i965: Fix output register sizes when variable ranges are interleaved
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
71 if (vec4s[loc] == 0) {
72 loc++;
73 continue;
74 }
75
76 unsigned reg_size = vec4s[loc];
77
78 /* Check if there are any ranges that start within this range and extend
79 * past it. If so, include them in this allocation.
80 */
81 for (unsigned i = 1; i < reg_size; i++)
82 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
83
84 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
85 for (unsigned i = 0; i < reg_size; i++)
86 outputs[loc + i] = offset(reg, bld, 4 * i);
87
88 loc += reg_size;
89 }
90 }
91
92 void
93 fs_visitor::nir_setup_uniforms()
94 {
95 /* Only the first compile gets to set up uniforms. */
96 if (push_constant_loc) {
97 assert(pull_constant_loc);
98 return;
99 }
100
101 uniforms = nir->num_uniforms / 4;
102
103 if (stage == MESA_SHADER_COMPUTE) {
104 /* Add a uniform for the thread local id. It must be the last uniform
105 * on the list.
106 */
107 assert(uniforms == prog_data->nr_params);
108 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
109 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
110 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
111 }
112 }
113
114 static bool
115 emit_system_values_block(nir_block *block, fs_visitor *v)
116 {
117 fs_reg *reg;
118
119 nir_foreach_instr(instr, block) {
120 if (instr->type != nir_instr_type_intrinsic)
121 continue;
122
123 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
124 switch (intrin->intrinsic) {
125 case nir_intrinsic_load_vertex_id:
126 case nir_intrinsic_load_base_vertex:
127 unreachable("should be lowered by nir_lower_system_values().");
128
129 case nir_intrinsic_load_vertex_id_zero_base:
130 case nir_intrinsic_load_is_indexed_draw:
131 case nir_intrinsic_load_first_vertex:
132 case nir_intrinsic_load_instance_id:
133 case nir_intrinsic_load_base_instance:
134 case nir_intrinsic_load_draw_id:
135 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
136
137 case nir_intrinsic_load_invocation_id:
138 if (v->stage == MESA_SHADER_TESS_CTRL)
139 break;
140 assert(v->stage == MESA_SHADER_GEOMETRY);
141 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
142 if (reg->file == BAD_FILE) {
143 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
144 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
145 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
146 abld.SHR(iid, g1, brw_imm_ud(27u));
147 *reg = iid;
148 }
149 break;
150
151 case nir_intrinsic_load_sample_pos:
152 assert(v->stage == MESA_SHADER_FRAGMENT);
153 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
154 if (reg->file == BAD_FILE)
155 *reg = *v->emit_samplepos_setup();
156 break;
157
158 case nir_intrinsic_load_sample_id:
159 assert(v->stage == MESA_SHADER_FRAGMENT);
160 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
161 if (reg->file == BAD_FILE)
162 *reg = *v->emit_sampleid_setup();
163 break;
164
165 case nir_intrinsic_load_sample_mask_in:
166 assert(v->stage == MESA_SHADER_FRAGMENT);
167 assert(v->devinfo->gen >= 7);
168 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
169 if (reg->file == BAD_FILE)
170 *reg = *v->emit_samplemaskin_setup();
171 break;
172
173 case nir_intrinsic_load_work_group_id:
174 assert(v->stage == MESA_SHADER_COMPUTE);
175 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
176 if (reg->file == BAD_FILE)
177 *reg = *v->emit_cs_work_group_id_setup();
178 break;
179
180 case nir_intrinsic_load_helper_invocation:
181 assert(v->stage == MESA_SHADER_FRAGMENT);
182 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
183 if (reg->file == BAD_FILE) {
184 const fs_builder abld =
185 v->bld.annotate("gl_HelperInvocation", NULL);
186
187 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
188 * pixel mask is in g1.7 of the thread payload.
189 *
190 * We move the per-channel pixel enable bit to the low bit of each
191 * channel by shifting the byte containing the pixel mask by the
192 * vector immediate 0x76543210UV.
193 *
194 * The region of <1,8,0> reads only 1 byte (the pixel masks for
195 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
196 * masks for 2 and 3) in SIMD16.
197 */
198 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
199
200 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
201 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
202 hbld.SHR(offset(shifted, hbld, i),
203 stride(retype(brw_vec1_grf(1 + i, 7),
204 BRW_REGISTER_TYPE_UB),
205 1, 8, 0),
206 brw_imm_v(0x76543210));
207 }
208
209 /* A set bit in the pixel mask means the channel is enabled, but
210 * that is the opposite of gl_HelperInvocation so we need to invert
211 * the mask.
212 *
213 * The negate source-modifier bit of logical instructions on Gen8+
214 * performs 1's complement negation, so we can use that instead of
215 * a NOT instruction.
216 */
217 fs_reg inverted = negate(shifted);
218 if (v->devinfo->gen < 8) {
219 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
220 abld.NOT(inverted, shifted);
221 }
222
223 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
224 * with 1 and negating.
225 */
226 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
227 abld.AND(anded, inverted, brw_imm_uw(1));
228
229 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
230 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
231 *reg = dst;
232 }
233 break;
234
235 default:
236 break;
237 }
238 }
239
240 return true;
241 }
242
243 void
244 fs_visitor::nir_emit_system_values()
245 {
246 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
247 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
248 nir_system_values[i] = fs_reg();
249 }
250
251 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
252 * never end up using it.
253 */
254 {
255 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
256 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
257 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
258
259 const fs_builder allbld8 = abld.group(8, 0).exec_all();
260 allbld8.MOV(reg, brw_imm_v(0x76543210));
261 if (dispatch_width > 8)
262 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
263 if (dispatch_width > 16) {
264 const fs_builder allbld16 = abld.group(16, 0).exec_all();
265 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
266 }
267 }
268
269 nir_foreach_function(function, nir) {
270 assert(strcmp(function->name, "main") == 0);
271 assert(function->impl);
272 nir_foreach_block(block, function->impl) {
273 emit_system_values_block(block, this);
274 }
275 }
276 }
277
278 /*
279 * Returns a type based on a reference_type (word, float, half-float) and a
280 * given bit_size.
281 *
282 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
283 *
284 * @FIXME: 64-bit return types are always DF on integer types to maintain
285 * compability with uses of DF previously to the introduction of int64
286 * support.
287 */
288 static brw_reg_type
289 brw_reg_type_from_bit_size(const unsigned bit_size,
290 const brw_reg_type reference_type)
291 {
292 switch(reference_type) {
293 case BRW_REGISTER_TYPE_HF:
294 case BRW_REGISTER_TYPE_F:
295 case BRW_REGISTER_TYPE_DF:
296 switch(bit_size) {
297 case 16:
298 return BRW_REGISTER_TYPE_HF;
299 case 32:
300 return BRW_REGISTER_TYPE_F;
301 case 64:
302 return BRW_REGISTER_TYPE_DF;
303 default:
304 unreachable("Invalid bit size");
305 }
306 case BRW_REGISTER_TYPE_W:
307 case BRW_REGISTER_TYPE_D:
308 case BRW_REGISTER_TYPE_Q:
309 switch(bit_size) {
310 case 16:
311 return BRW_REGISTER_TYPE_W;
312 case 32:
313 return BRW_REGISTER_TYPE_D;
314 case 64:
315 return BRW_REGISTER_TYPE_Q;
316 default:
317 unreachable("Invalid bit size");
318 }
319 case BRW_REGISTER_TYPE_UW:
320 case BRW_REGISTER_TYPE_UD:
321 case BRW_REGISTER_TYPE_UQ:
322 switch(bit_size) {
323 case 16:
324 return BRW_REGISTER_TYPE_UW;
325 case 32:
326 return BRW_REGISTER_TYPE_UD;
327 case 64:
328 return BRW_REGISTER_TYPE_UQ;
329 default:
330 unreachable("Invalid bit size");
331 }
332 default:
333 unreachable("Unknown type");
334 }
335 }
336
337 void
338 fs_visitor::nir_emit_impl(nir_function_impl *impl)
339 {
340 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
341 for (unsigned i = 0; i < impl->reg_alloc; i++) {
342 nir_locals[i] = fs_reg();
343 }
344
345 foreach_list_typed(nir_register, reg, node, &impl->registers) {
346 unsigned array_elems =
347 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
348 unsigned size = array_elems * reg->num_components;
349 const brw_reg_type reg_type =
350 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
351 nir_locals[reg->index] = bld.vgrf(reg_type, size);
352 }
353
354 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
355 impl->ssa_alloc);
356
357 nir_emit_cf_list(&impl->body);
358 }
359
360 void
361 fs_visitor::nir_emit_cf_list(exec_list *list)
362 {
363 exec_list_validate(list);
364 foreach_list_typed(nir_cf_node, node, node, list) {
365 switch (node->type) {
366 case nir_cf_node_if:
367 nir_emit_if(nir_cf_node_as_if(node));
368 break;
369
370 case nir_cf_node_loop:
371 nir_emit_loop(nir_cf_node_as_loop(node));
372 break;
373
374 case nir_cf_node_block:
375 nir_emit_block(nir_cf_node_as_block(node));
376 break;
377
378 default:
379 unreachable("Invalid CFG node block");
380 }
381 }
382 }
383
384 void
385 fs_visitor::nir_emit_if(nir_if *if_stmt)
386 {
387 /* first, put the condition into f0 */
388 fs_inst *inst = bld.MOV(bld.null_reg_d(),
389 retype(get_nir_src(if_stmt->condition),
390 BRW_REGISTER_TYPE_D));
391 inst->conditional_mod = BRW_CONDITIONAL_NZ;
392
393 bld.IF(BRW_PREDICATE_NORMAL);
394
395 nir_emit_cf_list(&if_stmt->then_list);
396
397 /* note: if the else is empty, dead CF elimination will remove it */
398 bld.emit(BRW_OPCODE_ELSE);
399
400 nir_emit_cf_list(&if_stmt->else_list);
401
402 bld.emit(BRW_OPCODE_ENDIF);
403
404 if (devinfo->gen < 7)
405 limit_dispatch_width(16, "Non-uniform control flow unsupported "
406 "in SIMD32 mode.");
407 }
408
409 void
410 fs_visitor::nir_emit_loop(nir_loop *loop)
411 {
412 bld.emit(BRW_OPCODE_DO);
413
414 nir_emit_cf_list(&loop->body);
415
416 bld.emit(BRW_OPCODE_WHILE);
417
418 if (devinfo->gen < 7)
419 limit_dispatch_width(16, "Non-uniform control flow unsupported "
420 "in SIMD32 mode.");
421 }
422
423 void
424 fs_visitor::nir_emit_block(nir_block *block)
425 {
426 nir_foreach_instr(instr, block) {
427 nir_emit_instr(instr);
428 }
429 }
430
431 void
432 fs_visitor::nir_emit_instr(nir_instr *instr)
433 {
434 const fs_builder abld = bld.annotate(NULL, instr);
435
436 switch (instr->type) {
437 case nir_instr_type_alu:
438 nir_emit_alu(abld, nir_instr_as_alu(instr));
439 break;
440
441 case nir_instr_type_deref:
442 /* Derefs can exist for images but they do nothing */
443 break;
444
445 case nir_instr_type_intrinsic:
446 switch (stage) {
447 case MESA_SHADER_VERTEX:
448 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
449 break;
450 case MESA_SHADER_TESS_CTRL:
451 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
452 break;
453 case MESA_SHADER_TESS_EVAL:
454 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456 case MESA_SHADER_GEOMETRY:
457 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
458 break;
459 case MESA_SHADER_FRAGMENT:
460 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462 case MESA_SHADER_COMPUTE:
463 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 default:
466 unreachable("unsupported shader stage");
467 }
468 break;
469
470 case nir_instr_type_tex:
471 nir_emit_texture(abld, nir_instr_as_tex(instr));
472 break;
473
474 case nir_instr_type_load_const:
475 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
476 break;
477
478 case nir_instr_type_ssa_undef:
479 /* We create a new VGRF for undefs on every use (by handling
480 * them in get_nir_src()), rather than for each definition.
481 * This helps register coalescing eliminate MOVs from undef.
482 */
483 break;
484
485 case nir_instr_type_jump:
486 nir_emit_jump(abld, nir_instr_as_jump(instr));
487 break;
488
489 default:
490 unreachable("unknown instruction type");
491 }
492 }
493
494 /**
495 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
496 * match instr.
497 */
498 bool
499 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
500 const fs_reg &result)
501 {
502 if (!instr->src[0].src.is_ssa ||
503 !instr->src[0].src.ssa->parent_instr)
504 return false;
505
506 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
507 return false;
508
509 nir_alu_instr *src0 =
510 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
511
512 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
513 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
514 return false;
515
516 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
517 assert(element != NULL);
518
519 /* Element type to extract.*/
520 const brw_reg_type type = brw_int_type(
521 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
522 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
523
524 fs_reg op0 = get_nir_src(src0->src[0].src);
525 op0.type = brw_type_for_nir_type(devinfo,
526 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
527 nir_src_bit_size(src0->src[0].src)));
528 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
529
530 set_saturate(instr->dest.saturate,
531 bld.MOV(result, subscript(op0, type, element->u32[0])));
532 return true;
533 }
534
535 bool
536 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
537 const fs_reg &result)
538 {
539 if (!instr->src[0].src.is_ssa ||
540 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
541 return false;
542
543 nir_intrinsic_instr *src0 =
544 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
545
546 if (src0->intrinsic != nir_intrinsic_load_front_face)
547 return false;
548
549 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
550 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
551 return false;
552
553 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
554 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
555 return false;
556
557 fs_reg tmp = vgrf(glsl_type::int_type);
558
559 if (devinfo->gen >= 6) {
560 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
561 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
562
563 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
564 *
565 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
566 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
567 *
568 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
569 *
570 * This negation looks like it's safe in practice, because bits 0:4 will
571 * surely be TRIANGLES
572 */
573
574 if (value1->f32[0] == -1.0f) {
575 g0.negate = true;
576 }
577
578 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
579 g0, brw_imm_uw(0x3f80));
580 } else {
581 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
582 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
583
584 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
585 *
586 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
587 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
588 *
589 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
590 *
591 * This negation looks like it's safe in practice, because bits 0:4 will
592 * surely be TRIANGLES
593 */
594
595 if (value1->f32[0] == -1.0f) {
596 g1_6.negate = true;
597 }
598
599 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
600 }
601 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
602
603 return true;
604 }
605
606 static void
607 emit_find_msb_using_lzd(const fs_builder &bld,
608 const fs_reg &result,
609 const fs_reg &src,
610 bool is_signed)
611 {
612 fs_inst *inst;
613 fs_reg temp = src;
614
615 if (is_signed) {
616 /* LZD of an absolute value source almost always does the right
617 * thing. There are two problem values:
618 *
619 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
620 * 0. However, findMSB(int(0x80000000)) == 30.
621 *
622 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
623 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
624 *
625 * For a value of zero or negative one, -1 will be returned.
626 *
627 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
628 * findMSB(-(1<<x)) should return x-1.
629 *
630 * For all negative number cases, including 0x80000000 and
631 * 0xffffffff, the correct value is obtained from LZD if instead of
632 * negating the (already negative) value the logical-not is used. A
633 * conditonal logical-not can be achieved in two instructions.
634 */
635 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
636
637 bld.ASR(temp, src, brw_imm_d(31));
638 bld.XOR(temp, temp, src);
639 }
640
641 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
642 retype(temp, BRW_REGISTER_TYPE_UD));
643
644 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
645 * from the LSB side. Subtract the result from 31 to convert the MSB
646 * count into an LSB count. If no bits are set, LZD will return 32.
647 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
648 */
649 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
650 inst->src[0].negate = true;
651 }
652
653 static brw_rnd_mode
654 brw_rnd_mode_from_nir_op (const nir_op op) {
655 switch (op) {
656 case nir_op_f2f16_rtz:
657 return BRW_RND_MODE_RTZ;
658 case nir_op_f2f16_rtne:
659 return BRW_RND_MODE_RTNE;
660 default:
661 unreachable("Operation doesn't support rounding mode");
662 }
663 }
664
665 void
666 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
667 {
668 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
669 fs_inst *inst;
670
671 fs_reg result = get_nir_dest(instr->dest.dest);
672 result.type = brw_type_for_nir_type(devinfo,
673 (nir_alu_type)(nir_op_infos[instr->op].output_type |
674 nir_dest_bit_size(instr->dest.dest)));
675
676 fs_reg op[4];
677 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
678 op[i] = get_nir_src(instr->src[i].src);
679 op[i].type = brw_type_for_nir_type(devinfo,
680 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
681 nir_src_bit_size(instr->src[i].src)));
682 op[i].abs = instr->src[i].abs;
683 op[i].negate = instr->src[i].negate;
684 }
685
686 /* We get a bunch of mov's out of the from_ssa pass and they may still
687 * be vectorized. We'll handle them as a special-case. We'll also
688 * handle vecN here because it's basically the same thing.
689 */
690 switch (instr->op) {
691 case nir_op_imov:
692 case nir_op_fmov:
693 case nir_op_vec2:
694 case nir_op_vec3:
695 case nir_op_vec4: {
696 fs_reg temp = result;
697 bool need_extra_copy = false;
698 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
699 if (!instr->src[i].src.is_ssa &&
700 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
701 need_extra_copy = true;
702 temp = bld.vgrf(result.type, 4);
703 break;
704 }
705 }
706
707 for (unsigned i = 0; i < 4; i++) {
708 if (!(instr->dest.write_mask & (1 << i)))
709 continue;
710
711 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
712 inst = bld.MOV(offset(temp, bld, i),
713 offset(op[0], bld, instr->src[0].swizzle[i]));
714 } else {
715 inst = bld.MOV(offset(temp, bld, i),
716 offset(op[i], bld, instr->src[i].swizzle[0]));
717 }
718 inst->saturate = instr->dest.saturate;
719 }
720
721 /* In this case the source and destination registers were the same,
722 * so we need to insert an extra set of moves in order to deal with
723 * any swizzling.
724 */
725 if (need_extra_copy) {
726 for (unsigned i = 0; i < 4; i++) {
727 if (!(instr->dest.write_mask & (1 << i)))
728 continue;
729
730 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
731 }
732 }
733 return;
734 }
735 default:
736 break;
737 }
738
739 /* At this point, we have dealt with any instruction that operates on
740 * more than a single channel. Therefore, we can just adjust the source
741 * and destination registers for that channel and emit the instruction.
742 */
743 unsigned channel = 0;
744 if (nir_op_infos[instr->op].output_size == 0) {
745 /* Since NIR is doing the scalarizing for us, we should only ever see
746 * vectorized operations with a single channel.
747 */
748 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
749 channel = ffs(instr->dest.write_mask) - 1;
750
751 result = offset(result, bld, channel);
752 }
753
754 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
755 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
756 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
757 }
758
759 switch (instr->op) {
760 case nir_op_i2f32:
761 case nir_op_u2f32:
762 if (optimize_extract_to_float(instr, result))
763 return;
764 inst = bld.MOV(result, op[0]);
765 inst->saturate = instr->dest.saturate;
766 break;
767
768 case nir_op_f2f16_rtne:
769 case nir_op_f2f16_rtz:
770 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
771 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
772 /* fallthrough */
773
774 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
775 * on the HW gen, it is a special hw opcode or just a MOV, and
776 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
777 *
778 * But if we want to use that opcode, we need to provide support on
779 * different optimizations and lowerings. As right now HF support is
780 * only for gen8+, it will be better to use directly the MOV, and use
781 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
782 */
783
784 case nir_op_f2f16_undef:
785 inst = bld.MOV(result, op[0]);
786 inst->saturate = instr->dest.saturate;
787 break;
788
789 case nir_op_f2f64:
790 case nir_op_f2i64:
791 case nir_op_f2u64:
792 case nir_op_i2f64:
793 case nir_op_i2i64:
794 case nir_op_u2f64:
795 case nir_op_u2u64:
796 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
797 *
798 * "When source or destination is 64b (...), regioning in Align1
799 * must follow these rules:
800 *
801 * 1. Source and destination horizontal stride must be aligned to
802 * the same qword.
803 * (...)"
804 *
805 * This means that conversions from bit-sizes smaller than 64-bit to
806 * 64-bit need to have the source data elements aligned to 64-bit.
807 * This restriction does not apply to BDW and later.
808 */
809 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
810 nir_src_bit_size(instr->src[0].src) < 64 &&
811 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
812 fs_reg tmp = bld.vgrf(result.type, 1);
813 tmp = subscript(tmp, op[0].type, 0);
814 inst = bld.MOV(tmp, op[0]);
815 inst = bld.MOV(result, tmp);
816 inst->saturate = instr->dest.saturate;
817 break;
818 }
819 /* fallthrough */
820 case nir_op_f2f32:
821 case nir_op_f2i32:
822 case nir_op_f2u32:
823 case nir_op_f2i16:
824 case nir_op_f2u16:
825 case nir_op_i2i32:
826 case nir_op_u2u32:
827 case nir_op_i2i16:
828 case nir_op_u2u16:
829 case nir_op_i2f16:
830 case nir_op_u2f16:
831 inst = bld.MOV(result, op[0]);
832 inst->saturate = instr->dest.saturate;
833 break;
834
835 case nir_op_fsign: {
836 if (op[0].abs) {
837 /* Straightforward since the source can be assumed to be
838 * non-negative.
839 */
840 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
841 set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
842
843 } else if (type_sz(op[0].type) < 8) {
844 /* AND(val, 0x80000000) gives the sign bit.
845 *
846 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
847 * zero.
848 */
849 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
850
851 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
852 op[0].type = BRW_REGISTER_TYPE_UD;
853 result.type = BRW_REGISTER_TYPE_UD;
854 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
855
856 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
857 inst->predicate = BRW_PREDICATE_NORMAL;
858 if (instr->dest.saturate) {
859 inst = bld.MOV(result, result);
860 inst->saturate = true;
861 }
862 } else {
863 /* For doubles we do the same but we need to consider:
864 *
865 * - 2-src instructions can't operate with 64-bit immediates
866 * - The sign is encoded in the high 32-bit of each DF
867 * - We need to produce a DF result.
868 */
869
870 fs_reg zero = vgrf(glsl_type::double_type);
871 bld.MOV(zero, setup_imm_df(bld, 0.0));
872 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
873
874 bld.MOV(result, zero);
875
876 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
877 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
878 brw_imm_ud(0x80000000u));
879
880 set_predicate(BRW_PREDICATE_NORMAL,
881 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
882
883 if (instr->dest.saturate) {
884 inst = bld.MOV(result, result);
885 inst->saturate = true;
886 }
887 }
888 break;
889 }
890
891 case nir_op_isign: {
892 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
893 * -> non-negative val generates 0x00000000.
894 * Predicated OR sets 1 if val is positive.
895 */
896 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
897 assert(bit_size == 32 || bit_size == 16);
898
899 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
900 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
901 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
902
903 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
904 bld.ASR(result, op[0], shift);
905 inst = bld.OR(result, result, one);
906 inst->predicate = BRW_PREDICATE_NORMAL;
907 break;
908 }
909
910 case nir_op_frcp:
911 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
912 inst->saturate = instr->dest.saturate;
913 break;
914
915 case nir_op_fexp2:
916 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
917 inst->saturate = instr->dest.saturate;
918 break;
919
920 case nir_op_flog2:
921 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
922 inst->saturate = instr->dest.saturate;
923 break;
924
925 case nir_op_fsin:
926 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
927 inst->saturate = instr->dest.saturate;
928 break;
929
930 case nir_op_fcos:
931 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
932 inst->saturate = instr->dest.saturate;
933 break;
934
935 case nir_op_fddx:
936 if (fs_key->high_quality_derivatives) {
937 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
938 } else {
939 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
940 }
941 inst->saturate = instr->dest.saturate;
942 break;
943 case nir_op_fddx_fine:
944 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
945 inst->saturate = instr->dest.saturate;
946 break;
947 case nir_op_fddx_coarse:
948 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
949 inst->saturate = instr->dest.saturate;
950 break;
951 case nir_op_fddy:
952 if (fs_key->high_quality_derivatives) {
953 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
954 } else {
955 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
956 }
957 inst->saturate = instr->dest.saturate;
958 break;
959 case nir_op_fddy_fine:
960 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
961 inst->saturate = instr->dest.saturate;
962 break;
963 case nir_op_fddy_coarse:
964 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
965 inst->saturate = instr->dest.saturate;
966 break;
967
968 case nir_op_iadd:
969 case nir_op_fadd:
970 inst = bld.ADD(result, op[0], op[1]);
971 inst->saturate = instr->dest.saturate;
972 break;
973
974 case nir_op_fmul:
975 inst = bld.MUL(result, op[0], op[1]);
976 inst->saturate = instr->dest.saturate;
977 break;
978
979 case nir_op_imul:
980 assert(nir_dest_bit_size(instr->dest.dest) < 64);
981 bld.MUL(result, op[0], op[1]);
982 break;
983
984 case nir_op_imul_high:
985 case nir_op_umul_high:
986 assert(nir_dest_bit_size(instr->dest.dest) < 64);
987 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
988 break;
989
990 case nir_op_idiv:
991 case nir_op_udiv:
992 assert(nir_dest_bit_size(instr->dest.dest) < 64);
993 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
994 break;
995
996 case nir_op_uadd_carry:
997 unreachable("Should have been lowered by carry_to_arith().");
998
999 case nir_op_usub_borrow:
1000 unreachable("Should have been lowered by borrow_to_arith().");
1001
1002 case nir_op_umod:
1003 case nir_op_irem:
1004 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1005 * appears that our hardware just does the right thing for signed
1006 * remainder.
1007 */
1008 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1009 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1010 break;
1011
1012 case nir_op_imod: {
1013 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1014 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1015
1016 /* Math instructions don't support conditional mod */
1017 inst = bld.MOV(bld.null_reg_d(), result);
1018 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1019
1020 /* Now, we need to determine if signs of the sources are different.
1021 * When we XOR the sources, the top bit is 0 if they are the same and 1
1022 * if they are different. We can then use a conditional modifier to
1023 * turn that into a predicate. This leads us to an XOR.l instruction.
1024 *
1025 * Technically, according to the PRM, you're not allowed to use .l on a
1026 * XOR instruction. However, emperical experiments and Curro's reading
1027 * of the simulator source both indicate that it's safe.
1028 */
1029 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1030 inst = bld.XOR(tmp, op[0], op[1]);
1031 inst->predicate = BRW_PREDICATE_NORMAL;
1032 inst->conditional_mod = BRW_CONDITIONAL_L;
1033
1034 /* If the result of the initial remainder operation is non-zero and the
1035 * two sources have different signs, add in a copy of op[1] to get the
1036 * final integer modulus value.
1037 */
1038 inst = bld.ADD(result, result, op[1]);
1039 inst->predicate = BRW_PREDICATE_NORMAL;
1040 break;
1041 }
1042
1043 case nir_op_flt:
1044 case nir_op_fge:
1045 case nir_op_feq:
1046 case nir_op_fne: {
1047 fs_reg dest = result;
1048
1049 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1050 if (bit_size != 32)
1051 dest = bld.vgrf(op[0].type, 1);
1052
1053 brw_conditional_mod cond;
1054 switch (instr->op) {
1055 case nir_op_flt:
1056 cond = BRW_CONDITIONAL_L;
1057 break;
1058 case nir_op_fge:
1059 cond = BRW_CONDITIONAL_GE;
1060 break;
1061 case nir_op_feq:
1062 cond = BRW_CONDITIONAL_Z;
1063 break;
1064 case nir_op_fne:
1065 cond = BRW_CONDITIONAL_NZ;
1066 break;
1067 default:
1068 unreachable("bad opcode");
1069 }
1070
1071 bld.CMP(dest, op[0], op[1], cond);
1072
1073 if (bit_size > 32) {
1074 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1075 } else if(bit_size < 32) {
1076 /* When we convert the result to 32-bit we need to be careful and do
1077 * it as a signed conversion to get sign extension (for 32-bit true)
1078 */
1079 const brw_reg_type src_type =
1080 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1081
1082 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1083 }
1084 break;
1085 }
1086
1087 case nir_op_ilt:
1088 case nir_op_ult:
1089 case nir_op_ige:
1090 case nir_op_uge:
1091 case nir_op_ieq:
1092 case nir_op_ine: {
1093 fs_reg dest = result;
1094
1095 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1096 if (bit_size != 32)
1097 dest = bld.vgrf(op[0].type, 1);
1098
1099 brw_conditional_mod cond;
1100 switch (instr->op) {
1101 case nir_op_ilt:
1102 case nir_op_ult:
1103 cond = BRW_CONDITIONAL_L;
1104 break;
1105 case nir_op_ige:
1106 case nir_op_uge:
1107 cond = BRW_CONDITIONAL_GE;
1108 break;
1109 case nir_op_ieq:
1110 cond = BRW_CONDITIONAL_Z;
1111 break;
1112 case nir_op_ine:
1113 cond = BRW_CONDITIONAL_NZ;
1114 break;
1115 default:
1116 unreachable("bad opcode");
1117 }
1118 bld.CMP(dest, op[0], op[1], cond);
1119
1120 if (bit_size > 32) {
1121 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1122 } else if (bit_size < 32) {
1123 /* When we convert the result to 32-bit we need to be careful and do
1124 * it as a signed conversion to get sign extension (for 32-bit true)
1125 */
1126 const brw_reg_type src_type =
1127 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1128
1129 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1130 }
1131 break;
1132 }
1133
1134 case nir_op_inot:
1135 if (devinfo->gen >= 8) {
1136 op[0] = resolve_source_modifiers(op[0]);
1137 }
1138 bld.NOT(result, op[0]);
1139 break;
1140 case nir_op_ixor:
1141 if (devinfo->gen >= 8) {
1142 op[0] = resolve_source_modifiers(op[0]);
1143 op[1] = resolve_source_modifiers(op[1]);
1144 }
1145 bld.XOR(result, op[0], op[1]);
1146 break;
1147 case nir_op_ior:
1148 if (devinfo->gen >= 8) {
1149 op[0] = resolve_source_modifiers(op[0]);
1150 op[1] = resolve_source_modifiers(op[1]);
1151 }
1152 bld.OR(result, op[0], op[1]);
1153 break;
1154 case nir_op_iand:
1155 if (devinfo->gen >= 8) {
1156 op[0] = resolve_source_modifiers(op[0]);
1157 op[1] = resolve_source_modifiers(op[1]);
1158 }
1159 bld.AND(result, op[0], op[1]);
1160 break;
1161
1162 case nir_op_fdot2:
1163 case nir_op_fdot3:
1164 case nir_op_fdot4:
1165 case nir_op_ball_fequal2:
1166 case nir_op_ball_iequal2:
1167 case nir_op_ball_fequal3:
1168 case nir_op_ball_iequal3:
1169 case nir_op_ball_fequal4:
1170 case nir_op_ball_iequal4:
1171 case nir_op_bany_fnequal2:
1172 case nir_op_bany_inequal2:
1173 case nir_op_bany_fnequal3:
1174 case nir_op_bany_inequal3:
1175 case nir_op_bany_fnequal4:
1176 case nir_op_bany_inequal4:
1177 unreachable("Lowered by nir_lower_alu_reductions");
1178
1179 case nir_op_fnoise1_1:
1180 case nir_op_fnoise1_2:
1181 case nir_op_fnoise1_3:
1182 case nir_op_fnoise1_4:
1183 case nir_op_fnoise2_1:
1184 case nir_op_fnoise2_2:
1185 case nir_op_fnoise2_3:
1186 case nir_op_fnoise2_4:
1187 case nir_op_fnoise3_1:
1188 case nir_op_fnoise3_2:
1189 case nir_op_fnoise3_3:
1190 case nir_op_fnoise3_4:
1191 case nir_op_fnoise4_1:
1192 case nir_op_fnoise4_2:
1193 case nir_op_fnoise4_3:
1194 case nir_op_fnoise4_4:
1195 unreachable("not reached: should be handled by lower_noise");
1196
1197 case nir_op_ldexp:
1198 unreachable("not reached: should be handled by ldexp_to_arith()");
1199
1200 case nir_op_fsqrt:
1201 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1202 inst->saturate = instr->dest.saturate;
1203 break;
1204
1205 case nir_op_frsq:
1206 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1207 inst->saturate = instr->dest.saturate;
1208 break;
1209
1210 case nir_op_b2i:
1211 case nir_op_b2f:
1212 bld.MOV(result, negate(op[0]));
1213 break;
1214
1215 case nir_op_i2b:
1216 case nir_op_f2b: {
1217 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1218 if (bit_size == 64) {
1219 /* two-argument instructions can't take 64-bit immediates */
1220 fs_reg zero;
1221 fs_reg tmp;
1222
1223 if (instr->op == nir_op_f2b) {
1224 zero = vgrf(glsl_type::double_type);
1225 tmp = vgrf(glsl_type::double_type);
1226 bld.MOV(zero, setup_imm_df(bld, 0.0));
1227 } else {
1228 zero = vgrf(glsl_type::int64_t_type);
1229 tmp = vgrf(glsl_type::int64_t_type);
1230 bld.MOV(zero, brw_imm_q(0));
1231 }
1232
1233 /* A SIMD16 execution needs to be split in two instructions, so use
1234 * a vgrf instead of the flag register as dst so instruction splitting
1235 * works
1236 */
1237 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1238 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1239 } else {
1240 fs_reg zero;
1241 if (bit_size == 32) {
1242 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1243 } else {
1244 assert(bit_size == 16);
1245 zero = instr->op == nir_op_f2b ?
1246 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1247 }
1248 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1249 }
1250 break;
1251 }
1252
1253 case nir_op_ftrunc:
1254 inst = bld.RNDZ(result, op[0]);
1255 inst->saturate = instr->dest.saturate;
1256 break;
1257
1258 case nir_op_fceil: {
1259 op[0].negate = !op[0].negate;
1260 fs_reg temp = vgrf(glsl_type::float_type);
1261 bld.RNDD(temp, op[0]);
1262 temp.negate = true;
1263 inst = bld.MOV(result, temp);
1264 inst->saturate = instr->dest.saturate;
1265 break;
1266 }
1267 case nir_op_ffloor:
1268 inst = bld.RNDD(result, op[0]);
1269 inst->saturate = instr->dest.saturate;
1270 break;
1271 case nir_op_ffract:
1272 inst = bld.FRC(result, op[0]);
1273 inst->saturate = instr->dest.saturate;
1274 break;
1275 case nir_op_fround_even:
1276 inst = bld.RNDE(result, op[0]);
1277 inst->saturate = instr->dest.saturate;
1278 break;
1279
1280 case nir_op_fquantize2f16: {
1281 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1282 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1283 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1284
1285 /* The destination stride must be at least as big as the source stride. */
1286 tmp16.type = BRW_REGISTER_TYPE_W;
1287 tmp16.stride = 2;
1288
1289 /* Check for denormal */
1290 fs_reg abs_src0 = op[0];
1291 abs_src0.abs = true;
1292 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1293 BRW_CONDITIONAL_L);
1294 /* Get the appropriately signed zero */
1295 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1296 retype(op[0], BRW_REGISTER_TYPE_UD),
1297 brw_imm_ud(0x80000000));
1298 /* Do the actual F32 -> F16 -> F32 conversion */
1299 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1300 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1301 /* Select that or zero based on normal status */
1302 inst = bld.SEL(result, zero, tmp32);
1303 inst->predicate = BRW_PREDICATE_NORMAL;
1304 inst->saturate = instr->dest.saturate;
1305 break;
1306 }
1307
1308 case nir_op_imin:
1309 case nir_op_umin:
1310 case nir_op_fmin:
1311 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1312 inst->saturate = instr->dest.saturate;
1313 break;
1314
1315 case nir_op_imax:
1316 case nir_op_umax:
1317 case nir_op_fmax:
1318 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1319 inst->saturate = instr->dest.saturate;
1320 break;
1321
1322 case nir_op_pack_snorm_2x16:
1323 case nir_op_pack_snorm_4x8:
1324 case nir_op_pack_unorm_2x16:
1325 case nir_op_pack_unorm_4x8:
1326 case nir_op_unpack_snorm_2x16:
1327 case nir_op_unpack_snorm_4x8:
1328 case nir_op_unpack_unorm_2x16:
1329 case nir_op_unpack_unorm_4x8:
1330 case nir_op_unpack_half_2x16:
1331 case nir_op_pack_half_2x16:
1332 unreachable("not reached: should be handled by lower_packing_builtins");
1333
1334 case nir_op_unpack_half_2x16_split_x:
1335 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1336 inst->saturate = instr->dest.saturate;
1337 break;
1338 case nir_op_unpack_half_2x16_split_y:
1339 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1340 inst->saturate = instr->dest.saturate;
1341 break;
1342
1343 case nir_op_pack_64_2x32_split:
1344 case nir_op_pack_32_2x16_split:
1345 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1346 break;
1347
1348 case nir_op_unpack_64_2x32_split_x:
1349 case nir_op_unpack_64_2x32_split_y: {
1350 if (instr->op == nir_op_unpack_64_2x32_split_x)
1351 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1352 else
1353 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1354 break;
1355 }
1356
1357 case nir_op_unpack_32_2x16_split_x:
1358 case nir_op_unpack_32_2x16_split_y: {
1359 if (instr->op == nir_op_unpack_32_2x16_split_x)
1360 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1361 else
1362 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1363 break;
1364 }
1365
1366 case nir_op_fpow:
1367 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1368 inst->saturate = instr->dest.saturate;
1369 break;
1370
1371 case nir_op_bitfield_reverse:
1372 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1373 bld.BFREV(result, op[0]);
1374 break;
1375
1376 case nir_op_bit_count:
1377 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1378 bld.CBIT(result, op[0]);
1379 break;
1380
1381 case nir_op_ufind_msb: {
1382 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1383 emit_find_msb_using_lzd(bld, result, op[0], false);
1384 break;
1385 }
1386
1387 case nir_op_ifind_msb: {
1388 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1389
1390 if (devinfo->gen < 7) {
1391 emit_find_msb_using_lzd(bld, result, op[0], true);
1392 } else {
1393 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1394
1395 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1396 * count from the LSB side. If FBH didn't return an error
1397 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1398 * count into an LSB count.
1399 */
1400 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1401
1402 inst = bld.ADD(result, result, brw_imm_d(31));
1403 inst->predicate = BRW_PREDICATE_NORMAL;
1404 inst->src[0].negate = true;
1405 }
1406 break;
1407 }
1408
1409 case nir_op_find_lsb:
1410 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1411
1412 if (devinfo->gen < 7) {
1413 fs_reg temp = vgrf(glsl_type::int_type);
1414
1415 /* (x & -x) generates a value that consists of only the LSB of x.
1416 * For all powers of 2, findMSB(y) == findLSB(y).
1417 */
1418 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1419 fs_reg negated_src = src;
1420
1421 /* One must be negated, and the other must be non-negated. It
1422 * doesn't matter which is which.
1423 */
1424 negated_src.negate = true;
1425 src.negate = false;
1426
1427 bld.AND(temp, src, negated_src);
1428 emit_find_msb_using_lzd(bld, result, temp, false);
1429 } else {
1430 bld.FBL(result, op[0]);
1431 }
1432 break;
1433
1434 case nir_op_ubitfield_extract:
1435 case nir_op_ibitfield_extract:
1436 unreachable("should have been lowered");
1437 case nir_op_ubfe:
1438 case nir_op_ibfe:
1439 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1440 bld.BFE(result, op[2], op[1], op[0]);
1441 break;
1442 case nir_op_bfm:
1443 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1444 bld.BFI1(result, op[0], op[1]);
1445 break;
1446 case nir_op_bfi:
1447 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1448 bld.BFI2(result, op[0], op[1], op[2]);
1449 break;
1450
1451 case nir_op_bitfield_insert:
1452 unreachable("not reached: should have been lowered");
1453
1454 case nir_op_ishl:
1455 case nir_op_ishr:
1456 case nir_op_ushr: {
1457 fs_reg shift_count = op[1];
1458
1459 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1460 if (op[1].file == VGRF &&
1461 (result.type == BRW_REGISTER_TYPE_Q ||
1462 result.type == BRW_REGISTER_TYPE_UQ)) {
1463 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1464 BRW_REGISTER_TYPE_UD);
1465 shift_count.stride = 2;
1466 bld.MOV(shift_count, op[1]);
1467 }
1468 }
1469
1470 switch (instr->op) {
1471 case nir_op_ishl:
1472 bld.SHL(result, op[0], shift_count);
1473 break;
1474 case nir_op_ishr:
1475 bld.ASR(result, op[0], shift_count);
1476 break;
1477 case nir_op_ushr:
1478 bld.SHR(result, op[0], shift_count);
1479 break;
1480 default:
1481 unreachable("not reached");
1482 }
1483 break;
1484 }
1485
1486 case nir_op_pack_half_2x16_split:
1487 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1488 break;
1489
1490 case nir_op_ffma:
1491 inst = bld.MAD(result, op[2], op[1], op[0]);
1492 inst->saturate = instr->dest.saturate;
1493 break;
1494
1495 case nir_op_flrp:
1496 inst = bld.LRP(result, op[0], op[1], op[2]);
1497 inst->saturate = instr->dest.saturate;
1498 break;
1499
1500 case nir_op_bcsel:
1501 if (optimize_frontfacing_ternary(instr, result))
1502 return;
1503
1504 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1505 inst = bld.SEL(result, op[1], op[2]);
1506 inst->predicate = BRW_PREDICATE_NORMAL;
1507 break;
1508
1509 case nir_op_extract_u8:
1510 case nir_op_extract_i8: {
1511 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1512 assert(byte != NULL);
1513
1514 /* The PRMs say:
1515 *
1516 * BDW+
1517 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1518 * Use two instructions and a word or DWord intermediate integer type.
1519 */
1520 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1521 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1522
1523 if (instr->op == nir_op_extract_i8) {
1524 /* If we need to sign extend, extract to a word first */
1525 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1526 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1527 bld.MOV(result, w_temp);
1528 } else {
1529 /* Otherwise use an AND with 0xff and a word type */
1530 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1531 }
1532 } else {
1533 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1534 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1535 }
1536 break;
1537 }
1538
1539 case nir_op_extract_u16:
1540 case nir_op_extract_i16: {
1541 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1542 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1543 assert(word != NULL);
1544 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1545 break;
1546 }
1547
1548 default:
1549 unreachable("unhandled instruction");
1550 }
1551
1552 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1553 * to sign extend the low bit to 0/~0
1554 */
1555 if (devinfo->gen <= 5 &&
1556 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1557 fs_reg masked = vgrf(glsl_type::int_type);
1558 bld.AND(masked, result, brw_imm_d(1));
1559 masked.negate = true;
1560 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1561 }
1562 }
1563
1564 void
1565 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1566 nir_load_const_instr *instr)
1567 {
1568 const brw_reg_type reg_type =
1569 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1570 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1571
1572 switch (instr->def.bit_size) {
1573 case 16:
1574 for (unsigned i = 0; i < instr->def.num_components; i++)
1575 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1576 break;
1577
1578 case 32:
1579 for (unsigned i = 0; i < instr->def.num_components; i++)
1580 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1581 break;
1582
1583 case 64:
1584 assert(devinfo->gen >= 7);
1585 if (devinfo->gen == 7) {
1586 /* We don't get 64-bit integer types until gen8 */
1587 for (unsigned i = 0; i < instr->def.num_components; i++) {
1588 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1589 setup_imm_df(bld, instr->value.f64[i]));
1590 }
1591 } else {
1592 for (unsigned i = 0; i < instr->def.num_components; i++)
1593 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1594 }
1595 break;
1596
1597 default:
1598 unreachable("Invalid bit size");
1599 }
1600
1601 nir_ssa_values[instr->def.index] = reg;
1602 }
1603
1604 fs_reg
1605 fs_visitor::get_nir_src(const nir_src &src)
1606 {
1607 fs_reg reg;
1608 if (src.is_ssa) {
1609 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1610 const brw_reg_type reg_type =
1611 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1612 reg = bld.vgrf(reg_type, src.ssa->num_components);
1613 } else {
1614 reg = nir_ssa_values[src.ssa->index];
1615 }
1616 } else {
1617 /* We don't handle indirects on locals */
1618 assert(src.reg.indirect == NULL);
1619 reg = offset(nir_locals[src.reg.reg->index], bld,
1620 src.reg.base_offset * src.reg.reg->num_components);
1621 }
1622
1623 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1624 /* The only 64-bit type available on gen7 is DF, so use that. */
1625 reg.type = BRW_REGISTER_TYPE_DF;
1626 } else {
1627 /* To avoid floating-point denorm flushing problems, set the type by
1628 * default to an integer type - instructions that need floating point
1629 * semantics will set this to F if they need to
1630 */
1631 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1632 BRW_REGISTER_TYPE_D);
1633 }
1634
1635 return reg;
1636 }
1637
1638 /**
1639 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1640 *
1641 * This function should not be called on any value which may be 64 bits.
1642 * We could theoretically support 64-bit on gen8+ but we choose not to
1643 * because it wouldn't work in general (no gen7 support) and there are
1644 * enough restrictions in 64-bit immediates that you can't take the return
1645 * value and treat it the same as the result of get_nir_src().
1646 */
1647 fs_reg
1648 fs_visitor::get_nir_src_imm(const nir_src &src)
1649 {
1650 nir_const_value *val = nir_src_as_const_value(src);
1651 assert(nir_src_bit_size(src) == 32);
1652 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1653 }
1654
1655 fs_reg
1656 fs_visitor::get_nir_dest(const nir_dest &dest)
1657 {
1658 if (dest.is_ssa) {
1659 const brw_reg_type reg_type =
1660 brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
1661 nir_ssa_values[dest.ssa.index] =
1662 bld.vgrf(reg_type, dest.ssa.num_components);
1663 return nir_ssa_values[dest.ssa.index];
1664 } else {
1665 /* We don't handle indirects on locals */
1666 assert(dest.reg.indirect == NULL);
1667 return offset(nir_locals[dest.reg.reg->index], bld,
1668 dest.reg.base_offset * dest.reg.reg->num_components);
1669 }
1670 }
1671
1672 fs_reg
1673 fs_visitor::get_nir_image_deref(nir_deref_instr *deref)
1674 {
1675 fs_reg arr_offset = brw_imm_ud(0);
1676 unsigned array_size = BRW_IMAGE_PARAM_SIZE * 4;
1677 nir_deref_instr *head = deref;
1678 while (head->deref_type != nir_deref_type_var) {
1679 assert(head->deref_type == nir_deref_type_array);
1680
1681 /* This level's element size is the previous level's array size */
1682 const unsigned elem_size = array_size;
1683
1684 fs_reg index = retype(get_nir_src_imm(head->arr.index),
1685 BRW_REGISTER_TYPE_UD);
1686 if (arr_offset.file == BRW_IMMEDIATE_VALUE &&
1687 index.file == BRW_IMMEDIATE_VALUE) {
1688 arr_offset.ud += index.ud * elem_size;
1689 } else if (index.file == BRW_IMMEDIATE_VALUE) {
1690 bld.ADD(arr_offset, arr_offset, brw_imm_ud(index.ud * elem_size));
1691 } else {
1692 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
1693 bld.MUL(tmp, index, brw_imm_ud(elem_size));
1694 bld.ADD(tmp, tmp, arr_offset);
1695 arr_offset = tmp;
1696 }
1697
1698 head = nir_deref_instr_parent(head);
1699 assert(glsl_type_is_array(head->type));
1700 array_size = elem_size * glsl_get_length(head->type);
1701 }
1702
1703 assert(head->deref_type == nir_deref_type_var);
1704 const unsigned max_arr_offset = array_size - (BRW_IMAGE_PARAM_SIZE * 4);
1705 fs_reg image(UNIFORM, head->var->data.driver_location / 4,
1706 BRW_REGISTER_TYPE_UD);
1707
1708 if (arr_offset.file == BRW_IMMEDIATE_VALUE) {
1709 /* The offset is in bytes but we want it in dwords */
1710 return offset(image, bld, MIN2(arr_offset.ud, max_arr_offset) / 4);
1711 } else {
1712 /* Accessing an invalid surface index with the dataport can result
1713 * in a hang. According to the spec "if the index used to
1714 * select an individual element is negative or greater than or
1715 * equal to the size of the array, the results of the operation
1716 * are undefined but may not lead to termination" -- which is one
1717 * of the possible outcomes of the hang. Clamp the index to
1718 * prevent access outside of the array bounds.
1719 */
1720 bld.emit_minmax(arr_offset, arr_offset, brw_imm_ud(max_arr_offset),
1721 BRW_CONDITIONAL_L);
1722
1723 /* Emit a pile of MOVs to load the uniform into a temporary. The
1724 * dead-code elimination pass will get rid of what we don't use.
1725 */
1726 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1727 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1728 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1729 offset(tmp, bld, j), offset(image, bld, j),
1730 arr_offset, brw_imm_ud(max_arr_offset + 4));
1731 }
1732 return tmp;
1733 }
1734 }
1735
1736 void
1737 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1738 unsigned wr_mask)
1739 {
1740 for (unsigned i = 0; i < 4; i++) {
1741 if (!((wr_mask >> i) & 1))
1742 continue;
1743
1744 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1745 new_inst->dst = offset(new_inst->dst, bld, i);
1746 for (unsigned j = 0; j < new_inst->sources; j++)
1747 if (new_inst->src[j].file == VGRF)
1748 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1749
1750 bld.emit(new_inst);
1751 }
1752 }
1753
1754 /**
1755 * Get the matching channel register datatype for an image intrinsic of the
1756 * specified GLSL image type.
1757 */
1758 static brw_reg_type
1759 get_image_base_type(const glsl_type *type)
1760 {
1761 switch ((glsl_base_type)type->sampled_type) {
1762 case GLSL_TYPE_UINT:
1763 return BRW_REGISTER_TYPE_UD;
1764 case GLSL_TYPE_INT:
1765 return BRW_REGISTER_TYPE_D;
1766 case GLSL_TYPE_FLOAT:
1767 return BRW_REGISTER_TYPE_F;
1768 default:
1769 unreachable("Not reached.");
1770 }
1771 }
1772
1773 /**
1774 * Get the appropriate atomic op for an image atomic intrinsic.
1775 */
1776 static unsigned
1777 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1778 {
1779 switch (op) {
1780 case nir_intrinsic_image_deref_atomic_add:
1781 return BRW_AOP_ADD;
1782 case nir_intrinsic_image_deref_atomic_min:
1783 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1784 BRW_AOP_IMIN : BRW_AOP_UMIN);
1785 case nir_intrinsic_image_deref_atomic_max:
1786 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1787 BRW_AOP_IMAX : BRW_AOP_UMAX);
1788 case nir_intrinsic_image_deref_atomic_and:
1789 return BRW_AOP_AND;
1790 case nir_intrinsic_image_deref_atomic_or:
1791 return BRW_AOP_OR;
1792 case nir_intrinsic_image_deref_atomic_xor:
1793 return BRW_AOP_XOR;
1794 case nir_intrinsic_image_deref_atomic_exchange:
1795 return BRW_AOP_MOV;
1796 case nir_intrinsic_image_deref_atomic_comp_swap:
1797 return BRW_AOP_CMPWR;
1798 default:
1799 unreachable("Not reachable.");
1800 }
1801 }
1802
1803 static fs_inst *
1804 emit_pixel_interpolater_send(const fs_builder &bld,
1805 enum opcode opcode,
1806 const fs_reg &dst,
1807 const fs_reg &src,
1808 const fs_reg &desc,
1809 glsl_interp_mode interpolation)
1810 {
1811 struct brw_wm_prog_data *wm_prog_data =
1812 brw_wm_prog_data(bld.shader->stage_prog_data);
1813
1814 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1815 /* 2 floats per slot returned */
1816 inst->size_written = 2 * dst.component_size(inst->exec_size);
1817 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1818
1819 wm_prog_data->pulls_bary = true;
1820
1821 return inst;
1822 }
1823
1824 /**
1825 * Computes 1 << x, given a D/UD register containing some value x.
1826 */
1827 static fs_reg
1828 intexp2(const fs_builder &bld, const fs_reg &x)
1829 {
1830 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1831
1832 fs_reg result = bld.vgrf(x.type, 1);
1833 fs_reg one = bld.vgrf(x.type, 1);
1834
1835 bld.MOV(one, retype(brw_imm_d(1), one.type));
1836 bld.SHL(result, one, x);
1837 return result;
1838 }
1839
1840 void
1841 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1842 {
1843 assert(stage == MESA_SHADER_GEOMETRY);
1844
1845 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1846
1847 if (gs_compile->control_data_header_size_bits == 0)
1848 return;
1849
1850 /* We can only do EndPrimitive() functionality when the control data
1851 * consists of cut bits. Fortunately, the only time it isn't is when the
1852 * output type is points, in which case EndPrimitive() is a no-op.
1853 */
1854 if (gs_prog_data->control_data_format !=
1855 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1856 return;
1857 }
1858
1859 /* Cut bits use one bit per vertex. */
1860 assert(gs_compile->control_data_bits_per_vertex == 1);
1861
1862 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1863 vertex_count.type = BRW_REGISTER_TYPE_UD;
1864
1865 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1866 * vertex n, 0 otherwise. So all we need to do here is mark bit
1867 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1868 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1869 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1870 *
1871 * Note that if EndPrimitive() is called before emitting any vertices, this
1872 * will cause us to set bit 31 of the control_data_bits register to 1.
1873 * That's fine because:
1874 *
1875 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1876 * output, so the hardware will ignore cut bit 31.
1877 *
1878 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1879 * last vertex, so setting cut bit 31 has no effect (since the primitive
1880 * is automatically ended when the GS terminates).
1881 *
1882 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1883 * control_data_bits register to 0 when the first vertex is emitted.
1884 */
1885
1886 const fs_builder abld = bld.annotate("end primitive");
1887
1888 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1889 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1890 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1891 fs_reg mask = intexp2(abld, prev_count);
1892 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1893 * attention to the lower 5 bits of its second source argument, so on this
1894 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1895 * ((vertex_count - 1) % 32).
1896 */
1897 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1898 }
1899
1900 void
1901 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1902 {
1903 assert(stage == MESA_SHADER_GEOMETRY);
1904 assert(gs_compile->control_data_bits_per_vertex != 0);
1905
1906 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1907
1908 const fs_builder abld = bld.annotate("emit control data bits");
1909 const fs_builder fwa_bld = bld.exec_all();
1910
1911 /* We use a single UD register to accumulate control data bits (32 bits
1912 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1913 * at a time.
1914 *
1915 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1916 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1917 * use the Channel Mask phase to enable/disable which DWord within that
1918 * group to write. (Remember, different SIMD8 channels may have emitted
1919 * different numbers of vertices, so we may need per-slot offsets.)
1920 *
1921 * Channel masking presents an annoying problem: we may have to replicate
1922 * the data up to 4 times:
1923 *
1924 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1925 *
1926 * To avoid penalizing shaders that emit a small number of vertices, we
1927 * can avoid these sometimes: if the size of the control data header is
1928 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1929 * land in the same 128-bit group, so we can skip per-slot offsets.
1930 *
1931 * Similarly, if the control data header is <= 32 bits, there is only one
1932 * DWord, so we can skip channel masks.
1933 */
1934 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1935
1936 fs_reg channel_mask, per_slot_offset;
1937
1938 if (gs_compile->control_data_header_size_bits > 32) {
1939 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1940 channel_mask = vgrf(glsl_type::uint_type);
1941 }
1942
1943 if (gs_compile->control_data_header_size_bits > 128) {
1944 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1945 per_slot_offset = vgrf(glsl_type::uint_type);
1946 }
1947
1948 /* Figure out which DWord we're trying to write to using the formula:
1949 *
1950 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1951 *
1952 * Since bits_per_vertex is a power of two, and is known at compile
1953 * time, this can be optimized to:
1954 *
1955 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1956 */
1957 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1958 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1959 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1960 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1961 unsigned log2_bits_per_vertex =
1962 util_last_bit(gs_compile->control_data_bits_per_vertex);
1963 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1964
1965 if (per_slot_offset.file != BAD_FILE) {
1966 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1967 * the appropriate OWord within the control data header.
1968 */
1969 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1970 }
1971
1972 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1973 * write to the appropriate DWORD within the OWORD.
1974 */
1975 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1976 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1977 channel_mask = intexp2(fwa_bld, channel);
1978 /* Then the channel masks need to be in bits 23:16. */
1979 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1980 }
1981
1982 /* Store the control data bits in the message payload and send it. */
1983 int mlen = 2;
1984 if (channel_mask.file != BAD_FILE)
1985 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1986 if (per_slot_offset.file != BAD_FILE)
1987 mlen++;
1988
1989 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1990 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1991 int i = 0;
1992 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1993 if (per_slot_offset.file != BAD_FILE)
1994 sources[i++] = per_slot_offset;
1995 if (channel_mask.file != BAD_FILE)
1996 sources[i++] = channel_mask;
1997 while (i < mlen) {
1998 sources[i++] = this->control_data_bits;
1999 }
2000
2001 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2002 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2003 inst->mlen = mlen;
2004 /* We need to increment Global Offset by 256-bits to make room for
2005 * Broadwell's extra "Vertex Count" payload at the beginning of the
2006 * URB entry. Since this is an OWord message, Global Offset is counted
2007 * in 128-bit units, so we must set it to 2.
2008 */
2009 if (gs_prog_data->static_vertex_count == -1)
2010 inst->offset = 2;
2011 }
2012
2013 void
2014 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2015 unsigned stream_id)
2016 {
2017 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2018
2019 /* Note: we are calling this *before* increasing vertex_count, so
2020 * this->vertex_count == vertex_count - 1 in the formula above.
2021 */
2022
2023 /* Stream mode uses 2 bits per vertex */
2024 assert(gs_compile->control_data_bits_per_vertex == 2);
2025
2026 /* Must be a valid stream */
2027 assert(stream_id < MAX_VERTEX_STREAMS);
2028
2029 /* Control data bits are initialized to 0 so we don't have to set any
2030 * bits when sending vertices to stream 0.
2031 */
2032 if (stream_id == 0)
2033 return;
2034
2035 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2036
2037 /* reg::sid = stream_id */
2038 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2039 abld.MOV(sid, brw_imm_ud(stream_id));
2040
2041 /* reg:shift_count = 2 * (vertex_count - 1) */
2042 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2043 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2044
2045 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2046 * attention to the lower 5 bits of its second source argument, so on this
2047 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2048 * stream_id << ((2 * (vertex_count - 1)) % 32).
2049 */
2050 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2051 abld.SHL(mask, sid, shift_count);
2052 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2053 }
2054
2055 void
2056 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2057 unsigned stream_id)
2058 {
2059 assert(stage == MESA_SHADER_GEOMETRY);
2060
2061 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2062
2063 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2064 vertex_count.type = BRW_REGISTER_TYPE_UD;
2065
2066 /* Haswell and later hardware ignores the "Render Stream Select" bits
2067 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2068 * and instead sends all primitives down the pipeline for rasterization.
2069 * If the SOL stage is enabled, "Render Stream Select" is honored and
2070 * primitives bound to non-zero streams are discarded after stream output.
2071 *
2072 * Since the only purpose of primives sent to non-zero streams is to
2073 * be recorded by transform feedback, we can simply discard all geometry
2074 * bound to these streams when transform feedback is disabled.
2075 */
2076 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2077 return;
2078
2079 /* If we're outputting 32 control data bits or less, then we can wait
2080 * until the shader is over to output them all. Otherwise we need to
2081 * output them as we go. Now is the time to do it, since we're about to
2082 * output the vertex_count'th vertex, so it's guaranteed that the
2083 * control data bits associated with the (vertex_count - 1)th vertex are
2084 * correct.
2085 */
2086 if (gs_compile->control_data_header_size_bits > 32) {
2087 const fs_builder abld =
2088 bld.annotate("emit vertex: emit control data bits");
2089
2090 /* Only emit control data bits if we've finished accumulating a batch
2091 * of 32 bits. This is the case when:
2092 *
2093 * (vertex_count * bits_per_vertex) % 32 == 0
2094 *
2095 * (in other words, when the last 5 bits of vertex_count *
2096 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2097 * integer n (which is always the case, since bits_per_vertex is
2098 * always 1 or 2), this is equivalent to requiring that the last 5-n
2099 * bits of vertex_count are 0:
2100 *
2101 * vertex_count & (2^(5-n) - 1) == 0
2102 *
2103 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2104 * equivalent to:
2105 *
2106 * vertex_count & (32 / bits_per_vertex - 1) == 0
2107 *
2108 * TODO: If vertex_count is an immediate, we could do some of this math
2109 * at compile time...
2110 */
2111 fs_inst *inst =
2112 abld.AND(bld.null_reg_d(), vertex_count,
2113 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2114 inst->conditional_mod = BRW_CONDITIONAL_Z;
2115
2116 abld.IF(BRW_PREDICATE_NORMAL);
2117 /* If vertex_count is 0, then no control data bits have been
2118 * accumulated yet, so we can skip emitting them.
2119 */
2120 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2121 BRW_CONDITIONAL_NEQ);
2122 abld.IF(BRW_PREDICATE_NORMAL);
2123 emit_gs_control_data_bits(vertex_count);
2124 abld.emit(BRW_OPCODE_ENDIF);
2125
2126 /* Reset control_data_bits to 0 so we can start accumulating a new
2127 * batch.
2128 *
2129 * Note: in the case where vertex_count == 0, this neutralizes the
2130 * effect of any call to EndPrimitive() that the shader may have
2131 * made before outputting its first vertex.
2132 */
2133 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2134 inst->force_writemask_all = true;
2135 abld.emit(BRW_OPCODE_ENDIF);
2136 }
2137
2138 emit_urb_writes(vertex_count);
2139
2140 /* In stream mode we have to set control data bits for all vertices
2141 * unless we have disabled control data bits completely (which we do
2142 * do for GL_POINTS outputs that don't use streams).
2143 */
2144 if (gs_compile->control_data_header_size_bits > 0 &&
2145 gs_prog_data->control_data_format ==
2146 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2147 set_gs_stream_control_data_bits(vertex_count, stream_id);
2148 }
2149 }
2150
2151 void
2152 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2153 const nir_src &vertex_src,
2154 unsigned base_offset,
2155 const nir_src &offset_src,
2156 unsigned num_components,
2157 unsigned first_component)
2158 {
2159 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2160
2161 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2162 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2163 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2164
2165 /* TODO: figure out push input layout for invocations == 1 */
2166 /* TODO: make this work with 64-bit inputs */
2167 if (gs_prog_data->invocations == 1 &&
2168 type_sz(dst.type) <= 4 &&
2169 offset_const != NULL && vertex_const != NULL &&
2170 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2171 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2172 vertex_const->u32[0] * push_reg_count;
2173 for (unsigned i = 0; i < num_components; i++) {
2174 bld.MOV(offset(dst, bld, i),
2175 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2176 }
2177 return;
2178 }
2179
2180 /* Resort to the pull model. Ensure the VUE handles are provided. */
2181 assert(gs_prog_data->base.include_vue_handles);
2182
2183 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2184 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2185
2186 if (gs_prog_data->invocations == 1) {
2187 if (vertex_const) {
2188 /* The vertex index is constant; just select the proper URB handle. */
2189 icp_handle =
2190 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2191 BRW_REGISTER_TYPE_UD);
2192 } else {
2193 /* The vertex index is non-constant. We need to use indirect
2194 * addressing to fetch the proper URB handle.
2195 *
2196 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2197 * indicating that channel <n> should read the handle from
2198 * DWord <n>. We convert that to bytes by multiplying by 4.
2199 *
2200 * Next, we convert the vertex index to bytes by multiplying
2201 * by 32 (shifting by 5), and add the two together. This is
2202 * the final indirect byte offset.
2203 */
2204 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2205 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2206 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2207 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2208
2209 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2210 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2211 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2212 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2213 /* Convert vertex_index to bytes (multiply by 32) */
2214 bld.SHL(vertex_offset_bytes,
2215 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2216 brw_imm_ud(5u));
2217 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2218
2219 /* Use first_icp_handle as the base offset. There is one register
2220 * of URB handles per vertex, so inform the register allocator that
2221 * we might read up to nir->info.gs.vertices_in registers.
2222 */
2223 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2224 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2225 fs_reg(icp_offset_bytes),
2226 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2227 }
2228 } else {
2229 assert(gs_prog_data->invocations > 1);
2230
2231 if (vertex_const) {
2232 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2233 bld.MOV(icp_handle,
2234 retype(brw_vec1_grf(first_icp_handle +
2235 vertex_const->i32[0] / 8,
2236 vertex_const->i32[0] % 8),
2237 BRW_REGISTER_TYPE_UD));
2238 } else {
2239 /* The vertex index is non-constant. We need to use indirect
2240 * addressing to fetch the proper URB handle.
2241 *
2242 */
2243 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2244
2245 /* Convert vertex_index to bytes (multiply by 4) */
2246 bld.SHL(icp_offset_bytes,
2247 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2248 brw_imm_ud(2u));
2249
2250 /* Use first_icp_handle as the base offset. There is one DWord
2251 * of URB handles per vertex, so inform the register allocator that
2252 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2253 */
2254 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2255 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2256 fs_reg(icp_offset_bytes),
2257 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2258 REG_SIZE));
2259 }
2260 }
2261
2262 fs_inst *inst;
2263
2264 fs_reg tmp_dst = dst;
2265 fs_reg indirect_offset = get_nir_src(offset_src);
2266 unsigned num_iterations = 1;
2267 unsigned orig_num_components = num_components;
2268
2269 if (type_sz(dst.type) == 8) {
2270 if (num_components > 2) {
2271 num_iterations = 2;
2272 num_components = 2;
2273 }
2274 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2275 tmp_dst = tmp;
2276 first_component = first_component / 2;
2277 }
2278
2279 for (unsigned iter = 0; iter < num_iterations; iter++) {
2280 if (offset_const) {
2281 /* Constant indexing - use global offset. */
2282 if (first_component != 0) {
2283 unsigned read_components = num_components + first_component;
2284 fs_reg tmp = bld.vgrf(dst.type, read_components);
2285 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2286 inst->size_written = read_components *
2287 tmp.component_size(inst->exec_size);
2288 for (unsigned i = 0; i < num_components; i++) {
2289 bld.MOV(offset(tmp_dst, bld, i),
2290 offset(tmp, bld, i + first_component));
2291 }
2292 } else {
2293 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2294 icp_handle);
2295 inst->size_written = num_components *
2296 tmp_dst.component_size(inst->exec_size);
2297 }
2298 inst->offset = base_offset + offset_const->u32[0];
2299 inst->mlen = 1;
2300 } else {
2301 /* Indirect indexing - use per-slot offsets as well. */
2302 const fs_reg srcs[] = { icp_handle, indirect_offset };
2303 unsigned read_components = num_components + first_component;
2304 fs_reg tmp = bld.vgrf(dst.type, read_components);
2305 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2306 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2307 if (first_component != 0) {
2308 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2309 payload);
2310 inst->size_written = read_components *
2311 tmp.component_size(inst->exec_size);
2312 for (unsigned i = 0; i < num_components; i++) {
2313 bld.MOV(offset(tmp_dst, bld, i),
2314 offset(tmp, bld, i + first_component));
2315 }
2316 } else {
2317 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2318 payload);
2319 inst->size_written = num_components *
2320 tmp_dst.component_size(inst->exec_size);
2321 }
2322 inst->offset = base_offset;
2323 inst->mlen = 2;
2324 }
2325
2326 if (type_sz(dst.type) == 8) {
2327 shuffle_from_32bit_read(bld,
2328 offset(dst, bld, iter * 2),
2329 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2330 0,
2331 num_components);
2332 }
2333
2334 if (num_iterations > 1) {
2335 num_components = orig_num_components - 2;
2336 if(offset_const) {
2337 base_offset++;
2338 } else {
2339 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2340 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2341 indirect_offset = new_indirect;
2342 }
2343 }
2344 }
2345 }
2346
2347 fs_reg
2348 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2349 {
2350 nir_src *offset_src = nir_get_io_offset_src(instr);
2351 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2352
2353 if (const_value) {
2354 /* The only constant offset we should find is 0. brw_nir.c's
2355 * add_const_offset_to_base() will fold other constant offsets
2356 * into instr->const_index[0].
2357 */
2358 assert(const_value->u32[0] == 0);
2359 return fs_reg();
2360 }
2361
2362 return get_nir_src(*offset_src);
2363 }
2364
2365 static void
2366 do_untyped_vector_read(const fs_builder &bld,
2367 const fs_reg dest,
2368 const fs_reg surf_index,
2369 const fs_reg offset_reg,
2370 unsigned num_components)
2371 {
2372 if (type_sz(dest.type) <= 2) {
2373 assert(dest.stride == 1);
2374 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2375
2376 if (is_const_offset) {
2377 uint32_t start = offset_reg.ud & ~3;
2378 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2379 end = ALIGN(end, 4);
2380 assert (end - start <= 16);
2381
2382 /* At this point we have 16-bit component/s that have constant
2383 * offset aligned to 4-bytes that can be read with untyped_reads.
2384 * untyped_read message requires 32-bit aligned offsets.
2385 */
2386 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2387 unsigned num_components_32bit = (end - start) / 4;
2388
2389 fs_reg read_result =
2390 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2391 1 /* dims */,
2392 num_components_32bit,
2393 BRW_PREDICATE_NONE);
2394 shuffle_from_32bit_read(bld, dest, read_result, first_component,
2395 num_components);
2396 } else {
2397 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2398 for (unsigned i = 0; i < num_components; i++) {
2399 if (i == 0) {
2400 bld.MOV(read_offset, offset_reg);
2401 } else {
2402 bld.ADD(read_offset, offset_reg,
2403 brw_imm_ud(i * type_sz(dest.type)));
2404 }
2405 /* Non constant offsets are not guaranteed to be aligned 32-bits
2406 * so they are read using one byte_scattered_read message
2407 * for each component.
2408 */
2409 fs_reg read_result =
2410 emit_byte_scattered_read(bld, surf_index, read_offset,
2411 1 /* dims */, 1,
2412 type_sz(dest.type) * 8 /* bit_size */,
2413 BRW_PREDICATE_NONE);
2414 bld.MOV(offset(dest, bld, i),
2415 subscript (read_result, dest.type, 0));
2416 }
2417 }
2418 } else if (type_sz(dest.type) == 4) {
2419 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2420 1 /* dims */,
2421 num_components,
2422 BRW_PREDICATE_NONE);
2423 read_result.type = dest.type;
2424 for (unsigned i = 0; i < num_components; i++)
2425 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2426 } else if (type_sz(dest.type) == 8) {
2427 /* Reading a dvec, so we need to:
2428 *
2429 * 1. Multiply num_components by 2, to account for the fact that we
2430 * need to read 64-bit components.
2431 * 2. Shuffle the result of the load to form valid 64-bit elements
2432 * 3. Emit a second load (for components z/w) if needed.
2433 */
2434 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2435 bld.MOV(read_offset, offset_reg);
2436
2437 int iters = num_components <= 2 ? 1 : 2;
2438
2439 /* Load the dvec, the first iteration loads components x/y, the second
2440 * iteration, if needed, loads components z/w
2441 */
2442 for (int it = 0; it < iters; it++) {
2443 /* Compute number of components to read in this iteration */
2444 int iter_components = MIN2(2, num_components);
2445 num_components -= iter_components;
2446
2447 /* Read. Since this message reads 32-bit components, we need to
2448 * read twice as many components.
2449 */
2450 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2451 1 /* dims */,
2452 iter_components * 2,
2453 BRW_PREDICATE_NONE);
2454
2455 /* Shuffle the 32-bit load result into valid 64-bit data */
2456 shuffle_from_32bit_read(bld, offset(dest, bld, it * 2),
2457 read_result, 0, iter_components);
2458
2459 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2460 }
2461 } else {
2462 unreachable("Unsupported type");
2463 }
2464 }
2465
2466 void
2467 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2468 nir_intrinsic_instr *instr)
2469 {
2470 assert(stage == MESA_SHADER_VERTEX);
2471
2472 fs_reg dest;
2473 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2474 dest = get_nir_dest(instr->dest);
2475
2476 switch (instr->intrinsic) {
2477 case nir_intrinsic_load_vertex_id:
2478 case nir_intrinsic_load_base_vertex:
2479 unreachable("should be lowered by nir_lower_system_values()");
2480
2481 case nir_intrinsic_load_vertex_id_zero_base:
2482 case nir_intrinsic_load_instance_id:
2483 case nir_intrinsic_load_base_instance:
2484 case nir_intrinsic_load_draw_id: {
2485 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2486 fs_reg val = nir_system_values[sv];
2487 assert(val.file != BAD_FILE);
2488 dest.type = val.type;
2489 bld.MOV(dest, val);
2490 break;
2491 }
2492
2493 case nir_intrinsic_load_input: {
2494 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2495 unsigned first_component = nir_intrinsic_component(instr);
2496 unsigned num_components = instr->num_components;
2497
2498 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2499 assert(const_offset && "Indirect input loads not allowed");
2500 src = offset(src, bld, const_offset->u32[0]);
2501
2502 if (type_sz(dest.type) == 8)
2503 first_component /= 2;
2504
2505 /* For 16-bit support maybe a temporary will be needed to copy from
2506 * the ATTR file.
2507 */
2508 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2509 first_component, num_components);
2510 break;
2511 }
2512
2513 case nir_intrinsic_load_first_vertex:
2514 case nir_intrinsic_load_is_indexed_draw:
2515 unreachable("lowered by brw_nir_lower_vs_inputs");
2516
2517 default:
2518 nir_emit_intrinsic(bld, instr);
2519 break;
2520 }
2521 }
2522
2523 void
2524 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2525 nir_intrinsic_instr *instr)
2526 {
2527 assert(stage == MESA_SHADER_TESS_CTRL);
2528 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2529 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2530
2531 fs_reg dst;
2532 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2533 dst = get_nir_dest(instr->dest);
2534
2535 switch (instr->intrinsic) {
2536 case nir_intrinsic_load_primitive_id:
2537 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2538 break;
2539 case nir_intrinsic_load_invocation_id:
2540 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2541 break;
2542 case nir_intrinsic_load_patch_vertices_in:
2543 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2544 brw_imm_d(tcs_key->input_vertices));
2545 break;
2546
2547 case nir_intrinsic_barrier: {
2548 if (tcs_prog_data->instances == 1)
2549 break;
2550
2551 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2552 fs_reg m0_2 = component(m0, 2);
2553
2554 const fs_builder chanbld = bld.exec_all().group(1, 0);
2555
2556 /* Zero the message header */
2557 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2558
2559 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2560 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2561 brw_imm_ud(INTEL_MASK(16, 13)));
2562
2563 /* Shift it up to bits 27:24. */
2564 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2565
2566 /* Set the Barrier Count and the enable bit */
2567 chanbld.OR(m0_2, m0_2,
2568 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2569
2570 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2571 break;
2572 }
2573
2574 case nir_intrinsic_load_input:
2575 unreachable("nir_lower_io should never give us these.");
2576 break;
2577
2578 case nir_intrinsic_load_per_vertex_input: {
2579 fs_reg indirect_offset = get_indirect_offset(instr);
2580 unsigned imm_offset = instr->const_index[0];
2581
2582 const nir_src &vertex_src = instr->src[0];
2583 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2584
2585 fs_inst *inst;
2586
2587 fs_reg icp_handle;
2588
2589 if (vertex_const) {
2590 /* Emit a MOV to resolve <0,1,0> regioning. */
2591 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2592 bld.MOV(icp_handle,
2593 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2594 vertex_const->i32[0] & 7),
2595 BRW_REGISTER_TYPE_UD));
2596 } else if (tcs_prog_data->instances == 1 &&
2597 vertex_src.is_ssa &&
2598 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2599 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2600 /* For the common case of only 1 instance, an array index of
2601 * gl_InvocationID means reading g1. Skip all the indirect work.
2602 */
2603 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2604 } else {
2605 /* The vertex index is non-constant. We need to use indirect
2606 * addressing to fetch the proper URB handle.
2607 */
2608 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2609
2610 /* Each ICP handle is a single DWord (4 bytes) */
2611 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2612 bld.SHL(vertex_offset_bytes,
2613 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2614 brw_imm_ud(2u));
2615
2616 /* Start at g1. We might read up to 4 registers. */
2617 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2618 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2619 brw_imm_ud(4 * REG_SIZE));
2620 }
2621
2622 /* We can only read two double components with each URB read, so
2623 * we send two read messages in that case, each one loading up to
2624 * two double components.
2625 */
2626 unsigned num_iterations = 1;
2627 unsigned num_components = instr->num_components;
2628 unsigned first_component = nir_intrinsic_component(instr);
2629 fs_reg orig_dst = dst;
2630 if (type_sz(dst.type) == 8) {
2631 first_component = first_component / 2;
2632 if (instr->num_components > 2) {
2633 num_iterations = 2;
2634 num_components = 2;
2635 }
2636
2637 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2638 dst = tmp;
2639 }
2640
2641 for (unsigned iter = 0; iter < num_iterations; iter++) {
2642 if (indirect_offset.file == BAD_FILE) {
2643 /* Constant indexing - use global offset. */
2644 if (first_component != 0) {
2645 unsigned read_components = num_components + first_component;
2646 fs_reg tmp = bld.vgrf(dst.type, read_components);
2647 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2648 for (unsigned i = 0; i < num_components; i++) {
2649 bld.MOV(offset(dst, bld, i),
2650 offset(tmp, bld, i + first_component));
2651 }
2652 } else {
2653 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2654 }
2655 inst->offset = imm_offset;
2656 inst->mlen = 1;
2657 } else {
2658 /* Indirect indexing - use per-slot offsets as well. */
2659 const fs_reg srcs[] = { icp_handle, indirect_offset };
2660 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2661 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2662 if (first_component != 0) {
2663 unsigned read_components = num_components + first_component;
2664 fs_reg tmp = bld.vgrf(dst.type, read_components);
2665 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2666 payload);
2667 for (unsigned i = 0; i < num_components; i++) {
2668 bld.MOV(offset(dst, bld, i),
2669 offset(tmp, bld, i + first_component));
2670 }
2671 } else {
2672 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2673 payload);
2674 }
2675 inst->offset = imm_offset;
2676 inst->mlen = 2;
2677 }
2678 inst->size_written = (num_components + first_component) *
2679 inst->dst.component_size(inst->exec_size);
2680
2681 /* If we are reading 64-bit data using 32-bit read messages we need
2682 * build proper 64-bit data elements by shuffling the low and high
2683 * 32-bit components around like we do for other things like UBOs
2684 * or SSBOs.
2685 */
2686 if (type_sz(dst.type) == 8) {
2687 shuffle_from_32bit_read(bld,
2688 offset(orig_dst, bld, iter * 2),
2689 retype(dst, BRW_REGISTER_TYPE_D),
2690 0, num_components);
2691 }
2692
2693 /* Copy the temporary to the destination to deal with writemasking.
2694 *
2695 * Also attempt to deal with gl_PointSize being in the .w component.
2696 */
2697 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2698 assert(type_sz(dst.type) < 8);
2699 inst->dst = bld.vgrf(dst.type, 4);
2700 inst->size_written = 4 * REG_SIZE;
2701 bld.MOV(dst, offset(inst->dst, bld, 3));
2702 }
2703
2704 /* If we are loading double data and we need a second read message
2705 * adjust the write offset
2706 */
2707 if (num_iterations > 1) {
2708 num_components = instr->num_components - 2;
2709 imm_offset++;
2710 }
2711 }
2712 break;
2713 }
2714
2715 case nir_intrinsic_load_output:
2716 case nir_intrinsic_load_per_vertex_output: {
2717 fs_reg indirect_offset = get_indirect_offset(instr);
2718 unsigned imm_offset = instr->const_index[0];
2719 unsigned first_component = nir_intrinsic_component(instr);
2720
2721 fs_inst *inst;
2722 if (indirect_offset.file == BAD_FILE) {
2723 /* Replicate the patch handle to all enabled channels */
2724 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2725 bld.MOV(patch_handle,
2726 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2727
2728 {
2729 if (first_component != 0) {
2730 unsigned read_components =
2731 instr->num_components + first_component;
2732 fs_reg tmp = bld.vgrf(dst.type, read_components);
2733 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2734 patch_handle);
2735 inst->size_written = read_components * REG_SIZE;
2736 for (unsigned i = 0; i < instr->num_components; i++) {
2737 bld.MOV(offset(dst, bld, i),
2738 offset(tmp, bld, i + first_component));
2739 }
2740 } else {
2741 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2742 patch_handle);
2743 inst->size_written = instr->num_components * REG_SIZE;
2744 }
2745 inst->offset = imm_offset;
2746 inst->mlen = 1;
2747 }
2748 } else {
2749 /* Indirect indexing - use per-slot offsets as well. */
2750 const fs_reg srcs[] = {
2751 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2752 indirect_offset
2753 };
2754 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2755 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2756 if (first_component != 0) {
2757 unsigned read_components =
2758 instr->num_components + first_component;
2759 fs_reg tmp = bld.vgrf(dst.type, read_components);
2760 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2761 payload);
2762 inst->size_written = read_components * REG_SIZE;
2763 for (unsigned i = 0; i < instr->num_components; i++) {
2764 bld.MOV(offset(dst, bld, i),
2765 offset(tmp, bld, i + first_component));
2766 }
2767 } else {
2768 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2769 payload);
2770 inst->size_written = instr->num_components * REG_SIZE;
2771 }
2772 inst->offset = imm_offset;
2773 inst->mlen = 2;
2774 }
2775 break;
2776 }
2777
2778 case nir_intrinsic_store_output:
2779 case nir_intrinsic_store_per_vertex_output: {
2780 fs_reg value = get_nir_src(instr->src[0]);
2781 bool is_64bit = (instr->src[0].is_ssa ?
2782 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2783 fs_reg indirect_offset = get_indirect_offset(instr);
2784 unsigned imm_offset = instr->const_index[0];
2785 unsigned mask = instr->const_index[1];
2786 unsigned header_regs = 0;
2787 fs_reg srcs[7];
2788 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2789
2790 if (indirect_offset.file != BAD_FILE) {
2791 srcs[header_regs++] = indirect_offset;
2792 }
2793
2794 if (mask == 0)
2795 break;
2796
2797 unsigned num_components = util_last_bit(mask);
2798 enum opcode opcode;
2799
2800 /* We can only pack two 64-bit components in a single message, so send
2801 * 2 messages if we have more components
2802 */
2803 unsigned num_iterations = 1;
2804 unsigned iter_components = num_components;
2805 unsigned first_component = nir_intrinsic_component(instr);
2806 if (is_64bit) {
2807 first_component = first_component / 2;
2808 if (instr->num_components > 2) {
2809 num_iterations = 2;
2810 iter_components = 2;
2811 }
2812 }
2813
2814 mask = mask << first_component;
2815
2816 for (unsigned iter = 0; iter < num_iterations; iter++) {
2817 if (!is_64bit && mask != WRITEMASK_XYZW) {
2818 srcs[header_regs++] = brw_imm_ud(mask << 16);
2819 opcode = indirect_offset.file != BAD_FILE ?
2820 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2821 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2822 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2823 /* Expand the 64-bit mask to 32-bit channels. We only handle
2824 * two channels in each iteration, so we only care about X/Y.
2825 */
2826 unsigned mask32 = 0;
2827 if (mask & WRITEMASK_X)
2828 mask32 |= WRITEMASK_XY;
2829 if (mask & WRITEMASK_Y)
2830 mask32 |= WRITEMASK_ZW;
2831
2832 /* If the mask does not include any of the channels X or Y there
2833 * is nothing to do in this iteration. Move on to the next couple
2834 * of 64-bit channels.
2835 */
2836 if (!mask32) {
2837 mask >>= 2;
2838 imm_offset++;
2839 continue;
2840 }
2841
2842 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2843 opcode = indirect_offset.file != BAD_FILE ?
2844 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2845 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2846 } else {
2847 opcode = indirect_offset.file != BAD_FILE ?
2848 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2849 SHADER_OPCODE_URB_WRITE_SIMD8;
2850 }
2851
2852 for (unsigned i = 0; i < iter_components; i++) {
2853 if (!(mask & (1 << (i + first_component))))
2854 continue;
2855
2856 if (!is_64bit) {
2857 srcs[header_regs + i + first_component] = offset(value, bld, i);
2858 } else {
2859 /* We need to shuffle the 64-bit data to match the layout
2860 * expected by our 32-bit URB write messages. We use a temporary
2861 * for that.
2862 */
2863 unsigned channel = iter * 2 + i;
2864 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2865
2866 srcs[header_regs + (i + first_component) * 2] = dest;
2867 srcs[header_regs + (i + first_component) * 2 + 1] =
2868 offset(dest, bld, 1);
2869 }
2870 }
2871
2872 unsigned mlen =
2873 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2874 (is_64bit ? 2 * first_component : first_component);
2875 fs_reg payload =
2876 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2877 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2878
2879 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2880 inst->offset = imm_offset;
2881 inst->mlen = mlen;
2882
2883 /* If this is a 64-bit attribute, select the next two 64-bit channels
2884 * to be handled in the next iteration.
2885 */
2886 if (is_64bit) {
2887 mask >>= 2;
2888 imm_offset++;
2889 }
2890 }
2891 break;
2892 }
2893
2894 default:
2895 nir_emit_intrinsic(bld, instr);
2896 break;
2897 }
2898 }
2899
2900 void
2901 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2902 nir_intrinsic_instr *instr)
2903 {
2904 assert(stage == MESA_SHADER_TESS_EVAL);
2905 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2906
2907 fs_reg dest;
2908 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2909 dest = get_nir_dest(instr->dest);
2910
2911 switch (instr->intrinsic) {
2912 case nir_intrinsic_load_primitive_id:
2913 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2914 break;
2915 case nir_intrinsic_load_tess_coord:
2916 /* gl_TessCoord is part of the payload in g1-3 */
2917 for (unsigned i = 0; i < 3; i++) {
2918 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2919 }
2920 break;
2921
2922 case nir_intrinsic_load_input:
2923 case nir_intrinsic_load_per_vertex_input: {
2924 fs_reg indirect_offset = get_indirect_offset(instr);
2925 unsigned imm_offset = instr->const_index[0];
2926 unsigned first_component = nir_intrinsic_component(instr);
2927
2928 if (type_sz(dest.type) == 8) {
2929 first_component = first_component / 2;
2930 }
2931
2932 fs_inst *inst;
2933 if (indirect_offset.file == BAD_FILE) {
2934 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2935 * which is 16 registers (since each holds 2 vec4 slots).
2936 */
2937 unsigned slot_count = 1;
2938 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2939 slot_count++;
2940
2941 const unsigned max_push_slots = 32;
2942 if (imm_offset + slot_count <= max_push_slots) {
2943 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2944 for (int i = 0; i < instr->num_components; i++) {
2945 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2946 i + first_component;
2947 bld.MOV(offset(dest, bld, i), component(src, comp));
2948 }
2949
2950 tes_prog_data->base.urb_read_length =
2951 MAX2(tes_prog_data->base.urb_read_length,
2952 DIV_ROUND_UP(imm_offset + slot_count, 2));
2953 } else {
2954 /* Replicate the patch handle to all enabled channels */
2955 const fs_reg srcs[] = {
2956 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2957 };
2958 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2959 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2960
2961 if (first_component != 0) {
2962 unsigned read_components =
2963 instr->num_components + first_component;
2964 fs_reg tmp = bld.vgrf(dest.type, read_components);
2965 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2966 patch_handle);
2967 inst->size_written = read_components * REG_SIZE;
2968 for (unsigned i = 0; i < instr->num_components; i++) {
2969 bld.MOV(offset(dest, bld, i),
2970 offset(tmp, bld, i + first_component));
2971 }
2972 } else {
2973 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2974 patch_handle);
2975 inst->size_written = instr->num_components * REG_SIZE;
2976 }
2977 inst->mlen = 1;
2978 inst->offset = imm_offset;
2979 }
2980 } else {
2981 /* Indirect indexing - use per-slot offsets as well. */
2982
2983 /* We can only read two double components with each URB read, so
2984 * we send two read messages in that case, each one loading up to
2985 * two double components.
2986 */
2987 unsigned num_iterations = 1;
2988 unsigned num_components = instr->num_components;
2989 fs_reg orig_dest = dest;
2990 if (type_sz(dest.type) == 8) {
2991 if (instr->num_components > 2) {
2992 num_iterations = 2;
2993 num_components = 2;
2994 }
2995 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2996 dest = tmp;
2997 }
2998
2999 for (unsigned iter = 0; iter < num_iterations; iter++) {
3000 const fs_reg srcs[] = {
3001 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3002 indirect_offset
3003 };
3004 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3005 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3006
3007 if (first_component != 0) {
3008 unsigned read_components =
3009 num_components + first_component;
3010 fs_reg tmp = bld.vgrf(dest.type, read_components);
3011 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3012 payload);
3013 for (unsigned i = 0; i < num_components; i++) {
3014 bld.MOV(offset(dest, bld, i),
3015 offset(tmp, bld, i + first_component));
3016 }
3017 } else {
3018 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3019 payload);
3020 }
3021 inst->mlen = 2;
3022 inst->offset = imm_offset;
3023 inst->size_written = (num_components + first_component) *
3024 inst->dst.component_size(inst->exec_size);
3025
3026 /* If we are reading 64-bit data using 32-bit read messages we need
3027 * build proper 64-bit data elements by shuffling the low and high
3028 * 32-bit components around like we do for other things like UBOs
3029 * or SSBOs.
3030 */
3031 if (type_sz(dest.type) == 8) {
3032 shuffle_from_32bit_read(bld,
3033 offset(orig_dest, bld, iter * 2),
3034 retype(dest, BRW_REGISTER_TYPE_D),
3035 0, num_components);
3036 }
3037
3038 /* If we are loading double data and we need a second read message
3039 * adjust the offset
3040 */
3041 if (num_iterations > 1) {
3042 num_components = instr->num_components - 2;
3043 imm_offset++;
3044 }
3045 }
3046 }
3047 break;
3048 }
3049 default:
3050 nir_emit_intrinsic(bld, instr);
3051 break;
3052 }
3053 }
3054
3055 void
3056 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3057 nir_intrinsic_instr *instr)
3058 {
3059 assert(stage == MESA_SHADER_GEOMETRY);
3060 fs_reg indirect_offset;
3061
3062 fs_reg dest;
3063 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3064 dest = get_nir_dest(instr->dest);
3065
3066 switch (instr->intrinsic) {
3067 case nir_intrinsic_load_primitive_id:
3068 assert(stage == MESA_SHADER_GEOMETRY);
3069 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3070 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3071 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3072 break;
3073
3074 case nir_intrinsic_load_input:
3075 unreachable("load_input intrinsics are invalid for the GS stage");
3076
3077 case nir_intrinsic_load_per_vertex_input:
3078 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3079 instr->src[1], instr->num_components,
3080 nir_intrinsic_component(instr));
3081 break;
3082
3083 case nir_intrinsic_emit_vertex_with_counter:
3084 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3085 break;
3086
3087 case nir_intrinsic_end_primitive_with_counter:
3088 emit_gs_end_primitive(instr->src[0]);
3089 break;
3090
3091 case nir_intrinsic_set_vertex_count:
3092 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3093 break;
3094
3095 case nir_intrinsic_load_invocation_id: {
3096 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3097 assert(val.file != BAD_FILE);
3098 dest.type = val.type;
3099 bld.MOV(dest, val);
3100 break;
3101 }
3102
3103 default:
3104 nir_emit_intrinsic(bld, instr);
3105 break;
3106 }
3107 }
3108
3109 /**
3110 * Fetch the current render target layer index.
3111 */
3112 static fs_reg
3113 fetch_render_target_array_index(const fs_builder &bld)
3114 {
3115 if (bld.shader->devinfo->gen >= 6) {
3116 /* The render target array index is provided in the thread payload as
3117 * bits 26:16 of r0.0.
3118 */
3119 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3120 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3121 brw_imm_uw(0x7ff));
3122 return idx;
3123 } else {
3124 /* Pre-SNB we only ever render into the first layer of the framebuffer
3125 * since layered rendering is not implemented.
3126 */
3127 return brw_imm_ud(0);
3128 }
3129 }
3130
3131 /**
3132 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3133 * framebuffer at the current fragment coordinates and sample index.
3134 */
3135 fs_inst *
3136 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3137 unsigned target)
3138 {
3139 const struct gen_device_info *devinfo = bld.shader->devinfo;
3140
3141 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3142 const brw_wm_prog_key *wm_key =
3143 reinterpret_cast<const brw_wm_prog_key *>(key);
3144 assert(!wm_key->coherent_fb_fetch);
3145 const struct brw_wm_prog_data *wm_prog_data =
3146 brw_wm_prog_data(stage_prog_data);
3147
3148 /* Calculate the surface index relative to the start of the texture binding
3149 * table block, since that's what the texturing messages expect.
3150 */
3151 const unsigned surface = target +
3152 wm_prog_data->binding_table.render_target_read_start -
3153 wm_prog_data->base.binding_table.texture_start;
3154
3155 brw_mark_surface_used(
3156 bld.shader->stage_prog_data,
3157 wm_prog_data->binding_table.render_target_read_start + target);
3158
3159 /* Calculate the fragment coordinates. */
3160 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3161 bld.MOV(offset(coords, bld, 0), pixel_x);
3162 bld.MOV(offset(coords, bld, 1), pixel_y);
3163 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3164
3165 /* Calculate the sample index and MCS payload when multisampling. Luckily
3166 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3167 * shouldn't be necessary to recompile based on whether the framebuffer is
3168 * CMS or UMS.
3169 */
3170 if (wm_key->multisample_fbo &&
3171 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3172 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3173
3174 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3175 const fs_reg mcs = wm_key->multisample_fbo ?
3176 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3177
3178 /* Use either a normal or a CMS texel fetch message depending on whether
3179 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3180 * message just in case the framebuffer uses 16x multisampling, it should
3181 * be equivalent to the normal CMS fetch for lower multisampling modes.
3182 */
3183 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3184 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3185 SHADER_OPCODE_TXF_CMS_LOGICAL;
3186
3187 /* Emit the instruction. */
3188 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3189 sample, mcs,
3190 brw_imm_ud(surface), brw_imm_ud(0),
3191 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3192 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3193
3194 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3195 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3196
3197 return inst;
3198 }
3199
3200 /**
3201 * Actual coherent framebuffer read implemented using the native render target
3202 * read message. Requires SKL+.
3203 */
3204 static fs_inst *
3205 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3206 {
3207 assert(bld.shader->devinfo->gen >= 9);
3208 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3209 inst->target = target;
3210 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3211
3212 return inst;
3213 }
3214
3215 static fs_reg
3216 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3217 {
3218 if (n && regs[0].file != BAD_FILE) {
3219 return regs[0];
3220
3221 } else {
3222 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3223
3224 for (unsigned i = 0; i < n; i++)
3225 regs[i] = tmp;
3226
3227 return tmp;
3228 }
3229 }
3230
3231 static fs_reg
3232 alloc_frag_output(fs_visitor *v, unsigned location)
3233 {
3234 assert(v->stage == MESA_SHADER_FRAGMENT);
3235 const brw_wm_prog_key *const key =
3236 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3237 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3238 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3239
3240 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3241 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3242
3243 else if (l == FRAG_RESULT_COLOR)
3244 return alloc_temporary(v->bld, 4, v->outputs,
3245 MAX2(key->nr_color_regions, 1));
3246
3247 else if (l == FRAG_RESULT_DEPTH)
3248 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3249
3250 else if (l == FRAG_RESULT_STENCIL)
3251 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3252
3253 else if (l == FRAG_RESULT_SAMPLE_MASK)
3254 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3255
3256 else if (l >= FRAG_RESULT_DATA0 &&
3257 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3258 return alloc_temporary(v->bld, 4,
3259 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3260
3261 else
3262 unreachable("Invalid location");
3263 }
3264
3265 void
3266 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3267 nir_intrinsic_instr *instr)
3268 {
3269 assert(stage == MESA_SHADER_FRAGMENT);
3270
3271 fs_reg dest;
3272 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3273 dest = get_nir_dest(instr->dest);
3274
3275 switch (instr->intrinsic) {
3276 case nir_intrinsic_load_front_face:
3277 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3278 *emit_frontfacing_interpolation());
3279 break;
3280
3281 case nir_intrinsic_load_sample_pos: {
3282 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3283 assert(sample_pos.file != BAD_FILE);
3284 dest.type = sample_pos.type;
3285 bld.MOV(dest, sample_pos);
3286 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3287 break;
3288 }
3289
3290 case nir_intrinsic_load_layer_id:
3291 dest.type = BRW_REGISTER_TYPE_UD;
3292 bld.MOV(dest, fetch_render_target_array_index(bld));
3293 break;
3294
3295 case nir_intrinsic_load_helper_invocation:
3296 case nir_intrinsic_load_sample_mask_in:
3297 case nir_intrinsic_load_sample_id: {
3298 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3299 fs_reg val = nir_system_values[sv];
3300 assert(val.file != BAD_FILE);
3301 dest.type = val.type;
3302 bld.MOV(dest, val);
3303 break;
3304 }
3305
3306 case nir_intrinsic_store_output: {
3307 const fs_reg src = get_nir_src(instr->src[0]);
3308 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3309 assert(const_offset && "Indirect output stores not allowed");
3310 const unsigned location = nir_intrinsic_base(instr) +
3311 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3312 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3313 src.type);
3314
3315 for (unsigned j = 0; j < instr->num_components; j++)
3316 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3317 offset(src, bld, j));
3318
3319 break;
3320 }
3321
3322 case nir_intrinsic_load_output: {
3323 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3324 BRW_NIR_FRAG_OUTPUT_LOCATION);
3325 assert(l >= FRAG_RESULT_DATA0);
3326 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3327 assert(const_offset && "Indirect output loads not allowed");
3328 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3329 const fs_reg tmp = bld.vgrf(dest.type, 4);
3330
3331 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3332 emit_coherent_fb_read(bld, tmp, target);
3333 else
3334 emit_non_coherent_fb_read(bld, tmp, target);
3335
3336 for (unsigned j = 0; j < instr->num_components; j++) {
3337 bld.MOV(offset(dest, bld, j),
3338 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3339 }
3340
3341 break;
3342 }
3343
3344 case nir_intrinsic_discard:
3345 case nir_intrinsic_discard_if: {
3346 /* We track our discarded pixels in f0.1. By predicating on it, we can
3347 * update just the flag bits that aren't yet discarded. If there's no
3348 * condition, we emit a CMP of g0 != g0, so all currently executing
3349 * channels will get turned off.
3350 */
3351 fs_inst *cmp;
3352 if (instr->intrinsic == nir_intrinsic_discard_if) {
3353 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3354 brw_imm_d(0), BRW_CONDITIONAL_Z);
3355 } else {
3356 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3357 BRW_REGISTER_TYPE_UW));
3358 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3359 }
3360 cmp->predicate = BRW_PREDICATE_NORMAL;
3361 cmp->flag_subreg = 1;
3362
3363 if (devinfo->gen >= 6) {
3364 emit_discard_jump();
3365 }
3366
3367 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3368 break;
3369 }
3370
3371 case nir_intrinsic_load_input: {
3372 /* load_input is only used for flat inputs */
3373 unsigned base = nir_intrinsic_base(instr);
3374 unsigned comp = nir_intrinsic_component(instr);
3375 unsigned num_components = instr->num_components;
3376 fs_reg orig_dest = dest;
3377 enum brw_reg_type type = dest.type;
3378
3379 /* Special case fields in the VUE header */
3380 if (base == VARYING_SLOT_LAYER)
3381 comp = 1;
3382 else if (base == VARYING_SLOT_VIEWPORT)
3383 comp = 2;
3384
3385 if (nir_dest_bit_size(instr->dest) == 64) {
3386 /* const_index is in 32-bit type size units that could not be aligned
3387 * with DF. We need to read the double vector as if it was a float
3388 * vector of twice the number of components to fetch the right data.
3389 */
3390 type = BRW_REGISTER_TYPE_F;
3391 num_components *= 2;
3392 dest = bld.vgrf(type, num_components);
3393 }
3394
3395 for (unsigned int i = 0; i < num_components; i++) {
3396 bld.MOV(offset(retype(dest, type), bld, i),
3397 retype(component(interp_reg(base, comp + i), 3), type));
3398 }
3399
3400 if (nir_dest_bit_size(instr->dest) == 64) {
3401 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3402 instr->num_components);
3403 }
3404 break;
3405 }
3406
3407 case nir_intrinsic_load_barycentric_pixel:
3408 case nir_intrinsic_load_barycentric_centroid:
3409 case nir_intrinsic_load_barycentric_sample:
3410 /* Do nothing - load_interpolated_input handling will handle it later. */
3411 break;
3412
3413 case nir_intrinsic_load_barycentric_at_sample: {
3414 const glsl_interp_mode interpolation =
3415 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3416
3417 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3418
3419 if (const_sample) {
3420 unsigned msg_data = const_sample->i32[0] << 4;
3421
3422 emit_pixel_interpolater_send(bld,
3423 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3424 dest,
3425 fs_reg(), /* src */
3426 brw_imm_ud(msg_data),
3427 interpolation);
3428 } else {
3429 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3430 BRW_REGISTER_TYPE_UD);
3431
3432 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3433 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3434 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3435 bld.exec_all().group(1, 0)
3436 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3437 emit_pixel_interpolater_send(bld,
3438 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3439 dest,
3440 fs_reg(), /* src */
3441 msg_data,
3442 interpolation);
3443 } else {
3444 /* Make a loop that sends a message to the pixel interpolater
3445 * for the sample number in each live channel. If there are
3446 * multiple channels with the same sample number then these
3447 * will be handled simultaneously with a single interation of
3448 * the loop.
3449 */
3450 bld.emit(BRW_OPCODE_DO);
3451
3452 /* Get the next live sample number into sample_id_reg */
3453 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3454
3455 /* Set the flag register so that we can perform the send
3456 * message on all channels that have the same sample number
3457 */
3458 bld.CMP(bld.null_reg_ud(),
3459 sample_src, sample_id,
3460 BRW_CONDITIONAL_EQ);
3461 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3462 bld.exec_all().group(1, 0)
3463 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3464 fs_inst *inst =
3465 emit_pixel_interpolater_send(bld,
3466 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3467 dest,
3468 fs_reg(), /* src */
3469 component(msg_data, 0),
3470 interpolation);
3471 set_predicate(BRW_PREDICATE_NORMAL, inst);
3472
3473 /* Continue the loop if there are any live channels left */
3474 set_predicate_inv(BRW_PREDICATE_NORMAL,
3475 true, /* inverse */
3476 bld.emit(BRW_OPCODE_WHILE));
3477 }
3478 }
3479 break;
3480 }
3481
3482 case nir_intrinsic_load_barycentric_at_offset: {
3483 const glsl_interp_mode interpolation =
3484 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3485
3486 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3487
3488 if (const_offset) {
3489 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3490 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3491
3492 emit_pixel_interpolater_send(bld,
3493 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3494 dest,
3495 fs_reg(), /* src */
3496 brw_imm_ud(off_x | (off_y << 4)),
3497 interpolation);
3498 } else {
3499 fs_reg src = vgrf(glsl_type::ivec2_type);
3500 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3501 BRW_REGISTER_TYPE_F);
3502 for (int i = 0; i < 2; i++) {
3503 fs_reg temp = vgrf(glsl_type::float_type);
3504 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3505 fs_reg itemp = vgrf(glsl_type::int_type);
3506 /* float to int */
3507 bld.MOV(itemp, temp);
3508
3509 /* Clamp the upper end of the range to +7/16.
3510 * ARB_gpu_shader5 requires that we support a maximum offset
3511 * of +0.5, which isn't representable in a S0.4 value -- if
3512 * we didn't clamp it, we'd end up with -8/16, which is the
3513 * opposite of what the shader author wanted.
3514 *
3515 * This is legal due to ARB_gpu_shader5's quantization
3516 * rules:
3517 *
3518 * "Not all values of <offset> may be supported; x and y
3519 * offsets may be rounded to fixed-point values with the
3520 * number of fraction bits given by the
3521 * implementation-dependent constant
3522 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3523 */
3524 set_condmod(BRW_CONDITIONAL_L,
3525 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3526 }
3527
3528 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3529 emit_pixel_interpolater_send(bld,
3530 opcode,
3531 dest,
3532 src,
3533 brw_imm_ud(0u),
3534 interpolation);
3535 }
3536 break;
3537 }
3538
3539 case nir_intrinsic_load_interpolated_input: {
3540 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3541 emit_fragcoord_interpolation(dest);
3542 break;
3543 }
3544
3545 assert(instr->src[0].ssa &&
3546 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3547 nir_intrinsic_instr *bary_intrinsic =
3548 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3549 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3550 enum glsl_interp_mode interp_mode =
3551 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3552 fs_reg dst_xy;
3553
3554 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3555 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3556 /* Use the result of the PI message */
3557 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3558 } else {
3559 /* Use the delta_xy values computed from the payload */
3560 enum brw_barycentric_mode bary =
3561 brw_barycentric_mode(interp_mode, bary_intrin);
3562
3563 dst_xy = this->delta_xy[bary];
3564 }
3565
3566 for (unsigned int i = 0; i < instr->num_components; i++) {
3567 fs_reg interp =
3568 component(interp_reg(nir_intrinsic_base(instr),
3569 nir_intrinsic_component(instr) + i), 0);
3570 interp.type = BRW_REGISTER_TYPE_F;
3571 dest.type = BRW_REGISTER_TYPE_F;
3572
3573 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3574 fs_reg tmp = vgrf(glsl_type::float_type);
3575 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3576 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3577 } else {
3578 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3579 }
3580 }
3581 break;
3582 }
3583
3584 default:
3585 nir_emit_intrinsic(bld, instr);
3586 break;
3587 }
3588 }
3589
3590 void
3591 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3592 nir_intrinsic_instr *instr)
3593 {
3594 assert(stage == MESA_SHADER_COMPUTE);
3595 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3596
3597 fs_reg dest;
3598 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3599 dest = get_nir_dest(instr->dest);
3600
3601 switch (instr->intrinsic) {
3602 case nir_intrinsic_barrier:
3603 emit_barrier();
3604 cs_prog_data->uses_barrier = true;
3605 break;
3606
3607 case nir_intrinsic_load_subgroup_id:
3608 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3609 break;
3610
3611 case nir_intrinsic_load_local_invocation_id:
3612 case nir_intrinsic_load_work_group_id: {
3613 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3614 fs_reg val = nir_system_values[sv];
3615 assert(val.file != BAD_FILE);
3616 dest.type = val.type;
3617 for (unsigned i = 0; i < 3; i++)
3618 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3619 break;
3620 }
3621
3622 case nir_intrinsic_load_num_work_groups: {
3623 const unsigned surface =
3624 cs_prog_data->binding_table.work_groups_start;
3625
3626 cs_prog_data->uses_num_work_groups = true;
3627
3628 fs_reg surf_index = brw_imm_ud(surface);
3629 brw_mark_surface_used(prog_data, surface);
3630
3631 /* Read the 3 GLuint components of gl_NumWorkGroups */
3632 for (unsigned i = 0; i < 3; i++) {
3633 fs_reg read_result =
3634 emit_untyped_read(bld, surf_index,
3635 brw_imm_ud(i << 2),
3636 1 /* dims */, 1 /* size */,
3637 BRW_PREDICATE_NONE);
3638 read_result.type = dest.type;
3639 bld.MOV(dest, read_result);
3640 dest = offset(dest, bld, 1);
3641 }
3642 break;
3643 }
3644
3645 case nir_intrinsic_shared_atomic_add:
3646 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3647 break;
3648 case nir_intrinsic_shared_atomic_imin:
3649 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3650 break;
3651 case nir_intrinsic_shared_atomic_umin:
3652 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3653 break;
3654 case nir_intrinsic_shared_atomic_imax:
3655 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3656 break;
3657 case nir_intrinsic_shared_atomic_umax:
3658 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3659 break;
3660 case nir_intrinsic_shared_atomic_and:
3661 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3662 break;
3663 case nir_intrinsic_shared_atomic_or:
3664 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3665 break;
3666 case nir_intrinsic_shared_atomic_xor:
3667 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3668 break;
3669 case nir_intrinsic_shared_atomic_exchange:
3670 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3671 break;
3672 case nir_intrinsic_shared_atomic_comp_swap:
3673 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3674 break;
3675
3676 case nir_intrinsic_load_shared: {
3677 assert(devinfo->gen >= 7);
3678
3679 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3680
3681 /* Get the offset to read from */
3682 fs_reg offset_reg;
3683 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3684 if (const_offset) {
3685 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3686 } else {
3687 offset_reg = vgrf(glsl_type::uint_type);
3688 bld.ADD(offset_reg,
3689 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3690 brw_imm_ud(instr->const_index[0]));
3691 }
3692
3693 /* Read the vector */
3694 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3695 instr->num_components);
3696 break;
3697 }
3698
3699 case nir_intrinsic_store_shared: {
3700 assert(devinfo->gen >= 7);
3701
3702 /* Block index */
3703 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3704
3705 /* Value */
3706 fs_reg val_reg = get_nir_src(instr->src[0]);
3707
3708 /* Writemask */
3709 unsigned writemask = instr->const_index[1];
3710
3711 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3712 * since the untyped writes below operate in units of 32-bits, which
3713 * means that we need to write twice as many components each time.
3714 * Also, we have to suffle 64-bit data to be in the appropriate layout
3715 * expected by our 32-bit write messages.
3716 */
3717 unsigned type_size = 4;
3718 if (nir_src_bit_size(instr->src[0]) == 64) {
3719 type_size = 8;
3720 val_reg = shuffle_for_32bit_write(bld, val_reg, 0,
3721 instr->num_components);
3722 }
3723
3724 unsigned type_slots = type_size / 4;
3725
3726 /* Combine groups of consecutive enabled channels in one write
3727 * message. We use ffs to find the first enabled channel and then ffs on
3728 * the bit-inverse, down-shifted writemask to determine the length of
3729 * the block of enabled bits.
3730 */
3731 while (writemask) {
3732 unsigned first_component = ffs(writemask) - 1;
3733 unsigned length = ffs(~(writemask >> first_component)) - 1;
3734
3735 /* We can't write more than 2 64-bit components at once. Limit the
3736 * length of the write to what we can do and let the next iteration
3737 * handle the rest
3738 */
3739 if (type_size > 4)
3740 length = MIN2(2, length);
3741
3742 fs_reg offset_reg;
3743 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3744 if (const_offset) {
3745 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3746 type_size * first_component);
3747 } else {
3748 offset_reg = vgrf(glsl_type::uint_type);
3749 bld.ADD(offset_reg,
3750 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3751 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3752 }
3753
3754 emit_untyped_write(bld, surf_index, offset_reg,
3755 offset(val_reg, bld, first_component * type_slots),
3756 1 /* dims */, length * type_slots,
3757 BRW_PREDICATE_NONE);
3758
3759 /* Clear the bits in the writemask that we just wrote, then try
3760 * again to see if more channels are left.
3761 */
3762 writemask &= (15 << (first_component + length));
3763 }
3764
3765 break;
3766 }
3767
3768 default:
3769 nir_emit_intrinsic(bld, instr);
3770 break;
3771 }
3772 }
3773
3774 static fs_reg
3775 brw_nir_reduction_op_identity(const fs_builder &bld,
3776 nir_op op, brw_reg_type type)
3777 {
3778 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3779 switch (type_sz(type)) {
3780 case 2:
3781 assert(type != BRW_REGISTER_TYPE_HF);
3782 return retype(brw_imm_uw(value.u16[0]), type);
3783 case 4:
3784 return retype(brw_imm_ud(value.u32[0]), type);
3785 case 8:
3786 if (type == BRW_REGISTER_TYPE_DF)
3787 return setup_imm_df(bld, value.f64[0]);
3788 else
3789 return retype(brw_imm_u64(value.u64[0]), type);
3790 default:
3791 unreachable("Invalid type size");
3792 }
3793 }
3794
3795 static opcode
3796 brw_op_for_nir_reduction_op(nir_op op)
3797 {
3798 switch (op) {
3799 case nir_op_iadd: return BRW_OPCODE_ADD;
3800 case nir_op_fadd: return BRW_OPCODE_ADD;
3801 case nir_op_imul: return BRW_OPCODE_MUL;
3802 case nir_op_fmul: return BRW_OPCODE_MUL;
3803 case nir_op_imin: return BRW_OPCODE_SEL;
3804 case nir_op_umin: return BRW_OPCODE_SEL;
3805 case nir_op_fmin: return BRW_OPCODE_SEL;
3806 case nir_op_imax: return BRW_OPCODE_SEL;
3807 case nir_op_umax: return BRW_OPCODE_SEL;
3808 case nir_op_fmax: return BRW_OPCODE_SEL;
3809 case nir_op_iand: return BRW_OPCODE_AND;
3810 case nir_op_ior: return BRW_OPCODE_OR;
3811 case nir_op_ixor: return BRW_OPCODE_XOR;
3812 default:
3813 unreachable("Invalid reduction operation");
3814 }
3815 }
3816
3817 static brw_conditional_mod
3818 brw_cond_mod_for_nir_reduction_op(nir_op op)
3819 {
3820 switch (op) {
3821 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3822 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3823 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3824 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3825 case nir_op_imin: return BRW_CONDITIONAL_L;
3826 case nir_op_umin: return BRW_CONDITIONAL_L;
3827 case nir_op_fmin: return BRW_CONDITIONAL_L;
3828 case nir_op_imax: return BRW_CONDITIONAL_GE;
3829 case nir_op_umax: return BRW_CONDITIONAL_GE;
3830 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3831 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3832 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3833 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3834 default:
3835 unreachable("Invalid reduction operation");
3836 }
3837 }
3838
3839 void
3840 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3841 {
3842 fs_reg dest;
3843 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3844 dest = get_nir_dest(instr->dest);
3845
3846 switch (instr->intrinsic) {
3847 case nir_intrinsic_image_deref_load:
3848 case nir_intrinsic_image_deref_store:
3849 case nir_intrinsic_image_deref_atomic_add:
3850 case nir_intrinsic_image_deref_atomic_min:
3851 case nir_intrinsic_image_deref_atomic_max:
3852 case nir_intrinsic_image_deref_atomic_and:
3853 case nir_intrinsic_image_deref_atomic_or:
3854 case nir_intrinsic_image_deref_atomic_xor:
3855 case nir_intrinsic_image_deref_atomic_exchange:
3856 case nir_intrinsic_image_deref_atomic_comp_swap: {
3857 using namespace image_access;
3858
3859 if (stage == MESA_SHADER_FRAGMENT &&
3860 instr->intrinsic != nir_intrinsic_image_deref_load)
3861 brw_wm_prog_data(prog_data)->has_side_effects = true;
3862
3863 /* Get the referenced image variable and type. */
3864 nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
3865 const nir_variable *var = nir_deref_instr_get_variable(deref);
3866 const glsl_type *type = var->type->without_array();
3867 const brw_reg_type base_type = get_image_base_type(type);
3868
3869 /* Get some metadata from the image intrinsic. */
3870 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3871 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3872 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3873 const unsigned format = var->data.image.format;
3874 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3875
3876 /* Get the arguments of the image intrinsic. */
3877 const fs_reg image = get_nir_image_deref(deref);
3878 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3879 BRW_REGISTER_TYPE_UD);
3880 const fs_reg src0 = (info->num_srcs >= 4 ?
3881 retype(get_nir_src(instr->src[3]), base_type) :
3882 fs_reg());
3883 const fs_reg src1 = (info->num_srcs >= 5 ?
3884 retype(get_nir_src(instr->src[4]), base_type) :
3885 fs_reg());
3886 fs_reg tmp;
3887
3888 /* Emit an image load, store or atomic op. */
3889 if (instr->intrinsic == nir_intrinsic_image_deref_load)
3890 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3891
3892 else if (instr->intrinsic == nir_intrinsic_image_deref_store)
3893 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3894 var->data.image.write_only ? GL_NONE : format);
3895
3896 else
3897 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3898 surf_dims, arr_dims, dest_components,
3899 get_image_atomic_op(instr->intrinsic, type));
3900
3901 /* Assign the result. */
3902 for (unsigned c = 0; c < dest_components; ++c) {
3903 bld.MOV(offset(retype(dest, base_type), bld, c),
3904 offset(tmp, bld, c));
3905 }
3906 break;
3907 }
3908
3909 case nir_intrinsic_memory_barrier_atomic_counter:
3910 case nir_intrinsic_memory_barrier_buffer:
3911 case nir_intrinsic_memory_barrier_image:
3912 case nir_intrinsic_memory_barrier: {
3913 const fs_builder ubld = bld.group(8, 0);
3914 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3915 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3916 ->size_written = 2 * REG_SIZE;
3917 break;
3918 }
3919
3920 case nir_intrinsic_group_memory_barrier:
3921 case nir_intrinsic_memory_barrier_shared:
3922 /* We treat these workgroup-level barriers as no-ops. This should be
3923 * safe at present and as long as:
3924 *
3925 * - Memory access instructions are not subsequently reordered by the
3926 * compiler back-end.
3927 *
3928 * - All threads from a given compute shader workgroup fit within a
3929 * single subslice and therefore talk to the same HDC shared unit
3930 * what supposedly guarantees ordering and coherency between threads
3931 * from the same workgroup. This may change in the future when we
3932 * start splitting workgroups across multiple subslices.
3933 *
3934 * - The context is not in fault-and-stream mode, which could cause
3935 * memory transactions (including to SLM) prior to the barrier to be
3936 * replayed after the barrier if a pagefault occurs. This shouldn't
3937 * be a problem up to and including SKL because fault-and-stream is
3938 * not usable due to hardware issues, but that's likely to change in
3939 * the future.
3940 */
3941 break;
3942
3943 case nir_intrinsic_shader_clock: {
3944 /* We cannot do anything if there is an event, so ignore it for now */
3945 const fs_reg shader_clock = get_timestamp(bld);
3946 const fs_reg srcs[] = { component(shader_clock, 0),
3947 component(shader_clock, 1) };
3948 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3949 break;
3950 }
3951
3952 case nir_intrinsic_image_deref_size: {
3953 /* Get the referenced image variable and type. */
3954 nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
3955 const nir_variable *var = nir_deref_instr_get_variable(deref);
3956 const glsl_type *type = var->type->without_array();
3957
3958 /* Get the size of the image. */
3959 const fs_reg image = get_nir_image_deref(deref);
3960 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3961
3962 /* For 1DArray image types, the array index is stored in the Z component.
3963 * Fix this by swizzling the Z component to the Y component.
3964 */
3965 const bool is_1d_array_image =
3966 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3967 type->sampler_array;
3968
3969 /* For CubeArray images, we should count the number of cubes instead
3970 * of the number of faces. Fix it by dividing the (Z component) by 6.
3971 */
3972 const bool is_cube_array_image =
3973 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3974 type->sampler_array;
3975
3976 /* Copy all the components. */
3977 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3978 if ((int)c >= type->coordinate_components()) {
3979 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3980 brw_imm_d(1));
3981 } else if (c == 1 && is_1d_array_image) {
3982 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3983 offset(size, bld, 2));
3984 } else if (c == 2 && is_cube_array_image) {
3985 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3986 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3987 offset(size, bld, c), brw_imm_d(6));
3988 } else {
3989 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3990 offset(size, bld, c));
3991 }
3992 }
3993
3994 break;
3995 }
3996
3997 case nir_intrinsic_image_deref_samples:
3998 /* The driver does not support multi-sampled images. */
3999 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4000 break;
4001
4002 case nir_intrinsic_load_uniform: {
4003 /* Offsets are in bytes but they should always aligned to
4004 * the type size
4005 */
4006 assert(instr->const_index[0] % 4 == 0 ||
4007 instr->const_index[0] % type_sz(dest.type) == 0);
4008
4009 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4010
4011 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4012 if (const_offset) {
4013 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
4014 /* For 16-bit types we add the module of the const_index[0]
4015 * offset to access to not 32-bit aligned element
4016 */
4017 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
4018
4019 for (unsigned j = 0; j < instr->num_components; j++) {
4020 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4021 }
4022 } else {
4023 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4024 BRW_REGISTER_TYPE_UD);
4025
4026 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4027 * go past the end of the uniform. In order to keep the n'th
4028 * component from running past, we subtract off the size of all but
4029 * one component of the vector.
4030 */
4031 assert(instr->const_index[1] >=
4032 instr->num_components * (int) type_sz(dest.type));
4033 unsigned read_size = instr->const_index[1] -
4034 (instr->num_components - 1) * type_sz(dest.type);
4035
4036 bool supports_64bit_indirects =
4037 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4038
4039 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4040 for (unsigned j = 0; j < instr->num_components; j++) {
4041 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4042 offset(dest, bld, j), offset(src, bld, j),
4043 indirect, brw_imm_ud(read_size));
4044 }
4045 } else {
4046 const unsigned num_mov_indirects =
4047 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4048 /* We read a little bit less per MOV INDIRECT, as they are now
4049 * 32-bits ones instead of 64-bit. Fix read_size then.
4050 */
4051 const unsigned read_size_32bit = read_size -
4052 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4053 for (unsigned j = 0; j < instr->num_components; j++) {
4054 for (unsigned i = 0; i < num_mov_indirects; i++) {
4055 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4056 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4057 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4058 indirect, brw_imm_ud(read_size_32bit));
4059 }
4060 }
4061 }
4062 }
4063 break;
4064 }
4065
4066 case nir_intrinsic_load_ubo: {
4067 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4068 fs_reg surf_index;
4069
4070 if (const_index) {
4071 const unsigned index = stage_prog_data->binding_table.ubo_start +
4072 const_index->u32[0];
4073 surf_index = brw_imm_ud(index);
4074 brw_mark_surface_used(prog_data, index);
4075 } else {
4076 /* The block index is not a constant. Evaluate the index expression
4077 * per-channel and add the base UBO index; we have to select a value
4078 * from any live channel.
4079 */
4080 surf_index = vgrf(glsl_type::uint_type);
4081 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4082 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4083 surf_index = bld.emit_uniformize(surf_index);
4084
4085 /* Assume this may touch any UBO. It would be nice to provide
4086 * a tighter bound, but the array information is already lowered away.
4087 */
4088 brw_mark_surface_used(prog_data,
4089 stage_prog_data->binding_table.ubo_start +
4090 nir->info.num_ubos - 1);
4091 }
4092
4093 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4094 if (const_offset == NULL) {
4095 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4096 BRW_REGISTER_TYPE_UD);
4097
4098 for (int i = 0; i < instr->num_components; i++)
4099 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4100 base_offset, i * type_sz(dest.type));
4101 } else {
4102 /* Even if we are loading doubles, a pull constant load will load
4103 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4104 * need to load a full dvec4 we will have to emit 2 loads. This is
4105 * similar to demote_pull_constants(), except that in that case we
4106 * see individual accesses to each component of the vector and then
4107 * we let CSE deal with duplicate loads. Here we see a vector access
4108 * and we have to split it if necessary.
4109 */
4110 const unsigned type_size = type_sz(dest.type);
4111
4112 /* See if we've selected this as a push constant candidate */
4113 if (const_index) {
4114 const unsigned ubo_block = const_index->u32[0];
4115 const unsigned offset_256b = const_offset->u32[0] / 32;
4116
4117 fs_reg push_reg;
4118 for (int i = 0; i < 4; i++) {
4119 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4120 if (range->block == ubo_block &&
4121 offset_256b >= range->start &&
4122 offset_256b < range->start + range->length) {
4123
4124 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4125 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4126 break;
4127 }
4128 }
4129
4130 if (push_reg.file != BAD_FILE) {
4131 for (unsigned i = 0; i < instr->num_components; i++) {
4132 bld.MOV(offset(dest, bld, i),
4133 byte_offset(push_reg, i * type_size));
4134 }
4135 break;
4136 }
4137 }
4138
4139 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4140 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4141 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4142
4143 for (unsigned c = 0; c < instr->num_components;) {
4144 const unsigned base = const_offset->u32[0] + c * type_size;
4145 /* Number of usable components in the next block-aligned load. */
4146 const unsigned count = MIN2(instr->num_components - c,
4147 (block_sz - base % block_sz) / type_size);
4148
4149 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4150 packed_consts, surf_index,
4151 brw_imm_ud(base & ~(block_sz - 1)));
4152
4153 const fs_reg consts =
4154 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4155 dest.type);
4156
4157 for (unsigned d = 0; d < count; d++)
4158 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4159
4160 c += count;
4161 }
4162 }
4163 break;
4164 }
4165
4166 case nir_intrinsic_load_ssbo: {
4167 assert(devinfo->gen >= 7);
4168
4169 nir_const_value *const_uniform_block =
4170 nir_src_as_const_value(instr->src[0]);
4171
4172 fs_reg surf_index;
4173 if (const_uniform_block) {
4174 unsigned index = stage_prog_data->binding_table.ssbo_start +
4175 const_uniform_block->u32[0];
4176 surf_index = brw_imm_ud(index);
4177 brw_mark_surface_used(prog_data, index);
4178 } else {
4179 surf_index = vgrf(glsl_type::uint_type);
4180 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4181 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4182
4183 /* Assume this may touch any UBO. It would be nice to provide
4184 * a tighter bound, but the array information is already lowered away.
4185 */
4186 brw_mark_surface_used(prog_data,
4187 stage_prog_data->binding_table.ssbo_start +
4188 nir->info.num_ssbos - 1);
4189 }
4190
4191 fs_reg offset_reg;
4192 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4193 if (const_offset) {
4194 offset_reg = brw_imm_ud(const_offset->u32[0]);
4195 } else {
4196 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4197 }
4198
4199 /* Read the vector */
4200 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4201 instr->num_components);
4202
4203 break;
4204 }
4205
4206 case nir_intrinsic_store_ssbo: {
4207 assert(devinfo->gen >= 7);
4208
4209 if (stage == MESA_SHADER_FRAGMENT)
4210 brw_wm_prog_data(prog_data)->has_side_effects = true;
4211
4212 /* Block index */
4213 fs_reg surf_index;
4214 nir_const_value *const_uniform_block =
4215 nir_src_as_const_value(instr->src[1]);
4216 if (const_uniform_block) {
4217 unsigned index = stage_prog_data->binding_table.ssbo_start +
4218 const_uniform_block->u32[0];
4219 surf_index = brw_imm_ud(index);
4220 brw_mark_surface_used(prog_data, index);
4221 } else {
4222 surf_index = vgrf(glsl_type::uint_type);
4223 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4224 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4225
4226 brw_mark_surface_used(prog_data,
4227 stage_prog_data->binding_table.ssbo_start +
4228 nir->info.num_ssbos - 1);
4229 }
4230
4231 /* Value */
4232 fs_reg val_reg = get_nir_src(instr->src[0]);
4233
4234 /* Writemask */
4235 unsigned writemask = instr->const_index[0];
4236
4237 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4238 * since the untyped writes below operate in units of 32-bits, which
4239 * means that we need to write twice as many components each time.
4240 * Also, we have to suffle 64-bit data to be in the appropriate layout
4241 * expected by our 32-bit write messages.
4242 */
4243 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4244 unsigned type_size = bit_size / 8;
4245
4246 /* Combine groups of consecutive enabled channels in one write
4247 * message. We use ffs to find the first enabled channel and then ffs on
4248 * the bit-inverse, down-shifted writemask to determine the num_components
4249 * of the block of enabled bits.
4250 */
4251 while (writemask) {
4252 unsigned first_component = ffs(writemask) - 1;
4253 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4254 fs_reg write_src = offset(val_reg, bld, first_component);
4255
4256 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4257
4258 if (type_size > 4) {
4259 /* We can't write more than 2 64-bit components at once. Limit
4260 * the num_components of the write to what we can do and let the next
4261 * iteration handle the rest.
4262 */
4263 num_components = MIN2(2, num_components);
4264 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4265 num_components);
4266 } else if (type_size < 4) {
4267 assert(type_size == 2);
4268 /* For 16-bit types we pack two consecutive values into a 32-bit
4269 * word and use an untyped write message. For single values or not
4270 * 32-bit-aligned we need to use byte-scattered writes because
4271 * untyped writes works with 32-bit components with 32-bit
4272 * alignment. byte_scattered_write messages only support one
4273 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4274 * could be enabled we can not guarantee that not constant offsets
4275 * to be 32-bit aligned for 16-bit types. For example an array, of
4276 * 16-bit vec3 with array element stride of 6.
4277 *
4278 * In the case of 32-bit aligned constant offsets if there is
4279 * a 3-components vector we submit one untyped-write message
4280 * of 32-bit (first two components), and one byte-scattered
4281 * write message (the last component).
4282 */
4283
4284 if ( !const_offset || ((const_offset->u32[0] +
4285 type_size * first_component) % 4)) {
4286 /* If we use a .yz writemask we also need to emit 2
4287 * byte-scattered write messages because of y-component not
4288 * being aligned to 32-bit.
4289 */
4290 num_components = 1;
4291 } else if (num_components > 2 && (num_components % 2)) {
4292 /* If there is an odd number of consecutive components we left
4293 * the not paired component for a following emit of length == 1
4294 * with byte_scattered_write.
4295 */
4296 num_components --;
4297 }
4298 /* For num_components == 1 we are also shuffling the component
4299 * because byte scattered writes of 16-bit need values to be dword
4300 * aligned. Shuffling only one component would be the same as
4301 * striding it.
4302 */
4303 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4304 num_components);
4305 }
4306
4307 fs_reg offset_reg;
4308
4309 if (const_offset) {
4310 offset_reg = brw_imm_ud(const_offset->u32[0] +
4311 type_size * first_component);
4312 } else {
4313 offset_reg = vgrf(glsl_type::uint_type);
4314 bld.ADD(offset_reg,
4315 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4316 brw_imm_ud(type_size * first_component));
4317 }
4318
4319 if (type_size < 4 && num_components == 1) {
4320 assert(type_size == 2);
4321 /* Untyped Surface messages have a fixed 32-bit size, so we need
4322 * to rely on byte scattered in order to write 16-bit elements.
4323 * The byte_scattered_write message needs that every written 16-bit
4324 * type to be aligned 32-bits (stride=2).
4325 */
4326 emit_byte_scattered_write(bld, surf_index, offset_reg,
4327 write_src,
4328 1 /* dims */, 1,
4329 bit_size,
4330 BRW_PREDICATE_NONE);
4331 } else {
4332 assert(num_components * type_size <= 16);
4333 assert((num_components * type_size) % 4 == 0);
4334 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4335 offset_reg.ud % 4 == 0);
4336 unsigned num_slots = (num_components * type_size) / 4;
4337
4338 emit_untyped_write(bld, surf_index, offset_reg,
4339 write_src,
4340 1 /* dims */, num_slots,
4341 BRW_PREDICATE_NONE);
4342 }
4343
4344 /* Clear the bits in the writemask that we just wrote, then try
4345 * again to see if more channels are left.
4346 */
4347 writemask &= (15 << (first_component + num_components));
4348 }
4349 break;
4350 }
4351
4352 case nir_intrinsic_store_output: {
4353 fs_reg src = get_nir_src(instr->src[0]);
4354
4355 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4356 assert(const_offset && "Indirect output stores not allowed");
4357
4358 unsigned num_components = instr->num_components;
4359 unsigned first_component = nir_intrinsic_component(instr);
4360 if (nir_src_bit_size(instr->src[0]) == 64) {
4361 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4362 num_components *= 2;
4363 }
4364
4365 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4366 4 * const_offset->u32[0]), src.type);
4367 for (unsigned j = 0; j < num_components; j++) {
4368 bld.MOV(offset(new_dest, bld, j + first_component),
4369 offset(src, bld, j));
4370 }
4371 break;
4372 }
4373
4374 case nir_intrinsic_ssbo_atomic_add:
4375 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4376 break;
4377 case nir_intrinsic_ssbo_atomic_imin:
4378 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4379 break;
4380 case nir_intrinsic_ssbo_atomic_umin:
4381 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4382 break;
4383 case nir_intrinsic_ssbo_atomic_imax:
4384 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4385 break;
4386 case nir_intrinsic_ssbo_atomic_umax:
4387 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4388 break;
4389 case nir_intrinsic_ssbo_atomic_and:
4390 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4391 break;
4392 case nir_intrinsic_ssbo_atomic_or:
4393 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4394 break;
4395 case nir_intrinsic_ssbo_atomic_xor:
4396 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4397 break;
4398 case nir_intrinsic_ssbo_atomic_exchange:
4399 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4400 break;
4401 case nir_intrinsic_ssbo_atomic_comp_swap:
4402 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4403 break;
4404
4405 case nir_intrinsic_get_buffer_size: {
4406 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4407 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4408
4409 /* A resinfo's sampler message is used to get the buffer size. The
4410 * SIMD8's writeback message consists of four registers and SIMD16's
4411 * writeback message consists of 8 destination registers (two per each
4412 * component). Because we are only interested on the first channel of
4413 * the first returned component, where resinfo returns the buffer size
4414 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4415 * the dispatch width.
4416 */
4417 const fs_builder ubld = bld.exec_all().group(8, 0);
4418 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4419 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4420
4421 /* Set LOD = 0 */
4422 ubld.MOV(src_payload, brw_imm_d(0));
4423
4424 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4425 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4426 src_payload, brw_imm_ud(index));
4427 inst->header_size = 0;
4428 inst->mlen = 1;
4429 inst->size_written = 4 * REG_SIZE;
4430
4431 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4432 *
4433 * "Out-of-bounds checking is always performed at a DWord granularity. If
4434 * any part of the DWord is out-of-bounds then the whole DWord is
4435 * considered out-of-bounds."
4436 *
4437 * This implies that types with size smaller than 4-bytes need to be
4438 * padded if they don't complete the last dword of the buffer. But as we
4439 * need to maintain the original size we need to reverse the padding
4440 * calculation to return the correct size to know the number of elements
4441 * of an unsized array. As we stored in the last two bits of the surface
4442 * size the needed padding for the buffer, we calculate here the
4443 * original buffer_size reversing the surface_size calculation:
4444 *
4445 * surface_size = isl_align(buffer_size, 4) +
4446 * (isl_align(buffer_size) - buffer_size)
4447 *
4448 * buffer_size = surface_size & ~3 - surface_size & 3
4449 */
4450
4451 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4452 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4453 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4454
4455 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4456 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4457 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4458
4459 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4460
4461 brw_mark_surface_used(prog_data, index);
4462 break;
4463 }
4464
4465 case nir_intrinsic_load_subgroup_invocation:
4466 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4467 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4468 break;
4469
4470 case nir_intrinsic_load_subgroup_eq_mask:
4471 case nir_intrinsic_load_subgroup_ge_mask:
4472 case nir_intrinsic_load_subgroup_gt_mask:
4473 case nir_intrinsic_load_subgroup_le_mask:
4474 case nir_intrinsic_load_subgroup_lt_mask:
4475 unreachable("not reached");
4476
4477 case nir_intrinsic_vote_any: {
4478 const fs_builder ubld = bld.exec_all().group(1, 0);
4479
4480 /* The any/all predicates do not consider channel enables. To prevent
4481 * dead channels from affecting the result, we initialize the flag with
4482 * with the identity value for the logical operation.
4483 */
4484 if (dispatch_width == 32) {
4485 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4486 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4487 brw_imm_ud(0));
4488 } else {
4489 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4490 }
4491 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4492
4493 /* For some reason, the any/all predicates don't work properly with
4494 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4495 * doesn't read the correct subset of the flag register and you end up
4496 * getting garbage in the second half. Work around this by using a pair
4497 * of 1-wide MOVs and scattering the result.
4498 */
4499 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4500 ubld.MOV(res1, brw_imm_d(0));
4501 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4502 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4503 BRW_PREDICATE_ALIGN1_ANY32H,
4504 ubld.MOV(res1, brw_imm_d(-1)));
4505
4506 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4507 break;
4508 }
4509 case nir_intrinsic_vote_all: {
4510 const fs_builder ubld = bld.exec_all().group(1, 0);
4511
4512 /* The any/all predicates do not consider channel enables. To prevent
4513 * dead channels from affecting the result, we initialize the flag with
4514 * with the identity value for the logical operation.
4515 */
4516 if (dispatch_width == 32) {
4517 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4518 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4519 brw_imm_ud(0xffffffff));
4520 } else {
4521 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4522 }
4523 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4524
4525 /* For some reason, the any/all predicates don't work properly with
4526 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4527 * doesn't read the correct subset of the flag register and you end up
4528 * getting garbage in the second half. Work around this by using a pair
4529 * of 1-wide MOVs and scattering the result.
4530 */
4531 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4532 ubld.MOV(res1, brw_imm_d(0));
4533 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4534 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4535 BRW_PREDICATE_ALIGN1_ALL32H,
4536 ubld.MOV(res1, brw_imm_d(-1)));
4537
4538 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4539 break;
4540 }
4541 case nir_intrinsic_vote_feq:
4542 case nir_intrinsic_vote_ieq: {
4543 fs_reg value = get_nir_src(instr->src[0]);
4544 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4545 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4546 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4547 }
4548
4549 fs_reg uniformized = bld.emit_uniformize(value);
4550 const fs_builder ubld = bld.exec_all().group(1, 0);
4551
4552 /* The any/all predicates do not consider channel enables. To prevent
4553 * dead channels from affecting the result, we initialize the flag with
4554 * with the identity value for the logical operation.
4555 */
4556 if (dispatch_width == 32) {
4557 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4558 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4559 brw_imm_ud(0xffffffff));
4560 } else {
4561 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4562 }
4563 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4564
4565 /* For some reason, the any/all predicates don't work properly with
4566 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4567 * doesn't read the correct subset of the flag register and you end up
4568 * getting garbage in the second half. Work around this by using a pair
4569 * of 1-wide MOVs and scattering the result.
4570 */
4571 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4572 ubld.MOV(res1, brw_imm_d(0));
4573 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4574 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4575 BRW_PREDICATE_ALIGN1_ALL32H,
4576 ubld.MOV(res1, brw_imm_d(-1)));
4577
4578 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4579 break;
4580 }
4581
4582 case nir_intrinsic_ballot: {
4583 const fs_reg value = retype(get_nir_src(instr->src[0]),
4584 BRW_REGISTER_TYPE_UD);
4585 struct brw_reg flag = brw_flag_reg(0, 0);
4586 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4587 * as f0.0. This is a problem for fragment programs as we currently use
4588 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4589 * programs yet so this isn't a problem. When we do, something will
4590 * have to change.
4591 */
4592 if (dispatch_width == 32)
4593 flag.type = BRW_REGISTER_TYPE_UD;
4594
4595 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4596 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4597
4598 if (instr->dest.ssa.bit_size > 32) {
4599 dest.type = BRW_REGISTER_TYPE_UQ;
4600 } else {
4601 dest.type = BRW_REGISTER_TYPE_UD;
4602 }
4603 bld.MOV(dest, flag);
4604 break;
4605 }
4606
4607 case nir_intrinsic_read_invocation: {
4608 const fs_reg value = get_nir_src(instr->src[0]);
4609 const fs_reg invocation = get_nir_src(instr->src[1]);
4610 fs_reg tmp = bld.vgrf(value.type);
4611
4612 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4613 bld.emit_uniformize(invocation));
4614
4615 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4616 break;
4617 }
4618
4619 case nir_intrinsic_read_first_invocation: {
4620 const fs_reg value = get_nir_src(instr->src[0]);
4621 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4622 break;
4623 }
4624
4625 case nir_intrinsic_shuffle: {
4626 const fs_reg value = get_nir_src(instr->src[0]);
4627 const fs_reg index = get_nir_src(instr->src[1]);
4628
4629 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4630 break;
4631 }
4632
4633 case nir_intrinsic_first_invocation: {
4634 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4635 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4636 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4637 fs_reg(component(tmp, 0)));
4638 break;
4639 }
4640
4641 case nir_intrinsic_quad_broadcast: {
4642 const fs_reg value = get_nir_src(instr->src[0]);
4643 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4644 assert(nir_src_bit_size(instr->src[1]) == 32);
4645
4646 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4647 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4648 break;
4649 }
4650
4651 case nir_intrinsic_quad_swap_horizontal: {
4652 const fs_reg value = get_nir_src(instr->src[0]);
4653 const fs_reg tmp = bld.vgrf(value.type);
4654 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4655
4656 const fs_reg src_left = horiz_stride(value, 2);
4657 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4658 const fs_reg tmp_left = horiz_stride(tmp, 2);
4659 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4660
4661 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4662 *
4663 * "When source or destination datatype is 64b or operation is
4664 * integer DWord multiply, regioning in Align1 must follow
4665 * these rules:
4666 *
4667 * [...]
4668 *
4669 * 3. Source and Destination offset must be the same, except
4670 * the case of scalar source."
4671 *
4672 * In order to work around this, we have to emit two 32-bit MOVs instead
4673 * of a single 64-bit MOV to do the shuffle.
4674 */
4675 if (type_sz(value.type) > 4 &&
4676 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4677 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4678 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4679 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4680 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4681 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4682 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4683 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4684 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4685 } else {
4686 ubld.MOV(tmp_left, src_right);
4687 ubld.MOV(tmp_right, src_left);
4688 }
4689 bld.MOV(retype(dest, value.type), tmp);
4690 break;
4691 }
4692
4693 case nir_intrinsic_quad_swap_vertical: {
4694 const fs_reg value = get_nir_src(instr->src[0]);
4695 if (nir_src_bit_size(instr->src[0]) == 32) {
4696 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4697 const fs_reg tmp = bld.vgrf(value.type);
4698 const fs_builder ubld = bld.exec_all();
4699 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4700 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4701 bld.MOV(retype(dest, value.type), tmp);
4702 } else {
4703 /* For larger data types, we have to either emit dispatch_width many
4704 * MOVs or else fall back to doing indirects.
4705 */
4706 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4707 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4708 brw_imm_w(0x2));
4709 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4710 }
4711 break;
4712 }
4713
4714 case nir_intrinsic_quad_swap_diagonal: {
4715 const fs_reg value = get_nir_src(instr->src[0]);
4716 if (nir_src_bit_size(instr->src[0]) == 32) {
4717 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4718 const fs_reg tmp = bld.vgrf(value.type);
4719 const fs_builder ubld = bld.exec_all();
4720 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4721 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4722 bld.MOV(retype(dest, value.type), tmp);
4723 } else {
4724 /* For larger data types, we have to either emit dispatch_width many
4725 * MOVs or else fall back to doing indirects.
4726 */
4727 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4728 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4729 brw_imm_w(0x3));
4730 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4731 }
4732 break;
4733 }
4734
4735 case nir_intrinsic_reduce: {
4736 fs_reg src = get_nir_src(instr->src[0]);
4737 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4738 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4739 if (cluster_size == 0 || cluster_size > dispatch_width)
4740 cluster_size = dispatch_width;
4741
4742 /* Figure out the source type */
4743 src.type = brw_type_for_nir_type(devinfo,
4744 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4745 nir_src_bit_size(instr->src[0])));
4746
4747 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4748 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4749 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4750
4751 /* Set up a register for all of our scratching around and initialize it
4752 * to reduction operation's identity value.
4753 */
4754 fs_reg scan = bld.vgrf(src.type);
4755 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4756
4757 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4758
4759 dest.type = src.type;
4760 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4761 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4762 * the distance between clusters is at least 2 GRFs. In this case,
4763 * we don't need the weird striding of the CLUSTER_BROADCAST
4764 * instruction and can just do regular MOVs.
4765 */
4766 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4767 const unsigned groups =
4768 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4769 const unsigned group_size = dispatch_width / groups;
4770 for (unsigned i = 0; i < groups; i++) {
4771 const unsigned cluster = (i * group_size) / cluster_size;
4772 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4773 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4774 component(scan, comp));
4775 }
4776 } else {
4777 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4778 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4779 }
4780 break;
4781 }
4782
4783 case nir_intrinsic_inclusive_scan:
4784 case nir_intrinsic_exclusive_scan: {
4785 fs_reg src = get_nir_src(instr->src[0]);
4786 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4787
4788 /* Figure out the source type */
4789 src.type = brw_type_for_nir_type(devinfo,
4790 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4791 nir_src_bit_size(instr->src[0])));
4792
4793 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4794 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4795 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4796
4797 /* Set up a register for all of our scratching around and initialize it
4798 * to reduction operation's identity value.
4799 */
4800 fs_reg scan = bld.vgrf(src.type);
4801 const fs_builder allbld = bld.exec_all();
4802 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4803
4804 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4805 /* Exclusive scan is a bit harder because we have to do an annoying
4806 * shift of the contents before we can begin. To make things worse,
4807 * we can't do this with a normal stride; we have to use indirects.
4808 */
4809 fs_reg shifted = bld.vgrf(src.type);
4810 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4811 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4812 brw_imm_w(-1));
4813 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4814 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4815 scan = shifted;
4816 }
4817
4818 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4819
4820 bld.MOV(retype(dest, src.type), scan);
4821 break;
4822 }
4823
4824 case nir_intrinsic_begin_invocation_interlock: {
4825 const fs_builder ubld = bld.group(8, 0);
4826 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4827
4828 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4829 REG_SIZE;
4830
4831 break;
4832 }
4833
4834 case nir_intrinsic_end_invocation_interlock: {
4835 /* We don't need to do anything here */
4836 break;
4837 }
4838
4839 default:
4840 unreachable("unknown intrinsic");
4841 }
4842 }
4843
4844 void
4845 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4846 int op, nir_intrinsic_instr *instr)
4847 {
4848 if (stage == MESA_SHADER_FRAGMENT)
4849 brw_wm_prog_data(prog_data)->has_side_effects = true;
4850
4851 fs_reg dest;
4852 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4853 dest = get_nir_dest(instr->dest);
4854
4855 fs_reg surface;
4856 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4857 if (const_surface) {
4858 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4859 const_surface->u32[0];
4860 surface = brw_imm_ud(surf_index);
4861 brw_mark_surface_used(prog_data, surf_index);
4862 } else {
4863 surface = vgrf(glsl_type::uint_type);
4864 bld.ADD(surface, get_nir_src(instr->src[0]),
4865 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4866
4867 /* Assume this may touch any SSBO. This is the same we do for other
4868 * UBO/SSBO accesses with non-constant surface.
4869 */
4870 brw_mark_surface_used(prog_data,
4871 stage_prog_data->binding_table.ssbo_start +
4872 nir->info.num_ssbos - 1);
4873 }
4874
4875 fs_reg offset = get_nir_src(instr->src[1]);
4876 fs_reg data1 = get_nir_src(instr->src[2]);
4877 fs_reg data2;
4878 if (op == BRW_AOP_CMPWR)
4879 data2 = get_nir_src(instr->src[3]);
4880
4881 /* Emit the actual atomic operation */
4882
4883 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4884 data1, data2,
4885 1 /* dims */, 1 /* rsize */,
4886 op,
4887 BRW_PREDICATE_NONE);
4888 dest.type = atomic_result.type;
4889 bld.MOV(dest, atomic_result);
4890 }
4891
4892 void
4893 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4894 int op, nir_intrinsic_instr *instr)
4895 {
4896 fs_reg dest;
4897 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4898 dest = get_nir_dest(instr->dest);
4899
4900 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4901 fs_reg offset;
4902 fs_reg data1 = get_nir_src(instr->src[1]);
4903 fs_reg data2;
4904 if (op == BRW_AOP_CMPWR)
4905 data2 = get_nir_src(instr->src[2]);
4906
4907 /* Get the offset */
4908 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4909 if (const_offset) {
4910 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4911 } else {
4912 offset = vgrf(glsl_type::uint_type);
4913 bld.ADD(offset,
4914 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4915 brw_imm_ud(instr->const_index[0]));
4916 }
4917
4918 /* Emit the actual atomic operation operation */
4919
4920 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4921 data1, data2,
4922 1 /* dims */, 1 /* rsize */,
4923 op,
4924 BRW_PREDICATE_NONE);
4925 dest.type = atomic_result.type;
4926 bld.MOV(dest, atomic_result);
4927 }
4928
4929 void
4930 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4931 {
4932 unsigned texture = instr->texture_index;
4933 unsigned sampler = instr->sampler_index;
4934
4935 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4936
4937 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4938 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4939
4940 int lod_components = 0;
4941
4942 /* The hardware requires a LOD for buffer textures */
4943 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4944 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4945
4946 uint32_t header_bits = 0;
4947 for (unsigned i = 0; i < instr->num_srcs; i++) {
4948 fs_reg src = get_nir_src(instr->src[i].src);
4949 switch (instr->src[i].src_type) {
4950 case nir_tex_src_bias:
4951 srcs[TEX_LOGICAL_SRC_LOD] =
4952 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4953 break;
4954 case nir_tex_src_comparator:
4955 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4956 break;
4957 case nir_tex_src_coord:
4958 switch (instr->op) {
4959 case nir_texop_txf:
4960 case nir_texop_txf_ms:
4961 case nir_texop_txf_ms_mcs:
4962 case nir_texop_samples_identical:
4963 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4964 break;
4965 default:
4966 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4967 break;
4968 }
4969 break;
4970 case nir_tex_src_ddx:
4971 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4972 lod_components = nir_tex_instr_src_size(instr, i);
4973 break;
4974 case nir_tex_src_ddy:
4975 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4976 break;
4977 case nir_tex_src_lod:
4978 switch (instr->op) {
4979 case nir_texop_txs:
4980 srcs[TEX_LOGICAL_SRC_LOD] =
4981 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4982 break;
4983 case nir_texop_txf:
4984 srcs[TEX_LOGICAL_SRC_LOD] =
4985 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4986 break;
4987 default:
4988 srcs[TEX_LOGICAL_SRC_LOD] =
4989 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4990 break;
4991 }
4992 break;
4993 case nir_tex_src_ms_index:
4994 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4995 break;
4996
4997 case nir_tex_src_offset: {
4998 nir_const_value *const_offset =
4999 nir_src_as_const_value(instr->src[i].src);
5000 unsigned offset_bits = 0;
5001 if (const_offset &&
5002 brw_texture_offset(const_offset->i32,
5003 nir_tex_instr_src_size(instr, i),
5004 &offset_bits)) {
5005 header_bits |= offset_bits;
5006 } else {
5007 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5008 retype(src, BRW_REGISTER_TYPE_D);
5009 }
5010 break;
5011 }
5012
5013 case nir_tex_src_projector:
5014 unreachable("should be lowered");
5015
5016 case nir_tex_src_texture_offset: {
5017 /* Figure out the highest possible texture index and mark it as used */
5018 uint32_t max_used = texture + instr->texture_array_size - 1;
5019 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5020 max_used += stage_prog_data->binding_table.gather_texture_start;
5021 } else {
5022 max_used += stage_prog_data->binding_table.texture_start;
5023 }
5024 brw_mark_surface_used(prog_data, max_used);
5025
5026 /* Emit code to evaluate the actual indexing expression */
5027 fs_reg tmp = vgrf(glsl_type::uint_type);
5028 bld.ADD(tmp, src, brw_imm_ud(texture));
5029 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5030 break;
5031 }
5032
5033 case nir_tex_src_sampler_offset: {
5034 /* Emit code to evaluate the actual indexing expression */
5035 fs_reg tmp = vgrf(glsl_type::uint_type);
5036 bld.ADD(tmp, src, brw_imm_ud(sampler));
5037 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5038 break;
5039 }
5040
5041 case nir_tex_src_ms_mcs:
5042 assert(instr->op == nir_texop_txf_ms);
5043 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5044 break;
5045
5046 case nir_tex_src_plane: {
5047 nir_const_value *const_plane =
5048 nir_src_as_const_value(instr->src[i].src);
5049 const uint32_t plane = const_plane->u32[0];
5050 const uint32_t texture_index =
5051 instr->texture_index +
5052 stage_prog_data->binding_table.plane_start[plane] -
5053 stage_prog_data->binding_table.texture_start;
5054
5055 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5056 break;
5057 }
5058
5059 default:
5060 unreachable("unknown texture source");
5061 }
5062 }
5063
5064 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5065 (instr->op == nir_texop_txf_ms ||
5066 instr->op == nir_texop_samples_identical)) {
5067 if (devinfo->gen >= 7 &&
5068 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5069 srcs[TEX_LOGICAL_SRC_MCS] =
5070 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5071 instr->coord_components,
5072 srcs[TEX_LOGICAL_SRC_SURFACE]);
5073 } else {
5074 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5075 }
5076 }
5077
5078 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5079 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5080
5081 enum opcode opcode;
5082 switch (instr->op) {
5083 case nir_texop_tex:
5084 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5085 SHADER_OPCODE_TXL_LOGICAL);
5086 break;
5087 case nir_texop_txb:
5088 opcode = FS_OPCODE_TXB_LOGICAL;
5089 break;
5090 case nir_texop_txl:
5091 opcode = SHADER_OPCODE_TXL_LOGICAL;
5092 break;
5093 case nir_texop_txd:
5094 opcode = SHADER_OPCODE_TXD_LOGICAL;
5095 break;
5096 case nir_texop_txf:
5097 opcode = SHADER_OPCODE_TXF_LOGICAL;
5098 break;
5099 case nir_texop_txf_ms:
5100 if ((key_tex->msaa_16 & (1 << sampler)))
5101 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5102 else
5103 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5104 break;
5105 case nir_texop_txf_ms_mcs:
5106 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5107 break;
5108 case nir_texop_query_levels:
5109 case nir_texop_txs:
5110 opcode = SHADER_OPCODE_TXS_LOGICAL;
5111 break;
5112 case nir_texop_lod:
5113 opcode = SHADER_OPCODE_LOD_LOGICAL;
5114 break;
5115 case nir_texop_tg4:
5116 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5117 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5118 else
5119 opcode = SHADER_OPCODE_TG4_LOGICAL;
5120 break;
5121 case nir_texop_texture_samples:
5122 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5123 break;
5124 case nir_texop_samples_identical: {
5125 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5126
5127 /* If mcs is an immediate value, it means there is no MCS. In that case
5128 * just return false.
5129 */
5130 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5131 bld.MOV(dst, brw_imm_ud(0u));
5132 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5133 fs_reg tmp = vgrf(glsl_type::uint_type);
5134 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5135 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5136 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5137 } else {
5138 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5139 BRW_CONDITIONAL_EQ);
5140 }
5141 return;
5142 }
5143 default:
5144 unreachable("unknown texture opcode");
5145 }
5146
5147 if (instr->op == nir_texop_tg4) {
5148 if (instr->component == 1 &&
5149 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5150 /* gather4 sampler is broken for green channel on RG32F --
5151 * we must ask for blue instead.
5152 */
5153 header_bits |= 2 << 16;
5154 } else {
5155 header_bits |= instr->component << 16;
5156 }
5157 }
5158
5159 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5160 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5161 inst->offset = header_bits;
5162
5163 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5164 if (devinfo->gen >= 9 &&
5165 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5166 unsigned write_mask = instr->dest.is_ssa ?
5167 nir_ssa_def_components_read(&instr->dest.ssa):
5168 (1 << dest_size) - 1;
5169 assert(write_mask != 0); /* dead code should have been eliminated */
5170 inst->size_written = util_last_bit(write_mask) *
5171 inst->dst.component_size(inst->exec_size);
5172 } else {
5173 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5174 }
5175
5176 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5177 inst->shadow_compare = true;
5178
5179 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5180 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5181
5182 fs_reg nir_dest[4];
5183 for (unsigned i = 0; i < dest_size; i++)
5184 nir_dest[i] = offset(dst, bld, i);
5185
5186 if (instr->op == nir_texop_query_levels) {
5187 /* # levels is in .w */
5188 nir_dest[0] = offset(dst, bld, 3);
5189 } else if (instr->op == nir_texop_txs &&
5190 dest_size >= 3 && devinfo->gen < 7) {
5191 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5192 fs_reg depth = offset(dst, bld, 2);
5193 nir_dest[2] = vgrf(glsl_type::int_type);
5194 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5195 }
5196
5197 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5198 }
5199
5200 void
5201 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5202 {
5203 switch (instr->type) {
5204 case nir_jump_break:
5205 bld.emit(BRW_OPCODE_BREAK);
5206 break;
5207 case nir_jump_continue:
5208 bld.emit(BRW_OPCODE_CONTINUE);
5209 break;
5210 case nir_jump_return:
5211 default:
5212 unreachable("unknown jump");
5213 }
5214 }
5215
5216 /*
5217 * This helper takes a source register and un/shuffles it into the destination
5218 * register.
5219 *
5220 * If source type size is smaller than destination type size the operation
5221 * needed is a component shuffle. The opposite case would be an unshuffle. If
5222 * source/destination type size is equal a shuffle is done that would be
5223 * equivalent to a simple MOV.
5224 *
5225 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5226 * components .xyz 16-bit vector on SIMD8 would be.
5227 *
5228 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5229 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5230 *
5231 * This helper will return the following 2 32-bit components with the 16-bit
5232 * values shuffled:
5233 *
5234 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5235 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5236 *
5237 * For unshuffle, the example would be the opposite, a 64-bit type source
5238 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5239 * would be:
5240 *
5241 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5242 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5243 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5244 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5245 *
5246 * The returned result would be the following 4 32-bit components unshuffled:
5247 *
5248 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5249 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5250 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5251 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5252 *
5253 * - Source and destination register must not be overlapped.
5254 * - components units are measured in terms of the smaller type between
5255 * source and destination because we are un/shuffling the smaller
5256 * components from/into the bigger ones.
5257 * - first_component parameter allows skipping source components.
5258 */
5259 void
5260 shuffle_src_to_dst(const fs_builder &bld,
5261 const fs_reg &dst,
5262 const fs_reg &src,
5263 uint32_t first_component,
5264 uint32_t components)
5265 {
5266 if (type_sz(src.type) == type_sz(dst.type)) {
5267 assert(!regions_overlap(dst,
5268 type_sz(dst.type) * bld.dispatch_width() * components,
5269 offset(src, bld, first_component),
5270 type_sz(src.type) * bld.dispatch_width() * components));
5271 for (unsigned i = 0; i < components; i++) {
5272 bld.MOV(retype(offset(dst, bld, i), src.type),
5273 offset(src, bld, i + first_component));
5274 }
5275 } else if (type_sz(src.type) < type_sz(dst.type)) {
5276 /* Source is shuffled into destination */
5277 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5278 assert(!regions_overlap(dst,
5279 type_sz(dst.type) * bld.dispatch_width() *
5280 DIV_ROUND_UP(components, size_ratio),
5281 offset(src, bld, first_component),
5282 type_sz(src.type) * bld.dispatch_width() * components));
5283
5284 brw_reg_type shuffle_type =
5285 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5286 BRW_REGISTER_TYPE_D);
5287 for (unsigned i = 0; i < components; i++) {
5288 fs_reg shuffle_component_i =
5289 subscript(offset(dst, bld, i / size_ratio),
5290 shuffle_type, i % size_ratio);
5291 bld.MOV(shuffle_component_i,
5292 retype(offset(src, bld, i + first_component), shuffle_type));
5293 }
5294 } else {
5295 /* Source is unshuffled into destination */
5296 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5297 assert(!regions_overlap(dst,
5298 type_sz(dst.type) * bld.dispatch_width() * components,
5299 offset(src, bld, first_component / size_ratio),
5300 type_sz(src.type) * bld.dispatch_width() *
5301 DIV_ROUND_UP(components + (first_component % size_ratio),
5302 size_ratio)));
5303
5304 brw_reg_type shuffle_type =
5305 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5306 BRW_REGISTER_TYPE_D);
5307 for (unsigned i = 0; i < components; i++) {
5308 fs_reg shuffle_component_i =
5309 subscript(offset(src, bld, (first_component + i) / size_ratio),
5310 shuffle_type, (first_component + i) % size_ratio);
5311 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5312 shuffle_component_i);
5313 }
5314 }
5315 }
5316
5317 void
5318 shuffle_from_32bit_read(const fs_builder &bld,
5319 const fs_reg &dst,
5320 const fs_reg &src,
5321 uint32_t first_component,
5322 uint32_t components)
5323 {
5324 assert(type_sz(src.type) == 4);
5325
5326 /* This function takes components in units of the destination type while
5327 * shuffle_src_to_dst takes components in units of the smallest type
5328 */
5329 if (type_sz(dst.type) > 4) {
5330 assert(type_sz(dst.type) == 8);
5331 first_component *= 2;
5332 components *= 2;
5333 }
5334
5335 shuffle_src_to_dst(bld, dst, src, first_component, components);
5336 }
5337
5338 fs_reg
5339 shuffle_for_32bit_write(const fs_builder &bld,
5340 const fs_reg &src,
5341 uint32_t first_component,
5342 uint32_t components)
5343 {
5344 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5345 DIV_ROUND_UP (components * type_sz(src.type), 4));
5346 /* This function takes components in units of the source type while
5347 * shuffle_src_to_dst takes components in units of the smallest type
5348 */
5349 if (type_sz(src.type) > 4) {
5350 assert(type_sz(src.type) == 8);
5351 first_component *= 2;
5352 components *= 2;
5353 }
5354
5355 shuffle_src_to_dst(bld, dst, src, first_component, components);
5356
5357 return dst;
5358 }
5359
5360 fs_reg
5361 setup_imm_df(const fs_builder &bld, double v)
5362 {
5363 const struct gen_device_info *devinfo = bld.shader->devinfo;
5364 assert(devinfo->gen >= 7);
5365
5366 if (devinfo->gen >= 8)
5367 return brw_imm_df(v);
5368
5369 /* gen7.5 does not support DF immediates straighforward but the DIM
5370 * instruction allows to set the 64-bit immediate value.
5371 */
5372 if (devinfo->is_haswell) {
5373 const fs_builder ubld = bld.exec_all().group(1, 0);
5374 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5375 ubld.DIM(dst, brw_imm_df(v));
5376 return component(dst, 0);
5377 }
5378
5379 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5380 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5381 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5382 *
5383 * Alternatively, we could also produce a normal VGRF (without stride 0)
5384 * by writing to all the channels in the VGRF, however, that would hit the
5385 * gen7 bug where we have to split writes that span more than 1 register
5386 * into instructions with a width of 4 (otherwise the write to the second
5387 * register written runs into an execmask hardware bug) which isn't very
5388 * nice.
5389 */
5390 union {
5391 double d;
5392 struct {
5393 uint32_t i1;
5394 uint32_t i2;
5395 };
5396 } di;
5397
5398 di.d = v;
5399
5400 const fs_builder ubld = bld.exec_all().group(1, 0);
5401 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5402 ubld.MOV(tmp, brw_imm_ud(di.i1));
5403 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5404
5405 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5406 }