intel/fs: New shuffle_for_32bit_write and shuffle_from_32bit_read
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 nir_foreach_variable(var, &nir->outputs) {
71 const int loc = var->data.driver_location;
72 if (outputs[loc].file == BAD_FILE) {
73 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s[loc]);
74 for (unsigned i = 0; i < vec4s[loc]; i++) {
75 outputs[loc + i] = offset(reg, bld, 4 * i);
76 }
77 }
78 }
79 }
80
81 void
82 fs_visitor::nir_setup_uniforms()
83 {
84 /* Only the first compile gets to set up uniforms. */
85 if (push_constant_loc) {
86 assert(pull_constant_loc);
87 return;
88 }
89
90 uniforms = nir->num_uniforms / 4;
91
92 if (stage == MESA_SHADER_COMPUTE) {
93 /* Add a uniform for the thread local id. It must be the last uniform
94 * on the list.
95 */
96 assert(uniforms == prog_data->nr_params);
97 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
98 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
99 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
100 }
101 }
102
103 static bool
104 emit_system_values_block(nir_block *block, fs_visitor *v)
105 {
106 fs_reg *reg;
107
108 nir_foreach_instr(instr, block) {
109 if (instr->type != nir_instr_type_intrinsic)
110 continue;
111
112 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
113 switch (intrin->intrinsic) {
114 case nir_intrinsic_load_vertex_id:
115 case nir_intrinsic_load_base_vertex:
116 unreachable("should be lowered by nir_lower_system_values().");
117
118 case nir_intrinsic_load_vertex_id_zero_base:
119 case nir_intrinsic_load_is_indexed_draw:
120 case nir_intrinsic_load_first_vertex:
121 case nir_intrinsic_load_instance_id:
122 case nir_intrinsic_load_base_instance:
123 case nir_intrinsic_load_draw_id:
124 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
125
126 case nir_intrinsic_load_invocation_id:
127 if (v->stage == MESA_SHADER_TESS_CTRL)
128 break;
129 assert(v->stage == MESA_SHADER_GEOMETRY);
130 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
131 if (reg->file == BAD_FILE) {
132 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
133 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
134 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
135 abld.SHR(iid, g1, brw_imm_ud(27u));
136 *reg = iid;
137 }
138 break;
139
140 case nir_intrinsic_load_sample_pos:
141 assert(v->stage == MESA_SHADER_FRAGMENT);
142 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
143 if (reg->file == BAD_FILE)
144 *reg = *v->emit_samplepos_setup();
145 break;
146
147 case nir_intrinsic_load_sample_id:
148 assert(v->stage == MESA_SHADER_FRAGMENT);
149 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
150 if (reg->file == BAD_FILE)
151 *reg = *v->emit_sampleid_setup();
152 break;
153
154 case nir_intrinsic_load_sample_mask_in:
155 assert(v->stage == MESA_SHADER_FRAGMENT);
156 assert(v->devinfo->gen >= 7);
157 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
158 if (reg->file == BAD_FILE)
159 *reg = *v->emit_samplemaskin_setup();
160 break;
161
162 case nir_intrinsic_load_work_group_id:
163 assert(v->stage == MESA_SHADER_COMPUTE);
164 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
165 if (reg->file == BAD_FILE)
166 *reg = *v->emit_cs_work_group_id_setup();
167 break;
168
169 case nir_intrinsic_load_helper_invocation:
170 assert(v->stage == MESA_SHADER_FRAGMENT);
171 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
172 if (reg->file == BAD_FILE) {
173 const fs_builder abld =
174 v->bld.annotate("gl_HelperInvocation", NULL);
175
176 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
177 * pixel mask is in g1.7 of the thread payload.
178 *
179 * We move the per-channel pixel enable bit to the low bit of each
180 * channel by shifting the byte containing the pixel mask by the
181 * vector immediate 0x76543210UV.
182 *
183 * The region of <1,8,0> reads only 1 byte (the pixel masks for
184 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
185 * masks for 2 and 3) in SIMD16.
186 */
187 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
188 abld.SHR(shifted,
189 stride(byte_offset(retype(brw_vec1_grf(1, 0),
190 BRW_REGISTER_TYPE_UB), 28),
191 1, 8, 0),
192 brw_imm_v(0x76543210));
193
194 /* A set bit in the pixel mask means the channel is enabled, but
195 * that is the opposite of gl_HelperInvocation so we need to invert
196 * the mask.
197 *
198 * The negate source-modifier bit of logical instructions on Gen8+
199 * performs 1's complement negation, so we can use that instead of
200 * a NOT instruction.
201 */
202 fs_reg inverted = negate(shifted);
203 if (v->devinfo->gen < 8) {
204 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
205 abld.NOT(inverted, shifted);
206 }
207
208 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
209 * with 1 and negating.
210 */
211 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
212 abld.AND(anded, inverted, brw_imm_uw(1));
213
214 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
215 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
216 *reg = dst;
217 }
218 break;
219
220 default:
221 break;
222 }
223 }
224
225 return true;
226 }
227
228 void
229 fs_visitor::nir_emit_system_values()
230 {
231 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
232 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
233 nir_system_values[i] = fs_reg();
234 }
235
236 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
237 * never end up using it.
238 */
239 {
240 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
241 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
242 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
243
244 const fs_builder allbld8 = abld.group(8, 0).exec_all();
245 allbld8.MOV(reg, brw_imm_v(0x76543210));
246 if (dispatch_width > 8)
247 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
248 if (dispatch_width > 16) {
249 const fs_builder allbld16 = abld.group(16, 0).exec_all();
250 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
251 }
252 }
253
254 nir_foreach_function(function, nir) {
255 assert(strcmp(function->name, "main") == 0);
256 assert(function->impl);
257 nir_foreach_block(block, function->impl) {
258 emit_system_values_block(block, this);
259 }
260 }
261 }
262
263 /*
264 * Returns a type based on a reference_type (word, float, half-float) and a
265 * given bit_size.
266 *
267 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
268 *
269 * @FIXME: 64-bit return types are always DF on integer types to maintain
270 * compability with uses of DF previously to the introduction of int64
271 * support.
272 */
273 static brw_reg_type
274 brw_reg_type_from_bit_size(const unsigned bit_size,
275 const brw_reg_type reference_type)
276 {
277 switch(reference_type) {
278 case BRW_REGISTER_TYPE_HF:
279 case BRW_REGISTER_TYPE_F:
280 case BRW_REGISTER_TYPE_DF:
281 switch(bit_size) {
282 case 16:
283 return BRW_REGISTER_TYPE_HF;
284 case 32:
285 return BRW_REGISTER_TYPE_F;
286 case 64:
287 return BRW_REGISTER_TYPE_DF;
288 default:
289 unreachable("Invalid bit size");
290 }
291 case BRW_REGISTER_TYPE_W:
292 case BRW_REGISTER_TYPE_D:
293 case BRW_REGISTER_TYPE_Q:
294 switch(bit_size) {
295 case 16:
296 return BRW_REGISTER_TYPE_W;
297 case 32:
298 return BRW_REGISTER_TYPE_D;
299 case 64:
300 return BRW_REGISTER_TYPE_Q;
301 default:
302 unreachable("Invalid bit size");
303 }
304 case BRW_REGISTER_TYPE_UW:
305 case BRW_REGISTER_TYPE_UD:
306 case BRW_REGISTER_TYPE_UQ:
307 switch(bit_size) {
308 case 16:
309 return BRW_REGISTER_TYPE_UW;
310 case 32:
311 return BRW_REGISTER_TYPE_UD;
312 case 64:
313 return BRW_REGISTER_TYPE_UQ;
314 default:
315 unreachable("Invalid bit size");
316 }
317 default:
318 unreachable("Unknown type");
319 }
320 }
321
322 void
323 fs_visitor::nir_emit_impl(nir_function_impl *impl)
324 {
325 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
326 for (unsigned i = 0; i < impl->reg_alloc; i++) {
327 nir_locals[i] = fs_reg();
328 }
329
330 foreach_list_typed(nir_register, reg, node, &impl->registers) {
331 unsigned array_elems =
332 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
333 unsigned size = array_elems * reg->num_components;
334 const brw_reg_type reg_type =
335 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
336 nir_locals[reg->index] = bld.vgrf(reg_type, size);
337 }
338
339 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
340 impl->ssa_alloc);
341
342 nir_emit_cf_list(&impl->body);
343 }
344
345 void
346 fs_visitor::nir_emit_cf_list(exec_list *list)
347 {
348 exec_list_validate(list);
349 foreach_list_typed(nir_cf_node, node, node, list) {
350 switch (node->type) {
351 case nir_cf_node_if:
352 nir_emit_if(nir_cf_node_as_if(node));
353 break;
354
355 case nir_cf_node_loop:
356 nir_emit_loop(nir_cf_node_as_loop(node));
357 break;
358
359 case nir_cf_node_block:
360 nir_emit_block(nir_cf_node_as_block(node));
361 break;
362
363 default:
364 unreachable("Invalid CFG node block");
365 }
366 }
367 }
368
369 void
370 fs_visitor::nir_emit_if(nir_if *if_stmt)
371 {
372 /* first, put the condition into f0 */
373 fs_inst *inst = bld.MOV(bld.null_reg_d(),
374 retype(get_nir_src(if_stmt->condition),
375 BRW_REGISTER_TYPE_D));
376 inst->conditional_mod = BRW_CONDITIONAL_NZ;
377
378 bld.IF(BRW_PREDICATE_NORMAL);
379
380 nir_emit_cf_list(&if_stmt->then_list);
381
382 /* note: if the else is empty, dead CF elimination will remove it */
383 bld.emit(BRW_OPCODE_ELSE);
384
385 nir_emit_cf_list(&if_stmt->else_list);
386
387 bld.emit(BRW_OPCODE_ENDIF);
388 }
389
390 void
391 fs_visitor::nir_emit_loop(nir_loop *loop)
392 {
393 bld.emit(BRW_OPCODE_DO);
394
395 nir_emit_cf_list(&loop->body);
396
397 bld.emit(BRW_OPCODE_WHILE);
398 }
399
400 void
401 fs_visitor::nir_emit_block(nir_block *block)
402 {
403 nir_foreach_instr(instr, block) {
404 nir_emit_instr(instr);
405 }
406 }
407
408 void
409 fs_visitor::nir_emit_instr(nir_instr *instr)
410 {
411 const fs_builder abld = bld.annotate(NULL, instr);
412
413 switch (instr->type) {
414 case nir_instr_type_alu:
415 nir_emit_alu(abld, nir_instr_as_alu(instr));
416 break;
417
418 case nir_instr_type_intrinsic:
419 switch (stage) {
420 case MESA_SHADER_VERTEX:
421 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
422 break;
423 case MESA_SHADER_TESS_CTRL:
424 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
425 break;
426 case MESA_SHADER_TESS_EVAL:
427 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
428 break;
429 case MESA_SHADER_GEOMETRY:
430 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
431 break;
432 case MESA_SHADER_FRAGMENT:
433 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
434 break;
435 case MESA_SHADER_COMPUTE:
436 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
437 break;
438 default:
439 unreachable("unsupported shader stage");
440 }
441 break;
442
443 case nir_instr_type_tex:
444 nir_emit_texture(abld, nir_instr_as_tex(instr));
445 break;
446
447 case nir_instr_type_load_const:
448 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
449 break;
450
451 case nir_instr_type_ssa_undef:
452 /* We create a new VGRF for undefs on every use (by handling
453 * them in get_nir_src()), rather than for each definition.
454 * This helps register coalescing eliminate MOVs from undef.
455 */
456 break;
457
458 case nir_instr_type_jump:
459 nir_emit_jump(abld, nir_instr_as_jump(instr));
460 break;
461
462 default:
463 unreachable("unknown instruction type");
464 }
465 }
466
467 /**
468 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
469 * match instr.
470 */
471 bool
472 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
473 const fs_reg &result)
474 {
475 if (!instr->src[0].src.is_ssa ||
476 !instr->src[0].src.ssa->parent_instr)
477 return false;
478
479 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
480 return false;
481
482 nir_alu_instr *src0 =
483 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
484
485 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
486 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
487 return false;
488
489 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
490 assert(element != NULL);
491
492 /* Element type to extract.*/
493 const brw_reg_type type = brw_int_type(
494 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
495 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
496
497 fs_reg op0 = get_nir_src(src0->src[0].src);
498 op0.type = brw_type_for_nir_type(devinfo,
499 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
500 nir_src_bit_size(src0->src[0].src)));
501 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
502
503 set_saturate(instr->dest.saturate,
504 bld.MOV(result, subscript(op0, type, element->u32[0])));
505 return true;
506 }
507
508 bool
509 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
510 const fs_reg &result)
511 {
512 if (!instr->src[0].src.is_ssa ||
513 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
514 return false;
515
516 nir_intrinsic_instr *src0 =
517 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
518
519 if (src0->intrinsic != nir_intrinsic_load_front_face)
520 return false;
521
522 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
523 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
524 return false;
525
526 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
527 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
528 return false;
529
530 fs_reg tmp = vgrf(glsl_type::int_type);
531
532 if (devinfo->gen >= 6) {
533 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
534 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
535
536 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
537 *
538 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
539 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
540 *
541 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
542 *
543 * This negation looks like it's safe in practice, because bits 0:4 will
544 * surely be TRIANGLES
545 */
546
547 if (value1->f32[0] == -1.0f) {
548 g0.negate = true;
549 }
550
551 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
552 g0, brw_imm_uw(0x3f80));
553 } else {
554 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
555 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
556
557 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
558 *
559 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
560 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
561 *
562 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
563 *
564 * This negation looks like it's safe in practice, because bits 0:4 will
565 * surely be TRIANGLES
566 */
567
568 if (value1->f32[0] == -1.0f) {
569 g1_6.negate = true;
570 }
571
572 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
573 }
574 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
575
576 return true;
577 }
578
579 static void
580 emit_find_msb_using_lzd(const fs_builder &bld,
581 const fs_reg &result,
582 const fs_reg &src,
583 bool is_signed)
584 {
585 fs_inst *inst;
586 fs_reg temp = src;
587
588 if (is_signed) {
589 /* LZD of an absolute value source almost always does the right
590 * thing. There are two problem values:
591 *
592 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
593 * 0. However, findMSB(int(0x80000000)) == 30.
594 *
595 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
596 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
597 *
598 * For a value of zero or negative one, -1 will be returned.
599 *
600 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
601 * findMSB(-(1<<x)) should return x-1.
602 *
603 * For all negative number cases, including 0x80000000 and
604 * 0xffffffff, the correct value is obtained from LZD if instead of
605 * negating the (already negative) value the logical-not is used. A
606 * conditonal logical-not can be achieved in two instructions.
607 */
608 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
609
610 bld.ASR(temp, src, brw_imm_d(31));
611 bld.XOR(temp, temp, src);
612 }
613
614 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
615 retype(temp, BRW_REGISTER_TYPE_UD));
616
617 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
618 * from the LSB side. Subtract the result from 31 to convert the MSB
619 * count into an LSB count. If no bits are set, LZD will return 32.
620 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
621 */
622 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
623 inst->src[0].negate = true;
624 }
625
626 static brw_rnd_mode
627 brw_rnd_mode_from_nir_op (const nir_op op) {
628 switch (op) {
629 case nir_op_f2f16_rtz:
630 return BRW_RND_MODE_RTZ;
631 case nir_op_f2f16_rtne:
632 return BRW_RND_MODE_RTNE;
633 default:
634 unreachable("Operation doesn't support rounding mode");
635 }
636 }
637
638 void
639 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
640 {
641 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
642 fs_inst *inst;
643
644 fs_reg result = get_nir_dest(instr->dest.dest);
645 result.type = brw_type_for_nir_type(devinfo,
646 (nir_alu_type)(nir_op_infos[instr->op].output_type |
647 nir_dest_bit_size(instr->dest.dest)));
648
649 fs_reg op[4];
650 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
651 op[i] = get_nir_src(instr->src[i].src);
652 op[i].type = brw_type_for_nir_type(devinfo,
653 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
654 nir_src_bit_size(instr->src[i].src)));
655 op[i].abs = instr->src[i].abs;
656 op[i].negate = instr->src[i].negate;
657 }
658
659 /* We get a bunch of mov's out of the from_ssa pass and they may still
660 * be vectorized. We'll handle them as a special-case. We'll also
661 * handle vecN here because it's basically the same thing.
662 */
663 switch (instr->op) {
664 case nir_op_imov:
665 case nir_op_fmov:
666 case nir_op_vec2:
667 case nir_op_vec3:
668 case nir_op_vec4: {
669 fs_reg temp = result;
670 bool need_extra_copy = false;
671 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
672 if (!instr->src[i].src.is_ssa &&
673 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
674 need_extra_copy = true;
675 temp = bld.vgrf(result.type, 4);
676 break;
677 }
678 }
679
680 for (unsigned i = 0; i < 4; i++) {
681 if (!(instr->dest.write_mask & (1 << i)))
682 continue;
683
684 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
685 inst = bld.MOV(offset(temp, bld, i),
686 offset(op[0], bld, instr->src[0].swizzle[i]));
687 } else {
688 inst = bld.MOV(offset(temp, bld, i),
689 offset(op[i], bld, instr->src[i].swizzle[0]));
690 }
691 inst->saturate = instr->dest.saturate;
692 }
693
694 /* In this case the source and destination registers were the same,
695 * so we need to insert an extra set of moves in order to deal with
696 * any swizzling.
697 */
698 if (need_extra_copy) {
699 for (unsigned i = 0; i < 4; i++) {
700 if (!(instr->dest.write_mask & (1 << i)))
701 continue;
702
703 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
704 }
705 }
706 return;
707 }
708 default:
709 break;
710 }
711
712 /* At this point, we have dealt with any instruction that operates on
713 * more than a single channel. Therefore, we can just adjust the source
714 * and destination registers for that channel and emit the instruction.
715 */
716 unsigned channel = 0;
717 if (nir_op_infos[instr->op].output_size == 0) {
718 /* Since NIR is doing the scalarizing for us, we should only ever see
719 * vectorized operations with a single channel.
720 */
721 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
722 channel = ffs(instr->dest.write_mask) - 1;
723
724 result = offset(result, bld, channel);
725 }
726
727 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
728 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
729 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
730 }
731
732 switch (instr->op) {
733 case nir_op_i2f32:
734 case nir_op_u2f32:
735 if (optimize_extract_to_float(instr, result))
736 return;
737 inst = bld.MOV(result, op[0]);
738 inst->saturate = instr->dest.saturate;
739 break;
740
741 case nir_op_f2f16_rtne:
742 case nir_op_f2f16_rtz:
743 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
744 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
745 /* fallthrough */
746
747 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
748 * on the HW gen, it is a special hw opcode or just a MOV, and
749 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
750 *
751 * But if we want to use that opcode, we need to provide support on
752 * different optimizations and lowerings. As right now HF support is
753 * only for gen8+, it will be better to use directly the MOV, and use
754 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
755 */
756
757 case nir_op_f2f16_undef:
758 inst = bld.MOV(result, op[0]);
759 inst->saturate = instr->dest.saturate;
760 break;
761
762 case nir_op_f2f64:
763 case nir_op_f2i64:
764 case nir_op_f2u64:
765 case nir_op_i2f64:
766 case nir_op_i2i64:
767 case nir_op_u2f64:
768 case nir_op_u2u64:
769 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
770 *
771 * "When source or destination is 64b (...), regioning in Align1
772 * must follow these rules:
773 *
774 * 1. Source and destination horizontal stride must be aligned to
775 * the same qword.
776 * (...)"
777 *
778 * This means that conversions from bit-sizes smaller than 64-bit to
779 * 64-bit need to have the source data elements aligned to 64-bit.
780 * This restriction does not apply to BDW and later.
781 */
782 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
783 nir_src_bit_size(instr->src[0].src) < 64 &&
784 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
785 fs_reg tmp = bld.vgrf(result.type, 1);
786 tmp = subscript(tmp, op[0].type, 0);
787 inst = bld.MOV(tmp, op[0]);
788 inst = bld.MOV(result, tmp);
789 inst->saturate = instr->dest.saturate;
790 break;
791 }
792 /* fallthrough */
793 case nir_op_f2f32:
794 case nir_op_f2i32:
795 case nir_op_f2u32:
796 case nir_op_f2i16:
797 case nir_op_f2u16:
798 case nir_op_i2i32:
799 case nir_op_u2u32:
800 case nir_op_i2i16:
801 case nir_op_u2u16:
802 case nir_op_i2f16:
803 case nir_op_u2f16:
804 inst = bld.MOV(result, op[0]);
805 inst->saturate = instr->dest.saturate;
806 break;
807
808 case nir_op_fsign: {
809 if (op[0].abs) {
810 /* Straightforward since the source can be assumed to be
811 * non-negative.
812 */
813 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
814 set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
815
816 } else if (type_sz(op[0].type) < 8) {
817 /* AND(val, 0x80000000) gives the sign bit.
818 *
819 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
820 * zero.
821 */
822 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
823
824 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
825 op[0].type = BRW_REGISTER_TYPE_UD;
826 result.type = BRW_REGISTER_TYPE_UD;
827 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
828
829 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
830 inst->predicate = BRW_PREDICATE_NORMAL;
831 if (instr->dest.saturate) {
832 inst = bld.MOV(result, result);
833 inst->saturate = true;
834 }
835 } else {
836 /* For doubles we do the same but we need to consider:
837 *
838 * - 2-src instructions can't operate with 64-bit immediates
839 * - The sign is encoded in the high 32-bit of each DF
840 * - We need to produce a DF result.
841 */
842
843 fs_reg zero = vgrf(glsl_type::double_type);
844 bld.MOV(zero, setup_imm_df(bld, 0.0));
845 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
846
847 bld.MOV(result, zero);
848
849 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
850 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
851 brw_imm_ud(0x80000000u));
852
853 set_predicate(BRW_PREDICATE_NORMAL,
854 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
855
856 if (instr->dest.saturate) {
857 inst = bld.MOV(result, result);
858 inst->saturate = true;
859 }
860 }
861 break;
862 }
863
864 case nir_op_isign: {
865 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
866 * -> non-negative val generates 0x00000000.
867 * Predicated OR sets 1 if val is positive.
868 */
869 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
870 assert(bit_size == 32 || bit_size == 16);
871
872 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
873 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
874 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
875
876 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
877 bld.ASR(result, op[0], shift);
878 inst = bld.OR(result, result, one);
879 inst->predicate = BRW_PREDICATE_NORMAL;
880 break;
881 }
882
883 case nir_op_frcp:
884 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
885 inst->saturate = instr->dest.saturate;
886 break;
887
888 case nir_op_fexp2:
889 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
890 inst->saturate = instr->dest.saturate;
891 break;
892
893 case nir_op_flog2:
894 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
895 inst->saturate = instr->dest.saturate;
896 break;
897
898 case nir_op_fsin:
899 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
900 inst->saturate = instr->dest.saturate;
901 break;
902
903 case nir_op_fcos:
904 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
905 inst->saturate = instr->dest.saturate;
906 break;
907
908 case nir_op_fddx:
909 if (fs_key->high_quality_derivatives) {
910 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
911 } else {
912 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
913 }
914 inst->saturate = instr->dest.saturate;
915 break;
916 case nir_op_fddx_fine:
917 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
918 inst->saturate = instr->dest.saturate;
919 break;
920 case nir_op_fddx_coarse:
921 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
922 inst->saturate = instr->dest.saturate;
923 break;
924 case nir_op_fddy:
925 if (fs_key->high_quality_derivatives) {
926 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
927 } else {
928 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
929 }
930 inst->saturate = instr->dest.saturate;
931 break;
932 case nir_op_fddy_fine:
933 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936 case nir_op_fddy_coarse:
937 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
938 inst->saturate = instr->dest.saturate;
939 break;
940
941 case nir_op_iadd:
942 case nir_op_fadd:
943 inst = bld.ADD(result, op[0], op[1]);
944 inst->saturate = instr->dest.saturate;
945 break;
946
947 case nir_op_fmul:
948 inst = bld.MUL(result, op[0], op[1]);
949 inst->saturate = instr->dest.saturate;
950 break;
951
952 case nir_op_imul:
953 assert(nir_dest_bit_size(instr->dest.dest) < 64);
954 bld.MUL(result, op[0], op[1]);
955 break;
956
957 case nir_op_imul_high:
958 case nir_op_umul_high:
959 assert(nir_dest_bit_size(instr->dest.dest) < 64);
960 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
961 break;
962
963 case nir_op_idiv:
964 case nir_op_udiv:
965 assert(nir_dest_bit_size(instr->dest.dest) < 64);
966 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
967 break;
968
969 case nir_op_uadd_carry:
970 unreachable("Should have been lowered by carry_to_arith().");
971
972 case nir_op_usub_borrow:
973 unreachable("Should have been lowered by borrow_to_arith().");
974
975 case nir_op_umod:
976 case nir_op_irem:
977 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
978 * appears that our hardware just does the right thing for signed
979 * remainder.
980 */
981 assert(nir_dest_bit_size(instr->dest.dest) < 64);
982 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
983 break;
984
985 case nir_op_imod: {
986 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
987 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
988
989 /* Math instructions don't support conditional mod */
990 inst = bld.MOV(bld.null_reg_d(), result);
991 inst->conditional_mod = BRW_CONDITIONAL_NZ;
992
993 /* Now, we need to determine if signs of the sources are different.
994 * When we XOR the sources, the top bit is 0 if they are the same and 1
995 * if they are different. We can then use a conditional modifier to
996 * turn that into a predicate. This leads us to an XOR.l instruction.
997 *
998 * Technically, according to the PRM, you're not allowed to use .l on a
999 * XOR instruction. However, emperical experiments and Curro's reading
1000 * of the simulator source both indicate that it's safe.
1001 */
1002 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1003 inst = bld.XOR(tmp, op[0], op[1]);
1004 inst->predicate = BRW_PREDICATE_NORMAL;
1005 inst->conditional_mod = BRW_CONDITIONAL_L;
1006
1007 /* If the result of the initial remainder operation is non-zero and the
1008 * two sources have different signs, add in a copy of op[1] to get the
1009 * final integer modulus value.
1010 */
1011 inst = bld.ADD(result, result, op[1]);
1012 inst->predicate = BRW_PREDICATE_NORMAL;
1013 break;
1014 }
1015
1016 case nir_op_flt:
1017 case nir_op_fge:
1018 case nir_op_feq:
1019 case nir_op_fne: {
1020 fs_reg dest = result;
1021
1022 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1023 if (bit_size != 32)
1024 dest = bld.vgrf(op[0].type, 1);
1025
1026 brw_conditional_mod cond;
1027 switch (instr->op) {
1028 case nir_op_flt:
1029 cond = BRW_CONDITIONAL_L;
1030 break;
1031 case nir_op_fge:
1032 cond = BRW_CONDITIONAL_GE;
1033 break;
1034 case nir_op_feq:
1035 cond = BRW_CONDITIONAL_Z;
1036 break;
1037 case nir_op_fne:
1038 cond = BRW_CONDITIONAL_NZ;
1039 break;
1040 default:
1041 unreachable("bad opcode");
1042 }
1043
1044 bld.CMP(dest, op[0], op[1], cond);
1045
1046 if (bit_size > 32) {
1047 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1048 } else if(bit_size < 32) {
1049 /* When we convert the result to 32-bit we need to be careful and do
1050 * it as a signed conversion to get sign extension (for 32-bit true)
1051 */
1052 const brw_reg_type src_type =
1053 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1054
1055 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1056 }
1057 break;
1058 }
1059
1060 case nir_op_ilt:
1061 case nir_op_ult:
1062 case nir_op_ige:
1063 case nir_op_uge:
1064 case nir_op_ieq:
1065 case nir_op_ine: {
1066 fs_reg dest = result;
1067
1068 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1069 if (bit_size != 32)
1070 dest = bld.vgrf(op[0].type, 1);
1071
1072 brw_conditional_mod cond;
1073 switch (instr->op) {
1074 case nir_op_ilt:
1075 case nir_op_ult:
1076 cond = BRW_CONDITIONAL_L;
1077 break;
1078 case nir_op_ige:
1079 case nir_op_uge:
1080 cond = BRW_CONDITIONAL_GE;
1081 break;
1082 case nir_op_ieq:
1083 cond = BRW_CONDITIONAL_Z;
1084 break;
1085 case nir_op_ine:
1086 cond = BRW_CONDITIONAL_NZ;
1087 break;
1088 default:
1089 unreachable("bad opcode");
1090 }
1091 bld.CMP(dest, op[0], op[1], cond);
1092
1093 if (bit_size > 32) {
1094 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1095 } else if (bit_size < 32) {
1096 /* When we convert the result to 32-bit we need to be careful and do
1097 * it as a signed conversion to get sign extension (for 32-bit true)
1098 */
1099 const brw_reg_type src_type =
1100 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1101
1102 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1103 }
1104 break;
1105 }
1106
1107 case nir_op_inot:
1108 if (devinfo->gen >= 8) {
1109 op[0] = resolve_source_modifiers(op[0]);
1110 }
1111 bld.NOT(result, op[0]);
1112 break;
1113 case nir_op_ixor:
1114 if (devinfo->gen >= 8) {
1115 op[0] = resolve_source_modifiers(op[0]);
1116 op[1] = resolve_source_modifiers(op[1]);
1117 }
1118 bld.XOR(result, op[0], op[1]);
1119 break;
1120 case nir_op_ior:
1121 if (devinfo->gen >= 8) {
1122 op[0] = resolve_source_modifiers(op[0]);
1123 op[1] = resolve_source_modifiers(op[1]);
1124 }
1125 bld.OR(result, op[0], op[1]);
1126 break;
1127 case nir_op_iand:
1128 if (devinfo->gen >= 8) {
1129 op[0] = resolve_source_modifiers(op[0]);
1130 op[1] = resolve_source_modifiers(op[1]);
1131 }
1132 bld.AND(result, op[0], op[1]);
1133 break;
1134
1135 case nir_op_fdot2:
1136 case nir_op_fdot3:
1137 case nir_op_fdot4:
1138 case nir_op_ball_fequal2:
1139 case nir_op_ball_iequal2:
1140 case nir_op_ball_fequal3:
1141 case nir_op_ball_iequal3:
1142 case nir_op_ball_fequal4:
1143 case nir_op_ball_iequal4:
1144 case nir_op_bany_fnequal2:
1145 case nir_op_bany_inequal2:
1146 case nir_op_bany_fnequal3:
1147 case nir_op_bany_inequal3:
1148 case nir_op_bany_fnequal4:
1149 case nir_op_bany_inequal4:
1150 unreachable("Lowered by nir_lower_alu_reductions");
1151
1152 case nir_op_fnoise1_1:
1153 case nir_op_fnoise1_2:
1154 case nir_op_fnoise1_3:
1155 case nir_op_fnoise1_4:
1156 case nir_op_fnoise2_1:
1157 case nir_op_fnoise2_2:
1158 case nir_op_fnoise2_3:
1159 case nir_op_fnoise2_4:
1160 case nir_op_fnoise3_1:
1161 case nir_op_fnoise3_2:
1162 case nir_op_fnoise3_3:
1163 case nir_op_fnoise3_4:
1164 case nir_op_fnoise4_1:
1165 case nir_op_fnoise4_2:
1166 case nir_op_fnoise4_3:
1167 case nir_op_fnoise4_4:
1168 unreachable("not reached: should be handled by lower_noise");
1169
1170 case nir_op_ldexp:
1171 unreachable("not reached: should be handled by ldexp_to_arith()");
1172
1173 case nir_op_fsqrt:
1174 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1175 inst->saturate = instr->dest.saturate;
1176 break;
1177
1178 case nir_op_frsq:
1179 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1180 inst->saturate = instr->dest.saturate;
1181 break;
1182
1183 case nir_op_b2i:
1184 case nir_op_b2f:
1185 bld.MOV(result, negate(op[0]));
1186 break;
1187
1188 case nir_op_i2b:
1189 case nir_op_f2b: {
1190 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1191 if (bit_size == 64) {
1192 /* two-argument instructions can't take 64-bit immediates */
1193 fs_reg zero;
1194 fs_reg tmp;
1195
1196 if (instr->op == nir_op_f2b) {
1197 zero = vgrf(glsl_type::double_type);
1198 tmp = vgrf(glsl_type::double_type);
1199 bld.MOV(zero, setup_imm_df(bld, 0.0));
1200 } else {
1201 zero = vgrf(glsl_type::int64_t_type);
1202 tmp = vgrf(glsl_type::int64_t_type);
1203 bld.MOV(zero, brw_imm_q(0));
1204 }
1205
1206 /* A SIMD16 execution needs to be split in two instructions, so use
1207 * a vgrf instead of the flag register as dst so instruction splitting
1208 * works
1209 */
1210 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1211 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1212 } else {
1213 fs_reg zero;
1214 if (bit_size == 32) {
1215 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1216 } else {
1217 assert(bit_size == 16);
1218 zero = instr->op == nir_op_f2b ?
1219 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1220 }
1221 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1222 }
1223 break;
1224 }
1225
1226 case nir_op_ftrunc:
1227 inst = bld.RNDZ(result, op[0]);
1228 inst->saturate = instr->dest.saturate;
1229 break;
1230
1231 case nir_op_fceil: {
1232 op[0].negate = !op[0].negate;
1233 fs_reg temp = vgrf(glsl_type::float_type);
1234 bld.RNDD(temp, op[0]);
1235 temp.negate = true;
1236 inst = bld.MOV(result, temp);
1237 inst->saturate = instr->dest.saturate;
1238 break;
1239 }
1240 case nir_op_ffloor:
1241 inst = bld.RNDD(result, op[0]);
1242 inst->saturate = instr->dest.saturate;
1243 break;
1244 case nir_op_ffract:
1245 inst = bld.FRC(result, op[0]);
1246 inst->saturate = instr->dest.saturate;
1247 break;
1248 case nir_op_fround_even:
1249 inst = bld.RNDE(result, op[0]);
1250 inst->saturate = instr->dest.saturate;
1251 break;
1252
1253 case nir_op_fquantize2f16: {
1254 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1255 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1256 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1257
1258 /* The destination stride must be at least as big as the source stride. */
1259 tmp16.type = BRW_REGISTER_TYPE_W;
1260 tmp16.stride = 2;
1261
1262 /* Check for denormal */
1263 fs_reg abs_src0 = op[0];
1264 abs_src0.abs = true;
1265 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1266 BRW_CONDITIONAL_L);
1267 /* Get the appropriately signed zero */
1268 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1269 retype(op[0], BRW_REGISTER_TYPE_UD),
1270 brw_imm_ud(0x80000000));
1271 /* Do the actual F32 -> F16 -> F32 conversion */
1272 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1273 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1274 /* Select that or zero based on normal status */
1275 inst = bld.SEL(result, zero, tmp32);
1276 inst->predicate = BRW_PREDICATE_NORMAL;
1277 inst->saturate = instr->dest.saturate;
1278 break;
1279 }
1280
1281 case nir_op_imin:
1282 case nir_op_umin:
1283 case nir_op_fmin:
1284 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1285 inst->saturate = instr->dest.saturate;
1286 break;
1287
1288 case nir_op_imax:
1289 case nir_op_umax:
1290 case nir_op_fmax:
1291 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1292 inst->saturate = instr->dest.saturate;
1293 break;
1294
1295 case nir_op_pack_snorm_2x16:
1296 case nir_op_pack_snorm_4x8:
1297 case nir_op_pack_unorm_2x16:
1298 case nir_op_pack_unorm_4x8:
1299 case nir_op_unpack_snorm_2x16:
1300 case nir_op_unpack_snorm_4x8:
1301 case nir_op_unpack_unorm_2x16:
1302 case nir_op_unpack_unorm_4x8:
1303 case nir_op_unpack_half_2x16:
1304 case nir_op_pack_half_2x16:
1305 unreachable("not reached: should be handled by lower_packing_builtins");
1306
1307 case nir_op_unpack_half_2x16_split_x:
1308 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1309 inst->saturate = instr->dest.saturate;
1310 break;
1311 case nir_op_unpack_half_2x16_split_y:
1312 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1313 inst->saturate = instr->dest.saturate;
1314 break;
1315
1316 case nir_op_pack_64_2x32_split:
1317 case nir_op_pack_32_2x16_split:
1318 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1319 break;
1320
1321 case nir_op_unpack_64_2x32_split_x:
1322 case nir_op_unpack_64_2x32_split_y: {
1323 if (instr->op == nir_op_unpack_64_2x32_split_x)
1324 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1325 else
1326 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1327 break;
1328 }
1329
1330 case nir_op_unpack_32_2x16_split_x:
1331 case nir_op_unpack_32_2x16_split_y: {
1332 if (instr->op == nir_op_unpack_32_2x16_split_x)
1333 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1334 else
1335 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1336 break;
1337 }
1338
1339 case nir_op_fpow:
1340 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1341 inst->saturate = instr->dest.saturate;
1342 break;
1343
1344 case nir_op_bitfield_reverse:
1345 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1346 bld.BFREV(result, op[0]);
1347 break;
1348
1349 case nir_op_bit_count:
1350 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1351 bld.CBIT(result, op[0]);
1352 break;
1353
1354 case nir_op_ufind_msb: {
1355 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1356 emit_find_msb_using_lzd(bld, result, op[0], false);
1357 break;
1358 }
1359
1360 case nir_op_ifind_msb: {
1361 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1362
1363 if (devinfo->gen < 7) {
1364 emit_find_msb_using_lzd(bld, result, op[0], true);
1365 } else {
1366 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1367
1368 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1369 * count from the LSB side. If FBH didn't return an error
1370 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1371 * count into an LSB count.
1372 */
1373 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1374
1375 inst = bld.ADD(result, result, brw_imm_d(31));
1376 inst->predicate = BRW_PREDICATE_NORMAL;
1377 inst->src[0].negate = true;
1378 }
1379 break;
1380 }
1381
1382 case nir_op_find_lsb:
1383 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1384
1385 if (devinfo->gen < 7) {
1386 fs_reg temp = vgrf(glsl_type::int_type);
1387
1388 /* (x & -x) generates a value that consists of only the LSB of x.
1389 * For all powers of 2, findMSB(y) == findLSB(y).
1390 */
1391 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1392 fs_reg negated_src = src;
1393
1394 /* One must be negated, and the other must be non-negated. It
1395 * doesn't matter which is which.
1396 */
1397 negated_src.negate = true;
1398 src.negate = false;
1399
1400 bld.AND(temp, src, negated_src);
1401 emit_find_msb_using_lzd(bld, result, temp, false);
1402 } else {
1403 bld.FBL(result, op[0]);
1404 }
1405 break;
1406
1407 case nir_op_ubitfield_extract:
1408 case nir_op_ibitfield_extract:
1409 unreachable("should have been lowered");
1410 case nir_op_ubfe:
1411 case nir_op_ibfe:
1412 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1413 bld.BFE(result, op[2], op[1], op[0]);
1414 break;
1415 case nir_op_bfm:
1416 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1417 bld.BFI1(result, op[0], op[1]);
1418 break;
1419 case nir_op_bfi:
1420 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1421 bld.BFI2(result, op[0], op[1], op[2]);
1422 break;
1423
1424 case nir_op_bitfield_insert:
1425 unreachable("not reached: should have been lowered");
1426
1427 case nir_op_ishl:
1428 case nir_op_ishr:
1429 case nir_op_ushr: {
1430 fs_reg shift_count = op[1];
1431
1432 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1433 if (op[1].file == VGRF &&
1434 (result.type == BRW_REGISTER_TYPE_Q ||
1435 result.type == BRW_REGISTER_TYPE_UQ)) {
1436 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1437 BRW_REGISTER_TYPE_UD);
1438 shift_count.stride = 2;
1439 bld.MOV(shift_count, op[1]);
1440 }
1441 }
1442
1443 switch (instr->op) {
1444 case nir_op_ishl:
1445 bld.SHL(result, op[0], shift_count);
1446 break;
1447 case nir_op_ishr:
1448 bld.ASR(result, op[0], shift_count);
1449 break;
1450 case nir_op_ushr:
1451 bld.SHR(result, op[0], shift_count);
1452 break;
1453 default:
1454 unreachable("not reached");
1455 }
1456 break;
1457 }
1458
1459 case nir_op_pack_half_2x16_split:
1460 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1461 break;
1462
1463 case nir_op_ffma:
1464 inst = bld.MAD(result, op[2], op[1], op[0]);
1465 inst->saturate = instr->dest.saturate;
1466 break;
1467
1468 case nir_op_flrp:
1469 inst = bld.LRP(result, op[0], op[1], op[2]);
1470 inst->saturate = instr->dest.saturate;
1471 break;
1472
1473 case nir_op_bcsel:
1474 if (optimize_frontfacing_ternary(instr, result))
1475 return;
1476
1477 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1478 inst = bld.SEL(result, op[1], op[2]);
1479 inst->predicate = BRW_PREDICATE_NORMAL;
1480 break;
1481
1482 case nir_op_extract_u8:
1483 case nir_op_extract_i8: {
1484 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1485 assert(byte != NULL);
1486
1487 /* The PRMs say:
1488 *
1489 * BDW+
1490 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1491 * Use two instructions and a word or DWord intermediate integer type.
1492 */
1493 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1494 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1495
1496 if (instr->op == nir_op_extract_i8) {
1497 /* If we need to sign extend, extract to a word first */
1498 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1499 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1500 bld.MOV(result, w_temp);
1501 } else {
1502 /* Otherwise use an AND with 0xff and a word type */
1503 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1504 }
1505 } else {
1506 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1507 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1508 }
1509 break;
1510 }
1511
1512 case nir_op_extract_u16:
1513 case nir_op_extract_i16: {
1514 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1515 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1516 assert(word != NULL);
1517 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1518 break;
1519 }
1520
1521 default:
1522 unreachable("unhandled instruction");
1523 }
1524
1525 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1526 * to sign extend the low bit to 0/~0
1527 */
1528 if (devinfo->gen <= 5 &&
1529 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1530 fs_reg masked = vgrf(glsl_type::int_type);
1531 bld.AND(masked, result, brw_imm_d(1));
1532 masked.negate = true;
1533 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1534 }
1535 }
1536
1537 void
1538 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1539 nir_load_const_instr *instr)
1540 {
1541 const brw_reg_type reg_type =
1542 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1543 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1544
1545 switch (instr->def.bit_size) {
1546 case 16:
1547 for (unsigned i = 0; i < instr->def.num_components; i++)
1548 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1549 break;
1550
1551 case 32:
1552 for (unsigned i = 0; i < instr->def.num_components; i++)
1553 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1554 break;
1555
1556 case 64:
1557 assert(devinfo->gen >= 7);
1558 if (devinfo->gen == 7) {
1559 /* We don't get 64-bit integer types until gen8 */
1560 for (unsigned i = 0; i < instr->def.num_components; i++) {
1561 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1562 setup_imm_df(bld, instr->value.f64[i]));
1563 }
1564 } else {
1565 for (unsigned i = 0; i < instr->def.num_components; i++)
1566 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1567 }
1568 break;
1569
1570 default:
1571 unreachable("Invalid bit size");
1572 }
1573
1574 nir_ssa_values[instr->def.index] = reg;
1575 }
1576
1577 fs_reg
1578 fs_visitor::get_nir_src(const nir_src &src)
1579 {
1580 fs_reg reg;
1581 if (src.is_ssa) {
1582 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1583 const brw_reg_type reg_type =
1584 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1585 reg = bld.vgrf(reg_type, src.ssa->num_components);
1586 } else {
1587 reg = nir_ssa_values[src.ssa->index];
1588 }
1589 } else {
1590 /* We don't handle indirects on locals */
1591 assert(src.reg.indirect == NULL);
1592 reg = offset(nir_locals[src.reg.reg->index], bld,
1593 src.reg.base_offset * src.reg.reg->num_components);
1594 }
1595
1596 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1597 /* The only 64-bit type available on gen7 is DF, so use that. */
1598 reg.type = BRW_REGISTER_TYPE_DF;
1599 } else {
1600 /* To avoid floating-point denorm flushing problems, set the type by
1601 * default to an integer type - instructions that need floating point
1602 * semantics will set this to F if they need to
1603 */
1604 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1605 BRW_REGISTER_TYPE_D);
1606 }
1607
1608 return reg;
1609 }
1610
1611 /**
1612 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1613 *
1614 * This function should not be called on any value which may be 64 bits.
1615 * We could theoretically support 64-bit on gen8+ but we choose not to
1616 * because it wouldn't work in general (no gen7 support) and there are
1617 * enough restrictions in 64-bit immediates that you can't take the return
1618 * value and treat it the same as the result of get_nir_src().
1619 */
1620 fs_reg
1621 fs_visitor::get_nir_src_imm(const nir_src &src)
1622 {
1623 nir_const_value *val = nir_src_as_const_value(src);
1624 assert(nir_src_bit_size(src) == 32);
1625 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1626 }
1627
1628 fs_reg
1629 fs_visitor::get_nir_dest(const nir_dest &dest)
1630 {
1631 if (dest.is_ssa) {
1632 const brw_reg_type reg_type =
1633 brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
1634 nir_ssa_values[dest.ssa.index] =
1635 bld.vgrf(reg_type, dest.ssa.num_components);
1636 return nir_ssa_values[dest.ssa.index];
1637 } else {
1638 /* We don't handle indirects on locals */
1639 assert(dest.reg.indirect == NULL);
1640 return offset(nir_locals[dest.reg.reg->index], bld,
1641 dest.reg.base_offset * dest.reg.reg->num_components);
1642 }
1643 }
1644
1645 fs_reg
1646 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1647 {
1648 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1649 BRW_REGISTER_TYPE_UD);
1650 fs_reg indirect;
1651 unsigned indirect_max = 0;
1652
1653 for (const nir_deref *tail = &deref->deref; tail->child;
1654 tail = tail->child) {
1655 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1656 assert(tail->child->deref_type == nir_deref_type_array);
1657 const unsigned size = glsl_get_length(tail->type);
1658 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1659 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1660 image = offset(image, bld, base * element_size);
1661
1662 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1663 fs_reg tmp = vgrf(glsl_type::uint_type);
1664
1665 /* Accessing an invalid surface index with the dataport can result
1666 * in a hang. According to the spec "if the index used to
1667 * select an individual element is negative or greater than or
1668 * equal to the size of the array, the results of the operation
1669 * are undefined but may not lead to termination" -- which is one
1670 * of the possible outcomes of the hang. Clamp the index to
1671 * prevent access outside of the array bounds.
1672 */
1673 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1674 BRW_REGISTER_TYPE_UD),
1675 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1676
1677 indirect_max += element_size * (tail->type->length - 1);
1678
1679 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1680 if (indirect.file == BAD_FILE) {
1681 indirect = tmp;
1682 } else {
1683 bld.ADD(indirect, indirect, tmp);
1684 }
1685 }
1686 }
1687
1688 if (indirect.file == BAD_FILE) {
1689 return image;
1690 } else {
1691 /* Emit a pile of MOVs to load the uniform into a temporary. The
1692 * dead-code elimination pass will get rid of what we don't use.
1693 */
1694 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1695 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1696 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1697 offset(tmp, bld, j), offset(image, bld, j),
1698 indirect, brw_imm_ud((indirect_max + 1) * 4));
1699 }
1700 return tmp;
1701 }
1702 }
1703
1704 void
1705 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1706 unsigned wr_mask)
1707 {
1708 for (unsigned i = 0; i < 4; i++) {
1709 if (!((wr_mask >> i) & 1))
1710 continue;
1711
1712 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1713 new_inst->dst = offset(new_inst->dst, bld, i);
1714 for (unsigned j = 0; j < new_inst->sources; j++)
1715 if (new_inst->src[j].file == VGRF)
1716 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1717
1718 bld.emit(new_inst);
1719 }
1720 }
1721
1722 /**
1723 * Get the matching channel register datatype for an image intrinsic of the
1724 * specified GLSL image type.
1725 */
1726 static brw_reg_type
1727 get_image_base_type(const glsl_type *type)
1728 {
1729 switch ((glsl_base_type)type->sampled_type) {
1730 case GLSL_TYPE_UINT:
1731 return BRW_REGISTER_TYPE_UD;
1732 case GLSL_TYPE_INT:
1733 return BRW_REGISTER_TYPE_D;
1734 case GLSL_TYPE_FLOAT:
1735 return BRW_REGISTER_TYPE_F;
1736 default:
1737 unreachable("Not reached.");
1738 }
1739 }
1740
1741 /**
1742 * Get the appropriate atomic op for an image atomic intrinsic.
1743 */
1744 static unsigned
1745 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1746 {
1747 switch (op) {
1748 case nir_intrinsic_image_var_atomic_add:
1749 return BRW_AOP_ADD;
1750 case nir_intrinsic_image_var_atomic_min:
1751 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1752 BRW_AOP_IMIN : BRW_AOP_UMIN);
1753 case nir_intrinsic_image_var_atomic_max:
1754 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1755 BRW_AOP_IMAX : BRW_AOP_UMAX);
1756 case nir_intrinsic_image_var_atomic_and:
1757 return BRW_AOP_AND;
1758 case nir_intrinsic_image_var_atomic_or:
1759 return BRW_AOP_OR;
1760 case nir_intrinsic_image_var_atomic_xor:
1761 return BRW_AOP_XOR;
1762 case nir_intrinsic_image_var_atomic_exchange:
1763 return BRW_AOP_MOV;
1764 case nir_intrinsic_image_var_atomic_comp_swap:
1765 return BRW_AOP_CMPWR;
1766 default:
1767 unreachable("Not reachable.");
1768 }
1769 }
1770
1771 static fs_inst *
1772 emit_pixel_interpolater_send(const fs_builder &bld,
1773 enum opcode opcode,
1774 const fs_reg &dst,
1775 const fs_reg &src,
1776 const fs_reg &desc,
1777 glsl_interp_mode interpolation)
1778 {
1779 struct brw_wm_prog_data *wm_prog_data =
1780 brw_wm_prog_data(bld.shader->stage_prog_data);
1781 fs_inst *inst;
1782 fs_reg payload;
1783 int mlen;
1784
1785 if (src.file == BAD_FILE) {
1786 /* Dummy payload */
1787 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1788 mlen = 1;
1789 } else {
1790 payload = src;
1791 mlen = 2 * bld.dispatch_width() / 8;
1792 }
1793
1794 inst = bld.emit(opcode, dst, payload, desc);
1795 inst->mlen = mlen;
1796 /* 2 floats per slot returned */
1797 inst->size_written = 2 * dst.component_size(inst->exec_size);
1798 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1799
1800 wm_prog_data->pulls_bary = true;
1801
1802 return inst;
1803 }
1804
1805 /**
1806 * Computes 1 << x, given a D/UD register containing some value x.
1807 */
1808 static fs_reg
1809 intexp2(const fs_builder &bld, const fs_reg &x)
1810 {
1811 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1812
1813 fs_reg result = bld.vgrf(x.type, 1);
1814 fs_reg one = bld.vgrf(x.type, 1);
1815
1816 bld.MOV(one, retype(brw_imm_d(1), one.type));
1817 bld.SHL(result, one, x);
1818 return result;
1819 }
1820
1821 void
1822 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1823 {
1824 assert(stage == MESA_SHADER_GEOMETRY);
1825
1826 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1827
1828 if (gs_compile->control_data_header_size_bits == 0)
1829 return;
1830
1831 /* We can only do EndPrimitive() functionality when the control data
1832 * consists of cut bits. Fortunately, the only time it isn't is when the
1833 * output type is points, in which case EndPrimitive() is a no-op.
1834 */
1835 if (gs_prog_data->control_data_format !=
1836 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1837 return;
1838 }
1839
1840 /* Cut bits use one bit per vertex. */
1841 assert(gs_compile->control_data_bits_per_vertex == 1);
1842
1843 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1844 vertex_count.type = BRW_REGISTER_TYPE_UD;
1845
1846 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1847 * vertex n, 0 otherwise. So all we need to do here is mark bit
1848 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1849 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1850 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1851 *
1852 * Note that if EndPrimitive() is called before emitting any vertices, this
1853 * will cause us to set bit 31 of the control_data_bits register to 1.
1854 * That's fine because:
1855 *
1856 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1857 * output, so the hardware will ignore cut bit 31.
1858 *
1859 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1860 * last vertex, so setting cut bit 31 has no effect (since the primitive
1861 * is automatically ended when the GS terminates).
1862 *
1863 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1864 * control_data_bits register to 0 when the first vertex is emitted.
1865 */
1866
1867 const fs_builder abld = bld.annotate("end primitive");
1868
1869 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1870 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1871 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1872 fs_reg mask = intexp2(abld, prev_count);
1873 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1874 * attention to the lower 5 bits of its second source argument, so on this
1875 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1876 * ((vertex_count - 1) % 32).
1877 */
1878 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1879 }
1880
1881 void
1882 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1883 {
1884 assert(stage == MESA_SHADER_GEOMETRY);
1885 assert(gs_compile->control_data_bits_per_vertex != 0);
1886
1887 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1888
1889 const fs_builder abld = bld.annotate("emit control data bits");
1890 const fs_builder fwa_bld = bld.exec_all();
1891
1892 /* We use a single UD register to accumulate control data bits (32 bits
1893 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1894 * at a time.
1895 *
1896 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1897 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1898 * use the Channel Mask phase to enable/disable which DWord within that
1899 * group to write. (Remember, different SIMD8 channels may have emitted
1900 * different numbers of vertices, so we may need per-slot offsets.)
1901 *
1902 * Channel masking presents an annoying problem: we may have to replicate
1903 * the data up to 4 times:
1904 *
1905 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1906 *
1907 * To avoid penalizing shaders that emit a small number of vertices, we
1908 * can avoid these sometimes: if the size of the control data header is
1909 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1910 * land in the same 128-bit group, so we can skip per-slot offsets.
1911 *
1912 * Similarly, if the control data header is <= 32 bits, there is only one
1913 * DWord, so we can skip channel masks.
1914 */
1915 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1916
1917 fs_reg channel_mask, per_slot_offset;
1918
1919 if (gs_compile->control_data_header_size_bits > 32) {
1920 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1921 channel_mask = vgrf(glsl_type::uint_type);
1922 }
1923
1924 if (gs_compile->control_data_header_size_bits > 128) {
1925 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1926 per_slot_offset = vgrf(glsl_type::uint_type);
1927 }
1928
1929 /* Figure out which DWord we're trying to write to using the formula:
1930 *
1931 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1932 *
1933 * Since bits_per_vertex is a power of two, and is known at compile
1934 * time, this can be optimized to:
1935 *
1936 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1937 */
1938 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1939 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1940 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1941 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1942 unsigned log2_bits_per_vertex =
1943 util_last_bit(gs_compile->control_data_bits_per_vertex);
1944 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1945
1946 if (per_slot_offset.file != BAD_FILE) {
1947 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1948 * the appropriate OWord within the control data header.
1949 */
1950 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1951 }
1952
1953 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1954 * write to the appropriate DWORD within the OWORD.
1955 */
1956 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1957 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1958 channel_mask = intexp2(fwa_bld, channel);
1959 /* Then the channel masks need to be in bits 23:16. */
1960 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1961 }
1962
1963 /* Store the control data bits in the message payload and send it. */
1964 int mlen = 2;
1965 if (channel_mask.file != BAD_FILE)
1966 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1967 if (per_slot_offset.file != BAD_FILE)
1968 mlen++;
1969
1970 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1971 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1972 int i = 0;
1973 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1974 if (per_slot_offset.file != BAD_FILE)
1975 sources[i++] = per_slot_offset;
1976 if (channel_mask.file != BAD_FILE)
1977 sources[i++] = channel_mask;
1978 while (i < mlen) {
1979 sources[i++] = this->control_data_bits;
1980 }
1981
1982 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1983 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1984 inst->mlen = mlen;
1985 /* We need to increment Global Offset by 256-bits to make room for
1986 * Broadwell's extra "Vertex Count" payload at the beginning of the
1987 * URB entry. Since this is an OWord message, Global Offset is counted
1988 * in 128-bit units, so we must set it to 2.
1989 */
1990 if (gs_prog_data->static_vertex_count == -1)
1991 inst->offset = 2;
1992 }
1993
1994 void
1995 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1996 unsigned stream_id)
1997 {
1998 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1999
2000 /* Note: we are calling this *before* increasing vertex_count, so
2001 * this->vertex_count == vertex_count - 1 in the formula above.
2002 */
2003
2004 /* Stream mode uses 2 bits per vertex */
2005 assert(gs_compile->control_data_bits_per_vertex == 2);
2006
2007 /* Must be a valid stream */
2008 assert(stream_id < MAX_VERTEX_STREAMS);
2009
2010 /* Control data bits are initialized to 0 so we don't have to set any
2011 * bits when sending vertices to stream 0.
2012 */
2013 if (stream_id == 0)
2014 return;
2015
2016 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2017
2018 /* reg::sid = stream_id */
2019 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2020 abld.MOV(sid, brw_imm_ud(stream_id));
2021
2022 /* reg:shift_count = 2 * (vertex_count - 1) */
2023 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2024 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2025
2026 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2027 * attention to the lower 5 bits of its second source argument, so on this
2028 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2029 * stream_id << ((2 * (vertex_count - 1)) % 32).
2030 */
2031 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2032 abld.SHL(mask, sid, shift_count);
2033 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2034 }
2035
2036 void
2037 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2038 unsigned stream_id)
2039 {
2040 assert(stage == MESA_SHADER_GEOMETRY);
2041
2042 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2043
2044 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2045 vertex_count.type = BRW_REGISTER_TYPE_UD;
2046
2047 /* Haswell and later hardware ignores the "Render Stream Select" bits
2048 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2049 * and instead sends all primitives down the pipeline for rasterization.
2050 * If the SOL stage is enabled, "Render Stream Select" is honored and
2051 * primitives bound to non-zero streams are discarded after stream output.
2052 *
2053 * Since the only purpose of primives sent to non-zero streams is to
2054 * be recorded by transform feedback, we can simply discard all geometry
2055 * bound to these streams when transform feedback is disabled.
2056 */
2057 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2058 return;
2059
2060 /* If we're outputting 32 control data bits or less, then we can wait
2061 * until the shader is over to output them all. Otherwise we need to
2062 * output them as we go. Now is the time to do it, since we're about to
2063 * output the vertex_count'th vertex, so it's guaranteed that the
2064 * control data bits associated with the (vertex_count - 1)th vertex are
2065 * correct.
2066 */
2067 if (gs_compile->control_data_header_size_bits > 32) {
2068 const fs_builder abld =
2069 bld.annotate("emit vertex: emit control data bits");
2070
2071 /* Only emit control data bits if we've finished accumulating a batch
2072 * of 32 bits. This is the case when:
2073 *
2074 * (vertex_count * bits_per_vertex) % 32 == 0
2075 *
2076 * (in other words, when the last 5 bits of vertex_count *
2077 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2078 * integer n (which is always the case, since bits_per_vertex is
2079 * always 1 or 2), this is equivalent to requiring that the last 5-n
2080 * bits of vertex_count are 0:
2081 *
2082 * vertex_count & (2^(5-n) - 1) == 0
2083 *
2084 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2085 * equivalent to:
2086 *
2087 * vertex_count & (32 / bits_per_vertex - 1) == 0
2088 *
2089 * TODO: If vertex_count is an immediate, we could do some of this math
2090 * at compile time...
2091 */
2092 fs_inst *inst =
2093 abld.AND(bld.null_reg_d(), vertex_count,
2094 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2095 inst->conditional_mod = BRW_CONDITIONAL_Z;
2096
2097 abld.IF(BRW_PREDICATE_NORMAL);
2098 /* If vertex_count is 0, then no control data bits have been
2099 * accumulated yet, so we can skip emitting them.
2100 */
2101 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2102 BRW_CONDITIONAL_NEQ);
2103 abld.IF(BRW_PREDICATE_NORMAL);
2104 emit_gs_control_data_bits(vertex_count);
2105 abld.emit(BRW_OPCODE_ENDIF);
2106
2107 /* Reset control_data_bits to 0 so we can start accumulating a new
2108 * batch.
2109 *
2110 * Note: in the case where vertex_count == 0, this neutralizes the
2111 * effect of any call to EndPrimitive() that the shader may have
2112 * made before outputting its first vertex.
2113 */
2114 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2115 inst->force_writemask_all = true;
2116 abld.emit(BRW_OPCODE_ENDIF);
2117 }
2118
2119 emit_urb_writes(vertex_count);
2120
2121 /* In stream mode we have to set control data bits for all vertices
2122 * unless we have disabled control data bits completely (which we do
2123 * do for GL_POINTS outputs that don't use streams).
2124 */
2125 if (gs_compile->control_data_header_size_bits > 0 &&
2126 gs_prog_data->control_data_format ==
2127 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2128 set_gs_stream_control_data_bits(vertex_count, stream_id);
2129 }
2130 }
2131
2132 void
2133 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2134 const nir_src &vertex_src,
2135 unsigned base_offset,
2136 const nir_src &offset_src,
2137 unsigned num_components,
2138 unsigned first_component)
2139 {
2140 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2141
2142 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2143 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2144 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2145
2146 /* TODO: figure out push input layout for invocations == 1 */
2147 /* TODO: make this work with 64-bit inputs */
2148 if (gs_prog_data->invocations == 1 &&
2149 type_sz(dst.type) <= 4 &&
2150 offset_const != NULL && vertex_const != NULL &&
2151 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2152 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2153 vertex_const->u32[0] * push_reg_count;
2154 for (unsigned i = 0; i < num_components; i++) {
2155 bld.MOV(offset(dst, bld, i),
2156 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2157 }
2158 return;
2159 }
2160
2161 /* Resort to the pull model. Ensure the VUE handles are provided. */
2162 assert(gs_prog_data->base.include_vue_handles);
2163
2164 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2165 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2166
2167 if (gs_prog_data->invocations == 1) {
2168 if (vertex_const) {
2169 /* The vertex index is constant; just select the proper URB handle. */
2170 icp_handle =
2171 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2172 BRW_REGISTER_TYPE_UD);
2173 } else {
2174 /* The vertex index is non-constant. We need to use indirect
2175 * addressing to fetch the proper URB handle.
2176 *
2177 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2178 * indicating that channel <n> should read the handle from
2179 * DWord <n>. We convert that to bytes by multiplying by 4.
2180 *
2181 * Next, we convert the vertex index to bytes by multiplying
2182 * by 32 (shifting by 5), and add the two together. This is
2183 * the final indirect byte offset.
2184 */
2185 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2186 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2187 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2188 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2189
2190 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2191 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2192 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2193 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2194 /* Convert vertex_index to bytes (multiply by 32) */
2195 bld.SHL(vertex_offset_bytes,
2196 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2197 brw_imm_ud(5u));
2198 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2199
2200 /* Use first_icp_handle as the base offset. There is one register
2201 * of URB handles per vertex, so inform the register allocator that
2202 * we might read up to nir->info.gs.vertices_in registers.
2203 */
2204 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2205 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2206 fs_reg(icp_offset_bytes),
2207 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2208 }
2209 } else {
2210 assert(gs_prog_data->invocations > 1);
2211
2212 if (vertex_const) {
2213 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2214 bld.MOV(icp_handle,
2215 retype(brw_vec1_grf(first_icp_handle +
2216 vertex_const->i32[0] / 8,
2217 vertex_const->i32[0] % 8),
2218 BRW_REGISTER_TYPE_UD));
2219 } else {
2220 /* The vertex index is non-constant. We need to use indirect
2221 * addressing to fetch the proper URB handle.
2222 *
2223 */
2224 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2225
2226 /* Convert vertex_index to bytes (multiply by 4) */
2227 bld.SHL(icp_offset_bytes,
2228 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2229 brw_imm_ud(2u));
2230
2231 /* Use first_icp_handle as the base offset. There is one DWord
2232 * of URB handles per vertex, so inform the register allocator that
2233 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2234 */
2235 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2236 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2237 fs_reg(icp_offset_bytes),
2238 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2239 REG_SIZE));
2240 }
2241 }
2242
2243 fs_inst *inst;
2244
2245 fs_reg tmp_dst = dst;
2246 fs_reg indirect_offset = get_nir_src(offset_src);
2247 unsigned num_iterations = 1;
2248 unsigned orig_num_components = num_components;
2249
2250 if (type_sz(dst.type) == 8) {
2251 if (num_components > 2) {
2252 num_iterations = 2;
2253 num_components = 2;
2254 }
2255 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2256 tmp_dst = tmp;
2257 first_component = first_component / 2;
2258 }
2259
2260 for (unsigned iter = 0; iter < num_iterations; iter++) {
2261 if (offset_const) {
2262 /* Constant indexing - use global offset. */
2263 if (first_component != 0) {
2264 unsigned read_components = num_components + first_component;
2265 fs_reg tmp = bld.vgrf(dst.type, read_components);
2266 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2267 inst->size_written = read_components *
2268 tmp.component_size(inst->exec_size);
2269 for (unsigned i = 0; i < num_components; i++) {
2270 bld.MOV(offset(tmp_dst, bld, i),
2271 offset(tmp, bld, i + first_component));
2272 }
2273 } else {
2274 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2275 icp_handle);
2276 inst->size_written = num_components *
2277 tmp_dst.component_size(inst->exec_size);
2278 }
2279 inst->offset = base_offset + offset_const->u32[0];
2280 inst->mlen = 1;
2281 } else {
2282 /* Indirect indexing - use per-slot offsets as well. */
2283 const fs_reg srcs[] = { icp_handle, indirect_offset };
2284 unsigned read_components = num_components + first_component;
2285 fs_reg tmp = bld.vgrf(dst.type, read_components);
2286 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2287 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2288 if (first_component != 0) {
2289 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2290 payload);
2291 inst->size_written = read_components *
2292 tmp.component_size(inst->exec_size);
2293 for (unsigned i = 0; i < num_components; i++) {
2294 bld.MOV(offset(tmp_dst, bld, i),
2295 offset(tmp, bld, i + first_component));
2296 }
2297 } else {
2298 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2299 payload);
2300 inst->size_written = num_components *
2301 tmp_dst.component_size(inst->exec_size);
2302 }
2303 inst->offset = base_offset;
2304 inst->mlen = 2;
2305 }
2306
2307 if (type_sz(dst.type) == 8) {
2308 shuffle_32bit_load_result_to_64bit_data(
2309 bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
2310
2311 for (unsigned c = 0; c < num_components; c++)
2312 bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
2313 }
2314
2315 if (num_iterations > 1) {
2316 num_components = orig_num_components - 2;
2317 if(offset_const) {
2318 base_offset++;
2319 } else {
2320 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2321 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2322 indirect_offset = new_indirect;
2323 }
2324 }
2325 }
2326 }
2327
2328 fs_reg
2329 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2330 {
2331 nir_src *offset_src = nir_get_io_offset_src(instr);
2332 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2333
2334 if (const_value) {
2335 /* The only constant offset we should find is 0. brw_nir.c's
2336 * add_const_offset_to_base() will fold other constant offsets
2337 * into instr->const_index[0].
2338 */
2339 assert(const_value->u32[0] == 0);
2340 return fs_reg();
2341 }
2342
2343 return get_nir_src(*offset_src);
2344 }
2345
2346 static void
2347 do_untyped_vector_read(const fs_builder &bld,
2348 const fs_reg dest,
2349 const fs_reg surf_index,
2350 const fs_reg offset_reg,
2351 unsigned num_components)
2352 {
2353 if (type_sz(dest.type) <= 2) {
2354 assert(dest.stride == 1);
2355 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2356
2357 if (is_const_offset) {
2358 uint32_t start = offset_reg.ud & ~3;
2359 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2360 end = ALIGN(end, 4);
2361 assert (end - start <= 16);
2362
2363 /* At this point we have 16-bit component/s that have constant
2364 * offset aligned to 4-bytes that can be read with untyped_reads.
2365 * untyped_read message requires 32-bit aligned offsets.
2366 */
2367 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2368 unsigned num_components_32bit = (end - start) / 4;
2369
2370 fs_reg read_result =
2371 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2372 1 /* dims */,
2373 num_components_32bit,
2374 BRW_PREDICATE_NONE);
2375 shuffle_32bit_load_result_to_16bit_data(bld,
2376 retype(dest, BRW_REGISTER_TYPE_W),
2377 retype(read_result, BRW_REGISTER_TYPE_D),
2378 first_component, num_components);
2379 } else {
2380 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2381 for (unsigned i = 0; i < num_components; i++) {
2382 if (i == 0) {
2383 bld.MOV(read_offset, offset_reg);
2384 } else {
2385 bld.ADD(read_offset, offset_reg,
2386 brw_imm_ud(i * type_sz(dest.type)));
2387 }
2388 /* Non constant offsets are not guaranteed to be aligned 32-bits
2389 * so they are read using one byte_scattered_read message
2390 * for each component.
2391 */
2392 fs_reg read_result =
2393 emit_byte_scattered_read(bld, surf_index, read_offset,
2394 1 /* dims */, 1,
2395 type_sz(dest.type) * 8 /* bit_size */,
2396 BRW_PREDICATE_NONE);
2397 bld.MOV(offset(dest, bld, i),
2398 subscript (read_result, dest.type, 0));
2399 }
2400 }
2401 } else if (type_sz(dest.type) == 4) {
2402 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2403 1 /* dims */,
2404 num_components,
2405 BRW_PREDICATE_NONE);
2406 read_result.type = dest.type;
2407 for (unsigned i = 0; i < num_components; i++)
2408 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2409 } else if (type_sz(dest.type) == 8) {
2410 /* Reading a dvec, so we need to:
2411 *
2412 * 1. Multiply num_components by 2, to account for the fact that we
2413 * need to read 64-bit components.
2414 * 2. Shuffle the result of the load to form valid 64-bit elements
2415 * 3. Emit a second load (for components z/w) if needed.
2416 */
2417 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2418 bld.MOV(read_offset, offset_reg);
2419
2420 int iters = num_components <= 2 ? 1 : 2;
2421
2422 /* Load the dvec, the first iteration loads components x/y, the second
2423 * iteration, if needed, loads components z/w
2424 */
2425 for (int it = 0; it < iters; it++) {
2426 /* Compute number of components to read in this iteration */
2427 int iter_components = MIN2(2, num_components);
2428 num_components -= iter_components;
2429
2430 /* Read. Since this message reads 32-bit components, we need to
2431 * read twice as many components.
2432 */
2433 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2434 1 /* dims */,
2435 iter_components * 2,
2436 BRW_PREDICATE_NONE);
2437
2438 /* Shuffle the 32-bit load result into valid 64-bit data */
2439 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2440 shuffle_32bit_load_result_to_64bit_data(
2441 bld, packed_result, read_result, iter_components);
2442
2443 /* Move each component to its destination */
2444 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2445 for (int c = 0; c < iter_components; c++) {
2446 bld.MOV(offset(dest, bld, it * 2 + c),
2447 offset(packed_result, bld, c));
2448 }
2449
2450 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2451 }
2452 } else {
2453 unreachable("Unsupported type");
2454 }
2455 }
2456
2457 void
2458 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2459 nir_intrinsic_instr *instr)
2460 {
2461 assert(stage == MESA_SHADER_VERTEX);
2462
2463 fs_reg dest;
2464 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2465 dest = get_nir_dest(instr->dest);
2466
2467 switch (instr->intrinsic) {
2468 case nir_intrinsic_load_vertex_id:
2469 case nir_intrinsic_load_base_vertex:
2470 unreachable("should be lowered by nir_lower_system_values()");
2471
2472 case nir_intrinsic_load_vertex_id_zero_base:
2473 case nir_intrinsic_load_instance_id:
2474 case nir_intrinsic_load_base_instance:
2475 case nir_intrinsic_load_draw_id: {
2476 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2477 fs_reg val = nir_system_values[sv];
2478 assert(val.file != BAD_FILE);
2479 dest.type = val.type;
2480 bld.MOV(dest, val);
2481 break;
2482 }
2483
2484 case nir_intrinsic_load_input: {
2485 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2486 unsigned first_component = nir_intrinsic_component(instr);
2487 unsigned num_components = instr->num_components;
2488
2489 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2490 assert(const_offset && "Indirect input loads not allowed");
2491 src = offset(src, bld, const_offset->u32[0]);
2492
2493 if (type_sz(dest.type) == 8)
2494 first_component /= 2;
2495
2496 for (unsigned j = 0; j < num_components; j++) {
2497 bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
2498 }
2499
2500 if (type_sz(dest.type) == 8) {
2501 shuffle_32bit_load_result_to_64bit_data(bld,
2502 dest,
2503 retype(dest, BRW_REGISTER_TYPE_F),
2504 instr->num_components);
2505 }
2506 break;
2507 }
2508
2509 case nir_intrinsic_load_first_vertex:
2510 case nir_intrinsic_load_is_indexed_draw:
2511 unreachable("lowered by brw_nir_lower_vs_inputs");
2512
2513 default:
2514 nir_emit_intrinsic(bld, instr);
2515 break;
2516 }
2517 }
2518
2519 void
2520 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2521 nir_intrinsic_instr *instr)
2522 {
2523 assert(stage == MESA_SHADER_TESS_CTRL);
2524 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2525 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2526
2527 fs_reg dst;
2528 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2529 dst = get_nir_dest(instr->dest);
2530
2531 switch (instr->intrinsic) {
2532 case nir_intrinsic_load_primitive_id:
2533 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2534 break;
2535 case nir_intrinsic_load_invocation_id:
2536 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2537 break;
2538 case nir_intrinsic_load_patch_vertices_in:
2539 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2540 brw_imm_d(tcs_key->input_vertices));
2541 break;
2542
2543 case nir_intrinsic_barrier: {
2544 if (tcs_prog_data->instances == 1)
2545 break;
2546
2547 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2548 fs_reg m0_2 = component(m0, 2);
2549
2550 const fs_builder chanbld = bld.exec_all().group(1, 0);
2551
2552 /* Zero the message header */
2553 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2554
2555 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2556 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2557 brw_imm_ud(INTEL_MASK(16, 13)));
2558
2559 /* Shift it up to bits 27:24. */
2560 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2561
2562 /* Set the Barrier Count and the enable bit */
2563 chanbld.OR(m0_2, m0_2,
2564 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2565
2566 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2567 break;
2568 }
2569
2570 case nir_intrinsic_load_input:
2571 unreachable("nir_lower_io should never give us these.");
2572 break;
2573
2574 case nir_intrinsic_load_per_vertex_input: {
2575 fs_reg indirect_offset = get_indirect_offset(instr);
2576 unsigned imm_offset = instr->const_index[0];
2577
2578 const nir_src &vertex_src = instr->src[0];
2579 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2580
2581 fs_inst *inst;
2582
2583 fs_reg icp_handle;
2584
2585 if (vertex_const) {
2586 /* Emit a MOV to resolve <0,1,0> regioning. */
2587 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2588 bld.MOV(icp_handle,
2589 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2590 vertex_const->i32[0] & 7),
2591 BRW_REGISTER_TYPE_UD));
2592 } else if (tcs_prog_data->instances == 1 &&
2593 vertex_src.is_ssa &&
2594 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2595 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2596 /* For the common case of only 1 instance, an array index of
2597 * gl_InvocationID means reading g1. Skip all the indirect work.
2598 */
2599 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2600 } else {
2601 /* The vertex index is non-constant. We need to use indirect
2602 * addressing to fetch the proper URB handle.
2603 */
2604 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2605
2606 /* Each ICP handle is a single DWord (4 bytes) */
2607 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2608 bld.SHL(vertex_offset_bytes,
2609 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2610 brw_imm_ud(2u));
2611
2612 /* Start at g1. We might read up to 4 registers. */
2613 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2614 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2615 brw_imm_ud(4 * REG_SIZE));
2616 }
2617
2618 /* We can only read two double components with each URB read, so
2619 * we send two read messages in that case, each one loading up to
2620 * two double components.
2621 */
2622 unsigned num_iterations = 1;
2623 unsigned num_components = instr->num_components;
2624 unsigned first_component = nir_intrinsic_component(instr);
2625 fs_reg orig_dst = dst;
2626 if (type_sz(dst.type) == 8) {
2627 first_component = first_component / 2;
2628 if (instr->num_components > 2) {
2629 num_iterations = 2;
2630 num_components = 2;
2631 }
2632
2633 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2634 dst = tmp;
2635 }
2636
2637 for (unsigned iter = 0; iter < num_iterations; iter++) {
2638 if (indirect_offset.file == BAD_FILE) {
2639 /* Constant indexing - use global offset. */
2640 if (first_component != 0) {
2641 unsigned read_components = num_components + first_component;
2642 fs_reg tmp = bld.vgrf(dst.type, read_components);
2643 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2644 for (unsigned i = 0; i < num_components; i++) {
2645 bld.MOV(offset(dst, bld, i),
2646 offset(tmp, bld, i + first_component));
2647 }
2648 } else {
2649 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2650 }
2651 inst->offset = imm_offset;
2652 inst->mlen = 1;
2653 } else {
2654 /* Indirect indexing - use per-slot offsets as well. */
2655 const fs_reg srcs[] = { icp_handle, indirect_offset };
2656 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2657 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2658 if (first_component != 0) {
2659 unsigned read_components = num_components + first_component;
2660 fs_reg tmp = bld.vgrf(dst.type, read_components);
2661 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2662 payload);
2663 for (unsigned i = 0; i < num_components; i++) {
2664 bld.MOV(offset(dst, bld, i),
2665 offset(tmp, bld, i + first_component));
2666 }
2667 } else {
2668 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2669 payload);
2670 }
2671 inst->offset = imm_offset;
2672 inst->mlen = 2;
2673 }
2674 inst->size_written = (num_components + first_component) *
2675 inst->dst.component_size(inst->exec_size);
2676
2677 /* If we are reading 64-bit data using 32-bit read messages we need
2678 * build proper 64-bit data elements by shuffling the low and high
2679 * 32-bit components around like we do for other things like UBOs
2680 * or SSBOs.
2681 */
2682 if (type_sz(dst.type) == 8) {
2683 shuffle_32bit_load_result_to_64bit_data(
2684 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2685
2686 for (unsigned c = 0; c < num_components; c++) {
2687 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2688 offset(dst, bld, c));
2689 }
2690 }
2691
2692 /* Copy the temporary to the destination to deal with writemasking.
2693 *
2694 * Also attempt to deal with gl_PointSize being in the .w component.
2695 */
2696 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2697 assert(type_sz(dst.type) < 8);
2698 inst->dst = bld.vgrf(dst.type, 4);
2699 inst->size_written = 4 * REG_SIZE;
2700 bld.MOV(dst, offset(inst->dst, bld, 3));
2701 }
2702
2703 /* If we are loading double data and we need a second read message
2704 * adjust the write offset
2705 */
2706 if (num_iterations > 1) {
2707 num_components = instr->num_components - 2;
2708 imm_offset++;
2709 }
2710 }
2711 break;
2712 }
2713
2714 case nir_intrinsic_load_output:
2715 case nir_intrinsic_load_per_vertex_output: {
2716 fs_reg indirect_offset = get_indirect_offset(instr);
2717 unsigned imm_offset = instr->const_index[0];
2718 unsigned first_component = nir_intrinsic_component(instr);
2719
2720 fs_inst *inst;
2721 if (indirect_offset.file == BAD_FILE) {
2722 /* Replicate the patch handle to all enabled channels */
2723 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2724 bld.MOV(patch_handle,
2725 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2726
2727 {
2728 if (first_component != 0) {
2729 unsigned read_components =
2730 instr->num_components + first_component;
2731 fs_reg tmp = bld.vgrf(dst.type, read_components);
2732 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2733 patch_handle);
2734 inst->size_written = read_components * REG_SIZE;
2735 for (unsigned i = 0; i < instr->num_components; i++) {
2736 bld.MOV(offset(dst, bld, i),
2737 offset(tmp, bld, i + first_component));
2738 }
2739 } else {
2740 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2741 patch_handle);
2742 inst->size_written = instr->num_components * REG_SIZE;
2743 }
2744 inst->offset = imm_offset;
2745 inst->mlen = 1;
2746 }
2747 } else {
2748 /* Indirect indexing - use per-slot offsets as well. */
2749 const fs_reg srcs[] = {
2750 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2751 indirect_offset
2752 };
2753 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2754 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2755 if (first_component != 0) {
2756 unsigned read_components =
2757 instr->num_components + first_component;
2758 fs_reg tmp = bld.vgrf(dst.type, read_components);
2759 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2760 payload);
2761 inst->size_written = read_components * REG_SIZE;
2762 for (unsigned i = 0; i < instr->num_components; i++) {
2763 bld.MOV(offset(dst, bld, i),
2764 offset(tmp, bld, i + first_component));
2765 }
2766 } else {
2767 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2768 payload);
2769 inst->size_written = instr->num_components * REG_SIZE;
2770 }
2771 inst->offset = imm_offset;
2772 inst->mlen = 2;
2773 }
2774 break;
2775 }
2776
2777 case nir_intrinsic_store_output:
2778 case nir_intrinsic_store_per_vertex_output: {
2779 fs_reg value = get_nir_src(instr->src[0]);
2780 bool is_64bit = (instr->src[0].is_ssa ?
2781 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2782 fs_reg indirect_offset = get_indirect_offset(instr);
2783 unsigned imm_offset = instr->const_index[0];
2784 unsigned mask = instr->const_index[1];
2785 unsigned header_regs = 0;
2786 fs_reg srcs[7];
2787 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2788
2789 if (indirect_offset.file != BAD_FILE) {
2790 srcs[header_regs++] = indirect_offset;
2791 }
2792
2793 if (mask == 0)
2794 break;
2795
2796 unsigned num_components = util_last_bit(mask);
2797 enum opcode opcode;
2798
2799 /* We can only pack two 64-bit components in a single message, so send
2800 * 2 messages if we have more components
2801 */
2802 unsigned num_iterations = 1;
2803 unsigned iter_components = num_components;
2804 unsigned first_component = nir_intrinsic_component(instr);
2805 if (is_64bit) {
2806 first_component = first_component / 2;
2807 if (instr->num_components > 2) {
2808 num_iterations = 2;
2809 iter_components = 2;
2810 }
2811 }
2812
2813 mask = mask << first_component;
2814
2815 for (unsigned iter = 0; iter < num_iterations; iter++) {
2816 if (!is_64bit && mask != WRITEMASK_XYZW) {
2817 srcs[header_regs++] = brw_imm_ud(mask << 16);
2818 opcode = indirect_offset.file != BAD_FILE ?
2819 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2820 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2821 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2822 /* Expand the 64-bit mask to 32-bit channels. We only handle
2823 * two channels in each iteration, so we only care about X/Y.
2824 */
2825 unsigned mask32 = 0;
2826 if (mask & WRITEMASK_X)
2827 mask32 |= WRITEMASK_XY;
2828 if (mask & WRITEMASK_Y)
2829 mask32 |= WRITEMASK_ZW;
2830
2831 /* If the mask does not include any of the channels X or Y there
2832 * is nothing to do in this iteration. Move on to the next couple
2833 * of 64-bit channels.
2834 */
2835 if (!mask32) {
2836 mask >>= 2;
2837 imm_offset++;
2838 continue;
2839 }
2840
2841 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2842 opcode = indirect_offset.file != BAD_FILE ?
2843 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2844 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2845 } else {
2846 opcode = indirect_offset.file != BAD_FILE ?
2847 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2848 SHADER_OPCODE_URB_WRITE_SIMD8;
2849 }
2850
2851 for (unsigned i = 0; i < iter_components; i++) {
2852 if (!(mask & (1 << (i + first_component))))
2853 continue;
2854
2855 if (!is_64bit) {
2856 srcs[header_regs + i + first_component] = offset(value, bld, i);
2857 } else {
2858 /* We need to shuffle the 64-bit data to match the layout
2859 * expected by our 32-bit URB write messages. We use a temporary
2860 * for that.
2861 */
2862 unsigned channel = iter * 2 + i;
2863 fs_reg dest = shuffle_64bit_data_for_32bit_write(bld,
2864 offset(value, bld, channel), 1);
2865
2866 srcs[header_regs + (i + first_component) * 2] = dest;
2867 srcs[header_regs + (i + first_component) * 2 + 1] =
2868 offset(dest, bld, 1);
2869 }
2870 }
2871
2872 unsigned mlen =
2873 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2874 (is_64bit ? 2 * first_component : first_component);
2875 fs_reg payload =
2876 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2877 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2878
2879 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2880 inst->offset = imm_offset;
2881 inst->mlen = mlen;
2882
2883 /* If this is a 64-bit attribute, select the next two 64-bit channels
2884 * to be handled in the next iteration.
2885 */
2886 if (is_64bit) {
2887 mask >>= 2;
2888 imm_offset++;
2889 }
2890 }
2891 break;
2892 }
2893
2894 default:
2895 nir_emit_intrinsic(bld, instr);
2896 break;
2897 }
2898 }
2899
2900 void
2901 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2902 nir_intrinsic_instr *instr)
2903 {
2904 assert(stage == MESA_SHADER_TESS_EVAL);
2905 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2906
2907 fs_reg dest;
2908 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2909 dest = get_nir_dest(instr->dest);
2910
2911 switch (instr->intrinsic) {
2912 case nir_intrinsic_load_primitive_id:
2913 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2914 break;
2915 case nir_intrinsic_load_tess_coord:
2916 /* gl_TessCoord is part of the payload in g1-3 */
2917 for (unsigned i = 0; i < 3; i++) {
2918 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2919 }
2920 break;
2921
2922 case nir_intrinsic_load_input:
2923 case nir_intrinsic_load_per_vertex_input: {
2924 fs_reg indirect_offset = get_indirect_offset(instr);
2925 unsigned imm_offset = instr->const_index[0];
2926 unsigned first_component = nir_intrinsic_component(instr);
2927
2928 if (type_sz(dest.type) == 8) {
2929 first_component = first_component / 2;
2930 }
2931
2932 fs_inst *inst;
2933 if (indirect_offset.file == BAD_FILE) {
2934 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2935 * which is 16 registers (since each holds 2 vec4 slots).
2936 */
2937 unsigned slot_count = 1;
2938 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2939 slot_count++;
2940
2941 const unsigned max_push_slots = 32;
2942 if (imm_offset + slot_count <= max_push_slots) {
2943 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2944 for (int i = 0; i < instr->num_components; i++) {
2945 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2946 i + first_component;
2947 bld.MOV(offset(dest, bld, i), component(src, comp));
2948 }
2949
2950 tes_prog_data->base.urb_read_length =
2951 MAX2(tes_prog_data->base.urb_read_length,
2952 DIV_ROUND_UP(imm_offset + slot_count, 2));
2953 } else {
2954 /* Replicate the patch handle to all enabled channels */
2955 const fs_reg srcs[] = {
2956 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2957 };
2958 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2959 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2960
2961 if (first_component != 0) {
2962 unsigned read_components =
2963 instr->num_components + first_component;
2964 fs_reg tmp = bld.vgrf(dest.type, read_components);
2965 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2966 patch_handle);
2967 inst->size_written = read_components * REG_SIZE;
2968 for (unsigned i = 0; i < instr->num_components; i++) {
2969 bld.MOV(offset(dest, bld, i),
2970 offset(tmp, bld, i + first_component));
2971 }
2972 } else {
2973 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2974 patch_handle);
2975 inst->size_written = instr->num_components * REG_SIZE;
2976 }
2977 inst->mlen = 1;
2978 inst->offset = imm_offset;
2979 }
2980 } else {
2981 /* Indirect indexing - use per-slot offsets as well. */
2982
2983 /* We can only read two double components with each URB read, so
2984 * we send two read messages in that case, each one loading up to
2985 * two double components.
2986 */
2987 unsigned num_iterations = 1;
2988 unsigned num_components = instr->num_components;
2989 fs_reg orig_dest = dest;
2990 if (type_sz(dest.type) == 8) {
2991 if (instr->num_components > 2) {
2992 num_iterations = 2;
2993 num_components = 2;
2994 }
2995 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2996 dest = tmp;
2997 }
2998
2999 for (unsigned iter = 0; iter < num_iterations; iter++) {
3000 const fs_reg srcs[] = {
3001 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3002 indirect_offset
3003 };
3004 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3005 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3006
3007 if (first_component != 0) {
3008 unsigned read_components =
3009 num_components + first_component;
3010 fs_reg tmp = bld.vgrf(dest.type, read_components);
3011 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3012 payload);
3013 for (unsigned i = 0; i < num_components; i++) {
3014 bld.MOV(offset(dest, bld, i),
3015 offset(tmp, bld, i + first_component));
3016 }
3017 } else {
3018 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3019 payload);
3020 }
3021 inst->mlen = 2;
3022 inst->offset = imm_offset;
3023 inst->size_written = (num_components + first_component) *
3024 inst->dst.component_size(inst->exec_size);
3025
3026 /* If we are reading 64-bit data using 32-bit read messages we need
3027 * build proper 64-bit data elements by shuffling the low and high
3028 * 32-bit components around like we do for other things like UBOs
3029 * or SSBOs.
3030 */
3031 if (type_sz(dest.type) == 8) {
3032 shuffle_32bit_load_result_to_64bit_data(
3033 bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
3034
3035 for (unsigned c = 0; c < num_components; c++) {
3036 bld.MOV(offset(orig_dest, bld, iter * 2 + c),
3037 offset(dest, bld, c));
3038 }
3039 }
3040
3041 /* If we are loading double data and we need a second read message
3042 * adjust the offset
3043 */
3044 if (num_iterations > 1) {
3045 num_components = instr->num_components - 2;
3046 imm_offset++;
3047 }
3048 }
3049 }
3050 break;
3051 }
3052 default:
3053 nir_emit_intrinsic(bld, instr);
3054 break;
3055 }
3056 }
3057
3058 void
3059 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3060 nir_intrinsic_instr *instr)
3061 {
3062 assert(stage == MESA_SHADER_GEOMETRY);
3063 fs_reg indirect_offset;
3064
3065 fs_reg dest;
3066 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3067 dest = get_nir_dest(instr->dest);
3068
3069 switch (instr->intrinsic) {
3070 case nir_intrinsic_load_primitive_id:
3071 assert(stage == MESA_SHADER_GEOMETRY);
3072 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3073 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3074 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3075 break;
3076
3077 case nir_intrinsic_load_input:
3078 unreachable("load_input intrinsics are invalid for the GS stage");
3079
3080 case nir_intrinsic_load_per_vertex_input:
3081 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3082 instr->src[1], instr->num_components,
3083 nir_intrinsic_component(instr));
3084 break;
3085
3086 case nir_intrinsic_emit_vertex_with_counter:
3087 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3088 break;
3089
3090 case nir_intrinsic_end_primitive_with_counter:
3091 emit_gs_end_primitive(instr->src[0]);
3092 break;
3093
3094 case nir_intrinsic_set_vertex_count:
3095 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3096 break;
3097
3098 case nir_intrinsic_load_invocation_id: {
3099 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3100 assert(val.file != BAD_FILE);
3101 dest.type = val.type;
3102 bld.MOV(dest, val);
3103 break;
3104 }
3105
3106 default:
3107 nir_emit_intrinsic(bld, instr);
3108 break;
3109 }
3110 }
3111
3112 /**
3113 * Fetch the current render target layer index.
3114 */
3115 static fs_reg
3116 fetch_render_target_array_index(const fs_builder &bld)
3117 {
3118 if (bld.shader->devinfo->gen >= 6) {
3119 /* The render target array index is provided in the thread payload as
3120 * bits 26:16 of r0.0.
3121 */
3122 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3123 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3124 brw_imm_uw(0x7ff));
3125 return idx;
3126 } else {
3127 /* Pre-SNB we only ever render into the first layer of the framebuffer
3128 * since layered rendering is not implemented.
3129 */
3130 return brw_imm_ud(0);
3131 }
3132 }
3133
3134 /**
3135 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3136 * framebuffer at the current fragment coordinates and sample index.
3137 */
3138 fs_inst *
3139 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3140 unsigned target)
3141 {
3142 const struct gen_device_info *devinfo = bld.shader->devinfo;
3143
3144 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3145 const brw_wm_prog_key *wm_key =
3146 reinterpret_cast<const brw_wm_prog_key *>(key);
3147 assert(!wm_key->coherent_fb_fetch);
3148 const struct brw_wm_prog_data *wm_prog_data =
3149 brw_wm_prog_data(stage_prog_data);
3150
3151 /* Calculate the surface index relative to the start of the texture binding
3152 * table block, since that's what the texturing messages expect.
3153 */
3154 const unsigned surface = target +
3155 wm_prog_data->binding_table.render_target_read_start -
3156 wm_prog_data->base.binding_table.texture_start;
3157
3158 brw_mark_surface_used(
3159 bld.shader->stage_prog_data,
3160 wm_prog_data->binding_table.render_target_read_start + target);
3161
3162 /* Calculate the fragment coordinates. */
3163 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3164 bld.MOV(offset(coords, bld, 0), pixel_x);
3165 bld.MOV(offset(coords, bld, 1), pixel_y);
3166 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3167
3168 /* Calculate the sample index and MCS payload when multisampling. Luckily
3169 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3170 * shouldn't be necessary to recompile based on whether the framebuffer is
3171 * CMS or UMS.
3172 */
3173 if (wm_key->multisample_fbo &&
3174 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3175 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3176
3177 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3178 const fs_reg mcs = wm_key->multisample_fbo ?
3179 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3180
3181 /* Use either a normal or a CMS texel fetch message depending on whether
3182 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3183 * message just in case the framebuffer uses 16x multisampling, it should
3184 * be equivalent to the normal CMS fetch for lower multisampling modes.
3185 */
3186 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3187 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3188 SHADER_OPCODE_TXF_CMS_LOGICAL;
3189
3190 /* Emit the instruction. */
3191 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3192 sample, mcs,
3193 brw_imm_ud(surface), brw_imm_ud(0),
3194 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3195 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3196
3197 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3198 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3199
3200 return inst;
3201 }
3202
3203 /**
3204 * Actual coherent framebuffer read implemented using the native render target
3205 * read message. Requires SKL+.
3206 */
3207 static fs_inst *
3208 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3209 {
3210 assert(bld.shader->devinfo->gen >= 9);
3211 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3212 inst->target = target;
3213 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3214
3215 return inst;
3216 }
3217
3218 static fs_reg
3219 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3220 {
3221 if (n && regs[0].file != BAD_FILE) {
3222 return regs[0];
3223
3224 } else {
3225 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3226
3227 for (unsigned i = 0; i < n; i++)
3228 regs[i] = tmp;
3229
3230 return tmp;
3231 }
3232 }
3233
3234 static fs_reg
3235 alloc_frag_output(fs_visitor *v, unsigned location)
3236 {
3237 assert(v->stage == MESA_SHADER_FRAGMENT);
3238 const brw_wm_prog_key *const key =
3239 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3240 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3241 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3242
3243 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3244 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3245
3246 else if (l == FRAG_RESULT_COLOR)
3247 return alloc_temporary(v->bld, 4, v->outputs,
3248 MAX2(key->nr_color_regions, 1));
3249
3250 else if (l == FRAG_RESULT_DEPTH)
3251 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3252
3253 else if (l == FRAG_RESULT_STENCIL)
3254 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3255
3256 else if (l == FRAG_RESULT_SAMPLE_MASK)
3257 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3258
3259 else if (l >= FRAG_RESULT_DATA0 &&
3260 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3261 return alloc_temporary(v->bld, 4,
3262 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3263
3264 else
3265 unreachable("Invalid location");
3266 }
3267
3268 void
3269 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3270 nir_intrinsic_instr *instr)
3271 {
3272 assert(stage == MESA_SHADER_FRAGMENT);
3273
3274 fs_reg dest;
3275 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3276 dest = get_nir_dest(instr->dest);
3277
3278 switch (instr->intrinsic) {
3279 case nir_intrinsic_load_front_face:
3280 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3281 *emit_frontfacing_interpolation());
3282 break;
3283
3284 case nir_intrinsic_load_sample_pos: {
3285 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3286 assert(sample_pos.file != BAD_FILE);
3287 dest.type = sample_pos.type;
3288 bld.MOV(dest, sample_pos);
3289 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3290 break;
3291 }
3292
3293 case nir_intrinsic_load_layer_id:
3294 dest.type = BRW_REGISTER_TYPE_UD;
3295 bld.MOV(dest, fetch_render_target_array_index(bld));
3296 break;
3297
3298 case nir_intrinsic_load_helper_invocation:
3299 case nir_intrinsic_load_sample_mask_in:
3300 case nir_intrinsic_load_sample_id: {
3301 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3302 fs_reg val = nir_system_values[sv];
3303 assert(val.file != BAD_FILE);
3304 dest.type = val.type;
3305 bld.MOV(dest, val);
3306 break;
3307 }
3308
3309 case nir_intrinsic_store_output: {
3310 const fs_reg src = get_nir_src(instr->src[0]);
3311 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3312 assert(const_offset && "Indirect output stores not allowed");
3313 const unsigned location = nir_intrinsic_base(instr) +
3314 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3315 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3316 src.type);
3317
3318 for (unsigned j = 0; j < instr->num_components; j++)
3319 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3320 offset(src, bld, j));
3321
3322 break;
3323 }
3324
3325 case nir_intrinsic_load_output: {
3326 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3327 BRW_NIR_FRAG_OUTPUT_LOCATION);
3328 assert(l >= FRAG_RESULT_DATA0);
3329 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3330 assert(const_offset && "Indirect output loads not allowed");
3331 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3332 const fs_reg tmp = bld.vgrf(dest.type, 4);
3333
3334 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3335 emit_coherent_fb_read(bld, tmp, target);
3336 else
3337 emit_non_coherent_fb_read(bld, tmp, target);
3338
3339 for (unsigned j = 0; j < instr->num_components; j++) {
3340 bld.MOV(offset(dest, bld, j),
3341 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3342 }
3343
3344 break;
3345 }
3346
3347 case nir_intrinsic_discard:
3348 case nir_intrinsic_discard_if: {
3349 /* We track our discarded pixels in f0.1. By predicating on it, we can
3350 * update just the flag bits that aren't yet discarded. If there's no
3351 * condition, we emit a CMP of g0 != g0, so all currently executing
3352 * channels will get turned off.
3353 */
3354 fs_inst *cmp;
3355 if (instr->intrinsic == nir_intrinsic_discard_if) {
3356 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3357 brw_imm_d(0), BRW_CONDITIONAL_Z);
3358 } else {
3359 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3360 BRW_REGISTER_TYPE_UW));
3361 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3362 }
3363 cmp->predicate = BRW_PREDICATE_NORMAL;
3364 cmp->flag_subreg = 1;
3365
3366 if (devinfo->gen >= 6) {
3367 emit_discard_jump();
3368 }
3369 break;
3370 }
3371
3372 case nir_intrinsic_load_input: {
3373 /* load_input is only used for flat inputs */
3374 unsigned base = nir_intrinsic_base(instr);
3375 unsigned comp = nir_intrinsic_component(instr);
3376 unsigned num_components = instr->num_components;
3377 enum brw_reg_type type = dest.type;
3378
3379 /* Special case fields in the VUE header */
3380 if (base == VARYING_SLOT_LAYER)
3381 comp = 1;
3382 else if (base == VARYING_SLOT_VIEWPORT)
3383 comp = 2;
3384
3385 if (nir_dest_bit_size(instr->dest) == 64) {
3386 /* const_index is in 32-bit type size units that could not be aligned
3387 * with DF. We need to read the double vector as if it was a float
3388 * vector of twice the number of components to fetch the right data.
3389 */
3390 type = BRW_REGISTER_TYPE_F;
3391 num_components *= 2;
3392 }
3393
3394 for (unsigned int i = 0; i < num_components; i++) {
3395 bld.MOV(offset(retype(dest, type), bld, i),
3396 retype(component(interp_reg(base, comp + i), 3), type));
3397 }
3398
3399 if (nir_dest_bit_size(instr->dest) == 64) {
3400 shuffle_32bit_load_result_to_64bit_data(bld,
3401 dest,
3402 retype(dest, type),
3403 instr->num_components);
3404 }
3405 break;
3406 }
3407
3408 case nir_intrinsic_load_barycentric_pixel:
3409 case nir_intrinsic_load_barycentric_centroid:
3410 case nir_intrinsic_load_barycentric_sample:
3411 /* Do nothing - load_interpolated_input handling will handle it later. */
3412 break;
3413
3414 case nir_intrinsic_load_barycentric_at_sample: {
3415 const glsl_interp_mode interpolation =
3416 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3417
3418 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3419
3420 if (const_sample) {
3421 unsigned msg_data = const_sample->i32[0] << 4;
3422
3423 emit_pixel_interpolater_send(bld,
3424 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3425 dest,
3426 fs_reg(), /* src */
3427 brw_imm_ud(msg_data),
3428 interpolation);
3429 } else {
3430 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3431 BRW_REGISTER_TYPE_UD);
3432
3433 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3434 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3435 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3436 bld.exec_all().group(1, 0)
3437 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3438 emit_pixel_interpolater_send(bld,
3439 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3440 dest,
3441 fs_reg(), /* src */
3442 msg_data,
3443 interpolation);
3444 } else {
3445 /* Make a loop that sends a message to the pixel interpolater
3446 * for the sample number in each live channel. If there are
3447 * multiple channels with the same sample number then these
3448 * will be handled simultaneously with a single interation of
3449 * the loop.
3450 */
3451 bld.emit(BRW_OPCODE_DO);
3452
3453 /* Get the next live sample number into sample_id_reg */
3454 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3455
3456 /* Set the flag register so that we can perform the send
3457 * message on all channels that have the same sample number
3458 */
3459 bld.CMP(bld.null_reg_ud(),
3460 sample_src, sample_id,
3461 BRW_CONDITIONAL_EQ);
3462 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3463 bld.exec_all().group(1, 0)
3464 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3465 fs_inst *inst =
3466 emit_pixel_interpolater_send(bld,
3467 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3468 dest,
3469 fs_reg(), /* src */
3470 msg_data,
3471 interpolation);
3472 set_predicate(BRW_PREDICATE_NORMAL, inst);
3473
3474 /* Continue the loop if there are any live channels left */
3475 set_predicate_inv(BRW_PREDICATE_NORMAL,
3476 true, /* inverse */
3477 bld.emit(BRW_OPCODE_WHILE));
3478 }
3479 }
3480 break;
3481 }
3482
3483 case nir_intrinsic_load_barycentric_at_offset: {
3484 const glsl_interp_mode interpolation =
3485 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3486
3487 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3488
3489 if (const_offset) {
3490 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3491 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3492
3493 emit_pixel_interpolater_send(bld,
3494 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3495 dest,
3496 fs_reg(), /* src */
3497 brw_imm_ud(off_x | (off_y << 4)),
3498 interpolation);
3499 } else {
3500 fs_reg src = vgrf(glsl_type::ivec2_type);
3501 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3502 BRW_REGISTER_TYPE_F);
3503 for (int i = 0; i < 2; i++) {
3504 fs_reg temp = vgrf(glsl_type::float_type);
3505 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3506 fs_reg itemp = vgrf(glsl_type::int_type);
3507 /* float to int */
3508 bld.MOV(itemp, temp);
3509
3510 /* Clamp the upper end of the range to +7/16.
3511 * ARB_gpu_shader5 requires that we support a maximum offset
3512 * of +0.5, which isn't representable in a S0.4 value -- if
3513 * we didn't clamp it, we'd end up with -8/16, which is the
3514 * opposite of what the shader author wanted.
3515 *
3516 * This is legal due to ARB_gpu_shader5's quantization
3517 * rules:
3518 *
3519 * "Not all values of <offset> may be supported; x and y
3520 * offsets may be rounded to fixed-point values with the
3521 * number of fraction bits given by the
3522 * implementation-dependent constant
3523 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3524 */
3525 set_condmod(BRW_CONDITIONAL_L,
3526 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3527 }
3528
3529 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3530 emit_pixel_interpolater_send(bld,
3531 opcode,
3532 dest,
3533 src,
3534 brw_imm_ud(0u),
3535 interpolation);
3536 }
3537 break;
3538 }
3539
3540 case nir_intrinsic_load_interpolated_input: {
3541 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3542 emit_fragcoord_interpolation(dest);
3543 break;
3544 }
3545
3546 assert(instr->src[0].ssa &&
3547 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3548 nir_intrinsic_instr *bary_intrinsic =
3549 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3550 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3551 enum glsl_interp_mode interp_mode =
3552 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3553 fs_reg dst_xy;
3554
3555 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3556 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3557 /* Use the result of the PI message */
3558 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3559 } else {
3560 /* Use the delta_xy values computed from the payload */
3561 enum brw_barycentric_mode bary =
3562 brw_barycentric_mode(interp_mode, bary_intrin);
3563
3564 dst_xy = this->delta_xy[bary];
3565 }
3566
3567 for (unsigned int i = 0; i < instr->num_components; i++) {
3568 fs_reg interp =
3569 component(interp_reg(nir_intrinsic_base(instr),
3570 nir_intrinsic_component(instr) + i), 0);
3571 interp.type = BRW_REGISTER_TYPE_F;
3572 dest.type = BRW_REGISTER_TYPE_F;
3573
3574 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3575 fs_reg tmp = vgrf(glsl_type::float_type);
3576 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3577 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3578 } else {
3579 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3580 }
3581 }
3582 break;
3583 }
3584
3585 default:
3586 nir_emit_intrinsic(bld, instr);
3587 break;
3588 }
3589 }
3590
3591 void
3592 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3593 nir_intrinsic_instr *instr)
3594 {
3595 assert(stage == MESA_SHADER_COMPUTE);
3596 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3597
3598 fs_reg dest;
3599 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3600 dest = get_nir_dest(instr->dest);
3601
3602 switch (instr->intrinsic) {
3603 case nir_intrinsic_barrier:
3604 emit_barrier();
3605 cs_prog_data->uses_barrier = true;
3606 break;
3607
3608 case nir_intrinsic_load_subgroup_id:
3609 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3610 break;
3611
3612 case nir_intrinsic_load_local_invocation_id:
3613 case nir_intrinsic_load_work_group_id: {
3614 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3615 fs_reg val = nir_system_values[sv];
3616 assert(val.file != BAD_FILE);
3617 dest.type = val.type;
3618 for (unsigned i = 0; i < 3; i++)
3619 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3620 break;
3621 }
3622
3623 case nir_intrinsic_load_num_work_groups: {
3624 const unsigned surface =
3625 cs_prog_data->binding_table.work_groups_start;
3626
3627 cs_prog_data->uses_num_work_groups = true;
3628
3629 fs_reg surf_index = brw_imm_ud(surface);
3630 brw_mark_surface_used(prog_data, surface);
3631
3632 /* Read the 3 GLuint components of gl_NumWorkGroups */
3633 for (unsigned i = 0; i < 3; i++) {
3634 fs_reg read_result =
3635 emit_untyped_read(bld, surf_index,
3636 brw_imm_ud(i << 2),
3637 1 /* dims */, 1 /* size */,
3638 BRW_PREDICATE_NONE);
3639 read_result.type = dest.type;
3640 bld.MOV(dest, read_result);
3641 dest = offset(dest, bld, 1);
3642 }
3643 break;
3644 }
3645
3646 case nir_intrinsic_shared_atomic_add:
3647 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3648 break;
3649 case nir_intrinsic_shared_atomic_imin:
3650 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3651 break;
3652 case nir_intrinsic_shared_atomic_umin:
3653 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3654 break;
3655 case nir_intrinsic_shared_atomic_imax:
3656 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3657 break;
3658 case nir_intrinsic_shared_atomic_umax:
3659 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3660 break;
3661 case nir_intrinsic_shared_atomic_and:
3662 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3663 break;
3664 case nir_intrinsic_shared_atomic_or:
3665 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3666 break;
3667 case nir_intrinsic_shared_atomic_xor:
3668 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3669 break;
3670 case nir_intrinsic_shared_atomic_exchange:
3671 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3672 break;
3673 case nir_intrinsic_shared_atomic_comp_swap:
3674 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3675 break;
3676
3677 case nir_intrinsic_load_shared: {
3678 assert(devinfo->gen >= 7);
3679
3680 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3681
3682 /* Get the offset to read from */
3683 fs_reg offset_reg;
3684 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3685 if (const_offset) {
3686 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3687 } else {
3688 offset_reg = vgrf(glsl_type::uint_type);
3689 bld.ADD(offset_reg,
3690 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3691 brw_imm_ud(instr->const_index[0]));
3692 }
3693
3694 /* Read the vector */
3695 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3696 instr->num_components);
3697 break;
3698 }
3699
3700 case nir_intrinsic_store_shared: {
3701 assert(devinfo->gen >= 7);
3702
3703 /* Block index */
3704 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3705
3706 /* Value */
3707 fs_reg val_reg = get_nir_src(instr->src[0]);
3708
3709 /* Writemask */
3710 unsigned writemask = instr->const_index[1];
3711
3712 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3713 * since the untyped writes below operate in units of 32-bits, which
3714 * means that we need to write twice as many components each time.
3715 * Also, we have to suffle 64-bit data to be in the appropriate layout
3716 * expected by our 32-bit write messages.
3717 */
3718 unsigned type_size = 4;
3719 if (nir_src_bit_size(instr->src[0]) == 64) {
3720 type_size = 8;
3721 val_reg = shuffle_64bit_data_for_32bit_write(bld,
3722 val_reg, instr->num_components);
3723 }
3724
3725 unsigned type_slots = type_size / 4;
3726
3727 /* Combine groups of consecutive enabled channels in one write
3728 * message. We use ffs to find the first enabled channel and then ffs on
3729 * the bit-inverse, down-shifted writemask to determine the length of
3730 * the block of enabled bits.
3731 */
3732 while (writemask) {
3733 unsigned first_component = ffs(writemask) - 1;
3734 unsigned length = ffs(~(writemask >> first_component)) - 1;
3735
3736 /* We can't write more than 2 64-bit components at once. Limit the
3737 * length of the write to what we can do and let the next iteration
3738 * handle the rest
3739 */
3740 if (type_size > 4)
3741 length = MIN2(2, length);
3742
3743 fs_reg offset_reg;
3744 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3745 if (const_offset) {
3746 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3747 type_size * first_component);
3748 } else {
3749 offset_reg = vgrf(glsl_type::uint_type);
3750 bld.ADD(offset_reg,
3751 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3752 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3753 }
3754
3755 emit_untyped_write(bld, surf_index, offset_reg,
3756 offset(val_reg, bld, first_component * type_slots),
3757 1 /* dims */, length * type_slots,
3758 BRW_PREDICATE_NONE);
3759
3760 /* Clear the bits in the writemask that we just wrote, then try
3761 * again to see if more channels are left.
3762 */
3763 writemask &= (15 << (first_component + length));
3764 }
3765
3766 break;
3767 }
3768
3769 default:
3770 nir_emit_intrinsic(bld, instr);
3771 break;
3772 }
3773 }
3774
3775 static fs_reg
3776 brw_nir_reduction_op_identity(const fs_builder &bld,
3777 nir_op op, brw_reg_type type)
3778 {
3779 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3780 switch (type_sz(type)) {
3781 case 2:
3782 assert(type != BRW_REGISTER_TYPE_HF);
3783 return retype(brw_imm_uw(value.u16[0]), type);
3784 case 4:
3785 return retype(brw_imm_ud(value.u32[0]), type);
3786 case 8:
3787 if (type == BRW_REGISTER_TYPE_DF)
3788 return setup_imm_df(bld, value.f64[0]);
3789 else
3790 return retype(brw_imm_u64(value.u64[0]), type);
3791 default:
3792 unreachable("Invalid type size");
3793 }
3794 }
3795
3796 static opcode
3797 brw_op_for_nir_reduction_op(nir_op op)
3798 {
3799 switch (op) {
3800 case nir_op_iadd: return BRW_OPCODE_ADD;
3801 case nir_op_fadd: return BRW_OPCODE_ADD;
3802 case nir_op_imul: return BRW_OPCODE_MUL;
3803 case nir_op_fmul: return BRW_OPCODE_MUL;
3804 case nir_op_imin: return BRW_OPCODE_SEL;
3805 case nir_op_umin: return BRW_OPCODE_SEL;
3806 case nir_op_fmin: return BRW_OPCODE_SEL;
3807 case nir_op_imax: return BRW_OPCODE_SEL;
3808 case nir_op_umax: return BRW_OPCODE_SEL;
3809 case nir_op_fmax: return BRW_OPCODE_SEL;
3810 case nir_op_iand: return BRW_OPCODE_AND;
3811 case nir_op_ior: return BRW_OPCODE_OR;
3812 case nir_op_ixor: return BRW_OPCODE_XOR;
3813 default:
3814 unreachable("Invalid reduction operation");
3815 }
3816 }
3817
3818 static brw_conditional_mod
3819 brw_cond_mod_for_nir_reduction_op(nir_op op)
3820 {
3821 switch (op) {
3822 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3823 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3824 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3825 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3826 case nir_op_imin: return BRW_CONDITIONAL_L;
3827 case nir_op_umin: return BRW_CONDITIONAL_L;
3828 case nir_op_fmin: return BRW_CONDITIONAL_L;
3829 case nir_op_imax: return BRW_CONDITIONAL_GE;
3830 case nir_op_umax: return BRW_CONDITIONAL_GE;
3831 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3832 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3833 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3834 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3835 default:
3836 unreachable("Invalid reduction operation");
3837 }
3838 }
3839
3840 void
3841 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3842 {
3843 fs_reg dest;
3844 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3845 dest = get_nir_dest(instr->dest);
3846
3847 switch (instr->intrinsic) {
3848 case nir_intrinsic_image_var_load:
3849 case nir_intrinsic_image_var_store:
3850 case nir_intrinsic_image_var_atomic_add:
3851 case nir_intrinsic_image_var_atomic_min:
3852 case nir_intrinsic_image_var_atomic_max:
3853 case nir_intrinsic_image_var_atomic_and:
3854 case nir_intrinsic_image_var_atomic_or:
3855 case nir_intrinsic_image_var_atomic_xor:
3856 case nir_intrinsic_image_var_atomic_exchange:
3857 case nir_intrinsic_image_var_atomic_comp_swap: {
3858 using namespace image_access;
3859
3860 if (stage == MESA_SHADER_FRAGMENT &&
3861 instr->intrinsic != nir_intrinsic_image_var_load)
3862 brw_wm_prog_data(prog_data)->has_side_effects = true;
3863
3864 /* Get the referenced image variable and type. */
3865 const nir_variable *var = instr->variables[0]->var;
3866 const glsl_type *type = var->type->without_array();
3867 const brw_reg_type base_type = get_image_base_type(type);
3868
3869 /* Get some metadata from the image intrinsic. */
3870 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3871 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3872 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3873 const unsigned format = var->data.image.format;
3874 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3875
3876 /* Get the arguments of the image intrinsic. */
3877 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3878 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3879 BRW_REGISTER_TYPE_UD);
3880 const fs_reg src0 = (info->num_srcs >= 3 ?
3881 retype(get_nir_src(instr->src[2]), base_type) :
3882 fs_reg());
3883 const fs_reg src1 = (info->num_srcs >= 4 ?
3884 retype(get_nir_src(instr->src[3]), base_type) :
3885 fs_reg());
3886 fs_reg tmp;
3887
3888 /* Emit an image load, store or atomic op. */
3889 if (instr->intrinsic == nir_intrinsic_image_var_load)
3890 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3891
3892 else if (instr->intrinsic == nir_intrinsic_image_var_store)
3893 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3894 var->data.image.write_only ? GL_NONE : format);
3895
3896 else
3897 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3898 surf_dims, arr_dims, dest_components,
3899 get_image_atomic_op(instr->intrinsic, type));
3900
3901 /* Assign the result. */
3902 for (unsigned c = 0; c < dest_components; ++c) {
3903 bld.MOV(offset(retype(dest, base_type), bld, c),
3904 offset(tmp, bld, c));
3905 }
3906 break;
3907 }
3908
3909 case nir_intrinsic_memory_barrier_atomic_counter:
3910 case nir_intrinsic_memory_barrier_buffer:
3911 case nir_intrinsic_memory_barrier_image:
3912 case nir_intrinsic_memory_barrier: {
3913 const fs_builder ubld = bld.group(8, 0);
3914 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3915 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3916 ->size_written = 2 * REG_SIZE;
3917 break;
3918 }
3919
3920 case nir_intrinsic_group_memory_barrier:
3921 case nir_intrinsic_memory_barrier_shared:
3922 /* We treat these workgroup-level barriers as no-ops. This should be
3923 * safe at present and as long as:
3924 *
3925 * - Memory access instructions are not subsequently reordered by the
3926 * compiler back-end.
3927 *
3928 * - All threads from a given compute shader workgroup fit within a
3929 * single subslice and therefore talk to the same HDC shared unit
3930 * what supposedly guarantees ordering and coherency between threads
3931 * from the same workgroup. This may change in the future when we
3932 * start splitting workgroups across multiple subslices.
3933 *
3934 * - The context is not in fault-and-stream mode, which could cause
3935 * memory transactions (including to SLM) prior to the barrier to be
3936 * replayed after the barrier if a pagefault occurs. This shouldn't
3937 * be a problem up to and including SKL because fault-and-stream is
3938 * not usable due to hardware issues, but that's likely to change in
3939 * the future.
3940 */
3941 break;
3942
3943 case nir_intrinsic_shader_clock: {
3944 /* We cannot do anything if there is an event, so ignore it for now */
3945 const fs_reg shader_clock = get_timestamp(bld);
3946 const fs_reg srcs[] = { component(shader_clock, 0),
3947 component(shader_clock, 1) };
3948 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3949 break;
3950 }
3951
3952 case nir_intrinsic_image_var_size: {
3953 /* Get the referenced image variable and type. */
3954 const nir_variable *var = instr->variables[0]->var;
3955 const glsl_type *type = var->type->without_array();
3956
3957 /* Get the size of the image. */
3958 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3959 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3960
3961 /* For 1DArray image types, the array index is stored in the Z component.
3962 * Fix this by swizzling the Z component to the Y component.
3963 */
3964 const bool is_1d_array_image =
3965 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3966 type->sampler_array;
3967
3968 /* For CubeArray images, we should count the number of cubes instead
3969 * of the number of faces. Fix it by dividing the (Z component) by 6.
3970 */
3971 const bool is_cube_array_image =
3972 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3973 type->sampler_array;
3974
3975 /* Copy all the components. */
3976 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3977 if ((int)c >= type->coordinate_components()) {
3978 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3979 brw_imm_d(1));
3980 } else if (c == 1 && is_1d_array_image) {
3981 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3982 offset(size, bld, 2));
3983 } else if (c == 2 && is_cube_array_image) {
3984 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3985 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3986 offset(size, bld, c), brw_imm_d(6));
3987 } else {
3988 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3989 offset(size, bld, c));
3990 }
3991 }
3992
3993 break;
3994 }
3995
3996 case nir_intrinsic_image_var_samples:
3997 /* The driver does not support multi-sampled images. */
3998 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3999 break;
4000
4001 case nir_intrinsic_load_uniform: {
4002 /* Offsets are in bytes but they should always aligned to
4003 * the type size
4004 */
4005 assert(instr->const_index[0] % 4 == 0 ||
4006 instr->const_index[0] % type_sz(dest.type) == 0);
4007
4008 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4009
4010 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4011 if (const_offset) {
4012 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
4013 /* For 16-bit types we add the module of the const_index[0]
4014 * offset to access to not 32-bit aligned element
4015 */
4016 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
4017
4018 for (unsigned j = 0; j < instr->num_components; j++) {
4019 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4020 }
4021 } else {
4022 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4023 BRW_REGISTER_TYPE_UD);
4024
4025 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4026 * go past the end of the uniform. In order to keep the n'th
4027 * component from running past, we subtract off the size of all but
4028 * one component of the vector.
4029 */
4030 assert(instr->const_index[1] >=
4031 instr->num_components * (int) type_sz(dest.type));
4032 unsigned read_size = instr->const_index[1] -
4033 (instr->num_components - 1) * type_sz(dest.type);
4034
4035 bool supports_64bit_indirects =
4036 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4037
4038 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4039 for (unsigned j = 0; j < instr->num_components; j++) {
4040 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4041 offset(dest, bld, j), offset(src, bld, j),
4042 indirect, brw_imm_ud(read_size));
4043 }
4044 } else {
4045 const unsigned num_mov_indirects =
4046 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4047 /* We read a little bit less per MOV INDIRECT, as they are now
4048 * 32-bits ones instead of 64-bit. Fix read_size then.
4049 */
4050 const unsigned read_size_32bit = read_size -
4051 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4052 for (unsigned j = 0; j < instr->num_components; j++) {
4053 for (unsigned i = 0; i < num_mov_indirects; i++) {
4054 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4055 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4056 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4057 indirect, brw_imm_ud(read_size_32bit));
4058 }
4059 }
4060 }
4061 }
4062 break;
4063 }
4064
4065 case nir_intrinsic_load_ubo: {
4066 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4067 fs_reg surf_index;
4068
4069 if (const_index) {
4070 const unsigned index = stage_prog_data->binding_table.ubo_start +
4071 const_index->u32[0];
4072 surf_index = brw_imm_ud(index);
4073 brw_mark_surface_used(prog_data, index);
4074 } else {
4075 /* The block index is not a constant. Evaluate the index expression
4076 * per-channel and add the base UBO index; we have to select a value
4077 * from any live channel.
4078 */
4079 surf_index = vgrf(glsl_type::uint_type);
4080 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4081 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4082 surf_index = bld.emit_uniformize(surf_index);
4083
4084 /* Assume this may touch any UBO. It would be nice to provide
4085 * a tighter bound, but the array information is already lowered away.
4086 */
4087 brw_mark_surface_used(prog_data,
4088 stage_prog_data->binding_table.ubo_start +
4089 nir->info.num_ubos - 1);
4090 }
4091
4092 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4093 if (const_offset == NULL) {
4094 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4095 BRW_REGISTER_TYPE_UD);
4096
4097 for (int i = 0; i < instr->num_components; i++)
4098 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4099 base_offset, i * type_sz(dest.type));
4100 } else {
4101 /* Even if we are loading doubles, a pull constant load will load
4102 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4103 * need to load a full dvec4 we will have to emit 2 loads. This is
4104 * similar to demote_pull_constants(), except that in that case we
4105 * see individual accesses to each component of the vector and then
4106 * we let CSE deal with duplicate loads. Here we see a vector access
4107 * and we have to split it if necessary.
4108 */
4109 const unsigned type_size = type_sz(dest.type);
4110
4111 /* See if we've selected this as a push constant candidate */
4112 if (const_index) {
4113 const unsigned ubo_block = const_index->u32[0];
4114 const unsigned offset_256b = const_offset->u32[0] / 32;
4115
4116 fs_reg push_reg;
4117 for (int i = 0; i < 4; i++) {
4118 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4119 if (range->block == ubo_block &&
4120 offset_256b >= range->start &&
4121 offset_256b < range->start + range->length) {
4122
4123 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4124 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4125 break;
4126 }
4127 }
4128
4129 if (push_reg.file != BAD_FILE) {
4130 for (unsigned i = 0; i < instr->num_components; i++) {
4131 bld.MOV(offset(dest, bld, i),
4132 byte_offset(push_reg, i * type_size));
4133 }
4134 break;
4135 }
4136 }
4137
4138 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4139 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4140 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4141
4142 for (unsigned c = 0; c < instr->num_components;) {
4143 const unsigned base = const_offset->u32[0] + c * type_size;
4144 /* Number of usable components in the next block-aligned load. */
4145 const unsigned count = MIN2(instr->num_components - c,
4146 (block_sz - base % block_sz) / type_size);
4147
4148 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4149 packed_consts, surf_index,
4150 brw_imm_ud(base & ~(block_sz - 1)));
4151
4152 const fs_reg consts =
4153 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4154 dest.type);
4155
4156 for (unsigned d = 0; d < count; d++)
4157 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4158
4159 c += count;
4160 }
4161 }
4162 break;
4163 }
4164
4165 case nir_intrinsic_load_ssbo: {
4166 assert(devinfo->gen >= 7);
4167
4168 nir_const_value *const_uniform_block =
4169 nir_src_as_const_value(instr->src[0]);
4170
4171 fs_reg surf_index;
4172 if (const_uniform_block) {
4173 unsigned index = stage_prog_data->binding_table.ssbo_start +
4174 const_uniform_block->u32[0];
4175 surf_index = brw_imm_ud(index);
4176 brw_mark_surface_used(prog_data, index);
4177 } else {
4178 surf_index = vgrf(glsl_type::uint_type);
4179 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4180 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4181
4182 /* Assume this may touch any UBO. It would be nice to provide
4183 * a tighter bound, but the array information is already lowered away.
4184 */
4185 brw_mark_surface_used(prog_data,
4186 stage_prog_data->binding_table.ssbo_start +
4187 nir->info.num_ssbos - 1);
4188 }
4189
4190 fs_reg offset_reg;
4191 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4192 if (const_offset) {
4193 offset_reg = brw_imm_ud(const_offset->u32[0]);
4194 } else {
4195 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4196 }
4197
4198 /* Read the vector */
4199 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4200 instr->num_components);
4201
4202 break;
4203 }
4204
4205 case nir_intrinsic_store_ssbo: {
4206 assert(devinfo->gen >= 7);
4207
4208 if (stage == MESA_SHADER_FRAGMENT)
4209 brw_wm_prog_data(prog_data)->has_side_effects = true;
4210
4211 /* Block index */
4212 fs_reg surf_index;
4213 nir_const_value *const_uniform_block =
4214 nir_src_as_const_value(instr->src[1]);
4215 if (const_uniform_block) {
4216 unsigned index = stage_prog_data->binding_table.ssbo_start +
4217 const_uniform_block->u32[0];
4218 surf_index = brw_imm_ud(index);
4219 brw_mark_surface_used(prog_data, index);
4220 } else {
4221 surf_index = vgrf(glsl_type::uint_type);
4222 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4223 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4224
4225 brw_mark_surface_used(prog_data,
4226 stage_prog_data->binding_table.ssbo_start +
4227 nir->info.num_ssbos - 1);
4228 }
4229
4230 /* Value */
4231 fs_reg val_reg = get_nir_src(instr->src[0]);
4232
4233 /* Writemask */
4234 unsigned writemask = instr->const_index[0];
4235
4236 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4237 * since the untyped writes below operate in units of 32-bits, which
4238 * means that we need to write twice as many components each time.
4239 * Also, we have to suffle 64-bit data to be in the appropriate layout
4240 * expected by our 32-bit write messages.
4241 */
4242 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4243 unsigned type_size = bit_size / 8;
4244
4245 /* Combine groups of consecutive enabled channels in one write
4246 * message. We use ffs to find the first enabled channel and then ffs on
4247 * the bit-inverse, down-shifted writemask to determine the num_components
4248 * of the block of enabled bits.
4249 */
4250 while (writemask) {
4251 unsigned first_component = ffs(writemask) - 1;
4252 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4253 fs_reg write_src = offset(val_reg, bld, first_component);
4254
4255 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4256
4257 if (type_size > 4) {
4258 /* We can't write more than 2 64-bit components at once. Limit
4259 * the num_components of the write to what we can do and let the next
4260 * iteration handle the rest.
4261 */
4262 num_components = MIN2(2, num_components);
4263 write_src = shuffle_64bit_data_for_32bit_write(bld, write_src,
4264 num_components);
4265 } else if (type_size < 4) {
4266 assert(type_size == 2);
4267 /* For 16-bit types we pack two consecutive values into a 32-bit
4268 * word and use an untyped write message. For single values or not
4269 * 32-bit-aligned we need to use byte-scattered writes because
4270 * untyped writes works with 32-bit components with 32-bit
4271 * alignment. byte_scattered_write messages only support one
4272 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4273 * could be enabled we can not guarantee that not constant offsets
4274 * to be 32-bit aligned for 16-bit types. For example an array, of
4275 * 16-bit vec3 with array element stride of 6.
4276 *
4277 * In the case of 32-bit aligned constant offsets if there is
4278 * a 3-components vector we submit one untyped-write message
4279 * of 32-bit (first two components), and one byte-scattered
4280 * write message (the last component).
4281 */
4282
4283 if ( !const_offset || ((const_offset->u32[0] +
4284 type_size * first_component) % 4)) {
4285 /* If we use a .yz writemask we also need to emit 2
4286 * byte-scattered write messages because of y-component not
4287 * being aligned to 32-bit.
4288 */
4289 num_components = 1;
4290 } else if (num_components > 2 && (num_components % 2)) {
4291 /* If there is an odd number of consecutive components we left
4292 * the not paired component for a following emit of length == 1
4293 * with byte_scattered_write.
4294 */
4295 num_components --;
4296 }
4297 /* For num_components == 1 we are also shuffling the component
4298 * because byte scattered writes of 16-bit need values to be dword
4299 * aligned. Shuffling only one component would be the same as
4300 * striding it.
4301 */
4302 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D,
4303 DIV_ROUND_UP(num_components, 2));
4304 shuffle_16bit_data_for_32bit_write(bld, tmp, write_src,
4305 num_components);
4306 write_src = tmp;
4307 }
4308
4309 fs_reg offset_reg;
4310
4311 if (const_offset) {
4312 offset_reg = brw_imm_ud(const_offset->u32[0] +
4313 type_size * first_component);
4314 } else {
4315 offset_reg = vgrf(glsl_type::uint_type);
4316 bld.ADD(offset_reg,
4317 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4318 brw_imm_ud(type_size * first_component));
4319 }
4320
4321 if (type_size < 4 && num_components == 1) {
4322 assert(type_size == 2);
4323 /* Untyped Surface messages have a fixed 32-bit size, so we need
4324 * to rely on byte scattered in order to write 16-bit elements.
4325 * The byte_scattered_write message needs that every written 16-bit
4326 * type to be aligned 32-bits (stride=2).
4327 */
4328 emit_byte_scattered_write(bld, surf_index, offset_reg,
4329 write_src,
4330 1 /* dims */, 1,
4331 bit_size,
4332 BRW_PREDICATE_NONE);
4333 } else {
4334 assert(num_components * type_size <= 16);
4335 assert((num_components * type_size) % 4 == 0);
4336 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4337 offset_reg.ud % 4 == 0);
4338 unsigned num_slots = (num_components * type_size) / 4;
4339
4340 emit_untyped_write(bld, surf_index, offset_reg,
4341 write_src,
4342 1 /* dims */, num_slots,
4343 BRW_PREDICATE_NONE);
4344 }
4345
4346 /* Clear the bits in the writemask that we just wrote, then try
4347 * again to see if more channels are left.
4348 */
4349 writemask &= (15 << (first_component + num_components));
4350 }
4351 break;
4352 }
4353
4354 case nir_intrinsic_store_output: {
4355 fs_reg src = get_nir_src(instr->src[0]);
4356
4357 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4358 assert(const_offset && "Indirect output stores not allowed");
4359
4360 unsigned num_components = instr->num_components;
4361 unsigned first_component = nir_intrinsic_component(instr);
4362 if (nir_src_bit_size(instr->src[0]) == 64) {
4363 src = shuffle_64bit_data_for_32bit_write(bld, src, num_components);
4364 num_components *= 2;
4365 }
4366
4367 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4368 4 * const_offset->u32[0]), src.type);
4369 for (unsigned j = 0; j < num_components; j++) {
4370 bld.MOV(offset(new_dest, bld, j + first_component),
4371 offset(src, bld, j));
4372 }
4373 break;
4374 }
4375
4376 case nir_intrinsic_ssbo_atomic_add:
4377 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4378 break;
4379 case nir_intrinsic_ssbo_atomic_imin:
4380 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4381 break;
4382 case nir_intrinsic_ssbo_atomic_umin:
4383 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4384 break;
4385 case nir_intrinsic_ssbo_atomic_imax:
4386 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4387 break;
4388 case nir_intrinsic_ssbo_atomic_umax:
4389 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4390 break;
4391 case nir_intrinsic_ssbo_atomic_and:
4392 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4393 break;
4394 case nir_intrinsic_ssbo_atomic_or:
4395 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4396 break;
4397 case nir_intrinsic_ssbo_atomic_xor:
4398 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4399 break;
4400 case nir_intrinsic_ssbo_atomic_exchange:
4401 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4402 break;
4403 case nir_intrinsic_ssbo_atomic_comp_swap:
4404 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4405 break;
4406
4407 case nir_intrinsic_get_buffer_size: {
4408 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4409 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4410
4411 /* A resinfo's sampler message is used to get the buffer size. The
4412 * SIMD8's writeback message consists of four registers and SIMD16's
4413 * writeback message consists of 8 destination registers (two per each
4414 * component). Because we are only interested on the first channel of
4415 * the first returned component, where resinfo returns the buffer size
4416 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4417 * the dispatch width.
4418 */
4419 const fs_builder ubld = bld.exec_all().group(8, 0);
4420 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4421 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4422
4423 /* Set LOD = 0 */
4424 ubld.MOV(src_payload, brw_imm_d(0));
4425
4426 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4427 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4428 src_payload, brw_imm_ud(index));
4429 inst->header_size = 0;
4430 inst->mlen = 1;
4431 inst->size_written = 4 * REG_SIZE;
4432
4433 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4434 *
4435 * "Out-of-bounds checking is always performed at a DWord granularity. If
4436 * any part of the DWord is out-of-bounds then the whole DWord is
4437 * considered out-of-bounds."
4438 *
4439 * This implies that types with size smaller than 4-bytes need to be
4440 * padded if they don't complete the last dword of the buffer. But as we
4441 * need to maintain the original size we need to reverse the padding
4442 * calculation to return the correct size to know the number of elements
4443 * of an unsized array. As we stored in the last two bits of the surface
4444 * size the needed padding for the buffer, we calculate here the
4445 * original buffer_size reversing the surface_size calculation:
4446 *
4447 * surface_size = isl_align(buffer_size, 4) +
4448 * (isl_align(buffer_size) - buffer_size)
4449 *
4450 * buffer_size = surface_size & ~3 - surface_size & 3
4451 */
4452
4453 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4454 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4455 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4456
4457 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4458 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4459 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4460
4461 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4462
4463 brw_mark_surface_used(prog_data, index);
4464 break;
4465 }
4466
4467 case nir_intrinsic_load_subgroup_invocation:
4468 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4469 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4470 break;
4471
4472 case nir_intrinsic_load_subgroup_eq_mask:
4473 case nir_intrinsic_load_subgroup_ge_mask:
4474 case nir_intrinsic_load_subgroup_gt_mask:
4475 case nir_intrinsic_load_subgroup_le_mask:
4476 case nir_intrinsic_load_subgroup_lt_mask:
4477 unreachable("not reached");
4478
4479 case nir_intrinsic_vote_any: {
4480 const fs_builder ubld = bld.exec_all().group(1, 0);
4481
4482 /* The any/all predicates do not consider channel enables. To prevent
4483 * dead channels from affecting the result, we initialize the flag with
4484 * with the identity value for the logical operation.
4485 */
4486 if (dispatch_width == 32) {
4487 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4488 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4489 brw_imm_ud(0));
4490 } else {
4491 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4492 }
4493 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4494
4495 /* For some reason, the any/all predicates don't work properly with
4496 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4497 * doesn't read the correct subset of the flag register and you end up
4498 * getting garbage in the second half. Work around this by using a pair
4499 * of 1-wide MOVs and scattering the result.
4500 */
4501 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4502 ubld.MOV(res1, brw_imm_d(0));
4503 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4504 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4505 BRW_PREDICATE_ALIGN1_ANY32H,
4506 ubld.MOV(res1, brw_imm_d(-1)));
4507
4508 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4509 break;
4510 }
4511 case nir_intrinsic_vote_all: {
4512 const fs_builder ubld = bld.exec_all().group(1, 0);
4513
4514 /* The any/all predicates do not consider channel enables. To prevent
4515 * dead channels from affecting the result, we initialize the flag with
4516 * with the identity value for the logical operation.
4517 */
4518 if (dispatch_width == 32) {
4519 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4520 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4521 brw_imm_ud(0xffffffff));
4522 } else {
4523 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4524 }
4525 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4526
4527 /* For some reason, the any/all predicates don't work properly with
4528 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4529 * doesn't read the correct subset of the flag register and you end up
4530 * getting garbage in the second half. Work around this by using a pair
4531 * of 1-wide MOVs and scattering the result.
4532 */
4533 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4534 ubld.MOV(res1, brw_imm_d(0));
4535 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4536 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4537 BRW_PREDICATE_ALIGN1_ALL32H,
4538 ubld.MOV(res1, brw_imm_d(-1)));
4539
4540 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4541 break;
4542 }
4543 case nir_intrinsic_vote_feq:
4544 case nir_intrinsic_vote_ieq: {
4545 fs_reg value = get_nir_src(instr->src[0]);
4546 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4547 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4548 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4549 }
4550
4551 fs_reg uniformized = bld.emit_uniformize(value);
4552 const fs_builder ubld = bld.exec_all().group(1, 0);
4553
4554 /* The any/all predicates do not consider channel enables. To prevent
4555 * dead channels from affecting the result, we initialize the flag with
4556 * with the identity value for the logical operation.
4557 */
4558 if (dispatch_width == 32) {
4559 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4560 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4561 brw_imm_ud(0xffffffff));
4562 } else {
4563 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4564 }
4565 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4566
4567 /* For some reason, the any/all predicates don't work properly with
4568 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4569 * doesn't read the correct subset of the flag register and you end up
4570 * getting garbage in the second half. Work around this by using a pair
4571 * of 1-wide MOVs and scattering the result.
4572 */
4573 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4574 ubld.MOV(res1, brw_imm_d(0));
4575 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4576 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4577 BRW_PREDICATE_ALIGN1_ALL32H,
4578 ubld.MOV(res1, brw_imm_d(-1)));
4579
4580 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4581 break;
4582 }
4583
4584 case nir_intrinsic_ballot: {
4585 const fs_reg value = retype(get_nir_src(instr->src[0]),
4586 BRW_REGISTER_TYPE_UD);
4587 struct brw_reg flag = brw_flag_reg(0, 0);
4588 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4589 * as f0.0. This is a problem for fragment programs as we currently use
4590 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4591 * programs yet so this isn't a problem. When we do, something will
4592 * have to change.
4593 */
4594 if (dispatch_width == 32)
4595 flag.type = BRW_REGISTER_TYPE_UD;
4596
4597 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4598 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4599
4600 if (instr->dest.ssa.bit_size > 32) {
4601 dest.type = BRW_REGISTER_TYPE_UQ;
4602 } else {
4603 dest.type = BRW_REGISTER_TYPE_UD;
4604 }
4605 bld.MOV(dest, flag);
4606 break;
4607 }
4608
4609 case nir_intrinsic_read_invocation: {
4610 const fs_reg value = get_nir_src(instr->src[0]);
4611 const fs_reg invocation = get_nir_src(instr->src[1]);
4612 fs_reg tmp = bld.vgrf(value.type);
4613
4614 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4615 bld.emit_uniformize(invocation));
4616
4617 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4618 break;
4619 }
4620
4621 case nir_intrinsic_read_first_invocation: {
4622 const fs_reg value = get_nir_src(instr->src[0]);
4623 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4624 break;
4625 }
4626
4627 case nir_intrinsic_shuffle: {
4628 const fs_reg value = get_nir_src(instr->src[0]);
4629 const fs_reg index = get_nir_src(instr->src[1]);
4630
4631 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4632 break;
4633 }
4634
4635 case nir_intrinsic_first_invocation: {
4636 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4637 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4638 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4639 fs_reg(component(tmp, 0)));
4640 break;
4641 }
4642
4643 case nir_intrinsic_quad_broadcast: {
4644 const fs_reg value = get_nir_src(instr->src[0]);
4645 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4646 assert(nir_src_bit_size(instr->src[1]) == 32);
4647
4648 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4649 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4650 break;
4651 }
4652
4653 case nir_intrinsic_quad_swap_horizontal: {
4654 const fs_reg value = get_nir_src(instr->src[0]);
4655 const fs_reg tmp = bld.vgrf(value.type);
4656 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4657
4658 const fs_reg src_left = horiz_stride(value, 2);
4659 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4660 const fs_reg tmp_left = horiz_stride(tmp, 2);
4661 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4662
4663 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4664 *
4665 * "When source or destination datatype is 64b or operation is
4666 * integer DWord multiply, regioning in Align1 must follow
4667 * these rules:
4668 *
4669 * [...]
4670 *
4671 * 3. Source and Destination offset must be the same, except
4672 * the case of scalar source."
4673 *
4674 * In order to work around this, we have to emit two 32-bit MOVs instead
4675 * of a single 64-bit MOV to do the shuffle.
4676 */
4677 if (type_sz(value.type) > 4 &&
4678 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4679 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4680 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4681 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4682 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4683 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4684 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4685 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4686 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4687 } else {
4688 ubld.MOV(tmp_left, src_right);
4689 ubld.MOV(tmp_right, src_left);
4690 }
4691 bld.MOV(retype(dest, value.type), tmp);
4692 break;
4693 }
4694
4695 case nir_intrinsic_quad_swap_vertical: {
4696 const fs_reg value = get_nir_src(instr->src[0]);
4697 if (nir_src_bit_size(instr->src[0]) == 32) {
4698 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4699 const fs_reg tmp = bld.vgrf(value.type);
4700 const fs_builder ubld = bld.exec_all();
4701 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4702 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4703 bld.MOV(retype(dest, value.type), tmp);
4704 } else {
4705 /* For larger data types, we have to either emit dispatch_width many
4706 * MOVs or else fall back to doing indirects.
4707 */
4708 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4709 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4710 brw_imm_w(0x2));
4711 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4712 }
4713 break;
4714 }
4715
4716 case nir_intrinsic_quad_swap_diagonal: {
4717 const fs_reg value = get_nir_src(instr->src[0]);
4718 if (nir_src_bit_size(instr->src[0]) == 32) {
4719 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4720 const fs_reg tmp = bld.vgrf(value.type);
4721 const fs_builder ubld = bld.exec_all();
4722 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4723 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4724 bld.MOV(retype(dest, value.type), tmp);
4725 } else {
4726 /* For larger data types, we have to either emit dispatch_width many
4727 * MOVs or else fall back to doing indirects.
4728 */
4729 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4730 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4731 brw_imm_w(0x3));
4732 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4733 }
4734 break;
4735 }
4736
4737 case nir_intrinsic_reduce: {
4738 fs_reg src = get_nir_src(instr->src[0]);
4739 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4740 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4741 if (cluster_size == 0 || cluster_size > dispatch_width)
4742 cluster_size = dispatch_width;
4743
4744 /* Figure out the source type */
4745 src.type = brw_type_for_nir_type(devinfo,
4746 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4747 nir_src_bit_size(instr->src[0])));
4748
4749 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4750 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4751 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4752
4753 /* Set up a register for all of our scratching around and initialize it
4754 * to reduction operation's identity value.
4755 */
4756 fs_reg scan = bld.vgrf(src.type);
4757 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4758
4759 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4760
4761 dest.type = src.type;
4762 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4763 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4764 * the distance between clusters is at least 2 GRFs. In this case,
4765 * we don't need the weird striding of the CLUSTER_BROADCAST
4766 * instruction and can just do regular MOVs.
4767 */
4768 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4769 const unsigned groups =
4770 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4771 const unsigned group_size = dispatch_width / groups;
4772 for (unsigned i = 0; i < groups; i++) {
4773 const unsigned cluster = (i * group_size) / cluster_size;
4774 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4775 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4776 component(scan, comp));
4777 }
4778 } else {
4779 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4780 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4781 }
4782 break;
4783 }
4784
4785 case nir_intrinsic_inclusive_scan:
4786 case nir_intrinsic_exclusive_scan: {
4787 fs_reg src = get_nir_src(instr->src[0]);
4788 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4789
4790 /* Figure out the source type */
4791 src.type = brw_type_for_nir_type(devinfo,
4792 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4793 nir_src_bit_size(instr->src[0])));
4794
4795 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4796 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4797 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4798
4799 /* Set up a register for all of our scratching around and initialize it
4800 * to reduction operation's identity value.
4801 */
4802 fs_reg scan = bld.vgrf(src.type);
4803 const fs_builder allbld = bld.exec_all();
4804 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4805
4806 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4807 /* Exclusive scan is a bit harder because we have to do an annoying
4808 * shift of the contents before we can begin. To make things worse,
4809 * we can't do this with a normal stride; we have to use indirects.
4810 */
4811 fs_reg shifted = bld.vgrf(src.type);
4812 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4813 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4814 brw_imm_w(-1));
4815 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4816 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4817 scan = shifted;
4818 }
4819
4820 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4821
4822 bld.MOV(retype(dest, src.type), scan);
4823 break;
4824 }
4825
4826 case nir_intrinsic_begin_invocation_interlock: {
4827 const fs_builder ubld = bld.group(8, 0);
4828 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4829
4830 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4831 REG_SIZE;
4832
4833 break;
4834 }
4835
4836 case nir_intrinsic_end_invocation_interlock: {
4837 /* We don't need to do anything here */
4838 break;
4839 }
4840
4841 default:
4842 unreachable("unknown intrinsic");
4843 }
4844 }
4845
4846 void
4847 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4848 int op, nir_intrinsic_instr *instr)
4849 {
4850 if (stage == MESA_SHADER_FRAGMENT)
4851 brw_wm_prog_data(prog_data)->has_side_effects = true;
4852
4853 fs_reg dest;
4854 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4855 dest = get_nir_dest(instr->dest);
4856
4857 fs_reg surface;
4858 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4859 if (const_surface) {
4860 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4861 const_surface->u32[0];
4862 surface = brw_imm_ud(surf_index);
4863 brw_mark_surface_used(prog_data, surf_index);
4864 } else {
4865 surface = vgrf(glsl_type::uint_type);
4866 bld.ADD(surface, get_nir_src(instr->src[0]),
4867 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4868
4869 /* Assume this may touch any SSBO. This is the same we do for other
4870 * UBO/SSBO accesses with non-constant surface.
4871 */
4872 brw_mark_surface_used(prog_data,
4873 stage_prog_data->binding_table.ssbo_start +
4874 nir->info.num_ssbos - 1);
4875 }
4876
4877 fs_reg offset = get_nir_src(instr->src[1]);
4878 fs_reg data1 = get_nir_src(instr->src[2]);
4879 fs_reg data2;
4880 if (op == BRW_AOP_CMPWR)
4881 data2 = get_nir_src(instr->src[3]);
4882
4883 /* Emit the actual atomic operation */
4884
4885 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4886 data1, data2,
4887 1 /* dims */, 1 /* rsize */,
4888 op,
4889 BRW_PREDICATE_NONE);
4890 dest.type = atomic_result.type;
4891 bld.MOV(dest, atomic_result);
4892 }
4893
4894 void
4895 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4896 int op, nir_intrinsic_instr *instr)
4897 {
4898 fs_reg dest;
4899 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4900 dest = get_nir_dest(instr->dest);
4901
4902 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4903 fs_reg offset;
4904 fs_reg data1 = get_nir_src(instr->src[1]);
4905 fs_reg data2;
4906 if (op == BRW_AOP_CMPWR)
4907 data2 = get_nir_src(instr->src[2]);
4908
4909 /* Get the offset */
4910 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4911 if (const_offset) {
4912 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4913 } else {
4914 offset = vgrf(glsl_type::uint_type);
4915 bld.ADD(offset,
4916 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4917 brw_imm_ud(instr->const_index[0]));
4918 }
4919
4920 /* Emit the actual atomic operation operation */
4921
4922 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4923 data1, data2,
4924 1 /* dims */, 1 /* rsize */,
4925 op,
4926 BRW_PREDICATE_NONE);
4927 dest.type = atomic_result.type;
4928 bld.MOV(dest, atomic_result);
4929 }
4930
4931 void
4932 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4933 {
4934 unsigned texture = instr->texture_index;
4935 unsigned sampler = instr->sampler_index;
4936
4937 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4938
4939 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4940 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4941
4942 int lod_components = 0;
4943
4944 /* The hardware requires a LOD for buffer textures */
4945 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4946 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4947
4948 uint32_t header_bits = 0;
4949 for (unsigned i = 0; i < instr->num_srcs; i++) {
4950 fs_reg src = get_nir_src(instr->src[i].src);
4951 switch (instr->src[i].src_type) {
4952 case nir_tex_src_bias:
4953 srcs[TEX_LOGICAL_SRC_LOD] =
4954 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4955 break;
4956 case nir_tex_src_comparator:
4957 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4958 break;
4959 case nir_tex_src_coord:
4960 switch (instr->op) {
4961 case nir_texop_txf:
4962 case nir_texop_txf_ms:
4963 case nir_texop_txf_ms_mcs:
4964 case nir_texop_samples_identical:
4965 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4966 break;
4967 default:
4968 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4969 break;
4970 }
4971 break;
4972 case nir_tex_src_ddx:
4973 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4974 lod_components = nir_tex_instr_src_size(instr, i);
4975 break;
4976 case nir_tex_src_ddy:
4977 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4978 break;
4979 case nir_tex_src_lod:
4980 switch (instr->op) {
4981 case nir_texop_txs:
4982 srcs[TEX_LOGICAL_SRC_LOD] =
4983 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4984 break;
4985 case nir_texop_txf:
4986 srcs[TEX_LOGICAL_SRC_LOD] =
4987 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4988 break;
4989 default:
4990 srcs[TEX_LOGICAL_SRC_LOD] =
4991 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4992 break;
4993 }
4994 break;
4995 case nir_tex_src_ms_index:
4996 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4997 break;
4998
4999 case nir_tex_src_offset: {
5000 nir_const_value *const_offset =
5001 nir_src_as_const_value(instr->src[i].src);
5002 unsigned offset_bits = 0;
5003 if (const_offset &&
5004 brw_texture_offset(const_offset->i32,
5005 nir_tex_instr_src_size(instr, i),
5006 &offset_bits)) {
5007 header_bits |= offset_bits;
5008 } else {
5009 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5010 retype(src, BRW_REGISTER_TYPE_D);
5011 }
5012 break;
5013 }
5014
5015 case nir_tex_src_projector:
5016 unreachable("should be lowered");
5017
5018 case nir_tex_src_texture_offset: {
5019 /* Figure out the highest possible texture index and mark it as used */
5020 uint32_t max_used = texture + instr->texture_array_size - 1;
5021 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5022 max_used += stage_prog_data->binding_table.gather_texture_start;
5023 } else {
5024 max_used += stage_prog_data->binding_table.texture_start;
5025 }
5026 brw_mark_surface_used(prog_data, max_used);
5027
5028 /* Emit code to evaluate the actual indexing expression */
5029 fs_reg tmp = vgrf(glsl_type::uint_type);
5030 bld.ADD(tmp, src, brw_imm_ud(texture));
5031 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5032 break;
5033 }
5034
5035 case nir_tex_src_sampler_offset: {
5036 /* Emit code to evaluate the actual indexing expression */
5037 fs_reg tmp = vgrf(glsl_type::uint_type);
5038 bld.ADD(tmp, src, brw_imm_ud(sampler));
5039 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5040 break;
5041 }
5042
5043 case nir_tex_src_ms_mcs:
5044 assert(instr->op == nir_texop_txf_ms);
5045 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5046 break;
5047
5048 case nir_tex_src_plane: {
5049 nir_const_value *const_plane =
5050 nir_src_as_const_value(instr->src[i].src);
5051 const uint32_t plane = const_plane->u32[0];
5052 const uint32_t texture_index =
5053 instr->texture_index +
5054 stage_prog_data->binding_table.plane_start[plane] -
5055 stage_prog_data->binding_table.texture_start;
5056
5057 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5058 break;
5059 }
5060
5061 default:
5062 unreachable("unknown texture source");
5063 }
5064 }
5065
5066 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5067 (instr->op == nir_texop_txf_ms ||
5068 instr->op == nir_texop_samples_identical)) {
5069 if (devinfo->gen >= 7 &&
5070 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5071 srcs[TEX_LOGICAL_SRC_MCS] =
5072 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5073 instr->coord_components,
5074 srcs[TEX_LOGICAL_SRC_SURFACE]);
5075 } else {
5076 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5077 }
5078 }
5079
5080 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5081 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5082
5083 enum opcode opcode;
5084 switch (instr->op) {
5085 case nir_texop_tex:
5086 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5087 SHADER_OPCODE_TXL_LOGICAL);
5088 break;
5089 case nir_texop_txb:
5090 opcode = FS_OPCODE_TXB_LOGICAL;
5091 break;
5092 case nir_texop_txl:
5093 opcode = SHADER_OPCODE_TXL_LOGICAL;
5094 break;
5095 case nir_texop_txd:
5096 opcode = SHADER_OPCODE_TXD_LOGICAL;
5097 break;
5098 case nir_texop_txf:
5099 opcode = SHADER_OPCODE_TXF_LOGICAL;
5100 break;
5101 case nir_texop_txf_ms:
5102 if ((key_tex->msaa_16 & (1 << sampler)))
5103 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5104 else
5105 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5106 break;
5107 case nir_texop_txf_ms_mcs:
5108 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5109 break;
5110 case nir_texop_query_levels:
5111 case nir_texop_txs:
5112 opcode = SHADER_OPCODE_TXS_LOGICAL;
5113 break;
5114 case nir_texop_lod:
5115 opcode = SHADER_OPCODE_LOD_LOGICAL;
5116 break;
5117 case nir_texop_tg4:
5118 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5119 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5120 else
5121 opcode = SHADER_OPCODE_TG4_LOGICAL;
5122 break;
5123 case nir_texop_texture_samples:
5124 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5125 break;
5126 case nir_texop_samples_identical: {
5127 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5128
5129 /* If mcs is an immediate value, it means there is no MCS. In that case
5130 * just return false.
5131 */
5132 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5133 bld.MOV(dst, brw_imm_ud(0u));
5134 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5135 fs_reg tmp = vgrf(glsl_type::uint_type);
5136 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5137 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5138 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5139 } else {
5140 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5141 BRW_CONDITIONAL_EQ);
5142 }
5143 return;
5144 }
5145 default:
5146 unreachable("unknown texture opcode");
5147 }
5148
5149 if (instr->op == nir_texop_tg4) {
5150 if (instr->component == 1 &&
5151 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5152 /* gather4 sampler is broken for green channel on RG32F --
5153 * we must ask for blue instead.
5154 */
5155 header_bits |= 2 << 16;
5156 } else {
5157 header_bits |= instr->component << 16;
5158 }
5159 }
5160
5161 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5162 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5163 inst->offset = header_bits;
5164
5165 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5166 if (devinfo->gen >= 9 &&
5167 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5168 unsigned write_mask = instr->dest.is_ssa ?
5169 nir_ssa_def_components_read(&instr->dest.ssa):
5170 (1 << dest_size) - 1;
5171 assert(write_mask != 0); /* dead code should have been eliminated */
5172 inst->size_written = util_last_bit(write_mask) *
5173 inst->dst.component_size(inst->exec_size);
5174 } else {
5175 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5176 }
5177
5178 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5179 inst->shadow_compare = true;
5180
5181 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5182 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5183
5184 fs_reg nir_dest[4];
5185 for (unsigned i = 0; i < dest_size; i++)
5186 nir_dest[i] = offset(dst, bld, i);
5187
5188 if (instr->op == nir_texop_query_levels) {
5189 /* # levels is in .w */
5190 nir_dest[0] = offset(dst, bld, 3);
5191 } else if (instr->op == nir_texop_txs &&
5192 dest_size >= 3 && devinfo->gen < 7) {
5193 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5194 fs_reg depth = offset(dst, bld, 2);
5195 nir_dest[2] = vgrf(glsl_type::int_type);
5196 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5197 }
5198
5199 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5200 }
5201
5202 void
5203 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5204 {
5205 switch (instr->type) {
5206 case nir_jump_break:
5207 bld.emit(BRW_OPCODE_BREAK);
5208 break;
5209 case nir_jump_continue:
5210 bld.emit(BRW_OPCODE_CONTINUE);
5211 break;
5212 case nir_jump_return:
5213 default:
5214 unreachable("unknown jump");
5215 }
5216 }
5217
5218 /**
5219 * This helper takes the result of a load operation that reads 32-bit elements
5220 * in this format:
5221 *
5222 * x x x x x x x x
5223 * y y y y y y y y
5224 * z z z z z z z z
5225 * w w w w w w w w
5226 *
5227 * and shuffles the data to get this:
5228 *
5229 * x y x y x y x y
5230 * x y x y x y x y
5231 * z w z w z w z w
5232 * z w z w z w z w
5233 *
5234 * Which is exactly what we want if the load is reading 64-bit components
5235 * like doubles, where x represents the low 32-bit of the x double component
5236 * and y represents the high 32-bit of the x double component (likewise with
5237 * z and w for double component y). The parameter @components represents
5238 * the number of 64-bit components present in @src. This would typically be
5239 * 2 at most, since we can only fit 2 double elements in the result of a
5240 * vec4 load.
5241 *
5242 * Notice that @dst and @src can be the same register.
5243 */
5244 void
5245 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
5246 const fs_reg &dst,
5247 const fs_reg &src,
5248 uint32_t components)
5249 {
5250 assert(type_sz(src.type) == 4);
5251 assert(type_sz(dst.type) == 8);
5252
5253 /* A temporary that we will use to shuffle the 32-bit data of each
5254 * component in the vector into valid 64-bit data. We can't write directly
5255 * to dst because dst can be (and would usually be) the same as src
5256 * and in that case the first MOV in the loop below would overwrite the
5257 * data read in the second MOV.
5258 */
5259 fs_reg tmp = bld.vgrf(dst.type);
5260
5261 for (unsigned i = 0; i < components; i++) {
5262 const fs_reg component_i = offset(src, bld, 2 * i);
5263
5264 bld.MOV(subscript(tmp, src.type, 0), component_i);
5265 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
5266
5267 bld.MOV(offset(dst, bld, i), tmp);
5268 }
5269 }
5270
5271 void
5272 shuffle_32bit_load_result_to_16bit_data(const fs_builder &bld,
5273 const fs_reg &dst,
5274 const fs_reg &src,
5275 uint32_t first_component,
5276 uint32_t components)
5277 {
5278 assert(type_sz(src.type) == 4);
5279 assert(type_sz(dst.type) == 2);
5280
5281 /* A temporary is used to un-shuffle the 32-bit data of each component in
5282 * into a valid 16-bit vector. We can't write directly to dst because it
5283 * can be the same register as src and in that case the first MOV in the
5284 * loop below would overwrite the data read in the second MOV.
5285 */
5286 fs_reg tmp = retype(bld.vgrf(src.type), dst.type);
5287
5288 for (unsigned i = 0; i < components; i++) {
5289 const fs_reg component_i =
5290 subscript(offset(src, bld, (first_component + i) / 2), dst.type,
5291 (first_component + i) % 2);
5292
5293 bld.MOV(offset(tmp, bld, i % 2), component_i);
5294
5295 if (i % 2) {
5296 bld.MOV(offset(dst, bld, i -1), offset(tmp, bld, 0));
5297 bld.MOV(offset(dst, bld, i), offset(tmp, bld, 1));
5298 }
5299 }
5300 if (components % 2) {
5301 bld.MOV(offset(dst, bld, components - 1), tmp);
5302 }
5303 }
5304
5305 /**
5306 * This helper does the inverse operation of
5307 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
5308 *
5309 * We need to do this when we are going to use untyped write messsages that
5310 * operate with 32-bit components in order to arrange our 64-bit data to be
5311 * in the expected layout.
5312 *
5313 * Notice that callers of this function, unlike in the case of the inverse
5314 * operation, would typically need to call this with dst and src being
5315 * different registers, since they would otherwise corrupt the original
5316 * 64-bit data they are about to write. Because of this the function checks
5317 * that the src and dst regions involved in the operation do not overlap.
5318 */
5319 fs_reg
5320 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
5321 const fs_reg &src,
5322 uint32_t components)
5323 {
5324 assert(type_sz(src.type) == 8);
5325
5326 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D, 2 * components);
5327
5328 for (unsigned i = 0; i < components; i++) {
5329 const fs_reg component_i = offset(src, bld, i);
5330 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
5331 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
5332 }
5333
5334 return dst;
5335 }
5336
5337 void
5338 shuffle_16bit_data_for_32bit_write(const fs_builder &bld,
5339 const fs_reg &dst,
5340 const fs_reg &src,
5341 uint32_t components)
5342 {
5343 assert(type_sz(src.type) == 2);
5344 assert(type_sz(dst.type) == 4);
5345
5346 /* A temporary is used to shuffle the 16-bit data of each component in the
5347 * 32-bit data vector. We can't write directly to dst because it can be the
5348 * same register as src and in that case the first MOV in the loop below
5349 * would overwrite the data read in the second MOV.
5350 */
5351 fs_reg tmp = bld.vgrf(dst.type);
5352
5353 for (unsigned i = 0; i < components; i++) {
5354 const fs_reg component_i = offset(src, bld, i);
5355 bld.MOV(subscript(tmp, src.type, i % 2), component_i);
5356 if (i % 2) {
5357 bld.MOV(offset(dst, bld, i / 2), tmp);
5358 }
5359 }
5360 if (components % 2) {
5361 bld.MOV(offset(dst, bld, components / 2), tmp);
5362 }
5363 }
5364
5365 /*
5366 * This helper takes a source register and un/shuffles it into the destination
5367 * register.
5368 *
5369 * If source type size is smaller than destination type size the operation
5370 * needed is a component shuffle. The opposite case would be an unshuffle. If
5371 * source/destination type size is equal a shuffle is done that would be
5372 * equivalent to a simple MOV.
5373 *
5374 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5375 * components .xyz 16-bit vector on SIMD8 would be.
5376 *
5377 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5378 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5379 *
5380 * This helper will return the following 2 32-bit components with the 16-bit
5381 * values shuffled:
5382 *
5383 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5384 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5385 *
5386 * For unshuffle, the example would be the opposite, a 64-bit type source
5387 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5388 * would be:
5389 *
5390 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5391 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5392 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5393 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5394 *
5395 * The returned result would be the following 4 32-bit components unshuffled:
5396 *
5397 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5398 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5399 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5400 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5401 *
5402 * - Source and destination register must not be overlapped.
5403 * - components units are measured in terms of the smaller type between
5404 * source and destination because we are un/shuffling the smaller
5405 * components from/into the bigger ones.
5406 * - first_component parameter allows skipping source components.
5407 */
5408 void
5409 shuffle_src_to_dst(const fs_builder &bld,
5410 const fs_reg &dst,
5411 const fs_reg &src,
5412 uint32_t first_component,
5413 uint32_t components)
5414 {
5415 if (type_sz(src.type) == type_sz(dst.type)) {
5416 assert(!regions_overlap(dst,
5417 type_sz(dst.type) * bld.dispatch_width() * components,
5418 offset(src, bld, first_component),
5419 type_sz(src.type) * bld.dispatch_width() * components));
5420 for (unsigned i = 0; i < components; i++) {
5421 bld.MOV(retype(offset(dst, bld, i), src.type),
5422 offset(src, bld, i + first_component));
5423 }
5424 } else if (type_sz(src.type) < type_sz(dst.type)) {
5425 /* Source is shuffled into destination */
5426 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5427 assert(!regions_overlap(dst,
5428 type_sz(dst.type) * bld.dispatch_width() *
5429 DIV_ROUND_UP(components, size_ratio),
5430 offset(src, bld, first_component),
5431 type_sz(src.type) * bld.dispatch_width() * components));
5432
5433 brw_reg_type shuffle_type =
5434 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5435 BRW_REGISTER_TYPE_D);
5436 for (unsigned i = 0; i < components; i++) {
5437 fs_reg shuffle_component_i =
5438 subscript(offset(dst, bld, i / size_ratio),
5439 shuffle_type, i % size_ratio);
5440 bld.MOV(shuffle_component_i,
5441 retype(offset(src, bld, i + first_component), shuffle_type));
5442 }
5443 } else {
5444 /* Source is unshuffled into destination */
5445 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5446 assert(!regions_overlap(dst,
5447 type_sz(dst.type) * bld.dispatch_width() * components,
5448 offset(src, bld, first_component / size_ratio),
5449 type_sz(src.type) * bld.dispatch_width() *
5450 DIV_ROUND_UP(components + (first_component % size_ratio),
5451 size_ratio)));
5452
5453 brw_reg_type shuffle_type =
5454 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5455 BRW_REGISTER_TYPE_D);
5456 for (unsigned i = 0; i < components; i++) {
5457 fs_reg shuffle_component_i =
5458 subscript(offset(src, bld, (first_component + i) / size_ratio),
5459 shuffle_type, (first_component + i) % size_ratio);
5460 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5461 shuffle_component_i);
5462 }
5463 }
5464 }
5465
5466 void
5467 shuffle_from_32bit_read(const fs_builder &bld,
5468 const fs_reg &dst,
5469 const fs_reg &src,
5470 uint32_t first_component,
5471 uint32_t components)
5472 {
5473 assert(type_sz(src.type) == 4);
5474
5475 /* This function takes components in units of the destination type while
5476 * shuffle_src_to_dst takes components in units of the smallest type
5477 */
5478 if (type_sz(dst.type) > 4) {
5479 assert(type_sz(dst.type) == 8);
5480 first_component *= 2;
5481 components *= 2;
5482 }
5483
5484 shuffle_src_to_dst(bld, dst, src, first_component, components);
5485 }
5486
5487 fs_reg
5488 shuffle_for_32bit_write(const fs_builder &bld,
5489 const fs_reg &src,
5490 uint32_t first_component,
5491 uint32_t components)
5492 {
5493 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5494 DIV_ROUND_UP (components * type_sz(src.type), 4));
5495 /* This function takes components in units of the source type while
5496 * shuffle_src_to_dst takes components in units of the smallest type
5497 */
5498 if (type_sz(src.type) > 4) {
5499 assert(type_sz(src.type) == 8);
5500 first_component *= 2;
5501 components *= 2;
5502 }
5503
5504 shuffle_src_to_dst(bld, dst, src, first_component, components);
5505
5506 return dst;
5507 }
5508
5509 fs_reg
5510 setup_imm_df(const fs_builder &bld, double v)
5511 {
5512 const struct gen_device_info *devinfo = bld.shader->devinfo;
5513 assert(devinfo->gen >= 7);
5514
5515 if (devinfo->gen >= 8)
5516 return brw_imm_df(v);
5517
5518 /* gen7.5 does not support DF immediates straighforward but the DIM
5519 * instruction allows to set the 64-bit immediate value.
5520 */
5521 if (devinfo->is_haswell) {
5522 const fs_builder ubld = bld.exec_all().group(1, 0);
5523 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5524 ubld.DIM(dst, brw_imm_df(v));
5525 return component(dst, 0);
5526 }
5527
5528 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5529 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5530 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5531 *
5532 * Alternatively, we could also produce a normal VGRF (without stride 0)
5533 * by writing to all the channels in the VGRF, however, that would hit the
5534 * gen7 bug where we have to split writes that span more than 1 register
5535 * into instructions with a width of 4 (otherwise the write to the second
5536 * register written runs into an execmask hardware bug) which isn't very
5537 * nice.
5538 */
5539 union {
5540 double d;
5541 struct {
5542 uint32_t i1;
5543 uint32_t i2;
5544 };
5545 } di;
5546
5547 di.d = v;
5548
5549 const fs_builder ubld = bld.exec_all().group(1, 0);
5550 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5551 ubld.MOV(tmp, brw_imm_ud(di.i1));
5552 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5553
5554 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5555 }