intel/fs: Implement nir_intrinsic_load_fs_input_interp_deltas
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "brw_eu.h"
28 #include "nir_search_helpers.h"
29 #include "util/u_math.h"
30 #include "util/bitscan.h"
31
32 using namespace brw;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 /* emit the arrays used for inputs and outputs - load/store intrinsics will
38 * be converted to reads/writes of these arrays
39 */
40 nir_setup_outputs();
41 nir_setup_uniforms();
42 nir_emit_system_values();
43
44 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
45 }
46
47 void
48 fs_visitor::nir_setup_outputs()
49 {
50 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
51 return;
52
53 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
54
55 /* Calculate the size of output registers in a separate pass, before
56 * allocating them. With ARB_enhanced_layouts, multiple output variables
57 * may occupy the same slot, but have different type sizes.
58 */
59 nir_foreach_variable(var, &nir->outputs) {
60 const int loc = var->data.driver_location;
61 const unsigned var_vec4s =
62 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
63 : type_size_vec4(var->type, true);
64 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
65 }
66
67 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
68 if (vec4s[loc] == 0) {
69 loc++;
70 continue;
71 }
72
73 unsigned reg_size = vec4s[loc];
74
75 /* Check if there are any ranges that start within this range and extend
76 * past it. If so, include them in this allocation.
77 */
78 for (unsigned i = 1; i < reg_size; i++)
79 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
80
81 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
82 for (unsigned i = 0; i < reg_size; i++)
83 outputs[loc + i] = offset(reg, bld, 4 * i);
84
85 loc += reg_size;
86 }
87 }
88
89 void
90 fs_visitor::nir_setup_uniforms()
91 {
92 /* Only the first compile gets to set up uniforms. */
93 if (push_constant_loc) {
94 assert(pull_constant_loc);
95 return;
96 }
97
98 uniforms = nir->num_uniforms / 4;
99
100 if (stage == MESA_SHADER_COMPUTE) {
101 /* Add a uniform for the thread local id. It must be the last uniform
102 * on the list.
103 */
104 assert(uniforms == prog_data->nr_params);
105 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
106 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
107 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
108 }
109 }
110
111 static bool
112 emit_system_values_block(nir_block *block, fs_visitor *v)
113 {
114 fs_reg *reg;
115
116 nir_foreach_instr(instr, block) {
117 if (instr->type != nir_instr_type_intrinsic)
118 continue;
119
120 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
121 switch (intrin->intrinsic) {
122 case nir_intrinsic_load_vertex_id:
123 case nir_intrinsic_load_base_vertex:
124 unreachable("should be lowered by nir_lower_system_values().");
125
126 case nir_intrinsic_load_vertex_id_zero_base:
127 case nir_intrinsic_load_is_indexed_draw:
128 case nir_intrinsic_load_first_vertex:
129 case nir_intrinsic_load_instance_id:
130 case nir_intrinsic_load_base_instance:
131 case nir_intrinsic_load_draw_id:
132 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
133
134 case nir_intrinsic_load_invocation_id:
135 if (v->stage == MESA_SHADER_TESS_CTRL)
136 break;
137 assert(v->stage == MESA_SHADER_GEOMETRY);
138 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
139 if (reg->file == BAD_FILE) {
140 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
141 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
142 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
143 abld.SHR(iid, g1, brw_imm_ud(27u));
144 *reg = iid;
145 }
146 break;
147
148 case nir_intrinsic_load_sample_pos:
149 assert(v->stage == MESA_SHADER_FRAGMENT);
150 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
151 if (reg->file == BAD_FILE)
152 *reg = *v->emit_samplepos_setup();
153 break;
154
155 case nir_intrinsic_load_sample_id:
156 assert(v->stage == MESA_SHADER_FRAGMENT);
157 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
158 if (reg->file == BAD_FILE)
159 *reg = *v->emit_sampleid_setup();
160 break;
161
162 case nir_intrinsic_load_sample_mask_in:
163 assert(v->stage == MESA_SHADER_FRAGMENT);
164 assert(v->devinfo->gen >= 7);
165 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
166 if (reg->file == BAD_FILE)
167 *reg = *v->emit_samplemaskin_setup();
168 break;
169
170 case nir_intrinsic_load_work_group_id:
171 assert(v->stage == MESA_SHADER_COMPUTE);
172 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
173 if (reg->file == BAD_FILE)
174 *reg = *v->emit_cs_work_group_id_setup();
175 break;
176
177 case nir_intrinsic_load_helper_invocation:
178 assert(v->stage == MESA_SHADER_FRAGMENT);
179 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
180 if (reg->file == BAD_FILE) {
181 const fs_builder abld =
182 v->bld.annotate("gl_HelperInvocation", NULL);
183
184 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
185 * pixel mask is in g1.7 of the thread payload.
186 *
187 * We move the per-channel pixel enable bit to the low bit of each
188 * channel by shifting the byte containing the pixel mask by the
189 * vector immediate 0x76543210UV.
190 *
191 * The region of <1,8,0> reads only 1 byte (the pixel masks for
192 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
193 * masks for 2 and 3) in SIMD16.
194 */
195 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
196
197 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
198 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
199 hbld.SHR(offset(shifted, hbld, i),
200 stride(retype(brw_vec1_grf(1 + i, 7),
201 BRW_REGISTER_TYPE_UB),
202 1, 8, 0),
203 brw_imm_v(0x76543210));
204 }
205
206 /* A set bit in the pixel mask means the channel is enabled, but
207 * that is the opposite of gl_HelperInvocation so we need to invert
208 * the mask.
209 *
210 * The negate source-modifier bit of logical instructions on Gen8+
211 * performs 1's complement negation, so we can use that instead of
212 * a NOT instruction.
213 */
214 fs_reg inverted = negate(shifted);
215 if (v->devinfo->gen < 8) {
216 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
217 abld.NOT(inverted, shifted);
218 }
219
220 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
221 * with 1 and negating.
222 */
223 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
224 abld.AND(anded, inverted, brw_imm_uw(1));
225
226 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
227 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
228 *reg = dst;
229 }
230 break;
231
232 default:
233 break;
234 }
235 }
236
237 return true;
238 }
239
240 void
241 fs_visitor::nir_emit_system_values()
242 {
243 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
244 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
245 nir_system_values[i] = fs_reg();
246 }
247
248 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
249 * never end up using it.
250 */
251 {
252 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
253 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
254 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
255
256 const fs_builder allbld8 = abld.group(8, 0).exec_all();
257 allbld8.MOV(reg, brw_imm_v(0x76543210));
258 if (dispatch_width > 8)
259 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
260 if (dispatch_width > 16) {
261 const fs_builder allbld16 = abld.group(16, 0).exec_all();
262 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
263 }
264 }
265
266 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
267 nir_foreach_block(block, impl)
268 emit_system_values_block(block, this);
269 }
270
271 /*
272 * Returns a type based on a reference_type (word, float, half-float) and a
273 * given bit_size.
274 *
275 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
276 *
277 * @FIXME: 64-bit return types are always DF on integer types to maintain
278 * compability with uses of DF previously to the introduction of int64
279 * support.
280 */
281 static brw_reg_type
282 brw_reg_type_from_bit_size(const unsigned bit_size,
283 const brw_reg_type reference_type)
284 {
285 switch(reference_type) {
286 case BRW_REGISTER_TYPE_HF:
287 case BRW_REGISTER_TYPE_F:
288 case BRW_REGISTER_TYPE_DF:
289 switch(bit_size) {
290 case 16:
291 return BRW_REGISTER_TYPE_HF;
292 case 32:
293 return BRW_REGISTER_TYPE_F;
294 case 64:
295 return BRW_REGISTER_TYPE_DF;
296 default:
297 unreachable("Invalid bit size");
298 }
299 case BRW_REGISTER_TYPE_B:
300 case BRW_REGISTER_TYPE_W:
301 case BRW_REGISTER_TYPE_D:
302 case BRW_REGISTER_TYPE_Q:
303 switch(bit_size) {
304 case 8:
305 return BRW_REGISTER_TYPE_B;
306 case 16:
307 return BRW_REGISTER_TYPE_W;
308 case 32:
309 return BRW_REGISTER_TYPE_D;
310 case 64:
311 return BRW_REGISTER_TYPE_Q;
312 default:
313 unreachable("Invalid bit size");
314 }
315 case BRW_REGISTER_TYPE_UB:
316 case BRW_REGISTER_TYPE_UW:
317 case BRW_REGISTER_TYPE_UD:
318 case BRW_REGISTER_TYPE_UQ:
319 switch(bit_size) {
320 case 8:
321 return BRW_REGISTER_TYPE_UB;
322 case 16:
323 return BRW_REGISTER_TYPE_UW;
324 case 32:
325 return BRW_REGISTER_TYPE_UD;
326 case 64:
327 return BRW_REGISTER_TYPE_UQ;
328 default:
329 unreachable("Invalid bit size");
330 }
331 default:
332 unreachable("Unknown type");
333 }
334 }
335
336 void
337 fs_visitor::nir_emit_impl(nir_function_impl *impl)
338 {
339 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
340 for (unsigned i = 0; i < impl->reg_alloc; i++) {
341 nir_locals[i] = fs_reg();
342 }
343
344 foreach_list_typed(nir_register, reg, node, &impl->registers) {
345 unsigned array_elems =
346 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
347 unsigned size = array_elems * reg->num_components;
348 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
349 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
350 nir_locals[reg->index] = bld.vgrf(reg_type, size);
351 }
352
353 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
354 impl->ssa_alloc);
355
356 nir_emit_cf_list(&impl->body);
357 }
358
359 void
360 fs_visitor::nir_emit_cf_list(exec_list *list)
361 {
362 exec_list_validate(list);
363 foreach_list_typed(nir_cf_node, node, node, list) {
364 switch (node->type) {
365 case nir_cf_node_if:
366 nir_emit_if(nir_cf_node_as_if(node));
367 break;
368
369 case nir_cf_node_loop:
370 nir_emit_loop(nir_cf_node_as_loop(node));
371 break;
372
373 case nir_cf_node_block:
374 nir_emit_block(nir_cf_node_as_block(node));
375 break;
376
377 default:
378 unreachable("Invalid CFG node block");
379 }
380 }
381 }
382
383 void
384 fs_visitor::nir_emit_if(nir_if *if_stmt)
385 {
386 bool invert;
387 fs_reg cond_reg;
388
389 /* If the condition has the form !other_condition, use other_condition as
390 * the source, but invert the predicate on the if instruction.
391 */
392 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
393 if (cond != NULL && cond->op == nir_op_inot) {
394 assert(!cond->src[0].negate);
395 assert(!cond->src[0].abs);
396
397 invert = true;
398 cond_reg = get_nir_src(cond->src[0].src);
399 } else {
400 invert = false;
401 cond_reg = get_nir_src(if_stmt->condition);
402 }
403
404 /* first, put the condition into f0 */
405 fs_inst *inst = bld.MOV(bld.null_reg_d(),
406 retype(cond_reg, BRW_REGISTER_TYPE_D));
407 inst->conditional_mod = BRW_CONDITIONAL_NZ;
408
409 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
410
411 nir_emit_cf_list(&if_stmt->then_list);
412
413 if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
414 bld.emit(BRW_OPCODE_ELSE);
415 nir_emit_cf_list(&if_stmt->else_list);
416 }
417
418 bld.emit(BRW_OPCODE_ENDIF);
419
420 if (devinfo->gen < 7)
421 limit_dispatch_width(16, "Non-uniform control flow unsupported "
422 "in SIMD32 mode.");
423 }
424
425 void
426 fs_visitor::nir_emit_loop(nir_loop *loop)
427 {
428 bld.emit(BRW_OPCODE_DO);
429
430 nir_emit_cf_list(&loop->body);
431
432 bld.emit(BRW_OPCODE_WHILE);
433
434 if (devinfo->gen < 7)
435 limit_dispatch_width(16, "Non-uniform control flow unsupported "
436 "in SIMD32 mode.");
437 }
438
439 void
440 fs_visitor::nir_emit_block(nir_block *block)
441 {
442 nir_foreach_instr(instr, block) {
443 nir_emit_instr(instr);
444 }
445 }
446
447 void
448 fs_visitor::nir_emit_instr(nir_instr *instr)
449 {
450 const fs_builder abld = bld.annotate(NULL, instr);
451
452 switch (instr->type) {
453 case nir_instr_type_alu:
454 nir_emit_alu(abld, nir_instr_as_alu(instr), true);
455 break;
456
457 case nir_instr_type_deref:
458 unreachable("All derefs should've been lowered");
459 break;
460
461 case nir_instr_type_intrinsic:
462 switch (stage) {
463 case MESA_SHADER_VERTEX:
464 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
465 break;
466 case MESA_SHADER_TESS_CTRL:
467 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
468 break;
469 case MESA_SHADER_TESS_EVAL:
470 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
471 break;
472 case MESA_SHADER_GEOMETRY:
473 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
474 break;
475 case MESA_SHADER_FRAGMENT:
476 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
477 break;
478 case MESA_SHADER_COMPUTE:
479 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
480 break;
481 default:
482 unreachable("unsupported shader stage");
483 }
484 break;
485
486 case nir_instr_type_tex:
487 nir_emit_texture(abld, nir_instr_as_tex(instr));
488 break;
489
490 case nir_instr_type_load_const:
491 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
492 break;
493
494 case nir_instr_type_ssa_undef:
495 /* We create a new VGRF for undefs on every use (by handling
496 * them in get_nir_src()), rather than for each definition.
497 * This helps register coalescing eliminate MOVs from undef.
498 */
499 break;
500
501 case nir_instr_type_jump:
502 nir_emit_jump(abld, nir_instr_as_jump(instr));
503 break;
504
505 default:
506 unreachable("unknown instruction type");
507 }
508 }
509
510 /**
511 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
512 * match instr.
513 */
514 bool
515 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
516 const fs_reg &result)
517 {
518 if (!instr->src[0].src.is_ssa ||
519 !instr->src[0].src.ssa->parent_instr)
520 return false;
521
522 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
523 return false;
524
525 nir_alu_instr *src0 =
526 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
527
528 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
529 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
530 return false;
531
532 /* If either opcode has source modifiers, bail.
533 *
534 * TODO: We can potentially handle source modifiers if both of the opcodes
535 * we're combining are signed integers.
536 */
537 if (instr->src[0].abs || instr->src[0].negate ||
538 src0->src[0].abs || src0->src[0].negate)
539 return false;
540
541 unsigned element = nir_src_as_uint(src0->src[1].src);
542
543 /* Element type to extract.*/
544 const brw_reg_type type = brw_int_type(
545 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
546 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
547
548 fs_reg op0 = get_nir_src(src0->src[0].src);
549 op0.type = brw_type_for_nir_type(devinfo,
550 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
551 nir_src_bit_size(src0->src[0].src)));
552 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
553
554 set_saturate(instr->dest.saturate,
555 bld.MOV(result, subscript(op0, type, element)));
556 return true;
557 }
558
559 bool
560 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
561 const fs_reg &result)
562 {
563 nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
564 if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
565 return false;
566
567 if (!nir_src_is_const(instr->src[1].src) ||
568 !nir_src_is_const(instr->src[2].src))
569 return false;
570
571 const float value1 = nir_src_as_float(instr->src[1].src);
572 const float value2 = nir_src_as_float(instr->src[2].src);
573 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
574 return false;
575
576 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
577 assert(value1 == -value2);
578
579 fs_reg tmp = vgrf(glsl_type::int_type);
580
581 if (devinfo->gen >= 6) {
582 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
583 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
584
585 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
586 *
587 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
588 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
589 *
590 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
591 *
592 * This negation looks like it's safe in practice, because bits 0:4 will
593 * surely be TRIANGLES
594 */
595
596 if (value1 == -1.0f) {
597 g0.negate = true;
598 }
599
600 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
601 g0, brw_imm_uw(0x3f80));
602 } else {
603 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
604 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
605
606 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
607 *
608 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
609 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
610 *
611 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
612 *
613 * This negation looks like it's safe in practice, because bits 0:4 will
614 * surely be TRIANGLES
615 */
616
617 if (value1 == -1.0f) {
618 g1_6.negate = true;
619 }
620
621 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
622 }
623 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
624
625 return true;
626 }
627
628 static void
629 emit_find_msb_using_lzd(const fs_builder &bld,
630 const fs_reg &result,
631 const fs_reg &src,
632 bool is_signed)
633 {
634 fs_inst *inst;
635 fs_reg temp = src;
636
637 if (is_signed) {
638 /* LZD of an absolute value source almost always does the right
639 * thing. There are two problem values:
640 *
641 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
642 * 0. However, findMSB(int(0x80000000)) == 30.
643 *
644 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
645 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
646 *
647 * For a value of zero or negative one, -1 will be returned.
648 *
649 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
650 * findMSB(-(1<<x)) should return x-1.
651 *
652 * For all negative number cases, including 0x80000000 and
653 * 0xffffffff, the correct value is obtained from LZD if instead of
654 * negating the (already negative) value the logical-not is used. A
655 * conditonal logical-not can be achieved in two instructions.
656 */
657 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
658
659 bld.ASR(temp, src, brw_imm_d(31));
660 bld.XOR(temp, temp, src);
661 }
662
663 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
664 retype(temp, BRW_REGISTER_TYPE_UD));
665
666 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
667 * from the LSB side. Subtract the result from 31 to convert the MSB
668 * count into an LSB count. If no bits are set, LZD will return 32.
669 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
670 */
671 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
672 inst->src[0].negate = true;
673 }
674
675 static brw_rnd_mode
676 brw_rnd_mode_from_nir_op (const nir_op op) {
677 switch (op) {
678 case nir_op_f2f16_rtz:
679 return BRW_RND_MODE_RTZ;
680 case nir_op_f2f16_rtne:
681 return BRW_RND_MODE_RTNE;
682 default:
683 unreachable("Operation doesn't support rounding mode");
684 }
685 }
686
687 fs_reg
688 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
689 nir_alu_instr *instr,
690 fs_reg *op,
691 bool need_dest)
692 {
693 fs_reg result =
694 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
695
696 result.type = brw_type_for_nir_type(devinfo,
697 (nir_alu_type)(nir_op_infos[instr->op].output_type |
698 nir_dest_bit_size(instr->dest.dest)));
699
700 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
701 op[i] = get_nir_src(instr->src[i].src);
702 op[i].type = brw_type_for_nir_type(devinfo,
703 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
704 nir_src_bit_size(instr->src[i].src)));
705 op[i].abs = instr->src[i].abs;
706 op[i].negate = instr->src[i].negate;
707 }
708
709 /* Move and vecN instrutions may still be vectored. Return the raw,
710 * vectored source and destination so that fs_visitor::nir_emit_alu can
711 * handle it. Other callers should not have to handle these kinds of
712 * instructions.
713 */
714 switch (instr->op) {
715 case nir_op_mov:
716 case nir_op_vec2:
717 case nir_op_vec3:
718 case nir_op_vec4:
719 return result;
720 default:
721 break;
722 }
723
724 /* At this point, we have dealt with any instruction that operates on
725 * more than a single channel. Therefore, we can just adjust the source
726 * and destination registers for that channel and emit the instruction.
727 */
728 unsigned channel = 0;
729 if (nir_op_infos[instr->op].output_size == 0) {
730 /* Since NIR is doing the scalarizing for us, we should only ever see
731 * vectorized operations with a single channel.
732 */
733 assert(util_bitcount(instr->dest.write_mask) == 1);
734 channel = ffs(instr->dest.write_mask) - 1;
735
736 result = offset(result, bld, channel);
737 }
738
739 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
740 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
741 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
742 }
743
744 return result;
745 }
746
747 void
748 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
749 fs_reg *op)
750 {
751 for (unsigned i = 0; i < 2; i++) {
752 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
753
754 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
755 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
756 /* The source of the inot is now the source of instr. */
757 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
758
759 assert(!op[i].negate);
760 op[i].negate = true;
761 } else {
762 op[i] = resolve_source_modifiers(op[i]);
763 }
764 }
765 }
766
767 bool
768 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
769 fs_reg result,
770 nir_alu_instr *instr)
771 {
772 if (devinfo->gen < 6 || devinfo->gen >= 12)
773 return false;
774
775 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
776
777 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
778 return false;
779
780 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
781 * of valid size-changing combinations is a bit more complex.
782 *
783 * The source restriction is just because I was lazy about generating the
784 * constant below.
785 */
786 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
787 nir_src_bit_size(inot_instr->src[0].src) != 32)
788 return false;
789
790 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
791 * this is float(1 + a).
792 */
793 fs_reg op;
794
795 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
796
797 /* Ignore the saturate modifier, if there is one. The result of the
798 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
799 */
800 bld.ADD(result, op, brw_imm_d(1));
801
802 return true;
803 }
804
805 /**
806 * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
807 *
808 * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
809 * the source of \c instr that is a \c nir_op_fsign.
810 */
811 void
812 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
813 fs_reg result, fs_reg *op, unsigned fsign_src)
814 {
815 fs_inst *inst;
816
817 assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
818 assert(fsign_src < nir_op_infos[instr->op].num_inputs);
819
820 if (instr->op != nir_op_fsign) {
821 const nir_alu_instr *const fsign_instr =
822 nir_src_as_alu_instr(instr->src[fsign_src].src);
823
824 assert(!fsign_instr->dest.saturate);
825
826 /* op[fsign_src] has the nominal result of the fsign, and op[1 -
827 * fsign_src] has the other multiply source. This must be rearranged so
828 * that op[0] is the source of the fsign op[1] is the other multiply
829 * source.
830 */
831 if (fsign_src != 0)
832 op[1] = op[0];
833
834 op[0] = get_nir_src(fsign_instr->src[0].src);
835
836 const nir_alu_type t =
837 (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
838 nir_src_bit_size(fsign_instr->src[0].src));
839
840 op[0].type = brw_type_for_nir_type(devinfo, t);
841 op[0].abs = fsign_instr->src[0].abs;
842 op[0].negate = fsign_instr->src[0].negate;
843
844 unsigned channel = 0;
845 if (nir_op_infos[instr->op].output_size == 0) {
846 /* Since NIR is doing the scalarizing for us, we should only ever see
847 * vectorized operations with a single channel.
848 */
849 assert(util_bitcount(instr->dest.write_mask) == 1);
850 channel = ffs(instr->dest.write_mask) - 1;
851 }
852
853 op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
854 } else {
855 assert(!instr->dest.saturate);
856 }
857
858 if (op[0].abs) {
859 /* Straightforward since the source can be assumed to be either strictly
860 * >= 0 or strictly <= 0 depending on the setting of the negate flag.
861 */
862 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
863
864 if (instr->op == nir_op_fsign) {
865 inst = (op[0].negate)
866 ? bld.MOV(result, brw_imm_f(-1.0f))
867 : bld.MOV(result, brw_imm_f(1.0f));
868 } else {
869 op[1].negate = (op[0].negate != op[1].negate);
870 inst = bld.MOV(result, op[1]);
871 }
872
873 set_predicate(BRW_PREDICATE_NORMAL, inst);
874 } else if (type_sz(op[0].type) == 2) {
875 /* AND(val, 0x8000) gives the sign bit.
876 *
877 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
878 */
879 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
880 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
881
882 op[0].type = BRW_REGISTER_TYPE_UW;
883 result.type = BRW_REGISTER_TYPE_UW;
884 bld.AND(result, op[0], brw_imm_uw(0x8000u));
885
886 if (instr->op == nir_op_fsign)
887 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
888 else {
889 /* Use XOR here to get the result sign correct. */
890 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
891 }
892
893 inst->predicate = BRW_PREDICATE_NORMAL;
894 } else if (type_sz(op[0].type) == 4) {
895 /* AND(val, 0x80000000) gives the sign bit.
896 *
897 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
898 * zero.
899 */
900 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
901
902 op[0].type = BRW_REGISTER_TYPE_UD;
903 result.type = BRW_REGISTER_TYPE_UD;
904 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
905
906 if (instr->op == nir_op_fsign)
907 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
908 else {
909 /* Use XOR here to get the result sign correct. */
910 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
911 }
912
913 inst->predicate = BRW_PREDICATE_NORMAL;
914 } else {
915 /* For doubles we do the same but we need to consider:
916 *
917 * - 2-src instructions can't operate with 64-bit immediates
918 * - The sign is encoded in the high 32-bit of each DF
919 * - We need to produce a DF result.
920 */
921
922 fs_reg zero = vgrf(glsl_type::double_type);
923 bld.MOV(zero, setup_imm_df(bld, 0.0));
924 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
925
926 bld.MOV(result, zero);
927
928 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
929 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
930 brw_imm_ud(0x80000000u));
931
932 if (instr->op == nir_op_fsign) {
933 set_predicate(BRW_PREDICATE_NORMAL,
934 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
935 } else {
936 /* This could be done better in some cases. If the scale is an
937 * immediate with the low 32-bits all 0, emitting a separate XOR and
938 * OR would allow an algebraic optimization to remove the OR. There
939 * are currently zero instances of fsign(double(x))*IMM in shader-db
940 * or any test suite, so it is hard to care at this time.
941 */
942 fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
943 inst = bld.XOR(result_int64, result_int64,
944 retype(op[1], BRW_REGISTER_TYPE_UQ));
945 }
946 }
947 }
948
949 /**
950 * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
951 *
952 * Checks the operands of a \c nir_op_fmul to determine whether or not
953 * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
954 *
955 * \param instr The multiplication instruction
956 *
957 * \param fsign_src The source of \c instr that may or may not be a
958 * \c nir_op_fsign
959 */
960 static bool
961 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
962 {
963 assert(instr->op == nir_op_fmul);
964
965 nir_alu_instr *const fsign_instr =
966 nir_src_as_alu_instr(instr->src[fsign_src].src);
967
968 /* Rules:
969 *
970 * 1. instr->src[fsign_src] must be a nir_op_fsign.
971 * 2. The nir_op_fsign can only be used by this multiplication.
972 * 3. The source that is the nir_op_fsign does not have source modifiers.
973 * \c emit_fsign only examines the source modifiers of the source of the
974 * \c nir_op_fsign.
975 *
976 * The nir_op_fsign must also not have the saturate modifier, but steps
977 * have already been taken (in nir_opt_algebraic) to ensure that.
978 */
979 return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
980 is_used_once(fsign_instr) &&
981 !instr->src[fsign_src].abs && !instr->src[fsign_src].negate;
982 }
983
984 void
985 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
986 bool need_dest)
987 {
988 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
989 fs_inst *inst;
990
991 fs_reg op[4];
992 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
993
994 switch (instr->op) {
995 case nir_op_mov:
996 case nir_op_vec2:
997 case nir_op_vec3:
998 case nir_op_vec4: {
999 fs_reg temp = result;
1000 bool need_extra_copy = false;
1001 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1002 if (!instr->src[i].src.is_ssa &&
1003 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1004 need_extra_copy = true;
1005 temp = bld.vgrf(result.type, 4);
1006 break;
1007 }
1008 }
1009
1010 for (unsigned i = 0; i < 4; i++) {
1011 if (!(instr->dest.write_mask & (1 << i)))
1012 continue;
1013
1014 if (instr->op == nir_op_mov) {
1015 inst = bld.MOV(offset(temp, bld, i),
1016 offset(op[0], bld, instr->src[0].swizzle[i]));
1017 } else {
1018 inst = bld.MOV(offset(temp, bld, i),
1019 offset(op[i], bld, instr->src[i].swizzle[0]));
1020 }
1021 inst->saturate = instr->dest.saturate;
1022 }
1023
1024 /* In this case the source and destination registers were the same,
1025 * so we need to insert an extra set of moves in order to deal with
1026 * any swizzling.
1027 */
1028 if (need_extra_copy) {
1029 for (unsigned i = 0; i < 4; i++) {
1030 if (!(instr->dest.write_mask & (1 << i)))
1031 continue;
1032
1033 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1034 }
1035 }
1036 return;
1037 }
1038
1039 case nir_op_i2f32:
1040 case nir_op_u2f32:
1041 if (optimize_extract_to_float(instr, result))
1042 return;
1043 inst = bld.MOV(result, op[0]);
1044 inst->saturate = instr->dest.saturate;
1045 break;
1046
1047 case nir_op_f2f16_rtne:
1048 case nir_op_f2f16_rtz:
1049 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1050 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
1051 /* fallthrough */
1052 case nir_op_f2f16:
1053 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1054 * on the HW gen, it is a special hw opcode or just a MOV, and
1055 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1056 *
1057 * But if we want to use that opcode, we need to provide support on
1058 * different optimizations and lowerings. As right now HF support is
1059 * only for gen8+, it will be better to use directly the MOV, and use
1060 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
1061 */
1062 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1063 inst = bld.MOV(result, op[0]);
1064 inst->saturate = instr->dest.saturate;
1065 break;
1066
1067 case nir_op_b2i8:
1068 case nir_op_b2i16:
1069 case nir_op_b2i32:
1070 case nir_op_b2i64:
1071 case nir_op_b2f16:
1072 case nir_op_b2f32:
1073 case nir_op_b2f64:
1074 if (try_emit_b2fi_of_inot(bld, result, instr))
1075 break;
1076 op[0].type = BRW_REGISTER_TYPE_D;
1077 op[0].negate = !op[0].negate;
1078 /* fallthrough */
1079 case nir_op_i2f64:
1080 case nir_op_i2i64:
1081 case nir_op_u2f64:
1082 case nir_op_u2u64:
1083 case nir_op_f2f64:
1084 case nir_op_f2i64:
1085 case nir_op_f2u64:
1086 case nir_op_i2i32:
1087 case nir_op_u2u32:
1088 case nir_op_f2f32:
1089 case nir_op_f2i32:
1090 case nir_op_f2u32:
1091 case nir_op_i2f16:
1092 case nir_op_i2i16:
1093 case nir_op_u2f16:
1094 case nir_op_u2u16:
1095 case nir_op_f2i16:
1096 case nir_op_f2u16:
1097 case nir_op_i2i8:
1098 case nir_op_u2u8:
1099 case nir_op_f2i8:
1100 case nir_op_f2u8:
1101 if (result.type == BRW_REGISTER_TYPE_B ||
1102 result.type == BRW_REGISTER_TYPE_UB ||
1103 result.type == BRW_REGISTER_TYPE_HF)
1104 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1105
1106 if (op[0].type == BRW_REGISTER_TYPE_B ||
1107 op[0].type == BRW_REGISTER_TYPE_UB ||
1108 op[0].type == BRW_REGISTER_TYPE_HF)
1109 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1110
1111 inst = bld.MOV(result, op[0]);
1112 inst->saturate = instr->dest.saturate;
1113 break;
1114
1115 case nir_op_fsat:
1116 inst = bld.MOV(result, op[0]);
1117 inst->saturate = true;
1118 break;
1119
1120 case nir_op_fneg:
1121 case nir_op_ineg:
1122 op[0].negate = true;
1123 inst = bld.MOV(result, op[0]);
1124 if (instr->op == nir_op_fneg)
1125 inst->saturate = instr->dest.saturate;
1126 break;
1127
1128 case nir_op_fabs:
1129 case nir_op_iabs:
1130 op[0].negate = false;
1131 op[0].abs = true;
1132 inst = bld.MOV(result, op[0]);
1133 if (instr->op == nir_op_fabs)
1134 inst->saturate = instr->dest.saturate;
1135 break;
1136
1137 case nir_op_fsign:
1138 emit_fsign(bld, instr, result, op, 0);
1139 break;
1140
1141 case nir_op_frcp:
1142 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1143 inst->saturate = instr->dest.saturate;
1144 break;
1145
1146 case nir_op_fexp2:
1147 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1148 inst->saturate = instr->dest.saturate;
1149 break;
1150
1151 case nir_op_flog2:
1152 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1153 inst->saturate = instr->dest.saturate;
1154 break;
1155
1156 case nir_op_fsin:
1157 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1158 inst->saturate = instr->dest.saturate;
1159 break;
1160
1161 case nir_op_fcos:
1162 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1163 inst->saturate = instr->dest.saturate;
1164 break;
1165
1166 case nir_op_fddx:
1167 if (fs_key->high_quality_derivatives) {
1168 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1169 } else {
1170 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1171 }
1172 inst->saturate = instr->dest.saturate;
1173 break;
1174 case nir_op_fddx_fine:
1175 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1176 inst->saturate = instr->dest.saturate;
1177 break;
1178 case nir_op_fddx_coarse:
1179 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1180 inst->saturate = instr->dest.saturate;
1181 break;
1182 case nir_op_fddy:
1183 if (fs_key->high_quality_derivatives) {
1184 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1185 } else {
1186 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1187 }
1188 inst->saturate = instr->dest.saturate;
1189 break;
1190 case nir_op_fddy_fine:
1191 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1192 inst->saturate = instr->dest.saturate;
1193 break;
1194 case nir_op_fddy_coarse:
1195 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1196 inst->saturate = instr->dest.saturate;
1197 break;
1198
1199 case nir_op_iadd:
1200 case nir_op_fadd:
1201 inst = bld.ADD(result, op[0], op[1]);
1202 inst->saturate = instr->dest.saturate;
1203 break;
1204
1205 case nir_op_uadd_sat:
1206 inst = bld.ADD(result, op[0], op[1]);
1207 inst->saturate = true;
1208 break;
1209
1210 case nir_op_fmul:
1211 for (unsigned i = 0; i < 2; i++) {
1212 if (can_fuse_fmul_fsign(instr, i)) {
1213 emit_fsign(bld, instr, result, op, i);
1214 return;
1215 }
1216 }
1217
1218 inst = bld.MUL(result, op[0], op[1]);
1219 inst->saturate = instr->dest.saturate;
1220 break;
1221
1222 case nir_op_imul_2x32_64:
1223 case nir_op_umul_2x32_64:
1224 bld.MUL(result, op[0], op[1]);
1225 break;
1226
1227 case nir_op_imul:
1228 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1229 bld.MUL(result, op[0], op[1]);
1230 break;
1231
1232 case nir_op_imul_high:
1233 case nir_op_umul_high:
1234 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1235 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1236 break;
1237
1238 case nir_op_idiv:
1239 case nir_op_udiv:
1240 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1241 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1242 break;
1243
1244 case nir_op_uadd_carry:
1245 unreachable("Should have been lowered by carry_to_arith().");
1246
1247 case nir_op_usub_borrow:
1248 unreachable("Should have been lowered by borrow_to_arith().");
1249
1250 case nir_op_umod:
1251 case nir_op_irem:
1252 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1253 * appears that our hardware just does the right thing for signed
1254 * remainder.
1255 */
1256 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1257 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1258 break;
1259
1260 case nir_op_imod: {
1261 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1262 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1263
1264 /* Math instructions don't support conditional mod */
1265 inst = bld.MOV(bld.null_reg_d(), result);
1266 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1267
1268 /* Now, we need to determine if signs of the sources are different.
1269 * When we XOR the sources, the top bit is 0 if they are the same and 1
1270 * if they are different. We can then use a conditional modifier to
1271 * turn that into a predicate. This leads us to an XOR.l instruction.
1272 *
1273 * Technically, according to the PRM, you're not allowed to use .l on a
1274 * XOR instruction. However, emperical experiments and Curro's reading
1275 * of the simulator source both indicate that it's safe.
1276 */
1277 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1278 inst = bld.XOR(tmp, op[0], op[1]);
1279 inst->predicate = BRW_PREDICATE_NORMAL;
1280 inst->conditional_mod = BRW_CONDITIONAL_L;
1281
1282 /* If the result of the initial remainder operation is non-zero and the
1283 * two sources have different signs, add in a copy of op[1] to get the
1284 * final integer modulus value.
1285 */
1286 inst = bld.ADD(result, result, op[1]);
1287 inst->predicate = BRW_PREDICATE_NORMAL;
1288 break;
1289 }
1290
1291 case nir_op_flt32:
1292 case nir_op_fge32:
1293 case nir_op_feq32:
1294 case nir_op_fne32: {
1295 fs_reg dest = result;
1296
1297 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1298 if (bit_size != 32)
1299 dest = bld.vgrf(op[0].type, 1);
1300
1301 brw_conditional_mod cond;
1302 switch (instr->op) {
1303 case nir_op_flt32:
1304 cond = BRW_CONDITIONAL_L;
1305 break;
1306 case nir_op_fge32:
1307 cond = BRW_CONDITIONAL_GE;
1308 break;
1309 case nir_op_feq32:
1310 cond = BRW_CONDITIONAL_Z;
1311 break;
1312 case nir_op_fne32:
1313 cond = BRW_CONDITIONAL_NZ;
1314 break;
1315 default:
1316 unreachable("bad opcode");
1317 }
1318
1319 bld.CMP(dest, op[0], op[1], cond);
1320
1321 if (bit_size > 32) {
1322 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1323 } else if(bit_size < 32) {
1324 /* When we convert the result to 32-bit we need to be careful and do
1325 * it as a signed conversion to get sign extension (for 32-bit true)
1326 */
1327 const brw_reg_type src_type =
1328 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1329
1330 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1331 }
1332 break;
1333 }
1334
1335 case nir_op_ilt32:
1336 case nir_op_ult32:
1337 case nir_op_ige32:
1338 case nir_op_uge32:
1339 case nir_op_ieq32:
1340 case nir_op_ine32: {
1341 fs_reg dest = result;
1342
1343 /* On Gen11 we have an additional issue being that src1 cannot be a byte
1344 * type. So we convert both operands for the comparison.
1345 */
1346 fs_reg temp_op[2];
1347 temp_op[0] = bld.fix_byte_src(op[0]);
1348 temp_op[1] = bld.fix_byte_src(op[1]);
1349
1350 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1351 if (bit_size != 32)
1352 dest = bld.vgrf(temp_op[0].type, 1);
1353
1354 brw_conditional_mod cond;
1355 switch (instr->op) {
1356 case nir_op_ilt32:
1357 case nir_op_ult32:
1358 cond = BRW_CONDITIONAL_L;
1359 break;
1360 case nir_op_ige32:
1361 case nir_op_uge32:
1362 cond = BRW_CONDITIONAL_GE;
1363 break;
1364 case nir_op_ieq32:
1365 cond = BRW_CONDITIONAL_Z;
1366 break;
1367 case nir_op_ine32:
1368 cond = BRW_CONDITIONAL_NZ;
1369 break;
1370 default:
1371 unreachable("bad opcode");
1372 }
1373 bld.CMP(dest, temp_op[0], temp_op[1], cond);
1374
1375 if (bit_size > 32) {
1376 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1377 } else if (bit_size < 32) {
1378 /* When we convert the result to 32-bit we need to be careful and do
1379 * it as a signed conversion to get sign extension (for 32-bit true)
1380 */
1381 const brw_reg_type src_type =
1382 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1383
1384 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1385 }
1386 break;
1387 }
1388
1389 case nir_op_inot:
1390 if (devinfo->gen >= 8) {
1391 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1392
1393 if (inot_src_instr != NULL &&
1394 (inot_src_instr->op == nir_op_ior ||
1395 inot_src_instr->op == nir_op_ixor ||
1396 inot_src_instr->op == nir_op_iand) &&
1397 !inot_src_instr->src[0].abs &&
1398 !inot_src_instr->src[0].negate &&
1399 !inot_src_instr->src[1].abs &&
1400 !inot_src_instr->src[1].negate) {
1401 /* The sources of the source logical instruction are now the
1402 * sources of the instruction that will be generated.
1403 */
1404 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1405 resolve_inot_sources(bld, inot_src_instr, op);
1406
1407 /* Smash all of the sources and destination to be signed. This
1408 * doesn't matter for the operation of the instruction, but cmod
1409 * propagation fails on unsigned sources with negation (due to
1410 * fs_inst::can_do_cmod returning false).
1411 */
1412 result.type =
1413 brw_type_for_nir_type(devinfo,
1414 (nir_alu_type)(nir_type_int |
1415 nir_dest_bit_size(instr->dest.dest)));
1416 op[0].type =
1417 brw_type_for_nir_type(devinfo,
1418 (nir_alu_type)(nir_type_int |
1419 nir_src_bit_size(inot_src_instr->src[0].src)));
1420 op[1].type =
1421 brw_type_for_nir_type(devinfo,
1422 (nir_alu_type)(nir_type_int |
1423 nir_src_bit_size(inot_src_instr->src[1].src)));
1424
1425 /* For XOR, only invert one of the sources. Arbitrarily choose
1426 * the first source.
1427 */
1428 op[0].negate = !op[0].negate;
1429 if (inot_src_instr->op != nir_op_ixor)
1430 op[1].negate = !op[1].negate;
1431
1432 switch (inot_src_instr->op) {
1433 case nir_op_ior:
1434 bld.AND(result, op[0], op[1]);
1435 return;
1436
1437 case nir_op_iand:
1438 bld.OR(result, op[0], op[1]);
1439 return;
1440
1441 case nir_op_ixor:
1442 bld.XOR(result, op[0], op[1]);
1443 return;
1444
1445 default:
1446 unreachable("impossible opcode");
1447 }
1448 }
1449 op[0] = resolve_source_modifiers(op[0]);
1450 }
1451 bld.NOT(result, op[0]);
1452 break;
1453 case nir_op_ixor:
1454 if (devinfo->gen >= 8) {
1455 resolve_inot_sources(bld, instr, op);
1456 }
1457 bld.XOR(result, op[0], op[1]);
1458 break;
1459 case nir_op_ior:
1460 if (devinfo->gen >= 8) {
1461 resolve_inot_sources(bld, instr, op);
1462 }
1463 bld.OR(result, op[0], op[1]);
1464 break;
1465 case nir_op_iand:
1466 if (devinfo->gen >= 8) {
1467 resolve_inot_sources(bld, instr, op);
1468 }
1469 bld.AND(result, op[0], op[1]);
1470 break;
1471
1472 case nir_op_fdot2:
1473 case nir_op_fdot3:
1474 case nir_op_fdot4:
1475 case nir_op_b32all_fequal2:
1476 case nir_op_b32all_iequal2:
1477 case nir_op_b32all_fequal3:
1478 case nir_op_b32all_iequal3:
1479 case nir_op_b32all_fequal4:
1480 case nir_op_b32all_iequal4:
1481 case nir_op_b32any_fnequal2:
1482 case nir_op_b32any_inequal2:
1483 case nir_op_b32any_fnequal3:
1484 case nir_op_b32any_inequal3:
1485 case nir_op_b32any_fnequal4:
1486 case nir_op_b32any_inequal4:
1487 unreachable("Lowered by nir_lower_alu_reductions");
1488
1489 case nir_op_fnoise1_1:
1490 case nir_op_fnoise1_2:
1491 case nir_op_fnoise1_3:
1492 case nir_op_fnoise1_4:
1493 case nir_op_fnoise2_1:
1494 case nir_op_fnoise2_2:
1495 case nir_op_fnoise2_3:
1496 case nir_op_fnoise2_4:
1497 case nir_op_fnoise3_1:
1498 case nir_op_fnoise3_2:
1499 case nir_op_fnoise3_3:
1500 case nir_op_fnoise3_4:
1501 case nir_op_fnoise4_1:
1502 case nir_op_fnoise4_2:
1503 case nir_op_fnoise4_3:
1504 case nir_op_fnoise4_4:
1505 unreachable("not reached: should be handled by lower_noise");
1506
1507 case nir_op_ldexp:
1508 unreachable("not reached: should be handled by ldexp_to_arith()");
1509
1510 case nir_op_fsqrt:
1511 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1512 inst->saturate = instr->dest.saturate;
1513 break;
1514
1515 case nir_op_frsq:
1516 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1517 inst->saturate = instr->dest.saturate;
1518 break;
1519
1520 case nir_op_i2b32:
1521 case nir_op_f2b32: {
1522 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1523 if (bit_size == 64) {
1524 /* two-argument instructions can't take 64-bit immediates */
1525 fs_reg zero;
1526 fs_reg tmp;
1527
1528 if (instr->op == nir_op_f2b32) {
1529 zero = vgrf(glsl_type::double_type);
1530 tmp = vgrf(glsl_type::double_type);
1531 bld.MOV(zero, setup_imm_df(bld, 0.0));
1532 } else {
1533 zero = vgrf(glsl_type::int64_t_type);
1534 tmp = vgrf(glsl_type::int64_t_type);
1535 bld.MOV(zero, brw_imm_q(0));
1536 }
1537
1538 /* A SIMD16 execution needs to be split in two instructions, so use
1539 * a vgrf instead of the flag register as dst so instruction splitting
1540 * works
1541 */
1542 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1543 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1544 } else {
1545 fs_reg zero;
1546 if (bit_size == 32) {
1547 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1548 } else {
1549 assert(bit_size == 16);
1550 zero = instr->op == nir_op_f2b32 ?
1551 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1552 }
1553 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1554 }
1555 break;
1556 }
1557
1558 case nir_op_ftrunc:
1559 inst = bld.RNDZ(result, op[0]);
1560 inst->saturate = instr->dest.saturate;
1561 break;
1562
1563 case nir_op_fceil: {
1564 op[0].negate = !op[0].negate;
1565 fs_reg temp = vgrf(glsl_type::float_type);
1566 bld.RNDD(temp, op[0]);
1567 temp.negate = true;
1568 inst = bld.MOV(result, temp);
1569 inst->saturate = instr->dest.saturate;
1570 break;
1571 }
1572 case nir_op_ffloor:
1573 inst = bld.RNDD(result, op[0]);
1574 inst->saturate = instr->dest.saturate;
1575 break;
1576 case nir_op_ffract:
1577 inst = bld.FRC(result, op[0]);
1578 inst->saturate = instr->dest.saturate;
1579 break;
1580 case nir_op_fround_even:
1581 inst = bld.RNDE(result, op[0]);
1582 inst->saturate = instr->dest.saturate;
1583 break;
1584
1585 case nir_op_fquantize2f16: {
1586 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1587 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1588 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1589
1590 /* The destination stride must be at least as big as the source stride. */
1591 tmp16.type = BRW_REGISTER_TYPE_W;
1592 tmp16.stride = 2;
1593
1594 /* Check for denormal */
1595 fs_reg abs_src0 = op[0];
1596 abs_src0.abs = true;
1597 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1598 BRW_CONDITIONAL_L);
1599 /* Get the appropriately signed zero */
1600 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1601 retype(op[0], BRW_REGISTER_TYPE_UD),
1602 brw_imm_ud(0x80000000));
1603 /* Do the actual F32 -> F16 -> F32 conversion */
1604 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1605 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1606 /* Select that or zero based on normal status */
1607 inst = bld.SEL(result, zero, tmp32);
1608 inst->predicate = BRW_PREDICATE_NORMAL;
1609 inst->saturate = instr->dest.saturate;
1610 break;
1611 }
1612
1613 case nir_op_imin:
1614 case nir_op_umin:
1615 case nir_op_fmin:
1616 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1617 inst->saturate = instr->dest.saturate;
1618 break;
1619
1620 case nir_op_imax:
1621 case nir_op_umax:
1622 case nir_op_fmax:
1623 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1624 inst->saturate = instr->dest.saturate;
1625 break;
1626
1627 case nir_op_pack_snorm_2x16:
1628 case nir_op_pack_snorm_4x8:
1629 case nir_op_pack_unorm_2x16:
1630 case nir_op_pack_unorm_4x8:
1631 case nir_op_unpack_snorm_2x16:
1632 case nir_op_unpack_snorm_4x8:
1633 case nir_op_unpack_unorm_2x16:
1634 case nir_op_unpack_unorm_4x8:
1635 case nir_op_unpack_half_2x16:
1636 case nir_op_pack_half_2x16:
1637 unreachable("not reached: should be handled by lower_packing_builtins");
1638
1639 case nir_op_unpack_half_2x16_split_x:
1640 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1641 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1642 inst->saturate = instr->dest.saturate;
1643 break;
1644 case nir_op_unpack_half_2x16_split_y:
1645 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1646 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1647 inst->saturate = instr->dest.saturate;
1648 break;
1649
1650 case nir_op_pack_64_2x32_split:
1651 case nir_op_pack_32_2x16_split:
1652 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1653 break;
1654
1655 case nir_op_unpack_64_2x32_split_x:
1656 case nir_op_unpack_64_2x32_split_y: {
1657 if (instr->op == nir_op_unpack_64_2x32_split_x)
1658 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1659 else
1660 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1661 break;
1662 }
1663
1664 case nir_op_unpack_32_2x16_split_x:
1665 case nir_op_unpack_32_2x16_split_y: {
1666 if (instr->op == nir_op_unpack_32_2x16_split_x)
1667 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1668 else
1669 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1670 break;
1671 }
1672
1673 case nir_op_fpow:
1674 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1675 inst->saturate = instr->dest.saturate;
1676 break;
1677
1678 case nir_op_bitfield_reverse:
1679 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1680 bld.BFREV(result, op[0]);
1681 break;
1682
1683 case nir_op_bit_count:
1684 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1685 bld.CBIT(result, op[0]);
1686 break;
1687
1688 case nir_op_ufind_msb: {
1689 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1690 emit_find_msb_using_lzd(bld, result, op[0], false);
1691 break;
1692 }
1693
1694 case nir_op_ifind_msb: {
1695 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1696
1697 if (devinfo->gen < 7) {
1698 emit_find_msb_using_lzd(bld, result, op[0], true);
1699 } else {
1700 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1701
1702 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1703 * count from the LSB side. If FBH didn't return an error
1704 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1705 * count into an LSB count.
1706 */
1707 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1708
1709 inst = bld.ADD(result, result, brw_imm_d(31));
1710 inst->predicate = BRW_PREDICATE_NORMAL;
1711 inst->src[0].negate = true;
1712 }
1713 break;
1714 }
1715
1716 case nir_op_find_lsb:
1717 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1718
1719 if (devinfo->gen < 7) {
1720 fs_reg temp = vgrf(glsl_type::int_type);
1721
1722 /* (x & -x) generates a value that consists of only the LSB of x.
1723 * For all powers of 2, findMSB(y) == findLSB(y).
1724 */
1725 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1726 fs_reg negated_src = src;
1727
1728 /* One must be negated, and the other must be non-negated. It
1729 * doesn't matter which is which.
1730 */
1731 negated_src.negate = true;
1732 src.negate = false;
1733
1734 bld.AND(temp, src, negated_src);
1735 emit_find_msb_using_lzd(bld, result, temp, false);
1736 } else {
1737 bld.FBL(result, op[0]);
1738 }
1739 break;
1740
1741 case nir_op_ubitfield_extract:
1742 case nir_op_ibitfield_extract:
1743 unreachable("should have been lowered");
1744 case nir_op_ubfe:
1745 case nir_op_ibfe:
1746 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1747 bld.BFE(result, op[2], op[1], op[0]);
1748 break;
1749 case nir_op_bfm:
1750 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1751 bld.BFI1(result, op[0], op[1]);
1752 break;
1753 case nir_op_bfi:
1754 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1755 bld.BFI2(result, op[0], op[1], op[2]);
1756 break;
1757
1758 case nir_op_bitfield_insert:
1759 unreachable("not reached: should have been lowered");
1760
1761 case nir_op_ishl:
1762 bld.SHL(result, op[0], op[1]);
1763 break;
1764 case nir_op_ishr:
1765 bld.ASR(result, op[0], op[1]);
1766 break;
1767 case nir_op_ushr:
1768 bld.SHR(result, op[0], op[1]);
1769 break;
1770
1771 case nir_op_urol:
1772 bld.ROL(result, op[0], op[1]);
1773 break;
1774 case nir_op_uror:
1775 bld.ROR(result, op[0], op[1]);
1776 break;
1777
1778 case nir_op_pack_half_2x16_split:
1779 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1780 break;
1781
1782 case nir_op_ffma:
1783 inst = bld.MAD(result, op[2], op[1], op[0]);
1784 inst->saturate = instr->dest.saturate;
1785 break;
1786
1787 case nir_op_flrp:
1788 inst = bld.LRP(result, op[0], op[1], op[2]);
1789 inst->saturate = instr->dest.saturate;
1790 break;
1791
1792 case nir_op_b32csel:
1793 if (optimize_frontfacing_ternary(instr, result))
1794 return;
1795
1796 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1797 inst = bld.SEL(result, op[1], op[2]);
1798 inst->predicate = BRW_PREDICATE_NORMAL;
1799 break;
1800
1801 case nir_op_extract_u8:
1802 case nir_op_extract_i8: {
1803 unsigned byte = nir_src_as_uint(instr->src[1].src);
1804
1805 /* The PRMs say:
1806 *
1807 * BDW+
1808 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1809 * Use two instructions and a word or DWord intermediate integer type.
1810 */
1811 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1812 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1813
1814 if (instr->op == nir_op_extract_i8) {
1815 /* If we need to sign extend, extract to a word first */
1816 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1817 bld.MOV(w_temp, subscript(op[0], type, byte));
1818 bld.MOV(result, w_temp);
1819 } else if (byte & 1) {
1820 /* Extract the high byte from the word containing the desired byte
1821 * offset.
1822 */
1823 bld.SHR(result,
1824 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1825 brw_imm_uw(8));
1826 } else {
1827 /* Otherwise use an AND with 0xff and a word type */
1828 bld.AND(result,
1829 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1830 brw_imm_uw(0xff));
1831 }
1832 } else {
1833 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1834 bld.MOV(result, subscript(op[0], type, byte));
1835 }
1836 break;
1837 }
1838
1839 case nir_op_extract_u16:
1840 case nir_op_extract_i16: {
1841 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1842 unsigned word = nir_src_as_uint(instr->src[1].src);
1843 bld.MOV(result, subscript(op[0], type, word));
1844 break;
1845 }
1846
1847 default:
1848 unreachable("unhandled instruction");
1849 }
1850
1851 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1852 * to sign extend the low bit to 0/~0
1853 */
1854 if (devinfo->gen <= 5 &&
1855 !result.is_null() &&
1856 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1857 fs_reg masked = vgrf(glsl_type::int_type);
1858 bld.AND(masked, result, brw_imm_d(1));
1859 masked.negate = true;
1860 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1861 }
1862 }
1863
1864 void
1865 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1866 nir_load_const_instr *instr)
1867 {
1868 const brw_reg_type reg_type =
1869 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1870 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1871
1872 switch (instr->def.bit_size) {
1873 case 8:
1874 for (unsigned i = 0; i < instr->def.num_components; i++)
1875 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1876 break;
1877
1878 case 16:
1879 for (unsigned i = 0; i < instr->def.num_components; i++)
1880 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1881 break;
1882
1883 case 32:
1884 for (unsigned i = 0; i < instr->def.num_components; i++)
1885 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1886 break;
1887
1888 case 64:
1889 assert(devinfo->gen >= 7);
1890 if (devinfo->gen == 7) {
1891 /* We don't get 64-bit integer types until gen8 */
1892 for (unsigned i = 0; i < instr->def.num_components; i++) {
1893 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1894 setup_imm_df(bld, instr->value[i].f64));
1895 }
1896 } else {
1897 for (unsigned i = 0; i < instr->def.num_components; i++)
1898 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1899 }
1900 break;
1901
1902 default:
1903 unreachable("Invalid bit size");
1904 }
1905
1906 nir_ssa_values[instr->def.index] = reg;
1907 }
1908
1909 fs_reg
1910 fs_visitor::get_nir_src(const nir_src &src)
1911 {
1912 fs_reg reg;
1913 if (src.is_ssa) {
1914 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1915 const brw_reg_type reg_type =
1916 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1917 reg = bld.vgrf(reg_type, src.ssa->num_components);
1918 } else {
1919 reg = nir_ssa_values[src.ssa->index];
1920 }
1921 } else {
1922 /* We don't handle indirects on locals */
1923 assert(src.reg.indirect == NULL);
1924 reg = offset(nir_locals[src.reg.reg->index], bld,
1925 src.reg.base_offset * src.reg.reg->num_components);
1926 }
1927
1928 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1929 /* The only 64-bit type available on gen7 is DF, so use that. */
1930 reg.type = BRW_REGISTER_TYPE_DF;
1931 } else {
1932 /* To avoid floating-point denorm flushing problems, set the type by
1933 * default to an integer type - instructions that need floating point
1934 * semantics will set this to F if they need to
1935 */
1936 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1937 BRW_REGISTER_TYPE_D);
1938 }
1939
1940 return reg;
1941 }
1942
1943 /**
1944 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1945 *
1946 * This function should not be called on any value which may be 64 bits.
1947 * We could theoretically support 64-bit on gen8+ but we choose not to
1948 * because it wouldn't work in general (no gen7 support) and there are
1949 * enough restrictions in 64-bit immediates that you can't take the return
1950 * value and treat it the same as the result of get_nir_src().
1951 */
1952 fs_reg
1953 fs_visitor::get_nir_src_imm(const nir_src &src)
1954 {
1955 assert(nir_src_bit_size(src) == 32);
1956 return nir_src_is_const(src) ?
1957 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1958 }
1959
1960 fs_reg
1961 fs_visitor::get_nir_dest(const nir_dest &dest)
1962 {
1963 if (dest.is_ssa) {
1964 const brw_reg_type reg_type =
1965 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1966 dest.ssa.bit_size == 8 ?
1967 BRW_REGISTER_TYPE_D :
1968 BRW_REGISTER_TYPE_F);
1969 nir_ssa_values[dest.ssa.index] =
1970 bld.vgrf(reg_type, dest.ssa.num_components);
1971 bld.UNDEF(nir_ssa_values[dest.ssa.index]);
1972 return nir_ssa_values[dest.ssa.index];
1973 } else {
1974 /* We don't handle indirects on locals */
1975 assert(dest.reg.indirect == NULL);
1976 return offset(nir_locals[dest.reg.reg->index], bld,
1977 dest.reg.base_offset * dest.reg.reg->num_components);
1978 }
1979 }
1980
1981 void
1982 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1983 unsigned wr_mask)
1984 {
1985 for (unsigned i = 0; i < 4; i++) {
1986 if (!((wr_mask >> i) & 1))
1987 continue;
1988
1989 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1990 new_inst->dst = offset(new_inst->dst, bld, i);
1991 for (unsigned j = 0; j < new_inst->sources; j++)
1992 if (new_inst->src[j].file == VGRF)
1993 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1994
1995 bld.emit(new_inst);
1996 }
1997 }
1998
1999 static fs_inst *
2000 emit_pixel_interpolater_send(const fs_builder &bld,
2001 enum opcode opcode,
2002 const fs_reg &dst,
2003 const fs_reg &src,
2004 const fs_reg &desc,
2005 glsl_interp_mode interpolation)
2006 {
2007 struct brw_wm_prog_data *wm_prog_data =
2008 brw_wm_prog_data(bld.shader->stage_prog_data);
2009
2010 fs_inst *inst = bld.emit(opcode, dst, src, desc);
2011 /* 2 floats per slot returned */
2012 inst->size_written = 2 * dst.component_size(inst->exec_size);
2013 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
2014
2015 wm_prog_data->pulls_bary = true;
2016
2017 return inst;
2018 }
2019
2020 /**
2021 * Computes 1 << x, given a D/UD register containing some value x.
2022 */
2023 static fs_reg
2024 intexp2(const fs_builder &bld, const fs_reg &x)
2025 {
2026 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
2027
2028 fs_reg result = bld.vgrf(x.type, 1);
2029 fs_reg one = bld.vgrf(x.type, 1);
2030
2031 bld.MOV(one, retype(brw_imm_d(1), one.type));
2032 bld.SHL(result, one, x);
2033 return result;
2034 }
2035
2036 void
2037 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2038 {
2039 assert(stage == MESA_SHADER_GEOMETRY);
2040
2041 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2042
2043 if (gs_compile->control_data_header_size_bits == 0)
2044 return;
2045
2046 /* We can only do EndPrimitive() functionality when the control data
2047 * consists of cut bits. Fortunately, the only time it isn't is when the
2048 * output type is points, in which case EndPrimitive() is a no-op.
2049 */
2050 if (gs_prog_data->control_data_format !=
2051 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2052 return;
2053 }
2054
2055 /* Cut bits use one bit per vertex. */
2056 assert(gs_compile->control_data_bits_per_vertex == 1);
2057
2058 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2059 vertex_count.type = BRW_REGISTER_TYPE_UD;
2060
2061 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2062 * vertex n, 0 otherwise. So all we need to do here is mark bit
2063 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2064 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2065 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2066 *
2067 * Note that if EndPrimitive() is called before emitting any vertices, this
2068 * will cause us to set bit 31 of the control_data_bits register to 1.
2069 * That's fine because:
2070 *
2071 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2072 * output, so the hardware will ignore cut bit 31.
2073 *
2074 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2075 * last vertex, so setting cut bit 31 has no effect (since the primitive
2076 * is automatically ended when the GS terminates).
2077 *
2078 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2079 * control_data_bits register to 0 when the first vertex is emitted.
2080 */
2081
2082 const fs_builder abld = bld.annotate("end primitive");
2083
2084 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2085 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2086 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2087 fs_reg mask = intexp2(abld, prev_count);
2088 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2089 * attention to the lower 5 bits of its second source argument, so on this
2090 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2091 * ((vertex_count - 1) % 32).
2092 */
2093 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2094 }
2095
2096 void
2097 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2098 {
2099 assert(stage == MESA_SHADER_GEOMETRY);
2100 assert(gs_compile->control_data_bits_per_vertex != 0);
2101
2102 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2103
2104 const fs_builder abld = bld.annotate("emit control data bits");
2105 const fs_builder fwa_bld = bld.exec_all();
2106
2107 /* We use a single UD register to accumulate control data bits (32 bits
2108 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
2109 * at a time.
2110 *
2111 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2112 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2113 * use the Channel Mask phase to enable/disable which DWord within that
2114 * group to write. (Remember, different SIMD8 channels may have emitted
2115 * different numbers of vertices, so we may need per-slot offsets.)
2116 *
2117 * Channel masking presents an annoying problem: we may have to replicate
2118 * the data up to 4 times:
2119 *
2120 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2121 *
2122 * To avoid penalizing shaders that emit a small number of vertices, we
2123 * can avoid these sometimes: if the size of the control data header is
2124 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
2125 * land in the same 128-bit group, so we can skip per-slot offsets.
2126 *
2127 * Similarly, if the control data header is <= 32 bits, there is only one
2128 * DWord, so we can skip channel masks.
2129 */
2130 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2131
2132 fs_reg channel_mask, per_slot_offset;
2133
2134 if (gs_compile->control_data_header_size_bits > 32) {
2135 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2136 channel_mask = vgrf(glsl_type::uint_type);
2137 }
2138
2139 if (gs_compile->control_data_header_size_bits > 128) {
2140 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2141 per_slot_offset = vgrf(glsl_type::uint_type);
2142 }
2143
2144 /* Figure out which DWord we're trying to write to using the formula:
2145 *
2146 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
2147 *
2148 * Since bits_per_vertex is a power of two, and is known at compile
2149 * time, this can be optimized to:
2150 *
2151 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2152 */
2153 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2154 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2155 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2156 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2157 unsigned log2_bits_per_vertex =
2158 util_last_bit(gs_compile->control_data_bits_per_vertex);
2159 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2160
2161 if (per_slot_offset.file != BAD_FILE) {
2162 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2163 * the appropriate OWord within the control data header.
2164 */
2165 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2166 }
2167
2168 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2169 * write to the appropriate DWORD within the OWORD.
2170 */
2171 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2172 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2173 channel_mask = intexp2(fwa_bld, channel);
2174 /* Then the channel masks need to be in bits 23:16. */
2175 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2176 }
2177
2178 /* Store the control data bits in the message payload and send it. */
2179 unsigned mlen = 2;
2180 if (channel_mask.file != BAD_FILE)
2181 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2182 if (per_slot_offset.file != BAD_FILE)
2183 mlen++;
2184
2185 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2186 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2187 unsigned i = 0;
2188 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2189 if (per_slot_offset.file != BAD_FILE)
2190 sources[i++] = per_slot_offset;
2191 if (channel_mask.file != BAD_FILE)
2192 sources[i++] = channel_mask;
2193 while (i < mlen) {
2194 sources[i++] = this->control_data_bits;
2195 }
2196
2197 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2198 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2199 inst->mlen = mlen;
2200 /* We need to increment Global Offset by 256-bits to make room for
2201 * Broadwell's extra "Vertex Count" payload at the beginning of the
2202 * URB entry. Since this is an OWord message, Global Offset is counted
2203 * in 128-bit units, so we must set it to 2.
2204 */
2205 if (gs_prog_data->static_vertex_count == -1)
2206 inst->offset = 2;
2207 }
2208
2209 void
2210 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2211 unsigned stream_id)
2212 {
2213 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2214
2215 /* Note: we are calling this *before* increasing vertex_count, so
2216 * this->vertex_count == vertex_count - 1 in the formula above.
2217 */
2218
2219 /* Stream mode uses 2 bits per vertex */
2220 assert(gs_compile->control_data_bits_per_vertex == 2);
2221
2222 /* Must be a valid stream */
2223 assert(stream_id < MAX_VERTEX_STREAMS);
2224
2225 /* Control data bits are initialized to 0 so we don't have to set any
2226 * bits when sending vertices to stream 0.
2227 */
2228 if (stream_id == 0)
2229 return;
2230
2231 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2232
2233 /* reg::sid = stream_id */
2234 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2235 abld.MOV(sid, brw_imm_ud(stream_id));
2236
2237 /* reg:shift_count = 2 * (vertex_count - 1) */
2238 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2239 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2240
2241 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2242 * attention to the lower 5 bits of its second source argument, so on this
2243 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2244 * stream_id << ((2 * (vertex_count - 1)) % 32).
2245 */
2246 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2247 abld.SHL(mask, sid, shift_count);
2248 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2249 }
2250
2251 void
2252 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2253 unsigned stream_id)
2254 {
2255 assert(stage == MESA_SHADER_GEOMETRY);
2256
2257 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2258
2259 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2260 vertex_count.type = BRW_REGISTER_TYPE_UD;
2261
2262 /* Haswell and later hardware ignores the "Render Stream Select" bits
2263 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2264 * and instead sends all primitives down the pipeline for rasterization.
2265 * If the SOL stage is enabled, "Render Stream Select" is honored and
2266 * primitives bound to non-zero streams are discarded after stream output.
2267 *
2268 * Since the only purpose of primives sent to non-zero streams is to
2269 * be recorded by transform feedback, we can simply discard all geometry
2270 * bound to these streams when transform feedback is disabled.
2271 */
2272 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2273 return;
2274
2275 /* If we're outputting 32 control data bits or less, then we can wait
2276 * until the shader is over to output them all. Otherwise we need to
2277 * output them as we go. Now is the time to do it, since we're about to
2278 * output the vertex_count'th vertex, so it's guaranteed that the
2279 * control data bits associated with the (vertex_count - 1)th vertex are
2280 * correct.
2281 */
2282 if (gs_compile->control_data_header_size_bits > 32) {
2283 const fs_builder abld =
2284 bld.annotate("emit vertex: emit control data bits");
2285
2286 /* Only emit control data bits if we've finished accumulating a batch
2287 * of 32 bits. This is the case when:
2288 *
2289 * (vertex_count * bits_per_vertex) % 32 == 0
2290 *
2291 * (in other words, when the last 5 bits of vertex_count *
2292 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2293 * integer n (which is always the case, since bits_per_vertex is
2294 * always 1 or 2), this is equivalent to requiring that the last 5-n
2295 * bits of vertex_count are 0:
2296 *
2297 * vertex_count & (2^(5-n) - 1) == 0
2298 *
2299 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2300 * equivalent to:
2301 *
2302 * vertex_count & (32 / bits_per_vertex - 1) == 0
2303 *
2304 * TODO: If vertex_count is an immediate, we could do some of this math
2305 * at compile time...
2306 */
2307 fs_inst *inst =
2308 abld.AND(bld.null_reg_d(), vertex_count,
2309 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2310 inst->conditional_mod = BRW_CONDITIONAL_Z;
2311
2312 abld.IF(BRW_PREDICATE_NORMAL);
2313 /* If vertex_count is 0, then no control data bits have been
2314 * accumulated yet, so we can skip emitting them.
2315 */
2316 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2317 BRW_CONDITIONAL_NEQ);
2318 abld.IF(BRW_PREDICATE_NORMAL);
2319 emit_gs_control_data_bits(vertex_count);
2320 abld.emit(BRW_OPCODE_ENDIF);
2321
2322 /* Reset control_data_bits to 0 so we can start accumulating a new
2323 * batch.
2324 *
2325 * Note: in the case where vertex_count == 0, this neutralizes the
2326 * effect of any call to EndPrimitive() that the shader may have
2327 * made before outputting its first vertex.
2328 */
2329 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2330 inst->force_writemask_all = true;
2331 abld.emit(BRW_OPCODE_ENDIF);
2332 }
2333
2334 emit_urb_writes(vertex_count);
2335
2336 /* In stream mode we have to set control data bits for all vertices
2337 * unless we have disabled control data bits completely (which we do
2338 * do for GL_POINTS outputs that don't use streams).
2339 */
2340 if (gs_compile->control_data_header_size_bits > 0 &&
2341 gs_prog_data->control_data_format ==
2342 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2343 set_gs_stream_control_data_bits(vertex_count, stream_id);
2344 }
2345 }
2346
2347 void
2348 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2349 const nir_src &vertex_src,
2350 unsigned base_offset,
2351 const nir_src &offset_src,
2352 unsigned num_components,
2353 unsigned first_component)
2354 {
2355 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2356 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2357
2358 /* TODO: figure out push input layout for invocations == 1 */
2359 /* TODO: make this work with 64-bit inputs */
2360 if (gs_prog_data->invocations == 1 &&
2361 type_sz(dst.type) <= 4 &&
2362 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2363 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2364 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2365 nir_src_as_uint(vertex_src) * push_reg_count;
2366 for (unsigned i = 0; i < num_components; i++) {
2367 bld.MOV(offset(dst, bld, i),
2368 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2369 }
2370 return;
2371 }
2372
2373 /* Resort to the pull model. Ensure the VUE handles are provided. */
2374 assert(gs_prog_data->base.include_vue_handles);
2375
2376 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2377 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2378
2379 if (gs_prog_data->invocations == 1) {
2380 if (nir_src_is_const(vertex_src)) {
2381 /* The vertex index is constant; just select the proper URB handle. */
2382 icp_handle =
2383 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2384 BRW_REGISTER_TYPE_UD);
2385 } else {
2386 /* The vertex index is non-constant. We need to use indirect
2387 * addressing to fetch the proper URB handle.
2388 *
2389 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2390 * indicating that channel <n> should read the handle from
2391 * DWord <n>. We convert that to bytes by multiplying by 4.
2392 *
2393 * Next, we convert the vertex index to bytes by multiplying
2394 * by 32 (shifting by 5), and add the two together. This is
2395 * the final indirect byte offset.
2396 */
2397 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2398 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2399 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2400 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2401
2402 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2403 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2404 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2405 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2406 /* Convert vertex_index to bytes (multiply by 32) */
2407 bld.SHL(vertex_offset_bytes,
2408 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2409 brw_imm_ud(5u));
2410 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2411
2412 /* Use first_icp_handle as the base offset. There is one register
2413 * of URB handles per vertex, so inform the register allocator that
2414 * we might read up to nir->info.gs.vertices_in registers.
2415 */
2416 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2417 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2418 fs_reg(icp_offset_bytes),
2419 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2420 }
2421 } else {
2422 assert(gs_prog_data->invocations > 1);
2423
2424 if (nir_src_is_const(vertex_src)) {
2425 unsigned vertex = nir_src_as_uint(vertex_src);
2426 assert(devinfo->gen >= 9 || vertex <= 5);
2427 bld.MOV(icp_handle,
2428 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2429 BRW_REGISTER_TYPE_UD));
2430 } else {
2431 /* The vertex index is non-constant. We need to use indirect
2432 * addressing to fetch the proper URB handle.
2433 *
2434 */
2435 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2436
2437 /* Convert vertex_index to bytes (multiply by 4) */
2438 bld.SHL(icp_offset_bytes,
2439 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2440 brw_imm_ud(2u));
2441
2442 /* Use first_icp_handle as the base offset. There is one DWord
2443 * of URB handles per vertex, so inform the register allocator that
2444 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2445 */
2446 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2447 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2448 fs_reg(icp_offset_bytes),
2449 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2450 REG_SIZE));
2451 }
2452 }
2453
2454 fs_inst *inst;
2455
2456 fs_reg tmp_dst = dst;
2457 fs_reg indirect_offset = get_nir_src(offset_src);
2458 unsigned num_iterations = 1;
2459 unsigned orig_num_components = num_components;
2460
2461 if (type_sz(dst.type) == 8) {
2462 if (num_components > 2) {
2463 num_iterations = 2;
2464 num_components = 2;
2465 }
2466 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2467 tmp_dst = tmp;
2468 first_component = first_component / 2;
2469 }
2470
2471 for (unsigned iter = 0; iter < num_iterations; iter++) {
2472 if (nir_src_is_const(offset_src)) {
2473 /* Constant indexing - use global offset. */
2474 if (first_component != 0) {
2475 unsigned read_components = num_components + first_component;
2476 fs_reg tmp = bld.vgrf(dst.type, read_components);
2477 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2478 inst->size_written = read_components *
2479 tmp.component_size(inst->exec_size);
2480 for (unsigned i = 0; i < num_components; i++) {
2481 bld.MOV(offset(tmp_dst, bld, i),
2482 offset(tmp, bld, i + first_component));
2483 }
2484 } else {
2485 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2486 icp_handle);
2487 inst->size_written = num_components *
2488 tmp_dst.component_size(inst->exec_size);
2489 }
2490 inst->offset = base_offset + nir_src_as_uint(offset_src);
2491 inst->mlen = 1;
2492 } else {
2493 /* Indirect indexing - use per-slot offsets as well. */
2494 const fs_reg srcs[] = { icp_handle, indirect_offset };
2495 unsigned read_components = num_components + first_component;
2496 fs_reg tmp = bld.vgrf(dst.type, read_components);
2497 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2498 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2499 if (first_component != 0) {
2500 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2501 payload);
2502 inst->size_written = read_components *
2503 tmp.component_size(inst->exec_size);
2504 for (unsigned i = 0; i < num_components; i++) {
2505 bld.MOV(offset(tmp_dst, bld, i),
2506 offset(tmp, bld, i + first_component));
2507 }
2508 } else {
2509 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2510 payload);
2511 inst->size_written = num_components *
2512 tmp_dst.component_size(inst->exec_size);
2513 }
2514 inst->offset = base_offset;
2515 inst->mlen = 2;
2516 }
2517
2518 if (type_sz(dst.type) == 8) {
2519 shuffle_from_32bit_read(bld,
2520 offset(dst, bld, iter * 2),
2521 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2522 0,
2523 num_components);
2524 }
2525
2526 if (num_iterations > 1) {
2527 num_components = orig_num_components - 2;
2528 if(nir_src_is_const(offset_src)) {
2529 base_offset++;
2530 } else {
2531 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2532 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2533 indirect_offset = new_indirect;
2534 }
2535 }
2536 }
2537 }
2538
2539 fs_reg
2540 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2541 {
2542 nir_src *offset_src = nir_get_io_offset_src(instr);
2543
2544 if (nir_src_is_const(*offset_src)) {
2545 /* The only constant offset we should find is 0. brw_nir.c's
2546 * add_const_offset_to_base() will fold other constant offsets
2547 * into instr->const_index[0].
2548 */
2549 assert(nir_src_as_uint(*offset_src) == 0);
2550 return fs_reg();
2551 }
2552
2553 return get_nir_src(*offset_src);
2554 }
2555
2556 void
2557 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2558 nir_intrinsic_instr *instr)
2559 {
2560 assert(stage == MESA_SHADER_VERTEX);
2561
2562 fs_reg dest;
2563 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2564 dest = get_nir_dest(instr->dest);
2565
2566 switch (instr->intrinsic) {
2567 case nir_intrinsic_load_vertex_id:
2568 case nir_intrinsic_load_base_vertex:
2569 unreachable("should be lowered by nir_lower_system_values()");
2570
2571 case nir_intrinsic_load_input: {
2572 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2573 unsigned first_component = nir_intrinsic_component(instr);
2574 unsigned num_components = instr->num_components;
2575
2576 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2577
2578 if (type_sz(dest.type) == 8)
2579 first_component /= 2;
2580
2581 /* For 16-bit support maybe a temporary will be needed to copy from
2582 * the ATTR file.
2583 */
2584 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2585 first_component, num_components);
2586 break;
2587 }
2588
2589 case nir_intrinsic_load_vertex_id_zero_base:
2590 case nir_intrinsic_load_instance_id:
2591 case nir_intrinsic_load_base_instance:
2592 case nir_intrinsic_load_draw_id:
2593 case nir_intrinsic_load_first_vertex:
2594 case nir_intrinsic_load_is_indexed_draw:
2595 unreachable("lowered by brw_nir_lower_vs_inputs");
2596
2597 default:
2598 nir_emit_intrinsic(bld, instr);
2599 break;
2600 }
2601 }
2602
2603 fs_reg
2604 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2605 nir_intrinsic_instr *instr)
2606 {
2607 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2608 const nir_src &vertex_src = instr->src[0];
2609 nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2610 fs_reg icp_handle;
2611
2612 if (nir_src_is_const(vertex_src)) {
2613 /* Emit a MOV to resolve <0,1,0> regioning. */
2614 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2615 unsigned vertex = nir_src_as_uint(vertex_src);
2616 bld.MOV(icp_handle,
2617 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2618 BRW_REGISTER_TYPE_UD));
2619 } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2620 vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2621 /* For the common case of only 1 instance, an array index of
2622 * gl_InvocationID means reading g1. Skip all the indirect work.
2623 */
2624 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2625 } else {
2626 /* The vertex index is non-constant. We need to use indirect
2627 * addressing to fetch the proper URB handle.
2628 */
2629 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2630
2631 /* Each ICP handle is a single DWord (4 bytes) */
2632 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2633 bld.SHL(vertex_offset_bytes,
2634 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2635 brw_imm_ud(2u));
2636
2637 /* Start at g1. We might read up to 4 registers. */
2638 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2639 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2640 brw_imm_ud(4 * REG_SIZE));
2641 }
2642
2643 return icp_handle;
2644 }
2645
2646 fs_reg
2647 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2648 nir_intrinsic_instr *instr)
2649 {
2650 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2651 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2652 const nir_src &vertex_src = instr->src[0];
2653
2654 unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2655
2656 if (nir_src_is_const(vertex_src)) {
2657 return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2658 nir_src_as_uint(vertex_src), 0),
2659 BRW_REGISTER_TYPE_UD));
2660 }
2661
2662 /* The vertex index is non-constant. We need to use indirect
2663 * addressing to fetch the proper URB handle.
2664 *
2665 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2666 * indicating that channel <n> should read the handle from
2667 * DWord <n>. We convert that to bytes by multiplying by 4.
2668 *
2669 * Next, we convert the vertex index to bytes by multiplying
2670 * by 32 (shifting by 5), and add the two together. This is
2671 * the final indirect byte offset.
2672 */
2673 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2674 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2675 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2676 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2677 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2678
2679 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2680 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2681 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2682 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2683 /* Convert vertex_index to bytes (multiply by 32) */
2684 bld.SHL(vertex_offset_bytes,
2685 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2686 brw_imm_ud(5u));
2687 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2688
2689 /* Use first_icp_handle as the base offset. There is one register
2690 * of URB handles per vertex, so inform the register allocator that
2691 * we might read up to nir->info.gs.vertices_in registers.
2692 */
2693 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2694 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2695 icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2696
2697 return icp_handle;
2698 }
2699
2700 struct brw_reg
2701 fs_visitor::get_tcs_output_urb_handle()
2702 {
2703 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2704
2705 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2706 return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2707 } else {
2708 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2709 return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2710 }
2711 }
2712
2713 void
2714 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2715 nir_intrinsic_instr *instr)
2716 {
2717 assert(stage == MESA_SHADER_TESS_CTRL);
2718 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2719 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2720 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2721
2722 bool eight_patch =
2723 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2724
2725 fs_reg dst;
2726 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2727 dst = get_nir_dest(instr->dest);
2728
2729 switch (instr->intrinsic) {
2730 case nir_intrinsic_load_primitive_id:
2731 bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2732 : brw_vec1_grf(0, 1)));
2733 break;
2734 case nir_intrinsic_load_invocation_id:
2735 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2736 break;
2737 case nir_intrinsic_load_patch_vertices_in:
2738 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2739 brw_imm_d(tcs_key->input_vertices));
2740 break;
2741
2742 case nir_intrinsic_barrier: {
2743 if (tcs_prog_data->instances == 1)
2744 break;
2745
2746 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2747 fs_reg m0_2 = component(m0, 2);
2748
2749 const fs_builder chanbld = bld.exec_all().group(1, 0);
2750
2751 /* Zero the message header */
2752 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2753
2754 if (devinfo->gen < 11) {
2755 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2756 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2757 brw_imm_ud(INTEL_MASK(16, 13)));
2758
2759 /* Shift it up to bits 27:24. */
2760 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2761 } else {
2762 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2763 brw_imm_ud(INTEL_MASK(30, 24)));
2764 }
2765
2766 /* Set the Barrier Count and the enable bit */
2767 if (devinfo->gen < 11) {
2768 chanbld.OR(m0_2, m0_2,
2769 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2770 } else {
2771 chanbld.OR(m0_2, m0_2,
2772 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2773 }
2774
2775 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2776 break;
2777 }
2778
2779 case nir_intrinsic_load_input:
2780 unreachable("nir_lower_io should never give us these.");
2781 break;
2782
2783 case nir_intrinsic_load_per_vertex_input: {
2784 fs_reg indirect_offset = get_indirect_offset(instr);
2785 unsigned imm_offset = instr->const_index[0];
2786 fs_inst *inst;
2787
2788 fs_reg icp_handle =
2789 eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2790 : get_tcs_single_patch_icp_handle(bld, instr);
2791
2792 /* We can only read two double components with each URB read, so
2793 * we send two read messages in that case, each one loading up to
2794 * two double components.
2795 */
2796 unsigned num_iterations = 1;
2797 unsigned num_components = instr->num_components;
2798 unsigned first_component = nir_intrinsic_component(instr);
2799 fs_reg orig_dst = dst;
2800 if (type_sz(dst.type) == 8) {
2801 first_component = first_component / 2;
2802 if (instr->num_components > 2) {
2803 num_iterations = 2;
2804 num_components = 2;
2805 }
2806
2807 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2808 dst = tmp;
2809 }
2810
2811 for (unsigned iter = 0; iter < num_iterations; iter++) {
2812 if (indirect_offset.file == BAD_FILE) {
2813 /* Constant indexing - use global offset. */
2814 if (first_component != 0) {
2815 unsigned read_components = num_components + first_component;
2816 fs_reg tmp = bld.vgrf(dst.type, read_components);
2817 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2818 for (unsigned i = 0; i < num_components; i++) {
2819 bld.MOV(offset(dst, bld, i),
2820 offset(tmp, bld, i + first_component));
2821 }
2822 } else {
2823 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2824 }
2825 inst->offset = imm_offset;
2826 inst->mlen = 1;
2827 } else {
2828 /* Indirect indexing - use per-slot offsets as well. */
2829 const fs_reg srcs[] = { icp_handle, indirect_offset };
2830 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2831 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2832 if (first_component != 0) {
2833 unsigned read_components = num_components + first_component;
2834 fs_reg tmp = bld.vgrf(dst.type, read_components);
2835 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2836 payload);
2837 for (unsigned i = 0; i < num_components; i++) {
2838 bld.MOV(offset(dst, bld, i),
2839 offset(tmp, bld, i + first_component));
2840 }
2841 } else {
2842 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2843 payload);
2844 }
2845 inst->offset = imm_offset;
2846 inst->mlen = 2;
2847 }
2848 inst->size_written = (num_components + first_component) *
2849 inst->dst.component_size(inst->exec_size);
2850
2851 /* If we are reading 64-bit data using 32-bit read messages we need
2852 * build proper 64-bit data elements by shuffling the low and high
2853 * 32-bit components around like we do for other things like UBOs
2854 * or SSBOs.
2855 */
2856 if (type_sz(dst.type) == 8) {
2857 shuffle_from_32bit_read(bld,
2858 offset(orig_dst, bld, iter * 2),
2859 retype(dst, BRW_REGISTER_TYPE_D),
2860 0, num_components);
2861 }
2862
2863 /* Copy the temporary to the destination to deal with writemasking.
2864 *
2865 * Also attempt to deal with gl_PointSize being in the .w component.
2866 */
2867 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2868 assert(type_sz(dst.type) < 8);
2869 inst->dst = bld.vgrf(dst.type, 4);
2870 inst->size_written = 4 * REG_SIZE;
2871 bld.MOV(dst, offset(inst->dst, bld, 3));
2872 }
2873
2874 /* If we are loading double data and we need a second read message
2875 * adjust the write offset
2876 */
2877 if (num_iterations > 1) {
2878 num_components = instr->num_components - 2;
2879 imm_offset++;
2880 }
2881 }
2882 break;
2883 }
2884
2885 case nir_intrinsic_load_output:
2886 case nir_intrinsic_load_per_vertex_output: {
2887 fs_reg indirect_offset = get_indirect_offset(instr);
2888 unsigned imm_offset = instr->const_index[0];
2889 unsigned first_component = nir_intrinsic_component(instr);
2890
2891 struct brw_reg output_handles = get_tcs_output_urb_handle();
2892
2893 fs_inst *inst;
2894 if (indirect_offset.file == BAD_FILE) {
2895 /* This MOV replicates the output handle to all enabled channels
2896 * is SINGLE_PATCH mode.
2897 */
2898 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2899 bld.MOV(patch_handle, output_handles);
2900
2901 {
2902 if (first_component != 0) {
2903 unsigned read_components =
2904 instr->num_components + first_component;
2905 fs_reg tmp = bld.vgrf(dst.type, read_components);
2906 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2907 patch_handle);
2908 inst->size_written = read_components * REG_SIZE;
2909 for (unsigned i = 0; i < instr->num_components; i++) {
2910 bld.MOV(offset(dst, bld, i),
2911 offset(tmp, bld, i + first_component));
2912 }
2913 } else {
2914 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2915 patch_handle);
2916 inst->size_written = instr->num_components * REG_SIZE;
2917 }
2918 inst->offset = imm_offset;
2919 inst->mlen = 1;
2920 }
2921 } else {
2922 /* Indirect indexing - use per-slot offsets as well. */
2923 const fs_reg srcs[] = { output_handles, indirect_offset };
2924 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2925 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2926 if (first_component != 0) {
2927 unsigned read_components =
2928 instr->num_components + first_component;
2929 fs_reg tmp = bld.vgrf(dst.type, read_components);
2930 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2931 payload);
2932 inst->size_written = read_components * REG_SIZE;
2933 for (unsigned i = 0; i < instr->num_components; i++) {
2934 bld.MOV(offset(dst, bld, i),
2935 offset(tmp, bld, i + first_component));
2936 }
2937 } else {
2938 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2939 payload);
2940 inst->size_written = instr->num_components * REG_SIZE;
2941 }
2942 inst->offset = imm_offset;
2943 inst->mlen = 2;
2944 }
2945 break;
2946 }
2947
2948 case nir_intrinsic_store_output:
2949 case nir_intrinsic_store_per_vertex_output: {
2950 fs_reg value = get_nir_src(instr->src[0]);
2951 bool is_64bit = (instr->src[0].is_ssa ?
2952 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2953 fs_reg indirect_offset = get_indirect_offset(instr);
2954 unsigned imm_offset = instr->const_index[0];
2955 unsigned mask = instr->const_index[1];
2956 unsigned header_regs = 0;
2957 struct brw_reg output_handles = get_tcs_output_urb_handle();
2958
2959 fs_reg srcs[7];
2960 srcs[header_regs++] = output_handles;
2961
2962 if (indirect_offset.file != BAD_FILE) {
2963 srcs[header_regs++] = indirect_offset;
2964 }
2965
2966 if (mask == 0)
2967 break;
2968
2969 unsigned num_components = util_last_bit(mask);
2970 enum opcode opcode;
2971
2972 /* We can only pack two 64-bit components in a single message, so send
2973 * 2 messages if we have more components
2974 */
2975 unsigned num_iterations = 1;
2976 unsigned iter_components = num_components;
2977 unsigned first_component = nir_intrinsic_component(instr);
2978 if (is_64bit) {
2979 first_component = first_component / 2;
2980 if (instr->num_components > 2) {
2981 num_iterations = 2;
2982 iter_components = 2;
2983 }
2984 }
2985
2986 mask = mask << first_component;
2987
2988 for (unsigned iter = 0; iter < num_iterations; iter++) {
2989 if (!is_64bit && mask != WRITEMASK_XYZW) {
2990 srcs[header_regs++] = brw_imm_ud(mask << 16);
2991 opcode = indirect_offset.file != BAD_FILE ?
2992 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2993 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2994 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2995 /* Expand the 64-bit mask to 32-bit channels. We only handle
2996 * two channels in each iteration, so we only care about X/Y.
2997 */
2998 unsigned mask32 = 0;
2999 if (mask & WRITEMASK_X)
3000 mask32 |= WRITEMASK_XY;
3001 if (mask & WRITEMASK_Y)
3002 mask32 |= WRITEMASK_ZW;
3003
3004 /* If the mask does not include any of the channels X or Y there
3005 * is nothing to do in this iteration. Move on to the next couple
3006 * of 64-bit channels.
3007 */
3008 if (!mask32) {
3009 mask >>= 2;
3010 imm_offset++;
3011 continue;
3012 }
3013
3014 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
3015 opcode = indirect_offset.file != BAD_FILE ?
3016 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
3017 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
3018 } else {
3019 opcode = indirect_offset.file != BAD_FILE ?
3020 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
3021 SHADER_OPCODE_URB_WRITE_SIMD8;
3022 }
3023
3024 for (unsigned i = 0; i < iter_components; i++) {
3025 if (!(mask & (1 << (i + first_component))))
3026 continue;
3027
3028 if (!is_64bit) {
3029 srcs[header_regs + i + first_component] = offset(value, bld, i);
3030 } else {
3031 /* We need to shuffle the 64-bit data to match the layout
3032 * expected by our 32-bit URB write messages. We use a temporary
3033 * for that.
3034 */
3035 unsigned channel = iter * 2 + i;
3036 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
3037
3038 srcs[header_regs + (i + first_component) * 2] = dest;
3039 srcs[header_regs + (i + first_component) * 2 + 1] =
3040 offset(dest, bld, 1);
3041 }
3042 }
3043
3044 unsigned mlen =
3045 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
3046 (is_64bit ? 2 * first_component : first_component);
3047 fs_reg payload =
3048 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
3049 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
3050
3051 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
3052 inst->offset = imm_offset;
3053 inst->mlen = mlen;
3054
3055 /* If this is a 64-bit attribute, select the next two 64-bit channels
3056 * to be handled in the next iteration.
3057 */
3058 if (is_64bit) {
3059 mask >>= 2;
3060 imm_offset++;
3061 }
3062 }
3063 break;
3064 }
3065
3066 default:
3067 nir_emit_intrinsic(bld, instr);
3068 break;
3069 }
3070 }
3071
3072 void
3073 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
3074 nir_intrinsic_instr *instr)
3075 {
3076 assert(stage == MESA_SHADER_TESS_EVAL);
3077 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
3078
3079 fs_reg dest;
3080 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3081 dest = get_nir_dest(instr->dest);
3082
3083 switch (instr->intrinsic) {
3084 case nir_intrinsic_load_primitive_id:
3085 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
3086 break;
3087 case nir_intrinsic_load_tess_coord:
3088 /* gl_TessCoord is part of the payload in g1-3 */
3089 for (unsigned i = 0; i < 3; i++) {
3090 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
3091 }
3092 break;
3093
3094 case nir_intrinsic_load_input:
3095 case nir_intrinsic_load_per_vertex_input: {
3096 fs_reg indirect_offset = get_indirect_offset(instr);
3097 unsigned imm_offset = instr->const_index[0];
3098 unsigned first_component = nir_intrinsic_component(instr);
3099
3100 if (type_sz(dest.type) == 8) {
3101 first_component = first_component / 2;
3102 }
3103
3104 fs_inst *inst;
3105 if (indirect_offset.file == BAD_FILE) {
3106 /* Arbitrarily only push up to 32 vec4 slots worth of data,
3107 * which is 16 registers (since each holds 2 vec4 slots).
3108 */
3109 unsigned slot_count = 1;
3110 if (type_sz(dest.type) == 8 && instr->num_components > 2)
3111 slot_count++;
3112
3113 const unsigned max_push_slots = 32;
3114 if (imm_offset + slot_count <= max_push_slots) {
3115 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
3116 for (int i = 0; i < instr->num_components; i++) {
3117 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
3118 i + first_component;
3119 bld.MOV(offset(dest, bld, i), component(src, comp));
3120 }
3121
3122 tes_prog_data->base.urb_read_length =
3123 MAX2(tes_prog_data->base.urb_read_length,
3124 DIV_ROUND_UP(imm_offset + slot_count, 2));
3125 } else {
3126 /* Replicate the patch handle to all enabled channels */
3127 const fs_reg srcs[] = {
3128 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
3129 };
3130 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
3131 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
3132
3133 if (first_component != 0) {
3134 unsigned read_components =
3135 instr->num_components + first_component;
3136 fs_reg tmp = bld.vgrf(dest.type, read_components);
3137 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
3138 patch_handle);
3139 inst->size_written = read_components * REG_SIZE;
3140 for (unsigned i = 0; i < instr->num_components; i++) {
3141 bld.MOV(offset(dest, bld, i),
3142 offset(tmp, bld, i + first_component));
3143 }
3144 } else {
3145 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3146 patch_handle);
3147 inst->size_written = instr->num_components * REG_SIZE;
3148 }
3149 inst->mlen = 1;
3150 inst->offset = imm_offset;
3151 }
3152 } else {
3153 /* Indirect indexing - use per-slot offsets as well. */
3154
3155 /* We can only read two double components with each URB read, so
3156 * we send two read messages in that case, each one loading up to
3157 * two double components.
3158 */
3159 unsigned num_iterations = 1;
3160 unsigned num_components = instr->num_components;
3161 fs_reg orig_dest = dest;
3162 if (type_sz(dest.type) == 8) {
3163 if (instr->num_components > 2) {
3164 num_iterations = 2;
3165 num_components = 2;
3166 }
3167 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
3168 dest = tmp;
3169 }
3170
3171 for (unsigned iter = 0; iter < num_iterations; iter++) {
3172 const fs_reg srcs[] = {
3173 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3174 indirect_offset
3175 };
3176 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3177 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3178
3179 if (first_component != 0) {
3180 unsigned read_components =
3181 num_components + first_component;
3182 fs_reg tmp = bld.vgrf(dest.type, read_components);
3183 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3184 payload);
3185 for (unsigned i = 0; i < num_components; i++) {
3186 bld.MOV(offset(dest, bld, i),
3187 offset(tmp, bld, i + first_component));
3188 }
3189 } else {
3190 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3191 payload);
3192 }
3193 inst->mlen = 2;
3194 inst->offset = imm_offset;
3195 inst->size_written = (num_components + first_component) *
3196 inst->dst.component_size(inst->exec_size);
3197
3198 /* If we are reading 64-bit data using 32-bit read messages we need
3199 * build proper 64-bit data elements by shuffling the low and high
3200 * 32-bit components around like we do for other things like UBOs
3201 * or SSBOs.
3202 */
3203 if (type_sz(dest.type) == 8) {
3204 shuffle_from_32bit_read(bld,
3205 offset(orig_dest, bld, iter * 2),
3206 retype(dest, BRW_REGISTER_TYPE_D),
3207 0, num_components);
3208 }
3209
3210 /* If we are loading double data and we need a second read message
3211 * adjust the offset
3212 */
3213 if (num_iterations > 1) {
3214 num_components = instr->num_components - 2;
3215 imm_offset++;
3216 }
3217 }
3218 }
3219 break;
3220 }
3221 default:
3222 nir_emit_intrinsic(bld, instr);
3223 break;
3224 }
3225 }
3226
3227 void
3228 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3229 nir_intrinsic_instr *instr)
3230 {
3231 assert(stage == MESA_SHADER_GEOMETRY);
3232 fs_reg indirect_offset;
3233
3234 fs_reg dest;
3235 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3236 dest = get_nir_dest(instr->dest);
3237
3238 switch (instr->intrinsic) {
3239 case nir_intrinsic_load_primitive_id:
3240 assert(stage == MESA_SHADER_GEOMETRY);
3241 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3242 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3243 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3244 break;
3245
3246 case nir_intrinsic_load_input:
3247 unreachable("load_input intrinsics are invalid for the GS stage");
3248
3249 case nir_intrinsic_load_per_vertex_input:
3250 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3251 instr->src[1], instr->num_components,
3252 nir_intrinsic_component(instr));
3253 break;
3254
3255 case nir_intrinsic_emit_vertex_with_counter:
3256 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3257 break;
3258
3259 case nir_intrinsic_end_primitive_with_counter:
3260 emit_gs_end_primitive(instr->src[0]);
3261 break;
3262
3263 case nir_intrinsic_set_vertex_count:
3264 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3265 break;
3266
3267 case nir_intrinsic_load_invocation_id: {
3268 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3269 assert(val.file != BAD_FILE);
3270 dest.type = val.type;
3271 bld.MOV(dest, val);
3272 break;
3273 }
3274
3275 default:
3276 nir_emit_intrinsic(bld, instr);
3277 break;
3278 }
3279 }
3280
3281 /**
3282 * Fetch the current render target layer index.
3283 */
3284 static fs_reg
3285 fetch_render_target_array_index(const fs_builder &bld)
3286 {
3287 if (bld.shader->devinfo->gen >= 6) {
3288 /* The render target array index is provided in the thread payload as
3289 * bits 26:16 of r0.0.
3290 */
3291 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3292 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3293 brw_imm_uw(0x7ff));
3294 return idx;
3295 } else {
3296 /* Pre-SNB we only ever render into the first layer of the framebuffer
3297 * since layered rendering is not implemented.
3298 */
3299 return brw_imm_ud(0);
3300 }
3301 }
3302
3303 /**
3304 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3305 * framebuffer at the current fragment coordinates and sample index.
3306 */
3307 fs_inst *
3308 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3309 unsigned target)
3310 {
3311 const struct gen_device_info *devinfo = bld.shader->devinfo;
3312
3313 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3314 const brw_wm_prog_key *wm_key =
3315 reinterpret_cast<const brw_wm_prog_key *>(key);
3316 assert(!wm_key->coherent_fb_fetch);
3317 const struct brw_wm_prog_data *wm_prog_data =
3318 brw_wm_prog_data(stage_prog_data);
3319
3320 /* Calculate the surface index relative to the start of the texture binding
3321 * table block, since that's what the texturing messages expect.
3322 */
3323 const unsigned surface = target +
3324 wm_prog_data->binding_table.render_target_read_start -
3325 wm_prog_data->base.binding_table.texture_start;
3326
3327 /* Calculate the fragment coordinates. */
3328 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3329 bld.MOV(offset(coords, bld, 0), pixel_x);
3330 bld.MOV(offset(coords, bld, 1), pixel_y);
3331 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3332
3333 /* Calculate the sample index and MCS payload when multisampling. Luckily
3334 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3335 * shouldn't be necessary to recompile based on whether the framebuffer is
3336 * CMS or UMS.
3337 */
3338 if (wm_key->multisample_fbo &&
3339 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3340 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3341
3342 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3343 const fs_reg mcs = wm_key->multisample_fbo ?
3344 emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3345
3346 /* Use either a normal or a CMS texel fetch message depending on whether
3347 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3348 * message just in case the framebuffer uses 16x multisampling, it should
3349 * be equivalent to the normal CMS fetch for lower multisampling modes.
3350 */
3351 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3352 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3353 SHADER_OPCODE_TXF_CMS_LOGICAL;
3354
3355 /* Emit the instruction. */
3356 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3357 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3358 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3359 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3360 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3361 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3362 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3363 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3364 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3365
3366 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3367 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3368
3369 return inst;
3370 }
3371
3372 /**
3373 * Actual coherent framebuffer read implemented using the native render target
3374 * read message. Requires SKL+.
3375 */
3376 static fs_inst *
3377 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3378 {
3379 assert(bld.shader->devinfo->gen >= 9);
3380 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3381 inst->target = target;
3382 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3383
3384 return inst;
3385 }
3386
3387 static fs_reg
3388 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3389 {
3390 if (n && regs[0].file != BAD_FILE) {
3391 return regs[0];
3392
3393 } else {
3394 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3395
3396 for (unsigned i = 0; i < n; i++)
3397 regs[i] = tmp;
3398
3399 return tmp;
3400 }
3401 }
3402
3403 static fs_reg
3404 alloc_frag_output(fs_visitor *v, unsigned location)
3405 {
3406 assert(v->stage == MESA_SHADER_FRAGMENT);
3407 const brw_wm_prog_key *const key =
3408 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3409 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3410 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3411
3412 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3413 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3414
3415 else if (l == FRAG_RESULT_COLOR)
3416 return alloc_temporary(v->bld, 4, v->outputs,
3417 MAX2(key->nr_color_regions, 1));
3418
3419 else if (l == FRAG_RESULT_DEPTH)
3420 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3421
3422 else if (l == FRAG_RESULT_STENCIL)
3423 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3424
3425 else if (l == FRAG_RESULT_SAMPLE_MASK)
3426 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3427
3428 else if (l >= FRAG_RESULT_DATA0 &&
3429 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3430 return alloc_temporary(v->bld, 4,
3431 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3432
3433 else
3434 unreachable("Invalid location");
3435 }
3436
3437 /* Annoyingly, we get the barycentrics into the shader in a layout that's
3438 * optimized for PLN but it doesn't work nearly as well as one would like for
3439 * manual interpolation.
3440 */
3441 static void
3442 shuffle_from_pln_layout(const fs_builder &bld, fs_reg dest, fs_reg pln_data)
3443 {
3444 dest.type = BRW_REGISTER_TYPE_F;
3445 pln_data.type = BRW_REGISTER_TYPE_F;
3446 const fs_reg dest_u = offset(dest, bld, 0);
3447 const fs_reg dest_v = offset(dest, bld, 1);
3448
3449 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3450 const fs_builder gbld = bld.group(8, g);
3451 gbld.MOV(horiz_offset(dest_u, g * 8),
3452 byte_offset(pln_data, (g * 2 + 0) * REG_SIZE));
3453 gbld.MOV(horiz_offset(dest_v, g * 8),
3454 byte_offset(pln_data, (g * 2 + 1) * REG_SIZE));
3455 }
3456 }
3457
3458 static void
3459 shuffle_to_pln_layout(const fs_builder &bld, fs_reg pln_data, fs_reg src)
3460 {
3461 pln_data.type = BRW_REGISTER_TYPE_F;
3462 src.type = BRW_REGISTER_TYPE_F;
3463 const fs_reg src_u = offset(src, bld, 0);
3464 const fs_reg src_v = offset(src, bld, 1);
3465
3466 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3467 const fs_builder gbld = bld.group(8, g);
3468 gbld.MOV(byte_offset(pln_data, (g * 2 + 0) * REG_SIZE),
3469 horiz_offset(src_u, g * 8));
3470 gbld.MOV(byte_offset(pln_data, (g * 2 + 1) * REG_SIZE),
3471 horiz_offset(src_v, g * 8));
3472 }
3473 }
3474
3475 void
3476 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3477 nir_intrinsic_instr *instr)
3478 {
3479 assert(stage == MESA_SHADER_FRAGMENT);
3480
3481 fs_reg dest;
3482 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3483 dest = get_nir_dest(instr->dest);
3484
3485 switch (instr->intrinsic) {
3486 case nir_intrinsic_load_front_face:
3487 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3488 *emit_frontfacing_interpolation());
3489 break;
3490
3491 case nir_intrinsic_load_sample_pos: {
3492 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3493 assert(sample_pos.file != BAD_FILE);
3494 dest.type = sample_pos.type;
3495 bld.MOV(dest, sample_pos);
3496 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3497 break;
3498 }
3499
3500 case nir_intrinsic_load_layer_id:
3501 dest.type = BRW_REGISTER_TYPE_UD;
3502 bld.MOV(dest, fetch_render_target_array_index(bld));
3503 break;
3504
3505 case nir_intrinsic_load_helper_invocation:
3506 case nir_intrinsic_load_sample_mask_in:
3507 case nir_intrinsic_load_sample_id: {
3508 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3509 fs_reg val = nir_system_values[sv];
3510 assert(val.file != BAD_FILE);
3511 dest.type = val.type;
3512 bld.MOV(dest, val);
3513 break;
3514 }
3515
3516 case nir_intrinsic_store_output: {
3517 const fs_reg src = get_nir_src(instr->src[0]);
3518 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3519 const unsigned location = nir_intrinsic_base(instr) +
3520 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3521 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3522 src.type);
3523
3524 for (unsigned j = 0; j < instr->num_components; j++)
3525 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3526 offset(src, bld, j));
3527
3528 break;
3529 }
3530
3531 case nir_intrinsic_load_output: {
3532 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3533 BRW_NIR_FRAG_OUTPUT_LOCATION);
3534 assert(l >= FRAG_RESULT_DATA0);
3535 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3536 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3537 const fs_reg tmp = bld.vgrf(dest.type, 4);
3538
3539 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3540 emit_coherent_fb_read(bld, tmp, target);
3541 else
3542 emit_non_coherent_fb_read(bld, tmp, target);
3543
3544 for (unsigned j = 0; j < instr->num_components; j++) {
3545 bld.MOV(offset(dest, bld, j),
3546 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3547 }
3548
3549 break;
3550 }
3551
3552 case nir_intrinsic_discard:
3553 case nir_intrinsic_discard_if: {
3554 /* We track our discarded pixels in f0.1. By predicating on it, we can
3555 * update just the flag bits that aren't yet discarded. If there's no
3556 * condition, we emit a CMP of g0 != g0, so all currently executing
3557 * channels will get turned off.
3558 */
3559 fs_inst *cmp = NULL;
3560 if (instr->intrinsic == nir_intrinsic_discard_if) {
3561 nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]);
3562
3563 if (alu != NULL &&
3564 alu->op != nir_op_bcsel &&
3565 alu->op != nir_op_inot) {
3566 /* Re-emit the instruction that generated the Boolean value, but
3567 * do not store it. Since this instruction will be conditional,
3568 * other instructions that want to use the real Boolean value may
3569 * get garbage. This was a problem for piglit's fs-discard-exit-2
3570 * test.
3571 *
3572 * Ideally we'd detect that the instruction cannot have a
3573 * conditional modifier before emitting the instructions. Alas,
3574 * that is nigh impossible. Instead, we're going to assume the
3575 * instruction (or last instruction) generated can have a
3576 * conditional modifier. If it cannot, fallback to the old-style
3577 * compare, and hope dead code elimination will clean up the
3578 * extra instructions generated.
3579 */
3580 nir_emit_alu(bld, alu, false);
3581
3582 cmp = (fs_inst *) instructions.get_tail();
3583 if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) {
3584 if (cmp->can_do_cmod())
3585 cmp->conditional_mod = BRW_CONDITIONAL_Z;
3586 else
3587 cmp = NULL;
3588 } else {
3589 /* The old sequence that would have been generated is,
3590 * basically, bool_result == false. This is equivalent to
3591 * !bool_result, so negate the old modifier.
3592 */
3593 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
3594 }
3595 }
3596
3597 if (cmp == NULL) {
3598 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3599 brw_imm_d(0), BRW_CONDITIONAL_Z);
3600 }
3601 } else {
3602 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3603 BRW_REGISTER_TYPE_UW));
3604 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3605 }
3606
3607 cmp->predicate = BRW_PREDICATE_NORMAL;
3608 cmp->flag_subreg = 1;
3609
3610 if (devinfo->gen >= 6) {
3611 emit_discard_jump();
3612 }
3613
3614 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3615 break;
3616 }
3617
3618 case nir_intrinsic_load_input: {
3619 /* load_input is only used for flat inputs */
3620 unsigned base = nir_intrinsic_base(instr);
3621 unsigned comp = nir_intrinsic_component(instr);
3622 unsigned num_components = instr->num_components;
3623 fs_reg orig_dest = dest;
3624 enum brw_reg_type type = dest.type;
3625
3626 /* Special case fields in the VUE header */
3627 if (base == VARYING_SLOT_LAYER)
3628 comp = 1;
3629 else if (base == VARYING_SLOT_VIEWPORT)
3630 comp = 2;
3631
3632 if (nir_dest_bit_size(instr->dest) == 64) {
3633 /* const_index is in 32-bit type size units that could not be aligned
3634 * with DF. We need to read the double vector as if it was a float
3635 * vector of twice the number of components to fetch the right data.
3636 */
3637 type = BRW_REGISTER_TYPE_F;
3638 num_components *= 2;
3639 dest = bld.vgrf(type, num_components);
3640 }
3641
3642 for (unsigned int i = 0; i < num_components; i++) {
3643 bld.MOV(offset(retype(dest, type), bld, i),
3644 retype(component(interp_reg(base, comp + i), 3), type));
3645 }
3646
3647 if (nir_dest_bit_size(instr->dest) == 64) {
3648 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3649 instr->num_components);
3650 }
3651 break;
3652 }
3653
3654 case nir_intrinsic_load_fs_input_interp_deltas: {
3655 assert(stage == MESA_SHADER_FRAGMENT);
3656 assert(nir_src_as_uint(instr->src[0]) == 0);
3657 fs_reg interp = interp_reg(nir_intrinsic_base(instr),
3658 nir_intrinsic_component(instr));
3659 dest.type = BRW_REGISTER_TYPE_F;
3660 bld.MOV(offset(dest, bld, 0), component(interp, 3));
3661 bld.MOV(offset(dest, bld, 1), component(interp, 1));
3662 bld.MOV(offset(dest, bld, 2), component(interp, 0));
3663 break;
3664 }
3665
3666 case nir_intrinsic_load_barycentric_pixel:
3667 case nir_intrinsic_load_barycentric_centroid:
3668 case nir_intrinsic_load_barycentric_sample: {
3669 /* Use the delta_xy values computed from the payload */
3670 const glsl_interp_mode interp_mode =
3671 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3672 enum brw_barycentric_mode bary =
3673 brw_barycentric_mode(interp_mode, instr->intrinsic);
3674
3675 shuffle_from_pln_layout(bld, dest, this->delta_xy[bary]);
3676 break;
3677 }
3678
3679 case nir_intrinsic_load_barycentric_at_sample: {
3680 const glsl_interp_mode interpolation =
3681 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3682
3683 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3684 if (nir_src_is_const(instr->src[0])) {
3685 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3686
3687 emit_pixel_interpolater_send(bld,
3688 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3689 tmp,
3690 fs_reg(), /* src */
3691 brw_imm_ud(msg_data),
3692 interpolation);
3693 } else {
3694 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3695 BRW_REGISTER_TYPE_UD);
3696
3697 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3698 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3699 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3700 bld.exec_all().group(1, 0)
3701 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3702 emit_pixel_interpolater_send(bld,
3703 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3704 tmp,
3705 fs_reg(), /* src */
3706 msg_data,
3707 interpolation);
3708 } else {
3709 /* Make a loop that sends a message to the pixel interpolater
3710 * for the sample number in each live channel. If there are
3711 * multiple channels with the same sample number then these
3712 * will be handled simultaneously with a single interation of
3713 * the loop.
3714 */
3715 bld.emit(BRW_OPCODE_DO);
3716
3717 /* Get the next live sample number into sample_id_reg */
3718 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3719
3720 /* Set the flag register so that we can perform the send
3721 * message on all channels that have the same sample number
3722 */
3723 bld.CMP(bld.null_reg_ud(),
3724 sample_src, sample_id,
3725 BRW_CONDITIONAL_EQ);
3726 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3727 bld.exec_all().group(1, 0)
3728 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3729 fs_inst *inst =
3730 emit_pixel_interpolater_send(bld,
3731 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3732 tmp,
3733 fs_reg(), /* src */
3734 component(msg_data, 0),
3735 interpolation);
3736 set_predicate(BRW_PREDICATE_NORMAL, inst);
3737
3738 /* Continue the loop if there are any live channels left */
3739 set_predicate_inv(BRW_PREDICATE_NORMAL,
3740 true, /* inverse */
3741 bld.emit(BRW_OPCODE_WHILE));
3742 }
3743 }
3744 shuffle_from_pln_layout(bld, dest, tmp);
3745 break;
3746 }
3747
3748 case nir_intrinsic_load_barycentric_at_offset: {
3749 const glsl_interp_mode interpolation =
3750 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3751
3752 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3753
3754 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3755 if (const_offset) {
3756 assert(nir_src_bit_size(instr->src[0]) == 32);
3757 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3758 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3759
3760 emit_pixel_interpolater_send(bld,
3761 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3762 tmp,
3763 fs_reg(), /* src */
3764 brw_imm_ud(off_x | (off_y << 4)),
3765 interpolation);
3766 } else {
3767 fs_reg src = vgrf(glsl_type::ivec2_type);
3768 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3769 BRW_REGISTER_TYPE_F);
3770 for (int i = 0; i < 2; i++) {
3771 fs_reg temp = vgrf(glsl_type::float_type);
3772 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3773 fs_reg itemp = vgrf(glsl_type::int_type);
3774 /* float to int */
3775 bld.MOV(itemp, temp);
3776
3777 /* Clamp the upper end of the range to +7/16.
3778 * ARB_gpu_shader5 requires that we support a maximum offset
3779 * of +0.5, which isn't representable in a S0.4 value -- if
3780 * we didn't clamp it, we'd end up with -8/16, which is the
3781 * opposite of what the shader author wanted.
3782 *
3783 * This is legal due to ARB_gpu_shader5's quantization
3784 * rules:
3785 *
3786 * "Not all values of <offset> may be supported; x and y
3787 * offsets may be rounded to fixed-point values with the
3788 * number of fraction bits given by the
3789 * implementation-dependent constant
3790 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3791 */
3792 set_condmod(BRW_CONDITIONAL_L,
3793 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3794 }
3795
3796 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3797 emit_pixel_interpolater_send(bld,
3798 opcode,
3799 tmp,
3800 src,
3801 brw_imm_ud(0u),
3802 interpolation);
3803 }
3804 shuffle_from_pln_layout(bld, dest, tmp);
3805 break;
3806 }
3807
3808 case nir_intrinsic_load_interpolated_input: {
3809 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3810 emit_fragcoord_interpolation(dest);
3811 break;
3812 }
3813
3814 assert(instr->src[0].ssa &&
3815 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3816 nir_intrinsic_instr *bary_intrinsic =
3817 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3818 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3819 enum glsl_interp_mode interp_mode =
3820 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3821 fs_reg dst_xy;
3822
3823 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3824 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3825 /* Use the result of the PI message. Because the load_barycentric
3826 * intrinsics return a regular vec2 and we need it in PLN layout, we
3827 * have to do a translation. Fortunately, copy-prop cleans this up
3828 * reliably.
3829 */
3830 dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3831 shuffle_to_pln_layout(bld, dst_xy, get_nir_src(instr->src[0]));
3832 } else {
3833 /* Use the delta_xy values computed from the payload */
3834 enum brw_barycentric_mode bary =
3835 brw_barycentric_mode(interp_mode, bary_intrin);
3836
3837 dst_xy = this->delta_xy[bary];
3838 }
3839
3840 for (unsigned int i = 0; i < instr->num_components; i++) {
3841 fs_reg interp =
3842 interp_reg(nir_intrinsic_base(instr),
3843 nir_intrinsic_component(instr) + i);
3844 interp.type = BRW_REGISTER_TYPE_F;
3845 dest.type = BRW_REGISTER_TYPE_F;
3846
3847 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3848 fs_reg tmp = vgrf(glsl_type::float_type);
3849 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3850 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3851 } else {
3852 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3853 }
3854 }
3855 break;
3856 }
3857
3858 default:
3859 nir_emit_intrinsic(bld, instr);
3860 break;
3861 }
3862 }
3863
3864 static int
3865 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3866 {
3867 if (nir_src_is_const(instr->src[src])) {
3868 int64_t add_val = nir_src_as_int(instr->src[src]);
3869 if (add_val == 1)
3870 return BRW_AOP_INC;
3871 else if (add_val == -1)
3872 return BRW_AOP_DEC;
3873 }
3874
3875 return BRW_AOP_ADD;
3876 }
3877
3878 void
3879 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3880 nir_intrinsic_instr *instr)
3881 {
3882 assert(stage == MESA_SHADER_COMPUTE);
3883 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3884
3885 fs_reg dest;
3886 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3887 dest = get_nir_dest(instr->dest);
3888
3889 switch (instr->intrinsic) {
3890 case nir_intrinsic_barrier:
3891 emit_barrier();
3892 cs_prog_data->uses_barrier = true;
3893 break;
3894
3895 case nir_intrinsic_load_subgroup_id:
3896 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3897 break;
3898
3899 case nir_intrinsic_load_local_invocation_id:
3900 case nir_intrinsic_load_work_group_id: {
3901 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3902 fs_reg val = nir_system_values[sv];
3903 assert(val.file != BAD_FILE);
3904 dest.type = val.type;
3905 for (unsigned i = 0; i < 3; i++)
3906 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3907 break;
3908 }
3909
3910 case nir_intrinsic_load_num_work_groups: {
3911 const unsigned surface =
3912 cs_prog_data->binding_table.work_groups_start;
3913
3914 cs_prog_data->uses_num_work_groups = true;
3915
3916 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3917 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3918 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3919 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3920
3921 /* Read the 3 GLuint components of gl_NumWorkGroups */
3922 for (unsigned i = 0; i < 3; i++) {
3923 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3924 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3925 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3926 }
3927 break;
3928 }
3929
3930 case nir_intrinsic_shared_atomic_add:
3931 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3932 break;
3933 case nir_intrinsic_shared_atomic_imin:
3934 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3935 break;
3936 case nir_intrinsic_shared_atomic_umin:
3937 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3938 break;
3939 case nir_intrinsic_shared_atomic_imax:
3940 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3941 break;
3942 case nir_intrinsic_shared_atomic_umax:
3943 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3944 break;
3945 case nir_intrinsic_shared_atomic_and:
3946 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3947 break;
3948 case nir_intrinsic_shared_atomic_or:
3949 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3950 break;
3951 case nir_intrinsic_shared_atomic_xor:
3952 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3953 break;
3954 case nir_intrinsic_shared_atomic_exchange:
3955 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3956 break;
3957 case nir_intrinsic_shared_atomic_comp_swap:
3958 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3959 break;
3960 case nir_intrinsic_shared_atomic_fmin:
3961 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3962 break;
3963 case nir_intrinsic_shared_atomic_fmax:
3964 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3965 break;
3966 case nir_intrinsic_shared_atomic_fcomp_swap:
3967 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3968 break;
3969
3970 case nir_intrinsic_load_shared: {
3971 assert(devinfo->gen >= 7);
3972 assert(stage == MESA_SHADER_COMPUTE);
3973
3974 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3975 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3976 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3977 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3978 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3979
3980 /* Make dest unsigned because that's what the temporary will be */
3981 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3982
3983 /* Read the vector */
3984 if (nir_intrinsic_align(instr) >= 4) {
3985 assert(nir_dest_bit_size(instr->dest) == 32);
3986 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3987 fs_inst *inst =
3988 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3989 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3990 inst->size_written = instr->num_components * dispatch_width * 4;
3991 } else {
3992 assert(nir_dest_bit_size(instr->dest) <= 32);
3993 assert(nir_dest_num_components(instr->dest) == 1);
3994 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3995
3996 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3997 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3998 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3999 bld.MOV(dest, read_result);
4000 }
4001 break;
4002 }
4003
4004 case nir_intrinsic_store_shared: {
4005 assert(devinfo->gen >= 7);
4006 assert(stage == MESA_SHADER_COMPUTE);
4007
4008 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4009 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4010 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4011 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4012 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4013
4014 fs_reg data = get_nir_src(instr->src[0]);
4015 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4016
4017 assert(nir_intrinsic_write_mask(instr) ==
4018 (1u << instr->num_components) - 1);
4019 if (nir_intrinsic_align(instr) >= 4) {
4020 assert(nir_src_bit_size(instr->src[0]) == 32);
4021 assert(nir_src_num_components(instr->src[0]) <= 4);
4022 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4023 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4024 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4025 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4026 } else {
4027 assert(nir_src_bit_size(instr->src[0]) <= 32);
4028 assert(nir_src_num_components(instr->src[0]) == 1);
4029 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4030
4031 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4032 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4033
4034 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4035 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4036 }
4037 break;
4038 }
4039
4040 default:
4041 nir_emit_intrinsic(bld, instr);
4042 break;
4043 }
4044 }
4045
4046 static fs_reg
4047 brw_nir_reduction_op_identity(const fs_builder &bld,
4048 nir_op op, brw_reg_type type)
4049 {
4050 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
4051 switch (type_sz(type)) {
4052 case 2:
4053 assert(type != BRW_REGISTER_TYPE_HF);
4054 return retype(brw_imm_uw(value.u16), type);
4055 case 4:
4056 return retype(brw_imm_ud(value.u32), type);
4057 case 8:
4058 if (type == BRW_REGISTER_TYPE_DF)
4059 return setup_imm_df(bld, value.f64);
4060 else
4061 return retype(brw_imm_u64(value.u64), type);
4062 default:
4063 unreachable("Invalid type size");
4064 }
4065 }
4066
4067 static opcode
4068 brw_op_for_nir_reduction_op(nir_op op)
4069 {
4070 switch (op) {
4071 case nir_op_iadd: return BRW_OPCODE_ADD;
4072 case nir_op_fadd: return BRW_OPCODE_ADD;
4073 case nir_op_imul: return BRW_OPCODE_MUL;
4074 case nir_op_fmul: return BRW_OPCODE_MUL;
4075 case nir_op_imin: return BRW_OPCODE_SEL;
4076 case nir_op_umin: return BRW_OPCODE_SEL;
4077 case nir_op_fmin: return BRW_OPCODE_SEL;
4078 case nir_op_imax: return BRW_OPCODE_SEL;
4079 case nir_op_umax: return BRW_OPCODE_SEL;
4080 case nir_op_fmax: return BRW_OPCODE_SEL;
4081 case nir_op_iand: return BRW_OPCODE_AND;
4082 case nir_op_ior: return BRW_OPCODE_OR;
4083 case nir_op_ixor: return BRW_OPCODE_XOR;
4084 default:
4085 unreachable("Invalid reduction operation");
4086 }
4087 }
4088
4089 static brw_conditional_mod
4090 brw_cond_mod_for_nir_reduction_op(nir_op op)
4091 {
4092 switch (op) {
4093 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
4094 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
4095 case nir_op_imul: return BRW_CONDITIONAL_NONE;
4096 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
4097 case nir_op_imin: return BRW_CONDITIONAL_L;
4098 case nir_op_umin: return BRW_CONDITIONAL_L;
4099 case nir_op_fmin: return BRW_CONDITIONAL_L;
4100 case nir_op_imax: return BRW_CONDITIONAL_GE;
4101 case nir_op_umax: return BRW_CONDITIONAL_GE;
4102 case nir_op_fmax: return BRW_CONDITIONAL_GE;
4103 case nir_op_iand: return BRW_CONDITIONAL_NONE;
4104 case nir_op_ior: return BRW_CONDITIONAL_NONE;
4105 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
4106 default:
4107 unreachable("Invalid reduction operation");
4108 }
4109 }
4110
4111 fs_reg
4112 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
4113 nir_intrinsic_instr *instr)
4114 {
4115 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
4116
4117 if (stage_prog_data->binding_table.image_start > 0) {
4118 if (image.file == BRW_IMMEDIATE_VALUE) {
4119 image.d += stage_prog_data->binding_table.image_start;
4120 } else {
4121 bld.ADD(image, image,
4122 brw_imm_d(stage_prog_data->binding_table.image_start));
4123 }
4124 }
4125
4126 return bld.emit_uniformize(image);
4127 }
4128
4129 fs_reg
4130 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
4131 nir_intrinsic_instr *instr)
4132 {
4133 /* SSBO stores are weird in that their index is in src[1] */
4134 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
4135
4136 fs_reg surf_index;
4137 if (nir_src_is_const(instr->src[src])) {
4138 unsigned index = stage_prog_data->binding_table.ssbo_start +
4139 nir_src_as_uint(instr->src[src]);
4140 surf_index = brw_imm_ud(index);
4141 } else {
4142 surf_index = vgrf(glsl_type::uint_type);
4143 bld.ADD(surf_index, get_nir_src(instr->src[src]),
4144 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4145 }
4146
4147 return bld.emit_uniformize(surf_index);
4148 }
4149
4150 static unsigned
4151 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
4152 {
4153 switch (nir_intrinsic_image_dim(instr)) {
4154 case GLSL_SAMPLER_DIM_1D:
4155 return 1 + nir_intrinsic_image_array(instr);
4156 case GLSL_SAMPLER_DIM_2D:
4157 case GLSL_SAMPLER_DIM_RECT:
4158 return 2 + nir_intrinsic_image_array(instr);
4159 case GLSL_SAMPLER_DIM_3D:
4160 case GLSL_SAMPLER_DIM_CUBE:
4161 return 3;
4162 case GLSL_SAMPLER_DIM_BUF:
4163 return 1;
4164 case GLSL_SAMPLER_DIM_MS:
4165 return 2 + nir_intrinsic_image_array(instr);
4166 default:
4167 unreachable("Invalid image dimension");
4168 }
4169 }
4170
4171 void
4172 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
4173 {
4174 fs_reg dest;
4175 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4176 dest = get_nir_dest(instr->dest);
4177
4178 switch (instr->intrinsic) {
4179 case nir_intrinsic_image_load:
4180 case nir_intrinsic_image_store:
4181 case nir_intrinsic_image_atomic_add:
4182 case nir_intrinsic_image_atomic_min:
4183 case nir_intrinsic_image_atomic_max:
4184 case nir_intrinsic_image_atomic_and:
4185 case nir_intrinsic_image_atomic_or:
4186 case nir_intrinsic_image_atomic_xor:
4187 case nir_intrinsic_image_atomic_exchange:
4188 case nir_intrinsic_image_atomic_comp_swap:
4189 case nir_intrinsic_bindless_image_load:
4190 case nir_intrinsic_bindless_image_store:
4191 case nir_intrinsic_bindless_image_atomic_add:
4192 case nir_intrinsic_bindless_image_atomic_min:
4193 case nir_intrinsic_bindless_image_atomic_max:
4194 case nir_intrinsic_bindless_image_atomic_and:
4195 case nir_intrinsic_bindless_image_atomic_or:
4196 case nir_intrinsic_bindless_image_atomic_xor:
4197 case nir_intrinsic_bindless_image_atomic_exchange:
4198 case nir_intrinsic_bindless_image_atomic_comp_swap: {
4199 if (stage == MESA_SHADER_FRAGMENT &&
4200 instr->intrinsic != nir_intrinsic_image_load)
4201 brw_wm_prog_data(prog_data)->has_side_effects = true;
4202
4203 /* Get some metadata from the image intrinsic. */
4204 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
4205 const GLenum format = nir_intrinsic_format(instr);
4206
4207 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4208
4209 switch (instr->intrinsic) {
4210 case nir_intrinsic_image_load:
4211 case nir_intrinsic_image_store:
4212 case nir_intrinsic_image_atomic_add:
4213 case nir_intrinsic_image_atomic_min:
4214 case nir_intrinsic_image_atomic_max:
4215 case nir_intrinsic_image_atomic_and:
4216 case nir_intrinsic_image_atomic_or:
4217 case nir_intrinsic_image_atomic_xor:
4218 case nir_intrinsic_image_atomic_exchange:
4219 case nir_intrinsic_image_atomic_comp_swap:
4220 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4221 get_nir_image_intrinsic_image(bld, instr);
4222 break;
4223
4224 default:
4225 /* Bindless */
4226 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4227 bld.emit_uniformize(get_nir_src(instr->src[0]));
4228 break;
4229 }
4230
4231 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4232 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4233 brw_imm_ud(image_intrinsic_coord_components(instr));
4234
4235 /* Emit an image load, store or atomic op. */
4236 if (instr->intrinsic == nir_intrinsic_image_load ||
4237 instr->intrinsic == nir_intrinsic_bindless_image_load) {
4238 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4239 fs_inst *inst =
4240 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4241 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4242 inst->size_written = instr->num_components * dispatch_width * 4;
4243 } else if (instr->intrinsic == nir_intrinsic_image_store ||
4244 instr->intrinsic == nir_intrinsic_bindless_image_store) {
4245 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4246 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4247 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4248 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4249 } else {
4250 int op;
4251 unsigned num_srcs = info->num_srcs;
4252
4253 switch (instr->intrinsic) {
4254 case nir_intrinsic_image_atomic_add:
4255 case nir_intrinsic_bindless_image_atomic_add:
4256 assert(num_srcs == 4);
4257
4258 op = get_op_for_atomic_add(instr, 3);
4259
4260 if (op != BRW_AOP_ADD)
4261 num_srcs = 3;
4262 break;
4263 case nir_intrinsic_image_atomic_min:
4264 case nir_intrinsic_bindless_image_atomic_min:
4265 assert(format == GL_R32UI || format == GL_R32I);
4266 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
4267 break;
4268 case nir_intrinsic_image_atomic_max:
4269 case nir_intrinsic_bindless_image_atomic_max:
4270 assert(format == GL_R32UI || format == GL_R32I);
4271 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
4272 break;
4273 case nir_intrinsic_image_atomic_and:
4274 case nir_intrinsic_bindless_image_atomic_and:
4275 op = BRW_AOP_AND;
4276 break;
4277 case nir_intrinsic_image_atomic_or:
4278 case nir_intrinsic_bindless_image_atomic_or:
4279 op = BRW_AOP_OR;
4280 break;
4281 case nir_intrinsic_image_atomic_xor:
4282 case nir_intrinsic_bindless_image_atomic_xor:
4283 op = BRW_AOP_XOR;
4284 break;
4285 case nir_intrinsic_image_atomic_exchange:
4286 case nir_intrinsic_bindless_image_atomic_exchange:
4287 op = BRW_AOP_MOV;
4288 break;
4289 case nir_intrinsic_image_atomic_comp_swap:
4290 case nir_intrinsic_bindless_image_atomic_comp_swap:
4291 op = BRW_AOP_CMPWR;
4292 break;
4293 default:
4294 unreachable("Not reachable.");
4295 }
4296
4297 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4298
4299 fs_reg data;
4300 if (num_srcs >= 4)
4301 data = get_nir_src(instr->src[3]);
4302 if (num_srcs >= 5) {
4303 fs_reg tmp = bld.vgrf(data.type, 2);
4304 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4305 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4306 data = tmp;
4307 }
4308 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4309
4310 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4311 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4312 }
4313 break;
4314 }
4315
4316 case nir_intrinsic_image_size:
4317 case nir_intrinsic_bindless_image_size: {
4318 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4319 * into will handle the binding table index for us in the geneerator.
4320 * Incidentally, this means that we can handle bindless with exactly the
4321 * same code.
4322 */
4323 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4324 BRW_REGISTER_TYPE_UD);
4325 image = bld.emit_uniformize(image);
4326
4327 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4328 if (instr->intrinsic == nir_intrinsic_image_size)
4329 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4330 else
4331 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4332 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4333 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4334 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4335
4336 /* Since the image size is always uniform, we can just emit a SIMD8
4337 * query instruction and splat the result out.
4338 */
4339 const fs_builder ubld = bld.exec_all().group(8, 0);
4340
4341 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4342 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4343 tmp, srcs, ARRAY_SIZE(srcs));
4344 inst->size_written = 4 * REG_SIZE;
4345
4346 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4347 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
4348 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4349 offset(retype(dest, tmp.type), bld, c),
4350 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
4351 } else {
4352 bld.MOV(offset(retype(dest, tmp.type), bld, c),
4353 component(offset(tmp, ubld, c), 0));
4354 }
4355 }
4356 break;
4357 }
4358
4359 case nir_intrinsic_image_load_raw_intel: {
4360 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4361 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4362 get_nir_image_intrinsic_image(bld, instr);
4363 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4364 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4365 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4366
4367 fs_inst *inst =
4368 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4369 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4370 inst->size_written = instr->num_components * dispatch_width * 4;
4371 break;
4372 }
4373
4374 case nir_intrinsic_image_store_raw_intel: {
4375 if (stage == MESA_SHADER_FRAGMENT)
4376 brw_wm_prog_data(prog_data)->has_side_effects = true;
4377
4378 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4379 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4380 get_nir_image_intrinsic_image(bld, instr);
4381 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4382 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4383 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4384 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4385
4386 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4387 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4388 break;
4389 }
4390
4391 case nir_intrinsic_group_memory_barrier:
4392 case nir_intrinsic_memory_barrier_shared:
4393 case nir_intrinsic_memory_barrier_atomic_counter:
4394 case nir_intrinsic_memory_barrier_buffer:
4395 case nir_intrinsic_memory_barrier_image:
4396 case nir_intrinsic_memory_barrier: {
4397 const fs_builder ubld = bld.group(8, 0);
4398 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4399 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4400 brw_vec8_grf(0, 0), brw_imm_ud(0))
4401 ->size_written = 2 * REG_SIZE;
4402 break;
4403 }
4404
4405 case nir_intrinsic_shader_clock: {
4406 /* We cannot do anything if there is an event, so ignore it for now */
4407 const fs_reg shader_clock = get_timestamp(bld);
4408 const fs_reg srcs[] = { component(shader_clock, 0),
4409 component(shader_clock, 1) };
4410 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4411 break;
4412 }
4413
4414 case nir_intrinsic_image_samples:
4415 /* The driver does not support multi-sampled images. */
4416 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4417 break;
4418
4419 case nir_intrinsic_load_uniform: {
4420 /* Offsets are in bytes but they should always aligned to
4421 * the type size
4422 */
4423 assert(instr->const_index[0] % 4 == 0 ||
4424 instr->const_index[0] % type_sz(dest.type) == 0);
4425
4426 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4427
4428 if (nir_src_is_const(instr->src[0])) {
4429 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4430 assert(load_offset % type_sz(dest.type) == 0);
4431 /* For 16-bit types we add the module of the const_index[0]
4432 * offset to access to not 32-bit aligned element
4433 */
4434 src.offset = load_offset + instr->const_index[0] % 4;
4435
4436 for (unsigned j = 0; j < instr->num_components; j++) {
4437 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4438 }
4439 } else {
4440 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4441 BRW_REGISTER_TYPE_UD);
4442
4443 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4444 * go past the end of the uniform. In order to keep the n'th
4445 * component from running past, we subtract off the size of all but
4446 * one component of the vector.
4447 */
4448 assert(instr->const_index[1] >=
4449 instr->num_components * (int) type_sz(dest.type));
4450 unsigned read_size = instr->const_index[1] -
4451 (instr->num_components - 1) * type_sz(dest.type);
4452
4453 bool supports_64bit_indirects =
4454 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4455
4456 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4457 for (unsigned j = 0; j < instr->num_components; j++) {
4458 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4459 offset(dest, bld, j), offset(src, bld, j),
4460 indirect, brw_imm_ud(read_size));
4461 }
4462 } else {
4463 const unsigned num_mov_indirects =
4464 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4465 /* We read a little bit less per MOV INDIRECT, as they are now
4466 * 32-bits ones instead of 64-bit. Fix read_size then.
4467 */
4468 const unsigned read_size_32bit = read_size -
4469 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4470 for (unsigned j = 0; j < instr->num_components; j++) {
4471 for (unsigned i = 0; i < num_mov_indirects; i++) {
4472 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4473 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4474 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4475 indirect, brw_imm_ud(read_size_32bit));
4476 }
4477 }
4478 }
4479 }
4480 break;
4481 }
4482
4483 case nir_intrinsic_load_ubo: {
4484 fs_reg surf_index;
4485 if (nir_src_is_const(instr->src[0])) {
4486 const unsigned index = stage_prog_data->binding_table.ubo_start +
4487 nir_src_as_uint(instr->src[0]);
4488 surf_index = brw_imm_ud(index);
4489 } else {
4490 /* The block index is not a constant. Evaluate the index expression
4491 * per-channel and add the base UBO index; we have to select a value
4492 * from any live channel.
4493 */
4494 surf_index = vgrf(glsl_type::uint_type);
4495 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4496 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4497 surf_index = bld.emit_uniformize(surf_index);
4498 }
4499
4500 if (!nir_src_is_const(instr->src[1])) {
4501 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4502 BRW_REGISTER_TYPE_UD);
4503
4504 for (int i = 0; i < instr->num_components; i++)
4505 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4506 base_offset, i * type_sz(dest.type));
4507 } else {
4508 /* Even if we are loading doubles, a pull constant load will load
4509 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4510 * need to load a full dvec4 we will have to emit 2 loads. This is
4511 * similar to demote_pull_constants(), except that in that case we
4512 * see individual accesses to each component of the vector and then
4513 * we let CSE deal with duplicate loads. Here we see a vector access
4514 * and we have to split it if necessary.
4515 */
4516 const unsigned type_size = type_sz(dest.type);
4517 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4518
4519 /* See if we've selected this as a push constant candidate */
4520 if (nir_src_is_const(instr->src[0])) {
4521 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4522 const unsigned offset_256b = load_offset / 32;
4523
4524 fs_reg push_reg;
4525 for (int i = 0; i < 4; i++) {
4526 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4527 if (range->block == ubo_block &&
4528 offset_256b >= range->start &&
4529 offset_256b < range->start + range->length) {
4530
4531 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4532 push_reg.offset = load_offset - 32 * range->start;
4533 break;
4534 }
4535 }
4536
4537 if (push_reg.file != BAD_FILE) {
4538 for (unsigned i = 0; i < instr->num_components; i++) {
4539 bld.MOV(offset(dest, bld, i),
4540 byte_offset(push_reg, i * type_size));
4541 }
4542 break;
4543 }
4544 }
4545
4546 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4547 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4548 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4549
4550 for (unsigned c = 0; c < instr->num_components;) {
4551 const unsigned base = load_offset + c * type_size;
4552 /* Number of usable components in the next block-aligned load. */
4553 const unsigned count = MIN2(instr->num_components - c,
4554 (block_sz - base % block_sz) / type_size);
4555
4556 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4557 packed_consts, surf_index,
4558 brw_imm_ud(base & ~(block_sz - 1)));
4559
4560 const fs_reg consts =
4561 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4562 dest.type);
4563
4564 for (unsigned d = 0; d < count; d++)
4565 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4566
4567 c += count;
4568 }
4569 }
4570 break;
4571 }
4572
4573 case nir_intrinsic_load_global: {
4574 assert(devinfo->gen >= 8);
4575
4576 if (nir_intrinsic_align(instr) >= 4) {
4577 assert(nir_dest_bit_size(instr->dest) == 32);
4578 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4579 dest,
4580 get_nir_src(instr->src[0]), /* Address */
4581 fs_reg(), /* No source data */
4582 brw_imm_ud(instr->num_components));
4583 inst->size_written = instr->num_components *
4584 inst->dst.component_size(inst->exec_size);
4585 } else {
4586 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4587 assert(bit_size <= 32);
4588 assert(nir_dest_num_components(instr->dest) == 1);
4589 brw_reg_type data_type =
4590 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4591 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4592 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4593 tmp,
4594 get_nir_src(instr->src[0]), /* Address */
4595 fs_reg(), /* No source data */
4596 brw_imm_ud(bit_size));
4597 bld.MOV(retype(dest, data_type), tmp);
4598 }
4599 break;
4600 }
4601
4602 case nir_intrinsic_store_global:
4603 assert(devinfo->gen >= 8);
4604
4605 if (stage == MESA_SHADER_FRAGMENT)
4606 brw_wm_prog_data(prog_data)->has_side_effects = true;
4607
4608 if (nir_intrinsic_align(instr) >= 4) {
4609 assert(nir_src_bit_size(instr->src[0]) == 32);
4610 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4611 fs_reg(),
4612 get_nir_src(instr->src[1]), /* Address */
4613 get_nir_src(instr->src[0]), /* Data */
4614 brw_imm_ud(instr->num_components));
4615 } else {
4616 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4617 assert(bit_size <= 32);
4618 assert(nir_src_num_components(instr->src[0]) == 1);
4619 brw_reg_type data_type =
4620 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4621 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4622 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4623 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4624 fs_reg(),
4625 get_nir_src(instr->src[1]), /* Address */
4626 tmp, /* Data */
4627 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4628 }
4629 break;
4630
4631 case nir_intrinsic_global_atomic_add:
4632 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4633 break;
4634 case nir_intrinsic_global_atomic_imin:
4635 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4636 break;
4637 case nir_intrinsic_global_atomic_umin:
4638 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4639 break;
4640 case nir_intrinsic_global_atomic_imax:
4641 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4642 break;
4643 case nir_intrinsic_global_atomic_umax:
4644 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4645 break;
4646 case nir_intrinsic_global_atomic_and:
4647 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4648 break;
4649 case nir_intrinsic_global_atomic_or:
4650 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4651 break;
4652 case nir_intrinsic_global_atomic_xor:
4653 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4654 break;
4655 case nir_intrinsic_global_atomic_exchange:
4656 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4657 break;
4658 case nir_intrinsic_global_atomic_comp_swap:
4659 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4660 break;
4661 case nir_intrinsic_global_atomic_fmin:
4662 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4663 break;
4664 case nir_intrinsic_global_atomic_fmax:
4665 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4666 break;
4667 case nir_intrinsic_global_atomic_fcomp_swap:
4668 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4669 break;
4670
4671 case nir_intrinsic_load_ssbo: {
4672 assert(devinfo->gen >= 7);
4673
4674 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4675 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4676 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4677 get_nir_ssbo_intrinsic_index(bld, instr);
4678 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4679 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4680
4681 /* Make dest unsigned because that's what the temporary will be */
4682 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4683
4684 /* Read the vector */
4685 if (nir_intrinsic_align(instr) >= 4) {
4686 assert(nir_dest_bit_size(instr->dest) == 32);
4687 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4688 fs_inst *inst =
4689 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4690 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4691 inst->size_written = instr->num_components * dispatch_width * 4;
4692 } else {
4693 assert(nir_dest_bit_size(instr->dest) <= 32);
4694 assert(nir_dest_num_components(instr->dest) == 1);
4695 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4696
4697 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4698 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4699 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4700 bld.MOV(dest, read_result);
4701 }
4702 break;
4703 }
4704
4705 case nir_intrinsic_store_ssbo: {
4706 assert(devinfo->gen >= 7);
4707
4708 if (stage == MESA_SHADER_FRAGMENT)
4709 brw_wm_prog_data(prog_data)->has_side_effects = true;
4710
4711 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4712 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4713 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4714 get_nir_ssbo_intrinsic_index(bld, instr);
4715 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4716 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4717
4718 fs_reg data = get_nir_src(instr->src[0]);
4719 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4720
4721 assert(nir_intrinsic_write_mask(instr) ==
4722 (1u << instr->num_components) - 1);
4723 if (nir_intrinsic_align(instr) >= 4) {
4724 assert(nir_src_bit_size(instr->src[0]) == 32);
4725 assert(nir_src_num_components(instr->src[0]) <= 4);
4726 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4727 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4728 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4729 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4730 } else {
4731 assert(nir_src_bit_size(instr->src[0]) <= 32);
4732 assert(nir_src_num_components(instr->src[0]) == 1);
4733 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4734
4735 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4736 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4737
4738 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4739 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4740 }
4741 break;
4742 }
4743
4744 case nir_intrinsic_store_output: {
4745 fs_reg src = get_nir_src(instr->src[0]);
4746
4747 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4748 unsigned num_components = instr->num_components;
4749 unsigned first_component = nir_intrinsic_component(instr);
4750 if (nir_src_bit_size(instr->src[0]) == 64) {
4751 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4752 num_components *= 2;
4753 }
4754
4755 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4756 4 * store_offset), src.type);
4757 for (unsigned j = 0; j < num_components; j++) {
4758 bld.MOV(offset(new_dest, bld, j + first_component),
4759 offset(src, bld, j));
4760 }
4761 break;
4762 }
4763
4764 case nir_intrinsic_ssbo_atomic_add:
4765 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4766 break;
4767 case nir_intrinsic_ssbo_atomic_imin:
4768 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4769 break;
4770 case nir_intrinsic_ssbo_atomic_umin:
4771 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4772 break;
4773 case nir_intrinsic_ssbo_atomic_imax:
4774 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4775 break;
4776 case nir_intrinsic_ssbo_atomic_umax:
4777 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4778 break;
4779 case nir_intrinsic_ssbo_atomic_and:
4780 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4781 break;
4782 case nir_intrinsic_ssbo_atomic_or:
4783 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4784 break;
4785 case nir_intrinsic_ssbo_atomic_xor:
4786 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4787 break;
4788 case nir_intrinsic_ssbo_atomic_exchange:
4789 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4790 break;
4791 case nir_intrinsic_ssbo_atomic_comp_swap:
4792 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4793 break;
4794 case nir_intrinsic_ssbo_atomic_fmin:
4795 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4796 break;
4797 case nir_intrinsic_ssbo_atomic_fmax:
4798 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4799 break;
4800 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4801 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4802 break;
4803
4804 case nir_intrinsic_get_buffer_size: {
4805 assert(nir_src_num_components(instr->src[0]) == 1);
4806 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4807 nir_src_as_uint(instr->src[0]) : 0;
4808
4809 /* A resinfo's sampler message is used to get the buffer size. The
4810 * SIMD8's writeback message consists of four registers and SIMD16's
4811 * writeback message consists of 8 destination registers (two per each
4812 * component). Because we are only interested on the first channel of
4813 * the first returned component, where resinfo returns the buffer size
4814 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4815 * the dispatch width.
4816 */
4817 const fs_builder ubld = bld.exec_all().group(8, 0);
4818 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4819 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4820
4821 /* Set LOD = 0 */
4822 ubld.MOV(src_payload, brw_imm_d(0));
4823
4824 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4825 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4826 src_payload, brw_imm_ud(index));
4827 inst->header_size = 0;
4828 inst->mlen = 1;
4829 inst->size_written = 4 * REG_SIZE;
4830
4831 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4832 *
4833 * "Out-of-bounds checking is always performed at a DWord granularity. If
4834 * any part of the DWord is out-of-bounds then the whole DWord is
4835 * considered out-of-bounds."
4836 *
4837 * This implies that types with size smaller than 4-bytes need to be
4838 * padded if they don't complete the last dword of the buffer. But as we
4839 * need to maintain the original size we need to reverse the padding
4840 * calculation to return the correct size to know the number of elements
4841 * of an unsized array. As we stored in the last two bits of the surface
4842 * size the needed padding for the buffer, we calculate here the
4843 * original buffer_size reversing the surface_size calculation:
4844 *
4845 * surface_size = isl_align(buffer_size, 4) +
4846 * (isl_align(buffer_size) - buffer_size)
4847 *
4848 * buffer_size = surface_size & ~3 - surface_size & 3
4849 */
4850
4851 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4852 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4853 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4854
4855 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4856 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4857 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4858
4859 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4860 break;
4861 }
4862
4863 case nir_intrinsic_load_subgroup_invocation:
4864 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4865 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4866 break;
4867
4868 case nir_intrinsic_load_subgroup_eq_mask:
4869 case nir_intrinsic_load_subgroup_ge_mask:
4870 case nir_intrinsic_load_subgroup_gt_mask:
4871 case nir_intrinsic_load_subgroup_le_mask:
4872 case nir_intrinsic_load_subgroup_lt_mask:
4873 unreachable("not reached");
4874
4875 case nir_intrinsic_vote_any: {
4876 const fs_builder ubld = bld.exec_all().group(1, 0);
4877
4878 /* The any/all predicates do not consider channel enables. To prevent
4879 * dead channels from affecting the result, we initialize the flag with
4880 * with the identity value for the logical operation.
4881 */
4882 if (dispatch_width == 32) {
4883 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4884 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4885 brw_imm_ud(0));
4886 } else {
4887 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4888 }
4889 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4890
4891 /* For some reason, the any/all predicates don't work properly with
4892 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4893 * doesn't read the correct subset of the flag register and you end up
4894 * getting garbage in the second half. Work around this by using a pair
4895 * of 1-wide MOVs and scattering the result.
4896 */
4897 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4898 ubld.MOV(res1, brw_imm_d(0));
4899 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4900 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4901 BRW_PREDICATE_ALIGN1_ANY32H,
4902 ubld.MOV(res1, brw_imm_d(-1)));
4903
4904 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4905 break;
4906 }
4907 case nir_intrinsic_vote_all: {
4908 const fs_builder ubld = bld.exec_all().group(1, 0);
4909
4910 /* The any/all predicates do not consider channel enables. To prevent
4911 * dead channels from affecting the result, we initialize the flag with
4912 * with the identity value for the logical operation.
4913 */
4914 if (dispatch_width == 32) {
4915 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4916 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4917 brw_imm_ud(0xffffffff));
4918 } else {
4919 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4920 }
4921 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4922
4923 /* For some reason, the any/all predicates don't work properly with
4924 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4925 * doesn't read the correct subset of the flag register and you end up
4926 * getting garbage in the second half. Work around this by using a pair
4927 * of 1-wide MOVs and scattering the result.
4928 */
4929 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4930 ubld.MOV(res1, brw_imm_d(0));
4931 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4932 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4933 BRW_PREDICATE_ALIGN1_ALL32H,
4934 ubld.MOV(res1, brw_imm_d(-1)));
4935
4936 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4937 break;
4938 }
4939 case nir_intrinsic_vote_feq:
4940 case nir_intrinsic_vote_ieq: {
4941 fs_reg value = get_nir_src(instr->src[0]);
4942 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4943 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4944 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
4945 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4946 }
4947
4948 fs_reg uniformized = bld.emit_uniformize(value);
4949 const fs_builder ubld = bld.exec_all().group(1, 0);
4950
4951 /* The any/all predicates do not consider channel enables. To prevent
4952 * dead channels from affecting the result, we initialize the flag with
4953 * with the identity value for the logical operation.
4954 */
4955 if (dispatch_width == 32) {
4956 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4957 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4958 brw_imm_ud(0xffffffff));
4959 } else {
4960 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4961 }
4962 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4963
4964 /* For some reason, the any/all predicates don't work properly with
4965 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4966 * doesn't read the correct subset of the flag register and you end up
4967 * getting garbage in the second half. Work around this by using a pair
4968 * of 1-wide MOVs and scattering the result.
4969 */
4970 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4971 ubld.MOV(res1, brw_imm_d(0));
4972 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4973 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4974 BRW_PREDICATE_ALIGN1_ALL32H,
4975 ubld.MOV(res1, brw_imm_d(-1)));
4976
4977 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4978 break;
4979 }
4980
4981 case nir_intrinsic_ballot: {
4982 const fs_reg value = retype(get_nir_src(instr->src[0]),
4983 BRW_REGISTER_TYPE_UD);
4984 struct brw_reg flag = brw_flag_reg(0, 0);
4985 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4986 * as f0.0. This is a problem for fragment programs as we currently use
4987 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4988 * programs yet so this isn't a problem. When we do, something will
4989 * have to change.
4990 */
4991 if (dispatch_width == 32)
4992 flag.type = BRW_REGISTER_TYPE_UD;
4993
4994 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4995 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4996
4997 if (instr->dest.ssa.bit_size > 32) {
4998 dest.type = BRW_REGISTER_TYPE_UQ;
4999 } else {
5000 dest.type = BRW_REGISTER_TYPE_UD;
5001 }
5002 bld.MOV(dest, flag);
5003 break;
5004 }
5005
5006 case nir_intrinsic_read_invocation: {
5007 const fs_reg value = get_nir_src(instr->src[0]);
5008 const fs_reg invocation = get_nir_src(instr->src[1]);
5009 fs_reg tmp = bld.vgrf(value.type);
5010
5011 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
5012 bld.emit_uniformize(invocation));
5013
5014 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
5015 break;
5016 }
5017
5018 case nir_intrinsic_read_first_invocation: {
5019 const fs_reg value = get_nir_src(instr->src[0]);
5020 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
5021 break;
5022 }
5023
5024 case nir_intrinsic_shuffle: {
5025 const fs_reg value = get_nir_src(instr->src[0]);
5026 const fs_reg index = get_nir_src(instr->src[1]);
5027
5028 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
5029 break;
5030 }
5031
5032 case nir_intrinsic_first_invocation: {
5033 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
5034 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
5035 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
5036 fs_reg(component(tmp, 0)));
5037 break;
5038 }
5039
5040 case nir_intrinsic_quad_broadcast: {
5041 const fs_reg value = get_nir_src(instr->src[0]);
5042 const unsigned index = nir_src_as_uint(instr->src[1]);
5043
5044 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
5045 value, brw_imm_ud(index), brw_imm_ud(4));
5046 break;
5047 }
5048
5049 case nir_intrinsic_quad_swap_horizontal: {
5050 const fs_reg value = get_nir_src(instr->src[0]);
5051 const fs_reg tmp = bld.vgrf(value.type);
5052 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
5053
5054 const fs_reg src_left = horiz_stride(value, 2);
5055 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
5056 const fs_reg tmp_left = horiz_stride(tmp, 2);
5057 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
5058
5059 ubld.MOV(tmp_left, src_right);
5060 ubld.MOV(tmp_right, src_left);
5061
5062 bld.MOV(retype(dest, value.type), tmp);
5063 break;
5064 }
5065
5066 case nir_intrinsic_quad_swap_vertical: {
5067 const fs_reg value = get_nir_src(instr->src[0]);
5068 if (nir_src_bit_size(instr->src[0]) == 32) {
5069 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5070 const fs_reg tmp = bld.vgrf(value.type);
5071 const fs_builder ubld = bld.exec_all();
5072 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5073 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
5074 bld.MOV(retype(dest, value.type), tmp);
5075 } else {
5076 /* For larger data types, we have to either emit dispatch_width many
5077 * MOVs or else fall back to doing indirects.
5078 */
5079 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5080 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5081 brw_imm_w(0x2));
5082 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5083 }
5084 break;
5085 }
5086
5087 case nir_intrinsic_quad_swap_diagonal: {
5088 const fs_reg value = get_nir_src(instr->src[0]);
5089 if (nir_src_bit_size(instr->src[0]) == 32) {
5090 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5091 const fs_reg tmp = bld.vgrf(value.type);
5092 const fs_builder ubld = bld.exec_all();
5093 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5094 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
5095 bld.MOV(retype(dest, value.type), tmp);
5096 } else {
5097 /* For larger data types, we have to either emit dispatch_width many
5098 * MOVs or else fall back to doing indirects.
5099 */
5100 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5101 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5102 brw_imm_w(0x3));
5103 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5104 }
5105 break;
5106 }
5107
5108 case nir_intrinsic_reduce: {
5109 fs_reg src = get_nir_src(instr->src[0]);
5110 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5111 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
5112 if (cluster_size == 0 || cluster_size > dispatch_width)
5113 cluster_size = dispatch_width;
5114
5115 /* Figure out the source type */
5116 src.type = brw_type_for_nir_type(devinfo,
5117 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5118 nir_src_bit_size(instr->src[0])));
5119
5120 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5121 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5122 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5123
5124 /* Set up a register for all of our scratching around and initialize it
5125 * to reduction operation's identity value.
5126 */
5127 fs_reg scan = bld.vgrf(src.type);
5128 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5129
5130 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
5131
5132 dest.type = src.type;
5133 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
5134 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
5135 * the distance between clusters is at least 2 GRFs. In this case,
5136 * we don't need the weird striding of the CLUSTER_BROADCAST
5137 * instruction and can just do regular MOVs.
5138 */
5139 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
5140 const unsigned groups =
5141 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
5142 const unsigned group_size = dispatch_width / groups;
5143 for (unsigned i = 0; i < groups; i++) {
5144 const unsigned cluster = (i * group_size) / cluster_size;
5145 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
5146 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
5147 component(scan, comp));
5148 }
5149 } else {
5150 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
5151 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
5152 }
5153 break;
5154 }
5155
5156 case nir_intrinsic_inclusive_scan:
5157 case nir_intrinsic_exclusive_scan: {
5158 fs_reg src = get_nir_src(instr->src[0]);
5159 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5160
5161 /* Figure out the source type */
5162 src.type = brw_type_for_nir_type(devinfo,
5163 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5164 nir_src_bit_size(instr->src[0])));
5165
5166 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5167 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5168 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5169
5170 /* Set up a register for all of our scratching around and initialize it
5171 * to reduction operation's identity value.
5172 */
5173 fs_reg scan = bld.vgrf(src.type);
5174 const fs_builder allbld = bld.exec_all();
5175 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5176
5177 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
5178 /* Exclusive scan is a bit harder because we have to do an annoying
5179 * shift of the contents before we can begin. To make things worse,
5180 * we can't do this with a normal stride; we have to use indirects.
5181 */
5182 fs_reg shifted = bld.vgrf(src.type);
5183 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5184 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5185 brw_imm_w(-1));
5186 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
5187 allbld.group(1, 0).MOV(component(shifted, 0), identity);
5188 scan = shifted;
5189 }
5190
5191 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
5192
5193 bld.MOV(retype(dest, src.type), scan);
5194 break;
5195 }
5196
5197 case nir_intrinsic_begin_invocation_interlock: {
5198 const fs_builder ubld = bld.group(8, 0);
5199 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5200
5201 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp, brw_vec8_grf(0, 0))
5202 ->size_written = 2 * REG_SIZE;
5203 break;
5204 }
5205
5206 case nir_intrinsic_end_invocation_interlock: {
5207 /* For endInvocationInterlock(), we need to insert a memory fence which
5208 * stalls in the shader until the memory transactions prior to that
5209 * fence are complete. This ensures that the shader does not end before
5210 * any writes from its critical section have landed. Otherwise, you can
5211 * end up with a case where the next invocation on that pixel properly
5212 * stalls for previous FS invocation on its pixel to complete but
5213 * doesn't actually wait for the dataport memory transactions from that
5214 * thread to land before submitting its own.
5215 */
5216 const fs_builder ubld = bld.group(8, 0);
5217 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5218 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
5219 brw_vec8_grf(0, 0), brw_imm_ud(1))
5220 ->size_written = 2 * REG_SIZE;
5221 break;
5222 }
5223
5224 default:
5225 unreachable("unknown intrinsic");
5226 }
5227 }
5228
5229 void
5230 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
5231 int op, nir_intrinsic_instr *instr)
5232 {
5233 if (stage == MESA_SHADER_FRAGMENT)
5234 brw_wm_prog_data(prog_data)->has_side_effects = true;
5235
5236 /* The BTI untyped atomic messages only support 32-bit atomics. If you
5237 * just look at the big table of messages in the Vol 7 of the SKL PRM, they
5238 * appear to exist. However, if you look at Vol 2a, there are no message
5239 * descriptors provided for Qword atomic ops except for A64 messages.
5240 */
5241 assert(nir_dest_bit_size(instr->dest) == 32);
5242
5243 fs_reg dest;
5244 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5245 dest = get_nir_dest(instr->dest);
5246
5247 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5248 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5249 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5250 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5251 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5252
5253 fs_reg data;
5254 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5255 data = get_nir_src(instr->src[2]);
5256
5257 if (op == BRW_AOP_CMPWR) {
5258 fs_reg tmp = bld.vgrf(data.type, 2);
5259 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5260 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5261 data = tmp;
5262 }
5263 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5264
5265 /* Emit the actual atomic operation */
5266
5267 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5268 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5269 }
5270
5271 void
5272 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5273 int op, nir_intrinsic_instr *instr)
5274 {
5275 if (stage == MESA_SHADER_FRAGMENT)
5276 brw_wm_prog_data(prog_data)->has_side_effects = true;
5277
5278 fs_reg dest;
5279 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5280 dest = get_nir_dest(instr->dest);
5281
5282 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5283 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5284 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5285 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5286 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5287
5288 fs_reg data = get_nir_src(instr->src[2]);
5289 if (op == BRW_AOP_FCMPWR) {
5290 fs_reg tmp = bld.vgrf(data.type, 2);
5291 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5292 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5293 data = tmp;
5294 }
5295 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5296
5297 /* Emit the actual atomic operation */
5298
5299 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5300 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5301 }
5302
5303 void
5304 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5305 int op, nir_intrinsic_instr *instr)
5306 {
5307 fs_reg dest;
5308 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5309 dest = get_nir_dest(instr->dest);
5310
5311 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5312 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5313 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5314 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5315
5316 fs_reg data;
5317 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5318 data = get_nir_src(instr->src[1]);
5319 if (op == BRW_AOP_CMPWR) {
5320 fs_reg tmp = bld.vgrf(data.type, 2);
5321 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5322 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5323 data = tmp;
5324 }
5325 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5326
5327 /* Get the offset */
5328 if (nir_src_is_const(instr->src[0])) {
5329 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5330 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5331 } else {
5332 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5333 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5334 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5335 brw_imm_ud(instr->const_index[0]));
5336 }
5337
5338 /* Emit the actual atomic operation operation */
5339
5340 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5341 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5342 }
5343
5344 void
5345 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5346 int op, nir_intrinsic_instr *instr)
5347 {
5348 fs_reg dest;
5349 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5350 dest = get_nir_dest(instr->dest);
5351
5352 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5353 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5354 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5355 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5356
5357 fs_reg data = get_nir_src(instr->src[1]);
5358 if (op == BRW_AOP_FCMPWR) {
5359 fs_reg tmp = bld.vgrf(data.type, 2);
5360 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5361 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5362 data = tmp;
5363 }
5364 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5365
5366 /* Get the offset */
5367 if (nir_src_is_const(instr->src[0])) {
5368 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5369 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5370 } else {
5371 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5372 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5373 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5374 brw_imm_ud(instr->const_index[0]));
5375 }
5376
5377 /* Emit the actual atomic operation operation */
5378
5379 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5380 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5381 }
5382
5383 void
5384 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5385 int op, nir_intrinsic_instr *instr)
5386 {
5387 if (stage == MESA_SHADER_FRAGMENT)
5388 brw_wm_prog_data(prog_data)->has_side_effects = true;
5389
5390 fs_reg dest;
5391 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5392 dest = get_nir_dest(instr->dest);
5393
5394 fs_reg addr = get_nir_src(instr->src[0]);
5395
5396 fs_reg data;
5397 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5398 data = get_nir_src(instr->src[1]);
5399
5400 if (op == BRW_AOP_CMPWR) {
5401 fs_reg tmp = bld.vgrf(data.type, 2);
5402 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5403 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5404 data = tmp;
5405 }
5406
5407 if (nir_dest_bit_size(instr->dest) == 64) {
5408 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5409 dest, addr, data, brw_imm_ud(op));
5410 } else {
5411 assert(nir_dest_bit_size(instr->dest) == 32);
5412 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5413 dest, addr, data, brw_imm_ud(op));
5414 }
5415 }
5416
5417 void
5418 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5419 int op, nir_intrinsic_instr *instr)
5420 {
5421 if (stage == MESA_SHADER_FRAGMENT)
5422 brw_wm_prog_data(prog_data)->has_side_effects = true;
5423
5424 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5425 fs_reg dest = get_nir_dest(instr->dest);
5426
5427 fs_reg addr = get_nir_src(instr->src[0]);
5428
5429 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5430 fs_reg data = get_nir_src(instr->src[1]);
5431
5432 if (op == BRW_AOP_FCMPWR) {
5433 fs_reg tmp = bld.vgrf(data.type, 2);
5434 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5435 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5436 data = tmp;
5437 }
5438
5439 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5440 dest, addr, data, brw_imm_ud(op));
5441 }
5442
5443 void
5444 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5445 {
5446 unsigned texture = instr->texture_index;
5447 unsigned sampler = instr->sampler_index;
5448
5449 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5450
5451 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5452 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5453
5454 int lod_components = 0;
5455
5456 /* The hardware requires a LOD for buffer textures */
5457 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5458 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5459
5460 uint32_t header_bits = 0;
5461 for (unsigned i = 0; i < instr->num_srcs; i++) {
5462 fs_reg src = get_nir_src(instr->src[i].src);
5463 switch (instr->src[i].src_type) {
5464 case nir_tex_src_bias:
5465 srcs[TEX_LOGICAL_SRC_LOD] =
5466 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5467 break;
5468 case nir_tex_src_comparator:
5469 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5470 break;
5471 case nir_tex_src_coord:
5472 switch (instr->op) {
5473 case nir_texop_txf:
5474 case nir_texop_txf_ms:
5475 case nir_texop_txf_ms_mcs:
5476 case nir_texop_samples_identical:
5477 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5478 break;
5479 default:
5480 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5481 break;
5482 }
5483 break;
5484 case nir_tex_src_ddx:
5485 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5486 lod_components = nir_tex_instr_src_size(instr, i);
5487 break;
5488 case nir_tex_src_ddy:
5489 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5490 break;
5491 case nir_tex_src_lod:
5492 switch (instr->op) {
5493 case nir_texop_txs:
5494 srcs[TEX_LOGICAL_SRC_LOD] =
5495 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5496 break;
5497 case nir_texop_txf:
5498 srcs[TEX_LOGICAL_SRC_LOD] =
5499 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5500 break;
5501 default:
5502 srcs[TEX_LOGICAL_SRC_LOD] =
5503 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5504 break;
5505 }
5506 break;
5507 case nir_tex_src_min_lod:
5508 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5509 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5510 break;
5511 case nir_tex_src_ms_index:
5512 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5513 break;
5514
5515 case nir_tex_src_offset: {
5516 uint32_t offset_bits = 0;
5517 if (brw_texture_offset(instr, i, &offset_bits)) {
5518 header_bits |= offset_bits;
5519 } else {
5520 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5521 retype(src, BRW_REGISTER_TYPE_D);
5522 }
5523 break;
5524 }
5525
5526 case nir_tex_src_projector:
5527 unreachable("should be lowered");
5528
5529 case nir_tex_src_texture_offset: {
5530 /* Emit code to evaluate the actual indexing expression */
5531 fs_reg tmp = vgrf(glsl_type::uint_type);
5532 bld.ADD(tmp, src, brw_imm_ud(texture));
5533 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5534 break;
5535 }
5536
5537 case nir_tex_src_sampler_offset: {
5538 /* Emit code to evaluate the actual indexing expression */
5539 fs_reg tmp = vgrf(glsl_type::uint_type);
5540 bld.ADD(tmp, src, brw_imm_ud(sampler));
5541 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5542 break;
5543 }
5544
5545 case nir_tex_src_texture_handle:
5546 assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
5547 srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
5548 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
5549 break;
5550
5551 case nir_tex_src_sampler_handle:
5552 assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
5553 srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
5554 srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
5555 break;
5556
5557 case nir_tex_src_ms_mcs:
5558 assert(instr->op == nir_texop_txf_ms);
5559 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5560 break;
5561
5562 case nir_tex_src_plane: {
5563 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5564 const uint32_t texture_index =
5565 instr->texture_index +
5566 stage_prog_data->binding_table.plane_start[plane] -
5567 stage_prog_data->binding_table.texture_start;
5568
5569 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5570 break;
5571 }
5572
5573 default:
5574 unreachable("unknown texture source");
5575 }
5576 }
5577
5578 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5579 (instr->op == nir_texop_txf_ms ||
5580 instr->op == nir_texop_samples_identical)) {
5581 if (devinfo->gen >= 7 &&
5582 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5583 srcs[TEX_LOGICAL_SRC_MCS] =
5584 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5585 instr->coord_components,
5586 srcs[TEX_LOGICAL_SRC_SURFACE],
5587 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
5588 } else {
5589 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5590 }
5591 }
5592
5593 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5594 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5595
5596 enum opcode opcode;
5597 switch (instr->op) {
5598 case nir_texop_tex:
5599 opcode = SHADER_OPCODE_TEX_LOGICAL;
5600 break;
5601 case nir_texop_txb:
5602 opcode = FS_OPCODE_TXB_LOGICAL;
5603 break;
5604 case nir_texop_txl:
5605 opcode = SHADER_OPCODE_TXL_LOGICAL;
5606 break;
5607 case nir_texop_txd:
5608 opcode = SHADER_OPCODE_TXD_LOGICAL;
5609 break;
5610 case nir_texop_txf:
5611 opcode = SHADER_OPCODE_TXF_LOGICAL;
5612 break;
5613 case nir_texop_txf_ms:
5614 if ((key_tex->msaa_16 & (1 << sampler)))
5615 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5616 else
5617 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5618 break;
5619 case nir_texop_txf_ms_mcs:
5620 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5621 break;
5622 case nir_texop_query_levels:
5623 case nir_texop_txs:
5624 opcode = SHADER_OPCODE_TXS_LOGICAL;
5625 break;
5626 case nir_texop_lod:
5627 opcode = SHADER_OPCODE_LOD_LOGICAL;
5628 break;
5629 case nir_texop_tg4:
5630 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5631 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5632 else
5633 opcode = SHADER_OPCODE_TG4_LOGICAL;
5634 break;
5635 case nir_texop_texture_samples:
5636 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5637 break;
5638 case nir_texop_samples_identical: {
5639 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5640
5641 /* If mcs is an immediate value, it means there is no MCS. In that case
5642 * just return false.
5643 */
5644 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5645 bld.MOV(dst, brw_imm_ud(0u));
5646 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5647 fs_reg tmp = vgrf(glsl_type::uint_type);
5648 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5649 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5650 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5651 } else {
5652 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5653 BRW_CONDITIONAL_EQ);
5654 }
5655 return;
5656 }
5657 default:
5658 unreachable("unknown texture opcode");
5659 }
5660
5661 if (instr->op == nir_texop_tg4) {
5662 if (instr->component == 1 &&
5663 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5664 /* gather4 sampler is broken for green channel on RG32F --
5665 * we must ask for blue instead.
5666 */
5667 header_bits |= 2 << 16;
5668 } else {
5669 header_bits |= instr->component << 16;
5670 }
5671 }
5672
5673 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5674 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5675 inst->offset = header_bits;
5676
5677 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5678 if (devinfo->gen >= 9 &&
5679 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5680 unsigned write_mask = instr->dest.is_ssa ?
5681 nir_ssa_def_components_read(&instr->dest.ssa):
5682 (1 << dest_size) - 1;
5683 assert(write_mask != 0); /* dead code should have been eliminated */
5684 inst->size_written = util_last_bit(write_mask) *
5685 inst->dst.component_size(inst->exec_size);
5686 } else {
5687 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5688 }
5689
5690 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5691 inst->shadow_compare = true;
5692
5693 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5694 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5695
5696 fs_reg nir_dest[4];
5697 for (unsigned i = 0; i < dest_size; i++)
5698 nir_dest[i] = offset(dst, bld, i);
5699
5700 if (instr->op == nir_texop_query_levels) {
5701 /* # levels is in .w */
5702 nir_dest[0] = offset(dst, bld, 3);
5703 } else if (instr->op == nir_texop_txs &&
5704 dest_size >= 3 && devinfo->gen < 7) {
5705 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5706 fs_reg depth = offset(dst, bld, 2);
5707 nir_dest[2] = vgrf(glsl_type::int_type);
5708 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5709 }
5710
5711 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5712 }
5713
5714 void
5715 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5716 {
5717 switch (instr->type) {
5718 case nir_jump_break:
5719 bld.emit(BRW_OPCODE_BREAK);
5720 break;
5721 case nir_jump_continue:
5722 bld.emit(BRW_OPCODE_CONTINUE);
5723 break;
5724 case nir_jump_return:
5725 default:
5726 unreachable("unknown jump");
5727 }
5728 }
5729
5730 /*
5731 * This helper takes a source register and un/shuffles it into the destination
5732 * register.
5733 *
5734 * If source type size is smaller than destination type size the operation
5735 * needed is a component shuffle. The opposite case would be an unshuffle. If
5736 * source/destination type size is equal a shuffle is done that would be
5737 * equivalent to a simple MOV.
5738 *
5739 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5740 * components .xyz 16-bit vector on SIMD8 would be.
5741 *
5742 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5743 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5744 *
5745 * This helper will return the following 2 32-bit components with the 16-bit
5746 * values shuffled:
5747 *
5748 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5749 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5750 *
5751 * For unshuffle, the example would be the opposite, a 64-bit type source
5752 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5753 * would be:
5754 *
5755 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5756 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5757 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5758 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5759 *
5760 * The returned result would be the following 4 32-bit components unshuffled:
5761 *
5762 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5763 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5764 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5765 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5766 *
5767 * - Source and destination register must not be overlapped.
5768 * - components units are measured in terms of the smaller type between
5769 * source and destination because we are un/shuffling the smaller
5770 * components from/into the bigger ones.
5771 * - first_component parameter allows skipping source components.
5772 */
5773 void
5774 shuffle_src_to_dst(const fs_builder &bld,
5775 const fs_reg &dst,
5776 const fs_reg &src,
5777 uint32_t first_component,
5778 uint32_t components)
5779 {
5780 if (type_sz(src.type) == type_sz(dst.type)) {
5781 assert(!regions_overlap(dst,
5782 type_sz(dst.type) * bld.dispatch_width() * components,
5783 offset(src, bld, first_component),
5784 type_sz(src.type) * bld.dispatch_width() * components));
5785 for (unsigned i = 0; i < components; i++) {
5786 bld.MOV(retype(offset(dst, bld, i), src.type),
5787 offset(src, bld, i + first_component));
5788 }
5789 } else if (type_sz(src.type) < type_sz(dst.type)) {
5790 /* Source is shuffled into destination */
5791 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5792 assert(!regions_overlap(dst,
5793 type_sz(dst.type) * bld.dispatch_width() *
5794 DIV_ROUND_UP(components, size_ratio),
5795 offset(src, bld, first_component),
5796 type_sz(src.type) * bld.dispatch_width() * components));
5797
5798 brw_reg_type shuffle_type =
5799 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5800 BRW_REGISTER_TYPE_D);
5801 for (unsigned i = 0; i < components; i++) {
5802 fs_reg shuffle_component_i =
5803 subscript(offset(dst, bld, i / size_ratio),
5804 shuffle_type, i % size_ratio);
5805 bld.MOV(shuffle_component_i,
5806 retype(offset(src, bld, i + first_component), shuffle_type));
5807 }
5808 } else {
5809 /* Source is unshuffled into destination */
5810 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5811 assert(!regions_overlap(dst,
5812 type_sz(dst.type) * bld.dispatch_width() * components,
5813 offset(src, bld, first_component / size_ratio),
5814 type_sz(src.type) * bld.dispatch_width() *
5815 DIV_ROUND_UP(components + (first_component % size_ratio),
5816 size_ratio)));
5817
5818 brw_reg_type shuffle_type =
5819 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5820 BRW_REGISTER_TYPE_D);
5821 for (unsigned i = 0; i < components; i++) {
5822 fs_reg shuffle_component_i =
5823 subscript(offset(src, bld, (first_component + i) / size_ratio),
5824 shuffle_type, (first_component + i) % size_ratio);
5825 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5826 shuffle_component_i);
5827 }
5828 }
5829 }
5830
5831 void
5832 shuffle_from_32bit_read(const fs_builder &bld,
5833 const fs_reg &dst,
5834 const fs_reg &src,
5835 uint32_t first_component,
5836 uint32_t components)
5837 {
5838 assert(type_sz(src.type) == 4);
5839
5840 /* This function takes components in units of the destination type while
5841 * shuffle_src_to_dst takes components in units of the smallest type
5842 */
5843 if (type_sz(dst.type) > 4) {
5844 assert(type_sz(dst.type) == 8);
5845 first_component *= 2;
5846 components *= 2;
5847 }
5848
5849 shuffle_src_to_dst(bld, dst, src, first_component, components);
5850 }
5851
5852 fs_reg
5853 shuffle_for_32bit_write(const fs_builder &bld,
5854 const fs_reg &src,
5855 uint32_t first_component,
5856 uint32_t components)
5857 {
5858 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5859 DIV_ROUND_UP (components * type_sz(src.type), 4));
5860 /* This function takes components in units of the source type while
5861 * shuffle_src_to_dst takes components in units of the smallest type
5862 */
5863 if (type_sz(src.type) > 4) {
5864 assert(type_sz(src.type) == 8);
5865 first_component *= 2;
5866 components *= 2;
5867 }
5868
5869 shuffle_src_to_dst(bld, dst, src, first_component, components);
5870
5871 return dst;
5872 }
5873
5874 fs_reg
5875 setup_imm_df(const fs_builder &bld, double v)
5876 {
5877 const struct gen_device_info *devinfo = bld.shader->devinfo;
5878 assert(devinfo->gen >= 7);
5879
5880 if (devinfo->gen >= 8)
5881 return brw_imm_df(v);
5882
5883 /* gen7.5 does not support DF immediates straighforward but the DIM
5884 * instruction allows to set the 64-bit immediate value.
5885 */
5886 if (devinfo->is_haswell) {
5887 const fs_builder ubld = bld.exec_all().group(1, 0);
5888 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5889 ubld.DIM(dst, brw_imm_df(v));
5890 return component(dst, 0);
5891 }
5892
5893 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5894 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5895 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5896 *
5897 * Alternatively, we could also produce a normal VGRF (without stride 0)
5898 * by writing to all the channels in the VGRF, however, that would hit the
5899 * gen7 bug where we have to split writes that span more than 1 register
5900 * into instructions with a width of 4 (otherwise the write to the second
5901 * register written runs into an execmask hardware bug) which isn't very
5902 * nice.
5903 */
5904 union {
5905 double d;
5906 struct {
5907 uint32_t i1;
5908 uint32_t i2;
5909 };
5910 } di;
5911
5912 di.d = v;
5913
5914 const fs_builder ubld = bld.exec_all().group(1, 0);
5915 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5916 ubld.MOV(tmp, brw_imm_ud(di.i1));
5917 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5918
5919 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5920 }
5921
5922 fs_reg
5923 setup_imm_b(const fs_builder &bld, int8_t v)
5924 {
5925 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5926 bld.MOV(tmp, brw_imm_w(v));
5927 return tmp;
5928 }
5929
5930 fs_reg
5931 setup_imm_ub(const fs_builder &bld, uint8_t v)
5932 {
5933 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5934 bld.MOV(tmp, brw_imm_uw(v));
5935 return tmp;
5936 }