intel: activate the gl_BaseVertex lowering
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 nir_foreach_variable(var, &nir->outputs) {
71 const int loc = var->data.driver_location;
72 if (outputs[loc].file == BAD_FILE) {
73 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s[loc]);
74 for (unsigned i = 0; i < vec4s[loc]; i++) {
75 outputs[loc + i] = offset(reg, bld, 4 * i);
76 }
77 }
78 }
79 }
80
81 void
82 fs_visitor::nir_setup_uniforms()
83 {
84 /* Only the first compile gets to set up uniforms. */
85 if (push_constant_loc) {
86 assert(pull_constant_loc);
87 return;
88 }
89
90 uniforms = nir->num_uniforms / 4;
91
92 if (stage == MESA_SHADER_COMPUTE) {
93 /* Add a uniform for the thread local id. It must be the last uniform
94 * on the list.
95 */
96 assert(uniforms == prog_data->nr_params);
97 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
98 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
99 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
100 }
101 }
102
103 static bool
104 emit_system_values_block(nir_block *block, fs_visitor *v)
105 {
106 fs_reg *reg;
107
108 nir_foreach_instr(instr, block) {
109 if (instr->type != nir_instr_type_intrinsic)
110 continue;
111
112 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
113 switch (intrin->intrinsic) {
114 case nir_intrinsic_load_vertex_id:
115 case nir_intrinsic_load_base_vertex:
116 unreachable("should be lowered by nir_lower_system_values().");
117
118 case nir_intrinsic_load_vertex_id_zero_base:
119 case nir_intrinsic_load_is_indexed_draw:
120 case nir_intrinsic_load_first_vertex:
121 case nir_intrinsic_load_instance_id:
122 case nir_intrinsic_load_base_instance:
123 case nir_intrinsic_load_draw_id:
124 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
125
126 case nir_intrinsic_load_invocation_id:
127 if (v->stage == MESA_SHADER_TESS_CTRL)
128 break;
129 assert(v->stage == MESA_SHADER_GEOMETRY);
130 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
131 if (reg->file == BAD_FILE) {
132 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
133 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
134 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
135 abld.SHR(iid, g1, brw_imm_ud(27u));
136 *reg = iid;
137 }
138 break;
139
140 case nir_intrinsic_load_sample_pos:
141 assert(v->stage == MESA_SHADER_FRAGMENT);
142 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
143 if (reg->file == BAD_FILE)
144 *reg = *v->emit_samplepos_setup();
145 break;
146
147 case nir_intrinsic_load_sample_id:
148 assert(v->stage == MESA_SHADER_FRAGMENT);
149 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
150 if (reg->file == BAD_FILE)
151 *reg = *v->emit_sampleid_setup();
152 break;
153
154 case nir_intrinsic_load_sample_mask_in:
155 assert(v->stage == MESA_SHADER_FRAGMENT);
156 assert(v->devinfo->gen >= 7);
157 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
158 if (reg->file == BAD_FILE)
159 *reg = *v->emit_samplemaskin_setup();
160 break;
161
162 case nir_intrinsic_load_work_group_id:
163 assert(v->stage == MESA_SHADER_COMPUTE);
164 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
165 if (reg->file == BAD_FILE)
166 *reg = *v->emit_cs_work_group_id_setup();
167 break;
168
169 case nir_intrinsic_load_helper_invocation:
170 assert(v->stage == MESA_SHADER_FRAGMENT);
171 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
172 if (reg->file == BAD_FILE) {
173 const fs_builder abld =
174 v->bld.annotate("gl_HelperInvocation", NULL);
175
176 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
177 * pixel mask is in g1.7 of the thread payload.
178 *
179 * We move the per-channel pixel enable bit to the low bit of each
180 * channel by shifting the byte containing the pixel mask by the
181 * vector immediate 0x76543210UV.
182 *
183 * The region of <1,8,0> reads only 1 byte (the pixel masks for
184 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
185 * masks for 2 and 3) in SIMD16.
186 */
187 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
188 abld.SHR(shifted,
189 stride(byte_offset(retype(brw_vec1_grf(1, 0),
190 BRW_REGISTER_TYPE_UB), 28),
191 1, 8, 0),
192 brw_imm_v(0x76543210));
193
194 /* A set bit in the pixel mask means the channel is enabled, but
195 * that is the opposite of gl_HelperInvocation so we need to invert
196 * the mask.
197 *
198 * The negate source-modifier bit of logical instructions on Gen8+
199 * performs 1's complement negation, so we can use that instead of
200 * a NOT instruction.
201 */
202 fs_reg inverted = negate(shifted);
203 if (v->devinfo->gen < 8) {
204 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
205 abld.NOT(inverted, shifted);
206 }
207
208 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
209 * with 1 and negating.
210 */
211 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
212 abld.AND(anded, inverted, brw_imm_uw(1));
213
214 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
215 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
216 *reg = dst;
217 }
218 break;
219
220 default:
221 break;
222 }
223 }
224
225 return true;
226 }
227
228 void
229 fs_visitor::nir_emit_system_values()
230 {
231 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
232 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
233 nir_system_values[i] = fs_reg();
234 }
235
236 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
237 * never end up using it.
238 */
239 {
240 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
241 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
242 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
243
244 const fs_builder allbld8 = abld.group(8, 0).exec_all();
245 allbld8.MOV(reg, brw_imm_v(0x76543210));
246 if (dispatch_width > 8)
247 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
248 if (dispatch_width > 16) {
249 const fs_builder allbld16 = abld.group(16, 0).exec_all();
250 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
251 }
252 }
253
254 nir_foreach_function(function, nir) {
255 assert(strcmp(function->name, "main") == 0);
256 assert(function->impl);
257 nir_foreach_block(block, function->impl) {
258 emit_system_values_block(block, this);
259 }
260 }
261 }
262
263 /*
264 * Returns a type based on a reference_type (word, float, half-float) and a
265 * given bit_size.
266 *
267 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
268 *
269 * @FIXME: 64-bit return types are always DF on integer types to maintain
270 * compability with uses of DF previously to the introduction of int64
271 * support.
272 */
273 static brw_reg_type
274 brw_reg_type_from_bit_size(const unsigned bit_size,
275 const brw_reg_type reference_type)
276 {
277 switch(reference_type) {
278 case BRW_REGISTER_TYPE_HF:
279 case BRW_REGISTER_TYPE_F:
280 case BRW_REGISTER_TYPE_DF:
281 switch(bit_size) {
282 case 16:
283 return BRW_REGISTER_TYPE_HF;
284 case 32:
285 return BRW_REGISTER_TYPE_F;
286 case 64:
287 return BRW_REGISTER_TYPE_DF;
288 default:
289 unreachable("Invalid bit size");
290 }
291 case BRW_REGISTER_TYPE_W:
292 case BRW_REGISTER_TYPE_D:
293 case BRW_REGISTER_TYPE_Q:
294 switch(bit_size) {
295 case 16:
296 return BRW_REGISTER_TYPE_W;
297 case 32:
298 return BRW_REGISTER_TYPE_D;
299 case 64:
300 return BRW_REGISTER_TYPE_Q;
301 default:
302 unreachable("Invalid bit size");
303 }
304 case BRW_REGISTER_TYPE_UW:
305 case BRW_REGISTER_TYPE_UD:
306 case BRW_REGISTER_TYPE_UQ:
307 switch(bit_size) {
308 case 16:
309 return BRW_REGISTER_TYPE_UW;
310 case 32:
311 return BRW_REGISTER_TYPE_UD;
312 case 64:
313 return BRW_REGISTER_TYPE_UQ;
314 default:
315 unreachable("Invalid bit size");
316 }
317 default:
318 unreachable("Unknown type");
319 }
320 }
321
322 void
323 fs_visitor::nir_emit_impl(nir_function_impl *impl)
324 {
325 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
326 for (unsigned i = 0; i < impl->reg_alloc; i++) {
327 nir_locals[i] = fs_reg();
328 }
329
330 foreach_list_typed(nir_register, reg, node, &impl->registers) {
331 unsigned array_elems =
332 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
333 unsigned size = array_elems * reg->num_components;
334 const brw_reg_type reg_type =
335 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
336 nir_locals[reg->index] = bld.vgrf(reg_type, size);
337 }
338
339 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
340 impl->ssa_alloc);
341
342 nir_emit_cf_list(&impl->body);
343 }
344
345 void
346 fs_visitor::nir_emit_cf_list(exec_list *list)
347 {
348 exec_list_validate(list);
349 foreach_list_typed(nir_cf_node, node, node, list) {
350 switch (node->type) {
351 case nir_cf_node_if:
352 nir_emit_if(nir_cf_node_as_if(node));
353 break;
354
355 case nir_cf_node_loop:
356 nir_emit_loop(nir_cf_node_as_loop(node));
357 break;
358
359 case nir_cf_node_block:
360 nir_emit_block(nir_cf_node_as_block(node));
361 break;
362
363 default:
364 unreachable("Invalid CFG node block");
365 }
366 }
367 }
368
369 void
370 fs_visitor::nir_emit_if(nir_if *if_stmt)
371 {
372 /* first, put the condition into f0 */
373 fs_inst *inst = bld.MOV(bld.null_reg_d(),
374 retype(get_nir_src(if_stmt->condition),
375 BRW_REGISTER_TYPE_D));
376 inst->conditional_mod = BRW_CONDITIONAL_NZ;
377
378 bld.IF(BRW_PREDICATE_NORMAL);
379
380 nir_emit_cf_list(&if_stmt->then_list);
381
382 /* note: if the else is empty, dead CF elimination will remove it */
383 bld.emit(BRW_OPCODE_ELSE);
384
385 nir_emit_cf_list(&if_stmt->else_list);
386
387 bld.emit(BRW_OPCODE_ENDIF);
388 }
389
390 void
391 fs_visitor::nir_emit_loop(nir_loop *loop)
392 {
393 bld.emit(BRW_OPCODE_DO);
394
395 nir_emit_cf_list(&loop->body);
396
397 bld.emit(BRW_OPCODE_WHILE);
398 }
399
400 void
401 fs_visitor::nir_emit_block(nir_block *block)
402 {
403 nir_foreach_instr(instr, block) {
404 nir_emit_instr(instr);
405 }
406 }
407
408 void
409 fs_visitor::nir_emit_instr(nir_instr *instr)
410 {
411 const fs_builder abld = bld.annotate(NULL, instr);
412
413 switch (instr->type) {
414 case nir_instr_type_alu:
415 nir_emit_alu(abld, nir_instr_as_alu(instr));
416 break;
417
418 case nir_instr_type_intrinsic:
419 switch (stage) {
420 case MESA_SHADER_VERTEX:
421 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
422 break;
423 case MESA_SHADER_TESS_CTRL:
424 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
425 break;
426 case MESA_SHADER_TESS_EVAL:
427 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
428 break;
429 case MESA_SHADER_GEOMETRY:
430 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
431 break;
432 case MESA_SHADER_FRAGMENT:
433 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
434 break;
435 case MESA_SHADER_COMPUTE:
436 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
437 break;
438 default:
439 unreachable("unsupported shader stage");
440 }
441 break;
442
443 case nir_instr_type_tex:
444 nir_emit_texture(abld, nir_instr_as_tex(instr));
445 break;
446
447 case nir_instr_type_load_const:
448 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
449 break;
450
451 case nir_instr_type_ssa_undef:
452 /* We create a new VGRF for undefs on every use (by handling
453 * them in get_nir_src()), rather than for each definition.
454 * This helps register coalescing eliminate MOVs from undef.
455 */
456 break;
457
458 case nir_instr_type_jump:
459 nir_emit_jump(abld, nir_instr_as_jump(instr));
460 break;
461
462 default:
463 unreachable("unknown instruction type");
464 }
465 }
466
467 /**
468 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
469 * match instr.
470 */
471 bool
472 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
473 const fs_reg &result)
474 {
475 if (!instr->src[0].src.is_ssa ||
476 !instr->src[0].src.ssa->parent_instr)
477 return false;
478
479 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
480 return false;
481
482 nir_alu_instr *src0 =
483 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
484
485 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
486 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
487 return false;
488
489 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
490 assert(element != NULL);
491
492 /* Element type to extract.*/
493 const brw_reg_type type = brw_int_type(
494 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
495 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
496
497 fs_reg op0 = get_nir_src(src0->src[0].src);
498 op0.type = brw_type_for_nir_type(devinfo,
499 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
500 nir_src_bit_size(src0->src[0].src)));
501 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
502
503 set_saturate(instr->dest.saturate,
504 bld.MOV(result, subscript(op0, type, element->u32[0])));
505 return true;
506 }
507
508 bool
509 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
510 const fs_reg &result)
511 {
512 if (!instr->src[0].src.is_ssa ||
513 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
514 return false;
515
516 nir_intrinsic_instr *src0 =
517 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
518
519 if (src0->intrinsic != nir_intrinsic_load_front_face)
520 return false;
521
522 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
523 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
524 return false;
525
526 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
527 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
528 return false;
529
530 fs_reg tmp = vgrf(glsl_type::int_type);
531
532 if (devinfo->gen >= 6) {
533 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
534 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
535
536 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
537 *
538 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
539 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
540 *
541 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
542 *
543 * This negation looks like it's safe in practice, because bits 0:4 will
544 * surely be TRIANGLES
545 */
546
547 if (value1->f32[0] == -1.0f) {
548 g0.negate = true;
549 }
550
551 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
552 g0, brw_imm_uw(0x3f80));
553 } else {
554 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
555 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
556
557 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
558 *
559 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
560 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
561 *
562 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
563 *
564 * This negation looks like it's safe in practice, because bits 0:4 will
565 * surely be TRIANGLES
566 */
567
568 if (value1->f32[0] == -1.0f) {
569 g1_6.negate = true;
570 }
571
572 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
573 }
574 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
575
576 return true;
577 }
578
579 static void
580 emit_find_msb_using_lzd(const fs_builder &bld,
581 const fs_reg &result,
582 const fs_reg &src,
583 bool is_signed)
584 {
585 fs_inst *inst;
586 fs_reg temp = src;
587
588 if (is_signed) {
589 /* LZD of an absolute value source almost always does the right
590 * thing. There are two problem values:
591 *
592 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
593 * 0. However, findMSB(int(0x80000000)) == 30.
594 *
595 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
596 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
597 *
598 * For a value of zero or negative one, -1 will be returned.
599 *
600 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
601 * findMSB(-(1<<x)) should return x-1.
602 *
603 * For all negative number cases, including 0x80000000 and
604 * 0xffffffff, the correct value is obtained from LZD if instead of
605 * negating the (already negative) value the logical-not is used. A
606 * conditonal logical-not can be achieved in two instructions.
607 */
608 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
609
610 bld.ASR(temp, src, brw_imm_d(31));
611 bld.XOR(temp, temp, src);
612 }
613
614 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
615 retype(temp, BRW_REGISTER_TYPE_UD));
616
617 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
618 * from the LSB side. Subtract the result from 31 to convert the MSB
619 * count into an LSB count. If no bits are set, LZD will return 32.
620 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
621 */
622 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
623 inst->src[0].negate = true;
624 }
625
626 static brw_rnd_mode
627 brw_rnd_mode_from_nir_op (const nir_op op) {
628 switch (op) {
629 case nir_op_f2f16_rtz:
630 return BRW_RND_MODE_RTZ;
631 case nir_op_f2f16_rtne:
632 return BRW_RND_MODE_RTNE;
633 default:
634 unreachable("Operation doesn't support rounding mode");
635 }
636 }
637
638 void
639 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
640 {
641 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
642 fs_inst *inst;
643
644 fs_reg result = get_nir_dest(instr->dest.dest);
645 result.type = brw_type_for_nir_type(devinfo,
646 (nir_alu_type)(nir_op_infos[instr->op].output_type |
647 nir_dest_bit_size(instr->dest.dest)));
648
649 fs_reg op[4];
650 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
651 op[i] = get_nir_src(instr->src[i].src);
652 op[i].type = brw_type_for_nir_type(devinfo,
653 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
654 nir_src_bit_size(instr->src[i].src)));
655 op[i].abs = instr->src[i].abs;
656 op[i].negate = instr->src[i].negate;
657 }
658
659 /* We get a bunch of mov's out of the from_ssa pass and they may still
660 * be vectorized. We'll handle them as a special-case. We'll also
661 * handle vecN here because it's basically the same thing.
662 */
663 switch (instr->op) {
664 case nir_op_imov:
665 case nir_op_fmov:
666 case nir_op_vec2:
667 case nir_op_vec3:
668 case nir_op_vec4: {
669 fs_reg temp = result;
670 bool need_extra_copy = false;
671 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
672 if (!instr->src[i].src.is_ssa &&
673 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
674 need_extra_copy = true;
675 temp = bld.vgrf(result.type, 4);
676 break;
677 }
678 }
679
680 for (unsigned i = 0; i < 4; i++) {
681 if (!(instr->dest.write_mask & (1 << i)))
682 continue;
683
684 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
685 inst = bld.MOV(offset(temp, bld, i),
686 offset(op[0], bld, instr->src[0].swizzle[i]));
687 } else {
688 inst = bld.MOV(offset(temp, bld, i),
689 offset(op[i], bld, instr->src[i].swizzle[0]));
690 }
691 inst->saturate = instr->dest.saturate;
692 }
693
694 /* In this case the source and destination registers were the same,
695 * so we need to insert an extra set of moves in order to deal with
696 * any swizzling.
697 */
698 if (need_extra_copy) {
699 for (unsigned i = 0; i < 4; i++) {
700 if (!(instr->dest.write_mask & (1 << i)))
701 continue;
702
703 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
704 }
705 }
706 return;
707 }
708 default:
709 break;
710 }
711
712 /* At this point, we have dealt with any instruction that operates on
713 * more than a single channel. Therefore, we can just adjust the source
714 * and destination registers for that channel and emit the instruction.
715 */
716 unsigned channel = 0;
717 if (nir_op_infos[instr->op].output_size == 0) {
718 /* Since NIR is doing the scalarizing for us, we should only ever see
719 * vectorized operations with a single channel.
720 */
721 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
722 channel = ffs(instr->dest.write_mask) - 1;
723
724 result = offset(result, bld, channel);
725 }
726
727 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
728 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
729 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
730 }
731
732 switch (instr->op) {
733 case nir_op_i2f32:
734 case nir_op_u2f32:
735 if (optimize_extract_to_float(instr, result))
736 return;
737 inst = bld.MOV(result, op[0]);
738 inst->saturate = instr->dest.saturate;
739 break;
740
741 case nir_op_f2f16_rtne:
742 case nir_op_f2f16_rtz:
743 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
744 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
745 /* fallthrough */
746
747 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
748 * on the HW gen, it is a special hw opcode or just a MOV, and
749 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
750 *
751 * But if we want to use that opcode, we need to provide support on
752 * different optimizations and lowerings. As right now HF support is
753 * only for gen8+, it will be better to use directly the MOV, and use
754 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
755 */
756
757 case nir_op_f2f16_undef:
758 case nir_op_i2i16:
759 case nir_op_u2u16: {
760 /* TODO: Fixing aligment rules for conversions from 32-bits to
761 * 16-bit types should be moved to lower_conversions
762 */
763 fs_reg tmp = bld.vgrf(op[0].type, 1);
764 tmp = subscript(tmp, result.type, 0);
765 inst = bld.MOV(tmp, op[0]);
766 inst->saturate = instr->dest.saturate;
767 inst = bld.MOV(result, tmp);
768 inst->saturate = instr->dest.saturate;
769 break;
770 }
771
772 case nir_op_f2f64:
773 case nir_op_f2i64:
774 case nir_op_f2u64:
775 case nir_op_i2f64:
776 case nir_op_i2i64:
777 case nir_op_u2f64:
778 case nir_op_u2u64:
779 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
780 *
781 * "When source or destination is 64b (...), regioning in Align1
782 * must follow these rules:
783 *
784 * 1. Source and destination horizontal stride must be aligned to
785 * the same qword.
786 * (...)"
787 *
788 * This means that 32-bit to 64-bit conversions need to have the 32-bit
789 * data elements aligned to 64-bit. This restriction does not apply to
790 * BDW and later.
791 */
792 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
793 nir_src_bit_size(instr->src[0].src) == 32 &&
794 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
795 fs_reg tmp = bld.vgrf(result.type, 1);
796 tmp = subscript(tmp, op[0].type, 0);
797 inst = bld.MOV(tmp, op[0]);
798 inst = bld.MOV(result, tmp);
799 inst->saturate = instr->dest.saturate;
800 break;
801 }
802 /* fallthrough */
803 case nir_op_f2f32:
804 case nir_op_f2i32:
805 case nir_op_f2u32:
806 case nir_op_i2i32:
807 case nir_op_u2u32:
808 inst = bld.MOV(result, op[0]);
809 inst->saturate = instr->dest.saturate;
810 break;
811
812 case nir_op_fsign: {
813 if (op[0].abs) {
814 /* Straightforward since the source can be assumed to be
815 * non-negative.
816 */
817 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
818 set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
819
820 } else if (type_sz(op[0].type) < 8) {
821 /* AND(val, 0x80000000) gives the sign bit.
822 *
823 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
824 * zero.
825 */
826 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
827
828 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
829 op[0].type = BRW_REGISTER_TYPE_UD;
830 result.type = BRW_REGISTER_TYPE_UD;
831 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
832
833 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
834 inst->predicate = BRW_PREDICATE_NORMAL;
835 if (instr->dest.saturate) {
836 inst = bld.MOV(result, result);
837 inst->saturate = true;
838 }
839 } else {
840 /* For doubles we do the same but we need to consider:
841 *
842 * - 2-src instructions can't operate with 64-bit immediates
843 * - The sign is encoded in the high 32-bit of each DF
844 * - We need to produce a DF result.
845 */
846
847 fs_reg zero = vgrf(glsl_type::double_type);
848 bld.MOV(zero, setup_imm_df(bld, 0.0));
849 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
850
851 bld.MOV(result, zero);
852
853 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
854 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
855 brw_imm_ud(0x80000000u));
856
857 set_predicate(BRW_PREDICATE_NORMAL,
858 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
859
860 if (instr->dest.saturate) {
861 inst = bld.MOV(result, result);
862 inst->saturate = true;
863 }
864 }
865 break;
866 }
867
868 case nir_op_isign:
869 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
870 * -> non-negative val generates 0x00000000.
871 * Predicated OR sets 1 if val is positive.
872 */
873 assert(nir_dest_bit_size(instr->dest.dest) < 64);
874 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
875 bld.ASR(result, op[0], brw_imm_d(31));
876 inst = bld.OR(result, result, brw_imm_d(1));
877 inst->predicate = BRW_PREDICATE_NORMAL;
878 break;
879
880 case nir_op_frcp:
881 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
882 inst->saturate = instr->dest.saturate;
883 break;
884
885 case nir_op_fexp2:
886 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
887 inst->saturate = instr->dest.saturate;
888 break;
889
890 case nir_op_flog2:
891 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
892 inst->saturate = instr->dest.saturate;
893 break;
894
895 case nir_op_fsin:
896 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
897 inst->saturate = instr->dest.saturate;
898 break;
899
900 case nir_op_fcos:
901 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
902 inst->saturate = instr->dest.saturate;
903 break;
904
905 case nir_op_fddx:
906 if (fs_key->high_quality_derivatives) {
907 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
908 } else {
909 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
910 }
911 inst->saturate = instr->dest.saturate;
912 break;
913 case nir_op_fddx_fine:
914 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
915 inst->saturate = instr->dest.saturate;
916 break;
917 case nir_op_fddx_coarse:
918 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
919 inst->saturate = instr->dest.saturate;
920 break;
921 case nir_op_fddy:
922 if (fs_key->high_quality_derivatives) {
923 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
924 } else {
925 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
926 }
927 inst->saturate = instr->dest.saturate;
928 break;
929 case nir_op_fddy_fine:
930 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
931 inst->saturate = instr->dest.saturate;
932 break;
933 case nir_op_fddy_coarse:
934 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
935 inst->saturate = instr->dest.saturate;
936 break;
937
938 case nir_op_iadd:
939 case nir_op_fadd:
940 inst = bld.ADD(result, op[0], op[1]);
941 inst->saturate = instr->dest.saturate;
942 break;
943
944 case nir_op_fmul:
945 inst = bld.MUL(result, op[0], op[1]);
946 inst->saturate = instr->dest.saturate;
947 break;
948
949 case nir_op_imul:
950 assert(nir_dest_bit_size(instr->dest.dest) < 64);
951 bld.MUL(result, op[0], op[1]);
952 break;
953
954 case nir_op_imul_high:
955 case nir_op_umul_high:
956 assert(nir_dest_bit_size(instr->dest.dest) < 64);
957 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
958 break;
959
960 case nir_op_idiv:
961 case nir_op_udiv:
962 assert(nir_dest_bit_size(instr->dest.dest) < 64);
963 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
964 break;
965
966 case nir_op_uadd_carry:
967 unreachable("Should have been lowered by carry_to_arith().");
968
969 case nir_op_usub_borrow:
970 unreachable("Should have been lowered by borrow_to_arith().");
971
972 case nir_op_umod:
973 case nir_op_irem:
974 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
975 * appears that our hardware just does the right thing for signed
976 * remainder.
977 */
978 assert(nir_dest_bit_size(instr->dest.dest) < 64);
979 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
980 break;
981
982 case nir_op_imod: {
983 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
984 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
985
986 /* Math instructions don't support conditional mod */
987 inst = bld.MOV(bld.null_reg_d(), result);
988 inst->conditional_mod = BRW_CONDITIONAL_NZ;
989
990 /* Now, we need to determine if signs of the sources are different.
991 * When we XOR the sources, the top bit is 0 if they are the same and 1
992 * if they are different. We can then use a conditional modifier to
993 * turn that into a predicate. This leads us to an XOR.l instruction.
994 *
995 * Technically, according to the PRM, you're not allowed to use .l on a
996 * XOR instruction. However, emperical experiments and Curro's reading
997 * of the simulator source both indicate that it's safe.
998 */
999 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1000 inst = bld.XOR(tmp, op[0], op[1]);
1001 inst->predicate = BRW_PREDICATE_NORMAL;
1002 inst->conditional_mod = BRW_CONDITIONAL_L;
1003
1004 /* If the result of the initial remainder operation is non-zero and the
1005 * two sources have different signs, add in a copy of op[1] to get the
1006 * final integer modulus value.
1007 */
1008 inst = bld.ADD(result, result, op[1]);
1009 inst->predicate = BRW_PREDICATE_NORMAL;
1010 break;
1011 }
1012
1013 case nir_op_flt:
1014 case nir_op_fge:
1015 case nir_op_feq:
1016 case nir_op_fne: {
1017 fs_reg dest = result;
1018 if (nir_src_bit_size(instr->src[0].src) > 32) {
1019 dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
1020 }
1021 brw_conditional_mod cond;
1022 switch (instr->op) {
1023 case nir_op_flt:
1024 cond = BRW_CONDITIONAL_L;
1025 break;
1026 case nir_op_fge:
1027 cond = BRW_CONDITIONAL_GE;
1028 break;
1029 case nir_op_feq:
1030 cond = BRW_CONDITIONAL_Z;
1031 break;
1032 case nir_op_fne:
1033 cond = BRW_CONDITIONAL_NZ;
1034 break;
1035 default:
1036 unreachable("bad opcode");
1037 }
1038 bld.CMP(dest, op[0], op[1], cond);
1039 if (nir_src_bit_size(instr->src[0].src) > 32) {
1040 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1041 }
1042 break;
1043 }
1044
1045 case nir_op_ilt:
1046 case nir_op_ult:
1047 case nir_op_ige:
1048 case nir_op_uge:
1049 case nir_op_ieq:
1050 case nir_op_ine: {
1051 fs_reg dest = result;
1052 if (nir_src_bit_size(instr->src[0].src) > 32) {
1053 dest = bld.vgrf(BRW_REGISTER_TYPE_UQ, 1);
1054 }
1055
1056 brw_conditional_mod cond;
1057 switch (instr->op) {
1058 case nir_op_ilt:
1059 case nir_op_ult:
1060 cond = BRW_CONDITIONAL_L;
1061 break;
1062 case nir_op_ige:
1063 case nir_op_uge:
1064 cond = BRW_CONDITIONAL_GE;
1065 break;
1066 case nir_op_ieq:
1067 cond = BRW_CONDITIONAL_Z;
1068 break;
1069 case nir_op_ine:
1070 cond = BRW_CONDITIONAL_NZ;
1071 break;
1072 default:
1073 unreachable("bad opcode");
1074 }
1075 bld.CMP(dest, op[0], op[1], cond);
1076 if (nir_src_bit_size(instr->src[0].src) > 32) {
1077 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1078 }
1079 break;
1080 }
1081
1082 case nir_op_inot:
1083 if (devinfo->gen >= 8) {
1084 op[0] = resolve_source_modifiers(op[0]);
1085 }
1086 bld.NOT(result, op[0]);
1087 break;
1088 case nir_op_ixor:
1089 if (devinfo->gen >= 8) {
1090 op[0] = resolve_source_modifiers(op[0]);
1091 op[1] = resolve_source_modifiers(op[1]);
1092 }
1093 bld.XOR(result, op[0], op[1]);
1094 break;
1095 case nir_op_ior:
1096 if (devinfo->gen >= 8) {
1097 op[0] = resolve_source_modifiers(op[0]);
1098 op[1] = resolve_source_modifiers(op[1]);
1099 }
1100 bld.OR(result, op[0], op[1]);
1101 break;
1102 case nir_op_iand:
1103 if (devinfo->gen >= 8) {
1104 op[0] = resolve_source_modifiers(op[0]);
1105 op[1] = resolve_source_modifiers(op[1]);
1106 }
1107 bld.AND(result, op[0], op[1]);
1108 break;
1109
1110 case nir_op_fdot2:
1111 case nir_op_fdot3:
1112 case nir_op_fdot4:
1113 case nir_op_ball_fequal2:
1114 case nir_op_ball_iequal2:
1115 case nir_op_ball_fequal3:
1116 case nir_op_ball_iequal3:
1117 case nir_op_ball_fequal4:
1118 case nir_op_ball_iequal4:
1119 case nir_op_bany_fnequal2:
1120 case nir_op_bany_inequal2:
1121 case nir_op_bany_fnequal3:
1122 case nir_op_bany_inequal3:
1123 case nir_op_bany_fnequal4:
1124 case nir_op_bany_inequal4:
1125 unreachable("Lowered by nir_lower_alu_reductions");
1126
1127 case nir_op_fnoise1_1:
1128 case nir_op_fnoise1_2:
1129 case nir_op_fnoise1_3:
1130 case nir_op_fnoise1_4:
1131 case nir_op_fnoise2_1:
1132 case nir_op_fnoise2_2:
1133 case nir_op_fnoise2_3:
1134 case nir_op_fnoise2_4:
1135 case nir_op_fnoise3_1:
1136 case nir_op_fnoise3_2:
1137 case nir_op_fnoise3_3:
1138 case nir_op_fnoise3_4:
1139 case nir_op_fnoise4_1:
1140 case nir_op_fnoise4_2:
1141 case nir_op_fnoise4_3:
1142 case nir_op_fnoise4_4:
1143 unreachable("not reached: should be handled by lower_noise");
1144
1145 case nir_op_ldexp:
1146 unreachable("not reached: should be handled by ldexp_to_arith()");
1147
1148 case nir_op_fsqrt:
1149 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1150 inst->saturate = instr->dest.saturate;
1151 break;
1152
1153 case nir_op_frsq:
1154 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1155 inst->saturate = instr->dest.saturate;
1156 break;
1157
1158 case nir_op_b2i:
1159 case nir_op_b2f:
1160 bld.MOV(result, negate(op[0]));
1161 break;
1162
1163 case nir_op_i2b:
1164 case nir_op_f2b:
1165 if (nir_src_bit_size(instr->src[0].src) == 64) {
1166 /* two-argument instructions can't take 64-bit immediates */
1167 fs_reg zero;
1168 fs_reg tmp;
1169
1170 if (instr->op == nir_op_f2b) {
1171 zero = vgrf(glsl_type::double_type);
1172 tmp = vgrf(glsl_type::double_type);
1173 bld.MOV(zero, setup_imm_df(bld, 0.0));
1174 } else {
1175 zero = vgrf(glsl_type::int64_t_type);
1176 tmp = vgrf(glsl_type::int64_t_type);
1177 bld.MOV(zero, brw_imm_q(0));
1178 }
1179
1180 /* A SIMD16 execution needs to be split in two instructions, so use
1181 * a vgrf instead of the flag register as dst so instruction splitting
1182 * works
1183 */
1184 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1185 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1186 } else {
1187 if (instr->op == nir_op_f2b) {
1188 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
1189 } else {
1190 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1191 }
1192 }
1193 break;
1194
1195 case nir_op_ftrunc:
1196 inst = bld.RNDZ(result, op[0]);
1197 inst->saturate = instr->dest.saturate;
1198 break;
1199
1200 case nir_op_fceil: {
1201 op[0].negate = !op[0].negate;
1202 fs_reg temp = vgrf(glsl_type::float_type);
1203 bld.RNDD(temp, op[0]);
1204 temp.negate = true;
1205 inst = bld.MOV(result, temp);
1206 inst->saturate = instr->dest.saturate;
1207 break;
1208 }
1209 case nir_op_ffloor:
1210 inst = bld.RNDD(result, op[0]);
1211 inst->saturate = instr->dest.saturate;
1212 break;
1213 case nir_op_ffract:
1214 inst = bld.FRC(result, op[0]);
1215 inst->saturate = instr->dest.saturate;
1216 break;
1217 case nir_op_fround_even:
1218 inst = bld.RNDE(result, op[0]);
1219 inst->saturate = instr->dest.saturate;
1220 break;
1221
1222 case nir_op_fquantize2f16: {
1223 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1224 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1225 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1226
1227 /* The destination stride must be at least as big as the source stride. */
1228 tmp16.type = BRW_REGISTER_TYPE_W;
1229 tmp16.stride = 2;
1230
1231 /* Check for denormal */
1232 fs_reg abs_src0 = op[0];
1233 abs_src0.abs = true;
1234 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1235 BRW_CONDITIONAL_L);
1236 /* Get the appropriately signed zero */
1237 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1238 retype(op[0], BRW_REGISTER_TYPE_UD),
1239 brw_imm_ud(0x80000000));
1240 /* Do the actual F32 -> F16 -> F32 conversion */
1241 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1242 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1243 /* Select that or zero based on normal status */
1244 inst = bld.SEL(result, zero, tmp32);
1245 inst->predicate = BRW_PREDICATE_NORMAL;
1246 inst->saturate = instr->dest.saturate;
1247 break;
1248 }
1249
1250 case nir_op_imin:
1251 case nir_op_umin:
1252 case nir_op_fmin:
1253 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1254 inst->saturate = instr->dest.saturate;
1255 break;
1256
1257 case nir_op_imax:
1258 case nir_op_umax:
1259 case nir_op_fmax:
1260 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1261 inst->saturate = instr->dest.saturate;
1262 break;
1263
1264 case nir_op_pack_snorm_2x16:
1265 case nir_op_pack_snorm_4x8:
1266 case nir_op_pack_unorm_2x16:
1267 case nir_op_pack_unorm_4x8:
1268 case nir_op_unpack_snorm_2x16:
1269 case nir_op_unpack_snorm_4x8:
1270 case nir_op_unpack_unorm_2x16:
1271 case nir_op_unpack_unorm_4x8:
1272 case nir_op_unpack_half_2x16:
1273 case nir_op_pack_half_2x16:
1274 unreachable("not reached: should be handled by lower_packing_builtins");
1275
1276 case nir_op_unpack_half_2x16_split_x:
1277 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1278 inst->saturate = instr->dest.saturate;
1279 break;
1280 case nir_op_unpack_half_2x16_split_y:
1281 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1282 inst->saturate = instr->dest.saturate;
1283 break;
1284
1285 case nir_op_pack_64_2x32_split:
1286 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1287 break;
1288
1289 case nir_op_unpack_64_2x32_split_x:
1290 case nir_op_unpack_64_2x32_split_y: {
1291 if (instr->op == nir_op_unpack_64_2x32_split_x)
1292 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1293 else
1294 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1295 break;
1296 }
1297
1298 case nir_op_fpow:
1299 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1300 inst->saturate = instr->dest.saturate;
1301 break;
1302
1303 case nir_op_bitfield_reverse:
1304 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1305 bld.BFREV(result, op[0]);
1306 break;
1307
1308 case nir_op_bit_count:
1309 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1310 bld.CBIT(result, op[0]);
1311 break;
1312
1313 case nir_op_ufind_msb: {
1314 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1315 emit_find_msb_using_lzd(bld, result, op[0], false);
1316 break;
1317 }
1318
1319 case nir_op_ifind_msb: {
1320 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1321
1322 if (devinfo->gen < 7) {
1323 emit_find_msb_using_lzd(bld, result, op[0], true);
1324 } else {
1325 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1326
1327 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1328 * count from the LSB side. If FBH didn't return an error
1329 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1330 * count into an LSB count.
1331 */
1332 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1333
1334 inst = bld.ADD(result, result, brw_imm_d(31));
1335 inst->predicate = BRW_PREDICATE_NORMAL;
1336 inst->src[0].negate = true;
1337 }
1338 break;
1339 }
1340
1341 case nir_op_find_lsb:
1342 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1343
1344 if (devinfo->gen < 7) {
1345 fs_reg temp = vgrf(glsl_type::int_type);
1346
1347 /* (x & -x) generates a value that consists of only the LSB of x.
1348 * For all powers of 2, findMSB(y) == findLSB(y).
1349 */
1350 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1351 fs_reg negated_src = src;
1352
1353 /* One must be negated, and the other must be non-negated. It
1354 * doesn't matter which is which.
1355 */
1356 negated_src.negate = true;
1357 src.negate = false;
1358
1359 bld.AND(temp, src, negated_src);
1360 emit_find_msb_using_lzd(bld, result, temp, false);
1361 } else {
1362 bld.FBL(result, op[0]);
1363 }
1364 break;
1365
1366 case nir_op_ubitfield_extract:
1367 case nir_op_ibitfield_extract:
1368 unreachable("should have been lowered");
1369 case nir_op_ubfe:
1370 case nir_op_ibfe:
1371 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1372 bld.BFE(result, op[2], op[1], op[0]);
1373 break;
1374 case nir_op_bfm:
1375 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1376 bld.BFI1(result, op[0], op[1]);
1377 break;
1378 case nir_op_bfi:
1379 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1380 bld.BFI2(result, op[0], op[1], op[2]);
1381 break;
1382
1383 case nir_op_bitfield_insert:
1384 unreachable("not reached: should have been lowered");
1385
1386 case nir_op_ishl:
1387 case nir_op_ishr:
1388 case nir_op_ushr: {
1389 fs_reg shift_count = op[1];
1390
1391 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1392 if (op[1].file == VGRF &&
1393 (result.type == BRW_REGISTER_TYPE_Q ||
1394 result.type == BRW_REGISTER_TYPE_UQ)) {
1395 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1396 BRW_REGISTER_TYPE_UD);
1397 shift_count.stride = 2;
1398 bld.MOV(shift_count, op[1]);
1399 }
1400 }
1401
1402 switch (instr->op) {
1403 case nir_op_ishl:
1404 bld.SHL(result, op[0], shift_count);
1405 break;
1406 case nir_op_ishr:
1407 bld.ASR(result, op[0], shift_count);
1408 break;
1409 case nir_op_ushr:
1410 bld.SHR(result, op[0], shift_count);
1411 break;
1412 default:
1413 unreachable("not reached");
1414 }
1415 break;
1416 }
1417
1418 case nir_op_pack_half_2x16_split:
1419 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1420 break;
1421
1422 case nir_op_ffma:
1423 inst = bld.MAD(result, op[2], op[1], op[0]);
1424 inst->saturate = instr->dest.saturate;
1425 break;
1426
1427 case nir_op_flrp:
1428 inst = bld.LRP(result, op[0], op[1], op[2]);
1429 inst->saturate = instr->dest.saturate;
1430 break;
1431
1432 case nir_op_bcsel:
1433 if (optimize_frontfacing_ternary(instr, result))
1434 return;
1435
1436 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1437 inst = bld.SEL(result, op[1], op[2]);
1438 inst->predicate = BRW_PREDICATE_NORMAL;
1439 break;
1440
1441 case nir_op_extract_u8:
1442 case nir_op_extract_i8: {
1443 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1444 assert(byte != NULL);
1445
1446 /* The PRMs say:
1447 *
1448 * BDW+
1449 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1450 * Use two instructions and a word or DWord intermediate integer type.
1451 */
1452 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1453 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1454
1455 if (instr->op == nir_op_extract_i8) {
1456 /* If we need to sign extend, extract to a word first */
1457 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1458 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1459 bld.MOV(result, w_temp);
1460 } else {
1461 /* Otherwise use an AND with 0xff and a word type */
1462 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1463 }
1464 } else {
1465 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1466 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1467 }
1468 break;
1469 }
1470
1471 case nir_op_extract_u16:
1472 case nir_op_extract_i16: {
1473 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1474 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1475 assert(word != NULL);
1476 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1477 break;
1478 }
1479
1480 default:
1481 unreachable("unhandled instruction");
1482 }
1483
1484 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1485 * to sign extend the low bit to 0/~0
1486 */
1487 if (devinfo->gen <= 5 &&
1488 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1489 fs_reg masked = vgrf(glsl_type::int_type);
1490 bld.AND(masked, result, brw_imm_d(1));
1491 masked.negate = true;
1492 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1493 }
1494 }
1495
1496 void
1497 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1498 nir_load_const_instr *instr)
1499 {
1500 const brw_reg_type reg_type =
1501 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1502 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1503
1504 switch (instr->def.bit_size) {
1505 case 32:
1506 for (unsigned i = 0; i < instr->def.num_components; i++)
1507 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1508 break;
1509
1510 case 64:
1511 assert(devinfo->gen >= 7);
1512 if (devinfo->gen == 7) {
1513 /* We don't get 64-bit integer types until gen8 */
1514 for (unsigned i = 0; i < instr->def.num_components; i++) {
1515 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1516 setup_imm_df(bld, instr->value.f64[i]));
1517 }
1518 } else {
1519 for (unsigned i = 0; i < instr->def.num_components; i++)
1520 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1521 }
1522 break;
1523
1524 default:
1525 unreachable("Invalid bit size");
1526 }
1527
1528 nir_ssa_values[instr->def.index] = reg;
1529 }
1530
1531 fs_reg
1532 fs_visitor::get_nir_src(const nir_src &src)
1533 {
1534 fs_reg reg;
1535 if (src.is_ssa) {
1536 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1537 const brw_reg_type reg_type =
1538 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1539 reg = bld.vgrf(reg_type, src.ssa->num_components);
1540 } else {
1541 reg = nir_ssa_values[src.ssa->index];
1542 }
1543 } else {
1544 /* We don't handle indirects on locals */
1545 assert(src.reg.indirect == NULL);
1546 reg = offset(nir_locals[src.reg.reg->index], bld,
1547 src.reg.base_offset * src.reg.reg->num_components);
1548 }
1549
1550 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1551 /* The only 64-bit type available on gen7 is DF, so use that. */
1552 reg.type = BRW_REGISTER_TYPE_DF;
1553 } else {
1554 /* To avoid floating-point denorm flushing problems, set the type by
1555 * default to an integer type - instructions that need floating point
1556 * semantics will set this to F if they need to
1557 */
1558 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1559 BRW_REGISTER_TYPE_D);
1560 }
1561
1562 return reg;
1563 }
1564
1565 /**
1566 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1567 *
1568 * This function should not be called on any value which may be 64 bits.
1569 * We could theoretically support 64-bit on gen8+ but we choose not to
1570 * because it wouldn't work in general (no gen7 support) and there are
1571 * enough restrictions in 64-bit immediates that you can't take the return
1572 * value and treat it the same as the result of get_nir_src().
1573 */
1574 fs_reg
1575 fs_visitor::get_nir_src_imm(const nir_src &src)
1576 {
1577 nir_const_value *val = nir_src_as_const_value(src);
1578 assert(nir_src_bit_size(src) == 32);
1579 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1580 }
1581
1582 fs_reg
1583 fs_visitor::get_nir_dest(const nir_dest &dest)
1584 {
1585 if (dest.is_ssa) {
1586 const brw_reg_type reg_type =
1587 brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
1588 nir_ssa_values[dest.ssa.index] =
1589 bld.vgrf(reg_type, dest.ssa.num_components);
1590 return nir_ssa_values[dest.ssa.index];
1591 } else {
1592 /* We don't handle indirects on locals */
1593 assert(dest.reg.indirect == NULL);
1594 return offset(nir_locals[dest.reg.reg->index], bld,
1595 dest.reg.base_offset * dest.reg.reg->num_components);
1596 }
1597 }
1598
1599 fs_reg
1600 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1601 {
1602 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1603 BRW_REGISTER_TYPE_UD);
1604 fs_reg indirect;
1605 unsigned indirect_max = 0;
1606
1607 for (const nir_deref *tail = &deref->deref; tail->child;
1608 tail = tail->child) {
1609 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1610 assert(tail->child->deref_type == nir_deref_type_array);
1611 const unsigned size = glsl_get_length(tail->type);
1612 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1613 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1614 image = offset(image, bld, base * element_size);
1615
1616 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1617 fs_reg tmp = vgrf(glsl_type::uint_type);
1618
1619 /* Accessing an invalid surface index with the dataport can result
1620 * in a hang. According to the spec "if the index used to
1621 * select an individual element is negative or greater than or
1622 * equal to the size of the array, the results of the operation
1623 * are undefined but may not lead to termination" -- which is one
1624 * of the possible outcomes of the hang. Clamp the index to
1625 * prevent access outside of the array bounds.
1626 */
1627 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1628 BRW_REGISTER_TYPE_UD),
1629 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1630
1631 indirect_max += element_size * (tail->type->length - 1);
1632
1633 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1634 if (indirect.file == BAD_FILE) {
1635 indirect = tmp;
1636 } else {
1637 bld.ADD(indirect, indirect, tmp);
1638 }
1639 }
1640 }
1641
1642 if (indirect.file == BAD_FILE) {
1643 return image;
1644 } else {
1645 /* Emit a pile of MOVs to load the uniform into a temporary. The
1646 * dead-code elimination pass will get rid of what we don't use.
1647 */
1648 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1649 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1650 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1651 offset(tmp, bld, j), offset(image, bld, j),
1652 indirect, brw_imm_ud((indirect_max + 1) * 4));
1653 }
1654 return tmp;
1655 }
1656 }
1657
1658 void
1659 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1660 unsigned wr_mask)
1661 {
1662 for (unsigned i = 0; i < 4; i++) {
1663 if (!((wr_mask >> i) & 1))
1664 continue;
1665
1666 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1667 new_inst->dst = offset(new_inst->dst, bld, i);
1668 for (unsigned j = 0; j < new_inst->sources; j++)
1669 if (new_inst->src[j].file == VGRF)
1670 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1671
1672 bld.emit(new_inst);
1673 }
1674 }
1675
1676 /**
1677 * Get the matching channel register datatype for an image intrinsic of the
1678 * specified GLSL image type.
1679 */
1680 static brw_reg_type
1681 get_image_base_type(const glsl_type *type)
1682 {
1683 switch ((glsl_base_type)type->sampled_type) {
1684 case GLSL_TYPE_UINT:
1685 return BRW_REGISTER_TYPE_UD;
1686 case GLSL_TYPE_INT:
1687 return BRW_REGISTER_TYPE_D;
1688 case GLSL_TYPE_FLOAT:
1689 return BRW_REGISTER_TYPE_F;
1690 default:
1691 unreachable("Not reached.");
1692 }
1693 }
1694
1695 /**
1696 * Get the appropriate atomic op for an image atomic intrinsic.
1697 */
1698 static unsigned
1699 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1700 {
1701 switch (op) {
1702 case nir_intrinsic_image_var_atomic_add:
1703 return BRW_AOP_ADD;
1704 case nir_intrinsic_image_var_atomic_min:
1705 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1706 BRW_AOP_IMIN : BRW_AOP_UMIN);
1707 case nir_intrinsic_image_var_atomic_max:
1708 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1709 BRW_AOP_IMAX : BRW_AOP_UMAX);
1710 case nir_intrinsic_image_var_atomic_and:
1711 return BRW_AOP_AND;
1712 case nir_intrinsic_image_var_atomic_or:
1713 return BRW_AOP_OR;
1714 case nir_intrinsic_image_var_atomic_xor:
1715 return BRW_AOP_XOR;
1716 case nir_intrinsic_image_var_atomic_exchange:
1717 return BRW_AOP_MOV;
1718 case nir_intrinsic_image_var_atomic_comp_swap:
1719 return BRW_AOP_CMPWR;
1720 default:
1721 unreachable("Not reachable.");
1722 }
1723 }
1724
1725 static fs_inst *
1726 emit_pixel_interpolater_send(const fs_builder &bld,
1727 enum opcode opcode,
1728 const fs_reg &dst,
1729 const fs_reg &src,
1730 const fs_reg &desc,
1731 glsl_interp_mode interpolation)
1732 {
1733 struct brw_wm_prog_data *wm_prog_data =
1734 brw_wm_prog_data(bld.shader->stage_prog_data);
1735 fs_inst *inst;
1736 fs_reg payload;
1737 int mlen;
1738
1739 if (src.file == BAD_FILE) {
1740 /* Dummy payload */
1741 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1742 mlen = 1;
1743 } else {
1744 payload = src;
1745 mlen = 2 * bld.dispatch_width() / 8;
1746 }
1747
1748 inst = bld.emit(opcode, dst, payload, desc);
1749 inst->mlen = mlen;
1750 /* 2 floats per slot returned */
1751 inst->size_written = 2 * dst.component_size(inst->exec_size);
1752 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1753
1754 wm_prog_data->pulls_bary = true;
1755
1756 return inst;
1757 }
1758
1759 /**
1760 * Computes 1 << x, given a D/UD register containing some value x.
1761 */
1762 static fs_reg
1763 intexp2(const fs_builder &bld, const fs_reg &x)
1764 {
1765 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1766
1767 fs_reg result = bld.vgrf(x.type, 1);
1768 fs_reg one = bld.vgrf(x.type, 1);
1769
1770 bld.MOV(one, retype(brw_imm_d(1), one.type));
1771 bld.SHL(result, one, x);
1772 return result;
1773 }
1774
1775 void
1776 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1777 {
1778 assert(stage == MESA_SHADER_GEOMETRY);
1779
1780 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1781
1782 if (gs_compile->control_data_header_size_bits == 0)
1783 return;
1784
1785 /* We can only do EndPrimitive() functionality when the control data
1786 * consists of cut bits. Fortunately, the only time it isn't is when the
1787 * output type is points, in which case EndPrimitive() is a no-op.
1788 */
1789 if (gs_prog_data->control_data_format !=
1790 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1791 return;
1792 }
1793
1794 /* Cut bits use one bit per vertex. */
1795 assert(gs_compile->control_data_bits_per_vertex == 1);
1796
1797 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1798 vertex_count.type = BRW_REGISTER_TYPE_UD;
1799
1800 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1801 * vertex n, 0 otherwise. So all we need to do here is mark bit
1802 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1803 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1804 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1805 *
1806 * Note that if EndPrimitive() is called before emitting any vertices, this
1807 * will cause us to set bit 31 of the control_data_bits register to 1.
1808 * That's fine because:
1809 *
1810 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1811 * output, so the hardware will ignore cut bit 31.
1812 *
1813 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1814 * last vertex, so setting cut bit 31 has no effect (since the primitive
1815 * is automatically ended when the GS terminates).
1816 *
1817 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1818 * control_data_bits register to 0 when the first vertex is emitted.
1819 */
1820
1821 const fs_builder abld = bld.annotate("end primitive");
1822
1823 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1824 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1825 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1826 fs_reg mask = intexp2(abld, prev_count);
1827 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1828 * attention to the lower 5 bits of its second source argument, so on this
1829 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1830 * ((vertex_count - 1) % 32).
1831 */
1832 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1833 }
1834
1835 void
1836 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1837 {
1838 assert(stage == MESA_SHADER_GEOMETRY);
1839 assert(gs_compile->control_data_bits_per_vertex != 0);
1840
1841 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1842
1843 const fs_builder abld = bld.annotate("emit control data bits");
1844 const fs_builder fwa_bld = bld.exec_all();
1845
1846 /* We use a single UD register to accumulate control data bits (32 bits
1847 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1848 * at a time.
1849 *
1850 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1851 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1852 * use the Channel Mask phase to enable/disable which DWord within that
1853 * group to write. (Remember, different SIMD8 channels may have emitted
1854 * different numbers of vertices, so we may need per-slot offsets.)
1855 *
1856 * Channel masking presents an annoying problem: we may have to replicate
1857 * the data up to 4 times:
1858 *
1859 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1860 *
1861 * To avoid penalizing shaders that emit a small number of vertices, we
1862 * can avoid these sometimes: if the size of the control data header is
1863 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1864 * land in the same 128-bit group, so we can skip per-slot offsets.
1865 *
1866 * Similarly, if the control data header is <= 32 bits, there is only one
1867 * DWord, so we can skip channel masks.
1868 */
1869 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1870
1871 fs_reg channel_mask, per_slot_offset;
1872
1873 if (gs_compile->control_data_header_size_bits > 32) {
1874 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1875 channel_mask = vgrf(glsl_type::uint_type);
1876 }
1877
1878 if (gs_compile->control_data_header_size_bits > 128) {
1879 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1880 per_slot_offset = vgrf(glsl_type::uint_type);
1881 }
1882
1883 /* Figure out which DWord we're trying to write to using the formula:
1884 *
1885 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1886 *
1887 * Since bits_per_vertex is a power of two, and is known at compile
1888 * time, this can be optimized to:
1889 *
1890 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1891 */
1892 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1893 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1894 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1895 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1896 unsigned log2_bits_per_vertex =
1897 util_last_bit(gs_compile->control_data_bits_per_vertex);
1898 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1899
1900 if (per_slot_offset.file != BAD_FILE) {
1901 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1902 * the appropriate OWord within the control data header.
1903 */
1904 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1905 }
1906
1907 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1908 * write to the appropriate DWORD within the OWORD.
1909 */
1910 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1911 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1912 channel_mask = intexp2(fwa_bld, channel);
1913 /* Then the channel masks need to be in bits 23:16. */
1914 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1915 }
1916
1917 /* Store the control data bits in the message payload and send it. */
1918 int mlen = 2;
1919 if (channel_mask.file != BAD_FILE)
1920 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1921 if (per_slot_offset.file != BAD_FILE)
1922 mlen++;
1923
1924 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1925 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1926 int i = 0;
1927 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1928 if (per_slot_offset.file != BAD_FILE)
1929 sources[i++] = per_slot_offset;
1930 if (channel_mask.file != BAD_FILE)
1931 sources[i++] = channel_mask;
1932 while (i < mlen) {
1933 sources[i++] = this->control_data_bits;
1934 }
1935
1936 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1937 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1938 inst->mlen = mlen;
1939 /* We need to increment Global Offset by 256-bits to make room for
1940 * Broadwell's extra "Vertex Count" payload at the beginning of the
1941 * URB entry. Since this is an OWord message, Global Offset is counted
1942 * in 128-bit units, so we must set it to 2.
1943 */
1944 if (gs_prog_data->static_vertex_count == -1)
1945 inst->offset = 2;
1946 }
1947
1948 void
1949 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1950 unsigned stream_id)
1951 {
1952 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1953
1954 /* Note: we are calling this *before* increasing vertex_count, so
1955 * this->vertex_count == vertex_count - 1 in the formula above.
1956 */
1957
1958 /* Stream mode uses 2 bits per vertex */
1959 assert(gs_compile->control_data_bits_per_vertex == 2);
1960
1961 /* Must be a valid stream */
1962 assert(stream_id < MAX_VERTEX_STREAMS);
1963
1964 /* Control data bits are initialized to 0 so we don't have to set any
1965 * bits when sending vertices to stream 0.
1966 */
1967 if (stream_id == 0)
1968 return;
1969
1970 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1971
1972 /* reg::sid = stream_id */
1973 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1974 abld.MOV(sid, brw_imm_ud(stream_id));
1975
1976 /* reg:shift_count = 2 * (vertex_count - 1) */
1977 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1978 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1979
1980 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1981 * attention to the lower 5 bits of its second source argument, so on this
1982 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1983 * stream_id << ((2 * (vertex_count - 1)) % 32).
1984 */
1985 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1986 abld.SHL(mask, sid, shift_count);
1987 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1988 }
1989
1990 void
1991 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1992 unsigned stream_id)
1993 {
1994 assert(stage == MESA_SHADER_GEOMETRY);
1995
1996 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1997
1998 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1999 vertex_count.type = BRW_REGISTER_TYPE_UD;
2000
2001 /* Haswell and later hardware ignores the "Render Stream Select" bits
2002 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2003 * and instead sends all primitives down the pipeline for rasterization.
2004 * If the SOL stage is enabled, "Render Stream Select" is honored and
2005 * primitives bound to non-zero streams are discarded after stream output.
2006 *
2007 * Since the only purpose of primives sent to non-zero streams is to
2008 * be recorded by transform feedback, we can simply discard all geometry
2009 * bound to these streams when transform feedback is disabled.
2010 */
2011 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2012 return;
2013
2014 /* If we're outputting 32 control data bits or less, then we can wait
2015 * until the shader is over to output them all. Otherwise we need to
2016 * output them as we go. Now is the time to do it, since we're about to
2017 * output the vertex_count'th vertex, so it's guaranteed that the
2018 * control data bits associated with the (vertex_count - 1)th vertex are
2019 * correct.
2020 */
2021 if (gs_compile->control_data_header_size_bits > 32) {
2022 const fs_builder abld =
2023 bld.annotate("emit vertex: emit control data bits");
2024
2025 /* Only emit control data bits if we've finished accumulating a batch
2026 * of 32 bits. This is the case when:
2027 *
2028 * (vertex_count * bits_per_vertex) % 32 == 0
2029 *
2030 * (in other words, when the last 5 bits of vertex_count *
2031 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2032 * integer n (which is always the case, since bits_per_vertex is
2033 * always 1 or 2), this is equivalent to requiring that the last 5-n
2034 * bits of vertex_count are 0:
2035 *
2036 * vertex_count & (2^(5-n) - 1) == 0
2037 *
2038 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2039 * equivalent to:
2040 *
2041 * vertex_count & (32 / bits_per_vertex - 1) == 0
2042 *
2043 * TODO: If vertex_count is an immediate, we could do some of this math
2044 * at compile time...
2045 */
2046 fs_inst *inst =
2047 abld.AND(bld.null_reg_d(), vertex_count,
2048 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2049 inst->conditional_mod = BRW_CONDITIONAL_Z;
2050
2051 abld.IF(BRW_PREDICATE_NORMAL);
2052 /* If vertex_count is 0, then no control data bits have been
2053 * accumulated yet, so we can skip emitting them.
2054 */
2055 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2056 BRW_CONDITIONAL_NEQ);
2057 abld.IF(BRW_PREDICATE_NORMAL);
2058 emit_gs_control_data_bits(vertex_count);
2059 abld.emit(BRW_OPCODE_ENDIF);
2060
2061 /* Reset control_data_bits to 0 so we can start accumulating a new
2062 * batch.
2063 *
2064 * Note: in the case where vertex_count == 0, this neutralizes the
2065 * effect of any call to EndPrimitive() that the shader may have
2066 * made before outputting its first vertex.
2067 */
2068 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2069 inst->force_writemask_all = true;
2070 abld.emit(BRW_OPCODE_ENDIF);
2071 }
2072
2073 emit_urb_writes(vertex_count);
2074
2075 /* In stream mode we have to set control data bits for all vertices
2076 * unless we have disabled control data bits completely (which we do
2077 * do for GL_POINTS outputs that don't use streams).
2078 */
2079 if (gs_compile->control_data_header_size_bits > 0 &&
2080 gs_prog_data->control_data_format ==
2081 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2082 set_gs_stream_control_data_bits(vertex_count, stream_id);
2083 }
2084 }
2085
2086 void
2087 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2088 const nir_src &vertex_src,
2089 unsigned base_offset,
2090 const nir_src &offset_src,
2091 unsigned num_components,
2092 unsigned first_component)
2093 {
2094 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2095
2096 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2097 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2098 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2099
2100 /* TODO: figure out push input layout for invocations == 1 */
2101 /* TODO: make this work with 64-bit inputs */
2102 if (gs_prog_data->invocations == 1 &&
2103 type_sz(dst.type) <= 4 &&
2104 offset_const != NULL && vertex_const != NULL &&
2105 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2106 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2107 vertex_const->u32[0] * push_reg_count;
2108 for (unsigned i = 0; i < num_components; i++) {
2109 bld.MOV(offset(dst, bld, i),
2110 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2111 }
2112 return;
2113 }
2114
2115 /* Resort to the pull model. Ensure the VUE handles are provided. */
2116 assert(gs_prog_data->base.include_vue_handles);
2117
2118 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2119 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2120
2121 if (gs_prog_data->invocations == 1) {
2122 if (vertex_const) {
2123 /* The vertex index is constant; just select the proper URB handle. */
2124 icp_handle =
2125 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2126 BRW_REGISTER_TYPE_UD);
2127 } else {
2128 /* The vertex index is non-constant. We need to use indirect
2129 * addressing to fetch the proper URB handle.
2130 *
2131 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2132 * indicating that channel <n> should read the handle from
2133 * DWord <n>. We convert that to bytes by multiplying by 4.
2134 *
2135 * Next, we convert the vertex index to bytes by multiplying
2136 * by 32 (shifting by 5), and add the two together. This is
2137 * the final indirect byte offset.
2138 */
2139 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2140 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2141 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2142 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2143
2144 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2145 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2146 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2147 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2148 /* Convert vertex_index to bytes (multiply by 32) */
2149 bld.SHL(vertex_offset_bytes,
2150 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2151 brw_imm_ud(5u));
2152 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2153
2154 /* Use first_icp_handle as the base offset. There is one register
2155 * of URB handles per vertex, so inform the register allocator that
2156 * we might read up to nir->info.gs.vertices_in registers.
2157 */
2158 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2159 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2160 fs_reg(icp_offset_bytes),
2161 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2162 }
2163 } else {
2164 assert(gs_prog_data->invocations > 1);
2165
2166 if (vertex_const) {
2167 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2168 bld.MOV(icp_handle,
2169 retype(brw_vec1_grf(first_icp_handle +
2170 vertex_const->i32[0] / 8,
2171 vertex_const->i32[0] % 8),
2172 BRW_REGISTER_TYPE_UD));
2173 } else {
2174 /* The vertex index is non-constant. We need to use indirect
2175 * addressing to fetch the proper URB handle.
2176 *
2177 */
2178 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2179
2180 /* Convert vertex_index to bytes (multiply by 4) */
2181 bld.SHL(icp_offset_bytes,
2182 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2183 brw_imm_ud(2u));
2184
2185 /* Use first_icp_handle as the base offset. There is one DWord
2186 * of URB handles per vertex, so inform the register allocator that
2187 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2188 */
2189 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2190 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2191 fs_reg(icp_offset_bytes),
2192 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2193 REG_SIZE));
2194 }
2195 }
2196
2197 fs_inst *inst;
2198
2199 fs_reg tmp_dst = dst;
2200 fs_reg indirect_offset = get_nir_src(offset_src);
2201 unsigned num_iterations = 1;
2202 unsigned orig_num_components = num_components;
2203
2204 if (type_sz(dst.type) == 8) {
2205 if (num_components > 2) {
2206 num_iterations = 2;
2207 num_components = 2;
2208 }
2209 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2210 tmp_dst = tmp;
2211 first_component = first_component / 2;
2212 }
2213
2214 for (unsigned iter = 0; iter < num_iterations; iter++) {
2215 if (offset_const) {
2216 /* Constant indexing - use global offset. */
2217 if (first_component != 0) {
2218 unsigned read_components = num_components + first_component;
2219 fs_reg tmp = bld.vgrf(dst.type, read_components);
2220 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2221 inst->size_written = read_components *
2222 tmp.component_size(inst->exec_size);
2223 for (unsigned i = 0; i < num_components; i++) {
2224 bld.MOV(offset(tmp_dst, bld, i),
2225 offset(tmp, bld, i + first_component));
2226 }
2227 } else {
2228 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2229 icp_handle);
2230 inst->size_written = num_components *
2231 tmp_dst.component_size(inst->exec_size);
2232 }
2233 inst->offset = base_offset + offset_const->u32[0];
2234 inst->mlen = 1;
2235 } else {
2236 /* Indirect indexing - use per-slot offsets as well. */
2237 const fs_reg srcs[] = { icp_handle, indirect_offset };
2238 unsigned read_components = num_components + first_component;
2239 fs_reg tmp = bld.vgrf(dst.type, read_components);
2240 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2241 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2242 if (first_component != 0) {
2243 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2244 payload);
2245 inst->size_written = read_components *
2246 tmp.component_size(inst->exec_size);
2247 for (unsigned i = 0; i < num_components; i++) {
2248 bld.MOV(offset(tmp_dst, bld, i),
2249 offset(tmp, bld, i + first_component));
2250 }
2251 } else {
2252 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2253 payload);
2254 inst->size_written = num_components *
2255 tmp_dst.component_size(inst->exec_size);
2256 }
2257 inst->offset = base_offset;
2258 inst->mlen = 2;
2259 }
2260
2261 if (type_sz(dst.type) == 8) {
2262 shuffle_32bit_load_result_to_64bit_data(
2263 bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
2264
2265 for (unsigned c = 0; c < num_components; c++)
2266 bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
2267 }
2268
2269 if (num_iterations > 1) {
2270 num_components = orig_num_components - 2;
2271 if(offset_const) {
2272 base_offset++;
2273 } else {
2274 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2275 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2276 indirect_offset = new_indirect;
2277 }
2278 }
2279 }
2280 }
2281
2282 fs_reg
2283 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2284 {
2285 nir_src *offset_src = nir_get_io_offset_src(instr);
2286 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2287
2288 if (const_value) {
2289 /* The only constant offset we should find is 0. brw_nir.c's
2290 * add_const_offset_to_base() will fold other constant offsets
2291 * into instr->const_index[0].
2292 */
2293 assert(const_value->u32[0] == 0);
2294 return fs_reg();
2295 }
2296
2297 return get_nir_src(*offset_src);
2298 }
2299
2300 static void
2301 do_untyped_vector_read(const fs_builder &bld,
2302 const fs_reg dest,
2303 const fs_reg surf_index,
2304 const fs_reg offset_reg,
2305 unsigned num_components)
2306 {
2307 if (type_sz(dest.type) <= 2) {
2308 assert(dest.stride == 1);
2309 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2310
2311 if (is_const_offset) {
2312 uint32_t start = offset_reg.ud & ~3;
2313 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2314 end = ALIGN(end, 4);
2315 assert (end - start <= 16);
2316
2317 /* At this point we have 16-bit component/s that have constant
2318 * offset aligned to 4-bytes that can be read with untyped_reads.
2319 * untyped_read message requires 32-bit aligned offsets.
2320 */
2321 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2322 unsigned num_components_32bit = (end - start) / 4;
2323
2324 fs_reg read_result =
2325 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2326 1 /* dims */,
2327 num_components_32bit,
2328 BRW_PREDICATE_NONE);
2329 shuffle_32bit_load_result_to_16bit_data(bld,
2330 retype(dest, BRW_REGISTER_TYPE_W),
2331 retype(read_result, BRW_REGISTER_TYPE_D),
2332 first_component, num_components);
2333 } else {
2334 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2335 for (unsigned i = 0; i < num_components; i++) {
2336 if (i == 0) {
2337 bld.MOV(read_offset, offset_reg);
2338 } else {
2339 bld.ADD(read_offset, offset_reg,
2340 brw_imm_ud(i * type_sz(dest.type)));
2341 }
2342 /* Non constant offsets are not guaranteed to be aligned 32-bits
2343 * so they are read using one byte_scattered_read message
2344 * for each component.
2345 */
2346 fs_reg read_result =
2347 emit_byte_scattered_read(bld, surf_index, read_offset,
2348 1 /* dims */, 1,
2349 type_sz(dest.type) * 8 /* bit_size */,
2350 BRW_PREDICATE_NONE);
2351 bld.MOV(offset(dest, bld, i),
2352 subscript (read_result, dest.type, 0));
2353 }
2354 }
2355 } else if (type_sz(dest.type) == 4) {
2356 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2357 1 /* dims */,
2358 num_components,
2359 BRW_PREDICATE_NONE);
2360 read_result.type = dest.type;
2361 for (unsigned i = 0; i < num_components; i++)
2362 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2363 } else if (type_sz(dest.type) == 8) {
2364 /* Reading a dvec, so we need to:
2365 *
2366 * 1. Multiply num_components by 2, to account for the fact that we
2367 * need to read 64-bit components.
2368 * 2. Shuffle the result of the load to form valid 64-bit elements
2369 * 3. Emit a second load (for components z/w) if needed.
2370 */
2371 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2372 bld.MOV(read_offset, offset_reg);
2373
2374 int iters = num_components <= 2 ? 1 : 2;
2375
2376 /* Load the dvec, the first iteration loads components x/y, the second
2377 * iteration, if needed, loads components z/w
2378 */
2379 for (int it = 0; it < iters; it++) {
2380 /* Compute number of components to read in this iteration */
2381 int iter_components = MIN2(2, num_components);
2382 num_components -= iter_components;
2383
2384 /* Read. Since this message reads 32-bit components, we need to
2385 * read twice as many components.
2386 */
2387 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2388 1 /* dims */,
2389 iter_components * 2,
2390 BRW_PREDICATE_NONE);
2391
2392 /* Shuffle the 32-bit load result into valid 64-bit data */
2393 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2394 shuffle_32bit_load_result_to_64bit_data(
2395 bld, packed_result, read_result, iter_components);
2396
2397 /* Move each component to its destination */
2398 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2399 for (int c = 0; c < iter_components; c++) {
2400 bld.MOV(offset(dest, bld, it * 2 + c),
2401 offset(packed_result, bld, c));
2402 }
2403
2404 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2405 }
2406 } else {
2407 unreachable("Unsupported type");
2408 }
2409 }
2410
2411 void
2412 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2413 nir_intrinsic_instr *instr)
2414 {
2415 assert(stage == MESA_SHADER_VERTEX);
2416
2417 fs_reg dest;
2418 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2419 dest = get_nir_dest(instr->dest);
2420
2421 switch (instr->intrinsic) {
2422 case nir_intrinsic_load_vertex_id:
2423 case nir_intrinsic_load_base_vertex:
2424 unreachable("should be lowered by nir_lower_system_values()");
2425
2426 case nir_intrinsic_load_vertex_id_zero_base:
2427 case nir_intrinsic_load_instance_id:
2428 case nir_intrinsic_load_base_instance:
2429 case nir_intrinsic_load_draw_id: {
2430 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2431 fs_reg val = nir_system_values[sv];
2432 assert(val.file != BAD_FILE);
2433 dest.type = val.type;
2434 bld.MOV(dest, val);
2435 break;
2436 }
2437
2438 case nir_intrinsic_load_input: {
2439 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2440 unsigned first_component = nir_intrinsic_component(instr);
2441 unsigned num_components = instr->num_components;
2442
2443 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2444 assert(const_offset && "Indirect input loads not allowed");
2445 src = offset(src, bld, const_offset->u32[0]);
2446
2447 if (type_sz(dest.type) == 8)
2448 first_component /= 2;
2449
2450 for (unsigned j = 0; j < num_components; j++) {
2451 bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
2452 }
2453
2454 if (type_sz(dest.type) == 8) {
2455 shuffle_32bit_load_result_to_64bit_data(bld,
2456 dest,
2457 retype(dest, BRW_REGISTER_TYPE_F),
2458 instr->num_components);
2459 }
2460 break;
2461 }
2462
2463 case nir_intrinsic_load_first_vertex:
2464 case nir_intrinsic_load_is_indexed_draw:
2465 unreachable("lowered by brw_nir_lower_vs_inputs");
2466
2467 default:
2468 nir_emit_intrinsic(bld, instr);
2469 break;
2470 }
2471 }
2472
2473 void
2474 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2475 nir_intrinsic_instr *instr)
2476 {
2477 assert(stage == MESA_SHADER_TESS_CTRL);
2478 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2479 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2480
2481 fs_reg dst;
2482 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2483 dst = get_nir_dest(instr->dest);
2484
2485 switch (instr->intrinsic) {
2486 case nir_intrinsic_load_primitive_id:
2487 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2488 break;
2489 case nir_intrinsic_load_invocation_id:
2490 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2491 break;
2492 case nir_intrinsic_load_patch_vertices_in:
2493 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2494 brw_imm_d(tcs_key->input_vertices));
2495 break;
2496
2497 case nir_intrinsic_barrier: {
2498 if (tcs_prog_data->instances == 1)
2499 break;
2500
2501 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2502 fs_reg m0_2 = component(m0, 2);
2503
2504 const fs_builder chanbld = bld.exec_all().group(1, 0);
2505
2506 /* Zero the message header */
2507 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2508
2509 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2510 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2511 brw_imm_ud(INTEL_MASK(16, 13)));
2512
2513 /* Shift it up to bits 27:24. */
2514 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2515
2516 /* Set the Barrier Count and the enable bit */
2517 chanbld.OR(m0_2, m0_2,
2518 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2519
2520 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2521 break;
2522 }
2523
2524 case nir_intrinsic_load_input:
2525 unreachable("nir_lower_io should never give us these.");
2526 break;
2527
2528 case nir_intrinsic_load_per_vertex_input: {
2529 fs_reg indirect_offset = get_indirect_offset(instr);
2530 unsigned imm_offset = instr->const_index[0];
2531
2532 const nir_src &vertex_src = instr->src[0];
2533 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2534
2535 fs_inst *inst;
2536
2537 fs_reg icp_handle;
2538
2539 if (vertex_const) {
2540 /* Emit a MOV to resolve <0,1,0> regioning. */
2541 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2542 bld.MOV(icp_handle,
2543 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2544 vertex_const->i32[0] & 7),
2545 BRW_REGISTER_TYPE_UD));
2546 } else if (tcs_prog_data->instances == 1 &&
2547 vertex_src.is_ssa &&
2548 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2549 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2550 /* For the common case of only 1 instance, an array index of
2551 * gl_InvocationID means reading g1. Skip all the indirect work.
2552 */
2553 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2554 } else {
2555 /* The vertex index is non-constant. We need to use indirect
2556 * addressing to fetch the proper URB handle.
2557 */
2558 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2559
2560 /* Each ICP handle is a single DWord (4 bytes) */
2561 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2562 bld.SHL(vertex_offset_bytes,
2563 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2564 brw_imm_ud(2u));
2565
2566 /* Start at g1. We might read up to 4 registers. */
2567 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2568 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2569 brw_imm_ud(4 * REG_SIZE));
2570 }
2571
2572 /* We can only read two double components with each URB read, so
2573 * we send two read messages in that case, each one loading up to
2574 * two double components.
2575 */
2576 unsigned num_iterations = 1;
2577 unsigned num_components = instr->num_components;
2578 unsigned first_component = nir_intrinsic_component(instr);
2579 fs_reg orig_dst = dst;
2580 if (type_sz(dst.type) == 8) {
2581 first_component = first_component / 2;
2582 if (instr->num_components > 2) {
2583 num_iterations = 2;
2584 num_components = 2;
2585 }
2586
2587 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2588 dst = tmp;
2589 }
2590
2591 for (unsigned iter = 0; iter < num_iterations; iter++) {
2592 if (indirect_offset.file == BAD_FILE) {
2593 /* Constant indexing - use global offset. */
2594 if (first_component != 0) {
2595 unsigned read_components = num_components + first_component;
2596 fs_reg tmp = bld.vgrf(dst.type, read_components);
2597 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2598 for (unsigned i = 0; i < num_components; i++) {
2599 bld.MOV(offset(dst, bld, i),
2600 offset(tmp, bld, i + first_component));
2601 }
2602 } else {
2603 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2604 }
2605 inst->offset = imm_offset;
2606 inst->mlen = 1;
2607 } else {
2608 /* Indirect indexing - use per-slot offsets as well. */
2609 const fs_reg srcs[] = { icp_handle, indirect_offset };
2610 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2611 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2612 if (first_component != 0) {
2613 unsigned read_components = num_components + first_component;
2614 fs_reg tmp = bld.vgrf(dst.type, read_components);
2615 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2616 payload);
2617 for (unsigned i = 0; i < num_components; i++) {
2618 bld.MOV(offset(dst, bld, i),
2619 offset(tmp, bld, i + first_component));
2620 }
2621 } else {
2622 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2623 payload);
2624 }
2625 inst->offset = imm_offset;
2626 inst->mlen = 2;
2627 }
2628 inst->size_written = (num_components + first_component) *
2629 inst->dst.component_size(inst->exec_size);
2630
2631 /* If we are reading 64-bit data using 32-bit read messages we need
2632 * build proper 64-bit data elements by shuffling the low and high
2633 * 32-bit components around like we do for other things like UBOs
2634 * or SSBOs.
2635 */
2636 if (type_sz(dst.type) == 8) {
2637 shuffle_32bit_load_result_to_64bit_data(
2638 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2639
2640 for (unsigned c = 0; c < num_components; c++) {
2641 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2642 offset(dst, bld, c));
2643 }
2644 }
2645
2646 /* Copy the temporary to the destination to deal with writemasking.
2647 *
2648 * Also attempt to deal with gl_PointSize being in the .w component.
2649 */
2650 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2651 assert(type_sz(dst.type) < 8);
2652 inst->dst = bld.vgrf(dst.type, 4);
2653 inst->size_written = 4 * REG_SIZE;
2654 bld.MOV(dst, offset(inst->dst, bld, 3));
2655 }
2656
2657 /* If we are loading double data and we need a second read message
2658 * adjust the write offset
2659 */
2660 if (num_iterations > 1) {
2661 num_components = instr->num_components - 2;
2662 imm_offset++;
2663 }
2664 }
2665 break;
2666 }
2667
2668 case nir_intrinsic_load_output:
2669 case nir_intrinsic_load_per_vertex_output: {
2670 fs_reg indirect_offset = get_indirect_offset(instr);
2671 unsigned imm_offset = instr->const_index[0];
2672 unsigned first_component = nir_intrinsic_component(instr);
2673
2674 fs_inst *inst;
2675 if (indirect_offset.file == BAD_FILE) {
2676 /* Replicate the patch handle to all enabled channels */
2677 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2678 bld.MOV(patch_handle,
2679 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2680
2681 {
2682 if (first_component != 0) {
2683 unsigned read_components =
2684 instr->num_components + first_component;
2685 fs_reg tmp = bld.vgrf(dst.type, read_components);
2686 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2687 patch_handle);
2688 inst->size_written = read_components * REG_SIZE;
2689 for (unsigned i = 0; i < instr->num_components; i++) {
2690 bld.MOV(offset(dst, bld, i),
2691 offset(tmp, bld, i + first_component));
2692 }
2693 } else {
2694 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2695 patch_handle);
2696 inst->size_written = instr->num_components * REG_SIZE;
2697 }
2698 inst->offset = imm_offset;
2699 inst->mlen = 1;
2700 }
2701 } else {
2702 /* Indirect indexing - use per-slot offsets as well. */
2703 const fs_reg srcs[] = {
2704 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2705 indirect_offset
2706 };
2707 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2708 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2709 if (first_component != 0) {
2710 unsigned read_components =
2711 instr->num_components + first_component;
2712 fs_reg tmp = bld.vgrf(dst.type, read_components);
2713 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2714 payload);
2715 inst->size_written = read_components * REG_SIZE;
2716 for (unsigned i = 0; i < instr->num_components; i++) {
2717 bld.MOV(offset(dst, bld, i),
2718 offset(tmp, bld, i + first_component));
2719 }
2720 } else {
2721 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2722 payload);
2723 inst->size_written = instr->num_components * REG_SIZE;
2724 }
2725 inst->offset = imm_offset;
2726 inst->mlen = 2;
2727 }
2728 break;
2729 }
2730
2731 case nir_intrinsic_store_output:
2732 case nir_intrinsic_store_per_vertex_output: {
2733 fs_reg value = get_nir_src(instr->src[0]);
2734 bool is_64bit = (instr->src[0].is_ssa ?
2735 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2736 fs_reg indirect_offset = get_indirect_offset(instr);
2737 unsigned imm_offset = instr->const_index[0];
2738 unsigned mask = instr->const_index[1];
2739 unsigned header_regs = 0;
2740 fs_reg srcs[7];
2741 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2742
2743 if (indirect_offset.file != BAD_FILE) {
2744 srcs[header_regs++] = indirect_offset;
2745 }
2746
2747 if (mask == 0)
2748 break;
2749
2750 unsigned num_components = util_last_bit(mask);
2751 enum opcode opcode;
2752
2753 /* We can only pack two 64-bit components in a single message, so send
2754 * 2 messages if we have more components
2755 */
2756 unsigned num_iterations = 1;
2757 unsigned iter_components = num_components;
2758 unsigned first_component = nir_intrinsic_component(instr);
2759 if (is_64bit) {
2760 first_component = first_component / 2;
2761 if (instr->num_components > 2) {
2762 num_iterations = 2;
2763 iter_components = 2;
2764 }
2765 }
2766
2767 mask = mask << first_component;
2768
2769 for (unsigned iter = 0; iter < num_iterations; iter++) {
2770 if (!is_64bit && mask != WRITEMASK_XYZW) {
2771 srcs[header_regs++] = brw_imm_ud(mask << 16);
2772 opcode = indirect_offset.file != BAD_FILE ?
2773 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2774 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2775 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2776 /* Expand the 64-bit mask to 32-bit channels. We only handle
2777 * two channels in each iteration, so we only care about X/Y.
2778 */
2779 unsigned mask32 = 0;
2780 if (mask & WRITEMASK_X)
2781 mask32 |= WRITEMASK_XY;
2782 if (mask & WRITEMASK_Y)
2783 mask32 |= WRITEMASK_ZW;
2784
2785 /* If the mask does not include any of the channels X or Y there
2786 * is nothing to do in this iteration. Move on to the next couple
2787 * of 64-bit channels.
2788 */
2789 if (!mask32) {
2790 mask >>= 2;
2791 imm_offset++;
2792 continue;
2793 }
2794
2795 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2796 opcode = indirect_offset.file != BAD_FILE ?
2797 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2798 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2799 } else {
2800 opcode = indirect_offset.file != BAD_FILE ?
2801 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2802 SHADER_OPCODE_URB_WRITE_SIMD8;
2803 }
2804
2805 for (unsigned i = 0; i < iter_components; i++) {
2806 if (!(mask & (1 << (i + first_component))))
2807 continue;
2808
2809 if (!is_64bit) {
2810 srcs[header_regs + i + first_component] = offset(value, bld, i);
2811 } else {
2812 /* We need to shuffle the 64-bit data to match the layout
2813 * expected by our 32-bit URB write messages. We use a temporary
2814 * for that.
2815 */
2816 unsigned channel = iter * 2 + i;
2817 fs_reg dest = shuffle_64bit_data_for_32bit_write(bld,
2818 offset(value, bld, channel), 1);
2819
2820 srcs[header_regs + (i + first_component) * 2] = dest;
2821 srcs[header_regs + (i + first_component) * 2 + 1] =
2822 offset(dest, bld, 1);
2823 }
2824 }
2825
2826 unsigned mlen =
2827 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2828 (is_64bit ? 2 * first_component : first_component);
2829 fs_reg payload =
2830 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2831 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2832
2833 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2834 inst->offset = imm_offset;
2835 inst->mlen = mlen;
2836
2837 /* If this is a 64-bit attribute, select the next two 64-bit channels
2838 * to be handled in the next iteration.
2839 */
2840 if (is_64bit) {
2841 mask >>= 2;
2842 imm_offset++;
2843 }
2844 }
2845 break;
2846 }
2847
2848 default:
2849 nir_emit_intrinsic(bld, instr);
2850 break;
2851 }
2852 }
2853
2854 void
2855 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2856 nir_intrinsic_instr *instr)
2857 {
2858 assert(stage == MESA_SHADER_TESS_EVAL);
2859 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2860
2861 fs_reg dest;
2862 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2863 dest = get_nir_dest(instr->dest);
2864
2865 switch (instr->intrinsic) {
2866 case nir_intrinsic_load_primitive_id:
2867 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2868 break;
2869 case nir_intrinsic_load_tess_coord:
2870 /* gl_TessCoord is part of the payload in g1-3 */
2871 for (unsigned i = 0; i < 3; i++) {
2872 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2873 }
2874 break;
2875
2876 case nir_intrinsic_load_input:
2877 case nir_intrinsic_load_per_vertex_input: {
2878 fs_reg indirect_offset = get_indirect_offset(instr);
2879 unsigned imm_offset = instr->const_index[0];
2880 unsigned first_component = nir_intrinsic_component(instr);
2881
2882 if (type_sz(dest.type) == 8) {
2883 first_component = first_component / 2;
2884 }
2885
2886 fs_inst *inst;
2887 if (indirect_offset.file == BAD_FILE) {
2888 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2889 * which is 16 registers (since each holds 2 vec4 slots).
2890 */
2891 unsigned slot_count = 1;
2892 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2893 slot_count++;
2894
2895 const unsigned max_push_slots = 32;
2896 if (imm_offset + slot_count <= max_push_slots) {
2897 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2898 for (int i = 0; i < instr->num_components; i++) {
2899 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2900 i + first_component;
2901 bld.MOV(offset(dest, bld, i), component(src, comp));
2902 }
2903
2904 tes_prog_data->base.urb_read_length =
2905 MAX2(tes_prog_data->base.urb_read_length,
2906 DIV_ROUND_UP(imm_offset + slot_count, 2));
2907 } else {
2908 /* Replicate the patch handle to all enabled channels */
2909 const fs_reg srcs[] = {
2910 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2911 };
2912 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2913 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2914
2915 if (first_component != 0) {
2916 unsigned read_components =
2917 instr->num_components + first_component;
2918 fs_reg tmp = bld.vgrf(dest.type, read_components);
2919 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2920 patch_handle);
2921 inst->size_written = read_components * REG_SIZE;
2922 for (unsigned i = 0; i < instr->num_components; i++) {
2923 bld.MOV(offset(dest, bld, i),
2924 offset(tmp, bld, i + first_component));
2925 }
2926 } else {
2927 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2928 patch_handle);
2929 inst->size_written = instr->num_components * REG_SIZE;
2930 }
2931 inst->mlen = 1;
2932 inst->offset = imm_offset;
2933 }
2934 } else {
2935 /* Indirect indexing - use per-slot offsets as well. */
2936
2937 /* We can only read two double components with each URB read, so
2938 * we send two read messages in that case, each one loading up to
2939 * two double components.
2940 */
2941 unsigned num_iterations = 1;
2942 unsigned num_components = instr->num_components;
2943 fs_reg orig_dest = dest;
2944 if (type_sz(dest.type) == 8) {
2945 if (instr->num_components > 2) {
2946 num_iterations = 2;
2947 num_components = 2;
2948 }
2949 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2950 dest = tmp;
2951 }
2952
2953 for (unsigned iter = 0; iter < num_iterations; iter++) {
2954 const fs_reg srcs[] = {
2955 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2956 indirect_offset
2957 };
2958 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2959 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2960
2961 if (first_component != 0) {
2962 unsigned read_components =
2963 num_components + first_component;
2964 fs_reg tmp = bld.vgrf(dest.type, read_components);
2965 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2966 payload);
2967 for (unsigned i = 0; i < num_components; i++) {
2968 bld.MOV(offset(dest, bld, i),
2969 offset(tmp, bld, i + first_component));
2970 }
2971 } else {
2972 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2973 payload);
2974 }
2975 inst->mlen = 2;
2976 inst->offset = imm_offset;
2977 inst->size_written = (num_components + first_component) *
2978 inst->dst.component_size(inst->exec_size);
2979
2980 /* If we are reading 64-bit data using 32-bit read messages we need
2981 * build proper 64-bit data elements by shuffling the low and high
2982 * 32-bit components around like we do for other things like UBOs
2983 * or SSBOs.
2984 */
2985 if (type_sz(dest.type) == 8) {
2986 shuffle_32bit_load_result_to_64bit_data(
2987 bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
2988
2989 for (unsigned c = 0; c < num_components; c++) {
2990 bld.MOV(offset(orig_dest, bld, iter * 2 + c),
2991 offset(dest, bld, c));
2992 }
2993 }
2994
2995 /* If we are loading double data and we need a second read message
2996 * adjust the offset
2997 */
2998 if (num_iterations > 1) {
2999 num_components = instr->num_components - 2;
3000 imm_offset++;
3001 }
3002 }
3003 }
3004 break;
3005 }
3006 default:
3007 nir_emit_intrinsic(bld, instr);
3008 break;
3009 }
3010 }
3011
3012 void
3013 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3014 nir_intrinsic_instr *instr)
3015 {
3016 assert(stage == MESA_SHADER_GEOMETRY);
3017 fs_reg indirect_offset;
3018
3019 fs_reg dest;
3020 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3021 dest = get_nir_dest(instr->dest);
3022
3023 switch (instr->intrinsic) {
3024 case nir_intrinsic_load_primitive_id:
3025 assert(stage == MESA_SHADER_GEOMETRY);
3026 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3027 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3028 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3029 break;
3030
3031 case nir_intrinsic_load_input:
3032 unreachable("load_input intrinsics are invalid for the GS stage");
3033
3034 case nir_intrinsic_load_per_vertex_input:
3035 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3036 instr->src[1], instr->num_components,
3037 nir_intrinsic_component(instr));
3038 break;
3039
3040 case nir_intrinsic_emit_vertex_with_counter:
3041 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3042 break;
3043
3044 case nir_intrinsic_end_primitive_with_counter:
3045 emit_gs_end_primitive(instr->src[0]);
3046 break;
3047
3048 case nir_intrinsic_set_vertex_count:
3049 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3050 break;
3051
3052 case nir_intrinsic_load_invocation_id: {
3053 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3054 assert(val.file != BAD_FILE);
3055 dest.type = val.type;
3056 bld.MOV(dest, val);
3057 break;
3058 }
3059
3060 default:
3061 nir_emit_intrinsic(bld, instr);
3062 break;
3063 }
3064 }
3065
3066 /**
3067 * Fetch the current render target layer index.
3068 */
3069 static fs_reg
3070 fetch_render_target_array_index(const fs_builder &bld)
3071 {
3072 if (bld.shader->devinfo->gen >= 6) {
3073 /* The render target array index is provided in the thread payload as
3074 * bits 26:16 of r0.0.
3075 */
3076 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3077 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3078 brw_imm_uw(0x7ff));
3079 return idx;
3080 } else {
3081 /* Pre-SNB we only ever render into the first layer of the framebuffer
3082 * since layered rendering is not implemented.
3083 */
3084 return brw_imm_ud(0);
3085 }
3086 }
3087
3088 /**
3089 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3090 * framebuffer at the current fragment coordinates and sample index.
3091 */
3092 fs_inst *
3093 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3094 unsigned target)
3095 {
3096 const struct gen_device_info *devinfo = bld.shader->devinfo;
3097
3098 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3099 const brw_wm_prog_key *wm_key =
3100 reinterpret_cast<const brw_wm_prog_key *>(key);
3101 assert(!wm_key->coherent_fb_fetch);
3102 const struct brw_wm_prog_data *wm_prog_data =
3103 brw_wm_prog_data(stage_prog_data);
3104
3105 /* Calculate the surface index relative to the start of the texture binding
3106 * table block, since that's what the texturing messages expect.
3107 */
3108 const unsigned surface = target +
3109 wm_prog_data->binding_table.render_target_read_start -
3110 wm_prog_data->base.binding_table.texture_start;
3111
3112 brw_mark_surface_used(
3113 bld.shader->stage_prog_data,
3114 wm_prog_data->binding_table.render_target_read_start + target);
3115
3116 /* Calculate the fragment coordinates. */
3117 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3118 bld.MOV(offset(coords, bld, 0), pixel_x);
3119 bld.MOV(offset(coords, bld, 1), pixel_y);
3120 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3121
3122 /* Calculate the sample index and MCS payload when multisampling. Luckily
3123 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3124 * shouldn't be necessary to recompile based on whether the framebuffer is
3125 * CMS or UMS.
3126 */
3127 if (wm_key->multisample_fbo &&
3128 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3129 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3130
3131 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3132 const fs_reg mcs = wm_key->multisample_fbo ?
3133 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3134
3135 /* Use either a normal or a CMS texel fetch message depending on whether
3136 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3137 * message just in case the framebuffer uses 16x multisampling, it should
3138 * be equivalent to the normal CMS fetch for lower multisampling modes.
3139 */
3140 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3141 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3142 SHADER_OPCODE_TXF_CMS_LOGICAL;
3143
3144 /* Emit the instruction. */
3145 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3146 sample, mcs,
3147 brw_imm_ud(surface), brw_imm_ud(0),
3148 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3149 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3150
3151 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3152 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3153
3154 return inst;
3155 }
3156
3157 /**
3158 * Actual coherent framebuffer read implemented using the native render target
3159 * read message. Requires SKL+.
3160 */
3161 static fs_inst *
3162 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3163 {
3164 assert(bld.shader->devinfo->gen >= 9);
3165 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3166 inst->target = target;
3167 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3168
3169 return inst;
3170 }
3171
3172 static fs_reg
3173 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3174 {
3175 if (n && regs[0].file != BAD_FILE) {
3176 return regs[0];
3177
3178 } else {
3179 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3180
3181 for (unsigned i = 0; i < n; i++)
3182 regs[i] = tmp;
3183
3184 return tmp;
3185 }
3186 }
3187
3188 static fs_reg
3189 alloc_frag_output(fs_visitor *v, unsigned location)
3190 {
3191 assert(v->stage == MESA_SHADER_FRAGMENT);
3192 const brw_wm_prog_key *const key =
3193 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3194 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3195 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3196
3197 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3198 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3199
3200 else if (l == FRAG_RESULT_COLOR)
3201 return alloc_temporary(v->bld, 4, v->outputs,
3202 MAX2(key->nr_color_regions, 1));
3203
3204 else if (l == FRAG_RESULT_DEPTH)
3205 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3206
3207 else if (l == FRAG_RESULT_STENCIL)
3208 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3209
3210 else if (l == FRAG_RESULT_SAMPLE_MASK)
3211 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3212
3213 else if (l >= FRAG_RESULT_DATA0 &&
3214 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3215 return alloc_temporary(v->bld, 4,
3216 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3217
3218 else
3219 unreachable("Invalid location");
3220 }
3221
3222 void
3223 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3224 nir_intrinsic_instr *instr)
3225 {
3226 assert(stage == MESA_SHADER_FRAGMENT);
3227
3228 fs_reg dest;
3229 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3230 dest = get_nir_dest(instr->dest);
3231
3232 switch (instr->intrinsic) {
3233 case nir_intrinsic_load_front_face:
3234 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3235 *emit_frontfacing_interpolation());
3236 break;
3237
3238 case nir_intrinsic_load_sample_pos: {
3239 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3240 assert(sample_pos.file != BAD_FILE);
3241 dest.type = sample_pos.type;
3242 bld.MOV(dest, sample_pos);
3243 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3244 break;
3245 }
3246
3247 case nir_intrinsic_load_layer_id:
3248 dest.type = BRW_REGISTER_TYPE_UD;
3249 bld.MOV(dest, fetch_render_target_array_index(bld));
3250 break;
3251
3252 case nir_intrinsic_load_helper_invocation:
3253 case nir_intrinsic_load_sample_mask_in:
3254 case nir_intrinsic_load_sample_id: {
3255 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3256 fs_reg val = nir_system_values[sv];
3257 assert(val.file != BAD_FILE);
3258 dest.type = val.type;
3259 bld.MOV(dest, val);
3260 break;
3261 }
3262
3263 case nir_intrinsic_store_output: {
3264 const fs_reg src = get_nir_src(instr->src[0]);
3265 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3266 assert(const_offset && "Indirect output stores not allowed");
3267 const unsigned location = nir_intrinsic_base(instr) +
3268 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3269 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3270 src.type);
3271
3272 for (unsigned j = 0; j < instr->num_components; j++)
3273 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3274 offset(src, bld, j));
3275
3276 break;
3277 }
3278
3279 case nir_intrinsic_load_output: {
3280 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3281 BRW_NIR_FRAG_OUTPUT_LOCATION);
3282 assert(l >= FRAG_RESULT_DATA0);
3283 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3284 assert(const_offset && "Indirect output loads not allowed");
3285 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3286 const fs_reg tmp = bld.vgrf(dest.type, 4);
3287
3288 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3289 emit_coherent_fb_read(bld, tmp, target);
3290 else
3291 emit_non_coherent_fb_read(bld, tmp, target);
3292
3293 for (unsigned j = 0; j < instr->num_components; j++) {
3294 bld.MOV(offset(dest, bld, j),
3295 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3296 }
3297
3298 break;
3299 }
3300
3301 case nir_intrinsic_discard:
3302 case nir_intrinsic_discard_if: {
3303 /* We track our discarded pixels in f0.1. By predicating on it, we can
3304 * update just the flag bits that aren't yet discarded. If there's no
3305 * condition, we emit a CMP of g0 != g0, so all currently executing
3306 * channels will get turned off.
3307 */
3308 fs_inst *cmp;
3309 if (instr->intrinsic == nir_intrinsic_discard_if) {
3310 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3311 brw_imm_d(0), BRW_CONDITIONAL_Z);
3312 } else {
3313 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3314 BRW_REGISTER_TYPE_UW));
3315 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3316 }
3317 cmp->predicate = BRW_PREDICATE_NORMAL;
3318 cmp->flag_subreg = 1;
3319
3320 if (devinfo->gen >= 6) {
3321 emit_discard_jump();
3322 }
3323 break;
3324 }
3325
3326 case nir_intrinsic_load_input: {
3327 /* load_input is only used for flat inputs */
3328 unsigned base = nir_intrinsic_base(instr);
3329 unsigned component = nir_intrinsic_component(instr);
3330 unsigned num_components = instr->num_components;
3331 enum brw_reg_type type = dest.type;
3332
3333 /* Special case fields in the VUE header */
3334 if (base == VARYING_SLOT_LAYER)
3335 component = 1;
3336 else if (base == VARYING_SLOT_VIEWPORT)
3337 component = 2;
3338
3339 if (nir_dest_bit_size(instr->dest) == 64) {
3340 /* const_index is in 32-bit type size units that could not be aligned
3341 * with DF. We need to read the double vector as if it was a float
3342 * vector of twice the number of components to fetch the right data.
3343 */
3344 type = BRW_REGISTER_TYPE_F;
3345 num_components *= 2;
3346 }
3347
3348 for (unsigned int i = 0; i < num_components; i++) {
3349 struct brw_reg interp = interp_reg(base, component + i);
3350 interp = suboffset(interp, 3);
3351 bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i),
3352 retype(fs_reg(interp), type));
3353 }
3354
3355 if (nir_dest_bit_size(instr->dest) == 64) {
3356 shuffle_32bit_load_result_to_64bit_data(bld,
3357 dest,
3358 retype(dest, type),
3359 instr->num_components);
3360 }
3361 break;
3362 }
3363
3364 case nir_intrinsic_load_barycentric_pixel:
3365 case nir_intrinsic_load_barycentric_centroid:
3366 case nir_intrinsic_load_barycentric_sample:
3367 /* Do nothing - load_interpolated_input handling will handle it later. */
3368 break;
3369
3370 case nir_intrinsic_load_barycentric_at_sample: {
3371 const glsl_interp_mode interpolation =
3372 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3373
3374 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3375
3376 if (const_sample) {
3377 unsigned msg_data = const_sample->i32[0] << 4;
3378
3379 emit_pixel_interpolater_send(bld,
3380 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3381 dest,
3382 fs_reg(), /* src */
3383 brw_imm_ud(msg_data),
3384 interpolation);
3385 } else {
3386 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3387 BRW_REGISTER_TYPE_UD);
3388
3389 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3390 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3391 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3392 bld.exec_all().group(1, 0)
3393 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3394 emit_pixel_interpolater_send(bld,
3395 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3396 dest,
3397 fs_reg(), /* src */
3398 msg_data,
3399 interpolation);
3400 } else {
3401 /* Make a loop that sends a message to the pixel interpolater
3402 * for the sample number in each live channel. If there are
3403 * multiple channels with the same sample number then these
3404 * will be handled simultaneously with a single interation of
3405 * the loop.
3406 */
3407 bld.emit(BRW_OPCODE_DO);
3408
3409 /* Get the next live sample number into sample_id_reg */
3410 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3411
3412 /* Set the flag register so that we can perform the send
3413 * message on all channels that have the same sample number
3414 */
3415 bld.CMP(bld.null_reg_ud(),
3416 sample_src, sample_id,
3417 BRW_CONDITIONAL_EQ);
3418 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3419 bld.exec_all().group(1, 0)
3420 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3421 fs_inst *inst =
3422 emit_pixel_interpolater_send(bld,
3423 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3424 dest,
3425 fs_reg(), /* src */
3426 msg_data,
3427 interpolation);
3428 set_predicate(BRW_PREDICATE_NORMAL, inst);
3429
3430 /* Continue the loop if there are any live channels left */
3431 set_predicate_inv(BRW_PREDICATE_NORMAL,
3432 true, /* inverse */
3433 bld.emit(BRW_OPCODE_WHILE));
3434 }
3435 }
3436 break;
3437 }
3438
3439 case nir_intrinsic_load_barycentric_at_offset: {
3440 const glsl_interp_mode interpolation =
3441 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3442
3443 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3444
3445 if (const_offset) {
3446 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3447 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3448
3449 emit_pixel_interpolater_send(bld,
3450 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3451 dest,
3452 fs_reg(), /* src */
3453 brw_imm_ud(off_x | (off_y << 4)),
3454 interpolation);
3455 } else {
3456 fs_reg src = vgrf(glsl_type::ivec2_type);
3457 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3458 BRW_REGISTER_TYPE_F);
3459 for (int i = 0; i < 2; i++) {
3460 fs_reg temp = vgrf(glsl_type::float_type);
3461 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3462 fs_reg itemp = vgrf(glsl_type::int_type);
3463 /* float to int */
3464 bld.MOV(itemp, temp);
3465
3466 /* Clamp the upper end of the range to +7/16.
3467 * ARB_gpu_shader5 requires that we support a maximum offset
3468 * of +0.5, which isn't representable in a S0.4 value -- if
3469 * we didn't clamp it, we'd end up with -8/16, which is the
3470 * opposite of what the shader author wanted.
3471 *
3472 * This is legal due to ARB_gpu_shader5's quantization
3473 * rules:
3474 *
3475 * "Not all values of <offset> may be supported; x and y
3476 * offsets may be rounded to fixed-point values with the
3477 * number of fraction bits given by the
3478 * implementation-dependent constant
3479 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3480 */
3481 set_condmod(BRW_CONDITIONAL_L,
3482 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3483 }
3484
3485 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3486 emit_pixel_interpolater_send(bld,
3487 opcode,
3488 dest,
3489 src,
3490 brw_imm_ud(0u),
3491 interpolation);
3492 }
3493 break;
3494 }
3495
3496 case nir_intrinsic_load_interpolated_input: {
3497 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3498 emit_fragcoord_interpolation(dest);
3499 break;
3500 }
3501
3502 assert(instr->src[0].ssa &&
3503 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3504 nir_intrinsic_instr *bary_intrinsic =
3505 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3506 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3507 enum glsl_interp_mode interp_mode =
3508 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3509 fs_reg dst_xy;
3510
3511 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3512 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3513 /* Use the result of the PI message */
3514 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3515 } else {
3516 /* Use the delta_xy values computed from the payload */
3517 enum brw_barycentric_mode bary =
3518 brw_barycentric_mode(interp_mode, bary_intrin);
3519
3520 dst_xy = this->delta_xy[bary];
3521 }
3522
3523 for (unsigned int i = 0; i < instr->num_components; i++) {
3524 fs_reg interp =
3525 fs_reg(interp_reg(nir_intrinsic_base(instr),
3526 nir_intrinsic_component(instr) + i));
3527 interp.type = BRW_REGISTER_TYPE_F;
3528 dest.type = BRW_REGISTER_TYPE_F;
3529
3530 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3531 fs_reg tmp = vgrf(glsl_type::float_type);
3532 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3533 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3534 } else {
3535 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3536 }
3537 }
3538 break;
3539 }
3540
3541 default:
3542 nir_emit_intrinsic(bld, instr);
3543 break;
3544 }
3545 }
3546
3547 void
3548 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3549 nir_intrinsic_instr *instr)
3550 {
3551 assert(stage == MESA_SHADER_COMPUTE);
3552 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3553
3554 fs_reg dest;
3555 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3556 dest = get_nir_dest(instr->dest);
3557
3558 switch (instr->intrinsic) {
3559 case nir_intrinsic_barrier:
3560 emit_barrier();
3561 cs_prog_data->uses_barrier = true;
3562 break;
3563
3564 case nir_intrinsic_load_subgroup_id:
3565 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3566 break;
3567
3568 case nir_intrinsic_load_local_invocation_id:
3569 case nir_intrinsic_load_work_group_id: {
3570 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3571 fs_reg val = nir_system_values[sv];
3572 assert(val.file != BAD_FILE);
3573 dest.type = val.type;
3574 for (unsigned i = 0; i < 3; i++)
3575 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3576 break;
3577 }
3578
3579 case nir_intrinsic_load_num_work_groups: {
3580 const unsigned surface =
3581 cs_prog_data->binding_table.work_groups_start;
3582
3583 cs_prog_data->uses_num_work_groups = true;
3584
3585 fs_reg surf_index = brw_imm_ud(surface);
3586 brw_mark_surface_used(prog_data, surface);
3587
3588 /* Read the 3 GLuint components of gl_NumWorkGroups */
3589 for (unsigned i = 0; i < 3; i++) {
3590 fs_reg read_result =
3591 emit_untyped_read(bld, surf_index,
3592 brw_imm_ud(i << 2),
3593 1 /* dims */, 1 /* size */,
3594 BRW_PREDICATE_NONE);
3595 read_result.type = dest.type;
3596 bld.MOV(dest, read_result);
3597 dest = offset(dest, bld, 1);
3598 }
3599 break;
3600 }
3601
3602 case nir_intrinsic_shared_atomic_add:
3603 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3604 break;
3605 case nir_intrinsic_shared_atomic_imin:
3606 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3607 break;
3608 case nir_intrinsic_shared_atomic_umin:
3609 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3610 break;
3611 case nir_intrinsic_shared_atomic_imax:
3612 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3613 break;
3614 case nir_intrinsic_shared_atomic_umax:
3615 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3616 break;
3617 case nir_intrinsic_shared_atomic_and:
3618 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3619 break;
3620 case nir_intrinsic_shared_atomic_or:
3621 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3622 break;
3623 case nir_intrinsic_shared_atomic_xor:
3624 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3625 break;
3626 case nir_intrinsic_shared_atomic_exchange:
3627 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3628 break;
3629 case nir_intrinsic_shared_atomic_comp_swap:
3630 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3631 break;
3632
3633 case nir_intrinsic_load_shared: {
3634 assert(devinfo->gen >= 7);
3635
3636 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3637
3638 /* Get the offset to read from */
3639 fs_reg offset_reg;
3640 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3641 if (const_offset) {
3642 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3643 } else {
3644 offset_reg = vgrf(glsl_type::uint_type);
3645 bld.ADD(offset_reg,
3646 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3647 brw_imm_ud(instr->const_index[0]));
3648 }
3649
3650 /* Read the vector */
3651 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3652 instr->num_components);
3653 break;
3654 }
3655
3656 case nir_intrinsic_store_shared: {
3657 assert(devinfo->gen >= 7);
3658
3659 /* Block index */
3660 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3661
3662 /* Value */
3663 fs_reg val_reg = get_nir_src(instr->src[0]);
3664
3665 /* Writemask */
3666 unsigned writemask = instr->const_index[1];
3667
3668 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3669 * since the untyped writes below operate in units of 32-bits, which
3670 * means that we need to write twice as many components each time.
3671 * Also, we have to suffle 64-bit data to be in the appropriate layout
3672 * expected by our 32-bit write messages.
3673 */
3674 unsigned type_size = 4;
3675 if (nir_src_bit_size(instr->src[0]) == 64) {
3676 type_size = 8;
3677 val_reg = shuffle_64bit_data_for_32bit_write(bld,
3678 val_reg, instr->num_components);
3679 }
3680
3681 unsigned type_slots = type_size / 4;
3682
3683 /* Combine groups of consecutive enabled channels in one write
3684 * message. We use ffs to find the first enabled channel and then ffs on
3685 * the bit-inverse, down-shifted writemask to determine the length of
3686 * the block of enabled bits.
3687 */
3688 while (writemask) {
3689 unsigned first_component = ffs(writemask) - 1;
3690 unsigned length = ffs(~(writemask >> first_component)) - 1;
3691
3692 /* We can't write more than 2 64-bit components at once. Limit the
3693 * length of the write to what we can do and let the next iteration
3694 * handle the rest
3695 */
3696 if (type_size > 4)
3697 length = MIN2(2, length);
3698
3699 fs_reg offset_reg;
3700 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3701 if (const_offset) {
3702 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3703 type_size * first_component);
3704 } else {
3705 offset_reg = vgrf(glsl_type::uint_type);
3706 bld.ADD(offset_reg,
3707 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3708 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3709 }
3710
3711 emit_untyped_write(bld, surf_index, offset_reg,
3712 offset(val_reg, bld, first_component * type_slots),
3713 1 /* dims */, length * type_slots,
3714 BRW_PREDICATE_NONE);
3715
3716 /* Clear the bits in the writemask that we just wrote, then try
3717 * again to see if more channels are left.
3718 */
3719 writemask &= (15 << (first_component + length));
3720 }
3721
3722 break;
3723 }
3724
3725 default:
3726 nir_emit_intrinsic(bld, instr);
3727 break;
3728 }
3729 }
3730
3731 static fs_reg
3732 brw_nir_reduction_op_identity(const fs_builder &bld,
3733 nir_op op, brw_reg_type type)
3734 {
3735 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3736 switch (type_sz(type)) {
3737 case 2:
3738 assert(type != BRW_REGISTER_TYPE_HF);
3739 return retype(brw_imm_uw(value.u16[0]), type);
3740 case 4:
3741 return retype(brw_imm_ud(value.u32[0]), type);
3742 case 8:
3743 if (type == BRW_REGISTER_TYPE_DF)
3744 return setup_imm_df(bld, value.f64[0]);
3745 else
3746 return retype(brw_imm_u64(value.u64[0]), type);
3747 default:
3748 unreachable("Invalid type size");
3749 }
3750 }
3751
3752 static opcode
3753 brw_op_for_nir_reduction_op(nir_op op)
3754 {
3755 switch (op) {
3756 case nir_op_iadd: return BRW_OPCODE_ADD;
3757 case nir_op_fadd: return BRW_OPCODE_ADD;
3758 case nir_op_imul: return BRW_OPCODE_MUL;
3759 case nir_op_fmul: return BRW_OPCODE_MUL;
3760 case nir_op_imin: return BRW_OPCODE_SEL;
3761 case nir_op_umin: return BRW_OPCODE_SEL;
3762 case nir_op_fmin: return BRW_OPCODE_SEL;
3763 case nir_op_imax: return BRW_OPCODE_SEL;
3764 case nir_op_umax: return BRW_OPCODE_SEL;
3765 case nir_op_fmax: return BRW_OPCODE_SEL;
3766 case nir_op_iand: return BRW_OPCODE_AND;
3767 case nir_op_ior: return BRW_OPCODE_OR;
3768 case nir_op_ixor: return BRW_OPCODE_XOR;
3769 default:
3770 unreachable("Invalid reduction operation");
3771 }
3772 }
3773
3774 static brw_conditional_mod
3775 brw_cond_mod_for_nir_reduction_op(nir_op op)
3776 {
3777 switch (op) {
3778 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3779 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3780 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3781 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3782 case nir_op_imin: return BRW_CONDITIONAL_L;
3783 case nir_op_umin: return BRW_CONDITIONAL_L;
3784 case nir_op_fmin: return BRW_CONDITIONAL_L;
3785 case nir_op_imax: return BRW_CONDITIONAL_GE;
3786 case nir_op_umax: return BRW_CONDITIONAL_GE;
3787 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3788 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3789 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3790 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3791 default:
3792 unreachable("Invalid reduction operation");
3793 }
3794 }
3795
3796 void
3797 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3798 {
3799 fs_reg dest;
3800 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3801 dest = get_nir_dest(instr->dest);
3802
3803 switch (instr->intrinsic) {
3804 case nir_intrinsic_image_var_load:
3805 case nir_intrinsic_image_var_store:
3806 case nir_intrinsic_image_var_atomic_add:
3807 case nir_intrinsic_image_var_atomic_min:
3808 case nir_intrinsic_image_var_atomic_max:
3809 case nir_intrinsic_image_var_atomic_and:
3810 case nir_intrinsic_image_var_atomic_or:
3811 case nir_intrinsic_image_var_atomic_xor:
3812 case nir_intrinsic_image_var_atomic_exchange:
3813 case nir_intrinsic_image_var_atomic_comp_swap: {
3814 using namespace image_access;
3815
3816 if (stage == MESA_SHADER_FRAGMENT &&
3817 instr->intrinsic != nir_intrinsic_image_var_load)
3818 brw_wm_prog_data(prog_data)->has_side_effects = true;
3819
3820 /* Get the referenced image variable and type. */
3821 const nir_variable *var = instr->variables[0]->var;
3822 const glsl_type *type = var->type->without_array();
3823 const brw_reg_type base_type = get_image_base_type(type);
3824
3825 /* Get some metadata from the image intrinsic. */
3826 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3827 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3828 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3829 const unsigned format = var->data.image.format;
3830 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3831
3832 /* Get the arguments of the image intrinsic. */
3833 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3834 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3835 BRW_REGISTER_TYPE_UD);
3836 const fs_reg src0 = (info->num_srcs >= 3 ?
3837 retype(get_nir_src(instr->src[2]), base_type) :
3838 fs_reg());
3839 const fs_reg src1 = (info->num_srcs >= 4 ?
3840 retype(get_nir_src(instr->src[3]), base_type) :
3841 fs_reg());
3842 fs_reg tmp;
3843
3844 /* Emit an image load, store or atomic op. */
3845 if (instr->intrinsic == nir_intrinsic_image_var_load)
3846 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3847
3848 else if (instr->intrinsic == nir_intrinsic_image_var_store)
3849 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3850 var->data.image.write_only ? GL_NONE : format);
3851
3852 else
3853 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3854 surf_dims, arr_dims, dest_components,
3855 get_image_atomic_op(instr->intrinsic, type));
3856
3857 /* Assign the result. */
3858 for (unsigned c = 0; c < dest_components; ++c) {
3859 bld.MOV(offset(retype(dest, base_type), bld, c),
3860 offset(tmp, bld, c));
3861 }
3862 break;
3863 }
3864
3865 case nir_intrinsic_memory_barrier_atomic_counter:
3866 case nir_intrinsic_memory_barrier_buffer:
3867 case nir_intrinsic_memory_barrier_image:
3868 case nir_intrinsic_memory_barrier: {
3869 const fs_builder ubld = bld.group(8, 0);
3870 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3871 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3872 ->size_written = 2 * REG_SIZE;
3873 break;
3874 }
3875
3876 case nir_intrinsic_group_memory_barrier:
3877 case nir_intrinsic_memory_barrier_shared:
3878 /* We treat these workgroup-level barriers as no-ops. This should be
3879 * safe at present and as long as:
3880 *
3881 * - Memory access instructions are not subsequently reordered by the
3882 * compiler back-end.
3883 *
3884 * - All threads from a given compute shader workgroup fit within a
3885 * single subslice and therefore talk to the same HDC shared unit
3886 * what supposedly guarantees ordering and coherency between threads
3887 * from the same workgroup. This may change in the future when we
3888 * start splitting workgroups across multiple subslices.
3889 *
3890 * - The context is not in fault-and-stream mode, which could cause
3891 * memory transactions (including to SLM) prior to the barrier to be
3892 * replayed after the barrier if a pagefault occurs. This shouldn't
3893 * be a problem up to and including SKL because fault-and-stream is
3894 * not usable due to hardware issues, but that's likely to change in
3895 * the future.
3896 */
3897 break;
3898
3899 case nir_intrinsic_shader_clock: {
3900 /* We cannot do anything if there is an event, so ignore it for now */
3901 const fs_reg shader_clock = get_timestamp(bld);
3902 const fs_reg srcs[] = { component(shader_clock, 0),
3903 component(shader_clock, 1) };
3904 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3905 break;
3906 }
3907
3908 case nir_intrinsic_image_var_size: {
3909 /* Get the referenced image variable and type. */
3910 const nir_variable *var = instr->variables[0]->var;
3911 const glsl_type *type = var->type->without_array();
3912
3913 /* Get the size of the image. */
3914 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3915 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3916
3917 /* For 1DArray image types, the array index is stored in the Z component.
3918 * Fix this by swizzling the Z component to the Y component.
3919 */
3920 const bool is_1d_array_image =
3921 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3922 type->sampler_array;
3923
3924 /* For CubeArray images, we should count the number of cubes instead
3925 * of the number of faces. Fix it by dividing the (Z component) by 6.
3926 */
3927 const bool is_cube_array_image =
3928 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3929 type->sampler_array;
3930
3931 /* Copy all the components. */
3932 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3933 if ((int)c >= type->coordinate_components()) {
3934 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3935 brw_imm_d(1));
3936 } else if (c == 1 && is_1d_array_image) {
3937 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3938 offset(size, bld, 2));
3939 } else if (c == 2 && is_cube_array_image) {
3940 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3941 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3942 offset(size, bld, c), brw_imm_d(6));
3943 } else {
3944 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3945 offset(size, bld, c));
3946 }
3947 }
3948
3949 break;
3950 }
3951
3952 case nir_intrinsic_image_var_samples:
3953 /* The driver does not support multi-sampled images. */
3954 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3955 break;
3956
3957 case nir_intrinsic_load_uniform: {
3958 /* Offsets are in bytes but they should always aligned to
3959 * the type size
3960 */
3961 assert(instr->const_index[0] % 4 == 0 ||
3962 instr->const_index[0] % type_sz(dest.type) == 0);
3963
3964 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3965
3966 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3967 if (const_offset) {
3968 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
3969 /* For 16-bit types we add the module of the const_index[0]
3970 * offset to access to not 32-bit aligned element
3971 */
3972 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
3973
3974 for (unsigned j = 0; j < instr->num_components; j++) {
3975 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3976 }
3977 } else {
3978 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3979 BRW_REGISTER_TYPE_UD);
3980
3981 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3982 * go past the end of the uniform. In order to keep the n'th
3983 * component from running past, we subtract off the size of all but
3984 * one component of the vector.
3985 */
3986 assert(instr->const_index[1] >=
3987 instr->num_components * (int) type_sz(dest.type));
3988 unsigned read_size = instr->const_index[1] -
3989 (instr->num_components - 1) * type_sz(dest.type);
3990
3991 bool supports_64bit_indirects =
3992 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
3993
3994 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
3995 for (unsigned j = 0; j < instr->num_components; j++) {
3996 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3997 offset(dest, bld, j), offset(src, bld, j),
3998 indirect, brw_imm_ud(read_size));
3999 }
4000 } else {
4001 const unsigned num_mov_indirects =
4002 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4003 /* We read a little bit less per MOV INDIRECT, as they are now
4004 * 32-bits ones instead of 64-bit. Fix read_size then.
4005 */
4006 const unsigned read_size_32bit = read_size -
4007 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4008 for (unsigned j = 0; j < instr->num_components; j++) {
4009 for (unsigned i = 0; i < num_mov_indirects; i++) {
4010 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4011 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4012 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4013 indirect, brw_imm_ud(read_size_32bit));
4014 }
4015 }
4016 }
4017 }
4018 break;
4019 }
4020
4021 case nir_intrinsic_load_ubo: {
4022 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4023 fs_reg surf_index;
4024
4025 if (const_index) {
4026 const unsigned index = stage_prog_data->binding_table.ubo_start +
4027 const_index->u32[0];
4028 surf_index = brw_imm_ud(index);
4029 brw_mark_surface_used(prog_data, index);
4030 } else {
4031 /* The block index is not a constant. Evaluate the index expression
4032 * per-channel and add the base UBO index; we have to select a value
4033 * from any live channel.
4034 */
4035 surf_index = vgrf(glsl_type::uint_type);
4036 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4037 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4038 surf_index = bld.emit_uniformize(surf_index);
4039
4040 /* Assume this may touch any UBO. It would be nice to provide
4041 * a tighter bound, but the array information is already lowered away.
4042 */
4043 brw_mark_surface_used(prog_data,
4044 stage_prog_data->binding_table.ubo_start +
4045 nir->info.num_ubos - 1);
4046 }
4047
4048 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4049 if (const_offset == NULL) {
4050 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4051 BRW_REGISTER_TYPE_UD);
4052
4053 for (int i = 0; i < instr->num_components; i++)
4054 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4055 base_offset, i * type_sz(dest.type));
4056 } else {
4057 /* Even if we are loading doubles, a pull constant load will load
4058 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4059 * need to load a full dvec4 we will have to emit 2 loads. This is
4060 * similar to demote_pull_constants(), except that in that case we
4061 * see individual accesses to each component of the vector and then
4062 * we let CSE deal with duplicate loads. Here we see a vector access
4063 * and we have to split it if necessary.
4064 */
4065 const unsigned type_size = type_sz(dest.type);
4066
4067 /* See if we've selected this as a push constant candidate */
4068 if (const_index) {
4069 const unsigned ubo_block = const_index->u32[0];
4070 const unsigned offset_256b = const_offset->u32[0] / 32;
4071
4072 fs_reg push_reg;
4073 for (int i = 0; i < 4; i++) {
4074 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4075 if (range->block == ubo_block &&
4076 offset_256b >= range->start &&
4077 offset_256b < range->start + range->length) {
4078
4079 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4080 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4081 break;
4082 }
4083 }
4084
4085 if (push_reg.file != BAD_FILE) {
4086 for (unsigned i = 0; i < instr->num_components; i++) {
4087 bld.MOV(offset(dest, bld, i),
4088 byte_offset(push_reg, i * type_size));
4089 }
4090 break;
4091 }
4092 }
4093
4094 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4095 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4096 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4097
4098 for (unsigned c = 0; c < instr->num_components;) {
4099 const unsigned base = const_offset->u32[0] + c * type_size;
4100 /* Number of usable components in the next block-aligned load. */
4101 const unsigned count = MIN2(instr->num_components - c,
4102 (block_sz - base % block_sz) / type_size);
4103
4104 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4105 packed_consts, surf_index,
4106 brw_imm_ud(base & ~(block_sz - 1)));
4107
4108 const fs_reg consts =
4109 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4110 dest.type);
4111
4112 for (unsigned d = 0; d < count; d++)
4113 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4114
4115 c += count;
4116 }
4117 }
4118 break;
4119 }
4120
4121 case nir_intrinsic_load_ssbo: {
4122 assert(devinfo->gen >= 7);
4123
4124 nir_const_value *const_uniform_block =
4125 nir_src_as_const_value(instr->src[0]);
4126
4127 fs_reg surf_index;
4128 if (const_uniform_block) {
4129 unsigned index = stage_prog_data->binding_table.ssbo_start +
4130 const_uniform_block->u32[0];
4131 surf_index = brw_imm_ud(index);
4132 brw_mark_surface_used(prog_data, index);
4133 } else {
4134 surf_index = vgrf(glsl_type::uint_type);
4135 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4136 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4137
4138 /* Assume this may touch any UBO. It would be nice to provide
4139 * a tighter bound, but the array information is already lowered away.
4140 */
4141 brw_mark_surface_used(prog_data,
4142 stage_prog_data->binding_table.ssbo_start +
4143 nir->info.num_ssbos - 1);
4144 }
4145
4146 fs_reg offset_reg;
4147 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4148 if (const_offset) {
4149 offset_reg = brw_imm_ud(const_offset->u32[0]);
4150 } else {
4151 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4152 }
4153
4154 /* Read the vector */
4155 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4156 instr->num_components);
4157
4158 break;
4159 }
4160
4161 case nir_intrinsic_store_ssbo: {
4162 assert(devinfo->gen >= 7);
4163
4164 if (stage == MESA_SHADER_FRAGMENT)
4165 brw_wm_prog_data(prog_data)->has_side_effects = true;
4166
4167 /* Block index */
4168 fs_reg surf_index;
4169 nir_const_value *const_uniform_block =
4170 nir_src_as_const_value(instr->src[1]);
4171 if (const_uniform_block) {
4172 unsigned index = stage_prog_data->binding_table.ssbo_start +
4173 const_uniform_block->u32[0];
4174 surf_index = brw_imm_ud(index);
4175 brw_mark_surface_used(prog_data, index);
4176 } else {
4177 surf_index = vgrf(glsl_type::uint_type);
4178 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4179 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4180
4181 brw_mark_surface_used(prog_data,
4182 stage_prog_data->binding_table.ssbo_start +
4183 nir->info.num_ssbos - 1);
4184 }
4185
4186 /* Value */
4187 fs_reg val_reg = get_nir_src(instr->src[0]);
4188
4189 /* Writemask */
4190 unsigned writemask = instr->const_index[0];
4191
4192 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4193 * since the untyped writes below operate in units of 32-bits, which
4194 * means that we need to write twice as many components each time.
4195 * Also, we have to suffle 64-bit data to be in the appropriate layout
4196 * expected by our 32-bit write messages.
4197 */
4198 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4199 unsigned type_size = bit_size / 8;
4200
4201 /* Combine groups of consecutive enabled channels in one write
4202 * message. We use ffs to find the first enabled channel and then ffs on
4203 * the bit-inverse, down-shifted writemask to determine the num_components
4204 * of the block of enabled bits.
4205 */
4206 while (writemask) {
4207 unsigned first_component = ffs(writemask) - 1;
4208 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4209 fs_reg write_src = offset(val_reg, bld, first_component);
4210
4211 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4212
4213 if (type_size > 4) {
4214 /* We can't write more than 2 64-bit components at once. Limit
4215 * the num_components of the write to what we can do and let the next
4216 * iteration handle the rest.
4217 */
4218 num_components = MIN2(2, num_components);
4219 write_src = shuffle_64bit_data_for_32bit_write(bld, write_src,
4220 num_components);
4221 } else if (type_size < 4) {
4222 assert(type_size == 2);
4223 /* For 16-bit types we pack two consecutive values into a 32-bit
4224 * word and use an untyped write message. For single values or not
4225 * 32-bit-aligned we need to use byte-scattered writes because
4226 * untyped writes works with 32-bit components with 32-bit
4227 * alignment. byte_scattered_write messages only support one
4228 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4229 * could be enabled we can not guarantee that not constant offsets
4230 * to be 32-bit aligned for 16-bit types. For example an array, of
4231 * 16-bit vec3 with array element stride of 6.
4232 *
4233 * In the case of 32-bit aligned constant offsets if there is
4234 * a 3-components vector we submit one untyped-write message
4235 * of 32-bit (first two components), and one byte-scattered
4236 * write message (the last component).
4237 */
4238
4239 if ( !const_offset || ((const_offset->u32[0] +
4240 type_size * first_component) % 4)) {
4241 /* If we use a .yz writemask we also need to emit 2
4242 * byte-scattered write messages because of y-component not
4243 * being aligned to 32-bit.
4244 */
4245 num_components = 1;
4246 } else if (num_components > 2 && (num_components % 2)) {
4247 /* If there is an odd number of consecutive components we left
4248 * the not paired component for a following emit of length == 1
4249 * with byte_scattered_write.
4250 */
4251 num_components --;
4252 }
4253 /* For num_components == 1 we are also shuffling the component
4254 * because byte scattered writes of 16-bit need values to be dword
4255 * aligned. Shuffling only one component would be the same as
4256 * striding it.
4257 */
4258 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D,
4259 DIV_ROUND_UP(num_components, 2));
4260 shuffle_16bit_data_for_32bit_write(bld, tmp, write_src,
4261 num_components);
4262 write_src = tmp;
4263 }
4264
4265 fs_reg offset_reg;
4266
4267 if (const_offset) {
4268 offset_reg = brw_imm_ud(const_offset->u32[0] +
4269 type_size * first_component);
4270 } else {
4271 offset_reg = vgrf(glsl_type::uint_type);
4272 bld.ADD(offset_reg,
4273 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4274 brw_imm_ud(type_size * first_component));
4275 }
4276
4277 if (type_size < 4 && num_components == 1) {
4278 assert(type_size == 2);
4279 /* Untyped Surface messages have a fixed 32-bit size, so we need
4280 * to rely on byte scattered in order to write 16-bit elements.
4281 * The byte_scattered_write message needs that every written 16-bit
4282 * type to be aligned 32-bits (stride=2).
4283 */
4284 emit_byte_scattered_write(bld, surf_index, offset_reg,
4285 write_src,
4286 1 /* dims */, 1,
4287 bit_size,
4288 BRW_PREDICATE_NONE);
4289 } else {
4290 assert(num_components * type_size <= 16);
4291 assert((num_components * type_size) % 4 == 0);
4292 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4293 offset_reg.ud % 4 == 0);
4294 unsigned num_slots = (num_components * type_size) / 4;
4295
4296 emit_untyped_write(bld, surf_index, offset_reg,
4297 write_src,
4298 1 /* dims */, num_slots,
4299 BRW_PREDICATE_NONE);
4300 }
4301
4302 /* Clear the bits in the writemask that we just wrote, then try
4303 * again to see if more channels are left.
4304 */
4305 writemask &= (15 << (first_component + num_components));
4306 }
4307 break;
4308 }
4309
4310 case nir_intrinsic_store_output: {
4311 fs_reg src = get_nir_src(instr->src[0]);
4312
4313 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4314 assert(const_offset && "Indirect output stores not allowed");
4315
4316 unsigned num_components = instr->num_components;
4317 unsigned first_component = nir_intrinsic_component(instr);
4318 if (nir_src_bit_size(instr->src[0]) == 64) {
4319 src = shuffle_64bit_data_for_32bit_write(bld, src, num_components);
4320 num_components *= 2;
4321 }
4322
4323 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4324 4 * const_offset->u32[0]), src.type);
4325 for (unsigned j = 0; j < num_components; j++) {
4326 bld.MOV(offset(new_dest, bld, j + first_component),
4327 offset(src, bld, j));
4328 }
4329 break;
4330 }
4331
4332 case nir_intrinsic_ssbo_atomic_add:
4333 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4334 break;
4335 case nir_intrinsic_ssbo_atomic_imin:
4336 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4337 break;
4338 case nir_intrinsic_ssbo_atomic_umin:
4339 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4340 break;
4341 case nir_intrinsic_ssbo_atomic_imax:
4342 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4343 break;
4344 case nir_intrinsic_ssbo_atomic_umax:
4345 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4346 break;
4347 case nir_intrinsic_ssbo_atomic_and:
4348 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4349 break;
4350 case nir_intrinsic_ssbo_atomic_or:
4351 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4352 break;
4353 case nir_intrinsic_ssbo_atomic_xor:
4354 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4355 break;
4356 case nir_intrinsic_ssbo_atomic_exchange:
4357 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4358 break;
4359 case nir_intrinsic_ssbo_atomic_comp_swap:
4360 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4361 break;
4362
4363 case nir_intrinsic_get_buffer_size: {
4364 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4365 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4366
4367 /* A resinfo's sampler message is used to get the buffer size. The
4368 * SIMD8's writeback message consists of four registers and SIMD16's
4369 * writeback message consists of 8 destination registers (two per each
4370 * component). Because we are only interested on the first channel of
4371 * the first returned component, where resinfo returns the buffer size
4372 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4373 * the dispatch width.
4374 */
4375 const fs_builder ubld = bld.exec_all().group(8, 0);
4376 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4377 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4378
4379 /* Set LOD = 0 */
4380 ubld.MOV(src_payload, brw_imm_d(0));
4381
4382 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4383 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4384 src_payload, brw_imm_ud(index));
4385 inst->header_size = 0;
4386 inst->mlen = 1;
4387 inst->size_written = 4 * REG_SIZE;
4388
4389 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4390 *
4391 * "Out-of-bounds checking is always performed at a DWord granularity. If
4392 * any part of the DWord is out-of-bounds then the whole DWord is
4393 * considered out-of-bounds."
4394 *
4395 * This implies that types with size smaller than 4-bytes need to be
4396 * padded if they don't complete the last dword of the buffer. But as we
4397 * need to maintain the original size we need to reverse the padding
4398 * calculation to return the correct size to know the number of elements
4399 * of an unsized array. As we stored in the last two bits of the surface
4400 * size the needed padding for the buffer, we calculate here the
4401 * original buffer_size reversing the surface_size calculation:
4402 *
4403 * surface_size = isl_align(buffer_size, 4) +
4404 * (isl_align(buffer_size) - buffer_size)
4405 *
4406 * buffer_size = surface_size & ~3 - surface_size & 3
4407 */
4408
4409 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4410 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4411 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4412
4413 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4414 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4415 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4416
4417 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4418
4419 brw_mark_surface_used(prog_data, index);
4420 break;
4421 }
4422
4423 case nir_intrinsic_load_subgroup_invocation:
4424 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4425 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4426 break;
4427
4428 case nir_intrinsic_load_subgroup_eq_mask:
4429 case nir_intrinsic_load_subgroup_ge_mask:
4430 case nir_intrinsic_load_subgroup_gt_mask:
4431 case nir_intrinsic_load_subgroup_le_mask:
4432 case nir_intrinsic_load_subgroup_lt_mask:
4433 unreachable("not reached");
4434
4435 case nir_intrinsic_vote_any: {
4436 const fs_builder ubld = bld.exec_all().group(1, 0);
4437
4438 /* The any/all predicates do not consider channel enables. To prevent
4439 * dead channels from affecting the result, we initialize the flag with
4440 * with the identity value for the logical operation.
4441 */
4442 if (dispatch_width == 32) {
4443 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4444 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4445 brw_imm_ud(0));
4446 } else {
4447 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4448 }
4449 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4450
4451 /* For some reason, the any/all predicates don't work properly with
4452 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4453 * doesn't read the correct subset of the flag register and you end up
4454 * getting garbage in the second half. Work around this by using a pair
4455 * of 1-wide MOVs and scattering the result.
4456 */
4457 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4458 ubld.MOV(res1, brw_imm_d(0));
4459 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4460 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4461 BRW_PREDICATE_ALIGN1_ANY32H,
4462 ubld.MOV(res1, brw_imm_d(-1)));
4463
4464 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4465 break;
4466 }
4467 case nir_intrinsic_vote_all: {
4468 const fs_builder ubld = bld.exec_all().group(1, 0);
4469
4470 /* The any/all predicates do not consider channel enables. To prevent
4471 * dead channels from affecting the result, we initialize the flag with
4472 * with the identity value for the logical operation.
4473 */
4474 if (dispatch_width == 32) {
4475 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4476 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4477 brw_imm_ud(0xffffffff));
4478 } else {
4479 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4480 }
4481 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4482
4483 /* For some reason, the any/all predicates don't work properly with
4484 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4485 * doesn't read the correct subset of the flag register and you end up
4486 * getting garbage in the second half. Work around this by using a pair
4487 * of 1-wide MOVs and scattering the result.
4488 */
4489 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4490 ubld.MOV(res1, brw_imm_d(0));
4491 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4492 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4493 BRW_PREDICATE_ALIGN1_ALL32H,
4494 ubld.MOV(res1, brw_imm_d(-1)));
4495
4496 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4497 break;
4498 }
4499 case nir_intrinsic_vote_feq:
4500 case nir_intrinsic_vote_ieq: {
4501 fs_reg value = get_nir_src(instr->src[0]);
4502 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4503 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4504 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4505 }
4506
4507 fs_reg uniformized = bld.emit_uniformize(value);
4508 const fs_builder ubld = bld.exec_all().group(1, 0);
4509
4510 /* The any/all predicates do not consider channel enables. To prevent
4511 * dead channels from affecting the result, we initialize the flag with
4512 * with the identity value for the logical operation.
4513 */
4514 if (dispatch_width == 32) {
4515 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4516 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4517 brw_imm_ud(0xffffffff));
4518 } else {
4519 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4520 }
4521 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4522
4523 /* For some reason, the any/all predicates don't work properly with
4524 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4525 * doesn't read the correct subset of the flag register and you end up
4526 * getting garbage in the second half. Work around this by using a pair
4527 * of 1-wide MOVs and scattering the result.
4528 */
4529 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4530 ubld.MOV(res1, brw_imm_d(0));
4531 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4532 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4533 BRW_PREDICATE_ALIGN1_ALL32H,
4534 ubld.MOV(res1, brw_imm_d(-1)));
4535
4536 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4537 break;
4538 }
4539
4540 case nir_intrinsic_ballot: {
4541 const fs_reg value = retype(get_nir_src(instr->src[0]),
4542 BRW_REGISTER_TYPE_UD);
4543 struct brw_reg flag = brw_flag_reg(0, 0);
4544 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4545 * as f0.0. This is a problem for fragment programs as we currently use
4546 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4547 * programs yet so this isn't a problem. When we do, something will
4548 * have to change.
4549 */
4550 if (dispatch_width == 32)
4551 flag.type = BRW_REGISTER_TYPE_UD;
4552
4553 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4554 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4555
4556 if (instr->dest.ssa.bit_size > 32) {
4557 dest.type = BRW_REGISTER_TYPE_UQ;
4558 } else {
4559 dest.type = BRW_REGISTER_TYPE_UD;
4560 }
4561 bld.MOV(dest, flag);
4562 break;
4563 }
4564
4565 case nir_intrinsic_read_invocation: {
4566 const fs_reg value = get_nir_src(instr->src[0]);
4567 const fs_reg invocation = get_nir_src(instr->src[1]);
4568 fs_reg tmp = bld.vgrf(value.type);
4569
4570 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4571 bld.emit_uniformize(invocation));
4572
4573 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4574 break;
4575 }
4576
4577 case nir_intrinsic_read_first_invocation: {
4578 const fs_reg value = get_nir_src(instr->src[0]);
4579 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4580 break;
4581 }
4582
4583 case nir_intrinsic_shuffle: {
4584 const fs_reg value = get_nir_src(instr->src[0]);
4585 const fs_reg index = get_nir_src(instr->src[1]);
4586
4587 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4588 break;
4589 }
4590
4591 case nir_intrinsic_first_invocation: {
4592 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4593 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4594 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4595 fs_reg(component(tmp, 0)));
4596 break;
4597 }
4598
4599 case nir_intrinsic_quad_broadcast: {
4600 const fs_reg value = get_nir_src(instr->src[0]);
4601 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4602 assert(nir_src_bit_size(instr->src[1]) == 32);
4603
4604 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4605 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4606 break;
4607 }
4608
4609 case nir_intrinsic_quad_swap_horizontal: {
4610 const fs_reg value = get_nir_src(instr->src[0]);
4611 const fs_reg tmp = bld.vgrf(value.type);
4612 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4613
4614 const fs_reg src_left = horiz_stride(value, 2);
4615 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4616 const fs_reg tmp_left = horiz_stride(tmp, 2);
4617 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4618
4619 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4620 *
4621 * "When source or destination datatype is 64b or operation is
4622 * integer DWord multiply, regioning in Align1 must follow
4623 * these rules:
4624 *
4625 * [...]
4626 *
4627 * 3. Source and Destination offset must be the same, except
4628 * the case of scalar source."
4629 *
4630 * In order to work around this, we have to emit two 32-bit MOVs instead
4631 * of a single 64-bit MOV to do the shuffle.
4632 */
4633 if (type_sz(value.type) > 4 &&
4634 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4635 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4636 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4637 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4638 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4639 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4640 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4641 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4642 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4643 } else {
4644 ubld.MOV(tmp_left, src_right);
4645 ubld.MOV(tmp_right, src_left);
4646 }
4647 bld.MOV(retype(dest, value.type), tmp);
4648 break;
4649 }
4650
4651 case nir_intrinsic_quad_swap_vertical: {
4652 const fs_reg value = get_nir_src(instr->src[0]);
4653 if (nir_src_bit_size(instr->src[0]) == 32) {
4654 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4655 const fs_reg tmp = bld.vgrf(value.type);
4656 const fs_builder ubld = bld.exec_all();
4657 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4658 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4659 bld.MOV(retype(dest, value.type), tmp);
4660 } else {
4661 /* For larger data types, we have to either emit dispatch_width many
4662 * MOVs or else fall back to doing indirects.
4663 */
4664 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4665 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4666 brw_imm_w(0x2));
4667 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4668 }
4669 break;
4670 }
4671
4672 case nir_intrinsic_quad_swap_diagonal: {
4673 const fs_reg value = get_nir_src(instr->src[0]);
4674 if (nir_src_bit_size(instr->src[0]) == 32) {
4675 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4676 const fs_reg tmp = bld.vgrf(value.type);
4677 const fs_builder ubld = bld.exec_all();
4678 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4679 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4680 bld.MOV(retype(dest, value.type), tmp);
4681 } else {
4682 /* For larger data types, we have to either emit dispatch_width many
4683 * MOVs or else fall back to doing indirects.
4684 */
4685 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4686 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4687 brw_imm_w(0x3));
4688 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4689 }
4690 break;
4691 }
4692
4693 case nir_intrinsic_reduce: {
4694 fs_reg src = get_nir_src(instr->src[0]);
4695 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4696 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4697 if (cluster_size == 0 || cluster_size > dispatch_width)
4698 cluster_size = dispatch_width;
4699
4700 /* Figure out the source type */
4701 src.type = brw_type_for_nir_type(devinfo,
4702 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4703 nir_src_bit_size(instr->src[0])));
4704
4705 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4706 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4707 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4708
4709 /* Set up a register for all of our scratching around and initialize it
4710 * to reduction operation's identity value.
4711 */
4712 fs_reg scan = bld.vgrf(src.type);
4713 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4714
4715 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4716
4717 dest.type = src.type;
4718 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4719 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4720 * the distance between clusters is at least 2 GRFs. In this case,
4721 * we don't need the weird striding of the CLUSTER_BROADCAST
4722 * instruction and can just do regular MOVs.
4723 */
4724 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4725 const unsigned groups =
4726 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4727 const unsigned group_size = dispatch_width / groups;
4728 for (unsigned i = 0; i < groups; i++) {
4729 const unsigned cluster = (i * group_size) / cluster_size;
4730 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4731 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4732 component(scan, comp));
4733 }
4734 } else {
4735 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4736 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4737 }
4738 break;
4739 }
4740
4741 case nir_intrinsic_inclusive_scan:
4742 case nir_intrinsic_exclusive_scan: {
4743 fs_reg src = get_nir_src(instr->src[0]);
4744 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4745
4746 /* Figure out the source type */
4747 src.type = brw_type_for_nir_type(devinfo,
4748 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4749 nir_src_bit_size(instr->src[0])));
4750
4751 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4752 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4753 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4754
4755 /* Set up a register for all of our scratching around and initialize it
4756 * to reduction operation's identity value.
4757 */
4758 fs_reg scan = bld.vgrf(src.type);
4759 const fs_builder allbld = bld.exec_all();
4760 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4761
4762 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4763 /* Exclusive scan is a bit harder because we have to do an annoying
4764 * shift of the contents before we can begin. To make things worse,
4765 * we can't do this with a normal stride; we have to use indirects.
4766 */
4767 fs_reg shifted = bld.vgrf(src.type);
4768 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4769 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4770 brw_imm_w(-1));
4771 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4772 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4773 scan = shifted;
4774 }
4775
4776 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4777
4778 bld.MOV(retype(dest, src.type), scan);
4779 break;
4780 }
4781
4782 default:
4783 unreachable("unknown intrinsic");
4784 }
4785 }
4786
4787 void
4788 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4789 int op, nir_intrinsic_instr *instr)
4790 {
4791 if (stage == MESA_SHADER_FRAGMENT)
4792 brw_wm_prog_data(prog_data)->has_side_effects = true;
4793
4794 fs_reg dest;
4795 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4796 dest = get_nir_dest(instr->dest);
4797
4798 fs_reg surface;
4799 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4800 if (const_surface) {
4801 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4802 const_surface->u32[0];
4803 surface = brw_imm_ud(surf_index);
4804 brw_mark_surface_used(prog_data, surf_index);
4805 } else {
4806 surface = vgrf(glsl_type::uint_type);
4807 bld.ADD(surface, get_nir_src(instr->src[0]),
4808 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4809
4810 /* Assume this may touch any SSBO. This is the same we do for other
4811 * UBO/SSBO accesses with non-constant surface.
4812 */
4813 brw_mark_surface_used(prog_data,
4814 stage_prog_data->binding_table.ssbo_start +
4815 nir->info.num_ssbos - 1);
4816 }
4817
4818 fs_reg offset = get_nir_src(instr->src[1]);
4819 fs_reg data1 = get_nir_src(instr->src[2]);
4820 fs_reg data2;
4821 if (op == BRW_AOP_CMPWR)
4822 data2 = get_nir_src(instr->src[3]);
4823
4824 /* Emit the actual atomic operation */
4825
4826 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4827 data1, data2,
4828 1 /* dims */, 1 /* rsize */,
4829 op,
4830 BRW_PREDICATE_NONE);
4831 dest.type = atomic_result.type;
4832 bld.MOV(dest, atomic_result);
4833 }
4834
4835 void
4836 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4837 int op, nir_intrinsic_instr *instr)
4838 {
4839 fs_reg dest;
4840 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4841 dest = get_nir_dest(instr->dest);
4842
4843 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4844 fs_reg offset;
4845 fs_reg data1 = get_nir_src(instr->src[1]);
4846 fs_reg data2;
4847 if (op == BRW_AOP_CMPWR)
4848 data2 = get_nir_src(instr->src[2]);
4849
4850 /* Get the offset */
4851 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4852 if (const_offset) {
4853 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4854 } else {
4855 offset = vgrf(glsl_type::uint_type);
4856 bld.ADD(offset,
4857 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4858 brw_imm_ud(instr->const_index[0]));
4859 }
4860
4861 /* Emit the actual atomic operation operation */
4862
4863 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4864 data1, data2,
4865 1 /* dims */, 1 /* rsize */,
4866 op,
4867 BRW_PREDICATE_NONE);
4868 dest.type = atomic_result.type;
4869 bld.MOV(dest, atomic_result);
4870 }
4871
4872 void
4873 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4874 {
4875 unsigned texture = instr->texture_index;
4876 unsigned sampler = instr->sampler_index;
4877
4878 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4879
4880 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4881 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4882
4883 int lod_components = 0;
4884
4885 /* The hardware requires a LOD for buffer textures */
4886 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4887 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4888
4889 uint32_t header_bits = 0;
4890 for (unsigned i = 0; i < instr->num_srcs; i++) {
4891 fs_reg src = get_nir_src(instr->src[i].src);
4892 switch (instr->src[i].src_type) {
4893 case nir_tex_src_bias:
4894 srcs[TEX_LOGICAL_SRC_LOD] =
4895 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4896 break;
4897 case nir_tex_src_comparator:
4898 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4899 break;
4900 case nir_tex_src_coord:
4901 switch (instr->op) {
4902 case nir_texop_txf:
4903 case nir_texop_txf_ms:
4904 case nir_texop_txf_ms_mcs:
4905 case nir_texop_samples_identical:
4906 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4907 break;
4908 default:
4909 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4910 break;
4911 }
4912 break;
4913 case nir_tex_src_ddx:
4914 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4915 lod_components = nir_tex_instr_src_size(instr, i);
4916 break;
4917 case nir_tex_src_ddy:
4918 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4919 break;
4920 case nir_tex_src_lod:
4921 switch (instr->op) {
4922 case nir_texop_txs:
4923 srcs[TEX_LOGICAL_SRC_LOD] =
4924 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4925 break;
4926 case nir_texop_txf:
4927 srcs[TEX_LOGICAL_SRC_LOD] =
4928 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4929 break;
4930 default:
4931 srcs[TEX_LOGICAL_SRC_LOD] =
4932 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4933 break;
4934 }
4935 break;
4936 case nir_tex_src_ms_index:
4937 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4938 break;
4939
4940 case nir_tex_src_offset: {
4941 nir_const_value *const_offset =
4942 nir_src_as_const_value(instr->src[i].src);
4943 unsigned offset_bits = 0;
4944 if (const_offset &&
4945 brw_texture_offset(const_offset->i32,
4946 nir_tex_instr_src_size(instr, i),
4947 &offset_bits)) {
4948 header_bits |= offset_bits;
4949 } else {
4950 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
4951 retype(src, BRW_REGISTER_TYPE_D);
4952 }
4953 break;
4954 }
4955
4956 case nir_tex_src_projector:
4957 unreachable("should be lowered");
4958
4959 case nir_tex_src_texture_offset: {
4960 /* Figure out the highest possible texture index and mark it as used */
4961 uint32_t max_used = texture + instr->texture_array_size - 1;
4962 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
4963 max_used += stage_prog_data->binding_table.gather_texture_start;
4964 } else {
4965 max_used += stage_prog_data->binding_table.texture_start;
4966 }
4967 brw_mark_surface_used(prog_data, max_used);
4968
4969 /* Emit code to evaluate the actual indexing expression */
4970 fs_reg tmp = vgrf(glsl_type::uint_type);
4971 bld.ADD(tmp, src, brw_imm_ud(texture));
4972 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4973 break;
4974 }
4975
4976 case nir_tex_src_sampler_offset: {
4977 /* Emit code to evaluate the actual indexing expression */
4978 fs_reg tmp = vgrf(glsl_type::uint_type);
4979 bld.ADD(tmp, src, brw_imm_ud(sampler));
4980 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4981 break;
4982 }
4983
4984 case nir_tex_src_ms_mcs:
4985 assert(instr->op == nir_texop_txf_ms);
4986 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
4987 break;
4988
4989 case nir_tex_src_plane: {
4990 nir_const_value *const_plane =
4991 nir_src_as_const_value(instr->src[i].src);
4992 const uint32_t plane = const_plane->u32[0];
4993 const uint32_t texture_index =
4994 instr->texture_index +
4995 stage_prog_data->binding_table.plane_start[plane] -
4996 stage_prog_data->binding_table.texture_start;
4997
4998 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
4999 break;
5000 }
5001
5002 default:
5003 unreachable("unknown texture source");
5004 }
5005 }
5006
5007 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5008 (instr->op == nir_texop_txf_ms ||
5009 instr->op == nir_texop_samples_identical)) {
5010 if (devinfo->gen >= 7 &&
5011 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5012 srcs[TEX_LOGICAL_SRC_MCS] =
5013 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5014 instr->coord_components,
5015 srcs[TEX_LOGICAL_SRC_SURFACE]);
5016 } else {
5017 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5018 }
5019 }
5020
5021 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5022 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5023
5024 enum opcode opcode;
5025 switch (instr->op) {
5026 case nir_texop_tex:
5027 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5028 SHADER_OPCODE_TXL_LOGICAL);
5029 break;
5030 case nir_texop_txb:
5031 opcode = FS_OPCODE_TXB_LOGICAL;
5032 break;
5033 case nir_texop_txl:
5034 opcode = SHADER_OPCODE_TXL_LOGICAL;
5035 break;
5036 case nir_texop_txd:
5037 opcode = SHADER_OPCODE_TXD_LOGICAL;
5038 break;
5039 case nir_texop_txf:
5040 opcode = SHADER_OPCODE_TXF_LOGICAL;
5041 break;
5042 case nir_texop_txf_ms:
5043 if ((key_tex->msaa_16 & (1 << sampler)))
5044 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5045 else
5046 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5047 break;
5048 case nir_texop_txf_ms_mcs:
5049 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5050 break;
5051 case nir_texop_query_levels:
5052 case nir_texop_txs:
5053 opcode = SHADER_OPCODE_TXS_LOGICAL;
5054 break;
5055 case nir_texop_lod:
5056 opcode = SHADER_OPCODE_LOD_LOGICAL;
5057 break;
5058 case nir_texop_tg4:
5059 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5060 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5061 else
5062 opcode = SHADER_OPCODE_TG4_LOGICAL;
5063 break;
5064 case nir_texop_texture_samples:
5065 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5066 break;
5067 case nir_texop_samples_identical: {
5068 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5069
5070 /* If mcs is an immediate value, it means there is no MCS. In that case
5071 * just return false.
5072 */
5073 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5074 bld.MOV(dst, brw_imm_ud(0u));
5075 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5076 fs_reg tmp = vgrf(glsl_type::uint_type);
5077 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5078 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5079 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5080 } else {
5081 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5082 BRW_CONDITIONAL_EQ);
5083 }
5084 return;
5085 }
5086 default:
5087 unreachable("unknown texture opcode");
5088 }
5089
5090 if (instr->op == nir_texop_tg4) {
5091 if (instr->component == 1 &&
5092 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5093 /* gather4 sampler is broken for green channel on RG32F --
5094 * we must ask for blue instead.
5095 */
5096 header_bits |= 2 << 16;
5097 } else {
5098 header_bits |= instr->component << 16;
5099 }
5100 }
5101
5102 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5103 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5104 inst->offset = header_bits;
5105
5106 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5107 if (devinfo->gen >= 9 &&
5108 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5109 unsigned write_mask = instr->dest.is_ssa ?
5110 nir_ssa_def_components_read(&instr->dest.ssa):
5111 (1 << dest_size) - 1;
5112 assert(write_mask != 0); /* dead code should have been eliminated */
5113 inst->size_written = util_last_bit(write_mask) *
5114 inst->dst.component_size(inst->exec_size);
5115 } else {
5116 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5117 }
5118
5119 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5120 inst->shadow_compare = true;
5121
5122 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5123 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5124
5125 fs_reg nir_dest[4];
5126 for (unsigned i = 0; i < dest_size; i++)
5127 nir_dest[i] = offset(dst, bld, i);
5128
5129 if (instr->op == nir_texop_query_levels) {
5130 /* # levels is in .w */
5131 nir_dest[0] = offset(dst, bld, 3);
5132 } else if (instr->op == nir_texop_txs &&
5133 dest_size >= 3 && devinfo->gen < 7) {
5134 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5135 fs_reg depth = offset(dst, bld, 2);
5136 nir_dest[2] = vgrf(glsl_type::int_type);
5137 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5138 }
5139
5140 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5141 }
5142
5143 void
5144 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5145 {
5146 switch (instr->type) {
5147 case nir_jump_break:
5148 bld.emit(BRW_OPCODE_BREAK);
5149 break;
5150 case nir_jump_continue:
5151 bld.emit(BRW_OPCODE_CONTINUE);
5152 break;
5153 case nir_jump_return:
5154 default:
5155 unreachable("unknown jump");
5156 }
5157 }
5158
5159 /**
5160 * This helper takes the result of a load operation that reads 32-bit elements
5161 * in this format:
5162 *
5163 * x x x x x x x x
5164 * y y y y y y y y
5165 * z z z z z z z z
5166 * w w w w w w w w
5167 *
5168 * and shuffles the data to get this:
5169 *
5170 * x y x y x y x y
5171 * x y x y x y x y
5172 * z w z w z w z w
5173 * z w z w z w z w
5174 *
5175 * Which is exactly what we want if the load is reading 64-bit components
5176 * like doubles, where x represents the low 32-bit of the x double component
5177 * and y represents the high 32-bit of the x double component (likewise with
5178 * z and w for double component y). The parameter @components represents
5179 * the number of 64-bit components present in @src. This would typically be
5180 * 2 at most, since we can only fit 2 double elements in the result of a
5181 * vec4 load.
5182 *
5183 * Notice that @dst and @src can be the same register.
5184 */
5185 void
5186 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
5187 const fs_reg &dst,
5188 const fs_reg &src,
5189 uint32_t components)
5190 {
5191 assert(type_sz(src.type) == 4);
5192 assert(type_sz(dst.type) == 8);
5193
5194 /* A temporary that we will use to shuffle the 32-bit data of each
5195 * component in the vector into valid 64-bit data. We can't write directly
5196 * to dst because dst can be (and would usually be) the same as src
5197 * and in that case the first MOV in the loop below would overwrite the
5198 * data read in the second MOV.
5199 */
5200 fs_reg tmp = bld.vgrf(dst.type);
5201
5202 for (unsigned i = 0; i < components; i++) {
5203 const fs_reg component_i = offset(src, bld, 2 * i);
5204
5205 bld.MOV(subscript(tmp, src.type, 0), component_i);
5206 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
5207
5208 bld.MOV(offset(dst, bld, i), tmp);
5209 }
5210 }
5211
5212 void
5213 shuffle_32bit_load_result_to_16bit_data(const fs_builder &bld,
5214 const fs_reg &dst,
5215 const fs_reg &src,
5216 uint32_t first_component,
5217 uint32_t components)
5218 {
5219 assert(type_sz(src.type) == 4);
5220 assert(type_sz(dst.type) == 2);
5221
5222 /* A temporary is used to un-shuffle the 32-bit data of each component in
5223 * into a valid 16-bit vector. We can't write directly to dst because it
5224 * can be the same register as src and in that case the first MOV in the
5225 * loop below would overwrite the data read in the second MOV.
5226 */
5227 fs_reg tmp = retype(bld.vgrf(src.type), dst.type);
5228
5229 for (unsigned i = 0; i < components; i++) {
5230 const fs_reg component_i =
5231 subscript(offset(src, bld, (first_component + i) / 2), dst.type,
5232 (first_component + i) % 2);
5233
5234 bld.MOV(offset(tmp, bld, i % 2), component_i);
5235
5236 if (i % 2) {
5237 bld.MOV(offset(dst, bld, i -1), offset(tmp, bld, 0));
5238 bld.MOV(offset(dst, bld, i), offset(tmp, bld, 1));
5239 }
5240 }
5241 if (components % 2) {
5242 bld.MOV(offset(dst, bld, components - 1), tmp);
5243 }
5244 }
5245
5246 /**
5247 * This helper does the inverse operation of
5248 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
5249 *
5250 * We need to do this when we are going to use untyped write messsages that
5251 * operate with 32-bit components in order to arrange our 64-bit data to be
5252 * in the expected layout.
5253 *
5254 * Notice that callers of this function, unlike in the case of the inverse
5255 * operation, would typically need to call this with dst and src being
5256 * different registers, since they would otherwise corrupt the original
5257 * 64-bit data they are about to write. Because of this the function checks
5258 * that the src and dst regions involved in the operation do not overlap.
5259 */
5260 fs_reg
5261 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
5262 const fs_reg &src,
5263 uint32_t components)
5264 {
5265 assert(type_sz(src.type) == 8);
5266
5267 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D, 2 * components);
5268
5269 for (unsigned i = 0; i < components; i++) {
5270 const fs_reg component_i = offset(src, bld, i);
5271 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
5272 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
5273 }
5274
5275 return dst;
5276 }
5277
5278 void
5279 shuffle_16bit_data_for_32bit_write(const fs_builder &bld,
5280 const fs_reg &dst,
5281 const fs_reg &src,
5282 uint32_t components)
5283 {
5284 assert(type_sz(src.type) == 2);
5285 assert(type_sz(dst.type) == 4);
5286
5287 /* A temporary is used to shuffle the 16-bit data of each component in the
5288 * 32-bit data vector. We can't write directly to dst because it can be the
5289 * same register as src and in that case the first MOV in the loop below
5290 * would overwrite the data read in the second MOV.
5291 */
5292 fs_reg tmp = bld.vgrf(dst.type);
5293
5294 for (unsigned i = 0; i < components; i++) {
5295 const fs_reg component_i = offset(src, bld, i);
5296 bld.MOV(subscript(tmp, src.type, i % 2), component_i);
5297 if (i % 2) {
5298 bld.MOV(offset(dst, bld, i / 2), tmp);
5299 }
5300 }
5301 if (components % 2) {
5302 bld.MOV(offset(dst, bld, components / 2), tmp);
5303 }
5304 }
5305
5306 fs_reg
5307 setup_imm_df(const fs_builder &bld, double v)
5308 {
5309 const struct gen_device_info *devinfo = bld.shader->devinfo;
5310 assert(devinfo->gen >= 7);
5311
5312 if (devinfo->gen >= 8)
5313 return brw_imm_df(v);
5314
5315 /* gen7.5 does not support DF immediates straighforward but the DIM
5316 * instruction allows to set the 64-bit immediate value.
5317 */
5318 if (devinfo->is_haswell) {
5319 const fs_builder ubld = bld.exec_all().group(1, 0);
5320 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5321 ubld.DIM(dst, brw_imm_df(v));
5322 return component(dst, 0);
5323 }
5324
5325 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5326 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5327 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5328 *
5329 * Alternatively, we could also produce a normal VGRF (without stride 0)
5330 * by writing to all the channels in the VGRF, however, that would hit the
5331 * gen7 bug where we have to split writes that span more than 1 register
5332 * into instructions with a width of 4 (otherwise the write to the second
5333 * register written runs into an execmask hardware bug) which isn't very
5334 * nice.
5335 */
5336 union {
5337 double d;
5338 struct {
5339 uint32_t i1;
5340 uint32_t i2;
5341 };
5342 } di;
5343
5344 di.d = v;
5345
5346 const fs_builder ubld = bld.exec_all().group(1, 0);
5347 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5348 ubld.MOV(tmp, brw_imm_ud(di.i1));
5349 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5350
5351 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5352 }