bld.MOV(shuffle_component_i,
5383 retype(offset(src, bld, i + first_component), shuffle_type));
5384 }
5385 } else {
5386 /* Source is unshuffled into destination */
5387 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5388 assert(!regions_overlap(dst,
5389 type_sz(dst.type) * bld.dispatch_width() * components,
5390 offset(src, bld, first_component / size_ratio),
5391 type_sz(src.type) * bld.dispatch_width() *
5392 DIV_ROUND_UP(components + (first_component % size_ratio),
5393 size_ratio)));
5394
5395 brw_reg_type shuffle_type =
5396 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5397 BRW_REGISTER_TYPE_D);
5398 for (unsigned i = 0; i < components; i++) {
5399 fs_reg shuffle_component_i =
5400 subscript(offset(src, bld, (first_component + i) / size_ratio),
5401 shuffle_type, (first_component + i) % size_ratio);
5402 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5403 shuffle_component_i);
5404 }
5405 }
5406 }
5407
5408 void
5409 shuffle_from_32bit_read(const fs_builder &bld,
5410 const fs_reg &dst,
5411 const fs_reg &src,
5412 uint32_t first_component,
5413 uint32_t components)
5414 {
5415 assert(type_sz(src.type) == 4);
5416
5417 /* This function takes components in units of the destination type while
5418 * shuffle_src_to_dst takes components in units of the smallest type
5419 */
5420 if (type_sz(dst.type) > 4) {
5421 assert(type_sz(dst.type) == 8);
5422 first_component *= 2;
5423 components *= 2;
5424 }
5425
5426 shuffle_src_to_dst(bld, dst, src, first_component, components);
5427 }
5428
5429 fs_reg
5430 shuffle_for_32bit_write(const fs_builder &bld,
5431 const fs_reg &src,
5432 uint32_t first_component,
5433 uint32_t components)
5434 {
5435 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5436 DIV_ROUND_UP (components * type_sz(src.type), 4));
5437 /* This function takes components in units of the source type while
5438 * shuffle_src_to_dst takes components in units of the smallest type
5439 */
5440 if (type_sz(src.type) > 4) {
5441 assert(type_sz(src.type) == 8);
5442 first_component *= 2;
5443 components *= 2;
5444 }
5445
5446 shuffle_src_to_dst(bld, dst, src, first_component, components);
5447
5448 return dst;
5449 }
5450
5451 fs_reg
5452 setup_imm_df(const fs_builder &bld, double v)
5453 {
5454 const struct gen_device_info *devinfo = bld.shader->devinfo;
5455 assert(devinfo->gen >= 7);
5456
5457 if (devinfo->gen >= 8)
5458 return brw_imm_df(v);
5459
5460 /* gen7.5 does not support DF immediates straighforward but the DIM
5461 * instruction allows to set the 64-bit immediate value.
5462 */
5463 if (devinfo->is_haswell) {
5464 const fs_builder ubld = bld.exec_all().group(1, 0);
5465 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5466 ubld.DIM(dst, brw_imm_df(v));
5467 return component(dst, 0);
5468 }
5469
5470 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5471 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5472 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5473 *
5474 * Alternatively, we could also produce a normal VGRF (without stride 0)
5475 * by writing to all the channels in the VGRF, however, that would hit the
5476 * gen7 bug where we have to split writes that span more than 1 register
5477 * into instructions with a width of 4 (otherwise the write to the second
5478 * register written runs into an execmask hardware bug) which isn't very
5479 * nice.
5480 */
5481 union {
5482 double d;
5483 struct {
5484 uint32_t i1;
5485 uint32_t i2;
5486 };
5487 } di;
5488
5489 di.d = v;
5490
5491 const fs_builder ubld = bld.exec_all().group(1, 0);
5492 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5493 ubld.MOV(tmp, brw_imm_ud(di.i1));
5494 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5495
5496 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5497 }
5498
5499 fs_reg
5500 setup_imm_b(const fs_builder &bld, int8_t v)
5501 {
5502 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5503 bld.MOV(tmp, brw_imm_w(v));
5504 return tmp;
5505 }
5506
5507 fs_reg
5508 setup_imm_ub(const fs_builder &bld, uint8_t v)
5509 {
5510 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5511 bld.MOV(tmp, brw_imm_uw(v));
5512 return tmp;
5513 }