intel/fs: Use the new nir_src_is_const and friends
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28 #include "util/u_math.h"
29
30 using namespace brw;
31 using namespace brw::surface_access;
32
33 void
34 fs_visitor::emit_nir_code()
35 {
36 /* emit the arrays used for inputs and outputs - load/store intrinsics will
37 * be converted to reads/writes of these arrays
38 */
39 nir_setup_outputs();
40 nir_setup_uniforms();
41 nir_emit_system_values();
42
43 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
44 }
45
46 void
47 fs_visitor::nir_setup_outputs()
48 {
49 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
50 return;
51
52 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
53
54 /* Calculate the size of output registers in a separate pass, before
55 * allocating them. With ARB_enhanced_layouts, multiple output variables
56 * may occupy the same slot, but have different type sizes.
57 */
58 nir_foreach_variable(var, &nir->outputs) {
59 const int loc = var->data.driver_location;
60 const unsigned var_vec4s =
61 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
62 : type_size_vec4(var->type);
63 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
64 }
65
66 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
67 if (vec4s[loc] == 0) {
68 loc++;
69 continue;
70 }
71
72 unsigned reg_size = vec4s[loc];
73
74 /* Check if there are any ranges that start within this range and extend
75 * past it. If so, include them in this allocation.
76 */
77 for (unsigned i = 1; i < reg_size; i++)
78 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
79
80 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
81 for (unsigned i = 0; i < reg_size; i++)
82 outputs[loc + i] = offset(reg, bld, 4 * i);
83
84 loc += reg_size;
85 }
86 }
87
88 void
89 fs_visitor::nir_setup_uniforms()
90 {
91 /* Only the first compile gets to set up uniforms. */
92 if (push_constant_loc) {
93 assert(pull_constant_loc);
94 return;
95 }
96
97 uniforms = nir->num_uniforms / 4;
98
99 if (stage == MESA_SHADER_COMPUTE) {
100 /* Add a uniform for the thread local id. It must be the last uniform
101 * on the list.
102 */
103 assert(uniforms == prog_data->nr_params);
104 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
105 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
106 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
107 }
108 }
109
110 static bool
111 emit_system_values_block(nir_block *block, fs_visitor *v)
112 {
113 fs_reg *reg;
114
115 nir_foreach_instr(instr, block) {
116 if (instr->type != nir_instr_type_intrinsic)
117 continue;
118
119 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
120 switch (intrin->intrinsic) {
121 case nir_intrinsic_load_vertex_id:
122 case nir_intrinsic_load_base_vertex:
123 unreachable("should be lowered by nir_lower_system_values().");
124
125 case nir_intrinsic_load_vertex_id_zero_base:
126 case nir_intrinsic_load_is_indexed_draw:
127 case nir_intrinsic_load_first_vertex:
128 case nir_intrinsic_load_instance_id:
129 case nir_intrinsic_load_base_instance:
130 case nir_intrinsic_load_draw_id:
131 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
132
133 case nir_intrinsic_load_invocation_id:
134 if (v->stage == MESA_SHADER_TESS_CTRL)
135 break;
136 assert(v->stage == MESA_SHADER_GEOMETRY);
137 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
138 if (reg->file == BAD_FILE) {
139 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
140 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
141 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
142 abld.SHR(iid, g1, brw_imm_ud(27u));
143 *reg = iid;
144 }
145 break;
146
147 case nir_intrinsic_load_sample_pos:
148 assert(v->stage == MESA_SHADER_FRAGMENT);
149 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
150 if (reg->file == BAD_FILE)
151 *reg = *v->emit_samplepos_setup();
152 break;
153
154 case nir_intrinsic_load_sample_id:
155 assert(v->stage == MESA_SHADER_FRAGMENT);
156 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
157 if (reg->file == BAD_FILE)
158 *reg = *v->emit_sampleid_setup();
159 break;
160
161 case nir_intrinsic_load_sample_mask_in:
162 assert(v->stage == MESA_SHADER_FRAGMENT);
163 assert(v->devinfo->gen >= 7);
164 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
165 if (reg->file == BAD_FILE)
166 *reg = *v->emit_samplemaskin_setup();
167 break;
168
169 case nir_intrinsic_load_work_group_id:
170 assert(v->stage == MESA_SHADER_COMPUTE);
171 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
172 if (reg->file == BAD_FILE)
173 *reg = *v->emit_cs_work_group_id_setup();
174 break;
175
176 case nir_intrinsic_load_helper_invocation:
177 assert(v->stage == MESA_SHADER_FRAGMENT);
178 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
179 if (reg->file == BAD_FILE) {
180 const fs_builder abld =
181 v->bld.annotate("gl_HelperInvocation", NULL);
182
183 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
184 * pixel mask is in g1.7 of the thread payload.
185 *
186 * We move the per-channel pixel enable bit to the low bit of each
187 * channel by shifting the byte containing the pixel mask by the
188 * vector immediate 0x76543210UV.
189 *
190 * The region of <1,8,0> reads only 1 byte (the pixel masks for
191 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
192 * masks for 2 and 3) in SIMD16.
193 */
194 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
195
196 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
197 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
198 hbld.SHR(offset(shifted, hbld, i),
199 stride(retype(brw_vec1_grf(1 + i, 7),
200 BRW_REGISTER_TYPE_UB),
201 1, 8, 0),
202 brw_imm_v(0x76543210));
203 }
204
205 /* A set bit in the pixel mask means the channel is enabled, but
206 * that is the opposite of gl_HelperInvocation so we need to invert
207 * the mask.
208 *
209 * The negate source-modifier bit of logical instructions on Gen8+
210 * performs 1's complement negation, so we can use that instead of
211 * a NOT instruction.
212 */
213 fs_reg inverted = negate(shifted);
214 if (v->devinfo->gen < 8) {
215 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
216 abld.NOT(inverted, shifted);
217 }
218
219 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
220 * with 1 and negating.
221 */
222 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
223 abld.AND(anded, inverted, brw_imm_uw(1));
224
225 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
226 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
227 *reg = dst;
228 }
229 break;
230
231 default:
232 break;
233 }
234 }
235
236 return true;
237 }
238
239 void
240 fs_visitor::nir_emit_system_values()
241 {
242 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
243 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
244 nir_system_values[i] = fs_reg();
245 }
246
247 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
248 * never end up using it.
249 */
250 {
251 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
252 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
253 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
254
255 const fs_builder allbld8 = abld.group(8, 0).exec_all();
256 allbld8.MOV(reg, brw_imm_v(0x76543210));
257 if (dispatch_width > 8)
258 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
259 if (dispatch_width > 16) {
260 const fs_builder allbld16 = abld.group(16, 0).exec_all();
261 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
262 }
263 }
264
265 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
266 nir_foreach_block(block, impl)
267 emit_system_values_block(block, this);
268 }
269
270 /*
271 * Returns a type based on a reference_type (word, float, half-float) and a
272 * given bit_size.
273 *
274 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
275 *
276 * @FIXME: 64-bit return types are always DF on integer types to maintain
277 * compability with uses of DF previously to the introduction of int64
278 * support.
279 */
280 static brw_reg_type
281 brw_reg_type_from_bit_size(const unsigned bit_size,
282 const brw_reg_type reference_type)
283 {
284 switch(reference_type) {
285 case BRW_REGISTER_TYPE_HF:
286 case BRW_REGISTER_TYPE_F:
287 case BRW_REGISTER_TYPE_DF:
288 switch(bit_size) {
289 case 16:
290 return BRW_REGISTER_TYPE_HF;
291 case 32:
292 return BRW_REGISTER_TYPE_F;
293 case 64:
294 return BRW_REGISTER_TYPE_DF;
295 default:
296 unreachable("Invalid bit size");
297 }
298 case BRW_REGISTER_TYPE_B:
299 case BRW_REGISTER_TYPE_W:
300 case BRW_REGISTER_TYPE_D:
301 case BRW_REGISTER_TYPE_Q:
302 switch(bit_size) {
303 case 8:
304 return BRW_REGISTER_TYPE_B;
305 case 16:
306 return BRW_REGISTER_TYPE_W;
307 case 32:
308 return BRW_REGISTER_TYPE_D;
309 case 64:
310 return BRW_REGISTER_TYPE_Q;
311 default:
312 unreachable("Invalid bit size");
313 }
314 case BRW_REGISTER_TYPE_UB:
315 case BRW_REGISTER_TYPE_UW:
316 case BRW_REGISTER_TYPE_UD:
317 case BRW_REGISTER_TYPE_UQ:
318 switch(bit_size) {
319 case 8:
320 return BRW_REGISTER_TYPE_UB;
321 case 16:
322 return BRW_REGISTER_TYPE_UW;
323 case 32:
324 return BRW_REGISTER_TYPE_UD;
325 case 64:
326 return BRW_REGISTER_TYPE_UQ;
327 default:
328 unreachable("Invalid bit size");
329 }
330 default:
331 unreachable("Unknown type");
332 }
333 }
334
335 void
336 fs_visitor::nir_emit_impl(nir_function_impl *impl)
337 {
338 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
339 for (unsigned i = 0; i < impl->reg_alloc; i++) {
340 nir_locals[i] = fs_reg();
341 }
342
343 foreach_list_typed(nir_register, reg, node, &impl->registers) {
344 unsigned array_elems =
345 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
346 unsigned size = array_elems * reg->num_components;
347 const brw_reg_type reg_type =
348 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
349 nir_locals[reg->index] = bld.vgrf(reg_type, size);
350 }
351
352 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
353 impl->ssa_alloc);
354
355 nir_emit_cf_list(&impl->body);
356 }
357
358 void
359 fs_visitor::nir_emit_cf_list(exec_list *list)
360 {
361 exec_list_validate(list);
362 foreach_list_typed(nir_cf_node, node, node, list) {
363 switch (node->type) {
364 case nir_cf_node_if:
365 nir_emit_if(nir_cf_node_as_if(node));
366 break;
367
368 case nir_cf_node_loop:
369 nir_emit_loop(nir_cf_node_as_loop(node));
370 break;
371
372 case nir_cf_node_block:
373 nir_emit_block(nir_cf_node_as_block(node));
374 break;
375
376 default:
377 unreachable("Invalid CFG node block");
378 }
379 }
380 }
381
382 void
383 fs_visitor::nir_emit_if(nir_if *if_stmt)
384 {
385 /* first, put the condition into f0 */
386 fs_inst *inst = bld.MOV(bld.null_reg_d(),
387 retype(get_nir_src(if_stmt->condition),
388 BRW_REGISTER_TYPE_D));
389 inst->conditional_mod = BRW_CONDITIONAL_NZ;
390
391 bld.IF(BRW_PREDICATE_NORMAL);
392
393 nir_emit_cf_list(&if_stmt->then_list);
394
395 /* note: if the else is empty, dead CF elimination will remove it */
396 bld.emit(BRW_OPCODE_ELSE);
397
398 nir_emit_cf_list(&if_stmt->else_list);
399
400 bld.emit(BRW_OPCODE_ENDIF);
401
402 if (devinfo->gen < 7)
403 limit_dispatch_width(16, "Non-uniform control flow unsupported "
404 "in SIMD32 mode.");
405 }
406
407 void
408 fs_visitor::nir_emit_loop(nir_loop *loop)
409 {
410 bld.emit(BRW_OPCODE_DO);
411
412 nir_emit_cf_list(&loop->body);
413
414 bld.emit(BRW_OPCODE_WHILE);
415
416 if (devinfo->gen < 7)
417 limit_dispatch_width(16, "Non-uniform control flow unsupported "
418 "in SIMD32 mode.");
419 }
420
421 void
422 fs_visitor::nir_emit_block(nir_block *block)
423 {
424 nir_foreach_instr(instr, block) {
425 nir_emit_instr(instr);
426 }
427 }
428
429 void
430 fs_visitor::nir_emit_instr(nir_instr *instr)
431 {
432 const fs_builder abld = bld.annotate(NULL, instr);
433
434 switch (instr->type) {
435 case nir_instr_type_alu:
436 nir_emit_alu(abld, nir_instr_as_alu(instr));
437 break;
438
439 case nir_instr_type_deref:
440 /* Derefs can exist for images but they do nothing */
441 break;
442
443 case nir_instr_type_intrinsic:
444 switch (stage) {
445 case MESA_SHADER_VERTEX:
446 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
447 break;
448 case MESA_SHADER_TESS_CTRL:
449 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
450 break;
451 case MESA_SHADER_TESS_EVAL:
452 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
453 break;
454 case MESA_SHADER_GEOMETRY:
455 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
456 break;
457 case MESA_SHADER_FRAGMENT:
458 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
459 break;
460 case MESA_SHADER_COMPUTE:
461 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
462 break;
463 default:
464 unreachable("unsupported shader stage");
465 }
466 break;
467
468 case nir_instr_type_tex:
469 nir_emit_texture(abld, nir_instr_as_tex(instr));
470 break;
471
472 case nir_instr_type_load_const:
473 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
474 break;
475
476 case nir_instr_type_ssa_undef:
477 /* We create a new VGRF for undefs on every use (by handling
478 * them in get_nir_src()), rather than for each definition.
479 * This helps register coalescing eliminate MOVs from undef.
480 */
481 break;
482
483 case nir_instr_type_jump:
484 nir_emit_jump(abld, nir_instr_as_jump(instr));
485 break;
486
487 default:
488 unreachable("unknown instruction type");
489 }
490 }
491
492 /**
493 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
494 * match instr.
495 */
496 bool
497 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
498 const fs_reg &result)
499 {
500 if (!instr->src[0].src.is_ssa ||
501 !instr->src[0].src.ssa->parent_instr)
502 return false;
503
504 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
505 return false;
506
507 nir_alu_instr *src0 =
508 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
509
510 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
511 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
512 return false;
513
514 unsigned element = nir_src_as_uint(src0->src[1].src);
515
516 /* Element type to extract.*/
517 const brw_reg_type type = brw_int_type(
518 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
519 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
520
521 fs_reg op0 = get_nir_src(src0->src[0].src);
522 op0.type = brw_type_for_nir_type(devinfo,
523 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
524 nir_src_bit_size(src0->src[0].src)));
525 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
526
527 set_saturate(instr->dest.saturate,
528 bld.MOV(result, subscript(op0, type, element)));
529 return true;
530 }
531
532 bool
533 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
534 const fs_reg &result)
535 {
536 if (!instr->src[0].src.is_ssa ||
537 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
538 return false;
539
540 nir_intrinsic_instr *src0 =
541 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
542
543 if (src0->intrinsic != nir_intrinsic_load_front_face)
544 return false;
545
546 if (!nir_src_is_const(instr->src[1].src) ||
547 !nir_src_is_const(instr->src[2].src))
548 return false;
549
550 const float value1 = nir_src_as_float(instr->src[1].src);
551 const float value2 = nir_src_as_float(instr->src[2].src);
552 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
553 return false;
554
555 fs_reg tmp = vgrf(glsl_type::int_type);
556
557 if (devinfo->gen >= 6) {
558 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
559 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
560
561 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
562 *
563 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
564 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
565 *
566 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
567 *
568 * This negation looks like it's safe in practice, because bits 0:4 will
569 * surely be TRIANGLES
570 */
571
572 if (value1 == -1.0f) {
573 g0.negate = true;
574 }
575
576 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
577 g0, brw_imm_uw(0x3f80));
578 } else {
579 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
580 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
581
582 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
583 *
584 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
585 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
586 *
587 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
588 *
589 * This negation looks like it's safe in practice, because bits 0:4 will
590 * surely be TRIANGLES
591 */
592
593 if (value1 == -1.0f) {
594 g1_6.negate = true;
595 }
596
597 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
598 }
599 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
600
601 return true;
602 }
603
604 static void
605 emit_find_msb_using_lzd(const fs_builder &bld,
606 const fs_reg &result,
607 const fs_reg &src,
608 bool is_signed)
609 {
610 fs_inst *inst;
611 fs_reg temp = src;
612
613 if (is_signed) {
614 /* LZD of an absolute value source almost always does the right
615 * thing. There are two problem values:
616 *
617 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
618 * 0. However, findMSB(int(0x80000000)) == 30.
619 *
620 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
621 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
622 *
623 * For a value of zero or negative one, -1 will be returned.
624 *
625 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
626 * findMSB(-(1<<x)) should return x-1.
627 *
628 * For all negative number cases, including 0x80000000 and
629 * 0xffffffff, the correct value is obtained from LZD if instead of
630 * negating the (already negative) value the logical-not is used. A
631 * conditonal logical-not can be achieved in two instructions.
632 */
633 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
634
635 bld.ASR(temp, src, brw_imm_d(31));
636 bld.XOR(temp, temp, src);
637 }
638
639 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
640 retype(temp, BRW_REGISTER_TYPE_UD));
641
642 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
643 * from the LSB side. Subtract the result from 31 to convert the MSB
644 * count into an LSB count. If no bits are set, LZD will return 32.
645 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
646 */
647 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
648 inst->src[0].negate = true;
649 }
650
651 static brw_rnd_mode
652 brw_rnd_mode_from_nir_op (const nir_op op) {
653 switch (op) {
654 case nir_op_f2f16_rtz:
655 return BRW_RND_MODE_RTZ;
656 case nir_op_f2f16_rtne:
657 return BRW_RND_MODE_RTNE;
658 default:
659 unreachable("Operation doesn't support rounding mode");
660 }
661 }
662
663 void
664 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
665 {
666 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
667 fs_inst *inst;
668
669 fs_reg result = get_nir_dest(instr->dest.dest);
670 result.type = brw_type_for_nir_type(devinfo,
671 (nir_alu_type)(nir_op_infos[instr->op].output_type |
672 nir_dest_bit_size(instr->dest.dest)));
673
674 fs_reg op[4];
675 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
676 op[i] = get_nir_src(instr->src[i].src);
677 op[i].type = brw_type_for_nir_type(devinfo,
678 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
679 nir_src_bit_size(instr->src[i].src)));
680 op[i].abs = instr->src[i].abs;
681 op[i].negate = instr->src[i].negate;
682 }
683
684 /* We get a bunch of mov's out of the from_ssa pass and they may still
685 * be vectorized. We'll handle them as a special-case. We'll also
686 * handle vecN here because it's basically the same thing.
687 */
688 switch (instr->op) {
689 case nir_op_imov:
690 case nir_op_fmov:
691 case nir_op_vec2:
692 case nir_op_vec3:
693 case nir_op_vec4: {
694 fs_reg temp = result;
695 bool need_extra_copy = false;
696 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
697 if (!instr->src[i].src.is_ssa &&
698 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
699 need_extra_copy = true;
700 temp = bld.vgrf(result.type, 4);
701 break;
702 }
703 }
704
705 for (unsigned i = 0; i < 4; i++) {
706 if (!(instr->dest.write_mask & (1 << i)))
707 continue;
708
709 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
710 inst = bld.MOV(offset(temp, bld, i),
711 offset(op[0], bld, instr->src[0].swizzle[i]));
712 } else {
713 inst = bld.MOV(offset(temp, bld, i),
714 offset(op[i], bld, instr->src[i].swizzle[0]));
715 }
716 inst->saturate = instr->dest.saturate;
717 }
718
719 /* In this case the source and destination registers were the same,
720 * so we need to insert an extra set of moves in order to deal with
721 * any swizzling.
722 */
723 if (need_extra_copy) {
724 for (unsigned i = 0; i < 4; i++) {
725 if (!(instr->dest.write_mask & (1 << i)))
726 continue;
727
728 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
729 }
730 }
731 return;
732 }
733 default:
734 break;
735 }
736
737 /* At this point, we have dealt with any instruction that operates on
738 * more than a single channel. Therefore, we can just adjust the source
739 * and destination registers for that channel and emit the instruction.
740 */
741 unsigned channel = 0;
742 if (nir_op_infos[instr->op].output_size == 0) {
743 /* Since NIR is doing the scalarizing for us, we should only ever see
744 * vectorized operations with a single channel.
745 */
746 assert(util_bitcount(instr->dest.write_mask) == 1);
747 channel = ffs(instr->dest.write_mask) - 1;
748
749 result = offset(result, bld, channel);
750 }
751
752 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
753 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
754 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
755 }
756
757 switch (instr->op) {
758 case nir_op_i2f32:
759 case nir_op_u2f32:
760 if (optimize_extract_to_float(instr, result))
761 return;
762 inst = bld.MOV(result, op[0]);
763 inst->saturate = instr->dest.saturate;
764 break;
765
766 case nir_op_f2f16_rtne:
767 case nir_op_f2f16_rtz:
768 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
769 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
770 /* fallthrough */
771
772 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
773 * on the HW gen, it is a special hw opcode or just a MOV, and
774 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
775 *
776 * But if we want to use that opcode, we need to provide support on
777 * different optimizations and lowerings. As right now HF support is
778 * only for gen8+, it will be better to use directly the MOV, and use
779 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
780 */
781
782 case nir_op_f2f16:
783 inst = bld.MOV(result, op[0]);
784 inst->saturate = instr->dest.saturate;
785 break;
786
787 case nir_op_b2i:
788 case nir_op_b2f:
789 op[0].type = BRW_REGISTER_TYPE_D;
790 op[0].negate = !op[0].negate;
791 /* fallthrough */
792 case nir_op_f2f64:
793 case nir_op_f2i64:
794 case nir_op_f2u64:
795 case nir_op_i2f64:
796 case nir_op_i2i64:
797 case nir_op_u2f64:
798 case nir_op_u2u64:
799 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
800 *
801 * "When source or destination is 64b (...), regioning in Align1
802 * must follow these rules:
803 *
804 * 1. Source and destination horizontal stride must be aligned to
805 * the same qword.
806 * (...)"
807 *
808 * This means that conversions from bit-sizes smaller than 64-bit to
809 * 64-bit need to have the source data elements aligned to 64-bit.
810 * This restriction does not apply to BDW and later.
811 */
812 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
813 nir_src_bit_size(instr->src[0].src) < 64 &&
814 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
815 fs_reg tmp = bld.vgrf(result.type, 1);
816 tmp = subscript(tmp, op[0].type, 0);
817 inst = bld.MOV(tmp, op[0]);
818 inst = bld.MOV(result, tmp);
819 inst->saturate = instr->dest.saturate;
820 break;
821 }
822 /* fallthrough */
823 case nir_op_f2f32:
824 case nir_op_f2i32:
825 case nir_op_f2u32:
826 case nir_op_f2i16:
827 case nir_op_f2u16:
828 case nir_op_i2i32:
829 case nir_op_u2u32:
830 case nir_op_i2i16:
831 case nir_op_u2u16:
832 case nir_op_i2f16:
833 case nir_op_u2f16:
834 case nir_op_i2i8:
835 case nir_op_u2u8:
836 inst = bld.MOV(result, op[0]);
837 inst->saturate = instr->dest.saturate;
838 break;
839
840 case nir_op_fsign: {
841 assert(!instr->dest.saturate);
842 if (op[0].abs) {
843 /* Straightforward since the source can be assumed to be either
844 * strictly >= 0 or strictly <= 0 depending on the setting of the
845 * negate flag.
846 */
847 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
848
849 inst = (op[0].negate)
850 ? bld.MOV(result, brw_imm_f(-1.0f))
851 : bld.MOV(result, brw_imm_f(1.0f));
852
853 set_predicate(BRW_PREDICATE_NORMAL, inst);
854 } else if (type_sz(op[0].type) < 8) {
855 /* AND(val, 0x80000000) gives the sign bit.
856 *
857 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
858 * zero.
859 */
860 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
861
862 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
863 op[0].type = BRW_REGISTER_TYPE_UD;
864 result.type = BRW_REGISTER_TYPE_UD;
865 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
866
867 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
868 inst->predicate = BRW_PREDICATE_NORMAL;
869 } else {
870 /* For doubles we do the same but we need to consider:
871 *
872 * - 2-src instructions can't operate with 64-bit immediates
873 * - The sign is encoded in the high 32-bit of each DF
874 * - We need to produce a DF result.
875 */
876
877 fs_reg zero = vgrf(glsl_type::double_type);
878 bld.MOV(zero, setup_imm_df(bld, 0.0));
879 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
880
881 bld.MOV(result, zero);
882
883 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
884 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
885 brw_imm_ud(0x80000000u));
886
887 set_predicate(BRW_PREDICATE_NORMAL,
888 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
889 }
890 break;
891 }
892
893 case nir_op_isign: {
894 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
895 * -> non-negative val generates 0x00000000.
896 * Predicated OR sets 1 if val is positive.
897 */
898 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
899 assert(bit_size == 32 || bit_size == 16);
900
901 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
902 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
903 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
904
905 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
906 bld.ASR(result, op[0], shift);
907 inst = bld.OR(result, result, one);
908 inst->predicate = BRW_PREDICATE_NORMAL;
909 break;
910 }
911
912 case nir_op_frcp:
913 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
914 inst->saturate = instr->dest.saturate;
915 break;
916
917 case nir_op_fexp2:
918 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
919 inst->saturate = instr->dest.saturate;
920 break;
921
922 case nir_op_flog2:
923 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
924 inst->saturate = instr->dest.saturate;
925 break;
926
927 case nir_op_fsin:
928 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
929 inst->saturate = instr->dest.saturate;
930 break;
931
932 case nir_op_fcos:
933 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936
937 case nir_op_fddx:
938 if (fs_key->high_quality_derivatives) {
939 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
940 } else {
941 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
942 }
943 inst->saturate = instr->dest.saturate;
944 break;
945 case nir_op_fddx_fine:
946 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
947 inst->saturate = instr->dest.saturate;
948 break;
949 case nir_op_fddx_coarse:
950 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
951 inst->saturate = instr->dest.saturate;
952 break;
953 case nir_op_fddy:
954 if (fs_key->high_quality_derivatives) {
955 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
956 } else {
957 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
958 }
959 inst->saturate = instr->dest.saturate;
960 break;
961 case nir_op_fddy_fine:
962 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
963 inst->saturate = instr->dest.saturate;
964 break;
965 case nir_op_fddy_coarse:
966 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
967 inst->saturate = instr->dest.saturate;
968 break;
969
970 case nir_op_iadd:
971 case nir_op_fadd:
972 inst = bld.ADD(result, op[0], op[1]);
973 inst->saturate = instr->dest.saturate;
974 break;
975
976 case nir_op_fmul:
977 inst = bld.MUL(result, op[0], op[1]);
978 inst->saturate = instr->dest.saturate;
979 break;
980
981 case nir_op_imul:
982 assert(nir_dest_bit_size(instr->dest.dest) < 64);
983 bld.MUL(result, op[0], op[1]);
984 break;
985
986 case nir_op_imul_high:
987 case nir_op_umul_high:
988 assert(nir_dest_bit_size(instr->dest.dest) < 64);
989 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
990 break;
991
992 case nir_op_idiv:
993 case nir_op_udiv:
994 assert(nir_dest_bit_size(instr->dest.dest) < 64);
995 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
996 break;
997
998 case nir_op_uadd_carry:
999 unreachable("Should have been lowered by carry_to_arith().");
1000
1001 case nir_op_usub_borrow:
1002 unreachable("Should have been lowered by borrow_to_arith().");
1003
1004 case nir_op_umod:
1005 case nir_op_irem:
1006 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1007 * appears that our hardware just does the right thing for signed
1008 * remainder.
1009 */
1010 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1011 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1012 break;
1013
1014 case nir_op_imod: {
1015 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1016 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1017
1018 /* Math instructions don't support conditional mod */
1019 inst = bld.MOV(bld.null_reg_d(), result);
1020 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1021
1022 /* Now, we need to determine if signs of the sources are different.
1023 * When we XOR the sources, the top bit is 0 if they are the same and 1
1024 * if they are different. We can then use a conditional modifier to
1025 * turn that into a predicate. This leads us to an XOR.l instruction.
1026 *
1027 * Technically, according to the PRM, you're not allowed to use .l on a
1028 * XOR instruction. However, emperical experiments and Curro's reading
1029 * of the simulator source both indicate that it's safe.
1030 */
1031 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1032 inst = bld.XOR(tmp, op[0], op[1]);
1033 inst->predicate = BRW_PREDICATE_NORMAL;
1034 inst->conditional_mod = BRW_CONDITIONAL_L;
1035
1036 /* If the result of the initial remainder operation is non-zero and the
1037 * two sources have different signs, add in a copy of op[1] to get the
1038 * final integer modulus value.
1039 */
1040 inst = bld.ADD(result, result, op[1]);
1041 inst->predicate = BRW_PREDICATE_NORMAL;
1042 break;
1043 }
1044
1045 case nir_op_flt:
1046 case nir_op_fge:
1047 case nir_op_feq:
1048 case nir_op_fne: {
1049 fs_reg dest = result;
1050
1051 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1052 if (bit_size != 32)
1053 dest = bld.vgrf(op[0].type, 1);
1054
1055 brw_conditional_mod cond;
1056 switch (instr->op) {
1057 case nir_op_flt:
1058 cond = BRW_CONDITIONAL_L;
1059 break;
1060 case nir_op_fge:
1061 cond = BRW_CONDITIONAL_GE;
1062 break;
1063 case nir_op_feq:
1064 cond = BRW_CONDITIONAL_Z;
1065 break;
1066 case nir_op_fne:
1067 cond = BRW_CONDITIONAL_NZ;
1068 break;
1069 default:
1070 unreachable("bad opcode");
1071 }
1072
1073 bld.CMP(dest, op[0], op[1], cond);
1074
1075 if (bit_size > 32) {
1076 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1077 } else if(bit_size < 32) {
1078 /* When we convert the result to 32-bit we need to be careful and do
1079 * it as a signed conversion to get sign extension (for 32-bit true)
1080 */
1081 const brw_reg_type src_type =
1082 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1083
1084 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1085 }
1086 break;
1087 }
1088
1089 case nir_op_ilt:
1090 case nir_op_ult:
1091 case nir_op_ige:
1092 case nir_op_uge:
1093 case nir_op_ieq:
1094 case nir_op_ine: {
1095 fs_reg dest = result;
1096
1097 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1098 if (bit_size != 32)
1099 dest = bld.vgrf(op[0].type, 1);
1100
1101 brw_conditional_mod cond;
1102 switch (instr->op) {
1103 case nir_op_ilt:
1104 case nir_op_ult:
1105 cond = BRW_CONDITIONAL_L;
1106 break;
1107 case nir_op_ige:
1108 case nir_op_uge:
1109 cond = BRW_CONDITIONAL_GE;
1110 break;
1111 case nir_op_ieq:
1112 cond = BRW_CONDITIONAL_Z;
1113 break;
1114 case nir_op_ine:
1115 cond = BRW_CONDITIONAL_NZ;
1116 break;
1117 default:
1118 unreachable("bad opcode");
1119 }
1120 bld.CMP(dest, op[0], op[1], cond);
1121
1122 if (bit_size > 32) {
1123 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1124 } else if (bit_size < 32) {
1125 /* When we convert the result to 32-bit we need to be careful and do
1126 * it as a signed conversion to get sign extension (for 32-bit true)
1127 */
1128 const brw_reg_type src_type =
1129 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1130
1131 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1132 }
1133 break;
1134 }
1135
1136 case nir_op_inot:
1137 if (devinfo->gen >= 8) {
1138 op[0] = resolve_source_modifiers(op[0]);
1139 }
1140 bld.NOT(result, op[0]);
1141 break;
1142 case nir_op_ixor:
1143 if (devinfo->gen >= 8) {
1144 op[0] = resolve_source_modifiers(op[0]);
1145 op[1] = resolve_source_modifiers(op[1]);
1146 }
1147 bld.XOR(result, op[0], op[1]);
1148 break;
1149 case nir_op_ior:
1150 if (devinfo->gen >= 8) {
1151 op[0] = resolve_source_modifiers(op[0]);
1152 op[1] = resolve_source_modifiers(op[1]);
1153 }
1154 bld.OR(result, op[0], op[1]);
1155 break;
1156 case nir_op_iand:
1157 if (devinfo->gen >= 8) {
1158 op[0] = resolve_source_modifiers(op[0]);
1159 op[1] = resolve_source_modifiers(op[1]);
1160 }
1161 bld.AND(result, op[0], op[1]);
1162 break;
1163
1164 case nir_op_fdot2:
1165 case nir_op_fdot3:
1166 case nir_op_fdot4:
1167 case nir_op_ball_fequal2:
1168 case nir_op_ball_iequal2:
1169 case nir_op_ball_fequal3:
1170 case nir_op_ball_iequal3:
1171 case nir_op_ball_fequal4:
1172 case nir_op_ball_iequal4:
1173 case nir_op_bany_fnequal2:
1174 case nir_op_bany_inequal2:
1175 case nir_op_bany_fnequal3:
1176 case nir_op_bany_inequal3:
1177 case nir_op_bany_fnequal4:
1178 case nir_op_bany_inequal4:
1179 unreachable("Lowered by nir_lower_alu_reductions");
1180
1181 case nir_op_fnoise1_1:
1182 case nir_op_fnoise1_2:
1183 case nir_op_fnoise1_3:
1184 case nir_op_fnoise1_4:
1185 case nir_op_fnoise2_1:
1186 case nir_op_fnoise2_2:
1187 case nir_op_fnoise2_3:
1188 case nir_op_fnoise2_4:
1189 case nir_op_fnoise3_1:
1190 case nir_op_fnoise3_2:
1191 case nir_op_fnoise3_3:
1192 case nir_op_fnoise3_4:
1193 case nir_op_fnoise4_1:
1194 case nir_op_fnoise4_2:
1195 case nir_op_fnoise4_3:
1196 case nir_op_fnoise4_4:
1197 unreachable("not reached: should be handled by lower_noise");
1198
1199 case nir_op_ldexp:
1200 unreachable("not reached: should be handled by ldexp_to_arith()");
1201
1202 case nir_op_fsqrt:
1203 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1204 inst->saturate = instr->dest.saturate;
1205 break;
1206
1207 case nir_op_frsq:
1208 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1209 inst->saturate = instr->dest.saturate;
1210 break;
1211
1212 case nir_op_i2b:
1213 case nir_op_f2b: {
1214 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1215 if (bit_size == 64) {
1216 /* two-argument instructions can't take 64-bit immediates */
1217 fs_reg zero;
1218 fs_reg tmp;
1219
1220 if (instr->op == nir_op_f2b) {
1221 zero = vgrf(glsl_type::double_type);
1222 tmp = vgrf(glsl_type::double_type);
1223 bld.MOV(zero, setup_imm_df(bld, 0.0));
1224 } else {
1225 zero = vgrf(glsl_type::int64_t_type);
1226 tmp = vgrf(glsl_type::int64_t_type);
1227 bld.MOV(zero, brw_imm_q(0));
1228 }
1229
1230 /* A SIMD16 execution needs to be split in two instructions, so use
1231 * a vgrf instead of the flag register as dst so instruction splitting
1232 * works
1233 */
1234 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1235 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1236 } else {
1237 fs_reg zero;
1238 if (bit_size == 32) {
1239 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1240 } else {
1241 assert(bit_size == 16);
1242 zero = instr->op == nir_op_f2b ?
1243 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1244 }
1245 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1246 }
1247 break;
1248 }
1249
1250 case nir_op_ftrunc:
1251 inst = bld.RNDZ(result, op[0]);
1252 inst->saturate = instr->dest.saturate;
1253 break;
1254
1255 case nir_op_fceil: {
1256 op[0].negate = !op[0].negate;
1257 fs_reg temp = vgrf(glsl_type::float_type);
1258 bld.RNDD(temp, op[0]);
1259 temp.negate = true;
1260 inst = bld.MOV(result, temp);
1261 inst->saturate = instr->dest.saturate;
1262 break;
1263 }
1264 case nir_op_ffloor:
1265 inst = bld.RNDD(result, op[0]);
1266 inst->saturate = instr->dest.saturate;
1267 break;
1268 case nir_op_ffract:
1269 inst = bld.FRC(result, op[0]);
1270 inst->saturate = instr->dest.saturate;
1271 break;
1272 case nir_op_fround_even:
1273 inst = bld.RNDE(result, op[0]);
1274 inst->saturate = instr->dest.saturate;
1275 break;
1276
1277 case nir_op_fquantize2f16: {
1278 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1279 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1280 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1281
1282 /* The destination stride must be at least as big as the source stride. */
1283 tmp16.type = BRW_REGISTER_TYPE_W;
1284 tmp16.stride = 2;
1285
1286 /* Check for denormal */
1287 fs_reg abs_src0 = op[0];
1288 abs_src0.abs = true;
1289 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1290 BRW_CONDITIONAL_L);
1291 /* Get the appropriately signed zero */
1292 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1293 retype(op[0], BRW_REGISTER_TYPE_UD),
1294 brw_imm_ud(0x80000000));
1295 /* Do the actual F32 -> F16 -> F32 conversion */
1296 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1297 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1298 /* Select that or zero based on normal status */
1299 inst = bld.SEL(result, zero, tmp32);
1300 inst->predicate = BRW_PREDICATE_NORMAL;
1301 inst->saturate = instr->dest.saturate;
1302 break;
1303 }
1304
1305 case nir_op_imin:
1306 case nir_op_umin:
1307 case nir_op_fmin:
1308 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1309 inst->saturate = instr->dest.saturate;
1310 break;
1311
1312 case nir_op_imax:
1313 case nir_op_umax:
1314 case nir_op_fmax:
1315 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1316 inst->saturate = instr->dest.saturate;
1317 break;
1318
1319 case nir_op_pack_snorm_2x16:
1320 case nir_op_pack_snorm_4x8:
1321 case nir_op_pack_unorm_2x16:
1322 case nir_op_pack_unorm_4x8:
1323 case nir_op_unpack_snorm_2x16:
1324 case nir_op_unpack_snorm_4x8:
1325 case nir_op_unpack_unorm_2x16:
1326 case nir_op_unpack_unorm_4x8:
1327 case nir_op_unpack_half_2x16:
1328 case nir_op_pack_half_2x16:
1329 unreachable("not reached: should be handled by lower_packing_builtins");
1330
1331 case nir_op_unpack_half_2x16_split_x:
1332 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1333 inst->saturate = instr->dest.saturate;
1334 break;
1335 case nir_op_unpack_half_2x16_split_y:
1336 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1337 inst->saturate = instr->dest.saturate;
1338 break;
1339
1340 case nir_op_pack_64_2x32_split:
1341 case nir_op_pack_32_2x16_split:
1342 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1343 break;
1344
1345 case nir_op_unpack_64_2x32_split_x:
1346 case nir_op_unpack_64_2x32_split_y: {
1347 if (instr->op == nir_op_unpack_64_2x32_split_x)
1348 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1349 else
1350 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1351 break;
1352 }
1353
1354 case nir_op_unpack_32_2x16_split_x:
1355 case nir_op_unpack_32_2x16_split_y: {
1356 if (instr->op == nir_op_unpack_32_2x16_split_x)
1357 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1358 else
1359 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1360 break;
1361 }
1362
1363 case nir_op_fpow:
1364 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1365 inst->saturate = instr->dest.saturate;
1366 break;
1367
1368 case nir_op_bitfield_reverse:
1369 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1370 bld.BFREV(result, op[0]);
1371 break;
1372
1373 case nir_op_bit_count:
1374 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1375 bld.CBIT(result, op[0]);
1376 break;
1377
1378 case nir_op_ufind_msb: {
1379 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1380 emit_find_msb_using_lzd(bld, result, op[0], false);
1381 break;
1382 }
1383
1384 case nir_op_ifind_msb: {
1385 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1386
1387 if (devinfo->gen < 7) {
1388 emit_find_msb_using_lzd(bld, result, op[0], true);
1389 } else {
1390 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1391
1392 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1393 * count from the LSB side. If FBH didn't return an error
1394 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1395 * count into an LSB count.
1396 */
1397 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1398
1399 inst = bld.ADD(result, result, brw_imm_d(31));
1400 inst->predicate = BRW_PREDICATE_NORMAL;
1401 inst->src[0].negate = true;
1402 }
1403 break;
1404 }
1405
1406 case nir_op_find_lsb:
1407 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1408
1409 if (devinfo->gen < 7) {
1410 fs_reg temp = vgrf(glsl_type::int_type);
1411
1412 /* (x & -x) generates a value that consists of only the LSB of x.
1413 * For all powers of 2, findMSB(y) == findLSB(y).
1414 */
1415 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1416 fs_reg negated_src = src;
1417
1418 /* One must be negated, and the other must be non-negated. It
1419 * doesn't matter which is which.
1420 */
1421 negated_src.negate = true;
1422 src.negate = false;
1423
1424 bld.AND(temp, src, negated_src);
1425 emit_find_msb_using_lzd(bld, result, temp, false);
1426 } else {
1427 bld.FBL(result, op[0]);
1428 }
1429 break;
1430
1431 case nir_op_ubitfield_extract:
1432 case nir_op_ibitfield_extract:
1433 unreachable("should have been lowered");
1434 case nir_op_ubfe:
1435 case nir_op_ibfe:
1436 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1437 bld.BFE(result, op[2], op[1], op[0]);
1438 break;
1439 case nir_op_bfm:
1440 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1441 bld.BFI1(result, op[0], op[1]);
1442 break;
1443 case nir_op_bfi:
1444 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1445 bld.BFI2(result, op[0], op[1], op[2]);
1446 break;
1447
1448 case nir_op_bitfield_insert:
1449 unreachable("not reached: should have been lowered");
1450
1451 case nir_op_ishl:
1452 case nir_op_ishr:
1453 case nir_op_ushr: {
1454 fs_reg shift_count = op[1];
1455
1456 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1457 if (op[1].file == VGRF &&
1458 (result.type == BRW_REGISTER_TYPE_Q ||
1459 result.type == BRW_REGISTER_TYPE_UQ)) {
1460 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1461 BRW_REGISTER_TYPE_UD);
1462 shift_count.stride = 2;
1463 bld.MOV(shift_count, op[1]);
1464 }
1465 }
1466
1467 switch (instr->op) {
1468 case nir_op_ishl:
1469 bld.SHL(result, op[0], shift_count);
1470 break;
1471 case nir_op_ishr:
1472 bld.ASR(result, op[0], shift_count);
1473 break;
1474 case nir_op_ushr:
1475 bld.SHR(result, op[0], shift_count);
1476 break;
1477 default:
1478 unreachable("not reached");
1479 }
1480 break;
1481 }
1482
1483 case nir_op_pack_half_2x16_split:
1484 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1485 break;
1486
1487 case nir_op_ffma:
1488 inst = bld.MAD(result, op[2], op[1], op[0]);
1489 inst->saturate = instr->dest.saturate;
1490 break;
1491
1492 case nir_op_flrp:
1493 inst = bld.LRP(result, op[0], op[1], op[2]);
1494 inst->saturate = instr->dest.saturate;
1495 break;
1496
1497 case nir_op_bcsel:
1498 if (optimize_frontfacing_ternary(instr, result))
1499 return;
1500
1501 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1502 inst = bld.SEL(result, op[1], op[2]);
1503 inst->predicate = BRW_PREDICATE_NORMAL;
1504 break;
1505
1506 case nir_op_extract_u8:
1507 case nir_op_extract_i8: {
1508 unsigned byte = nir_src_as_uint(instr->src[1].src);
1509
1510 /* The PRMs say:
1511 *
1512 * BDW+
1513 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1514 * Use two instructions and a word or DWord intermediate integer type.
1515 */
1516 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1517 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1518
1519 if (instr->op == nir_op_extract_i8) {
1520 /* If we need to sign extend, extract to a word first */
1521 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1522 bld.MOV(w_temp, subscript(op[0], type, byte));
1523 bld.MOV(result, w_temp);
1524 } else {
1525 /* Otherwise use an AND with 0xff and a word type */
1526 bld.AND(result, subscript(op[0], type, byte / 2), brw_imm_uw(0xff));
1527 }
1528 } else {
1529 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1530 bld.MOV(result, subscript(op[0], type, byte));
1531 }
1532 break;
1533 }
1534
1535 case nir_op_extract_u16:
1536 case nir_op_extract_i16: {
1537 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1538 unsigned word = nir_src_as_uint(instr->src[1].src);
1539 bld.MOV(result, subscript(op[0], type, word));
1540 break;
1541 }
1542
1543 default:
1544 unreachable("unhandled instruction");
1545 }
1546
1547 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1548 * to sign extend the low bit to 0/~0
1549 */
1550 if (devinfo->gen <= 5 &&
1551 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1552 fs_reg masked = vgrf(glsl_type::int_type);
1553 bld.AND(masked, result, brw_imm_d(1));
1554 masked.negate = true;
1555 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1556 }
1557 }
1558
1559 void
1560 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1561 nir_load_const_instr *instr)
1562 {
1563 const brw_reg_type reg_type =
1564 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1565 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1566
1567 switch (instr->def.bit_size) {
1568 case 8:
1569 for (unsigned i = 0; i < instr->def.num_components; i++)
1570 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value.i8[i]));
1571 break;
1572
1573 case 16:
1574 for (unsigned i = 0; i < instr->def.num_components; i++)
1575 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1576 break;
1577
1578 case 32:
1579 for (unsigned i = 0; i < instr->def.num_components; i++)
1580 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1581 break;
1582
1583 case 64:
1584 assert(devinfo->gen >= 7);
1585 if (devinfo->gen == 7) {
1586 /* We don't get 64-bit integer types until gen8 */
1587 for (unsigned i = 0; i < instr->def.num_components; i++) {
1588 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1589 setup_imm_df(bld, instr->value.f64[i]));
1590 }
1591 } else {
1592 for (unsigned i = 0; i < instr->def.num_components; i++)
1593 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1594 }
1595 break;
1596
1597 default:
1598 unreachable("Invalid bit size");
1599 }
1600
1601 nir_ssa_values[instr->def.index] = reg;
1602 }
1603
1604 fs_reg
1605 fs_visitor::get_nir_src(const nir_src &src)
1606 {
1607 fs_reg reg;
1608 if (src.is_ssa) {
1609 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1610 const brw_reg_type reg_type =
1611 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1612 reg = bld.vgrf(reg_type, src.ssa->num_components);
1613 } else {
1614 reg = nir_ssa_values[src.ssa->index];
1615 }
1616 } else {
1617 /* We don't handle indirects on locals */
1618 assert(src.reg.indirect == NULL);
1619 reg = offset(nir_locals[src.reg.reg->index], bld,
1620 src.reg.base_offset * src.reg.reg->num_components);
1621 }
1622
1623 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1624 /* The only 64-bit type available on gen7 is DF, so use that. */
1625 reg.type = BRW_REGISTER_TYPE_DF;
1626 } else {
1627 /* To avoid floating-point denorm flushing problems, set the type by
1628 * default to an integer type - instructions that need floating point
1629 * semantics will set this to F if they need to
1630 */
1631 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1632 BRW_REGISTER_TYPE_D);
1633 }
1634
1635 return reg;
1636 }
1637
1638 /**
1639 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1640 *
1641 * This function should not be called on any value which may be 64 bits.
1642 * We could theoretically support 64-bit on gen8+ but we choose not to
1643 * because it wouldn't work in general (no gen7 support) and there are
1644 * enough restrictions in 64-bit immediates that you can't take the return
1645 * value and treat it the same as the result of get_nir_src().
1646 */
1647 fs_reg
1648 fs_visitor::get_nir_src_imm(const nir_src &src)
1649 {
1650 assert(nir_src_bit_size(src) == 32);
1651 return nir_src_is_const(src) ?
1652 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1653 }
1654
1655 fs_reg
1656 fs_visitor::get_nir_dest(const nir_dest &dest)
1657 {
1658 if (dest.is_ssa) {
1659 const brw_reg_type reg_type =
1660 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1661 dest.ssa.bit_size == 8 ?
1662 BRW_REGISTER_TYPE_D :
1663 BRW_REGISTER_TYPE_F);
1664 nir_ssa_values[dest.ssa.index] =
1665 bld.vgrf(reg_type, dest.ssa.num_components);
1666 return nir_ssa_values[dest.ssa.index];
1667 } else {
1668 /* We don't handle indirects on locals */
1669 assert(dest.reg.indirect == NULL);
1670 return offset(nir_locals[dest.reg.reg->index], bld,
1671 dest.reg.base_offset * dest.reg.reg->num_components);
1672 }
1673 }
1674
1675 void
1676 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1677 unsigned wr_mask)
1678 {
1679 for (unsigned i = 0; i < 4; i++) {
1680 if (!((wr_mask >> i) & 1))
1681 continue;
1682
1683 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1684 new_inst->dst = offset(new_inst->dst, bld, i);
1685 for (unsigned j = 0; j < new_inst->sources; j++)
1686 if (new_inst->src[j].file == VGRF)
1687 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1688
1689 bld.emit(new_inst);
1690 }
1691 }
1692
1693 static fs_inst *
1694 emit_pixel_interpolater_send(const fs_builder &bld,
1695 enum opcode opcode,
1696 const fs_reg &dst,
1697 const fs_reg &src,
1698 const fs_reg &desc,
1699 glsl_interp_mode interpolation)
1700 {
1701 struct brw_wm_prog_data *wm_prog_data =
1702 brw_wm_prog_data(bld.shader->stage_prog_data);
1703
1704 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1705 /* 2 floats per slot returned */
1706 inst->size_written = 2 * dst.component_size(inst->exec_size);
1707 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1708
1709 wm_prog_data->pulls_bary = true;
1710
1711 return inst;
1712 }
1713
1714 /**
1715 * Computes 1 << x, given a D/UD register containing some value x.
1716 */
1717 static fs_reg
1718 intexp2(const fs_builder &bld, const fs_reg &x)
1719 {
1720 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1721
1722 fs_reg result = bld.vgrf(x.type, 1);
1723 fs_reg one = bld.vgrf(x.type, 1);
1724
1725 bld.MOV(one, retype(brw_imm_d(1), one.type));
1726 bld.SHL(result, one, x);
1727 return result;
1728 }
1729
1730 void
1731 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1732 {
1733 assert(stage == MESA_SHADER_GEOMETRY);
1734
1735 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1736
1737 if (gs_compile->control_data_header_size_bits == 0)
1738 return;
1739
1740 /* We can only do EndPrimitive() functionality when the control data
1741 * consists of cut bits. Fortunately, the only time it isn't is when the
1742 * output type is points, in which case EndPrimitive() is a no-op.
1743 */
1744 if (gs_prog_data->control_data_format !=
1745 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1746 return;
1747 }
1748
1749 /* Cut bits use one bit per vertex. */
1750 assert(gs_compile->control_data_bits_per_vertex == 1);
1751
1752 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1753 vertex_count.type = BRW_REGISTER_TYPE_UD;
1754
1755 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1756 * vertex n, 0 otherwise. So all we need to do here is mark bit
1757 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1758 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1759 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1760 *
1761 * Note that if EndPrimitive() is called before emitting any vertices, this
1762 * will cause us to set bit 31 of the control_data_bits register to 1.
1763 * That's fine because:
1764 *
1765 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1766 * output, so the hardware will ignore cut bit 31.
1767 *
1768 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1769 * last vertex, so setting cut bit 31 has no effect (since the primitive
1770 * is automatically ended when the GS terminates).
1771 *
1772 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1773 * control_data_bits register to 0 when the first vertex is emitted.
1774 */
1775
1776 const fs_builder abld = bld.annotate("end primitive");
1777
1778 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1779 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1780 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1781 fs_reg mask = intexp2(abld, prev_count);
1782 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1783 * attention to the lower 5 bits of its second source argument, so on this
1784 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1785 * ((vertex_count - 1) % 32).
1786 */
1787 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1788 }
1789
1790 void
1791 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1792 {
1793 assert(stage == MESA_SHADER_GEOMETRY);
1794 assert(gs_compile->control_data_bits_per_vertex != 0);
1795
1796 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1797
1798 const fs_builder abld = bld.annotate("emit control data bits");
1799 const fs_builder fwa_bld = bld.exec_all();
1800
1801 /* We use a single UD register to accumulate control data bits (32 bits
1802 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1803 * at a time.
1804 *
1805 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1806 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1807 * use the Channel Mask phase to enable/disable which DWord within that
1808 * group to write. (Remember, different SIMD8 channels may have emitted
1809 * different numbers of vertices, so we may need per-slot offsets.)
1810 *
1811 * Channel masking presents an annoying problem: we may have to replicate
1812 * the data up to 4 times:
1813 *
1814 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1815 *
1816 * To avoid penalizing shaders that emit a small number of vertices, we
1817 * can avoid these sometimes: if the size of the control data header is
1818 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1819 * land in the same 128-bit group, so we can skip per-slot offsets.
1820 *
1821 * Similarly, if the control data header is <= 32 bits, there is only one
1822 * DWord, so we can skip channel masks.
1823 */
1824 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1825
1826 fs_reg channel_mask, per_slot_offset;
1827
1828 if (gs_compile->control_data_header_size_bits > 32) {
1829 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1830 channel_mask = vgrf(glsl_type::uint_type);
1831 }
1832
1833 if (gs_compile->control_data_header_size_bits > 128) {
1834 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1835 per_slot_offset = vgrf(glsl_type::uint_type);
1836 }
1837
1838 /* Figure out which DWord we're trying to write to using the formula:
1839 *
1840 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1841 *
1842 * Since bits_per_vertex is a power of two, and is known at compile
1843 * time, this can be optimized to:
1844 *
1845 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1846 */
1847 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1848 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1849 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1850 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1851 unsigned log2_bits_per_vertex =
1852 util_last_bit(gs_compile->control_data_bits_per_vertex);
1853 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1854
1855 if (per_slot_offset.file != BAD_FILE) {
1856 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1857 * the appropriate OWord within the control data header.
1858 */
1859 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1860 }
1861
1862 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1863 * write to the appropriate DWORD within the OWORD.
1864 */
1865 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1866 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1867 channel_mask = intexp2(fwa_bld, channel);
1868 /* Then the channel masks need to be in bits 23:16. */
1869 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1870 }
1871
1872 /* Store the control data bits in the message payload and send it. */
1873 int mlen = 2;
1874 if (channel_mask.file != BAD_FILE)
1875 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1876 if (per_slot_offset.file != BAD_FILE)
1877 mlen++;
1878
1879 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1880 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1881 int i = 0;
1882 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1883 if (per_slot_offset.file != BAD_FILE)
1884 sources[i++] = per_slot_offset;
1885 if (channel_mask.file != BAD_FILE)
1886 sources[i++] = channel_mask;
1887 while (i < mlen) {
1888 sources[i++] = this->control_data_bits;
1889 }
1890
1891 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1892 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1893 inst->mlen = mlen;
1894 /* We need to increment Global Offset by 256-bits to make room for
1895 * Broadwell's extra "Vertex Count" payload at the beginning of the
1896 * URB entry. Since this is an OWord message, Global Offset is counted
1897 * in 128-bit units, so we must set it to 2.
1898 */
1899 if (gs_prog_data->static_vertex_count == -1)
1900 inst->offset = 2;
1901 }
1902
1903 void
1904 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1905 unsigned stream_id)
1906 {
1907 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1908
1909 /* Note: we are calling this *before* increasing vertex_count, so
1910 * this->vertex_count == vertex_count - 1 in the formula above.
1911 */
1912
1913 /* Stream mode uses 2 bits per vertex */
1914 assert(gs_compile->control_data_bits_per_vertex == 2);
1915
1916 /* Must be a valid stream */
1917 assert(stream_id < MAX_VERTEX_STREAMS);
1918
1919 /* Control data bits are initialized to 0 so we don't have to set any
1920 * bits when sending vertices to stream 0.
1921 */
1922 if (stream_id == 0)
1923 return;
1924
1925 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1926
1927 /* reg::sid = stream_id */
1928 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1929 abld.MOV(sid, brw_imm_ud(stream_id));
1930
1931 /* reg:shift_count = 2 * (vertex_count - 1) */
1932 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1933 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1934
1935 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1936 * attention to the lower 5 bits of its second source argument, so on this
1937 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1938 * stream_id << ((2 * (vertex_count - 1)) % 32).
1939 */
1940 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1941 abld.SHL(mask, sid, shift_count);
1942 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1943 }
1944
1945 void
1946 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1947 unsigned stream_id)
1948 {
1949 assert(stage == MESA_SHADER_GEOMETRY);
1950
1951 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1952
1953 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1954 vertex_count.type = BRW_REGISTER_TYPE_UD;
1955
1956 /* Haswell and later hardware ignores the "Render Stream Select" bits
1957 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1958 * and instead sends all primitives down the pipeline for rasterization.
1959 * If the SOL stage is enabled, "Render Stream Select" is honored and
1960 * primitives bound to non-zero streams are discarded after stream output.
1961 *
1962 * Since the only purpose of primives sent to non-zero streams is to
1963 * be recorded by transform feedback, we can simply discard all geometry
1964 * bound to these streams when transform feedback is disabled.
1965 */
1966 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1967 return;
1968
1969 /* If we're outputting 32 control data bits or less, then we can wait
1970 * until the shader is over to output them all. Otherwise we need to
1971 * output them as we go. Now is the time to do it, since we're about to
1972 * output the vertex_count'th vertex, so it's guaranteed that the
1973 * control data bits associated with the (vertex_count - 1)th vertex are
1974 * correct.
1975 */
1976 if (gs_compile->control_data_header_size_bits > 32) {
1977 const fs_builder abld =
1978 bld.annotate("emit vertex: emit control data bits");
1979
1980 /* Only emit control data bits if we've finished accumulating a batch
1981 * of 32 bits. This is the case when:
1982 *
1983 * (vertex_count * bits_per_vertex) % 32 == 0
1984 *
1985 * (in other words, when the last 5 bits of vertex_count *
1986 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1987 * integer n (which is always the case, since bits_per_vertex is
1988 * always 1 or 2), this is equivalent to requiring that the last 5-n
1989 * bits of vertex_count are 0:
1990 *
1991 * vertex_count & (2^(5-n) - 1) == 0
1992 *
1993 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1994 * equivalent to:
1995 *
1996 * vertex_count & (32 / bits_per_vertex - 1) == 0
1997 *
1998 * TODO: If vertex_count is an immediate, we could do some of this math
1999 * at compile time...
2000 */
2001 fs_inst *inst =
2002 abld.AND(bld.null_reg_d(), vertex_count,
2003 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2004 inst->conditional_mod = BRW_CONDITIONAL_Z;
2005
2006 abld.IF(BRW_PREDICATE_NORMAL);
2007 /* If vertex_count is 0, then no control data bits have been
2008 * accumulated yet, so we can skip emitting them.
2009 */
2010 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2011 BRW_CONDITIONAL_NEQ);
2012 abld.IF(BRW_PREDICATE_NORMAL);
2013 emit_gs_control_data_bits(vertex_count);
2014 abld.emit(BRW_OPCODE_ENDIF);
2015
2016 /* Reset control_data_bits to 0 so we can start accumulating a new
2017 * batch.
2018 *
2019 * Note: in the case where vertex_count == 0, this neutralizes the
2020 * effect of any call to EndPrimitive() that the shader may have
2021 * made before outputting its first vertex.
2022 */
2023 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2024 inst->force_writemask_all = true;
2025 abld.emit(BRW_OPCODE_ENDIF);
2026 }
2027
2028 emit_urb_writes(vertex_count);
2029
2030 /* In stream mode we have to set control data bits for all vertices
2031 * unless we have disabled control data bits completely (which we do
2032 * do for GL_POINTS outputs that don't use streams).
2033 */
2034 if (gs_compile->control_data_header_size_bits > 0 &&
2035 gs_prog_data->control_data_format ==
2036 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2037 set_gs_stream_control_data_bits(vertex_count, stream_id);
2038 }
2039 }
2040
2041 void
2042 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2043 const nir_src &vertex_src,
2044 unsigned base_offset,
2045 const nir_src &offset_src,
2046 unsigned num_components,
2047 unsigned first_component)
2048 {
2049 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2050 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2051
2052 /* TODO: figure out push input layout for invocations == 1 */
2053 /* TODO: make this work with 64-bit inputs */
2054 if (gs_prog_data->invocations == 1 &&
2055 type_sz(dst.type) <= 4 &&
2056 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2057 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2058 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2059 nir_src_as_uint(vertex_src) * push_reg_count;
2060 for (unsigned i = 0; i < num_components; i++) {
2061 bld.MOV(offset(dst, bld, i),
2062 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2063 }
2064 return;
2065 }
2066
2067 /* Resort to the pull model. Ensure the VUE handles are provided. */
2068 assert(gs_prog_data->base.include_vue_handles);
2069
2070 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2071 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2072
2073 if (gs_prog_data->invocations == 1) {
2074 if (nir_src_is_const(vertex_src)) {
2075 /* The vertex index is constant; just select the proper URB handle. */
2076 icp_handle =
2077 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2078 BRW_REGISTER_TYPE_UD);
2079 } else {
2080 /* The vertex index is non-constant. We need to use indirect
2081 * addressing to fetch the proper URB handle.
2082 *
2083 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2084 * indicating that channel <n> should read the handle from
2085 * DWord <n>. We convert that to bytes by multiplying by 4.
2086 *
2087 * Next, we convert the vertex index to bytes by multiplying
2088 * by 32 (shifting by 5), and add the two together. This is
2089 * the final indirect byte offset.
2090 */
2091 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2092 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2093 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2094 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2095
2096 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2097 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2098 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2099 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2100 /* Convert vertex_index to bytes (multiply by 32) */
2101 bld.SHL(vertex_offset_bytes,
2102 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2103 brw_imm_ud(5u));
2104 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2105
2106 /* Use first_icp_handle as the base offset. There is one register
2107 * of URB handles per vertex, so inform the register allocator that
2108 * we might read up to nir->info.gs.vertices_in registers.
2109 */
2110 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2111 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2112 fs_reg(icp_offset_bytes),
2113 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2114 }
2115 } else {
2116 assert(gs_prog_data->invocations > 1);
2117
2118 if (nir_src_is_const(vertex_src)) {
2119 unsigned vertex = nir_src_as_uint(vertex_src);
2120 assert(devinfo->gen >= 9 || vertex <= 5);
2121 bld.MOV(icp_handle,
2122 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2123 BRW_REGISTER_TYPE_UD));
2124 } else {
2125 /* The vertex index is non-constant. We need to use indirect
2126 * addressing to fetch the proper URB handle.
2127 *
2128 */
2129 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2130
2131 /* Convert vertex_index to bytes (multiply by 4) */
2132 bld.SHL(icp_offset_bytes,
2133 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2134 brw_imm_ud(2u));
2135
2136 /* Use first_icp_handle as the base offset. There is one DWord
2137 * of URB handles per vertex, so inform the register allocator that
2138 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2139 */
2140 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2141 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2142 fs_reg(icp_offset_bytes),
2143 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2144 REG_SIZE));
2145 }
2146 }
2147
2148 fs_inst *inst;
2149
2150 fs_reg tmp_dst = dst;
2151 fs_reg indirect_offset = get_nir_src(offset_src);
2152 unsigned num_iterations = 1;
2153 unsigned orig_num_components = num_components;
2154
2155 if (type_sz(dst.type) == 8) {
2156 if (num_components > 2) {
2157 num_iterations = 2;
2158 num_components = 2;
2159 }
2160 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2161 tmp_dst = tmp;
2162 first_component = first_component / 2;
2163 }
2164
2165 for (unsigned iter = 0; iter < num_iterations; iter++) {
2166 if (nir_src_is_const(offset_src)) {
2167 /* Constant indexing - use global offset. */
2168 if (first_component != 0) {
2169 unsigned read_components = num_components + first_component;
2170 fs_reg tmp = bld.vgrf(dst.type, read_components);
2171 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2172 inst->size_written = read_components *
2173 tmp.component_size(inst->exec_size);
2174 for (unsigned i = 0; i < num_components; i++) {
2175 bld.MOV(offset(tmp_dst, bld, i),
2176 offset(tmp, bld, i + first_component));
2177 }
2178 } else {
2179 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2180 icp_handle);
2181 inst->size_written = num_components *
2182 tmp_dst.component_size(inst->exec_size);
2183 }
2184 inst->offset = base_offset + nir_src_as_uint(offset_src);
2185 inst->mlen = 1;
2186 } else {
2187 /* Indirect indexing - use per-slot offsets as well. */
2188 const fs_reg srcs[] = { icp_handle, indirect_offset };
2189 unsigned read_components = num_components + first_component;
2190 fs_reg tmp = bld.vgrf(dst.type, read_components);
2191 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2192 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2193 if (first_component != 0) {
2194 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2195 payload);
2196 inst->size_written = read_components *
2197 tmp.component_size(inst->exec_size);
2198 for (unsigned i = 0; i < num_components; i++) {
2199 bld.MOV(offset(tmp_dst, bld, i),
2200 offset(tmp, bld, i + first_component));
2201 }
2202 } else {
2203 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2204 payload);
2205 inst->size_written = num_components *
2206 tmp_dst.component_size(inst->exec_size);
2207 }
2208 inst->offset = base_offset;
2209 inst->mlen = 2;
2210 }
2211
2212 if (type_sz(dst.type) == 8) {
2213 shuffle_from_32bit_read(bld,
2214 offset(dst, bld, iter * 2),
2215 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2216 0,
2217 num_components);
2218 }
2219
2220 if (num_iterations > 1) {
2221 num_components = orig_num_components - 2;
2222 if(nir_src_is_const(offset_src)) {
2223 base_offset++;
2224 } else {
2225 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2226 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2227 indirect_offset = new_indirect;
2228 }
2229 }
2230 }
2231 }
2232
2233 fs_reg
2234 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2235 {
2236 nir_src *offset_src = nir_get_io_offset_src(instr);
2237
2238 if (nir_src_is_const(*offset_src)) {
2239 /* The only constant offset we should find is 0. brw_nir.c's
2240 * add_const_offset_to_base() will fold other constant offsets
2241 * into instr->const_index[0].
2242 */
2243 assert(nir_src_as_uint(*offset_src) == 0);
2244 return fs_reg();
2245 }
2246
2247 return get_nir_src(*offset_src);
2248 }
2249
2250 static void
2251 do_untyped_vector_read(const fs_builder &bld,
2252 const fs_reg dest,
2253 const fs_reg surf_index,
2254 const fs_reg offset_reg,
2255 unsigned num_components)
2256 {
2257 if (type_sz(dest.type) <= 2) {
2258 assert(dest.stride == 1);
2259 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2260
2261 if (is_const_offset) {
2262 uint32_t start = offset_reg.ud & ~3;
2263 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2264 end = ALIGN(end, 4);
2265 assert (end - start <= 16);
2266
2267 /* At this point we have 16-bit component/s that have constant
2268 * offset aligned to 4-bytes that can be read with untyped_reads.
2269 * untyped_read message requires 32-bit aligned offsets.
2270 */
2271 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2272 unsigned num_components_32bit = (end - start) / 4;
2273
2274 fs_reg read_result =
2275 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2276 1 /* dims */,
2277 num_components_32bit,
2278 BRW_PREDICATE_NONE);
2279 shuffle_from_32bit_read(bld, dest, read_result, first_component,
2280 num_components);
2281 } else {
2282 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2283 for (unsigned i = 0; i < num_components; i++) {
2284 if (i == 0) {
2285 bld.MOV(read_offset, offset_reg);
2286 } else {
2287 bld.ADD(read_offset, offset_reg,
2288 brw_imm_ud(i * type_sz(dest.type)));
2289 }
2290 /* Non constant offsets are not guaranteed to be aligned 32-bits
2291 * so they are read using one byte_scattered_read message
2292 * for each component.
2293 */
2294 fs_reg read_result =
2295 emit_byte_scattered_read(bld, surf_index, read_offset,
2296 1 /* dims */, 1,
2297 type_sz(dest.type) * 8 /* bit_size */,
2298 BRW_PREDICATE_NONE);
2299 bld.MOV(offset(dest, bld, i),
2300 subscript (read_result, dest.type, 0));
2301 }
2302 }
2303 } else if (type_sz(dest.type) == 4) {
2304 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2305 1 /* dims */,
2306 num_components,
2307 BRW_PREDICATE_NONE);
2308 read_result.type = dest.type;
2309 for (unsigned i = 0; i < num_components; i++)
2310 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2311 } else if (type_sz(dest.type) == 8) {
2312 /* Reading a dvec, so we need to:
2313 *
2314 * 1. Multiply num_components by 2, to account for the fact that we
2315 * need to read 64-bit components.
2316 * 2. Shuffle the result of the load to form valid 64-bit elements
2317 * 3. Emit a second load (for components z/w) if needed.
2318 */
2319 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2320 bld.MOV(read_offset, offset_reg);
2321
2322 int iters = num_components <= 2 ? 1 : 2;
2323
2324 /* Load the dvec, the first iteration loads components x/y, the second
2325 * iteration, if needed, loads components z/w
2326 */
2327 for (int it = 0; it < iters; it++) {
2328 /* Compute number of components to read in this iteration */
2329 int iter_components = MIN2(2, num_components);
2330 num_components -= iter_components;
2331
2332 /* Read. Since this message reads 32-bit components, we need to
2333 * read twice as many components.
2334 */
2335 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2336 1 /* dims */,
2337 iter_components * 2,
2338 BRW_PREDICATE_NONE);
2339
2340 /* Shuffle the 32-bit load result into valid 64-bit data */
2341 shuffle_from_32bit_read(bld, offset(dest, bld, it * 2),
2342 read_result, 0, iter_components);
2343
2344 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2345 }
2346 } else {
2347 unreachable("Unsupported type");
2348 }
2349 }
2350
2351 void
2352 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2353 nir_intrinsic_instr *instr)
2354 {
2355 assert(stage == MESA_SHADER_VERTEX);
2356
2357 fs_reg dest;
2358 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2359 dest = get_nir_dest(instr->dest);
2360
2361 switch (instr->intrinsic) {
2362 case nir_intrinsic_load_vertex_id:
2363 case nir_intrinsic_load_base_vertex:
2364 unreachable("should be lowered by nir_lower_system_values()");
2365
2366 case nir_intrinsic_load_input: {
2367 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2368 unsigned first_component = nir_intrinsic_component(instr);
2369 unsigned num_components = instr->num_components;
2370
2371 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2372
2373 if (type_sz(dest.type) == 8)
2374 first_component /= 2;
2375
2376 /* For 16-bit support maybe a temporary will be needed to copy from
2377 * the ATTR file.
2378 */
2379 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2380 first_component, num_components);
2381 break;
2382 }
2383
2384 case nir_intrinsic_load_vertex_id_zero_base:
2385 case nir_intrinsic_load_instance_id:
2386 case nir_intrinsic_load_base_instance:
2387 case nir_intrinsic_load_draw_id:
2388 case nir_intrinsic_load_first_vertex:
2389 case nir_intrinsic_load_is_indexed_draw:
2390 unreachable("lowered by brw_nir_lower_vs_inputs");
2391
2392 default:
2393 nir_emit_intrinsic(bld, instr);
2394 break;
2395 }
2396 }
2397
2398 void
2399 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2400 nir_intrinsic_instr *instr)
2401 {
2402 assert(stage == MESA_SHADER_TESS_CTRL);
2403 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2404 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2405
2406 fs_reg dst;
2407 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2408 dst = get_nir_dest(instr->dest);
2409
2410 switch (instr->intrinsic) {
2411 case nir_intrinsic_load_primitive_id:
2412 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2413 break;
2414 case nir_intrinsic_load_invocation_id:
2415 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2416 break;
2417 case nir_intrinsic_load_patch_vertices_in:
2418 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2419 brw_imm_d(tcs_key->input_vertices));
2420 break;
2421
2422 case nir_intrinsic_barrier: {
2423 if (tcs_prog_data->instances == 1)
2424 break;
2425
2426 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2427 fs_reg m0_2 = component(m0, 2);
2428
2429 const fs_builder chanbld = bld.exec_all().group(1, 0);
2430
2431 /* Zero the message header */
2432 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2433
2434 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2435 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2436 brw_imm_ud(INTEL_MASK(16, 13)));
2437
2438 /* Shift it up to bits 27:24. */
2439 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2440
2441 /* Set the Barrier Count and the enable bit */
2442 chanbld.OR(m0_2, m0_2,
2443 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2444
2445 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2446 break;
2447 }
2448
2449 case nir_intrinsic_load_input:
2450 unreachable("nir_lower_io should never give us these.");
2451 break;
2452
2453 case nir_intrinsic_load_per_vertex_input: {
2454 fs_reg indirect_offset = get_indirect_offset(instr);
2455 unsigned imm_offset = instr->const_index[0];
2456
2457 const nir_src &vertex_src = instr->src[0];
2458
2459 fs_inst *inst;
2460
2461 fs_reg icp_handle;
2462
2463 if (nir_src_is_const(vertex_src)) {
2464 /* Emit a MOV to resolve <0,1,0> regioning. */
2465 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2466 unsigned vertex = nir_src_as_uint(vertex_src);
2467 bld.MOV(icp_handle,
2468 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2469 BRW_REGISTER_TYPE_UD));
2470 } else if (tcs_prog_data->instances == 1 &&
2471 vertex_src.is_ssa &&
2472 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2473 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2474 /* For the common case of only 1 instance, an array index of
2475 * gl_InvocationID means reading g1. Skip all the indirect work.
2476 */
2477 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2478 } else {
2479 /* The vertex index is non-constant. We need to use indirect
2480 * addressing to fetch the proper URB handle.
2481 */
2482 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2483
2484 /* Each ICP handle is a single DWord (4 bytes) */
2485 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2486 bld.SHL(vertex_offset_bytes,
2487 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2488 brw_imm_ud(2u));
2489
2490 /* Start at g1. We might read up to 4 registers. */
2491 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2492 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2493 brw_imm_ud(4 * REG_SIZE));
2494 }
2495
2496 /* We can only read two double components with each URB read, so
2497 * we send two read messages in that case, each one loading up to
2498 * two double components.
2499 */
2500 unsigned num_iterations = 1;
2501 unsigned num_components = instr->num_components;
2502 unsigned first_component = nir_intrinsic_component(instr);
2503 fs_reg orig_dst = dst;
2504 if (type_sz(dst.type) == 8) {
2505 first_component = first_component / 2;
2506 if (instr->num_components > 2) {
2507 num_iterations = 2;
2508 num_components = 2;
2509 }
2510
2511 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2512 dst = tmp;
2513 }
2514
2515 for (unsigned iter = 0; iter < num_iterations; iter++) {
2516 if (indirect_offset.file == BAD_FILE) {
2517 /* Constant indexing - use global offset. */
2518 if (first_component != 0) {
2519 unsigned read_components = num_components + first_component;
2520 fs_reg tmp = bld.vgrf(dst.type, read_components);
2521 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2522 for (unsigned i = 0; i < num_components; i++) {
2523 bld.MOV(offset(dst, bld, i),
2524 offset(tmp, bld, i + first_component));
2525 }
2526 } else {
2527 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2528 }
2529 inst->offset = imm_offset;
2530 inst->mlen = 1;
2531 } else {
2532 /* Indirect indexing - use per-slot offsets as well. */
2533 const fs_reg srcs[] = { icp_handle, indirect_offset };
2534 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2535 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2536 if (first_component != 0) {
2537 unsigned read_components = num_components + first_component;
2538 fs_reg tmp = bld.vgrf(dst.type, read_components);
2539 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2540 payload);
2541 for (unsigned i = 0; i < num_components; i++) {
2542 bld.MOV(offset(dst, bld, i),
2543 offset(tmp, bld, i + first_component));
2544 }
2545 } else {
2546 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2547 payload);
2548 }
2549 inst->offset = imm_offset;
2550 inst->mlen = 2;
2551 }
2552 inst->size_written = (num_components + first_component) *
2553 inst->dst.component_size(inst->exec_size);
2554
2555 /* If we are reading 64-bit data using 32-bit read messages we need
2556 * build proper 64-bit data elements by shuffling the low and high
2557 * 32-bit components around like we do for other things like UBOs
2558 * or SSBOs.
2559 */
2560 if (type_sz(dst.type) == 8) {
2561 shuffle_from_32bit_read(bld,
2562 offset(orig_dst, bld, iter * 2),
2563 retype(dst, BRW_REGISTER_TYPE_D),
2564 0, num_components);
2565 }
2566
2567 /* Copy the temporary to the destination to deal with writemasking.
2568 *
2569 * Also attempt to deal with gl_PointSize being in the .w component.
2570 */
2571 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2572 assert(type_sz(dst.type) < 8);
2573 inst->dst = bld.vgrf(dst.type, 4);
2574 inst->size_written = 4 * REG_SIZE;
2575 bld.MOV(dst, offset(inst->dst, bld, 3));
2576 }
2577
2578 /* If we are loading double data and we need a second read message
2579 * adjust the write offset
2580 */
2581 if (num_iterations > 1) {
2582 num_components = instr->num_components - 2;
2583 imm_offset++;
2584 }
2585 }
2586 break;
2587 }
2588
2589 case nir_intrinsic_load_output:
2590 case nir_intrinsic_load_per_vertex_output: {
2591 fs_reg indirect_offset = get_indirect_offset(instr);
2592 unsigned imm_offset = instr->const_index[0];
2593 unsigned first_component = nir_intrinsic_component(instr);
2594
2595 fs_inst *inst;
2596 if (indirect_offset.file == BAD_FILE) {
2597 /* Replicate the patch handle to all enabled channels */
2598 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2599 bld.MOV(patch_handle,
2600 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2601
2602 {
2603 if (first_component != 0) {
2604 unsigned read_components =
2605 instr->num_components + first_component;
2606 fs_reg tmp = bld.vgrf(dst.type, read_components);
2607 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2608 patch_handle);
2609 inst->size_written = read_components * REG_SIZE;
2610 for (unsigned i = 0; i < instr->num_components; i++) {
2611 bld.MOV(offset(dst, bld, i),
2612 offset(tmp, bld, i + first_component));
2613 }
2614 } else {
2615 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2616 patch_handle);
2617 inst->size_written = instr->num_components * REG_SIZE;
2618 }
2619 inst->offset = imm_offset;
2620 inst->mlen = 1;
2621 }
2622 } else {
2623 /* Indirect indexing - use per-slot offsets as well. */
2624 const fs_reg srcs[] = {
2625 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2626 indirect_offset
2627 };
2628 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2629 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2630 if (first_component != 0) {
2631 unsigned read_components =
2632 instr->num_components + first_component;
2633 fs_reg tmp = bld.vgrf(dst.type, read_components);
2634 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2635 payload);
2636 inst->size_written = read_components * REG_SIZE;
2637 for (unsigned i = 0; i < instr->num_components; i++) {
2638 bld.MOV(offset(dst, bld, i),
2639 offset(tmp, bld, i + first_component));
2640 }
2641 } else {
2642 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2643 payload);
2644 inst->size_written = instr->num_components * REG_SIZE;
2645 }
2646 inst->offset = imm_offset;
2647 inst->mlen = 2;
2648 }
2649 break;
2650 }
2651
2652 case nir_intrinsic_store_output:
2653 case nir_intrinsic_store_per_vertex_output: {
2654 fs_reg value = get_nir_src(instr->src[0]);
2655 bool is_64bit = (instr->src[0].is_ssa ?
2656 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2657 fs_reg indirect_offset = get_indirect_offset(instr);
2658 unsigned imm_offset = instr->const_index[0];
2659 unsigned mask = instr->const_index[1];
2660 unsigned header_regs = 0;
2661 fs_reg srcs[7];
2662 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2663
2664 if (indirect_offset.file != BAD_FILE) {
2665 srcs[header_regs++] = indirect_offset;
2666 }
2667
2668 if (mask == 0)
2669 break;
2670
2671 unsigned num_components = util_last_bit(mask);
2672 enum opcode opcode;
2673
2674 /* We can only pack two 64-bit components in a single message, so send
2675 * 2 messages if we have more components
2676 */
2677 unsigned num_iterations = 1;
2678 unsigned iter_components = num_components;
2679 unsigned first_component = nir_intrinsic_component(instr);
2680 if (is_64bit) {
2681 first_component = first_component / 2;
2682 if (instr->num_components > 2) {
2683 num_iterations = 2;
2684 iter_components = 2;
2685 }
2686 }
2687
2688 mask = mask << first_component;
2689
2690 for (unsigned iter = 0; iter < num_iterations; iter++) {
2691 if (!is_64bit && mask != WRITEMASK_XYZW) {
2692 srcs[header_regs++] = brw_imm_ud(mask << 16);
2693 opcode = indirect_offset.file != BAD_FILE ?
2694 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2695 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2696 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2697 /* Expand the 64-bit mask to 32-bit channels. We only handle
2698 * two channels in each iteration, so we only care about X/Y.
2699 */
2700 unsigned mask32 = 0;
2701 if (mask & WRITEMASK_X)
2702 mask32 |= WRITEMASK_XY;
2703 if (mask & WRITEMASK_Y)
2704 mask32 |= WRITEMASK_ZW;
2705
2706 /* If the mask does not include any of the channels X or Y there
2707 * is nothing to do in this iteration. Move on to the next couple
2708 * of 64-bit channels.
2709 */
2710 if (!mask32) {
2711 mask >>= 2;
2712 imm_offset++;
2713 continue;
2714 }
2715
2716 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2717 opcode = indirect_offset.file != BAD_FILE ?
2718 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2719 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2720 } else {
2721 opcode = indirect_offset.file != BAD_FILE ?
2722 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2723 SHADER_OPCODE_URB_WRITE_SIMD8;
2724 }
2725
2726 for (unsigned i = 0; i < iter_components; i++) {
2727 if (!(mask & (1 << (i + first_component))))
2728 continue;
2729
2730 if (!is_64bit) {
2731 srcs[header_regs + i + first_component] = offset(value, bld, i);
2732 } else {
2733 /* We need to shuffle the 64-bit data to match the layout
2734 * expected by our 32-bit URB write messages. We use a temporary
2735 * for that.
2736 */
2737 unsigned channel = iter * 2 + i;
2738 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2739
2740 srcs[header_regs + (i + first_component) * 2] = dest;
2741 srcs[header_regs + (i + first_component) * 2 + 1] =
2742 offset(dest, bld, 1);
2743 }
2744 }
2745
2746 unsigned mlen =
2747 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2748 (is_64bit ? 2 * first_component : first_component);
2749 fs_reg payload =
2750 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2751 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2752
2753 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2754 inst->offset = imm_offset;
2755 inst->mlen = mlen;
2756
2757 /* If this is a 64-bit attribute, select the next two 64-bit channels
2758 * to be handled in the next iteration.
2759 */
2760 if (is_64bit) {
2761 mask >>= 2;
2762 imm_offset++;
2763 }
2764 }
2765 break;
2766 }
2767
2768 default:
2769 nir_emit_intrinsic(bld, instr);
2770 break;
2771 }
2772 }
2773
2774 void
2775 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2776 nir_intrinsic_instr *instr)
2777 {
2778 assert(stage == MESA_SHADER_TESS_EVAL);
2779 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2780
2781 fs_reg dest;
2782 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2783 dest = get_nir_dest(instr->dest);
2784
2785 switch (instr->intrinsic) {
2786 case nir_intrinsic_load_primitive_id:
2787 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2788 break;
2789 case nir_intrinsic_load_tess_coord:
2790 /* gl_TessCoord is part of the payload in g1-3 */
2791 for (unsigned i = 0; i < 3; i++) {
2792 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2793 }
2794 break;
2795
2796 case nir_intrinsic_load_input:
2797 case nir_intrinsic_load_per_vertex_input: {
2798 fs_reg indirect_offset = get_indirect_offset(instr);
2799 unsigned imm_offset = instr->const_index[0];
2800 unsigned first_component = nir_intrinsic_component(instr);
2801
2802 if (type_sz(dest.type) == 8) {
2803 first_component = first_component / 2;
2804 }
2805
2806 fs_inst *inst;
2807 if (indirect_offset.file == BAD_FILE) {
2808 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2809 * which is 16 registers (since each holds 2 vec4 slots).
2810 */
2811 unsigned slot_count = 1;
2812 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2813 slot_count++;
2814
2815 const unsigned max_push_slots = 32;
2816 if (imm_offset + slot_count <= max_push_slots) {
2817 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2818 for (int i = 0; i < instr->num_components; i++) {
2819 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2820 i + first_component;
2821 bld.MOV(offset(dest, bld, i), component(src, comp));
2822 }
2823
2824 tes_prog_data->base.urb_read_length =
2825 MAX2(tes_prog_data->base.urb_read_length,
2826 DIV_ROUND_UP(imm_offset + slot_count, 2));
2827 } else {
2828 /* Replicate the patch handle to all enabled channels */
2829 const fs_reg srcs[] = {
2830 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2831 };
2832 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2833 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2834
2835 if (first_component != 0) {
2836 unsigned read_components =
2837 instr->num_components + first_component;
2838 fs_reg tmp = bld.vgrf(dest.type, read_components);
2839 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2840 patch_handle);
2841 inst->size_written = read_components * REG_SIZE;
2842 for (unsigned i = 0; i < instr->num_components; i++) {
2843 bld.MOV(offset(dest, bld, i),
2844 offset(tmp, bld, i + first_component));
2845 }
2846 } else {
2847 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2848 patch_handle);
2849 inst->size_written = instr->num_components * REG_SIZE;
2850 }
2851 inst->mlen = 1;
2852 inst->offset = imm_offset;
2853 }
2854 } else {
2855 /* Indirect indexing - use per-slot offsets as well. */
2856
2857 /* We can only read two double components with each URB read, so
2858 * we send two read messages in that case, each one loading up to
2859 * two double components.
2860 */
2861 unsigned num_iterations = 1;
2862 unsigned num_components = instr->num_components;
2863 fs_reg orig_dest = dest;
2864 if (type_sz(dest.type) == 8) {
2865 if (instr->num_components > 2) {
2866 num_iterations = 2;
2867 num_components = 2;
2868 }
2869 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2870 dest = tmp;
2871 }
2872
2873 for (unsigned iter = 0; iter < num_iterations; iter++) {
2874 const fs_reg srcs[] = {
2875 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2876 indirect_offset
2877 };
2878 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2879 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2880
2881 if (first_component != 0) {
2882 unsigned read_components =
2883 num_components + first_component;
2884 fs_reg tmp = bld.vgrf(dest.type, read_components);
2885 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2886 payload);
2887 for (unsigned i = 0; i < num_components; i++) {
2888 bld.MOV(offset(dest, bld, i),
2889 offset(tmp, bld, i + first_component));
2890 }
2891 } else {
2892 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2893 payload);
2894 }
2895 inst->mlen = 2;
2896 inst->offset = imm_offset;
2897 inst->size_written = (num_components + first_component) *
2898 inst->dst.component_size(inst->exec_size);
2899
2900 /* If we are reading 64-bit data using 32-bit read messages we need
2901 * build proper 64-bit data elements by shuffling the low and high
2902 * 32-bit components around like we do for other things like UBOs
2903 * or SSBOs.
2904 */
2905 if (type_sz(dest.type) == 8) {
2906 shuffle_from_32bit_read(bld,
2907 offset(orig_dest, bld, iter * 2),
2908 retype(dest, BRW_REGISTER_TYPE_D),
2909 0, num_components);
2910 }
2911
2912 /* If we are loading double data and we need a second read message
2913 * adjust the offset
2914 */
2915 if (num_iterations > 1) {
2916 num_components = instr->num_components - 2;
2917 imm_offset++;
2918 }
2919 }
2920 }
2921 break;
2922 }
2923 default:
2924 nir_emit_intrinsic(bld, instr);
2925 break;
2926 }
2927 }
2928
2929 void
2930 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2931 nir_intrinsic_instr *instr)
2932 {
2933 assert(stage == MESA_SHADER_GEOMETRY);
2934 fs_reg indirect_offset;
2935
2936 fs_reg dest;
2937 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2938 dest = get_nir_dest(instr->dest);
2939
2940 switch (instr->intrinsic) {
2941 case nir_intrinsic_load_primitive_id:
2942 assert(stage == MESA_SHADER_GEOMETRY);
2943 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2944 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2945 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2946 break;
2947
2948 case nir_intrinsic_load_input:
2949 unreachable("load_input intrinsics are invalid for the GS stage");
2950
2951 case nir_intrinsic_load_per_vertex_input:
2952 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2953 instr->src[1], instr->num_components,
2954 nir_intrinsic_component(instr));
2955 break;
2956
2957 case nir_intrinsic_emit_vertex_with_counter:
2958 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2959 break;
2960
2961 case nir_intrinsic_end_primitive_with_counter:
2962 emit_gs_end_primitive(instr->src[0]);
2963 break;
2964
2965 case nir_intrinsic_set_vertex_count:
2966 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2967 break;
2968
2969 case nir_intrinsic_load_invocation_id: {
2970 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2971 assert(val.file != BAD_FILE);
2972 dest.type = val.type;
2973 bld.MOV(dest, val);
2974 break;
2975 }
2976
2977 default:
2978 nir_emit_intrinsic(bld, instr);
2979 break;
2980 }
2981 }
2982
2983 /**
2984 * Fetch the current render target layer index.
2985 */
2986 static fs_reg
2987 fetch_render_target_array_index(const fs_builder &bld)
2988 {
2989 if (bld.shader->devinfo->gen >= 6) {
2990 /* The render target array index is provided in the thread payload as
2991 * bits 26:16 of r0.0.
2992 */
2993 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
2994 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
2995 brw_imm_uw(0x7ff));
2996 return idx;
2997 } else {
2998 /* Pre-SNB we only ever render into the first layer of the framebuffer
2999 * since layered rendering is not implemented.
3000 */
3001 return brw_imm_ud(0);
3002 }
3003 }
3004
3005 /**
3006 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3007 * framebuffer at the current fragment coordinates and sample index.
3008 */
3009 fs_inst *
3010 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3011 unsigned target)
3012 {
3013 const struct gen_device_info *devinfo = bld.shader->devinfo;
3014
3015 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3016 const brw_wm_prog_key *wm_key =
3017 reinterpret_cast<const brw_wm_prog_key *>(key);
3018 assert(!wm_key->coherent_fb_fetch);
3019 const struct brw_wm_prog_data *wm_prog_data =
3020 brw_wm_prog_data(stage_prog_data);
3021
3022 /* Calculate the surface index relative to the start of the texture binding
3023 * table block, since that's what the texturing messages expect.
3024 */
3025 const unsigned surface = target +
3026 wm_prog_data->binding_table.render_target_read_start -
3027 wm_prog_data->base.binding_table.texture_start;
3028
3029 brw_mark_surface_used(
3030 bld.shader->stage_prog_data,
3031 wm_prog_data->binding_table.render_target_read_start + target);
3032
3033 /* Calculate the fragment coordinates. */
3034 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3035 bld.MOV(offset(coords, bld, 0), pixel_x);
3036 bld.MOV(offset(coords, bld, 1), pixel_y);
3037 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3038
3039 /* Calculate the sample index and MCS payload when multisampling. Luckily
3040 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3041 * shouldn't be necessary to recompile based on whether the framebuffer is
3042 * CMS or UMS.
3043 */
3044 if (wm_key->multisample_fbo &&
3045 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3046 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3047
3048 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3049 const fs_reg mcs = wm_key->multisample_fbo ?
3050 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3051
3052 /* Use either a normal or a CMS texel fetch message depending on whether
3053 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3054 * message just in case the framebuffer uses 16x multisampling, it should
3055 * be equivalent to the normal CMS fetch for lower multisampling modes.
3056 */
3057 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3058 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3059 SHADER_OPCODE_TXF_CMS_LOGICAL;
3060
3061 /* Emit the instruction. */
3062 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3063 sample, mcs,
3064 brw_imm_ud(surface), brw_imm_ud(0),
3065 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3066 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3067
3068 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3069 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3070
3071 return inst;
3072 }
3073
3074 /**
3075 * Actual coherent framebuffer read implemented using the native render target
3076 * read message. Requires SKL+.
3077 */
3078 static fs_inst *
3079 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3080 {
3081 assert(bld.shader->devinfo->gen >= 9);
3082 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3083 inst->target = target;
3084 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3085
3086 return inst;
3087 }
3088
3089 static fs_reg
3090 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3091 {
3092 if (n && regs[0].file != BAD_FILE) {
3093 return regs[0];
3094
3095 } else {
3096 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3097
3098 for (unsigned i = 0; i < n; i++)
3099 regs[i] = tmp;
3100
3101 return tmp;
3102 }
3103 }
3104
3105 static fs_reg
3106 alloc_frag_output(fs_visitor *v, unsigned location)
3107 {
3108 assert(v->stage == MESA_SHADER_FRAGMENT);
3109 const brw_wm_prog_key *const key =
3110 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3111 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3112 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3113
3114 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3115 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3116
3117 else if (l == FRAG_RESULT_COLOR)
3118 return alloc_temporary(v->bld, 4, v->outputs,
3119 MAX2(key->nr_color_regions, 1));
3120
3121 else if (l == FRAG_RESULT_DEPTH)
3122 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3123
3124 else if (l == FRAG_RESULT_STENCIL)
3125 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3126
3127 else if (l == FRAG_RESULT_SAMPLE_MASK)
3128 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3129
3130 else if (l >= FRAG_RESULT_DATA0 &&
3131 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3132 return alloc_temporary(v->bld, 4,
3133 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3134
3135 else
3136 unreachable("Invalid location");
3137 }
3138
3139 void
3140 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3141 nir_intrinsic_instr *instr)
3142 {
3143 assert(stage == MESA_SHADER_FRAGMENT);
3144
3145 fs_reg dest;
3146 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3147 dest = get_nir_dest(instr->dest);
3148
3149 switch (instr->intrinsic) {
3150 case nir_intrinsic_load_front_face:
3151 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3152 *emit_frontfacing_interpolation());
3153 break;
3154
3155 case nir_intrinsic_load_sample_pos: {
3156 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3157 assert(sample_pos.file != BAD_FILE);
3158 dest.type = sample_pos.type;
3159 bld.MOV(dest, sample_pos);
3160 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3161 break;
3162 }
3163
3164 case nir_intrinsic_load_layer_id:
3165 dest.type = BRW_REGISTER_TYPE_UD;
3166 bld.MOV(dest, fetch_render_target_array_index(bld));
3167 break;
3168
3169 case nir_intrinsic_load_helper_invocation:
3170 case nir_intrinsic_load_sample_mask_in:
3171 case nir_intrinsic_load_sample_id: {
3172 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3173 fs_reg val = nir_system_values[sv];
3174 assert(val.file != BAD_FILE);
3175 dest.type = val.type;
3176 bld.MOV(dest, val);
3177 break;
3178 }
3179
3180 case nir_intrinsic_store_output: {
3181 const fs_reg src = get_nir_src(instr->src[0]);
3182 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3183 const unsigned location = nir_intrinsic_base(instr) +
3184 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3185 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3186 src.type);
3187
3188 for (unsigned j = 0; j < instr->num_components; j++)
3189 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3190 offset(src, bld, j));
3191
3192 break;
3193 }
3194
3195 case nir_intrinsic_load_output: {
3196 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3197 BRW_NIR_FRAG_OUTPUT_LOCATION);
3198 assert(l >= FRAG_RESULT_DATA0);
3199 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3200 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3201 const fs_reg tmp = bld.vgrf(dest.type, 4);
3202
3203 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3204 emit_coherent_fb_read(bld, tmp, target);
3205 else
3206 emit_non_coherent_fb_read(bld, tmp, target);
3207
3208 for (unsigned j = 0; j < instr->num_components; j++) {
3209 bld.MOV(offset(dest, bld, j),
3210 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3211 }
3212
3213 break;
3214 }
3215
3216 case nir_intrinsic_discard:
3217 case nir_intrinsic_discard_if: {
3218 /* We track our discarded pixels in f0.1. By predicating on it, we can
3219 * update just the flag bits that aren't yet discarded. If there's no
3220 * condition, we emit a CMP of g0 != g0, so all currently executing
3221 * channels will get turned off.
3222 */
3223 fs_inst *cmp;
3224 if (instr->intrinsic == nir_intrinsic_discard_if) {
3225 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3226 brw_imm_d(0), BRW_CONDITIONAL_Z);
3227 } else {
3228 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3229 BRW_REGISTER_TYPE_UW));
3230 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3231 }
3232 cmp->predicate = BRW_PREDICATE_NORMAL;
3233 cmp->flag_subreg = 1;
3234
3235 if (devinfo->gen >= 6) {
3236 emit_discard_jump();
3237 }
3238
3239 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3240 break;
3241 }
3242
3243 case nir_intrinsic_load_input: {
3244 /* load_input is only used for flat inputs */
3245 unsigned base = nir_intrinsic_base(instr);
3246 unsigned comp = nir_intrinsic_component(instr);
3247 unsigned num_components = instr->num_components;
3248 fs_reg orig_dest = dest;
3249 enum brw_reg_type type = dest.type;
3250
3251 /* Special case fields in the VUE header */
3252 if (base == VARYING_SLOT_LAYER)
3253 comp = 1;
3254 else if (base == VARYING_SLOT_VIEWPORT)
3255 comp = 2;
3256
3257 if (nir_dest_bit_size(instr->dest) == 64) {
3258 /* const_index is in 32-bit type size units that could not be aligned
3259 * with DF. We need to read the double vector as if it was a float
3260 * vector of twice the number of components to fetch the right data.
3261 */
3262 type = BRW_REGISTER_TYPE_F;
3263 num_components *= 2;
3264 dest = bld.vgrf(type, num_components);
3265 }
3266
3267 for (unsigned int i = 0; i < num_components; i++) {
3268 bld.MOV(offset(retype(dest, type), bld, i),
3269 retype(component(interp_reg(base, comp + i), 3), type));
3270 }
3271
3272 if (nir_dest_bit_size(instr->dest) == 64) {
3273 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3274 instr->num_components);
3275 }
3276 break;
3277 }
3278
3279 case nir_intrinsic_load_barycentric_pixel:
3280 case nir_intrinsic_load_barycentric_centroid:
3281 case nir_intrinsic_load_barycentric_sample:
3282 /* Do nothing - load_interpolated_input handling will handle it later. */
3283 break;
3284
3285 case nir_intrinsic_load_barycentric_at_sample: {
3286 const glsl_interp_mode interpolation =
3287 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3288
3289 if (nir_src_is_const(instr->src[0])) {
3290 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3291
3292 emit_pixel_interpolater_send(bld,
3293 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3294 dest,
3295 fs_reg(), /* src */
3296 brw_imm_ud(msg_data),
3297 interpolation);
3298 } else {
3299 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3300 BRW_REGISTER_TYPE_UD);
3301
3302 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3303 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3304 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3305 bld.exec_all().group(1, 0)
3306 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3307 emit_pixel_interpolater_send(bld,
3308 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3309 dest,
3310 fs_reg(), /* src */
3311 msg_data,
3312 interpolation);
3313 } else {
3314 /* Make a loop that sends a message to the pixel interpolater
3315 * for the sample number in each live channel. If there are
3316 * multiple channels with the same sample number then these
3317 * will be handled simultaneously with a single interation of
3318 * the loop.
3319 */
3320 bld.emit(BRW_OPCODE_DO);
3321
3322 /* Get the next live sample number into sample_id_reg */
3323 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3324
3325 /* Set the flag register so that we can perform the send
3326 * message on all channels that have the same sample number
3327 */
3328 bld.CMP(bld.null_reg_ud(),
3329 sample_src, sample_id,
3330 BRW_CONDITIONAL_EQ);
3331 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3332 bld.exec_all().group(1, 0)
3333 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3334 fs_inst *inst =
3335 emit_pixel_interpolater_send(bld,
3336 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3337 dest,
3338 fs_reg(), /* src */
3339 component(msg_data, 0),
3340 interpolation);
3341 set_predicate(BRW_PREDICATE_NORMAL, inst);
3342
3343 /* Continue the loop if there are any live channels left */
3344 set_predicate_inv(BRW_PREDICATE_NORMAL,
3345 true, /* inverse */
3346 bld.emit(BRW_OPCODE_WHILE));
3347 }
3348 }
3349 break;
3350 }
3351
3352 case nir_intrinsic_load_barycentric_at_offset: {
3353 const glsl_interp_mode interpolation =
3354 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3355
3356 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3357
3358 if (const_offset) {
3359 assert(nir_src_bit_size(instr->src[0]) == 32);
3360 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3361 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3362
3363 emit_pixel_interpolater_send(bld,
3364 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3365 dest,
3366 fs_reg(), /* src */
3367 brw_imm_ud(off_x | (off_y << 4)),
3368 interpolation);
3369 } else {
3370 fs_reg src = vgrf(glsl_type::ivec2_type);
3371 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3372 BRW_REGISTER_TYPE_F);
3373 for (int i = 0; i < 2; i++) {
3374 fs_reg temp = vgrf(glsl_type::float_type);
3375 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3376 fs_reg itemp = vgrf(glsl_type::int_type);
3377 /* float to int */
3378 bld.MOV(itemp, temp);
3379
3380 /* Clamp the upper end of the range to +7/16.
3381 * ARB_gpu_shader5 requires that we support a maximum offset
3382 * of +0.5, which isn't representable in a S0.4 value -- if
3383 * we didn't clamp it, we'd end up with -8/16, which is the
3384 * opposite of what the shader author wanted.
3385 *
3386 * This is legal due to ARB_gpu_shader5's quantization
3387 * rules:
3388 *
3389 * "Not all values of <offset> may be supported; x and y
3390 * offsets may be rounded to fixed-point values with the
3391 * number of fraction bits given by the
3392 * implementation-dependent constant
3393 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3394 */
3395 set_condmod(BRW_CONDITIONAL_L,
3396 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3397 }
3398
3399 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3400 emit_pixel_interpolater_send(bld,
3401 opcode,
3402 dest,
3403 src,
3404 brw_imm_ud(0u),
3405 interpolation);
3406 }
3407 break;
3408 }
3409
3410 case nir_intrinsic_load_interpolated_input: {
3411 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3412 emit_fragcoord_interpolation(dest);
3413 break;
3414 }
3415
3416 assert(instr->src[0].ssa &&
3417 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3418 nir_intrinsic_instr *bary_intrinsic =
3419 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3420 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3421 enum glsl_interp_mode interp_mode =
3422 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3423 fs_reg dst_xy;
3424
3425 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3426 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3427 /* Use the result of the PI message */
3428 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3429 } else {
3430 /* Use the delta_xy values computed from the payload */
3431 enum brw_barycentric_mode bary =
3432 brw_barycentric_mode(interp_mode, bary_intrin);
3433
3434 dst_xy = this->delta_xy[bary];
3435 }
3436
3437 for (unsigned int i = 0; i < instr->num_components; i++) {
3438 fs_reg interp =
3439 component(interp_reg(nir_intrinsic_base(instr),
3440 nir_intrinsic_component(instr) + i), 0);
3441 interp.type = BRW_REGISTER_TYPE_F;
3442 dest.type = BRW_REGISTER_TYPE_F;
3443
3444 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3445 fs_reg tmp = vgrf(glsl_type::float_type);
3446 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3447 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3448 } else {
3449 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3450 }
3451 }
3452 break;
3453 }
3454
3455 default:
3456 nir_emit_intrinsic(bld, instr);
3457 break;
3458 }
3459 }
3460
3461 static int
3462 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3463 {
3464 if (nir_src_is_const(instr->src[src])) {
3465 int64_t add_val = nir_src_as_int(instr->src[src]);
3466 if (add_val == 1)
3467 return BRW_AOP_INC;
3468 else if (add_val == -1)
3469 return BRW_AOP_DEC;
3470 }
3471
3472 return BRW_AOP_ADD;
3473 }
3474
3475 void
3476 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3477 nir_intrinsic_instr *instr)
3478 {
3479 assert(stage == MESA_SHADER_COMPUTE);
3480 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3481
3482 fs_reg dest;
3483 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3484 dest = get_nir_dest(instr->dest);
3485
3486 switch (instr->intrinsic) {
3487 case nir_intrinsic_barrier:
3488 emit_barrier();
3489 cs_prog_data->uses_barrier = true;
3490 break;
3491
3492 case nir_intrinsic_load_subgroup_id:
3493 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3494 break;
3495
3496 case nir_intrinsic_load_local_invocation_id:
3497 case nir_intrinsic_load_work_group_id: {
3498 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3499 fs_reg val = nir_system_values[sv];
3500 assert(val.file != BAD_FILE);
3501 dest.type = val.type;
3502 for (unsigned i = 0; i < 3; i++)
3503 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3504 break;
3505 }
3506
3507 case nir_intrinsic_load_num_work_groups: {
3508 const unsigned surface =
3509 cs_prog_data->binding_table.work_groups_start;
3510
3511 cs_prog_data->uses_num_work_groups = true;
3512
3513 fs_reg surf_index = brw_imm_ud(surface);
3514 brw_mark_surface_used(prog_data, surface);
3515
3516 /* Read the 3 GLuint components of gl_NumWorkGroups */
3517 for (unsigned i = 0; i < 3; i++) {
3518 fs_reg read_result =
3519 emit_untyped_read(bld, surf_index,
3520 brw_imm_ud(i << 2),
3521 1 /* dims */, 1 /* size */,
3522 BRW_PREDICATE_NONE);
3523 read_result.type = dest.type;
3524 bld.MOV(dest, read_result);
3525 dest = offset(dest, bld, 1);
3526 }
3527 break;
3528 }
3529
3530 case nir_intrinsic_shared_atomic_add:
3531 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3532 break;
3533 case nir_intrinsic_shared_atomic_imin:
3534 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3535 break;
3536 case nir_intrinsic_shared_atomic_umin:
3537 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3538 break;
3539 case nir_intrinsic_shared_atomic_imax:
3540 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3541 break;
3542 case nir_intrinsic_shared_atomic_umax:
3543 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3544 break;
3545 case nir_intrinsic_shared_atomic_and:
3546 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3547 break;
3548 case nir_intrinsic_shared_atomic_or:
3549 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3550 break;
3551 case nir_intrinsic_shared_atomic_xor:
3552 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3553 break;
3554 case nir_intrinsic_shared_atomic_exchange:
3555 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3556 break;
3557 case nir_intrinsic_shared_atomic_comp_swap:
3558 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3559 break;
3560 case nir_intrinsic_shared_atomic_fmin:
3561 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3562 break;
3563 case nir_intrinsic_shared_atomic_fmax:
3564 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3565 break;
3566 case nir_intrinsic_shared_atomic_fcomp_swap:
3567 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3568 break;
3569
3570 case nir_intrinsic_load_shared: {
3571 assert(devinfo->gen >= 7);
3572
3573 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3574
3575 /* Get the offset to read from */
3576 fs_reg offset_reg;
3577 if (nir_src_is_const(instr->src[0])) {
3578 offset_reg = brw_imm_ud(instr->const_index[0] +
3579 nir_src_as_uint(instr->src[0]));
3580 } else {
3581 offset_reg = vgrf(glsl_type::uint_type);
3582 bld.ADD(offset_reg,
3583 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3584 brw_imm_ud(instr->const_index[0]));
3585 }
3586
3587 /* Read the vector */
3588 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3589 instr->num_components);
3590 break;
3591 }
3592
3593 case nir_intrinsic_store_shared: {
3594 assert(devinfo->gen >= 7);
3595
3596 /* Block index */
3597 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3598
3599 /* Value */
3600 fs_reg val_reg = get_nir_src(instr->src[0]);
3601
3602 /* Writemask */
3603 unsigned writemask = instr->const_index[1];
3604
3605 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3606 * since the untyped writes below operate in units of 32-bits, which
3607 * means that we need to write twice as many components each time.
3608 * Also, we have to suffle 64-bit data to be in the appropriate layout
3609 * expected by our 32-bit write messages.
3610 */
3611 unsigned type_size = 4;
3612 if (nir_src_bit_size(instr->src[0]) == 64) {
3613 type_size = 8;
3614 val_reg = shuffle_for_32bit_write(bld, val_reg, 0,
3615 instr->num_components);
3616 }
3617
3618 unsigned type_slots = type_size / 4;
3619
3620 /* Combine groups of consecutive enabled channels in one write
3621 * message. We use ffs to find the first enabled channel and then ffs on
3622 * the bit-inverse, down-shifted writemask to determine the length of
3623 * the block of enabled bits.
3624 */
3625 while (writemask) {
3626 unsigned first_component = ffs(writemask) - 1;
3627 unsigned length = ffs(~(writemask >> first_component)) - 1;
3628
3629 /* We can't write more than 2 64-bit components at once. Limit the
3630 * length of the write to what we can do and let the next iteration
3631 * handle the rest
3632 */
3633 if (type_size > 4)
3634 length = MIN2(2, length);
3635
3636 fs_reg offset_reg;
3637 if (nir_src_is_const(instr->src[1])) {
3638 offset_reg = brw_imm_ud(instr->const_index[0] +
3639 nir_src_as_uint(instr->src[1]) +
3640 type_size * first_component);
3641 } else {
3642 offset_reg = vgrf(glsl_type::uint_type);
3643 bld.ADD(offset_reg,
3644 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3645 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3646 }
3647
3648 emit_untyped_write(bld, surf_index, offset_reg,
3649 offset(val_reg, bld, first_component * type_slots),
3650 1 /* dims */, length * type_slots,
3651 BRW_PREDICATE_NONE);
3652
3653 /* Clear the bits in the writemask that we just wrote, then try
3654 * again to see if more channels are left.
3655 */
3656 writemask &= (15 << (first_component + length));
3657 }
3658
3659 break;
3660 }
3661
3662 default:
3663 nir_emit_intrinsic(bld, instr);
3664 break;
3665 }
3666 }
3667
3668 static fs_reg
3669 brw_nir_reduction_op_identity(const fs_builder &bld,
3670 nir_op op, brw_reg_type type)
3671 {
3672 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3673 switch (type_sz(type)) {
3674 case 2:
3675 assert(type != BRW_REGISTER_TYPE_HF);
3676 return retype(brw_imm_uw(value.u16[0]), type);
3677 case 4:
3678 return retype(brw_imm_ud(value.u32[0]), type);
3679 case 8:
3680 if (type == BRW_REGISTER_TYPE_DF)
3681 return setup_imm_df(bld, value.f64[0]);
3682 else
3683 return retype(brw_imm_u64(value.u64[0]), type);
3684 default:
3685 unreachable("Invalid type size");
3686 }
3687 }
3688
3689 static opcode
3690 brw_op_for_nir_reduction_op(nir_op op)
3691 {
3692 switch (op) {
3693 case nir_op_iadd: return BRW_OPCODE_ADD;
3694 case nir_op_fadd: return BRW_OPCODE_ADD;
3695 case nir_op_imul: return BRW_OPCODE_MUL;
3696 case nir_op_fmul: return BRW_OPCODE_MUL;
3697 case nir_op_imin: return BRW_OPCODE_SEL;
3698 case nir_op_umin: return BRW_OPCODE_SEL;
3699 case nir_op_fmin: return BRW_OPCODE_SEL;
3700 case nir_op_imax: return BRW_OPCODE_SEL;
3701 case nir_op_umax: return BRW_OPCODE_SEL;
3702 case nir_op_fmax: return BRW_OPCODE_SEL;
3703 case nir_op_iand: return BRW_OPCODE_AND;
3704 case nir_op_ior: return BRW_OPCODE_OR;
3705 case nir_op_ixor: return BRW_OPCODE_XOR;
3706 default:
3707 unreachable("Invalid reduction operation");
3708 }
3709 }
3710
3711 static brw_conditional_mod
3712 brw_cond_mod_for_nir_reduction_op(nir_op op)
3713 {
3714 switch (op) {
3715 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3716 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3717 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3718 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3719 case nir_op_imin: return BRW_CONDITIONAL_L;
3720 case nir_op_umin: return BRW_CONDITIONAL_L;
3721 case nir_op_fmin: return BRW_CONDITIONAL_L;
3722 case nir_op_imax: return BRW_CONDITIONAL_GE;
3723 case nir_op_umax: return BRW_CONDITIONAL_GE;
3724 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3725 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3726 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3727 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3728 default:
3729 unreachable("Invalid reduction operation");
3730 }
3731 }
3732
3733 fs_reg
3734 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3735 nir_intrinsic_instr *instr)
3736 {
3737 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3738
3739 if (stage_prog_data->binding_table.image_start > 0) {
3740 if (image.file == BRW_IMMEDIATE_VALUE) {
3741 image.d += stage_prog_data->binding_table.image_start;
3742 } else {
3743 bld.ADD(image, image,
3744 brw_imm_d(stage_prog_data->binding_table.image_start));
3745 }
3746 }
3747
3748 return bld.emit_uniformize(image);
3749 }
3750
3751 fs_reg
3752 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3753 nir_intrinsic_instr *instr)
3754 {
3755 /* SSBO stores are weird in that their index is in src[1] */
3756 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3757
3758 fs_reg surf_index;
3759 if (nir_src_is_const(instr->src[src])) {
3760 unsigned index = stage_prog_data->binding_table.ssbo_start +
3761 nir_src_as_uint(instr->src[src]);
3762 surf_index = brw_imm_ud(index);
3763 brw_mark_surface_used(prog_data, index);
3764 } else {
3765 surf_index = vgrf(glsl_type::uint_type);
3766 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3767 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3768
3769 /* Assume this may touch any UBO. It would be nice to provide
3770 * a tighter bound, but the array information is already lowered away.
3771 */
3772 brw_mark_surface_used(prog_data,
3773 stage_prog_data->binding_table.ssbo_start +
3774 nir->info.num_ssbos - 1);
3775 }
3776
3777 return surf_index;
3778 }
3779
3780 static unsigned
3781 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3782 {
3783 switch (nir_intrinsic_image_dim(instr)) {
3784 case GLSL_SAMPLER_DIM_1D:
3785 return 1 + nir_intrinsic_image_array(instr);
3786 case GLSL_SAMPLER_DIM_2D:
3787 case GLSL_SAMPLER_DIM_RECT:
3788 return 2 + nir_intrinsic_image_array(instr);
3789 case GLSL_SAMPLER_DIM_3D:
3790 case GLSL_SAMPLER_DIM_CUBE:
3791 return 3;
3792 case GLSL_SAMPLER_DIM_BUF:
3793 return 1;
3794 case GLSL_SAMPLER_DIM_MS:
3795 return 2 + nir_intrinsic_image_array(instr);
3796 default:
3797 unreachable("Invalid image dimension");
3798 }
3799 }
3800
3801 void
3802 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3803 {
3804 fs_reg dest;
3805 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3806 dest = get_nir_dest(instr->dest);
3807
3808 switch (instr->intrinsic) {
3809 case nir_intrinsic_image_load:
3810 case nir_intrinsic_image_store:
3811 case nir_intrinsic_image_atomic_add:
3812 case nir_intrinsic_image_atomic_min:
3813 case nir_intrinsic_image_atomic_max:
3814 case nir_intrinsic_image_atomic_and:
3815 case nir_intrinsic_image_atomic_or:
3816 case nir_intrinsic_image_atomic_xor:
3817 case nir_intrinsic_image_atomic_exchange:
3818 case nir_intrinsic_image_atomic_comp_swap: {
3819 if (stage == MESA_SHADER_FRAGMENT &&
3820 instr->intrinsic != nir_intrinsic_image_load)
3821 brw_wm_prog_data(prog_data)->has_side_effects = true;
3822
3823 /* Get some metadata from the image intrinsic. */
3824 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3825 const unsigned dims = image_intrinsic_coord_components(instr);
3826 const GLenum format = nir_intrinsic_format(instr);
3827 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3828
3829 /* Get the arguments of the image intrinsic. */
3830 const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3831 const fs_reg coords = retype(get_nir_src(instr->src[1]),
3832 BRW_REGISTER_TYPE_UD);
3833 fs_reg tmp;
3834
3835 /* Emit an image load, store or atomic op. */
3836 if (instr->intrinsic == nir_intrinsic_image_load) {
3837 tmp = emit_typed_read(bld, image, coords, dims,
3838 instr->num_components);
3839 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3840 const fs_reg src0 = get_nir_src(instr->src[3]);
3841 emit_typed_write(bld, image, coords, src0, dims,
3842 instr->num_components);
3843 } else {
3844 int op;
3845 unsigned num_srcs = info->num_srcs;
3846
3847 switch (instr->intrinsic) {
3848 case nir_intrinsic_image_atomic_add:
3849 assert(num_srcs == 4);
3850
3851 op = get_op_for_atomic_add(instr, 3);
3852
3853 if (op != BRW_AOP_ADD)
3854 num_srcs = 3;
3855 break;
3856 case nir_intrinsic_image_atomic_min:
3857 assert(format == GL_R32UI || format == GL_R32I);
3858 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3859 break;
3860 case nir_intrinsic_image_atomic_max:
3861 assert(format == GL_R32UI || format == GL_R32I);
3862 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3863 break;
3864 case nir_intrinsic_image_atomic_and:
3865 op = BRW_AOP_AND;
3866 break;
3867 case nir_intrinsic_image_atomic_or:
3868 op = BRW_AOP_OR;
3869 break;
3870 case nir_intrinsic_image_atomic_xor:
3871 op = BRW_AOP_XOR;
3872 break;
3873 case nir_intrinsic_image_atomic_exchange:
3874 op = BRW_AOP_MOV;
3875 break;
3876 case nir_intrinsic_image_atomic_comp_swap:
3877 op = BRW_AOP_CMPWR;
3878 break;
3879 default:
3880 unreachable("Not reachable.");
3881 }
3882
3883 const fs_reg src0 = (num_srcs >= 4 ?
3884 get_nir_src(instr->src[3]) : fs_reg());
3885 const fs_reg src1 = (num_srcs >= 5 ?
3886 get_nir_src(instr->src[4]) : fs_reg());
3887
3888 tmp = emit_typed_atomic(bld, image, coords, src0, src1, dims, 1, op);
3889 }
3890
3891 /* Assign the result. */
3892 for (unsigned c = 0; c < dest_components; ++c) {
3893 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3894 offset(tmp, bld, c));
3895 }
3896 break;
3897 }
3898
3899 case nir_intrinsic_image_size: {
3900 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3901 * into will handle the binding table index for us in the geneerator.
3902 */
3903 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3904 BRW_REGISTER_TYPE_UD);
3905 image = bld.emit_uniformize(image);
3906
3907 /* Since the image size is always uniform, we can just emit a SIMD8
3908 * query instruction and splat the result out.
3909 */
3910 const fs_builder ubld = bld.exec_all().group(8, 0);
3911
3912 /* The LOD also serves as the message payload */
3913 fs_reg lod = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3914 ubld.MOV(lod, brw_imm_ud(0));
3915
3916 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3917 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE, tmp, lod, image);
3918 inst->mlen = 1;
3919 inst->size_written = 4 * REG_SIZE;
3920
3921 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3922 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3923 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3924 offset(retype(dest, tmp.type), bld, c),
3925 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3926 } else {
3927 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3928 component(offset(tmp, ubld, c), 0));
3929 }
3930 }
3931 break;
3932 }
3933
3934 case nir_intrinsic_image_load_raw_intel: {
3935 const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3936 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3937 BRW_REGISTER_TYPE_UD);
3938
3939 fs_reg tmp = emit_untyped_read(bld, image, addr, 1,
3940 instr->num_components);
3941
3942 for (unsigned c = 0; c < instr->num_components; ++c) {
3943 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3944 offset(tmp, bld, c));
3945 }
3946 break;
3947 }
3948
3949 case nir_intrinsic_image_store_raw_intel: {
3950 const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3951 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3952 BRW_REGISTER_TYPE_UD);
3953 const fs_reg data = retype(get_nir_src(instr->src[2]),
3954 BRW_REGISTER_TYPE_UD);
3955
3956 brw_wm_prog_data(prog_data)->has_side_effects = true;
3957
3958 emit_untyped_write(bld, image, addr, data, 1,
3959 instr->num_components);
3960 break;
3961 }
3962
3963 case nir_intrinsic_group_memory_barrier:
3964 case nir_intrinsic_memory_barrier_shared:
3965 case nir_intrinsic_memory_barrier_atomic_counter:
3966 case nir_intrinsic_memory_barrier_buffer:
3967 case nir_intrinsic_memory_barrier_image:
3968 case nir_intrinsic_memory_barrier: {
3969 const fs_builder ubld = bld.group(8, 0);
3970 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3971 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3972 ->size_written = 2 * REG_SIZE;
3973 break;
3974 }
3975
3976 case nir_intrinsic_shader_clock: {
3977 /* We cannot do anything if there is an event, so ignore it for now */
3978 const fs_reg shader_clock = get_timestamp(bld);
3979 const fs_reg srcs[] = { component(shader_clock, 0),
3980 component(shader_clock, 1) };
3981 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3982 break;
3983 }
3984
3985 case nir_intrinsic_image_samples:
3986 /* The driver does not support multi-sampled images. */
3987 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3988 break;
3989
3990 case nir_intrinsic_load_uniform: {
3991 /* Offsets are in bytes but they should always aligned to
3992 * the type size
3993 */
3994 assert(instr->const_index[0] % 4 == 0 ||
3995 instr->const_index[0] % type_sz(dest.type) == 0);
3996
3997 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3998
3999 if (nir_src_is_const(instr->src[0])) {
4000 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4001 assert(load_offset % type_sz(dest.type) == 0);
4002 /* For 16-bit types we add the module of the const_index[0]
4003 * offset to access to not 32-bit aligned element
4004 */
4005 src.offset = load_offset + instr->const_index[0] % 4;
4006
4007 for (unsigned j = 0; j < instr->num_components; j++) {
4008 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4009 }
4010 } else {
4011 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4012 BRW_REGISTER_TYPE_UD);
4013
4014 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4015 * go past the end of the uniform. In order to keep the n'th
4016 * component from running past, we subtract off the size of all but
4017 * one component of the vector.
4018 */
4019 assert(instr->const_index[1] >=
4020 instr->num_components * (int) type_sz(dest.type));
4021 unsigned read_size = instr->const_index[1] -
4022 (instr->num_components - 1) * type_sz(dest.type);
4023
4024 bool supports_64bit_indirects =
4025 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4026
4027 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4028 for (unsigned j = 0; j < instr->num_components; j++) {
4029 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4030 offset(dest, bld, j), offset(src, bld, j),
4031 indirect, brw_imm_ud(read_size));
4032 }
4033 } else {
4034 const unsigned num_mov_indirects =
4035 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4036 /* We read a little bit less per MOV INDIRECT, as they are now
4037 * 32-bits ones instead of 64-bit. Fix read_size then.
4038 */
4039 const unsigned read_size_32bit = read_size -
4040 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4041 for (unsigned j = 0; j < instr->num_components; j++) {
4042 for (unsigned i = 0; i < num_mov_indirects; i++) {
4043 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4044 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4045 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4046 indirect, brw_imm_ud(read_size_32bit));
4047 }
4048 }
4049 }
4050 }
4051 break;
4052 }
4053
4054 case nir_intrinsic_load_ubo: {
4055 fs_reg surf_index;
4056 if (nir_src_is_const(instr->src[0])) {
4057 const unsigned index = stage_prog_data->binding_table.ubo_start +
4058 nir_src_as_uint(instr->src[0]);
4059 surf_index = brw_imm_ud(index);
4060 brw_mark_surface_used(prog_data, index);
4061 } else {
4062 /* The block index is not a constant. Evaluate the index expression
4063 * per-channel and add the base UBO index; we have to select a value
4064 * from any live channel.
4065 */
4066 surf_index = vgrf(glsl_type::uint_type);
4067 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4068 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4069 surf_index = bld.emit_uniformize(surf_index);
4070
4071 /* Assume this may touch any UBO. It would be nice to provide
4072 * a tighter bound, but the array information is already lowered away.
4073 */
4074 brw_mark_surface_used(prog_data,
4075 stage_prog_data->binding_table.ubo_start +
4076 nir->info.num_ubos - 1);
4077 }
4078
4079 if (!nir_src_is_const(instr->src[1])) {
4080 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4081 BRW_REGISTER_TYPE_UD);
4082
4083 for (int i = 0; i < instr->num_components; i++)
4084 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4085 base_offset, i * type_sz(dest.type));
4086 } else {
4087 /* Even if we are loading doubles, a pull constant load will load
4088 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4089 * need to load a full dvec4 we will have to emit 2 loads. This is
4090 * similar to demote_pull_constants(), except that in that case we
4091 * see individual accesses to each component of the vector and then
4092 * we let CSE deal with duplicate loads. Here we see a vector access
4093 * and we have to split it if necessary.
4094 */
4095 const unsigned type_size = type_sz(dest.type);
4096 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4097
4098 /* See if we've selected this as a push constant candidate */
4099 if (nir_src_is_const(instr->src[0])) {
4100 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4101 const unsigned offset_256b = load_offset / 32;
4102
4103 fs_reg push_reg;
4104 for (int i = 0; i < 4; i++) {
4105 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4106 if (range->block == ubo_block &&
4107 offset_256b >= range->start &&
4108 offset_256b < range->start + range->length) {
4109
4110 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4111 push_reg.offset = load_offset - 32 * range->start;
4112 break;
4113 }
4114 }
4115
4116 if (push_reg.file != BAD_FILE) {
4117 for (unsigned i = 0; i < instr->num_components; i++) {
4118 bld.MOV(offset(dest, bld, i),
4119 byte_offset(push_reg, i * type_size));
4120 }
4121 break;
4122 }
4123 }
4124
4125 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4126 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4127 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4128
4129 for (unsigned c = 0; c < instr->num_components;) {
4130 const unsigned base = load_offset + c * type_size;
4131 /* Number of usable components in the next block-aligned load. */
4132 const unsigned count = MIN2(instr->num_components - c,
4133 (block_sz - base % block_sz) / type_size);
4134
4135 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4136 packed_consts, surf_index,
4137 brw_imm_ud(base & ~(block_sz - 1)));
4138
4139 const fs_reg consts =
4140 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4141 dest.type);
4142
4143 for (unsigned d = 0; d < count; d++)
4144 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4145
4146 c += count;
4147 }
4148 }
4149 break;
4150 }
4151
4152 case nir_intrinsic_load_ssbo: {
4153 assert(devinfo->gen >= 7);
4154
4155 fs_reg surf_index = get_nir_ssbo_intrinsic_index(bld, instr);
4156 fs_reg offset_reg = get_nir_src_imm(instr->src[1]);
4157
4158 /* Read the vector */
4159 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4160 instr->num_components);
4161
4162 break;
4163 }
4164
4165 case nir_intrinsic_store_ssbo: {
4166 assert(devinfo->gen >= 7);
4167
4168 if (stage == MESA_SHADER_FRAGMENT)
4169 brw_wm_prog_data(prog_data)->has_side_effects = true;
4170
4171 fs_reg surf_index = get_nir_ssbo_intrinsic_index(bld, instr);
4172
4173 /* Value */
4174 fs_reg val_reg = get_nir_src(instr->src[0]);
4175
4176 /* Writemask */
4177 unsigned writemask = instr->const_index[0];
4178
4179 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4180 * since the untyped writes below operate in units of 32-bits, which
4181 * means that we need to write twice as many components each time.
4182 * Also, we have to suffle 64-bit data to be in the appropriate layout
4183 * expected by our 32-bit write messages.
4184 */
4185 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4186 unsigned type_size = bit_size / 8;
4187
4188 /* Combine groups of consecutive enabled channels in one write
4189 * message. We use ffs to find the first enabled channel and then ffs on
4190 * the bit-inverse, down-shifted writemask to determine the num_components
4191 * of the block of enabled bits.
4192 */
4193 while (writemask) {
4194 unsigned first_component = ffs(writemask) - 1;
4195 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4196 fs_reg write_src = offset(val_reg, bld, first_component);
4197
4198 if (type_size > 4) {
4199 /* We can't write more than 2 64-bit components at once. Limit
4200 * the num_components of the write to what we can do and let the next
4201 * iteration handle the rest.
4202 */
4203 num_components = MIN2(2, num_components);
4204 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4205 num_components);
4206 } else if (type_size < 4) {
4207 /* For 16-bit types we pack two consecutive values into a 32-bit
4208 * word and use an untyped write message. For single values or not
4209 * 32-bit-aligned we need to use byte-scattered writes because
4210 * untyped writes works with 32-bit components with 32-bit
4211 * alignment. byte_scattered_write messages only support one
4212 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4213 * could be enabled we can not guarantee that not constant offsets
4214 * to be 32-bit aligned for 16-bit types. For example an array, of
4215 * 16-bit vec3 with array element stride of 6.
4216 *
4217 * In the case of 32-bit aligned constant offsets if there is
4218 * a 3-components vector we submit one untyped-write message
4219 * of 32-bit (first two components), and one byte-scattered
4220 * write message (the last component).
4221 */
4222
4223 if (!nir_src_is_const(instr->src[2]) ||
4224 ((nir_src_as_uint(instr->src[2]) +
4225 type_size * first_component) % 4)) {
4226 /* If we use a .yz writemask we also need to emit 2
4227 * byte-scattered write messages because of y-component not
4228 * being aligned to 32-bit.
4229 */
4230 num_components = 1;
4231 } else if (num_components * type_size > 4 &&
4232 (num_components * type_size % 4)) {
4233 /* If the pending components size is not a multiple of 4 bytes
4234 * we left the not aligned components for following emits of
4235 * length == 1 with byte_scattered_write.
4236 */
4237 num_components -= (num_components * type_size % 4) / type_size;
4238 } else if (num_components * type_size < 4) {
4239 num_components = 1;
4240 }
4241 /* For num_components == 1 we are also shuffling the component
4242 * because byte scattered writes of 16-bit need values to be dword
4243 * aligned. Shuffling only one component would be the same as
4244 * striding it.
4245 */
4246 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4247 num_components);
4248 }
4249
4250 fs_reg offset_reg;
4251
4252 if (nir_src_is_const(instr->src[2])) {
4253 offset_reg = brw_imm_ud(nir_src_as_uint(instr->src[2]) +
4254 type_size * first_component);
4255 } else {
4256 offset_reg = vgrf(glsl_type::uint_type);
4257 bld.ADD(offset_reg,
4258 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4259 brw_imm_ud(type_size * first_component));
4260 }
4261
4262 if (type_size < 4 && num_components == 1) {
4263 /* Untyped Surface messages have a fixed 32-bit size, so we need
4264 * to rely on byte scattered in order to write 16-bit elements.
4265 * The byte_scattered_write message needs that every written 16-bit
4266 * type to be aligned 32-bits (stride=2).
4267 */
4268 emit_byte_scattered_write(bld, surf_index, offset_reg,
4269 write_src,
4270 1 /* dims */,
4271 bit_size,
4272 BRW_PREDICATE_NONE);
4273 } else {
4274 assert(num_components * type_size <= 16);
4275 assert((num_components * type_size) % 4 == 0);
4276 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4277 offset_reg.ud % 4 == 0);
4278 unsigned num_slots = (num_components * type_size) / 4;
4279
4280 emit_untyped_write(bld, surf_index, offset_reg,
4281 write_src,
4282 1 /* dims */, num_slots,
4283 BRW_PREDICATE_NONE);
4284 }
4285
4286 /* Clear the bits in the writemask that we just wrote, then try
4287 * again to see if more channels are left.
4288 */
4289 writemask &= (15 << (first_component + num_components));
4290 }
4291 break;
4292 }
4293
4294 case nir_intrinsic_store_output: {
4295 fs_reg src = get_nir_src(instr->src[0]);
4296
4297 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4298 unsigned num_components = instr->num_components;
4299 unsigned first_component = nir_intrinsic_component(instr);
4300 if (nir_src_bit_size(instr->src[0]) == 64) {
4301 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4302 num_components *= 2;
4303 }
4304
4305 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4306 4 * store_offset), src.type);
4307 for (unsigned j = 0; j < num_components; j++) {
4308 bld.MOV(offset(new_dest, bld, j + first_component),
4309 offset(src, bld, j));
4310 }
4311 break;
4312 }
4313
4314 case nir_intrinsic_ssbo_atomic_add:
4315 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4316 break;
4317 case nir_intrinsic_ssbo_atomic_imin:
4318 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4319 break;
4320 case nir_intrinsic_ssbo_atomic_umin:
4321 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4322 break;
4323 case nir_intrinsic_ssbo_atomic_imax:
4324 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4325 break;
4326 case nir_intrinsic_ssbo_atomic_umax:
4327 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4328 break;
4329 case nir_intrinsic_ssbo_atomic_and:
4330 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4331 break;
4332 case nir_intrinsic_ssbo_atomic_or:
4333 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4334 break;
4335 case nir_intrinsic_ssbo_atomic_xor:
4336 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4337 break;
4338 case nir_intrinsic_ssbo_atomic_exchange:
4339 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4340 break;
4341 case nir_intrinsic_ssbo_atomic_comp_swap:
4342 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4343 break;
4344 case nir_intrinsic_ssbo_atomic_fmin:
4345 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4346 break;
4347 case nir_intrinsic_ssbo_atomic_fmax:
4348 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4349 break;
4350 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4351 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4352 break;
4353
4354 case nir_intrinsic_get_buffer_size: {
4355 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4356 nir_src_as_uint(instr->src[0]) : 0;
4357
4358 /* A resinfo's sampler message is used to get the buffer size. The
4359 * SIMD8's writeback message consists of four registers and SIMD16's
4360 * writeback message consists of 8 destination registers (two per each
4361 * component). Because we are only interested on the first channel of
4362 * the first returned component, where resinfo returns the buffer size
4363 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4364 * the dispatch width.
4365 */
4366 const fs_builder ubld = bld.exec_all().group(8, 0);
4367 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4368 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4369
4370 /* Set LOD = 0 */
4371 ubld.MOV(src_payload, brw_imm_d(0));
4372
4373 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4374 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4375 src_payload, brw_imm_ud(index));
4376 inst->header_size = 0;
4377 inst->mlen = 1;
4378 inst->size_written = 4 * REG_SIZE;
4379
4380 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4381 *
4382 * "Out-of-bounds checking is always performed at a DWord granularity. If
4383 * any part of the DWord is out-of-bounds then the whole DWord is
4384 * considered out-of-bounds."
4385 *
4386 * This implies that types with size smaller than 4-bytes need to be
4387 * padded if they don't complete the last dword of the buffer. But as we
4388 * need to maintain the original size we need to reverse the padding
4389 * calculation to return the correct size to know the number of elements
4390 * of an unsized array. As we stored in the last two bits of the surface
4391 * size the needed padding for the buffer, we calculate here the
4392 * original buffer_size reversing the surface_size calculation:
4393 *
4394 * surface_size = isl_align(buffer_size, 4) +
4395 * (isl_align(buffer_size) - buffer_size)
4396 *
4397 * buffer_size = surface_size & ~3 - surface_size & 3
4398 */
4399
4400 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4401 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4402 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4403
4404 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4405 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4406 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4407
4408 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4409
4410 brw_mark_surface_used(prog_data, index);
4411 break;
4412 }
4413
4414 case nir_intrinsic_load_subgroup_invocation:
4415 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4416 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4417 break;
4418
4419 case nir_intrinsic_load_subgroup_eq_mask:
4420 case nir_intrinsic_load_subgroup_ge_mask:
4421 case nir_intrinsic_load_subgroup_gt_mask:
4422 case nir_intrinsic_load_subgroup_le_mask:
4423 case nir_intrinsic_load_subgroup_lt_mask:
4424 unreachable("not reached");
4425
4426 case nir_intrinsic_vote_any: {
4427 const fs_builder ubld = bld.exec_all().group(1, 0);
4428
4429 /* The any/all predicates do not consider channel enables. To prevent
4430 * dead channels from affecting the result, we initialize the flag with
4431 * with the identity value for the logical operation.
4432 */
4433 if (dispatch_width == 32) {
4434 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4435 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4436 brw_imm_ud(0));
4437 } else {
4438 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4439 }
4440 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4441
4442 /* For some reason, the any/all predicates don't work properly with
4443 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4444 * doesn't read the correct subset of the flag register and you end up
4445 * getting garbage in the second half. Work around this by using a pair
4446 * of 1-wide MOVs and scattering the result.
4447 */
4448 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4449 ubld.MOV(res1, brw_imm_d(0));
4450 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4451 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4452 BRW_PREDICATE_ALIGN1_ANY32H,
4453 ubld.MOV(res1, brw_imm_d(-1)));
4454
4455 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4456 break;
4457 }
4458 case nir_intrinsic_vote_all: {
4459 const fs_builder ubld = bld.exec_all().group(1, 0);
4460
4461 /* The any/all predicates do not consider channel enables. To prevent
4462 * dead channels from affecting the result, we initialize the flag with
4463 * with the identity value for the logical operation.
4464 */
4465 if (dispatch_width == 32) {
4466 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4467 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4468 brw_imm_ud(0xffffffff));
4469 } else {
4470 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4471 }
4472 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4473
4474 /* For some reason, the any/all predicates don't work properly with
4475 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4476 * doesn't read the correct subset of the flag register and you end up
4477 * getting garbage in the second half. Work around this by using a pair
4478 * of 1-wide MOVs and scattering the result.
4479 */
4480 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4481 ubld.MOV(res1, brw_imm_d(0));
4482 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4483 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4484 BRW_PREDICATE_ALIGN1_ALL32H,
4485 ubld.MOV(res1, brw_imm_d(-1)));
4486
4487 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4488 break;
4489 }
4490 case nir_intrinsic_vote_feq:
4491 case nir_intrinsic_vote_ieq: {
4492 fs_reg value = get_nir_src(instr->src[0]);
4493 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4494 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4495 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4496 }
4497
4498 fs_reg uniformized = bld.emit_uniformize(value);
4499 const fs_builder ubld = bld.exec_all().group(1, 0);
4500
4501 /* The any/all predicates do not consider channel enables. To prevent
4502 * dead channels from affecting the result, we initialize the flag with
4503 * with the identity value for the logical operation.
4504 */
4505 if (dispatch_width == 32) {
4506 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4507 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4508 brw_imm_ud(0xffffffff));
4509 } else {
4510 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4511 }
4512 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4513
4514 /* For some reason, the any/all predicates don't work properly with
4515 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4516 * doesn't read the correct subset of the flag register and you end up
4517 * getting garbage in the second half. Work around this by using a pair
4518 * of 1-wide MOVs and scattering the result.
4519 */
4520 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4521 ubld.MOV(res1, brw_imm_d(0));
4522 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4523 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4524 BRW_PREDICATE_ALIGN1_ALL32H,
4525 ubld.MOV(res1, brw_imm_d(-1)));
4526
4527 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4528 break;
4529 }
4530
4531 case nir_intrinsic_ballot: {
4532 const fs_reg value = retype(get_nir_src(instr->src[0]),
4533 BRW_REGISTER_TYPE_UD);
4534 struct brw_reg flag = brw_flag_reg(0, 0);
4535 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4536 * as f0.0. This is a problem for fragment programs as we currently use
4537 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4538 * programs yet so this isn't a problem. When we do, something will
4539 * have to change.
4540 */
4541 if (dispatch_width == 32)
4542 flag.type = BRW_REGISTER_TYPE_UD;
4543
4544 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4545 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4546
4547 if (instr->dest.ssa.bit_size > 32) {
4548 dest.type = BRW_REGISTER_TYPE_UQ;
4549 } else {
4550 dest.type = BRW_REGISTER_TYPE_UD;
4551 }
4552 bld.MOV(dest, flag);
4553 break;
4554 }
4555
4556 case nir_intrinsic_read_invocation: {
4557 const fs_reg value = get_nir_src(instr->src[0]);
4558 const fs_reg invocation = get_nir_src(instr->src[1]);
4559 fs_reg tmp = bld.vgrf(value.type);
4560
4561 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4562 bld.emit_uniformize(invocation));
4563
4564 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4565 break;
4566 }
4567
4568 case nir_intrinsic_read_first_invocation: {
4569 const fs_reg value = get_nir_src(instr->src[0]);
4570 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4571 break;
4572 }
4573
4574 case nir_intrinsic_shuffle: {
4575 const fs_reg value = get_nir_src(instr->src[0]);
4576 const fs_reg index = get_nir_src(instr->src[1]);
4577
4578 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4579 break;
4580 }
4581
4582 case nir_intrinsic_first_invocation: {
4583 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4584 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4585 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4586 fs_reg(component(tmp, 0)));
4587 break;
4588 }
4589
4590 case nir_intrinsic_quad_broadcast: {
4591 const fs_reg value = get_nir_src(instr->src[0]);
4592 const unsigned index = nir_src_as_uint(instr->src[1]);
4593
4594 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4595 value, brw_imm_ud(index), brw_imm_ud(4));
4596 break;
4597 }
4598
4599 case nir_intrinsic_quad_swap_horizontal: {
4600 const fs_reg value = get_nir_src(instr->src[0]);
4601 const fs_reg tmp = bld.vgrf(value.type);
4602 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4603
4604 const fs_reg src_left = horiz_stride(value, 2);
4605 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4606 const fs_reg tmp_left = horiz_stride(tmp, 2);
4607 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4608
4609 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4610 *
4611 * "When source or destination datatype is 64b or operation is
4612 * integer DWord multiply, regioning in Align1 must follow
4613 * these rules:
4614 *
4615 * [...]
4616 *
4617 * 3. Source and Destination offset must be the same, except
4618 * the case of scalar source."
4619 *
4620 * In order to work around this, we have to emit two 32-bit MOVs instead
4621 * of a single 64-bit MOV to do the shuffle.
4622 */
4623 if (type_sz(value.type) > 4 &&
4624 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4625 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4626 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4627 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4628 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4629 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4630 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4631 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4632 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4633 } else {
4634 ubld.MOV(tmp_left, src_right);
4635 ubld.MOV(tmp_right, src_left);
4636 }
4637 bld.MOV(retype(dest, value.type), tmp);
4638 break;
4639 }
4640
4641 case nir_intrinsic_quad_swap_vertical: {
4642 const fs_reg value = get_nir_src(instr->src[0]);
4643 if (nir_src_bit_size(instr->src[0]) == 32) {
4644 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4645 const fs_reg tmp = bld.vgrf(value.type);
4646 const fs_builder ubld = bld.exec_all();
4647 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4648 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4649 bld.MOV(retype(dest, value.type), tmp);
4650 } else {
4651 /* For larger data types, we have to either emit dispatch_width many
4652 * MOVs or else fall back to doing indirects.
4653 */
4654 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4655 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4656 brw_imm_w(0x2));
4657 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4658 }
4659 break;
4660 }
4661
4662 case nir_intrinsic_quad_swap_diagonal: {
4663 const fs_reg value = get_nir_src(instr->src[0]);
4664 if (nir_src_bit_size(instr->src[0]) == 32) {
4665 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4666 const fs_reg tmp = bld.vgrf(value.type);
4667 const fs_builder ubld = bld.exec_all();
4668 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4669 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4670 bld.MOV(retype(dest, value.type), tmp);
4671 } else {
4672 /* For larger data types, we have to either emit dispatch_width many
4673 * MOVs or else fall back to doing indirects.
4674 */
4675 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4676 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4677 brw_imm_w(0x3));
4678 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4679 }
4680 break;
4681 }
4682
4683 case nir_intrinsic_reduce: {
4684 fs_reg src = get_nir_src(instr->src[0]);
4685 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4686 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4687 if (cluster_size == 0 || cluster_size > dispatch_width)
4688 cluster_size = dispatch_width;
4689
4690 /* Figure out the source type */
4691 src.type = brw_type_for_nir_type(devinfo,
4692 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4693 nir_src_bit_size(instr->src[0])));
4694
4695 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4696 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4697 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4698
4699 /* Set up a register for all of our scratching around and initialize it
4700 * to reduction operation's identity value.
4701 */
4702 fs_reg scan = bld.vgrf(src.type);
4703 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4704
4705 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4706
4707 dest.type = src.type;
4708 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4709 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4710 * the distance between clusters is at least 2 GRFs. In this case,
4711 * we don't need the weird striding of the CLUSTER_BROADCAST
4712 * instruction and can just do regular MOVs.
4713 */
4714 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4715 const unsigned groups =
4716 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4717 const unsigned group_size = dispatch_width / groups;
4718 for (unsigned i = 0; i < groups; i++) {
4719 const unsigned cluster = (i * group_size) / cluster_size;
4720 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4721 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4722 component(scan, comp));
4723 }
4724 } else {
4725 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4726 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4727 }
4728 break;
4729 }
4730
4731 case nir_intrinsic_inclusive_scan:
4732 case nir_intrinsic_exclusive_scan: {
4733 fs_reg src = get_nir_src(instr->src[0]);
4734 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4735
4736 /* Figure out the source type */
4737 src.type = brw_type_for_nir_type(devinfo,
4738 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4739 nir_src_bit_size(instr->src[0])));
4740
4741 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4742 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4743 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4744
4745 /* Set up a register for all of our scratching around and initialize it
4746 * to reduction operation's identity value.
4747 */
4748 fs_reg scan = bld.vgrf(src.type);
4749 const fs_builder allbld = bld.exec_all();
4750 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4751
4752 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4753 /* Exclusive scan is a bit harder because we have to do an annoying
4754 * shift of the contents before we can begin. To make things worse,
4755 * we can't do this with a normal stride; we have to use indirects.
4756 */
4757 fs_reg shifted = bld.vgrf(src.type);
4758 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4759 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4760 brw_imm_w(-1));
4761 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4762 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4763 scan = shifted;
4764 }
4765
4766 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4767
4768 bld.MOV(retype(dest, src.type), scan);
4769 break;
4770 }
4771
4772 case nir_intrinsic_begin_fragment_shader_ordering:
4773 case nir_intrinsic_begin_invocation_interlock: {
4774 const fs_builder ubld = bld.group(8, 0);
4775 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4776
4777 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4778 REG_SIZE;
4779
4780 break;
4781 }
4782
4783 case nir_intrinsic_end_invocation_interlock: {
4784 /* We don't need to do anything here */
4785 break;
4786 }
4787
4788 default:
4789 unreachable("unknown intrinsic");
4790 }
4791 }
4792
4793 void
4794 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4795 int op, nir_intrinsic_instr *instr)
4796 {
4797 if (stage == MESA_SHADER_FRAGMENT)
4798 brw_wm_prog_data(prog_data)->has_side_effects = true;
4799
4800 fs_reg dest;
4801 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4802 dest = get_nir_dest(instr->dest);
4803
4804 fs_reg surface = get_nir_ssbo_intrinsic_index(bld, instr);
4805 fs_reg offset = get_nir_src(instr->src[1]);
4806 fs_reg data1;
4807 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4808 data1 = get_nir_src(instr->src[2]);
4809 fs_reg data2;
4810 if (op == BRW_AOP_CMPWR)
4811 data2 = get_nir_src(instr->src[3]);
4812
4813 /* Emit the actual atomic operation */
4814
4815 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4816 data1, data2,
4817 1 /* dims */, 1 /* rsize */,
4818 op,
4819 BRW_PREDICATE_NONE);
4820 dest.type = atomic_result.type;
4821 bld.MOV(dest, atomic_result);
4822 }
4823
4824 void
4825 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4826 int op, nir_intrinsic_instr *instr)
4827 {
4828 if (stage == MESA_SHADER_FRAGMENT)
4829 brw_wm_prog_data(prog_data)->has_side_effects = true;
4830
4831 fs_reg dest;
4832 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4833 dest = get_nir_dest(instr->dest);
4834
4835 fs_reg surface = get_nir_ssbo_intrinsic_index(bld, instr);
4836 fs_reg offset = get_nir_src(instr->src[1]);
4837 fs_reg data1 = get_nir_src(instr->src[2]);
4838 fs_reg data2;
4839 if (op == BRW_AOP_FCMPWR)
4840 data2 = get_nir_src(instr->src[3]);
4841
4842 /* Emit the actual atomic operation */
4843
4844 fs_reg atomic_result = emit_untyped_atomic_float(bld, surface, offset,
4845 data1, data2,
4846 1 /* dims */, 1 /* rsize */,
4847 op,
4848 BRW_PREDICATE_NONE);
4849 dest.type = atomic_result.type;
4850 bld.MOV(dest, atomic_result);
4851 }
4852
4853 void
4854 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4855 int op, nir_intrinsic_instr *instr)
4856 {
4857 fs_reg dest;
4858 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4859 dest = get_nir_dest(instr->dest);
4860
4861 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4862 fs_reg offset;
4863 fs_reg data1;
4864 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4865 data1 = get_nir_src(instr->src[1]);
4866 fs_reg data2;
4867 if (op == BRW_AOP_CMPWR)
4868 data2 = get_nir_src(instr->src[2]);
4869
4870 /* Get the offset */
4871 if (nir_src_is_const(instr->src[0])) {
4872 offset = brw_imm_ud(instr->const_index[0] +
4873 nir_src_as_uint(instr->src[0]));
4874 } else {
4875 offset = vgrf(glsl_type::uint_type);
4876 bld.ADD(offset,
4877 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4878 brw_imm_ud(instr->const_index[0]));
4879 }
4880
4881 /* Emit the actual atomic operation operation */
4882
4883 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4884 data1, data2,
4885 1 /* dims */, 1 /* rsize */,
4886 op,
4887 BRW_PREDICATE_NONE);
4888 dest.type = atomic_result.type;
4889 bld.MOV(dest, atomic_result);
4890 }
4891
4892 void
4893 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4894 int op, nir_intrinsic_instr *instr)
4895 {
4896 fs_reg dest;
4897 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4898 dest = get_nir_dest(instr->dest);
4899
4900 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4901 fs_reg offset;
4902 fs_reg data1 = get_nir_src(instr->src[1]);
4903 fs_reg data2;
4904 if (op == BRW_AOP_FCMPWR)
4905 data2 = get_nir_src(instr->src[2]);
4906
4907 /* Get the offset */
4908 if (nir_src_is_const(instr->src[0])) {
4909 offset = brw_imm_ud(instr->const_index[0] +
4910 nir_src_as_uint(instr->src[0]));
4911 } else {
4912 offset = vgrf(glsl_type::uint_type);
4913 bld.ADD(offset,
4914 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4915 brw_imm_ud(instr->const_index[0]));
4916 }
4917
4918 /* Emit the actual atomic operation operation */
4919
4920 fs_reg atomic_result = emit_untyped_atomic_float(bld, surface, offset,
4921 data1, data2,
4922 1 /* dims */, 1 /* rsize */,
4923 op,
4924 BRW_PREDICATE_NONE);
4925 dest.type = atomic_result.type;
4926 bld.MOV(dest, atomic_result);
4927 }
4928
4929 void
4930 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4931 {
4932 unsigned texture = instr->texture_index;
4933 unsigned sampler = instr->sampler_index;
4934
4935 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4936
4937 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4938 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4939
4940 int lod_components = 0;
4941
4942 /* The hardware requires a LOD for buffer textures */
4943 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4944 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4945
4946 uint32_t header_bits = 0;
4947 for (unsigned i = 0; i < instr->num_srcs; i++) {
4948 fs_reg src = get_nir_src(instr->src[i].src);
4949 switch (instr->src[i].src_type) {
4950 case nir_tex_src_bias:
4951 srcs[TEX_LOGICAL_SRC_LOD] =
4952 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4953 break;
4954 case nir_tex_src_comparator:
4955 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4956 break;
4957 case nir_tex_src_coord:
4958 switch (instr->op) {
4959 case nir_texop_txf:
4960 case nir_texop_txf_ms:
4961 case nir_texop_txf_ms_mcs:
4962 case nir_texop_samples_identical:
4963 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4964 break;
4965 default:
4966 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4967 break;
4968 }
4969 break;
4970 case nir_tex_src_ddx:
4971 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4972 lod_components = nir_tex_instr_src_size(instr, i);
4973 break;
4974 case nir_tex_src_ddy:
4975 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4976 break;
4977 case nir_tex_src_lod:
4978 switch (instr->op) {
4979 case nir_texop_txs:
4980 srcs[TEX_LOGICAL_SRC_LOD] =
4981 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4982 break;
4983 case nir_texop_txf:
4984 srcs[TEX_LOGICAL_SRC_LOD] =
4985 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4986 break;
4987 default:
4988 srcs[TEX_LOGICAL_SRC_LOD] =
4989 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4990 break;
4991 }
4992 break;
4993 case nir_tex_src_ms_index:
4994 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4995 break;
4996
4997 case nir_tex_src_offset: {
4998 nir_const_value *const_offset =
4999 nir_src_as_const_value(instr->src[i].src);
5000 assert(nir_src_bit_size(instr->src[i].src) == 32);
5001 unsigned offset_bits = 0;
5002 if (const_offset &&
5003 brw_texture_offset(const_offset->i32,
5004 nir_tex_instr_src_size(instr, i),
5005 &offset_bits)) {
5006 header_bits |= offset_bits;
5007 } else {
5008 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5009 retype(src, BRW_REGISTER_TYPE_D);
5010 }
5011 break;
5012 }
5013
5014 case nir_tex_src_projector:
5015 unreachable("should be lowered");
5016
5017 case nir_tex_src_texture_offset: {
5018 /* Figure out the highest possible texture index and mark it as used */
5019 uint32_t max_used = texture + instr->texture_array_size - 1;
5020 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5021 max_used += stage_prog_data->binding_table.gather_texture_start;
5022 } else {
5023 max_used += stage_prog_data->binding_table.texture_start;
5024 }
5025 brw_mark_surface_used(prog_data, max_used);
5026
5027 /* Emit code to evaluate the actual indexing expression */
5028 fs_reg tmp = vgrf(glsl_type::uint_type);
5029 bld.ADD(tmp, src, brw_imm_ud(texture));
5030 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5031 break;
5032 }
5033
5034 case nir_tex_src_sampler_offset: {
5035 /* Emit code to evaluate the actual indexing expression */
5036 fs_reg tmp = vgrf(glsl_type::uint_type);
5037 bld.ADD(tmp, src, brw_imm_ud(sampler));
5038 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5039 break;
5040 }
5041
5042 case nir_tex_src_ms_mcs:
5043 assert(instr->op == nir_texop_txf_ms);
5044 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5045 break;
5046
5047 case nir_tex_src_plane: {
5048 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5049 const uint32_t texture_index =
5050 instr->texture_index +
5051 stage_prog_data->binding_table.plane_start[plane] -
5052 stage_prog_data->binding_table.texture_start;
5053
5054 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5055 break;
5056 }
5057
5058 default:
5059 unreachable("unknown texture source");
5060 }
5061 }
5062
5063 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5064 (instr->op == nir_texop_txf_ms ||
5065 instr->op == nir_texop_samples_identical)) {
5066 if (devinfo->gen >= 7 &&
5067 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5068 srcs[TEX_LOGICAL_SRC_MCS] =
5069 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5070 instr->coord_components,
5071 srcs[TEX_LOGICAL_SRC_SURFACE]);
5072 } else {
5073 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5074 }
5075 }
5076
5077 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5078 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5079
5080 enum opcode opcode;
5081 switch (instr->op) {
5082 case nir_texop_tex:
5083 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5084 SHADER_OPCODE_TXL_LOGICAL);
5085 break;
5086 case nir_texop_txb:
5087 opcode = FS_OPCODE_TXB_LOGICAL;
5088 break;
5089 case nir_texop_txl:
5090 opcode = SHADER_OPCODE_TXL_LOGICAL;
5091 break;
5092 case nir_texop_txd:
5093 opcode = SHADER_OPCODE_TXD_LOGICAL;
5094 break;
5095 case nir_texop_txf:
5096 opcode = SHADER_OPCODE_TXF_LOGICAL;
5097 break;
5098 case nir_texop_txf_ms:
5099 if ((key_tex->msaa_16 & (1 << sampler)))
5100 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5101 else
5102 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5103 break;
5104 case nir_texop_txf_ms_mcs:
5105 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5106 break;
5107 case nir_texop_query_levels:
5108 case nir_texop_txs:
5109 opcode = SHADER_OPCODE_TXS_LOGICAL;
5110 break;
5111 case nir_texop_lod:
5112 opcode = SHADER_OPCODE_LOD_LOGICAL;
5113 break;
5114 case nir_texop_tg4:
5115 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5116 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5117 else
5118 opcode = SHADER_OPCODE_TG4_LOGICAL;
5119 break;
5120 case nir_texop_texture_samples:
5121 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5122 break;
5123 case nir_texop_samples_identical: {
5124 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5125
5126 /* If mcs is an immediate value, it means there is no MCS. In that case
5127 * just return false.
5128 */
5129 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5130 bld.MOV(dst, brw_imm_ud(0u));
5131 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5132 fs_reg tmp = vgrf(glsl_type::uint_type);
5133 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5134 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5135 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5136 } else {
5137 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5138 BRW_CONDITIONAL_EQ);
5139 }
5140 return;
5141 }
5142 default:
5143 unreachable("unknown texture opcode");
5144 }
5145
5146 if (instr->op == nir_texop_tg4) {
5147 if (instr->component == 1 &&
5148 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5149 /* gather4 sampler is broken for green channel on RG32F --
5150 * we must ask for blue instead.
5151 */
5152 header_bits |= 2 << 16;
5153 } else {
5154 header_bits |= instr->component << 16;
5155 }
5156 }
5157
5158 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5159 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5160 inst->offset = header_bits;
5161
5162 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5163 if (devinfo->gen >= 9 &&
5164 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5165 unsigned write_mask = instr->dest.is_ssa ?
5166 nir_ssa_def_components_read(&instr->dest.ssa):
5167 (1 << dest_size) - 1;
5168 assert(write_mask != 0); /* dead code should have been eliminated */
5169 inst->size_written = util_last_bit(write_mask) *
5170 inst->dst.component_size(inst->exec_size);
5171 } else {
5172 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5173 }
5174
5175 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5176 inst->shadow_compare = true;
5177
5178 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5179 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5180
5181 fs_reg nir_dest[4];
5182 for (unsigned i = 0; i < dest_size; i++)
5183 nir_dest[i] = offset(dst, bld, i);
5184
5185 if (instr->op == nir_texop_query_levels) {
5186 /* # levels is in .w */
5187 nir_dest[0] = offset(dst, bld, 3);
5188 } else if (instr->op == nir_texop_txs &&
5189 dest_size >= 3 && devinfo->gen < 7) {
5190 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5191 fs_reg depth = offset(dst, bld, 2);
5192 nir_dest[2] = vgrf(glsl_type::int_type);
5193 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5194 }
5195
5196 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5197 }
5198
5199 void
5200 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5201 {
5202 switch (instr->type) {
5203 case nir_jump_break:
5204 bld.emit(BRW_OPCODE_BREAK);
5205 break;
5206 case nir_jump_continue:
5207 bld.emit(BRW_OPCODE_CONTINUE);
5208 break;
5209 case nir_jump_return:
5210 default:
5211 unreachable("unknown jump");
5212 }
5213 }
5214
5215 /*
5216 * This helper takes a source register and un/shuffles it into the destination
5217 * register.
5218 *
5219 * If source type size is smaller than destination type size the operation
5220 * needed is a component shuffle. The opposite case would be an unshuffle. If
5221 * source/destination type size is equal a shuffle is done that would be
5222 * equivalent to a simple MOV.
5223 *
5224 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5225 * components .xyz 16-bit vector on SIMD8 would be.
5226 *
5227 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5228 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5229 *
5230 * This helper will return the following 2 32-bit components with the 16-bit
5231 * values shuffled:
5232 *
5233 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5234 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5235 *
5236 * For unshuffle, the example would be the opposite, a 64-bit type source
5237 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5238 * would be:
5239 *
5240 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5241 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5242 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5243 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5244 *
5245 * The returned result would be the following 4 32-bit components unshuffled:
5246 *
5247 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5248 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5249 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5250 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5251 *
5252 * - Source and destination register must not be overlapped.
5253 * - components units are measured in terms of the smaller type between
5254 * source and destination because we are un/shuffling the smaller
5255 * components from/into the bigger ones.
5256 * - first_component parameter allows skipping source components.
5257 */
5258 void
5259 shuffle_src_to_dst(const fs_builder &bld,
5260 const fs_reg &dst,
5261 const fs_reg &src,
5262 uint32_t first_component,
5263 uint32_t components)
5264 {
5265 if (type_sz(src.type) == type_sz(dst.type)) {
5266 assert(!regions_overlap(dst,
5267 type_sz(dst.type) * bld.dispatch_width() * components,
5268 offset(src, bld, first_component),
5269 type_sz(src.type) * bld.dispatch_width() * components));
5270 for (unsigned i = 0; i < components; i++) {
5271 bld.MOV(retype(offset(dst, bld, i), src.type),
5272 offset(src, bld, i + first_component));
5273 }
5274 } else if (type_sz(src.type) < type_sz(dst.type)) {
5275 /* Source is shuffled into destination */
5276 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5277 assert(!regions_overlap(dst,
5278 type_sz(dst.type) * bld.dispatch_width() *
5279 DIV_ROUND_UP(components, size_ratio),
5280 offset(src, bld, first_component),
5281 type_sz(src.type) * bld.dispatch_width() * components));
5282
5283 brw_reg_type shuffle_type =
5284 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5285 BRW_REGISTER_TYPE_D);
5286 for (unsigned i = 0; i < components; i++) {
5287 fs_reg shuffle_component_i =
5288 subscript(offset(dst, bld, i / size_ratio),
5289 shuffle_type, i % size_ratio);
5290 bld.MOV(shuffle_component_i,
5291 retype(offset(src, bld, i + first_component), shuffle_type));
5292 }
5293 } else {
5294 /* Source is unshuffled into destination */
5295 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5296 assert(!regions_overlap(dst,
5297 type_sz(dst.type) * bld.dispatch_width() * components,
5298 offset(src, bld, first_component / size_ratio),
5299 type_sz(src.type) * bld.dispatch_width() *
5300 DIV_ROUND_UP(components + (first_component % size_ratio),
5301 size_ratio)));
5302
5303 brw_reg_type shuffle_type =
5304 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5305 BRW_REGISTER_TYPE_D);
5306 for (unsigned i = 0; i < components; i++) {
5307 fs_reg shuffle_component_i =
5308 subscript(offset(src, bld, (first_component + i) / size_ratio),
5309 shuffle_type, (first_component + i) % size_ratio);
5310 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5311 shuffle_component_i);
5312 }
5313 }
5314 }
5315
5316 void
5317 shuffle_from_32bit_read(const fs_builder &bld,
5318 const fs_reg &dst,
5319 const fs_reg &src,
5320 uint32_t first_component,
5321 uint32_t components)
5322 {
5323 assert(type_sz(src.type) == 4);
5324
5325 /* This function takes components in units of the destination type while
5326 * shuffle_src_to_dst takes components in units of the smallest type
5327 */
5328 if (type_sz(dst.type) > 4) {
5329 assert(type_sz(dst.type) == 8);
5330 first_component *= 2;
5331 components *= 2;
5332 }
5333
5334 shuffle_src_to_dst(bld, dst, src, first_component, components);
5335 }
5336
5337 fs_reg
5338 shuffle_for_32bit_write(const fs_builder &bld,
5339 const fs_reg &src,
5340 uint32_t first_component,
5341 uint32_t components)
5342 {
5343 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5344 DIV_ROUND_UP (components * type_sz(src.type), 4));
5345 /* This function takes components in units of the source type while
5346 * shuffle_src_to_dst takes components in units of the smallest type
5347 */
5348 if (type_sz(src.type) > 4) {
5349 assert(type_sz(src.type) == 8);
5350 first_component *= 2;
5351 components *= 2;
5352 }
5353
5354 shuffle_src_to_dst(bld, dst, src, first_component, components);
5355
5356 return dst;
5357 }
5358
5359 fs_reg
5360 setup_imm_df(const fs_builder &bld, double v)
5361 {
5362 const struct gen_device_info *devinfo = bld.shader->devinfo;
5363 assert(devinfo->gen >= 7);
5364
5365 if (devinfo->gen >= 8)
5366 return brw_imm_df(v);
5367
5368 /* gen7.5 does not support DF immediates straighforward but the DIM
5369 * instruction allows to set the 64-bit immediate value.
5370 */
5371 if (devinfo->is_haswell) {
5372 const fs_builder ubld = bld.exec_all().group(1, 0);
5373 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5374 ubld.DIM(dst, brw_imm_df(v));
5375 return component(dst, 0);
5376 }
5377
5378 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5379 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5380 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5381 *
5382 * Alternatively, we could also produce a normal VGRF (without stride 0)
5383 * by writing to all the channels in the VGRF, however, that would hit the
5384 * gen7 bug where we have to split writes that span more than 1 register
5385 * into instructions with a width of 4 (otherwise the write to the second
5386 * register written runs into an execmask hardware bug) which isn't very
5387 * nice.
5388 */
5389 union {
5390 double d;
5391 struct {
5392 uint32_t i1;
5393 uint32_t i2;
5394 };
5395 } di;
5396
5397 di.d = v;
5398
5399 const fs_builder ubld = bld.exec_all().group(1, 0);
5400 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5401 ubld.MOV(tmp, brw_imm_ud(di.i1));
5402 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5403
5404 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5405 }
5406
5407 fs_reg
5408 setup_imm_b(const fs_builder &bld, int8_t v)
5409 {
5410 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5411 bld.MOV(tmp, brw_imm_w(v));
5412 return tmp;
5413 }
5414
5415 fs_reg
5416 setup_imm_ub(const fs_builder &bld, uint8_t v)
5417 {
5418 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5419 bld.MOV(tmp, brw_imm_uw(v));
5420 return tmp;
5421 }