intel: Use TXS for image_size when we have a typed surface
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
71 if (vec4s[loc] == 0) {
72 loc++;
73 continue;
74 }
75
76 unsigned reg_size = vec4s[loc];
77
78 /* Check if there are any ranges that start within this range and extend
79 * past it. If so, include them in this allocation.
80 */
81 for (unsigned i = 1; i < reg_size; i++)
82 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
83
84 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
85 for (unsigned i = 0; i < reg_size; i++)
86 outputs[loc + i] = offset(reg, bld, 4 * i);
87
88 loc += reg_size;
89 }
90 }
91
92 void
93 fs_visitor::nir_setup_uniforms()
94 {
95 /* Only the first compile gets to set up uniforms. */
96 if (push_constant_loc) {
97 assert(pull_constant_loc);
98 return;
99 }
100
101 uniforms = nir->num_uniforms / 4;
102
103 if (stage == MESA_SHADER_COMPUTE) {
104 /* Add a uniform for the thread local id. It must be the last uniform
105 * on the list.
106 */
107 assert(uniforms == prog_data->nr_params);
108 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
109 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
110 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
111 }
112 }
113
114 static bool
115 emit_system_values_block(nir_block *block, fs_visitor *v)
116 {
117 fs_reg *reg;
118
119 nir_foreach_instr(instr, block) {
120 if (instr->type != nir_instr_type_intrinsic)
121 continue;
122
123 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
124 switch (intrin->intrinsic) {
125 case nir_intrinsic_load_vertex_id:
126 case nir_intrinsic_load_base_vertex:
127 unreachable("should be lowered by nir_lower_system_values().");
128
129 case nir_intrinsic_load_vertex_id_zero_base:
130 case nir_intrinsic_load_is_indexed_draw:
131 case nir_intrinsic_load_first_vertex:
132 case nir_intrinsic_load_instance_id:
133 case nir_intrinsic_load_base_instance:
134 case nir_intrinsic_load_draw_id:
135 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
136
137 case nir_intrinsic_load_invocation_id:
138 if (v->stage == MESA_SHADER_TESS_CTRL)
139 break;
140 assert(v->stage == MESA_SHADER_GEOMETRY);
141 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
142 if (reg->file == BAD_FILE) {
143 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
144 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
145 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
146 abld.SHR(iid, g1, brw_imm_ud(27u));
147 *reg = iid;
148 }
149 break;
150
151 case nir_intrinsic_load_sample_pos:
152 assert(v->stage == MESA_SHADER_FRAGMENT);
153 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
154 if (reg->file == BAD_FILE)
155 *reg = *v->emit_samplepos_setup();
156 break;
157
158 case nir_intrinsic_load_sample_id:
159 assert(v->stage == MESA_SHADER_FRAGMENT);
160 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
161 if (reg->file == BAD_FILE)
162 *reg = *v->emit_sampleid_setup();
163 break;
164
165 case nir_intrinsic_load_sample_mask_in:
166 assert(v->stage == MESA_SHADER_FRAGMENT);
167 assert(v->devinfo->gen >= 7);
168 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
169 if (reg->file == BAD_FILE)
170 *reg = *v->emit_samplemaskin_setup();
171 break;
172
173 case nir_intrinsic_load_work_group_id:
174 assert(v->stage == MESA_SHADER_COMPUTE);
175 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
176 if (reg->file == BAD_FILE)
177 *reg = *v->emit_cs_work_group_id_setup();
178 break;
179
180 case nir_intrinsic_load_helper_invocation:
181 assert(v->stage == MESA_SHADER_FRAGMENT);
182 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
183 if (reg->file == BAD_FILE) {
184 const fs_builder abld =
185 v->bld.annotate("gl_HelperInvocation", NULL);
186
187 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
188 * pixel mask is in g1.7 of the thread payload.
189 *
190 * We move the per-channel pixel enable bit to the low bit of each
191 * channel by shifting the byte containing the pixel mask by the
192 * vector immediate 0x76543210UV.
193 *
194 * The region of <1,8,0> reads only 1 byte (the pixel masks for
195 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
196 * masks for 2 and 3) in SIMD16.
197 */
198 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
199
200 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
201 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
202 hbld.SHR(offset(shifted, hbld, i),
203 stride(retype(brw_vec1_grf(1 + i, 7),
204 BRW_REGISTER_TYPE_UB),
205 1, 8, 0),
206 brw_imm_v(0x76543210));
207 }
208
209 /* A set bit in the pixel mask means the channel is enabled, but
210 * that is the opposite of gl_HelperInvocation so we need to invert
211 * the mask.
212 *
213 * The negate source-modifier bit of logical instructions on Gen8+
214 * performs 1's complement negation, so we can use that instead of
215 * a NOT instruction.
216 */
217 fs_reg inverted = negate(shifted);
218 if (v->devinfo->gen < 8) {
219 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
220 abld.NOT(inverted, shifted);
221 }
222
223 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
224 * with 1 and negating.
225 */
226 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
227 abld.AND(anded, inverted, brw_imm_uw(1));
228
229 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
230 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
231 *reg = dst;
232 }
233 break;
234
235 default:
236 break;
237 }
238 }
239
240 return true;
241 }
242
243 void
244 fs_visitor::nir_emit_system_values()
245 {
246 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
247 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
248 nir_system_values[i] = fs_reg();
249 }
250
251 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
252 * never end up using it.
253 */
254 {
255 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
256 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
257 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
258
259 const fs_builder allbld8 = abld.group(8, 0).exec_all();
260 allbld8.MOV(reg, brw_imm_v(0x76543210));
261 if (dispatch_width > 8)
262 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
263 if (dispatch_width > 16) {
264 const fs_builder allbld16 = abld.group(16, 0).exec_all();
265 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
266 }
267 }
268
269 nir_foreach_function(function, nir) {
270 assert(strcmp(function->name, "main") == 0);
271 assert(function->impl);
272 nir_foreach_block(block, function->impl) {
273 emit_system_values_block(block, this);
274 }
275 }
276 }
277
278 /*
279 * Returns a type based on a reference_type (word, float, half-float) and a
280 * given bit_size.
281 *
282 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
283 *
284 * @FIXME: 64-bit return types are always DF on integer types to maintain
285 * compability with uses of DF previously to the introduction of int64
286 * support.
287 */
288 static brw_reg_type
289 brw_reg_type_from_bit_size(const unsigned bit_size,
290 const brw_reg_type reference_type)
291 {
292 switch(reference_type) {
293 case BRW_REGISTER_TYPE_HF:
294 case BRW_REGISTER_TYPE_F:
295 case BRW_REGISTER_TYPE_DF:
296 switch(bit_size) {
297 case 16:
298 return BRW_REGISTER_TYPE_HF;
299 case 32:
300 return BRW_REGISTER_TYPE_F;
301 case 64:
302 return BRW_REGISTER_TYPE_DF;
303 default:
304 unreachable("Invalid bit size");
305 }
306 case BRW_REGISTER_TYPE_B:
307 case BRW_REGISTER_TYPE_W:
308 case BRW_REGISTER_TYPE_D:
309 case BRW_REGISTER_TYPE_Q:
310 switch(bit_size) {
311 case 8:
312 return BRW_REGISTER_TYPE_B;
313 case 16:
314 return BRW_REGISTER_TYPE_W;
315 case 32:
316 return BRW_REGISTER_TYPE_D;
317 case 64:
318 return BRW_REGISTER_TYPE_Q;
319 default:
320 unreachable("Invalid bit size");
321 }
322 case BRW_REGISTER_TYPE_UB:
323 case BRW_REGISTER_TYPE_UW:
324 case BRW_REGISTER_TYPE_UD:
325 case BRW_REGISTER_TYPE_UQ:
326 switch(bit_size) {
327 case 8:
328 return BRW_REGISTER_TYPE_UB;
329 case 16:
330 return BRW_REGISTER_TYPE_UW;
331 case 32:
332 return BRW_REGISTER_TYPE_UD;
333 case 64:
334 return BRW_REGISTER_TYPE_UQ;
335 default:
336 unreachable("Invalid bit size");
337 }
338 default:
339 unreachable("Unknown type");
340 }
341 }
342
343 void
344 fs_visitor::nir_emit_impl(nir_function_impl *impl)
345 {
346 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
347 for (unsigned i = 0; i < impl->reg_alloc; i++) {
348 nir_locals[i] = fs_reg();
349 }
350
351 foreach_list_typed(nir_register, reg, node, &impl->registers) {
352 unsigned array_elems =
353 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
354 unsigned size = array_elems * reg->num_components;
355 const brw_reg_type reg_type =
356 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
357 nir_locals[reg->index] = bld.vgrf(reg_type, size);
358 }
359
360 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
361 impl->ssa_alloc);
362
363 nir_emit_cf_list(&impl->body);
364 }
365
366 void
367 fs_visitor::nir_emit_cf_list(exec_list *list)
368 {
369 exec_list_validate(list);
370 foreach_list_typed(nir_cf_node, node, node, list) {
371 switch (node->type) {
372 case nir_cf_node_if:
373 nir_emit_if(nir_cf_node_as_if(node));
374 break;
375
376 case nir_cf_node_loop:
377 nir_emit_loop(nir_cf_node_as_loop(node));
378 break;
379
380 case nir_cf_node_block:
381 nir_emit_block(nir_cf_node_as_block(node));
382 break;
383
384 default:
385 unreachable("Invalid CFG node block");
386 }
387 }
388 }
389
390 void
391 fs_visitor::nir_emit_if(nir_if *if_stmt)
392 {
393 /* first, put the condition into f0 */
394 fs_inst *inst = bld.MOV(bld.null_reg_d(),
395 retype(get_nir_src(if_stmt->condition),
396 BRW_REGISTER_TYPE_D));
397 inst->conditional_mod = BRW_CONDITIONAL_NZ;
398
399 bld.IF(BRW_PREDICATE_NORMAL);
400
401 nir_emit_cf_list(&if_stmt->then_list);
402
403 /* note: if the else is empty, dead CF elimination will remove it */
404 bld.emit(BRW_OPCODE_ELSE);
405
406 nir_emit_cf_list(&if_stmt->else_list);
407
408 bld.emit(BRW_OPCODE_ENDIF);
409
410 if (devinfo->gen < 7)
411 limit_dispatch_width(16, "Non-uniform control flow unsupported "
412 "in SIMD32 mode.");
413 }
414
415 void
416 fs_visitor::nir_emit_loop(nir_loop *loop)
417 {
418 bld.emit(BRW_OPCODE_DO);
419
420 nir_emit_cf_list(&loop->body);
421
422 bld.emit(BRW_OPCODE_WHILE);
423
424 if (devinfo->gen < 7)
425 limit_dispatch_width(16, "Non-uniform control flow unsupported "
426 "in SIMD32 mode.");
427 }
428
429 void
430 fs_visitor::nir_emit_block(nir_block *block)
431 {
432 nir_foreach_instr(instr, block) {
433 nir_emit_instr(instr);
434 }
435 }
436
437 void
438 fs_visitor::nir_emit_instr(nir_instr *instr)
439 {
440 const fs_builder abld = bld.annotate(NULL, instr);
441
442 switch (instr->type) {
443 case nir_instr_type_alu:
444 nir_emit_alu(abld, nir_instr_as_alu(instr));
445 break;
446
447 case nir_instr_type_deref:
448 /* Derefs can exist for images but they do nothing */
449 break;
450
451 case nir_instr_type_intrinsic:
452 switch (stage) {
453 case MESA_SHADER_VERTEX:
454 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456 case MESA_SHADER_TESS_CTRL:
457 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
458 break;
459 case MESA_SHADER_TESS_EVAL:
460 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462 case MESA_SHADER_GEOMETRY:
463 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 case MESA_SHADER_FRAGMENT:
466 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_COMPUTE:
469 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 default:
472 unreachable("unsupported shader stage");
473 }
474 break;
475
476 case nir_instr_type_tex:
477 nir_emit_texture(abld, nir_instr_as_tex(instr));
478 break;
479
480 case nir_instr_type_load_const:
481 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
482 break;
483
484 case nir_instr_type_ssa_undef:
485 /* We create a new VGRF for undefs on every use (by handling
486 * them in get_nir_src()), rather than for each definition.
487 * This helps register coalescing eliminate MOVs from undef.
488 */
489 break;
490
491 case nir_instr_type_jump:
492 nir_emit_jump(abld, nir_instr_as_jump(instr));
493 break;
494
495 default:
496 unreachable("unknown instruction type");
497 }
498 }
499
500 /**
501 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
502 * match instr.
503 */
504 bool
505 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
506 const fs_reg &result)
507 {
508 if (!instr->src[0].src.is_ssa ||
509 !instr->src[0].src.ssa->parent_instr)
510 return false;
511
512 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
513 return false;
514
515 nir_alu_instr *src0 =
516 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
517
518 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
519 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
520 return false;
521
522 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
523 assert(element != NULL);
524
525 /* Element type to extract.*/
526 const brw_reg_type type = brw_int_type(
527 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
528 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
529
530 fs_reg op0 = get_nir_src(src0->src[0].src);
531 op0.type = brw_type_for_nir_type(devinfo,
532 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
533 nir_src_bit_size(src0->src[0].src)));
534 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
535
536 set_saturate(instr->dest.saturate,
537 bld.MOV(result, subscript(op0, type, element->u32[0])));
538 return true;
539 }
540
541 bool
542 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
543 const fs_reg &result)
544 {
545 if (!instr->src[0].src.is_ssa ||
546 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
547 return false;
548
549 nir_intrinsic_instr *src0 =
550 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
551
552 if (src0->intrinsic != nir_intrinsic_load_front_face)
553 return false;
554
555 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
556 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
557 return false;
558
559 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
560 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
561 return false;
562
563 fs_reg tmp = vgrf(glsl_type::int_type);
564
565 if (devinfo->gen >= 6) {
566 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
567 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
568
569 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
570 *
571 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
572 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
573 *
574 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
575 *
576 * This negation looks like it's safe in practice, because bits 0:4 will
577 * surely be TRIANGLES
578 */
579
580 if (value1->f32[0] == -1.0f) {
581 g0.negate = true;
582 }
583
584 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
585 g0, brw_imm_uw(0x3f80));
586 } else {
587 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
588 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
589
590 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
591 *
592 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
593 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
594 *
595 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
596 *
597 * This negation looks like it's safe in practice, because bits 0:4 will
598 * surely be TRIANGLES
599 */
600
601 if (value1->f32[0] == -1.0f) {
602 g1_6.negate = true;
603 }
604
605 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
606 }
607 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
608
609 return true;
610 }
611
612 static void
613 emit_find_msb_using_lzd(const fs_builder &bld,
614 const fs_reg &result,
615 const fs_reg &src,
616 bool is_signed)
617 {
618 fs_inst *inst;
619 fs_reg temp = src;
620
621 if (is_signed) {
622 /* LZD of an absolute value source almost always does the right
623 * thing. There are two problem values:
624 *
625 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
626 * 0. However, findMSB(int(0x80000000)) == 30.
627 *
628 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
629 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
630 *
631 * For a value of zero or negative one, -1 will be returned.
632 *
633 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
634 * findMSB(-(1<<x)) should return x-1.
635 *
636 * For all negative number cases, including 0x80000000 and
637 * 0xffffffff, the correct value is obtained from LZD if instead of
638 * negating the (already negative) value the logical-not is used. A
639 * conditonal logical-not can be achieved in two instructions.
640 */
641 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
642
643 bld.ASR(temp, src, brw_imm_d(31));
644 bld.XOR(temp, temp, src);
645 }
646
647 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
648 retype(temp, BRW_REGISTER_TYPE_UD));
649
650 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
651 * from the LSB side. Subtract the result from 31 to convert the MSB
652 * count into an LSB count. If no bits are set, LZD will return 32.
653 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
654 */
655 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
656 inst->src[0].negate = true;
657 }
658
659 static brw_rnd_mode
660 brw_rnd_mode_from_nir_op (const nir_op op) {
661 switch (op) {
662 case nir_op_f2f16_rtz:
663 return BRW_RND_MODE_RTZ;
664 case nir_op_f2f16_rtne:
665 return BRW_RND_MODE_RTNE;
666 default:
667 unreachable("Operation doesn't support rounding mode");
668 }
669 }
670
671 void
672 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
673 {
674 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
675 fs_inst *inst;
676
677 fs_reg result = get_nir_dest(instr->dest.dest);
678 result.type = brw_type_for_nir_type(devinfo,
679 (nir_alu_type)(nir_op_infos[instr->op].output_type |
680 nir_dest_bit_size(instr->dest.dest)));
681
682 fs_reg op[4];
683 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
684 op[i] = get_nir_src(instr->src[i].src);
685 op[i].type = brw_type_for_nir_type(devinfo,
686 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
687 nir_src_bit_size(instr->src[i].src)));
688 op[i].abs = instr->src[i].abs;
689 op[i].negate = instr->src[i].negate;
690 }
691
692 /* We get a bunch of mov's out of the from_ssa pass and they may still
693 * be vectorized. We'll handle them as a special-case. We'll also
694 * handle vecN here because it's basically the same thing.
695 */
696 switch (instr->op) {
697 case nir_op_imov:
698 case nir_op_fmov:
699 case nir_op_vec2:
700 case nir_op_vec3:
701 case nir_op_vec4: {
702 fs_reg temp = result;
703 bool need_extra_copy = false;
704 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
705 if (!instr->src[i].src.is_ssa &&
706 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
707 need_extra_copy = true;
708 temp = bld.vgrf(result.type, 4);
709 break;
710 }
711 }
712
713 for (unsigned i = 0; i < 4; i++) {
714 if (!(instr->dest.write_mask & (1 << i)))
715 continue;
716
717 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
718 inst = bld.MOV(offset(temp, bld, i),
719 offset(op[0], bld, instr->src[0].swizzle[i]));
720 } else {
721 inst = bld.MOV(offset(temp, bld, i),
722 offset(op[i], bld, instr->src[i].swizzle[0]));
723 }
724 inst->saturate = instr->dest.saturate;
725 }
726
727 /* In this case the source and destination registers were the same,
728 * so we need to insert an extra set of moves in order to deal with
729 * any swizzling.
730 */
731 if (need_extra_copy) {
732 for (unsigned i = 0; i < 4; i++) {
733 if (!(instr->dest.write_mask & (1 << i)))
734 continue;
735
736 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
737 }
738 }
739 return;
740 }
741 default:
742 break;
743 }
744
745 /* At this point, we have dealt with any instruction that operates on
746 * more than a single channel. Therefore, we can just adjust the source
747 * and destination registers for that channel and emit the instruction.
748 */
749 unsigned channel = 0;
750 if (nir_op_infos[instr->op].output_size == 0) {
751 /* Since NIR is doing the scalarizing for us, we should only ever see
752 * vectorized operations with a single channel.
753 */
754 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
755 channel = ffs(instr->dest.write_mask) - 1;
756
757 result = offset(result, bld, channel);
758 }
759
760 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
761 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
762 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
763 }
764
765 switch (instr->op) {
766 case nir_op_i2f32:
767 case nir_op_u2f32:
768 if (optimize_extract_to_float(instr, result))
769 return;
770 inst = bld.MOV(result, op[0]);
771 inst->saturate = instr->dest.saturate;
772 break;
773
774 case nir_op_f2f16_rtne:
775 case nir_op_f2f16_rtz:
776 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
777 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
778 /* fallthrough */
779
780 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
781 * on the HW gen, it is a special hw opcode or just a MOV, and
782 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
783 *
784 * But if we want to use that opcode, we need to provide support on
785 * different optimizations and lowerings. As right now HF support is
786 * only for gen8+, it will be better to use directly the MOV, and use
787 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
788 */
789
790 case nir_op_f2f16:
791 inst = bld.MOV(result, op[0]);
792 inst->saturate = instr->dest.saturate;
793 break;
794
795 case nir_op_f2f64:
796 case nir_op_f2i64:
797 case nir_op_f2u64:
798 case nir_op_i2f64:
799 case nir_op_i2i64:
800 case nir_op_u2f64:
801 case nir_op_u2u64:
802 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
803 *
804 * "When source or destination is 64b (...), regioning in Align1
805 * must follow these rules:
806 *
807 * 1. Source and destination horizontal stride must be aligned to
808 * the same qword.
809 * (...)"
810 *
811 * This means that conversions from bit-sizes smaller than 64-bit to
812 * 64-bit need to have the source data elements aligned to 64-bit.
813 * This restriction does not apply to BDW and later.
814 */
815 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
816 nir_src_bit_size(instr->src[0].src) < 64 &&
817 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
818 fs_reg tmp = bld.vgrf(result.type, 1);
819 tmp = subscript(tmp, op[0].type, 0);
820 inst = bld.MOV(tmp, op[0]);
821 inst = bld.MOV(result, tmp);
822 inst->saturate = instr->dest.saturate;
823 break;
824 }
825 /* fallthrough */
826 case nir_op_f2f32:
827 case nir_op_f2i32:
828 case nir_op_f2u32:
829 case nir_op_f2i16:
830 case nir_op_f2u16:
831 case nir_op_i2i32:
832 case nir_op_u2u32:
833 case nir_op_i2i16:
834 case nir_op_u2u16:
835 case nir_op_i2f16:
836 case nir_op_u2f16:
837 case nir_op_i2i8:
838 case nir_op_u2u8:
839 inst = bld.MOV(result, op[0]);
840 inst->saturate = instr->dest.saturate;
841 break;
842
843 case nir_op_fsign: {
844 if (op[0].abs) {
845 /* Straightforward since the source can be assumed to be either
846 * strictly >= 0 or strictly <= 0 depending on the setting of the
847 * negate flag.
848 */
849 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
850
851 inst = (op[0].negate)
852 ? bld.MOV(result, brw_imm_f(-1.0f))
853 : bld.MOV(result, brw_imm_f(1.0f));
854
855 set_predicate(BRW_PREDICATE_NORMAL, inst);
856
857 if (instr->dest.saturate)
858 inst->saturate = true;
859
860 } else if (type_sz(op[0].type) < 8) {
861 /* AND(val, 0x80000000) gives the sign bit.
862 *
863 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
864 * zero.
865 */
866 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
867
868 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
869 op[0].type = BRW_REGISTER_TYPE_UD;
870 result.type = BRW_REGISTER_TYPE_UD;
871 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
872
873 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
874 inst->predicate = BRW_PREDICATE_NORMAL;
875 if (instr->dest.saturate) {
876 inst = bld.MOV(result, result);
877 inst->saturate = true;
878 }
879 } else {
880 /* For doubles we do the same but we need to consider:
881 *
882 * - 2-src instructions can't operate with 64-bit immediates
883 * - The sign is encoded in the high 32-bit of each DF
884 * - We need to produce a DF result.
885 */
886
887 fs_reg zero = vgrf(glsl_type::double_type);
888 bld.MOV(zero, setup_imm_df(bld, 0.0));
889 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
890
891 bld.MOV(result, zero);
892
893 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
894 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
895 brw_imm_ud(0x80000000u));
896
897 set_predicate(BRW_PREDICATE_NORMAL,
898 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
899
900 if (instr->dest.saturate) {
901 inst = bld.MOV(result, result);
902 inst->saturate = true;
903 }
904 }
905 break;
906 }
907
908 case nir_op_isign: {
909 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
910 * -> non-negative val generates 0x00000000.
911 * Predicated OR sets 1 if val is positive.
912 */
913 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
914 assert(bit_size == 32 || bit_size == 16);
915
916 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
917 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
918 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
919
920 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
921 bld.ASR(result, op[0], shift);
922 inst = bld.OR(result, result, one);
923 inst->predicate = BRW_PREDICATE_NORMAL;
924 break;
925 }
926
927 case nir_op_frcp:
928 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
929 inst->saturate = instr->dest.saturate;
930 break;
931
932 case nir_op_fexp2:
933 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936
937 case nir_op_flog2:
938 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
939 inst->saturate = instr->dest.saturate;
940 break;
941
942 case nir_op_fsin:
943 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
944 inst->saturate = instr->dest.saturate;
945 break;
946
947 case nir_op_fcos:
948 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
949 inst->saturate = instr->dest.saturate;
950 break;
951
952 case nir_op_fddx:
953 if (fs_key->high_quality_derivatives) {
954 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
955 } else {
956 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
957 }
958 inst->saturate = instr->dest.saturate;
959 break;
960 case nir_op_fddx_fine:
961 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
962 inst->saturate = instr->dest.saturate;
963 break;
964 case nir_op_fddx_coarse:
965 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
966 inst->saturate = instr->dest.saturate;
967 break;
968 case nir_op_fddy:
969 if (fs_key->high_quality_derivatives) {
970 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
971 } else {
972 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
973 }
974 inst->saturate = instr->dest.saturate;
975 break;
976 case nir_op_fddy_fine:
977 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
978 inst->saturate = instr->dest.saturate;
979 break;
980 case nir_op_fddy_coarse:
981 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
982 inst->saturate = instr->dest.saturate;
983 break;
984
985 case nir_op_iadd:
986 case nir_op_fadd:
987 inst = bld.ADD(result, op[0], op[1]);
988 inst->saturate = instr->dest.saturate;
989 break;
990
991 case nir_op_fmul:
992 inst = bld.MUL(result, op[0], op[1]);
993 inst->saturate = instr->dest.saturate;
994 break;
995
996 case nir_op_imul:
997 assert(nir_dest_bit_size(instr->dest.dest) < 64);
998 bld.MUL(result, op[0], op[1]);
999 break;
1000
1001 case nir_op_imul_high:
1002 case nir_op_umul_high:
1003 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1004 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1005 break;
1006
1007 case nir_op_idiv:
1008 case nir_op_udiv:
1009 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1010 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1011 break;
1012
1013 case nir_op_uadd_carry:
1014 unreachable("Should have been lowered by carry_to_arith().");
1015
1016 case nir_op_usub_borrow:
1017 unreachable("Should have been lowered by borrow_to_arith().");
1018
1019 case nir_op_umod:
1020 case nir_op_irem:
1021 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1022 * appears that our hardware just does the right thing for signed
1023 * remainder.
1024 */
1025 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1026 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1027 break;
1028
1029 case nir_op_imod: {
1030 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1031 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1032
1033 /* Math instructions don't support conditional mod */
1034 inst = bld.MOV(bld.null_reg_d(), result);
1035 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1036
1037 /* Now, we need to determine if signs of the sources are different.
1038 * When we XOR the sources, the top bit is 0 if they are the same and 1
1039 * if they are different. We can then use a conditional modifier to
1040 * turn that into a predicate. This leads us to an XOR.l instruction.
1041 *
1042 * Technically, according to the PRM, you're not allowed to use .l on a
1043 * XOR instruction. However, emperical experiments and Curro's reading
1044 * of the simulator source both indicate that it's safe.
1045 */
1046 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1047 inst = bld.XOR(tmp, op[0], op[1]);
1048 inst->predicate = BRW_PREDICATE_NORMAL;
1049 inst->conditional_mod = BRW_CONDITIONAL_L;
1050
1051 /* If the result of the initial remainder operation is non-zero and the
1052 * two sources have different signs, add in a copy of op[1] to get the
1053 * final integer modulus value.
1054 */
1055 inst = bld.ADD(result, result, op[1]);
1056 inst->predicate = BRW_PREDICATE_NORMAL;
1057 break;
1058 }
1059
1060 case nir_op_flt:
1061 case nir_op_fge:
1062 case nir_op_feq:
1063 case nir_op_fne: {
1064 fs_reg dest = result;
1065
1066 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1067 if (bit_size != 32)
1068 dest = bld.vgrf(op[0].type, 1);
1069
1070 brw_conditional_mod cond;
1071 switch (instr->op) {
1072 case nir_op_flt:
1073 cond = BRW_CONDITIONAL_L;
1074 break;
1075 case nir_op_fge:
1076 cond = BRW_CONDITIONAL_GE;
1077 break;
1078 case nir_op_feq:
1079 cond = BRW_CONDITIONAL_Z;
1080 break;
1081 case nir_op_fne:
1082 cond = BRW_CONDITIONAL_NZ;
1083 break;
1084 default:
1085 unreachable("bad opcode");
1086 }
1087
1088 bld.CMP(dest, op[0], op[1], cond);
1089
1090 if (bit_size > 32) {
1091 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1092 } else if(bit_size < 32) {
1093 /* When we convert the result to 32-bit we need to be careful and do
1094 * it as a signed conversion to get sign extension (for 32-bit true)
1095 */
1096 const brw_reg_type src_type =
1097 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1098
1099 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1100 }
1101 break;
1102 }
1103
1104 case nir_op_ilt:
1105 case nir_op_ult:
1106 case nir_op_ige:
1107 case nir_op_uge:
1108 case nir_op_ieq:
1109 case nir_op_ine: {
1110 fs_reg dest = result;
1111
1112 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1113 if (bit_size != 32)
1114 dest = bld.vgrf(op[0].type, 1);
1115
1116 brw_conditional_mod cond;
1117 switch (instr->op) {
1118 case nir_op_ilt:
1119 case nir_op_ult:
1120 cond = BRW_CONDITIONAL_L;
1121 break;
1122 case nir_op_ige:
1123 case nir_op_uge:
1124 cond = BRW_CONDITIONAL_GE;
1125 break;
1126 case nir_op_ieq:
1127 cond = BRW_CONDITIONAL_Z;
1128 break;
1129 case nir_op_ine:
1130 cond = BRW_CONDITIONAL_NZ;
1131 break;
1132 default:
1133 unreachable("bad opcode");
1134 }
1135 bld.CMP(dest, op[0], op[1], cond);
1136
1137 if (bit_size > 32) {
1138 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1139 } else if (bit_size < 32) {
1140 /* When we convert the result to 32-bit we need to be careful and do
1141 * it as a signed conversion to get sign extension (for 32-bit true)
1142 */
1143 const brw_reg_type src_type =
1144 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1145
1146 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1147 }
1148 break;
1149 }
1150
1151 case nir_op_inot:
1152 if (devinfo->gen >= 8) {
1153 op[0] = resolve_source_modifiers(op[0]);
1154 }
1155 bld.NOT(result, op[0]);
1156 break;
1157 case nir_op_ixor:
1158 if (devinfo->gen >= 8) {
1159 op[0] = resolve_source_modifiers(op[0]);
1160 op[1] = resolve_source_modifiers(op[1]);
1161 }
1162 bld.XOR(result, op[0], op[1]);
1163 break;
1164 case nir_op_ior:
1165 if (devinfo->gen >= 8) {
1166 op[0] = resolve_source_modifiers(op[0]);
1167 op[1] = resolve_source_modifiers(op[1]);
1168 }
1169 bld.OR(result, op[0], op[1]);
1170 break;
1171 case nir_op_iand:
1172 if (devinfo->gen >= 8) {
1173 op[0] = resolve_source_modifiers(op[0]);
1174 op[1] = resolve_source_modifiers(op[1]);
1175 }
1176 bld.AND(result, op[0], op[1]);
1177 break;
1178
1179 case nir_op_fdot2:
1180 case nir_op_fdot3:
1181 case nir_op_fdot4:
1182 case nir_op_ball_fequal2:
1183 case nir_op_ball_iequal2:
1184 case nir_op_ball_fequal3:
1185 case nir_op_ball_iequal3:
1186 case nir_op_ball_fequal4:
1187 case nir_op_ball_iequal4:
1188 case nir_op_bany_fnequal2:
1189 case nir_op_bany_inequal2:
1190 case nir_op_bany_fnequal3:
1191 case nir_op_bany_inequal3:
1192 case nir_op_bany_fnequal4:
1193 case nir_op_bany_inequal4:
1194 unreachable("Lowered by nir_lower_alu_reductions");
1195
1196 case nir_op_fnoise1_1:
1197 case nir_op_fnoise1_2:
1198 case nir_op_fnoise1_3:
1199 case nir_op_fnoise1_4:
1200 case nir_op_fnoise2_1:
1201 case nir_op_fnoise2_2:
1202 case nir_op_fnoise2_3:
1203 case nir_op_fnoise2_4:
1204 case nir_op_fnoise3_1:
1205 case nir_op_fnoise3_2:
1206 case nir_op_fnoise3_3:
1207 case nir_op_fnoise3_4:
1208 case nir_op_fnoise4_1:
1209 case nir_op_fnoise4_2:
1210 case nir_op_fnoise4_3:
1211 case nir_op_fnoise4_4:
1212 unreachable("not reached: should be handled by lower_noise");
1213
1214 case nir_op_ldexp:
1215 unreachable("not reached: should be handled by ldexp_to_arith()");
1216
1217 case nir_op_fsqrt:
1218 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1219 inst->saturate = instr->dest.saturate;
1220 break;
1221
1222 case nir_op_frsq:
1223 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1224 inst->saturate = instr->dest.saturate;
1225 break;
1226
1227 case nir_op_b2i:
1228 case nir_op_b2f:
1229 bld.MOV(result, negate(op[0]));
1230 break;
1231
1232 case nir_op_i2b:
1233 case nir_op_f2b: {
1234 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1235 if (bit_size == 64) {
1236 /* two-argument instructions can't take 64-bit immediates */
1237 fs_reg zero;
1238 fs_reg tmp;
1239
1240 if (instr->op == nir_op_f2b) {
1241 zero = vgrf(glsl_type::double_type);
1242 tmp = vgrf(glsl_type::double_type);
1243 bld.MOV(zero, setup_imm_df(bld, 0.0));
1244 } else {
1245 zero = vgrf(glsl_type::int64_t_type);
1246 tmp = vgrf(glsl_type::int64_t_type);
1247 bld.MOV(zero, brw_imm_q(0));
1248 }
1249
1250 /* A SIMD16 execution needs to be split in two instructions, so use
1251 * a vgrf instead of the flag register as dst so instruction splitting
1252 * works
1253 */
1254 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1255 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1256 } else {
1257 fs_reg zero;
1258 if (bit_size == 32) {
1259 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1260 } else {
1261 assert(bit_size == 16);
1262 zero = instr->op == nir_op_f2b ?
1263 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1264 }
1265 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1266 }
1267 break;
1268 }
1269
1270 case nir_op_ftrunc:
1271 inst = bld.RNDZ(result, op[0]);
1272 inst->saturate = instr->dest.saturate;
1273 break;
1274
1275 case nir_op_fceil: {
1276 op[0].negate = !op[0].negate;
1277 fs_reg temp = vgrf(glsl_type::float_type);
1278 bld.RNDD(temp, op[0]);
1279 temp.negate = true;
1280 inst = bld.MOV(result, temp);
1281 inst->saturate = instr->dest.saturate;
1282 break;
1283 }
1284 case nir_op_ffloor:
1285 inst = bld.RNDD(result, op[0]);
1286 inst->saturate = instr->dest.saturate;
1287 break;
1288 case nir_op_ffract:
1289 inst = bld.FRC(result, op[0]);
1290 inst->saturate = instr->dest.saturate;
1291 break;
1292 case nir_op_fround_even:
1293 inst = bld.RNDE(result, op[0]);
1294 inst->saturate = instr->dest.saturate;
1295 break;
1296
1297 case nir_op_fquantize2f16: {
1298 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1299 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1300 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1301
1302 /* The destination stride must be at least as big as the source stride. */
1303 tmp16.type = BRW_REGISTER_TYPE_W;
1304 tmp16.stride = 2;
1305
1306 /* Check for denormal */
1307 fs_reg abs_src0 = op[0];
1308 abs_src0.abs = true;
1309 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1310 BRW_CONDITIONAL_L);
1311 /* Get the appropriately signed zero */
1312 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1313 retype(op[0], BRW_REGISTER_TYPE_UD),
1314 brw_imm_ud(0x80000000));
1315 /* Do the actual F32 -> F16 -> F32 conversion */
1316 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1317 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1318 /* Select that or zero based on normal status */
1319 inst = bld.SEL(result, zero, tmp32);
1320 inst->predicate = BRW_PREDICATE_NORMAL;
1321 inst->saturate = instr->dest.saturate;
1322 break;
1323 }
1324
1325 case nir_op_imin:
1326 case nir_op_umin:
1327 case nir_op_fmin:
1328 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1329 inst->saturate = instr->dest.saturate;
1330 break;
1331
1332 case nir_op_imax:
1333 case nir_op_umax:
1334 case nir_op_fmax:
1335 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1336 inst->saturate = instr->dest.saturate;
1337 break;
1338
1339 case nir_op_pack_snorm_2x16:
1340 case nir_op_pack_snorm_4x8:
1341 case nir_op_pack_unorm_2x16:
1342 case nir_op_pack_unorm_4x8:
1343 case nir_op_unpack_snorm_2x16:
1344 case nir_op_unpack_snorm_4x8:
1345 case nir_op_unpack_unorm_2x16:
1346 case nir_op_unpack_unorm_4x8:
1347 case nir_op_unpack_half_2x16:
1348 case nir_op_pack_half_2x16:
1349 unreachable("not reached: should be handled by lower_packing_builtins");
1350
1351 case nir_op_unpack_half_2x16_split_x:
1352 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1353 inst->saturate = instr->dest.saturate;
1354 break;
1355 case nir_op_unpack_half_2x16_split_y:
1356 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1357 inst->saturate = instr->dest.saturate;
1358 break;
1359
1360 case nir_op_pack_64_2x32_split:
1361 case nir_op_pack_32_2x16_split:
1362 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1363 break;
1364
1365 case nir_op_unpack_64_2x32_split_x:
1366 case nir_op_unpack_64_2x32_split_y: {
1367 if (instr->op == nir_op_unpack_64_2x32_split_x)
1368 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1369 else
1370 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1371 break;
1372 }
1373
1374 case nir_op_unpack_32_2x16_split_x:
1375 case nir_op_unpack_32_2x16_split_y: {
1376 if (instr->op == nir_op_unpack_32_2x16_split_x)
1377 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1378 else
1379 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1380 break;
1381 }
1382
1383 case nir_op_fpow:
1384 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1385 inst->saturate = instr->dest.saturate;
1386 break;
1387
1388 case nir_op_bitfield_reverse:
1389 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1390 bld.BFREV(result, op[0]);
1391 break;
1392
1393 case nir_op_bit_count:
1394 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1395 bld.CBIT(result, op[0]);
1396 break;
1397
1398 case nir_op_ufind_msb: {
1399 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1400 emit_find_msb_using_lzd(bld, result, op[0], false);
1401 break;
1402 }
1403
1404 case nir_op_ifind_msb: {
1405 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1406
1407 if (devinfo->gen < 7) {
1408 emit_find_msb_using_lzd(bld, result, op[0], true);
1409 } else {
1410 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1411
1412 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1413 * count from the LSB side. If FBH didn't return an error
1414 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1415 * count into an LSB count.
1416 */
1417 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1418
1419 inst = bld.ADD(result, result, brw_imm_d(31));
1420 inst->predicate = BRW_PREDICATE_NORMAL;
1421 inst->src[0].negate = true;
1422 }
1423 break;
1424 }
1425
1426 case nir_op_find_lsb:
1427 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1428
1429 if (devinfo->gen < 7) {
1430 fs_reg temp = vgrf(glsl_type::int_type);
1431
1432 /* (x & -x) generates a value that consists of only the LSB of x.
1433 * For all powers of 2, findMSB(y) == findLSB(y).
1434 */
1435 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1436 fs_reg negated_src = src;
1437
1438 /* One must be negated, and the other must be non-negated. It
1439 * doesn't matter which is which.
1440 */
1441 negated_src.negate = true;
1442 src.negate = false;
1443
1444 bld.AND(temp, src, negated_src);
1445 emit_find_msb_using_lzd(bld, result, temp, false);
1446 } else {
1447 bld.FBL(result, op[0]);
1448 }
1449 break;
1450
1451 case nir_op_ubitfield_extract:
1452 case nir_op_ibitfield_extract:
1453 unreachable("should have been lowered");
1454 case nir_op_ubfe:
1455 case nir_op_ibfe:
1456 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1457 bld.BFE(result, op[2], op[1], op[0]);
1458 break;
1459 case nir_op_bfm:
1460 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1461 bld.BFI1(result, op[0], op[1]);
1462 break;
1463 case nir_op_bfi:
1464 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1465 bld.BFI2(result, op[0], op[1], op[2]);
1466 break;
1467
1468 case nir_op_bitfield_insert:
1469 unreachable("not reached: should have been lowered");
1470
1471 case nir_op_ishl:
1472 case nir_op_ishr:
1473 case nir_op_ushr: {
1474 fs_reg shift_count = op[1];
1475
1476 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1477 if (op[1].file == VGRF &&
1478 (result.type == BRW_REGISTER_TYPE_Q ||
1479 result.type == BRW_REGISTER_TYPE_UQ)) {
1480 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1481 BRW_REGISTER_TYPE_UD);
1482 shift_count.stride = 2;
1483 bld.MOV(shift_count, op[1]);
1484 }
1485 }
1486
1487 switch (instr->op) {
1488 case nir_op_ishl:
1489 bld.SHL(result, op[0], shift_count);
1490 break;
1491 case nir_op_ishr:
1492 bld.ASR(result, op[0], shift_count);
1493 break;
1494 case nir_op_ushr:
1495 bld.SHR(result, op[0], shift_count);
1496 break;
1497 default:
1498 unreachable("not reached");
1499 }
1500 break;
1501 }
1502
1503 case nir_op_pack_half_2x16_split:
1504 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1505 break;
1506
1507 case nir_op_ffma:
1508 inst = bld.MAD(result, op[2], op[1], op[0]);
1509 inst->saturate = instr->dest.saturate;
1510 break;
1511
1512 case nir_op_flrp:
1513 inst = bld.LRP(result, op[0], op[1], op[2]);
1514 inst->saturate = instr->dest.saturate;
1515 break;
1516
1517 case nir_op_bcsel:
1518 if (optimize_frontfacing_ternary(instr, result))
1519 return;
1520
1521 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1522 inst = bld.SEL(result, op[1], op[2]);
1523 inst->predicate = BRW_PREDICATE_NORMAL;
1524 break;
1525
1526 case nir_op_extract_u8:
1527 case nir_op_extract_i8: {
1528 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1529 assert(byte != NULL);
1530
1531 /* The PRMs say:
1532 *
1533 * BDW+
1534 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1535 * Use two instructions and a word or DWord intermediate integer type.
1536 */
1537 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1538 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1539
1540 if (instr->op == nir_op_extract_i8) {
1541 /* If we need to sign extend, extract to a word first */
1542 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1543 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1544 bld.MOV(result, w_temp);
1545 } else {
1546 /* Otherwise use an AND with 0xff and a word type */
1547 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1548 }
1549 } else {
1550 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1551 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1552 }
1553 break;
1554 }
1555
1556 case nir_op_extract_u16:
1557 case nir_op_extract_i16: {
1558 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1559 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1560 assert(word != NULL);
1561 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1562 break;
1563 }
1564
1565 default:
1566 unreachable("unhandled instruction");
1567 }
1568
1569 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1570 * to sign extend the low bit to 0/~0
1571 */
1572 if (devinfo->gen <= 5 &&
1573 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1574 fs_reg masked = vgrf(glsl_type::int_type);
1575 bld.AND(masked, result, brw_imm_d(1));
1576 masked.negate = true;
1577 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1578 }
1579 }
1580
1581 void
1582 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1583 nir_load_const_instr *instr)
1584 {
1585 const brw_reg_type reg_type =
1586 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1587 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1588
1589 switch (instr->def.bit_size) {
1590 case 8:
1591 for (unsigned i = 0; i < instr->def.num_components; i++)
1592 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value.i8[i]));
1593 break;
1594
1595 case 16:
1596 for (unsigned i = 0; i < instr->def.num_components; i++)
1597 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1598 break;
1599
1600 case 32:
1601 for (unsigned i = 0; i < instr->def.num_components; i++)
1602 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1603 break;
1604
1605 case 64:
1606 assert(devinfo->gen >= 7);
1607 if (devinfo->gen == 7) {
1608 /* We don't get 64-bit integer types until gen8 */
1609 for (unsigned i = 0; i < instr->def.num_components; i++) {
1610 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1611 setup_imm_df(bld, instr->value.f64[i]));
1612 }
1613 } else {
1614 for (unsigned i = 0; i < instr->def.num_components; i++)
1615 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1616 }
1617 break;
1618
1619 default:
1620 unreachable("Invalid bit size");
1621 }
1622
1623 nir_ssa_values[instr->def.index] = reg;
1624 }
1625
1626 fs_reg
1627 fs_visitor::get_nir_src(const nir_src &src)
1628 {
1629 fs_reg reg;
1630 if (src.is_ssa) {
1631 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1632 const brw_reg_type reg_type =
1633 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1634 reg = bld.vgrf(reg_type, src.ssa->num_components);
1635 } else {
1636 reg = nir_ssa_values[src.ssa->index];
1637 }
1638 } else {
1639 /* We don't handle indirects on locals */
1640 assert(src.reg.indirect == NULL);
1641 reg = offset(nir_locals[src.reg.reg->index], bld,
1642 src.reg.base_offset * src.reg.reg->num_components);
1643 }
1644
1645 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1646 /* The only 64-bit type available on gen7 is DF, so use that. */
1647 reg.type = BRW_REGISTER_TYPE_DF;
1648 } else {
1649 /* To avoid floating-point denorm flushing problems, set the type by
1650 * default to an integer type - instructions that need floating point
1651 * semantics will set this to F if they need to
1652 */
1653 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1654 BRW_REGISTER_TYPE_D);
1655 }
1656
1657 return reg;
1658 }
1659
1660 /**
1661 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1662 *
1663 * This function should not be called on any value which may be 64 bits.
1664 * We could theoretically support 64-bit on gen8+ but we choose not to
1665 * because it wouldn't work in general (no gen7 support) and there are
1666 * enough restrictions in 64-bit immediates that you can't take the return
1667 * value and treat it the same as the result of get_nir_src().
1668 */
1669 fs_reg
1670 fs_visitor::get_nir_src_imm(const nir_src &src)
1671 {
1672 nir_const_value *val = nir_src_as_const_value(src);
1673 assert(nir_src_bit_size(src) == 32);
1674 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1675 }
1676
1677 fs_reg
1678 fs_visitor::get_nir_dest(const nir_dest &dest)
1679 {
1680 if (dest.is_ssa) {
1681 const brw_reg_type reg_type =
1682 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1683 dest.ssa.bit_size == 8 ?
1684 BRW_REGISTER_TYPE_D :
1685 BRW_REGISTER_TYPE_F);
1686 nir_ssa_values[dest.ssa.index] =
1687 bld.vgrf(reg_type, dest.ssa.num_components);
1688 return nir_ssa_values[dest.ssa.index];
1689 } else {
1690 /* We don't handle indirects on locals */
1691 assert(dest.reg.indirect == NULL);
1692 return offset(nir_locals[dest.reg.reg->index], bld,
1693 dest.reg.base_offset * dest.reg.reg->num_components);
1694 }
1695 }
1696
1697 void
1698 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1699 unsigned wr_mask)
1700 {
1701 for (unsigned i = 0; i < 4; i++) {
1702 if (!((wr_mask >> i) & 1))
1703 continue;
1704
1705 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1706 new_inst->dst = offset(new_inst->dst, bld, i);
1707 for (unsigned j = 0; j < new_inst->sources; j++)
1708 if (new_inst->src[j].file == VGRF)
1709 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1710
1711 bld.emit(new_inst);
1712 }
1713 }
1714
1715 /**
1716 * Get the matching channel register datatype for an image intrinsic of the
1717 * specified GLSL image type.
1718 */
1719 static brw_reg_type
1720 get_image_base_type(const glsl_type *type)
1721 {
1722 switch ((glsl_base_type)type->sampled_type) {
1723 case GLSL_TYPE_UINT:
1724 return BRW_REGISTER_TYPE_UD;
1725 case GLSL_TYPE_INT:
1726 return BRW_REGISTER_TYPE_D;
1727 case GLSL_TYPE_FLOAT:
1728 return BRW_REGISTER_TYPE_F;
1729 default:
1730 unreachable("Not reached.");
1731 }
1732 }
1733
1734 static fs_inst *
1735 emit_pixel_interpolater_send(const fs_builder &bld,
1736 enum opcode opcode,
1737 const fs_reg &dst,
1738 const fs_reg &src,
1739 const fs_reg &desc,
1740 glsl_interp_mode interpolation)
1741 {
1742 struct brw_wm_prog_data *wm_prog_data =
1743 brw_wm_prog_data(bld.shader->stage_prog_data);
1744
1745 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1746 /* 2 floats per slot returned */
1747 inst->size_written = 2 * dst.component_size(inst->exec_size);
1748 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1749
1750 wm_prog_data->pulls_bary = true;
1751
1752 return inst;
1753 }
1754
1755 /**
1756 * Computes 1 << x, given a D/UD register containing some value x.
1757 */
1758 static fs_reg
1759 intexp2(const fs_builder &bld, const fs_reg &x)
1760 {
1761 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1762
1763 fs_reg result = bld.vgrf(x.type, 1);
1764 fs_reg one = bld.vgrf(x.type, 1);
1765
1766 bld.MOV(one, retype(brw_imm_d(1), one.type));
1767 bld.SHL(result, one, x);
1768 return result;
1769 }
1770
1771 void
1772 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1773 {
1774 assert(stage == MESA_SHADER_GEOMETRY);
1775
1776 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1777
1778 if (gs_compile->control_data_header_size_bits == 0)
1779 return;
1780
1781 /* We can only do EndPrimitive() functionality when the control data
1782 * consists of cut bits. Fortunately, the only time it isn't is when the
1783 * output type is points, in which case EndPrimitive() is a no-op.
1784 */
1785 if (gs_prog_data->control_data_format !=
1786 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1787 return;
1788 }
1789
1790 /* Cut bits use one bit per vertex. */
1791 assert(gs_compile->control_data_bits_per_vertex == 1);
1792
1793 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1794 vertex_count.type = BRW_REGISTER_TYPE_UD;
1795
1796 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1797 * vertex n, 0 otherwise. So all we need to do here is mark bit
1798 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1799 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1800 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1801 *
1802 * Note that if EndPrimitive() is called before emitting any vertices, this
1803 * will cause us to set bit 31 of the control_data_bits register to 1.
1804 * That's fine because:
1805 *
1806 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1807 * output, so the hardware will ignore cut bit 31.
1808 *
1809 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1810 * last vertex, so setting cut bit 31 has no effect (since the primitive
1811 * is automatically ended when the GS terminates).
1812 *
1813 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1814 * control_data_bits register to 0 when the first vertex is emitted.
1815 */
1816
1817 const fs_builder abld = bld.annotate("end primitive");
1818
1819 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1820 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1821 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1822 fs_reg mask = intexp2(abld, prev_count);
1823 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1824 * attention to the lower 5 bits of its second source argument, so on this
1825 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1826 * ((vertex_count - 1) % 32).
1827 */
1828 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1829 }
1830
1831 void
1832 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1833 {
1834 assert(stage == MESA_SHADER_GEOMETRY);
1835 assert(gs_compile->control_data_bits_per_vertex != 0);
1836
1837 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1838
1839 const fs_builder abld = bld.annotate("emit control data bits");
1840 const fs_builder fwa_bld = bld.exec_all();
1841
1842 /* We use a single UD register to accumulate control data bits (32 bits
1843 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1844 * at a time.
1845 *
1846 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1847 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1848 * use the Channel Mask phase to enable/disable which DWord within that
1849 * group to write. (Remember, different SIMD8 channels may have emitted
1850 * different numbers of vertices, so we may need per-slot offsets.)
1851 *
1852 * Channel masking presents an annoying problem: we may have to replicate
1853 * the data up to 4 times:
1854 *
1855 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1856 *
1857 * To avoid penalizing shaders that emit a small number of vertices, we
1858 * can avoid these sometimes: if the size of the control data header is
1859 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1860 * land in the same 128-bit group, so we can skip per-slot offsets.
1861 *
1862 * Similarly, if the control data header is <= 32 bits, there is only one
1863 * DWord, so we can skip channel masks.
1864 */
1865 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1866
1867 fs_reg channel_mask, per_slot_offset;
1868
1869 if (gs_compile->control_data_header_size_bits > 32) {
1870 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1871 channel_mask = vgrf(glsl_type::uint_type);
1872 }
1873
1874 if (gs_compile->control_data_header_size_bits > 128) {
1875 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1876 per_slot_offset = vgrf(glsl_type::uint_type);
1877 }
1878
1879 /* Figure out which DWord we're trying to write to using the formula:
1880 *
1881 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1882 *
1883 * Since bits_per_vertex is a power of two, and is known at compile
1884 * time, this can be optimized to:
1885 *
1886 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1887 */
1888 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1889 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1890 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1891 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1892 unsigned log2_bits_per_vertex =
1893 util_last_bit(gs_compile->control_data_bits_per_vertex);
1894 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1895
1896 if (per_slot_offset.file != BAD_FILE) {
1897 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1898 * the appropriate OWord within the control data header.
1899 */
1900 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1901 }
1902
1903 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1904 * write to the appropriate DWORD within the OWORD.
1905 */
1906 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1907 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1908 channel_mask = intexp2(fwa_bld, channel);
1909 /* Then the channel masks need to be in bits 23:16. */
1910 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1911 }
1912
1913 /* Store the control data bits in the message payload and send it. */
1914 int mlen = 2;
1915 if (channel_mask.file != BAD_FILE)
1916 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1917 if (per_slot_offset.file != BAD_FILE)
1918 mlen++;
1919
1920 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1921 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1922 int i = 0;
1923 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1924 if (per_slot_offset.file != BAD_FILE)
1925 sources[i++] = per_slot_offset;
1926 if (channel_mask.file != BAD_FILE)
1927 sources[i++] = channel_mask;
1928 while (i < mlen) {
1929 sources[i++] = this->control_data_bits;
1930 }
1931
1932 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1933 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1934 inst->mlen = mlen;
1935 /* We need to increment Global Offset by 256-bits to make room for
1936 * Broadwell's extra "Vertex Count" payload at the beginning of the
1937 * URB entry. Since this is an OWord message, Global Offset is counted
1938 * in 128-bit units, so we must set it to 2.
1939 */
1940 if (gs_prog_data->static_vertex_count == -1)
1941 inst->offset = 2;
1942 }
1943
1944 void
1945 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1946 unsigned stream_id)
1947 {
1948 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1949
1950 /* Note: we are calling this *before* increasing vertex_count, so
1951 * this->vertex_count == vertex_count - 1 in the formula above.
1952 */
1953
1954 /* Stream mode uses 2 bits per vertex */
1955 assert(gs_compile->control_data_bits_per_vertex == 2);
1956
1957 /* Must be a valid stream */
1958 assert(stream_id < MAX_VERTEX_STREAMS);
1959
1960 /* Control data bits are initialized to 0 so we don't have to set any
1961 * bits when sending vertices to stream 0.
1962 */
1963 if (stream_id == 0)
1964 return;
1965
1966 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1967
1968 /* reg::sid = stream_id */
1969 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1970 abld.MOV(sid, brw_imm_ud(stream_id));
1971
1972 /* reg:shift_count = 2 * (vertex_count - 1) */
1973 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1974 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1975
1976 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1977 * attention to the lower 5 bits of its second source argument, so on this
1978 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1979 * stream_id << ((2 * (vertex_count - 1)) % 32).
1980 */
1981 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1982 abld.SHL(mask, sid, shift_count);
1983 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1984 }
1985
1986 void
1987 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1988 unsigned stream_id)
1989 {
1990 assert(stage == MESA_SHADER_GEOMETRY);
1991
1992 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1993
1994 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1995 vertex_count.type = BRW_REGISTER_TYPE_UD;
1996
1997 /* Haswell and later hardware ignores the "Render Stream Select" bits
1998 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1999 * and instead sends all primitives down the pipeline for rasterization.
2000 * If the SOL stage is enabled, "Render Stream Select" is honored and
2001 * primitives bound to non-zero streams are discarded after stream output.
2002 *
2003 * Since the only purpose of primives sent to non-zero streams is to
2004 * be recorded by transform feedback, we can simply discard all geometry
2005 * bound to these streams when transform feedback is disabled.
2006 */
2007 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2008 return;
2009
2010 /* If we're outputting 32 control data bits or less, then we can wait
2011 * until the shader is over to output them all. Otherwise we need to
2012 * output them as we go. Now is the time to do it, since we're about to
2013 * output the vertex_count'th vertex, so it's guaranteed that the
2014 * control data bits associated with the (vertex_count - 1)th vertex are
2015 * correct.
2016 */
2017 if (gs_compile->control_data_header_size_bits > 32) {
2018 const fs_builder abld =
2019 bld.annotate("emit vertex: emit control data bits");
2020
2021 /* Only emit control data bits if we've finished accumulating a batch
2022 * of 32 bits. This is the case when:
2023 *
2024 * (vertex_count * bits_per_vertex) % 32 == 0
2025 *
2026 * (in other words, when the last 5 bits of vertex_count *
2027 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2028 * integer n (which is always the case, since bits_per_vertex is
2029 * always 1 or 2), this is equivalent to requiring that the last 5-n
2030 * bits of vertex_count are 0:
2031 *
2032 * vertex_count & (2^(5-n) - 1) == 0
2033 *
2034 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2035 * equivalent to:
2036 *
2037 * vertex_count & (32 / bits_per_vertex - 1) == 0
2038 *
2039 * TODO: If vertex_count is an immediate, we could do some of this math
2040 * at compile time...
2041 */
2042 fs_inst *inst =
2043 abld.AND(bld.null_reg_d(), vertex_count,
2044 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2045 inst->conditional_mod = BRW_CONDITIONAL_Z;
2046
2047 abld.IF(BRW_PREDICATE_NORMAL);
2048 /* If vertex_count is 0, then no control data bits have been
2049 * accumulated yet, so we can skip emitting them.
2050 */
2051 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2052 BRW_CONDITIONAL_NEQ);
2053 abld.IF(BRW_PREDICATE_NORMAL);
2054 emit_gs_control_data_bits(vertex_count);
2055 abld.emit(BRW_OPCODE_ENDIF);
2056
2057 /* Reset control_data_bits to 0 so we can start accumulating a new
2058 * batch.
2059 *
2060 * Note: in the case where vertex_count == 0, this neutralizes the
2061 * effect of any call to EndPrimitive() that the shader may have
2062 * made before outputting its first vertex.
2063 */
2064 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2065 inst->force_writemask_all = true;
2066 abld.emit(BRW_OPCODE_ENDIF);
2067 }
2068
2069 emit_urb_writes(vertex_count);
2070
2071 /* In stream mode we have to set control data bits for all vertices
2072 * unless we have disabled control data bits completely (which we do
2073 * do for GL_POINTS outputs that don't use streams).
2074 */
2075 if (gs_compile->control_data_header_size_bits > 0 &&
2076 gs_prog_data->control_data_format ==
2077 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2078 set_gs_stream_control_data_bits(vertex_count, stream_id);
2079 }
2080 }
2081
2082 void
2083 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2084 const nir_src &vertex_src,
2085 unsigned base_offset,
2086 const nir_src &offset_src,
2087 unsigned num_components,
2088 unsigned first_component)
2089 {
2090 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2091
2092 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2093 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2094 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2095
2096 /* TODO: figure out push input layout for invocations == 1 */
2097 /* TODO: make this work with 64-bit inputs */
2098 if (gs_prog_data->invocations == 1 &&
2099 type_sz(dst.type) <= 4 &&
2100 offset_const != NULL && vertex_const != NULL &&
2101 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2102 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2103 vertex_const->u32[0] * push_reg_count;
2104 for (unsigned i = 0; i < num_components; i++) {
2105 bld.MOV(offset(dst, bld, i),
2106 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2107 }
2108 return;
2109 }
2110
2111 /* Resort to the pull model. Ensure the VUE handles are provided. */
2112 assert(gs_prog_data->base.include_vue_handles);
2113
2114 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2115 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2116
2117 if (gs_prog_data->invocations == 1) {
2118 if (vertex_const) {
2119 /* The vertex index is constant; just select the proper URB handle. */
2120 icp_handle =
2121 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2122 BRW_REGISTER_TYPE_UD);
2123 } else {
2124 /* The vertex index is non-constant. We need to use indirect
2125 * addressing to fetch the proper URB handle.
2126 *
2127 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2128 * indicating that channel <n> should read the handle from
2129 * DWord <n>. We convert that to bytes by multiplying by 4.
2130 *
2131 * Next, we convert the vertex index to bytes by multiplying
2132 * by 32 (shifting by 5), and add the two together. This is
2133 * the final indirect byte offset.
2134 */
2135 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2136 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2137 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2138 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2139
2140 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2141 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2142 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2143 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2144 /* Convert vertex_index to bytes (multiply by 32) */
2145 bld.SHL(vertex_offset_bytes,
2146 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2147 brw_imm_ud(5u));
2148 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2149
2150 /* Use first_icp_handle as the base offset. There is one register
2151 * of URB handles per vertex, so inform the register allocator that
2152 * we might read up to nir->info.gs.vertices_in registers.
2153 */
2154 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2155 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2156 fs_reg(icp_offset_bytes),
2157 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2158 }
2159 } else {
2160 assert(gs_prog_data->invocations > 1);
2161
2162 if (vertex_const) {
2163 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2164 bld.MOV(icp_handle,
2165 retype(brw_vec1_grf(first_icp_handle +
2166 vertex_const->i32[0] / 8,
2167 vertex_const->i32[0] % 8),
2168 BRW_REGISTER_TYPE_UD));
2169 } else {
2170 /* The vertex index is non-constant. We need to use indirect
2171 * addressing to fetch the proper URB handle.
2172 *
2173 */
2174 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2175
2176 /* Convert vertex_index to bytes (multiply by 4) */
2177 bld.SHL(icp_offset_bytes,
2178 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2179 brw_imm_ud(2u));
2180
2181 /* Use first_icp_handle as the base offset. There is one DWord
2182 * of URB handles per vertex, so inform the register allocator that
2183 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2184 */
2185 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2186 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2187 fs_reg(icp_offset_bytes),
2188 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2189 REG_SIZE));
2190 }
2191 }
2192
2193 fs_inst *inst;
2194
2195 fs_reg tmp_dst = dst;
2196 fs_reg indirect_offset = get_nir_src(offset_src);
2197 unsigned num_iterations = 1;
2198 unsigned orig_num_components = num_components;
2199
2200 if (type_sz(dst.type) == 8) {
2201 if (num_components > 2) {
2202 num_iterations = 2;
2203 num_components = 2;
2204 }
2205 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2206 tmp_dst = tmp;
2207 first_component = first_component / 2;
2208 }
2209
2210 for (unsigned iter = 0; iter < num_iterations; iter++) {
2211 if (offset_const) {
2212 /* Constant indexing - use global offset. */
2213 if (first_component != 0) {
2214 unsigned read_components = num_components + first_component;
2215 fs_reg tmp = bld.vgrf(dst.type, read_components);
2216 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2217 inst->size_written = read_components *
2218 tmp.component_size(inst->exec_size);
2219 for (unsigned i = 0; i < num_components; i++) {
2220 bld.MOV(offset(tmp_dst, bld, i),
2221 offset(tmp, bld, i + first_component));
2222 }
2223 } else {
2224 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2225 icp_handle);
2226 inst->size_written = num_components *
2227 tmp_dst.component_size(inst->exec_size);
2228 }
2229 inst->offset = base_offset + offset_const->u32[0];
2230 inst->mlen = 1;
2231 } else {
2232 /* Indirect indexing - use per-slot offsets as well. */
2233 const fs_reg srcs[] = { icp_handle, indirect_offset };
2234 unsigned read_components = num_components + first_component;
2235 fs_reg tmp = bld.vgrf(dst.type, read_components);
2236 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2237 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2238 if (first_component != 0) {
2239 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2240 payload);
2241 inst->size_written = read_components *
2242 tmp.component_size(inst->exec_size);
2243 for (unsigned i = 0; i < num_components; i++) {
2244 bld.MOV(offset(tmp_dst, bld, i),
2245 offset(tmp, bld, i + first_component));
2246 }
2247 } else {
2248 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2249 payload);
2250 inst->size_written = num_components *
2251 tmp_dst.component_size(inst->exec_size);
2252 }
2253 inst->offset = base_offset;
2254 inst->mlen = 2;
2255 }
2256
2257 if (type_sz(dst.type) == 8) {
2258 shuffle_from_32bit_read(bld,
2259 offset(dst, bld, iter * 2),
2260 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2261 0,
2262 num_components);
2263 }
2264
2265 if (num_iterations > 1) {
2266 num_components = orig_num_components - 2;
2267 if(offset_const) {
2268 base_offset++;
2269 } else {
2270 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2271 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2272 indirect_offset = new_indirect;
2273 }
2274 }
2275 }
2276 }
2277
2278 fs_reg
2279 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2280 {
2281 nir_src *offset_src = nir_get_io_offset_src(instr);
2282 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2283
2284 if (const_value) {
2285 /* The only constant offset we should find is 0. brw_nir.c's
2286 * add_const_offset_to_base() will fold other constant offsets
2287 * into instr->const_index[0].
2288 */
2289 assert(const_value->u32[0] == 0);
2290 return fs_reg();
2291 }
2292
2293 return get_nir_src(*offset_src);
2294 }
2295
2296 static void
2297 do_untyped_vector_read(const fs_builder &bld,
2298 const fs_reg dest,
2299 const fs_reg surf_index,
2300 const fs_reg offset_reg,
2301 unsigned num_components)
2302 {
2303 if (type_sz(dest.type) <= 2) {
2304 assert(dest.stride == 1);
2305 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2306
2307 if (is_const_offset) {
2308 uint32_t start = offset_reg.ud & ~3;
2309 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2310 end = ALIGN(end, 4);
2311 assert (end - start <= 16);
2312
2313 /* At this point we have 16-bit component/s that have constant
2314 * offset aligned to 4-bytes that can be read with untyped_reads.
2315 * untyped_read message requires 32-bit aligned offsets.
2316 */
2317 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2318 unsigned num_components_32bit = (end - start) / 4;
2319
2320 fs_reg read_result =
2321 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2322 1 /* dims */,
2323 num_components_32bit,
2324 BRW_PREDICATE_NONE);
2325 shuffle_from_32bit_read(bld, dest, read_result, first_component,
2326 num_components);
2327 } else {
2328 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2329 for (unsigned i = 0; i < num_components; i++) {
2330 if (i == 0) {
2331 bld.MOV(read_offset, offset_reg);
2332 } else {
2333 bld.ADD(read_offset, offset_reg,
2334 brw_imm_ud(i * type_sz(dest.type)));
2335 }
2336 /* Non constant offsets are not guaranteed to be aligned 32-bits
2337 * so they are read using one byte_scattered_read message
2338 * for each component.
2339 */
2340 fs_reg read_result =
2341 emit_byte_scattered_read(bld, surf_index, read_offset,
2342 1 /* dims */, 1,
2343 type_sz(dest.type) * 8 /* bit_size */,
2344 BRW_PREDICATE_NONE);
2345 bld.MOV(offset(dest, bld, i),
2346 subscript (read_result, dest.type, 0));
2347 }
2348 }
2349 } else if (type_sz(dest.type) == 4) {
2350 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2351 1 /* dims */,
2352 num_components,
2353 BRW_PREDICATE_NONE);
2354 read_result.type = dest.type;
2355 for (unsigned i = 0; i < num_components; i++)
2356 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2357 } else if (type_sz(dest.type) == 8) {
2358 /* Reading a dvec, so we need to:
2359 *
2360 * 1. Multiply num_components by 2, to account for the fact that we
2361 * need to read 64-bit components.
2362 * 2. Shuffle the result of the load to form valid 64-bit elements
2363 * 3. Emit a second load (for components z/w) if needed.
2364 */
2365 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2366 bld.MOV(read_offset, offset_reg);
2367
2368 int iters = num_components <= 2 ? 1 : 2;
2369
2370 /* Load the dvec, the first iteration loads components x/y, the second
2371 * iteration, if needed, loads components z/w
2372 */
2373 for (int it = 0; it < iters; it++) {
2374 /* Compute number of components to read in this iteration */
2375 int iter_components = MIN2(2, num_components);
2376 num_components -= iter_components;
2377
2378 /* Read. Since this message reads 32-bit components, we need to
2379 * read twice as many components.
2380 */
2381 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2382 1 /* dims */,
2383 iter_components * 2,
2384 BRW_PREDICATE_NONE);
2385
2386 /* Shuffle the 32-bit load result into valid 64-bit data */
2387 shuffle_from_32bit_read(bld, offset(dest, bld, it * 2),
2388 read_result, 0, iter_components);
2389
2390 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2391 }
2392 } else {
2393 unreachable("Unsupported type");
2394 }
2395 }
2396
2397 void
2398 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2399 nir_intrinsic_instr *instr)
2400 {
2401 assert(stage == MESA_SHADER_VERTEX);
2402
2403 fs_reg dest;
2404 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2405 dest = get_nir_dest(instr->dest);
2406
2407 switch (instr->intrinsic) {
2408 case nir_intrinsic_load_vertex_id:
2409 case nir_intrinsic_load_base_vertex:
2410 unreachable("should be lowered by nir_lower_system_values()");
2411
2412 case nir_intrinsic_load_input: {
2413 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2414 unsigned first_component = nir_intrinsic_component(instr);
2415 unsigned num_components = instr->num_components;
2416
2417 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2418 assert(const_offset && "Indirect input loads not allowed");
2419 src = offset(src, bld, const_offset->u32[0]);
2420
2421 if (type_sz(dest.type) == 8)
2422 first_component /= 2;
2423
2424 /* For 16-bit support maybe a temporary will be needed to copy from
2425 * the ATTR file.
2426 */
2427 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2428 first_component, num_components);
2429 break;
2430 }
2431
2432 case nir_intrinsic_load_vertex_id_zero_base:
2433 case nir_intrinsic_load_instance_id:
2434 case nir_intrinsic_load_base_instance:
2435 case nir_intrinsic_load_draw_id:
2436 case nir_intrinsic_load_first_vertex:
2437 case nir_intrinsic_load_is_indexed_draw:
2438 unreachable("lowered by brw_nir_lower_vs_inputs");
2439
2440 default:
2441 nir_emit_intrinsic(bld, instr);
2442 break;
2443 }
2444 }
2445
2446 void
2447 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2448 nir_intrinsic_instr *instr)
2449 {
2450 assert(stage == MESA_SHADER_TESS_CTRL);
2451 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2452 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2453
2454 fs_reg dst;
2455 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2456 dst = get_nir_dest(instr->dest);
2457
2458 switch (instr->intrinsic) {
2459 case nir_intrinsic_load_primitive_id:
2460 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2461 break;
2462 case nir_intrinsic_load_invocation_id:
2463 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2464 break;
2465 case nir_intrinsic_load_patch_vertices_in:
2466 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2467 brw_imm_d(tcs_key->input_vertices));
2468 break;
2469
2470 case nir_intrinsic_barrier: {
2471 if (tcs_prog_data->instances == 1)
2472 break;
2473
2474 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2475 fs_reg m0_2 = component(m0, 2);
2476
2477 const fs_builder chanbld = bld.exec_all().group(1, 0);
2478
2479 /* Zero the message header */
2480 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2481
2482 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2483 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2484 brw_imm_ud(INTEL_MASK(16, 13)));
2485
2486 /* Shift it up to bits 27:24. */
2487 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2488
2489 /* Set the Barrier Count and the enable bit */
2490 chanbld.OR(m0_2, m0_2,
2491 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2492
2493 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2494 break;
2495 }
2496
2497 case nir_intrinsic_load_input:
2498 unreachable("nir_lower_io should never give us these.");
2499 break;
2500
2501 case nir_intrinsic_load_per_vertex_input: {
2502 fs_reg indirect_offset = get_indirect_offset(instr);
2503 unsigned imm_offset = instr->const_index[0];
2504
2505 const nir_src &vertex_src = instr->src[0];
2506 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2507
2508 fs_inst *inst;
2509
2510 fs_reg icp_handle;
2511
2512 if (vertex_const) {
2513 /* Emit a MOV to resolve <0,1,0> regioning. */
2514 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2515 bld.MOV(icp_handle,
2516 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2517 vertex_const->i32[0] & 7),
2518 BRW_REGISTER_TYPE_UD));
2519 } else if (tcs_prog_data->instances == 1 &&
2520 vertex_src.is_ssa &&
2521 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2522 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2523 /* For the common case of only 1 instance, an array index of
2524 * gl_InvocationID means reading g1. Skip all the indirect work.
2525 */
2526 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2527 } else {
2528 /* The vertex index is non-constant. We need to use indirect
2529 * addressing to fetch the proper URB handle.
2530 */
2531 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2532
2533 /* Each ICP handle is a single DWord (4 bytes) */
2534 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2535 bld.SHL(vertex_offset_bytes,
2536 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2537 brw_imm_ud(2u));
2538
2539 /* Start at g1. We might read up to 4 registers. */
2540 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2541 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2542 brw_imm_ud(4 * REG_SIZE));
2543 }
2544
2545 /* We can only read two double components with each URB read, so
2546 * we send two read messages in that case, each one loading up to
2547 * two double components.
2548 */
2549 unsigned num_iterations = 1;
2550 unsigned num_components = instr->num_components;
2551 unsigned first_component = nir_intrinsic_component(instr);
2552 fs_reg orig_dst = dst;
2553 if (type_sz(dst.type) == 8) {
2554 first_component = first_component / 2;
2555 if (instr->num_components > 2) {
2556 num_iterations = 2;
2557 num_components = 2;
2558 }
2559
2560 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2561 dst = tmp;
2562 }
2563
2564 for (unsigned iter = 0; iter < num_iterations; iter++) {
2565 if (indirect_offset.file == BAD_FILE) {
2566 /* Constant indexing - use global offset. */
2567 if (first_component != 0) {
2568 unsigned read_components = num_components + first_component;
2569 fs_reg tmp = bld.vgrf(dst.type, read_components);
2570 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2571 for (unsigned i = 0; i < num_components; i++) {
2572 bld.MOV(offset(dst, bld, i),
2573 offset(tmp, bld, i + first_component));
2574 }
2575 } else {
2576 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2577 }
2578 inst->offset = imm_offset;
2579 inst->mlen = 1;
2580 } else {
2581 /* Indirect indexing - use per-slot offsets as well. */
2582 const fs_reg srcs[] = { icp_handle, indirect_offset };
2583 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2584 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2585 if (first_component != 0) {
2586 unsigned read_components = num_components + first_component;
2587 fs_reg tmp = bld.vgrf(dst.type, read_components);
2588 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2589 payload);
2590 for (unsigned i = 0; i < num_components; i++) {
2591 bld.MOV(offset(dst, bld, i),
2592 offset(tmp, bld, i + first_component));
2593 }
2594 } else {
2595 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2596 payload);
2597 }
2598 inst->offset = imm_offset;
2599 inst->mlen = 2;
2600 }
2601 inst->size_written = (num_components + first_component) *
2602 inst->dst.component_size(inst->exec_size);
2603
2604 /* If we are reading 64-bit data using 32-bit read messages we need
2605 * build proper 64-bit data elements by shuffling the low and high
2606 * 32-bit components around like we do for other things like UBOs
2607 * or SSBOs.
2608 */
2609 if (type_sz(dst.type) == 8) {
2610 shuffle_from_32bit_read(bld,
2611 offset(orig_dst, bld, iter * 2),
2612 retype(dst, BRW_REGISTER_TYPE_D),
2613 0, num_components);
2614 }
2615
2616 /* Copy the temporary to the destination to deal with writemasking.
2617 *
2618 * Also attempt to deal with gl_PointSize being in the .w component.
2619 */
2620 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2621 assert(type_sz(dst.type) < 8);
2622 inst->dst = bld.vgrf(dst.type, 4);
2623 inst->size_written = 4 * REG_SIZE;
2624 bld.MOV(dst, offset(inst->dst, bld, 3));
2625 }
2626
2627 /* If we are loading double data and we need a second read message
2628 * adjust the write offset
2629 */
2630 if (num_iterations > 1) {
2631 num_components = instr->num_components - 2;
2632 imm_offset++;
2633 }
2634 }
2635 break;
2636 }
2637
2638 case nir_intrinsic_load_output:
2639 case nir_intrinsic_load_per_vertex_output: {
2640 fs_reg indirect_offset = get_indirect_offset(instr);
2641 unsigned imm_offset = instr->const_index[0];
2642 unsigned first_component = nir_intrinsic_component(instr);
2643
2644 fs_inst *inst;
2645 if (indirect_offset.file == BAD_FILE) {
2646 /* Replicate the patch handle to all enabled channels */
2647 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2648 bld.MOV(patch_handle,
2649 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2650
2651 {
2652 if (first_component != 0) {
2653 unsigned read_components =
2654 instr->num_components + first_component;
2655 fs_reg tmp = bld.vgrf(dst.type, read_components);
2656 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2657 patch_handle);
2658 inst->size_written = read_components * REG_SIZE;
2659 for (unsigned i = 0; i < instr->num_components; i++) {
2660 bld.MOV(offset(dst, bld, i),
2661 offset(tmp, bld, i + first_component));
2662 }
2663 } else {
2664 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2665 patch_handle);
2666 inst->size_written = instr->num_components * REG_SIZE;
2667 }
2668 inst->offset = imm_offset;
2669 inst->mlen = 1;
2670 }
2671 } else {
2672 /* Indirect indexing - use per-slot offsets as well. */
2673 const fs_reg srcs[] = {
2674 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2675 indirect_offset
2676 };
2677 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2678 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2679 if (first_component != 0) {
2680 unsigned read_components =
2681 instr->num_components + first_component;
2682 fs_reg tmp = bld.vgrf(dst.type, read_components);
2683 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2684 payload);
2685 inst->size_written = read_components * REG_SIZE;
2686 for (unsigned i = 0; i < instr->num_components; i++) {
2687 bld.MOV(offset(dst, bld, i),
2688 offset(tmp, bld, i + first_component));
2689 }
2690 } else {
2691 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2692 payload);
2693 inst->size_written = instr->num_components * REG_SIZE;
2694 }
2695 inst->offset = imm_offset;
2696 inst->mlen = 2;
2697 }
2698 break;
2699 }
2700
2701 case nir_intrinsic_store_output:
2702 case nir_intrinsic_store_per_vertex_output: {
2703 fs_reg value = get_nir_src(instr->src[0]);
2704 bool is_64bit = (instr->src[0].is_ssa ?
2705 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2706 fs_reg indirect_offset = get_indirect_offset(instr);
2707 unsigned imm_offset = instr->const_index[0];
2708 unsigned mask = instr->const_index[1];
2709 unsigned header_regs = 0;
2710 fs_reg srcs[7];
2711 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2712
2713 if (indirect_offset.file != BAD_FILE) {
2714 srcs[header_regs++] = indirect_offset;
2715 }
2716
2717 if (mask == 0)
2718 break;
2719
2720 unsigned num_components = util_last_bit(mask);
2721 enum opcode opcode;
2722
2723 /* We can only pack two 64-bit components in a single message, so send
2724 * 2 messages if we have more components
2725 */
2726 unsigned num_iterations = 1;
2727 unsigned iter_components = num_components;
2728 unsigned first_component = nir_intrinsic_component(instr);
2729 if (is_64bit) {
2730 first_component = first_component / 2;
2731 if (instr->num_components > 2) {
2732 num_iterations = 2;
2733 iter_components = 2;
2734 }
2735 }
2736
2737 mask = mask << first_component;
2738
2739 for (unsigned iter = 0; iter < num_iterations; iter++) {
2740 if (!is_64bit && mask != WRITEMASK_XYZW) {
2741 srcs[header_regs++] = brw_imm_ud(mask << 16);
2742 opcode = indirect_offset.file != BAD_FILE ?
2743 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2744 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2745 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2746 /* Expand the 64-bit mask to 32-bit channels. We only handle
2747 * two channels in each iteration, so we only care about X/Y.
2748 */
2749 unsigned mask32 = 0;
2750 if (mask & WRITEMASK_X)
2751 mask32 |= WRITEMASK_XY;
2752 if (mask & WRITEMASK_Y)
2753 mask32 |= WRITEMASK_ZW;
2754
2755 /* If the mask does not include any of the channels X or Y there
2756 * is nothing to do in this iteration. Move on to the next couple
2757 * of 64-bit channels.
2758 */
2759 if (!mask32) {
2760 mask >>= 2;
2761 imm_offset++;
2762 continue;
2763 }
2764
2765 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2766 opcode = indirect_offset.file != BAD_FILE ?
2767 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2768 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2769 } else {
2770 opcode = indirect_offset.file != BAD_FILE ?
2771 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2772 SHADER_OPCODE_URB_WRITE_SIMD8;
2773 }
2774
2775 for (unsigned i = 0; i < iter_components; i++) {
2776 if (!(mask & (1 << (i + first_component))))
2777 continue;
2778
2779 if (!is_64bit) {
2780 srcs[header_regs + i + first_component] = offset(value, bld, i);
2781 } else {
2782 /* We need to shuffle the 64-bit data to match the layout
2783 * expected by our 32-bit URB write messages. We use a temporary
2784 * for that.
2785 */
2786 unsigned channel = iter * 2 + i;
2787 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2788
2789 srcs[header_regs + (i + first_component) * 2] = dest;
2790 srcs[header_regs + (i + first_component) * 2 + 1] =
2791 offset(dest, bld, 1);
2792 }
2793 }
2794
2795 unsigned mlen =
2796 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2797 (is_64bit ? 2 * first_component : first_component);
2798 fs_reg payload =
2799 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2800 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2801
2802 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2803 inst->offset = imm_offset;
2804 inst->mlen = mlen;
2805
2806 /* If this is a 64-bit attribute, select the next two 64-bit channels
2807 * to be handled in the next iteration.
2808 */
2809 if (is_64bit) {
2810 mask >>= 2;
2811 imm_offset++;
2812 }
2813 }
2814 break;
2815 }
2816
2817 default:
2818 nir_emit_intrinsic(bld, instr);
2819 break;
2820 }
2821 }
2822
2823 void
2824 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2825 nir_intrinsic_instr *instr)
2826 {
2827 assert(stage == MESA_SHADER_TESS_EVAL);
2828 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2829
2830 fs_reg dest;
2831 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2832 dest = get_nir_dest(instr->dest);
2833
2834 switch (instr->intrinsic) {
2835 case nir_intrinsic_load_primitive_id:
2836 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2837 break;
2838 case nir_intrinsic_load_tess_coord:
2839 /* gl_TessCoord is part of the payload in g1-3 */
2840 for (unsigned i = 0; i < 3; i++) {
2841 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2842 }
2843 break;
2844
2845 case nir_intrinsic_load_input:
2846 case nir_intrinsic_load_per_vertex_input: {
2847 fs_reg indirect_offset = get_indirect_offset(instr);
2848 unsigned imm_offset = instr->const_index[0];
2849 unsigned first_component = nir_intrinsic_component(instr);
2850
2851 if (type_sz(dest.type) == 8) {
2852 first_component = first_component / 2;
2853 }
2854
2855 fs_inst *inst;
2856 if (indirect_offset.file == BAD_FILE) {
2857 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2858 * which is 16 registers (since each holds 2 vec4 slots).
2859 */
2860 unsigned slot_count = 1;
2861 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2862 slot_count++;
2863
2864 const unsigned max_push_slots = 32;
2865 if (imm_offset + slot_count <= max_push_slots) {
2866 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2867 for (int i = 0; i < instr->num_components; i++) {
2868 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2869 i + first_component;
2870 bld.MOV(offset(dest, bld, i), component(src, comp));
2871 }
2872
2873 tes_prog_data->base.urb_read_length =
2874 MAX2(tes_prog_data->base.urb_read_length,
2875 DIV_ROUND_UP(imm_offset + slot_count, 2));
2876 } else {
2877 /* Replicate the patch handle to all enabled channels */
2878 const fs_reg srcs[] = {
2879 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2880 };
2881 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2882 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2883
2884 if (first_component != 0) {
2885 unsigned read_components =
2886 instr->num_components + first_component;
2887 fs_reg tmp = bld.vgrf(dest.type, read_components);
2888 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2889 patch_handle);
2890 inst->size_written = read_components * REG_SIZE;
2891 for (unsigned i = 0; i < instr->num_components; i++) {
2892 bld.MOV(offset(dest, bld, i),
2893 offset(tmp, bld, i + first_component));
2894 }
2895 } else {
2896 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2897 patch_handle);
2898 inst->size_written = instr->num_components * REG_SIZE;
2899 }
2900 inst->mlen = 1;
2901 inst->offset = imm_offset;
2902 }
2903 } else {
2904 /* Indirect indexing - use per-slot offsets as well. */
2905
2906 /* We can only read two double components with each URB read, so
2907 * we send two read messages in that case, each one loading up to
2908 * two double components.
2909 */
2910 unsigned num_iterations = 1;
2911 unsigned num_components = instr->num_components;
2912 fs_reg orig_dest = dest;
2913 if (type_sz(dest.type) == 8) {
2914 if (instr->num_components > 2) {
2915 num_iterations = 2;
2916 num_components = 2;
2917 }
2918 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2919 dest = tmp;
2920 }
2921
2922 for (unsigned iter = 0; iter < num_iterations; iter++) {
2923 const fs_reg srcs[] = {
2924 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2925 indirect_offset
2926 };
2927 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2928 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2929
2930 if (first_component != 0) {
2931 unsigned read_components =
2932 num_components + first_component;
2933 fs_reg tmp = bld.vgrf(dest.type, read_components);
2934 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2935 payload);
2936 for (unsigned i = 0; i < num_components; i++) {
2937 bld.MOV(offset(dest, bld, i),
2938 offset(tmp, bld, i + first_component));
2939 }
2940 } else {
2941 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2942 payload);
2943 }
2944 inst->mlen = 2;
2945 inst->offset = imm_offset;
2946 inst->size_written = (num_components + first_component) *
2947 inst->dst.component_size(inst->exec_size);
2948
2949 /* If we are reading 64-bit data using 32-bit read messages we need
2950 * build proper 64-bit data elements by shuffling the low and high
2951 * 32-bit components around like we do for other things like UBOs
2952 * or SSBOs.
2953 */
2954 if (type_sz(dest.type) == 8) {
2955 shuffle_from_32bit_read(bld,
2956 offset(orig_dest, bld, iter * 2),
2957 retype(dest, BRW_REGISTER_TYPE_D),
2958 0, num_components);
2959 }
2960
2961 /* If we are loading double data and we need a second read message
2962 * adjust the offset
2963 */
2964 if (num_iterations > 1) {
2965 num_components = instr->num_components - 2;
2966 imm_offset++;
2967 }
2968 }
2969 }
2970 break;
2971 }
2972 default:
2973 nir_emit_intrinsic(bld, instr);
2974 break;
2975 }
2976 }
2977
2978 void
2979 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2980 nir_intrinsic_instr *instr)
2981 {
2982 assert(stage == MESA_SHADER_GEOMETRY);
2983 fs_reg indirect_offset;
2984
2985 fs_reg dest;
2986 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2987 dest = get_nir_dest(instr->dest);
2988
2989 switch (instr->intrinsic) {
2990 case nir_intrinsic_load_primitive_id:
2991 assert(stage == MESA_SHADER_GEOMETRY);
2992 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2993 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2994 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2995 break;
2996
2997 case nir_intrinsic_load_input:
2998 unreachable("load_input intrinsics are invalid for the GS stage");
2999
3000 case nir_intrinsic_load_per_vertex_input:
3001 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3002 instr->src[1], instr->num_components,
3003 nir_intrinsic_component(instr));
3004 break;
3005
3006 case nir_intrinsic_emit_vertex_with_counter:
3007 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3008 break;
3009
3010 case nir_intrinsic_end_primitive_with_counter:
3011 emit_gs_end_primitive(instr->src[0]);
3012 break;
3013
3014 case nir_intrinsic_set_vertex_count:
3015 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3016 break;
3017
3018 case nir_intrinsic_load_invocation_id: {
3019 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3020 assert(val.file != BAD_FILE);
3021 dest.type = val.type;
3022 bld.MOV(dest, val);
3023 break;
3024 }
3025
3026 default:
3027 nir_emit_intrinsic(bld, instr);
3028 break;
3029 }
3030 }
3031
3032 /**
3033 * Fetch the current render target layer index.
3034 */
3035 static fs_reg
3036 fetch_render_target_array_index(const fs_builder &bld)
3037 {
3038 if (bld.shader->devinfo->gen >= 6) {
3039 /* The render target array index is provided in the thread payload as
3040 * bits 26:16 of r0.0.
3041 */
3042 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3043 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3044 brw_imm_uw(0x7ff));
3045 return idx;
3046 } else {
3047 /* Pre-SNB we only ever render into the first layer of the framebuffer
3048 * since layered rendering is not implemented.
3049 */
3050 return brw_imm_ud(0);
3051 }
3052 }
3053
3054 /**
3055 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3056 * framebuffer at the current fragment coordinates and sample index.
3057 */
3058 fs_inst *
3059 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3060 unsigned target)
3061 {
3062 const struct gen_device_info *devinfo = bld.shader->devinfo;
3063
3064 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3065 const brw_wm_prog_key *wm_key =
3066 reinterpret_cast<const brw_wm_prog_key *>(key);
3067 assert(!wm_key->coherent_fb_fetch);
3068 const struct brw_wm_prog_data *wm_prog_data =
3069 brw_wm_prog_data(stage_prog_data);
3070
3071 /* Calculate the surface index relative to the start of the texture binding
3072 * table block, since that's what the texturing messages expect.
3073 */
3074 const unsigned surface = target +
3075 wm_prog_data->binding_table.render_target_read_start -
3076 wm_prog_data->base.binding_table.texture_start;
3077
3078 brw_mark_surface_used(
3079 bld.shader->stage_prog_data,
3080 wm_prog_data->binding_table.render_target_read_start + target);
3081
3082 /* Calculate the fragment coordinates. */
3083 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3084 bld.MOV(offset(coords, bld, 0), pixel_x);
3085 bld.MOV(offset(coords, bld, 1), pixel_y);
3086 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3087
3088 /* Calculate the sample index and MCS payload when multisampling. Luckily
3089 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3090 * shouldn't be necessary to recompile based on whether the framebuffer is
3091 * CMS or UMS.
3092 */
3093 if (wm_key->multisample_fbo &&
3094 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3095 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3096
3097 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3098 const fs_reg mcs = wm_key->multisample_fbo ?
3099 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3100
3101 /* Use either a normal or a CMS texel fetch message depending on whether
3102 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3103 * message just in case the framebuffer uses 16x multisampling, it should
3104 * be equivalent to the normal CMS fetch for lower multisampling modes.
3105 */
3106 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3107 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3108 SHADER_OPCODE_TXF_CMS_LOGICAL;
3109
3110 /* Emit the instruction. */
3111 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3112 sample, mcs,
3113 brw_imm_ud(surface), brw_imm_ud(0),
3114 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3115 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3116
3117 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3118 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3119
3120 return inst;
3121 }
3122
3123 /**
3124 * Actual coherent framebuffer read implemented using the native render target
3125 * read message. Requires SKL+.
3126 */
3127 static fs_inst *
3128 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3129 {
3130 assert(bld.shader->devinfo->gen >= 9);
3131 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3132 inst->target = target;
3133 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3134
3135 return inst;
3136 }
3137
3138 static fs_reg
3139 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3140 {
3141 if (n && regs[0].file != BAD_FILE) {
3142 return regs[0];
3143
3144 } else {
3145 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3146
3147 for (unsigned i = 0; i < n; i++)
3148 regs[i] = tmp;
3149
3150 return tmp;
3151 }
3152 }
3153
3154 static fs_reg
3155 alloc_frag_output(fs_visitor *v, unsigned location)
3156 {
3157 assert(v->stage == MESA_SHADER_FRAGMENT);
3158 const brw_wm_prog_key *const key =
3159 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3160 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3161 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3162
3163 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3164 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3165
3166 else if (l == FRAG_RESULT_COLOR)
3167 return alloc_temporary(v->bld, 4, v->outputs,
3168 MAX2(key->nr_color_regions, 1));
3169
3170 else if (l == FRAG_RESULT_DEPTH)
3171 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3172
3173 else if (l == FRAG_RESULT_STENCIL)
3174 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3175
3176 else if (l == FRAG_RESULT_SAMPLE_MASK)
3177 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3178
3179 else if (l >= FRAG_RESULT_DATA0 &&
3180 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3181 return alloc_temporary(v->bld, 4,
3182 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3183
3184 else
3185 unreachable("Invalid location");
3186 }
3187
3188 void
3189 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3190 nir_intrinsic_instr *instr)
3191 {
3192 assert(stage == MESA_SHADER_FRAGMENT);
3193
3194 fs_reg dest;
3195 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3196 dest = get_nir_dest(instr->dest);
3197
3198 switch (instr->intrinsic) {
3199 case nir_intrinsic_load_front_face:
3200 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3201 *emit_frontfacing_interpolation());
3202 break;
3203
3204 case nir_intrinsic_load_sample_pos: {
3205 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3206 assert(sample_pos.file != BAD_FILE);
3207 dest.type = sample_pos.type;
3208 bld.MOV(dest, sample_pos);
3209 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3210 break;
3211 }
3212
3213 case nir_intrinsic_load_layer_id:
3214 dest.type = BRW_REGISTER_TYPE_UD;
3215 bld.MOV(dest, fetch_render_target_array_index(bld));
3216 break;
3217
3218 case nir_intrinsic_load_helper_invocation:
3219 case nir_intrinsic_load_sample_mask_in:
3220 case nir_intrinsic_load_sample_id: {
3221 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3222 fs_reg val = nir_system_values[sv];
3223 assert(val.file != BAD_FILE);
3224 dest.type = val.type;
3225 bld.MOV(dest, val);
3226 break;
3227 }
3228
3229 case nir_intrinsic_store_output: {
3230 const fs_reg src = get_nir_src(instr->src[0]);
3231 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3232 assert(const_offset && "Indirect output stores not allowed");
3233 const unsigned location = nir_intrinsic_base(instr) +
3234 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3235 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3236 src.type);
3237
3238 for (unsigned j = 0; j < instr->num_components; j++)
3239 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3240 offset(src, bld, j));
3241
3242 break;
3243 }
3244
3245 case nir_intrinsic_load_output: {
3246 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3247 BRW_NIR_FRAG_OUTPUT_LOCATION);
3248 assert(l >= FRAG_RESULT_DATA0);
3249 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3250 assert(const_offset && "Indirect output loads not allowed");
3251 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3252 const fs_reg tmp = bld.vgrf(dest.type, 4);
3253
3254 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3255 emit_coherent_fb_read(bld, tmp, target);
3256 else
3257 emit_non_coherent_fb_read(bld, tmp, target);
3258
3259 for (unsigned j = 0; j < instr->num_components; j++) {
3260 bld.MOV(offset(dest, bld, j),
3261 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3262 }
3263
3264 break;
3265 }
3266
3267 case nir_intrinsic_discard:
3268 case nir_intrinsic_discard_if: {
3269 /* We track our discarded pixels in f0.1. By predicating on it, we can
3270 * update just the flag bits that aren't yet discarded. If there's no
3271 * condition, we emit a CMP of g0 != g0, so all currently executing
3272 * channels will get turned off.
3273 */
3274 fs_inst *cmp;
3275 if (instr->intrinsic == nir_intrinsic_discard_if) {
3276 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3277 brw_imm_d(0), BRW_CONDITIONAL_Z);
3278 } else {
3279 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3280 BRW_REGISTER_TYPE_UW));
3281 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3282 }
3283 cmp->predicate = BRW_PREDICATE_NORMAL;
3284 cmp->flag_subreg = 1;
3285
3286 if (devinfo->gen >= 6) {
3287 emit_discard_jump();
3288 }
3289
3290 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3291 break;
3292 }
3293
3294 case nir_intrinsic_load_input: {
3295 /* load_input is only used for flat inputs */
3296 unsigned base = nir_intrinsic_base(instr);
3297 unsigned comp = nir_intrinsic_component(instr);
3298 unsigned num_components = instr->num_components;
3299 fs_reg orig_dest = dest;
3300 enum brw_reg_type type = dest.type;
3301
3302 /* Special case fields in the VUE header */
3303 if (base == VARYING_SLOT_LAYER)
3304 comp = 1;
3305 else if (base == VARYING_SLOT_VIEWPORT)
3306 comp = 2;
3307
3308 if (nir_dest_bit_size(instr->dest) == 64) {
3309 /* const_index is in 32-bit type size units that could not be aligned
3310 * with DF. We need to read the double vector as if it was a float
3311 * vector of twice the number of components to fetch the right data.
3312 */
3313 type = BRW_REGISTER_TYPE_F;
3314 num_components *= 2;
3315 dest = bld.vgrf(type, num_components);
3316 }
3317
3318 for (unsigned int i = 0; i < num_components; i++) {
3319 bld.MOV(offset(retype(dest, type), bld, i),
3320 retype(component(interp_reg(base, comp + i), 3), type));
3321 }
3322
3323 if (nir_dest_bit_size(instr->dest) == 64) {
3324 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3325 instr->num_components);
3326 }
3327 break;
3328 }
3329
3330 case nir_intrinsic_load_barycentric_pixel:
3331 case nir_intrinsic_load_barycentric_centroid:
3332 case nir_intrinsic_load_barycentric_sample:
3333 /* Do nothing - load_interpolated_input handling will handle it later. */
3334 break;
3335
3336 case nir_intrinsic_load_barycentric_at_sample: {
3337 const glsl_interp_mode interpolation =
3338 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3339
3340 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3341
3342 if (const_sample) {
3343 unsigned msg_data = const_sample->i32[0] << 4;
3344
3345 emit_pixel_interpolater_send(bld,
3346 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3347 dest,
3348 fs_reg(), /* src */
3349 brw_imm_ud(msg_data),
3350 interpolation);
3351 } else {
3352 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3353 BRW_REGISTER_TYPE_UD);
3354
3355 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3356 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3357 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3358 bld.exec_all().group(1, 0)
3359 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3360 emit_pixel_interpolater_send(bld,
3361 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3362 dest,
3363 fs_reg(), /* src */
3364 msg_data,
3365 interpolation);
3366 } else {
3367 /* Make a loop that sends a message to the pixel interpolater
3368 * for the sample number in each live channel. If there are
3369 * multiple channels with the same sample number then these
3370 * will be handled simultaneously with a single interation of
3371 * the loop.
3372 */
3373 bld.emit(BRW_OPCODE_DO);
3374
3375 /* Get the next live sample number into sample_id_reg */
3376 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3377
3378 /* Set the flag register so that we can perform the send
3379 * message on all channels that have the same sample number
3380 */
3381 bld.CMP(bld.null_reg_ud(),
3382 sample_src, sample_id,
3383 BRW_CONDITIONAL_EQ);
3384 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3385 bld.exec_all().group(1, 0)
3386 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3387 fs_inst *inst =
3388 emit_pixel_interpolater_send(bld,
3389 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3390 dest,
3391 fs_reg(), /* src */
3392 component(msg_data, 0),
3393 interpolation);
3394 set_predicate(BRW_PREDICATE_NORMAL, inst);
3395
3396 /* Continue the loop if there are any live channels left */
3397 set_predicate_inv(BRW_PREDICATE_NORMAL,
3398 true, /* inverse */
3399 bld.emit(BRW_OPCODE_WHILE));
3400 }
3401 }
3402 break;
3403 }
3404
3405 case nir_intrinsic_load_barycentric_at_offset: {
3406 const glsl_interp_mode interpolation =
3407 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3408
3409 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3410
3411 if (const_offset) {
3412 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3413 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3414
3415 emit_pixel_interpolater_send(bld,
3416 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3417 dest,
3418 fs_reg(), /* src */
3419 brw_imm_ud(off_x | (off_y << 4)),
3420 interpolation);
3421 } else {
3422 fs_reg src = vgrf(glsl_type::ivec2_type);
3423 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3424 BRW_REGISTER_TYPE_F);
3425 for (int i = 0; i < 2; i++) {
3426 fs_reg temp = vgrf(glsl_type::float_type);
3427 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3428 fs_reg itemp = vgrf(glsl_type::int_type);
3429 /* float to int */
3430 bld.MOV(itemp, temp);
3431
3432 /* Clamp the upper end of the range to +7/16.
3433 * ARB_gpu_shader5 requires that we support a maximum offset
3434 * of +0.5, which isn't representable in a S0.4 value -- if
3435 * we didn't clamp it, we'd end up with -8/16, which is the
3436 * opposite of what the shader author wanted.
3437 *
3438 * This is legal due to ARB_gpu_shader5's quantization
3439 * rules:
3440 *
3441 * "Not all values of <offset> may be supported; x and y
3442 * offsets may be rounded to fixed-point values with the
3443 * number of fraction bits given by the
3444 * implementation-dependent constant
3445 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3446 */
3447 set_condmod(BRW_CONDITIONAL_L,
3448 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3449 }
3450
3451 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3452 emit_pixel_interpolater_send(bld,
3453 opcode,
3454 dest,
3455 src,
3456 brw_imm_ud(0u),
3457 interpolation);
3458 }
3459 break;
3460 }
3461
3462 case nir_intrinsic_load_interpolated_input: {
3463 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3464 emit_fragcoord_interpolation(dest);
3465 break;
3466 }
3467
3468 assert(instr->src[0].ssa &&
3469 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3470 nir_intrinsic_instr *bary_intrinsic =
3471 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3472 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3473 enum glsl_interp_mode interp_mode =
3474 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3475 fs_reg dst_xy;
3476
3477 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3478 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3479 /* Use the result of the PI message */
3480 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3481 } else {
3482 /* Use the delta_xy values computed from the payload */
3483 enum brw_barycentric_mode bary =
3484 brw_barycentric_mode(interp_mode, bary_intrin);
3485
3486 dst_xy = this->delta_xy[bary];
3487 }
3488
3489 for (unsigned int i = 0; i < instr->num_components; i++) {
3490 fs_reg interp =
3491 component(interp_reg(nir_intrinsic_base(instr),
3492 nir_intrinsic_component(instr) + i), 0);
3493 interp.type = BRW_REGISTER_TYPE_F;
3494 dest.type = BRW_REGISTER_TYPE_F;
3495
3496 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3497 fs_reg tmp = vgrf(glsl_type::float_type);
3498 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3499 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3500 } else {
3501 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3502 }
3503 }
3504 break;
3505 }
3506
3507 default:
3508 nir_emit_intrinsic(bld, instr);
3509 break;
3510 }
3511 }
3512
3513 static int
3514 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3515 {
3516 const nir_const_value *const val = nir_src_as_const_value(instr->src[src]);
3517
3518 if (val != NULL) {
3519 if (val->i32[0] == 1)
3520 return BRW_AOP_INC;
3521 else if (val->i32[0] == -1)
3522 return BRW_AOP_DEC;
3523 }
3524
3525 return BRW_AOP_ADD;
3526 }
3527
3528 void
3529 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3530 nir_intrinsic_instr *instr)
3531 {
3532 assert(stage == MESA_SHADER_COMPUTE);
3533 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3534
3535 fs_reg dest;
3536 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3537 dest = get_nir_dest(instr->dest);
3538
3539 switch (instr->intrinsic) {
3540 case nir_intrinsic_barrier:
3541 emit_barrier();
3542 cs_prog_data->uses_barrier = true;
3543 break;
3544
3545 case nir_intrinsic_load_subgroup_id:
3546 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3547 break;
3548
3549 case nir_intrinsic_load_local_invocation_id:
3550 case nir_intrinsic_load_work_group_id: {
3551 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3552 fs_reg val = nir_system_values[sv];
3553 assert(val.file != BAD_FILE);
3554 dest.type = val.type;
3555 for (unsigned i = 0; i < 3; i++)
3556 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3557 break;
3558 }
3559
3560 case nir_intrinsic_load_num_work_groups: {
3561 const unsigned surface =
3562 cs_prog_data->binding_table.work_groups_start;
3563
3564 cs_prog_data->uses_num_work_groups = true;
3565
3566 fs_reg surf_index = brw_imm_ud(surface);
3567 brw_mark_surface_used(prog_data, surface);
3568
3569 /* Read the 3 GLuint components of gl_NumWorkGroups */
3570 for (unsigned i = 0; i < 3; i++) {
3571 fs_reg read_result =
3572 emit_untyped_read(bld, surf_index,
3573 brw_imm_ud(i << 2),
3574 1 /* dims */, 1 /* size */,
3575 BRW_PREDICATE_NONE);
3576 read_result.type = dest.type;
3577 bld.MOV(dest, read_result);
3578 dest = offset(dest, bld, 1);
3579 }
3580 break;
3581 }
3582
3583 case nir_intrinsic_shared_atomic_add:
3584 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3585 break;
3586 case nir_intrinsic_shared_atomic_imin:
3587 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3588 break;
3589 case nir_intrinsic_shared_atomic_umin:
3590 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3591 break;
3592 case nir_intrinsic_shared_atomic_imax:
3593 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3594 break;
3595 case nir_intrinsic_shared_atomic_umax:
3596 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3597 break;
3598 case nir_intrinsic_shared_atomic_and:
3599 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3600 break;
3601 case nir_intrinsic_shared_atomic_or:
3602 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3603 break;
3604 case nir_intrinsic_shared_atomic_xor:
3605 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3606 break;
3607 case nir_intrinsic_shared_atomic_exchange:
3608 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3609 break;
3610 case nir_intrinsic_shared_atomic_comp_swap:
3611 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3612 break;
3613 case nir_intrinsic_shared_atomic_fmin:
3614 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3615 break;
3616 case nir_intrinsic_shared_atomic_fmax:
3617 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3618 break;
3619 case nir_intrinsic_shared_atomic_fcomp_swap:
3620 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3621 break;
3622
3623 case nir_intrinsic_load_shared: {
3624 assert(devinfo->gen >= 7);
3625
3626 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3627
3628 /* Get the offset to read from */
3629 fs_reg offset_reg;
3630 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3631 if (const_offset) {
3632 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3633 } else {
3634 offset_reg = vgrf(glsl_type::uint_type);
3635 bld.ADD(offset_reg,
3636 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3637 brw_imm_ud(instr->const_index[0]));
3638 }
3639
3640 /* Read the vector */
3641 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3642 instr->num_components);
3643 break;
3644 }
3645
3646 case nir_intrinsic_store_shared: {
3647 assert(devinfo->gen >= 7);
3648
3649 /* Block index */
3650 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3651
3652 /* Value */
3653 fs_reg val_reg = get_nir_src(instr->src[0]);
3654
3655 /* Writemask */
3656 unsigned writemask = instr->const_index[1];
3657
3658 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3659 * since the untyped writes below operate in units of 32-bits, which
3660 * means that we need to write twice as many components each time.
3661 * Also, we have to suffle 64-bit data to be in the appropriate layout
3662 * expected by our 32-bit write messages.
3663 */
3664 unsigned type_size = 4;
3665 if (nir_src_bit_size(instr->src[0]) == 64) {
3666 type_size = 8;
3667 val_reg = shuffle_for_32bit_write(bld, val_reg, 0,
3668 instr->num_components);
3669 }
3670
3671 unsigned type_slots = type_size / 4;
3672
3673 /* Combine groups of consecutive enabled channels in one write
3674 * message. We use ffs to find the first enabled channel and then ffs on
3675 * the bit-inverse, down-shifted writemask to determine the length of
3676 * the block of enabled bits.
3677 */
3678 while (writemask) {
3679 unsigned first_component = ffs(writemask) - 1;
3680 unsigned length = ffs(~(writemask >> first_component)) - 1;
3681
3682 /* We can't write more than 2 64-bit components at once. Limit the
3683 * length of the write to what we can do and let the next iteration
3684 * handle the rest
3685 */
3686 if (type_size > 4)
3687 length = MIN2(2, length);
3688
3689 fs_reg offset_reg;
3690 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3691 if (const_offset) {
3692 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3693 type_size * first_component);
3694 } else {
3695 offset_reg = vgrf(glsl_type::uint_type);
3696 bld.ADD(offset_reg,
3697 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3698 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3699 }
3700
3701 emit_untyped_write(bld, surf_index, offset_reg,
3702 offset(val_reg, bld, first_component * type_slots),
3703 1 /* dims */, length * type_slots,
3704 BRW_PREDICATE_NONE);
3705
3706 /* Clear the bits in the writemask that we just wrote, then try
3707 * again to see if more channels are left.
3708 */
3709 writemask &= (15 << (first_component + length));
3710 }
3711
3712 break;
3713 }
3714
3715 default:
3716 nir_emit_intrinsic(bld, instr);
3717 break;
3718 }
3719 }
3720
3721 static fs_reg
3722 brw_nir_reduction_op_identity(const fs_builder &bld,
3723 nir_op op, brw_reg_type type)
3724 {
3725 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3726 switch (type_sz(type)) {
3727 case 2:
3728 assert(type != BRW_REGISTER_TYPE_HF);
3729 return retype(brw_imm_uw(value.u16[0]), type);
3730 case 4:
3731 return retype(brw_imm_ud(value.u32[0]), type);
3732 case 8:
3733 if (type == BRW_REGISTER_TYPE_DF)
3734 return setup_imm_df(bld, value.f64[0]);
3735 else
3736 return retype(brw_imm_u64(value.u64[0]), type);
3737 default:
3738 unreachable("Invalid type size");
3739 }
3740 }
3741
3742 static opcode
3743 brw_op_for_nir_reduction_op(nir_op op)
3744 {
3745 switch (op) {
3746 case nir_op_iadd: return BRW_OPCODE_ADD;
3747 case nir_op_fadd: return BRW_OPCODE_ADD;
3748 case nir_op_imul: return BRW_OPCODE_MUL;
3749 case nir_op_fmul: return BRW_OPCODE_MUL;
3750 case nir_op_imin: return BRW_OPCODE_SEL;
3751 case nir_op_umin: return BRW_OPCODE_SEL;
3752 case nir_op_fmin: return BRW_OPCODE_SEL;
3753 case nir_op_imax: return BRW_OPCODE_SEL;
3754 case nir_op_umax: return BRW_OPCODE_SEL;
3755 case nir_op_fmax: return BRW_OPCODE_SEL;
3756 case nir_op_iand: return BRW_OPCODE_AND;
3757 case nir_op_ior: return BRW_OPCODE_OR;
3758 case nir_op_ixor: return BRW_OPCODE_XOR;
3759 default:
3760 unreachable("Invalid reduction operation");
3761 }
3762 }
3763
3764 static brw_conditional_mod
3765 brw_cond_mod_for_nir_reduction_op(nir_op op)
3766 {
3767 switch (op) {
3768 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3769 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3770 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3771 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3772 case nir_op_imin: return BRW_CONDITIONAL_L;
3773 case nir_op_umin: return BRW_CONDITIONAL_L;
3774 case nir_op_fmin: return BRW_CONDITIONAL_L;
3775 case nir_op_imax: return BRW_CONDITIONAL_GE;
3776 case nir_op_umax: return BRW_CONDITIONAL_GE;
3777 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3778 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3779 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3780 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3781 default:
3782 unreachable("Invalid reduction operation");
3783 }
3784 }
3785
3786 fs_reg
3787 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3788 nir_intrinsic_instr *instr)
3789 {
3790 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3791
3792 if (stage_prog_data->binding_table.image_start > 0) {
3793 if (image.file == BRW_IMMEDIATE_VALUE) {
3794 image.d += stage_prog_data->binding_table.image_start;
3795 } else {
3796 bld.ADD(image, image,
3797 brw_imm_d(stage_prog_data->binding_table.image_start));
3798 }
3799 }
3800
3801 return bld.emit_uniformize(image);
3802 }
3803
3804 static unsigned
3805 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3806 {
3807 switch (nir_intrinsic_image_dim(instr)) {
3808 case GLSL_SAMPLER_DIM_1D:
3809 return 1 + nir_intrinsic_image_array(instr);
3810 case GLSL_SAMPLER_DIM_2D:
3811 case GLSL_SAMPLER_DIM_RECT:
3812 return 2 + nir_intrinsic_image_array(instr);
3813 case GLSL_SAMPLER_DIM_3D:
3814 case GLSL_SAMPLER_DIM_CUBE:
3815 return 3;
3816 case GLSL_SAMPLER_DIM_BUF:
3817 return 1;
3818 default:
3819 unreachable("Invalid image dimension");
3820 }
3821 }
3822
3823 void
3824 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3825 {
3826 fs_reg dest;
3827 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3828 dest = get_nir_dest(instr->dest);
3829
3830 switch (instr->intrinsic) {
3831 case nir_intrinsic_image_load:
3832 case nir_intrinsic_image_store:
3833 case nir_intrinsic_image_atomic_add:
3834 case nir_intrinsic_image_atomic_min:
3835 case nir_intrinsic_image_atomic_max:
3836 case nir_intrinsic_image_atomic_and:
3837 case nir_intrinsic_image_atomic_or:
3838 case nir_intrinsic_image_atomic_xor:
3839 case nir_intrinsic_image_atomic_exchange:
3840 case nir_intrinsic_image_atomic_comp_swap: {
3841 if (stage == MESA_SHADER_FRAGMENT &&
3842 instr->intrinsic != nir_intrinsic_image_load)
3843 brw_wm_prog_data(prog_data)->has_side_effects = true;
3844
3845 /* Get some metadata from the image intrinsic. */
3846 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3847 const unsigned dims = image_intrinsic_coord_components(instr);
3848 const GLenum format = nir_intrinsic_format(instr);
3849 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3850
3851 /* Get the arguments of the image intrinsic. */
3852 const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3853 const fs_reg coords = retype(get_nir_src(instr->src[1]),
3854 BRW_REGISTER_TYPE_UD);
3855 fs_reg tmp;
3856
3857 /* Emit an image load, store or atomic op. */
3858 if (instr->intrinsic == nir_intrinsic_image_load) {
3859 tmp = emit_typed_read(bld, image, coords, dims,
3860 instr->num_components);
3861 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3862 const fs_reg src0 = get_nir_src(instr->src[3]);
3863 emit_typed_write(bld, image, coords, src0, dims,
3864 instr->num_components);
3865 } else {
3866 int op;
3867 unsigned num_srcs = info->num_srcs;
3868
3869 switch (instr->intrinsic) {
3870 case nir_intrinsic_image_atomic_add:
3871 assert(num_srcs == 4);
3872
3873 op = get_op_for_atomic_add(instr, 3);
3874
3875 if (op != BRW_AOP_ADD)
3876 num_srcs = 3;
3877 break;
3878 case nir_intrinsic_image_atomic_min:
3879 assert(format == GL_R32UI || format == GL_R32I);
3880 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3881 break;
3882 case nir_intrinsic_image_atomic_max:
3883 assert(format == GL_R32UI || format == GL_R32I);
3884 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3885 break;
3886 case nir_intrinsic_image_atomic_and:
3887 op = BRW_AOP_AND;
3888 break;
3889 case nir_intrinsic_image_atomic_or:
3890 op = BRW_AOP_OR;
3891 break;
3892 case nir_intrinsic_image_atomic_xor:
3893 op = BRW_AOP_XOR;
3894 break;
3895 case nir_intrinsic_image_atomic_exchange:
3896 op = BRW_AOP_MOV;
3897 break;
3898 case nir_intrinsic_image_atomic_comp_swap:
3899 op = BRW_AOP_CMPWR;
3900 break;
3901 default:
3902 unreachable("Not reachable.");
3903 }
3904
3905 const fs_reg src0 = (num_srcs >= 4 ?
3906 get_nir_src(instr->src[3]) : fs_reg());
3907 const fs_reg src1 = (num_srcs >= 5 ?
3908 get_nir_src(instr->src[4]) : fs_reg());
3909
3910 tmp = emit_typed_atomic(bld, image, coords, src0, src1, dims, 1, op);
3911 }
3912
3913 /* Assign the result. */
3914 for (unsigned c = 0; c < dest_components; ++c) {
3915 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3916 offset(tmp, bld, c));
3917 }
3918 break;
3919 }
3920
3921 case nir_intrinsic_image_size: {
3922 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3923 * into will handle the binding table index for us in the geneerator.
3924 */
3925 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3926 BRW_REGISTER_TYPE_UD);
3927 image = bld.emit_uniformize(image);
3928
3929 /* Since the image size is always uniform, we can just emit a SIMD8
3930 * query instruction and splat the result out.
3931 */
3932 const fs_builder ubld = bld.exec_all().group(8, 0);
3933
3934 /* The LOD also serves as the message payload */
3935 fs_reg lod = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3936 ubld.MOV(lod, brw_imm_ud(0));
3937
3938 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3939 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE, tmp, lod, image);
3940 inst->mlen = 1;
3941 inst->size_written = 4 * REG_SIZE;
3942
3943 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3944 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3945 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3946 offset(retype(dest, tmp.type), bld, c),
3947 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3948 } else {
3949 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3950 component(offset(tmp, ubld, c), 0));
3951 }
3952 }
3953 break;
3954 }
3955
3956 case nir_intrinsic_image_load_raw_intel: {
3957 const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3958 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3959 BRW_REGISTER_TYPE_UD);
3960
3961 fs_reg tmp = emit_untyped_read(bld, image, addr, 1,
3962 instr->num_components);
3963
3964 for (unsigned c = 0; c < instr->num_components; ++c) {
3965 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3966 offset(tmp, bld, c));
3967 }
3968 break;
3969 }
3970
3971 case nir_intrinsic_image_store_raw_intel: {
3972 const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3973 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3974 BRW_REGISTER_TYPE_UD);
3975 const fs_reg data = retype(get_nir_src(instr->src[2]),
3976 BRW_REGISTER_TYPE_UD);
3977
3978 brw_wm_prog_data(prog_data)->has_side_effects = true;
3979
3980 emit_untyped_write(bld, image, addr, data, 1,
3981 instr->num_components);
3982 break;
3983 }
3984
3985 case nir_intrinsic_group_memory_barrier:
3986 case nir_intrinsic_memory_barrier_shared:
3987 case nir_intrinsic_memory_barrier_atomic_counter:
3988 case nir_intrinsic_memory_barrier_buffer:
3989 case nir_intrinsic_memory_barrier_image:
3990 case nir_intrinsic_memory_barrier: {
3991 const fs_builder ubld = bld.group(8, 0);
3992 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3993 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3994 ->size_written = 2 * REG_SIZE;
3995 break;
3996 }
3997
3998 case nir_intrinsic_shader_clock: {
3999 /* We cannot do anything if there is an event, so ignore it for now */
4000 const fs_reg shader_clock = get_timestamp(bld);
4001 const fs_reg srcs[] = { component(shader_clock, 0),
4002 component(shader_clock, 1) };
4003 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4004 break;
4005 }
4006
4007 case nir_intrinsic_image_samples:
4008 /* The driver does not support multi-sampled images. */
4009 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4010 break;
4011
4012 case nir_intrinsic_load_uniform: {
4013 /* Offsets are in bytes but they should always aligned to
4014 * the type size
4015 */
4016 assert(instr->const_index[0] % 4 == 0 ||
4017 instr->const_index[0] % type_sz(dest.type) == 0);
4018
4019 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4020
4021 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4022 if (const_offset) {
4023 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
4024 /* For 16-bit types we add the module of the const_index[0]
4025 * offset to access to not 32-bit aligned element
4026 */
4027 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
4028
4029 for (unsigned j = 0; j < instr->num_components; j++) {
4030 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4031 }
4032 } else {
4033 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4034 BRW_REGISTER_TYPE_UD);
4035
4036 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4037 * go past the end of the uniform. In order to keep the n'th
4038 * component from running past, we subtract off the size of all but
4039 * one component of the vector.
4040 */
4041 assert(instr->const_index[1] >=
4042 instr->num_components * (int) type_sz(dest.type));
4043 unsigned read_size = instr->const_index[1] -
4044 (instr->num_components - 1) * type_sz(dest.type);
4045
4046 bool supports_64bit_indirects =
4047 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4048
4049 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4050 for (unsigned j = 0; j < instr->num_components; j++) {
4051 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4052 offset(dest, bld, j), offset(src, bld, j),
4053 indirect, brw_imm_ud(read_size));
4054 }
4055 } else {
4056 const unsigned num_mov_indirects =
4057 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4058 /* We read a little bit less per MOV INDIRECT, as they are now
4059 * 32-bits ones instead of 64-bit. Fix read_size then.
4060 */
4061 const unsigned read_size_32bit = read_size -
4062 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4063 for (unsigned j = 0; j < instr->num_components; j++) {
4064 for (unsigned i = 0; i < num_mov_indirects; i++) {
4065 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4066 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4067 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4068 indirect, brw_imm_ud(read_size_32bit));
4069 }
4070 }
4071 }
4072 }
4073 break;
4074 }
4075
4076 case nir_intrinsic_load_ubo: {
4077 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4078 fs_reg surf_index;
4079
4080 if (const_index) {
4081 const unsigned index = stage_prog_data->binding_table.ubo_start +
4082 const_index->u32[0];
4083 surf_index = brw_imm_ud(index);
4084 brw_mark_surface_used(prog_data, index);
4085 } else {
4086 /* The block index is not a constant. Evaluate the index expression
4087 * per-channel and add the base UBO index; we have to select a value
4088 * from any live channel.
4089 */
4090 surf_index = vgrf(glsl_type::uint_type);
4091 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4092 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4093 surf_index = bld.emit_uniformize(surf_index);
4094
4095 /* Assume this may touch any UBO. It would be nice to provide
4096 * a tighter bound, but the array information is already lowered away.
4097 */
4098 brw_mark_surface_used(prog_data,
4099 stage_prog_data->binding_table.ubo_start +
4100 nir->info.num_ubos - 1);
4101 }
4102
4103 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4104 if (const_offset == NULL) {
4105 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4106 BRW_REGISTER_TYPE_UD);
4107
4108 for (int i = 0; i < instr->num_components; i++)
4109 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4110 base_offset, i * type_sz(dest.type));
4111 } else {
4112 /* Even if we are loading doubles, a pull constant load will load
4113 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4114 * need to load a full dvec4 we will have to emit 2 loads. This is
4115 * similar to demote_pull_constants(), except that in that case we
4116 * see individual accesses to each component of the vector and then
4117 * we let CSE deal with duplicate loads. Here we see a vector access
4118 * and we have to split it if necessary.
4119 */
4120 const unsigned type_size = type_sz(dest.type);
4121
4122 /* See if we've selected this as a push constant candidate */
4123 if (const_index) {
4124 const unsigned ubo_block = const_index->u32[0];
4125 const unsigned offset_256b = const_offset->u32[0] / 32;
4126
4127 fs_reg push_reg;
4128 for (int i = 0; i < 4; i++) {
4129 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4130 if (range->block == ubo_block &&
4131 offset_256b >= range->start &&
4132 offset_256b < range->start + range->length) {
4133
4134 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4135 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4136 break;
4137 }
4138 }
4139
4140 if (push_reg.file != BAD_FILE) {
4141 for (unsigned i = 0; i < instr->num_components; i++) {
4142 bld.MOV(offset(dest, bld, i),
4143 byte_offset(push_reg, i * type_size));
4144 }
4145 break;
4146 }
4147 }
4148
4149 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4150 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4151 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4152
4153 for (unsigned c = 0; c < instr->num_components;) {
4154 const unsigned base = const_offset->u32[0] + c * type_size;
4155 /* Number of usable components in the next block-aligned load. */
4156 const unsigned count = MIN2(instr->num_components - c,
4157 (block_sz - base % block_sz) / type_size);
4158
4159 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4160 packed_consts, surf_index,
4161 brw_imm_ud(base & ~(block_sz - 1)));
4162
4163 const fs_reg consts =
4164 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4165 dest.type);
4166
4167 for (unsigned d = 0; d < count; d++)
4168 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4169
4170 c += count;
4171 }
4172 }
4173 break;
4174 }
4175
4176 case nir_intrinsic_load_ssbo: {
4177 assert(devinfo->gen >= 7);
4178
4179 nir_const_value *const_uniform_block =
4180 nir_src_as_const_value(instr->src[0]);
4181
4182 fs_reg surf_index;
4183 if (const_uniform_block) {
4184 unsigned index = stage_prog_data->binding_table.ssbo_start +
4185 const_uniform_block->u32[0];
4186 surf_index = brw_imm_ud(index);
4187 brw_mark_surface_used(prog_data, index);
4188 } else {
4189 surf_index = vgrf(glsl_type::uint_type);
4190 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4191 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4192
4193 /* Assume this may touch any UBO. It would be nice to provide
4194 * a tighter bound, but the array information is already lowered away.
4195 */
4196 brw_mark_surface_used(prog_data,
4197 stage_prog_data->binding_table.ssbo_start +
4198 nir->info.num_ssbos - 1);
4199 }
4200
4201 fs_reg offset_reg;
4202 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4203 if (const_offset) {
4204 offset_reg = brw_imm_ud(const_offset->u32[0]);
4205 } else {
4206 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4207 }
4208
4209 /* Read the vector */
4210 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4211 instr->num_components);
4212
4213 break;
4214 }
4215
4216 case nir_intrinsic_store_ssbo: {
4217 assert(devinfo->gen >= 7);
4218
4219 if (stage == MESA_SHADER_FRAGMENT)
4220 brw_wm_prog_data(prog_data)->has_side_effects = true;
4221
4222 /* Block index */
4223 fs_reg surf_index;
4224 nir_const_value *const_uniform_block =
4225 nir_src_as_const_value(instr->src[1]);
4226 if (const_uniform_block) {
4227 unsigned index = stage_prog_data->binding_table.ssbo_start +
4228 const_uniform_block->u32[0];
4229 surf_index = brw_imm_ud(index);
4230 brw_mark_surface_used(prog_data, index);
4231 } else {
4232 surf_index = vgrf(glsl_type::uint_type);
4233 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4234 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4235
4236 brw_mark_surface_used(prog_data,
4237 stage_prog_data->binding_table.ssbo_start +
4238 nir->info.num_ssbos - 1);
4239 }
4240
4241 /* Value */
4242 fs_reg val_reg = get_nir_src(instr->src[0]);
4243
4244 /* Writemask */
4245 unsigned writemask = instr->const_index[0];
4246
4247 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4248 * since the untyped writes below operate in units of 32-bits, which
4249 * means that we need to write twice as many components each time.
4250 * Also, we have to suffle 64-bit data to be in the appropriate layout
4251 * expected by our 32-bit write messages.
4252 */
4253 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4254 unsigned type_size = bit_size / 8;
4255
4256 /* Combine groups of consecutive enabled channels in one write
4257 * message. We use ffs to find the first enabled channel and then ffs on
4258 * the bit-inverse, down-shifted writemask to determine the num_components
4259 * of the block of enabled bits.
4260 */
4261 while (writemask) {
4262 unsigned first_component = ffs(writemask) - 1;
4263 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4264 fs_reg write_src = offset(val_reg, bld, first_component);
4265
4266 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4267
4268 if (type_size > 4) {
4269 /* We can't write more than 2 64-bit components at once. Limit
4270 * the num_components of the write to what we can do and let the next
4271 * iteration handle the rest.
4272 */
4273 num_components = MIN2(2, num_components);
4274 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4275 num_components);
4276 } else if (type_size < 4) {
4277 /* For 16-bit types we pack two consecutive values into a 32-bit
4278 * word and use an untyped write message. For single values or not
4279 * 32-bit-aligned we need to use byte-scattered writes because
4280 * untyped writes works with 32-bit components with 32-bit
4281 * alignment. byte_scattered_write messages only support one
4282 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4283 * could be enabled we can not guarantee that not constant offsets
4284 * to be 32-bit aligned for 16-bit types. For example an array, of
4285 * 16-bit vec3 with array element stride of 6.
4286 *
4287 * In the case of 32-bit aligned constant offsets if there is
4288 * a 3-components vector we submit one untyped-write message
4289 * of 32-bit (first two components), and one byte-scattered
4290 * write message (the last component).
4291 */
4292
4293 if ( !const_offset || ((const_offset->u32[0] +
4294 type_size * first_component) % 4)) {
4295 /* If we use a .yz writemask we also need to emit 2
4296 * byte-scattered write messages because of y-component not
4297 * being aligned to 32-bit.
4298 */
4299 num_components = 1;
4300 } else if (num_components * type_size > 4 &&
4301 (num_components * type_size % 4)) {
4302 /* If the pending components size is not a multiple of 4 bytes
4303 * we left the not aligned components for following emits of
4304 * length == 1 with byte_scattered_write.
4305 */
4306 num_components -= (num_components * type_size % 4) / type_size;
4307 } else if (num_components * type_size < 4) {
4308 num_components = 1;
4309 }
4310 /* For num_components == 1 we are also shuffling the component
4311 * because byte scattered writes of 16-bit need values to be dword
4312 * aligned. Shuffling only one component would be the same as
4313 * striding it.
4314 */
4315 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4316 num_components);
4317 }
4318
4319 fs_reg offset_reg;
4320
4321 if (const_offset) {
4322 offset_reg = brw_imm_ud(const_offset->u32[0] +
4323 type_size * first_component);
4324 } else {
4325 offset_reg = vgrf(glsl_type::uint_type);
4326 bld.ADD(offset_reg,
4327 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4328 brw_imm_ud(type_size * first_component));
4329 }
4330
4331 if (type_size < 4 && num_components == 1) {
4332 /* Untyped Surface messages have a fixed 32-bit size, so we need
4333 * to rely on byte scattered in order to write 16-bit elements.
4334 * The byte_scattered_write message needs that every written 16-bit
4335 * type to be aligned 32-bits (stride=2).
4336 */
4337 emit_byte_scattered_write(bld, surf_index, offset_reg,
4338 write_src,
4339 1 /* dims */,
4340 bit_size,
4341 BRW_PREDICATE_NONE);
4342 } else {
4343 assert(num_components * type_size <= 16);
4344 assert((num_components * type_size) % 4 == 0);
4345 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4346 offset_reg.ud % 4 == 0);
4347 unsigned num_slots = (num_components * type_size) / 4;
4348
4349 emit_untyped_write(bld, surf_index, offset_reg,
4350 write_src,
4351 1 /* dims */, num_slots,
4352 BRW_PREDICATE_NONE);
4353 }
4354
4355 /* Clear the bits in the writemask that we just wrote, then try
4356 * again to see if more channels are left.
4357 */
4358 writemask &= (15 << (first_component + num_components));
4359 }
4360 break;
4361 }
4362
4363 case nir_intrinsic_store_output: {
4364 fs_reg src = get_nir_src(instr->src[0]);
4365
4366 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4367 assert(const_offset && "Indirect output stores not allowed");
4368
4369 unsigned num_components = instr->num_components;
4370 unsigned first_component = nir_intrinsic_component(instr);
4371 if (nir_src_bit_size(instr->src[0]) == 64) {
4372 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4373 num_components *= 2;
4374 }
4375
4376 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4377 4 * const_offset->u32[0]), src.type);
4378 for (unsigned j = 0; j < num_components; j++) {
4379 bld.MOV(offset(new_dest, bld, j + first_component),
4380 offset(src, bld, j));
4381 }
4382 break;
4383 }
4384
4385 case nir_intrinsic_ssbo_atomic_add:
4386 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4387 break;
4388 case nir_intrinsic_ssbo_atomic_imin:
4389 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4390 break;
4391 case nir_intrinsic_ssbo_atomic_umin:
4392 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4393 break;
4394 case nir_intrinsic_ssbo_atomic_imax:
4395 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4396 break;
4397 case nir_intrinsic_ssbo_atomic_umax:
4398 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4399 break;
4400 case nir_intrinsic_ssbo_atomic_and:
4401 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4402 break;
4403 case nir_intrinsic_ssbo_atomic_or:
4404 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4405 break;
4406 case nir_intrinsic_ssbo_atomic_xor:
4407 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4408 break;
4409 case nir_intrinsic_ssbo_atomic_exchange:
4410 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4411 break;
4412 case nir_intrinsic_ssbo_atomic_comp_swap:
4413 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4414 break;
4415 case nir_intrinsic_ssbo_atomic_fmin:
4416 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4417 break;
4418 case nir_intrinsic_ssbo_atomic_fmax:
4419 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4420 break;
4421 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4422 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4423 break;
4424
4425 case nir_intrinsic_get_buffer_size: {
4426 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4427 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4428
4429 /* A resinfo's sampler message is used to get the buffer size. The
4430 * SIMD8's writeback message consists of four registers and SIMD16's
4431 * writeback message consists of 8 destination registers (two per each
4432 * component). Because we are only interested on the first channel of
4433 * the first returned component, where resinfo returns the buffer size
4434 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4435 * the dispatch width.
4436 */
4437 const fs_builder ubld = bld.exec_all().group(8, 0);
4438 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4439 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4440
4441 /* Set LOD = 0 */
4442 ubld.MOV(src_payload, brw_imm_d(0));
4443
4444 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4445 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4446 src_payload, brw_imm_ud(index));
4447 inst->header_size = 0;
4448 inst->mlen = 1;
4449 inst->size_written = 4 * REG_SIZE;
4450
4451 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4452 *
4453 * "Out-of-bounds checking is always performed at a DWord granularity. If
4454 * any part of the DWord is out-of-bounds then the whole DWord is
4455 * considered out-of-bounds."
4456 *
4457 * This implies that types with size smaller than 4-bytes need to be
4458 * padded if they don't complete the last dword of the buffer. But as we
4459 * need to maintain the original size we need to reverse the padding
4460 * calculation to return the correct size to know the number of elements
4461 * of an unsized array. As we stored in the last two bits of the surface
4462 * size the needed padding for the buffer, we calculate here the
4463 * original buffer_size reversing the surface_size calculation:
4464 *
4465 * surface_size = isl_align(buffer_size, 4) +
4466 * (isl_align(buffer_size) - buffer_size)
4467 *
4468 * buffer_size = surface_size & ~3 - surface_size & 3
4469 */
4470
4471 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4472 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4473 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4474
4475 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4476 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4477 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4478
4479 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4480
4481 brw_mark_surface_used(prog_data, index);
4482 break;
4483 }
4484
4485 case nir_intrinsic_load_subgroup_invocation:
4486 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4487 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4488 break;
4489
4490 case nir_intrinsic_load_subgroup_eq_mask:
4491 case nir_intrinsic_load_subgroup_ge_mask:
4492 case nir_intrinsic_load_subgroup_gt_mask:
4493 case nir_intrinsic_load_subgroup_le_mask:
4494 case nir_intrinsic_load_subgroup_lt_mask:
4495 unreachable("not reached");
4496
4497 case nir_intrinsic_vote_any: {
4498 const fs_builder ubld = bld.exec_all().group(1, 0);
4499
4500 /* The any/all predicates do not consider channel enables. To prevent
4501 * dead channels from affecting the result, we initialize the flag with
4502 * with the identity value for the logical operation.
4503 */
4504 if (dispatch_width == 32) {
4505 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4506 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4507 brw_imm_ud(0));
4508 } else {
4509 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4510 }
4511 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4512
4513 /* For some reason, the any/all predicates don't work properly with
4514 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4515 * doesn't read the correct subset of the flag register and you end up
4516 * getting garbage in the second half. Work around this by using a pair
4517 * of 1-wide MOVs and scattering the result.
4518 */
4519 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4520 ubld.MOV(res1, brw_imm_d(0));
4521 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4522 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4523 BRW_PREDICATE_ALIGN1_ANY32H,
4524 ubld.MOV(res1, brw_imm_d(-1)));
4525
4526 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4527 break;
4528 }
4529 case nir_intrinsic_vote_all: {
4530 const fs_builder ubld = bld.exec_all().group(1, 0);
4531
4532 /* The any/all predicates do not consider channel enables. To prevent
4533 * dead channels from affecting the result, we initialize the flag with
4534 * with the identity value for the logical operation.
4535 */
4536 if (dispatch_width == 32) {
4537 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4538 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4539 brw_imm_ud(0xffffffff));
4540 } else {
4541 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4542 }
4543 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4544
4545 /* For some reason, the any/all predicates don't work properly with
4546 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4547 * doesn't read the correct subset of the flag register and you end up
4548 * getting garbage in the second half. Work around this by using a pair
4549 * of 1-wide MOVs and scattering the result.
4550 */
4551 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4552 ubld.MOV(res1, brw_imm_d(0));
4553 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4554 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4555 BRW_PREDICATE_ALIGN1_ALL32H,
4556 ubld.MOV(res1, brw_imm_d(-1)));
4557
4558 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4559 break;
4560 }
4561 case nir_intrinsic_vote_feq:
4562 case nir_intrinsic_vote_ieq: {
4563 fs_reg value = get_nir_src(instr->src[0]);
4564 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4565 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4566 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4567 }
4568
4569 fs_reg uniformized = bld.emit_uniformize(value);
4570 const fs_builder ubld = bld.exec_all().group(1, 0);
4571
4572 /* The any/all predicates do not consider channel enables. To prevent
4573 * dead channels from affecting the result, we initialize the flag with
4574 * with the identity value for the logical operation.
4575 */
4576 if (dispatch_width == 32) {
4577 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4578 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4579 brw_imm_ud(0xffffffff));
4580 } else {
4581 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4582 }
4583 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4584
4585 /* For some reason, the any/all predicates don't work properly with
4586 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4587 * doesn't read the correct subset of the flag register and you end up
4588 * getting garbage in the second half. Work around this by using a pair
4589 * of 1-wide MOVs and scattering the result.
4590 */
4591 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4592 ubld.MOV(res1, brw_imm_d(0));
4593 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4594 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4595 BRW_PREDICATE_ALIGN1_ALL32H,
4596 ubld.MOV(res1, brw_imm_d(-1)));
4597
4598 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4599 break;
4600 }
4601
4602 case nir_intrinsic_ballot: {
4603 const fs_reg value = retype(get_nir_src(instr->src[0]),
4604 BRW_REGISTER_TYPE_UD);
4605 struct brw_reg flag = brw_flag_reg(0, 0);
4606 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4607 * as f0.0. This is a problem for fragment programs as we currently use
4608 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4609 * programs yet so this isn't a problem. When we do, something will
4610 * have to change.
4611 */
4612 if (dispatch_width == 32)
4613 flag.type = BRW_REGISTER_TYPE_UD;
4614
4615 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4616 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4617
4618 if (instr->dest.ssa.bit_size > 32) {
4619 dest.type = BRW_REGISTER_TYPE_UQ;
4620 } else {
4621 dest.type = BRW_REGISTER_TYPE_UD;
4622 }
4623 bld.MOV(dest, flag);
4624 break;
4625 }
4626
4627 case nir_intrinsic_read_invocation: {
4628 const fs_reg value = get_nir_src(instr->src[0]);
4629 const fs_reg invocation = get_nir_src(instr->src[1]);
4630 fs_reg tmp = bld.vgrf(value.type);
4631
4632 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4633 bld.emit_uniformize(invocation));
4634
4635 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4636 break;
4637 }
4638
4639 case nir_intrinsic_read_first_invocation: {
4640 const fs_reg value = get_nir_src(instr->src[0]);
4641 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4642 break;
4643 }
4644
4645 case nir_intrinsic_shuffle: {
4646 const fs_reg value = get_nir_src(instr->src[0]);
4647 const fs_reg index = get_nir_src(instr->src[1]);
4648
4649 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4650 break;
4651 }
4652
4653 case nir_intrinsic_first_invocation: {
4654 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4655 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4656 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4657 fs_reg(component(tmp, 0)));
4658 break;
4659 }
4660
4661 case nir_intrinsic_quad_broadcast: {
4662 const fs_reg value = get_nir_src(instr->src[0]);
4663 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4664 assert(nir_src_bit_size(instr->src[1]) == 32);
4665
4666 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4667 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4668 break;
4669 }
4670
4671 case nir_intrinsic_quad_swap_horizontal: {
4672 const fs_reg value = get_nir_src(instr->src[0]);
4673 const fs_reg tmp = bld.vgrf(value.type);
4674 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4675
4676 const fs_reg src_left = horiz_stride(value, 2);
4677 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4678 const fs_reg tmp_left = horiz_stride(tmp, 2);
4679 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4680
4681 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4682 *
4683 * "When source or destination datatype is 64b or operation is
4684 * integer DWord multiply, regioning in Align1 must follow
4685 * these rules:
4686 *
4687 * [...]
4688 *
4689 * 3. Source and Destination offset must be the same, except
4690 * the case of scalar source."
4691 *
4692 * In order to work around this, we have to emit two 32-bit MOVs instead
4693 * of a single 64-bit MOV to do the shuffle.
4694 */
4695 if (type_sz(value.type) > 4 &&
4696 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4697 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4698 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4699 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4700 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4701 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4702 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4703 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4704 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4705 } else {
4706 ubld.MOV(tmp_left, src_right);
4707 ubld.MOV(tmp_right, src_left);
4708 }
4709 bld.MOV(retype(dest, value.type), tmp);
4710 break;
4711 }
4712
4713 case nir_intrinsic_quad_swap_vertical: {
4714 const fs_reg value = get_nir_src(instr->src[0]);
4715 if (nir_src_bit_size(instr->src[0]) == 32) {
4716 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4717 const fs_reg tmp = bld.vgrf(value.type);
4718 const fs_builder ubld = bld.exec_all();
4719 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4720 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4721 bld.MOV(retype(dest, value.type), tmp);
4722 } else {
4723 /* For larger data types, we have to either emit dispatch_width many
4724 * MOVs or else fall back to doing indirects.
4725 */
4726 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4727 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4728 brw_imm_w(0x2));
4729 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4730 }
4731 break;
4732 }
4733
4734 case nir_intrinsic_quad_swap_diagonal: {
4735 const fs_reg value = get_nir_src(instr->src[0]);
4736 if (nir_src_bit_size(instr->src[0]) == 32) {
4737 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4738 const fs_reg tmp = bld.vgrf(value.type);
4739 const fs_builder ubld = bld.exec_all();
4740 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4741 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4742 bld.MOV(retype(dest, value.type), tmp);
4743 } else {
4744 /* For larger data types, we have to either emit dispatch_width many
4745 * MOVs or else fall back to doing indirects.
4746 */
4747 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4748 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4749 brw_imm_w(0x3));
4750 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4751 }
4752 break;
4753 }
4754
4755 case nir_intrinsic_reduce: {
4756 fs_reg src = get_nir_src(instr->src[0]);
4757 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4758 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4759 if (cluster_size == 0 || cluster_size > dispatch_width)
4760 cluster_size = dispatch_width;
4761
4762 /* Figure out the source type */
4763 src.type = brw_type_for_nir_type(devinfo,
4764 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4765 nir_src_bit_size(instr->src[0])));
4766
4767 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4768 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4769 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4770
4771 /* Set up a register for all of our scratching around and initialize it
4772 * to reduction operation's identity value.
4773 */
4774 fs_reg scan = bld.vgrf(src.type);
4775 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4776
4777 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4778
4779 dest.type = src.type;
4780 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4781 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4782 * the distance between clusters is at least 2 GRFs. In this case,
4783 * we don't need the weird striding of the CLUSTER_BROADCAST
4784 * instruction and can just do regular MOVs.
4785 */
4786 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4787 const unsigned groups =
4788 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4789 const unsigned group_size = dispatch_width / groups;
4790 for (unsigned i = 0; i < groups; i++) {
4791 const unsigned cluster = (i * group_size) / cluster_size;
4792 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4793 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4794 component(scan, comp));
4795 }
4796 } else {
4797 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4798 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4799 }
4800 break;
4801 }
4802
4803 case nir_intrinsic_inclusive_scan:
4804 case nir_intrinsic_exclusive_scan: {
4805 fs_reg src = get_nir_src(instr->src[0]);
4806 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4807
4808 /* Figure out the source type */
4809 src.type = brw_type_for_nir_type(devinfo,
4810 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4811 nir_src_bit_size(instr->src[0])));
4812
4813 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4814 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4815 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4816
4817 /* Set up a register for all of our scratching around and initialize it
4818 * to reduction operation's identity value.
4819 */
4820 fs_reg scan = bld.vgrf(src.type);
4821 const fs_builder allbld = bld.exec_all();
4822 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4823
4824 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4825 /* Exclusive scan is a bit harder because we have to do an annoying
4826 * shift of the contents before we can begin. To make things worse,
4827 * we can't do this with a normal stride; we have to use indirects.
4828 */
4829 fs_reg shifted = bld.vgrf(src.type);
4830 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4831 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4832 brw_imm_w(-1));
4833 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4834 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4835 scan = shifted;
4836 }
4837
4838 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4839
4840 bld.MOV(retype(dest, src.type), scan);
4841 break;
4842 }
4843
4844 case nir_intrinsic_begin_fragment_shader_ordering:
4845 case nir_intrinsic_begin_invocation_interlock: {
4846 const fs_builder ubld = bld.group(8, 0);
4847 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4848
4849 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4850 REG_SIZE;
4851
4852 break;
4853 }
4854
4855 case nir_intrinsic_end_invocation_interlock: {
4856 /* We don't need to do anything here */
4857 break;
4858 }
4859
4860 default:
4861 unreachable("unknown intrinsic");
4862 }
4863 }
4864
4865 void
4866 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4867 int op, nir_intrinsic_instr *instr)
4868 {
4869 if (stage == MESA_SHADER_FRAGMENT)
4870 brw_wm_prog_data(prog_data)->has_side_effects = true;
4871
4872 fs_reg dest;
4873 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4874 dest = get_nir_dest(instr->dest);
4875
4876 fs_reg surface;
4877 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4878 if (const_surface) {
4879 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4880 const_surface->u32[0];
4881 surface = brw_imm_ud(surf_index);
4882 brw_mark_surface_used(prog_data, surf_index);
4883 } else {
4884 surface = vgrf(glsl_type::uint_type);
4885 bld.ADD(surface, get_nir_src(instr->src[0]),
4886 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4887
4888 /* Assume this may touch any SSBO. This is the same we do for other
4889 * UBO/SSBO accesses with non-constant surface.
4890 */
4891 brw_mark_surface_used(prog_data,
4892 stage_prog_data->binding_table.ssbo_start +
4893 nir->info.num_ssbos - 1);
4894 }
4895
4896 fs_reg offset = get_nir_src(instr->src[1]);
4897 fs_reg data1;
4898 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4899 data1 = get_nir_src(instr->src[2]);
4900 fs_reg data2;
4901 if (op == BRW_AOP_CMPWR)
4902 data2 = get_nir_src(instr->src[3]);
4903
4904 /* Emit the actual atomic operation */
4905
4906 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4907 data1, data2,
4908 1 /* dims */, 1 /* rsize */,
4909 op,
4910 BRW_PREDICATE_NONE);
4911 dest.type = atomic_result.type;
4912 bld.MOV(dest, atomic_result);
4913 }
4914
4915 void
4916 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4917 int op, nir_intrinsic_instr *instr)
4918 {
4919 if (stage == MESA_SHADER_FRAGMENT)
4920 brw_wm_prog_data(prog_data)->has_side_effects = true;
4921
4922 fs_reg dest;
4923 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4924 dest = get_nir_dest(instr->dest);
4925
4926 fs_reg surface;
4927 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4928 if (const_surface) {
4929 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4930 const_surface->u32[0];
4931 surface = brw_imm_ud(surf_index);
4932 brw_mark_surface_used(prog_data, surf_index);
4933 } else {
4934 surface = vgrf(glsl_type::uint_type);
4935 bld.ADD(surface, get_nir_src(instr->src[0]),
4936 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4937
4938 /* Assume this may touch any SSBO. This is the same we do for other
4939 * UBO/SSBO accesses with non-constant surface.
4940 */
4941 brw_mark_surface_used(prog_data,
4942 stage_prog_data->binding_table.ssbo_start +
4943 nir->info.num_ssbos - 1);
4944 }
4945
4946 fs_reg offset = get_nir_src(instr->src[1]);
4947 fs_reg data1 = get_nir_src(instr->src[2]);
4948 fs_reg data2;
4949 if (op == BRW_AOP_FCMPWR)
4950 data2 = get_nir_src(instr->src[3]);
4951
4952 /* Emit the actual atomic operation */
4953
4954 fs_reg atomic_result = emit_untyped_atomic_float(bld, surface, offset,
4955 data1, data2,
4956 1 /* dims */, 1 /* rsize */,
4957 op,
4958 BRW_PREDICATE_NONE);
4959 dest.type = atomic_result.type;
4960 bld.MOV(dest, atomic_result);
4961 }
4962
4963 void
4964 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4965 int op, nir_intrinsic_instr *instr)
4966 {
4967 fs_reg dest;
4968 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4969 dest = get_nir_dest(instr->dest);
4970
4971 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4972 fs_reg offset;
4973 fs_reg data1;
4974 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4975 data1 = get_nir_src(instr->src[1]);
4976 fs_reg data2;
4977 if (op == BRW_AOP_CMPWR)
4978 data2 = get_nir_src(instr->src[2]);
4979
4980 /* Get the offset */
4981 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4982 if (const_offset) {
4983 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4984 } else {
4985 offset = vgrf(glsl_type::uint_type);
4986 bld.ADD(offset,
4987 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4988 brw_imm_ud(instr->const_index[0]));
4989 }
4990
4991 /* Emit the actual atomic operation operation */
4992
4993 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4994 data1, data2,
4995 1 /* dims */, 1 /* rsize */,
4996 op,
4997 BRW_PREDICATE_NONE);
4998 dest.type = atomic_result.type;
4999 bld.MOV(dest, atomic_result);
5000 }
5001
5002 void
5003 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5004 int op, nir_intrinsic_instr *instr)
5005 {
5006 fs_reg dest;
5007 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5008 dest = get_nir_dest(instr->dest);
5009
5010 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
5011 fs_reg offset;
5012 fs_reg data1 = get_nir_src(instr->src[1]);
5013 fs_reg data2;
5014 if (op == BRW_AOP_FCMPWR)
5015 data2 = get_nir_src(instr->src[2]);
5016
5017 /* Get the offset */
5018 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
5019 if (const_offset) {
5020 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
5021 } else {
5022 offset = vgrf(glsl_type::uint_type);
5023 bld.ADD(offset,
5024 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5025 brw_imm_ud(instr->const_index[0]));
5026 }
5027
5028 /* Emit the actual atomic operation operation */
5029
5030 fs_reg atomic_result = emit_untyped_atomic_float(bld, surface, offset,
5031 data1, data2,
5032 1 /* dims */, 1 /* rsize */,
5033 op,
5034 BRW_PREDICATE_NONE);
5035 dest.type = atomic_result.type;
5036 bld.MOV(dest, atomic_result);
5037 }
5038
5039 void
5040 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5041 {
5042 unsigned texture = instr->texture_index;
5043 unsigned sampler = instr->sampler_index;
5044
5045 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5046
5047 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5048 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5049
5050 int lod_components = 0;
5051
5052 /* The hardware requires a LOD for buffer textures */
5053 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5054 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5055
5056 uint32_t header_bits = 0;
5057 for (unsigned i = 0; i < instr->num_srcs; i++) {
5058 fs_reg src = get_nir_src(instr->src[i].src);
5059 switch (instr->src[i].src_type) {
5060 case nir_tex_src_bias:
5061 srcs[TEX_LOGICAL_SRC_LOD] =
5062 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5063 break;
5064 case nir_tex_src_comparator:
5065 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5066 break;
5067 case nir_tex_src_coord:
5068 switch (instr->op) {
5069 case nir_texop_txf:
5070 case nir_texop_txf_ms:
5071 case nir_texop_txf_ms_mcs:
5072 case nir_texop_samples_identical:
5073 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5074 break;
5075 default:
5076 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5077 break;
5078 }
5079 break;
5080 case nir_tex_src_ddx:
5081 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5082 lod_components = nir_tex_instr_src_size(instr, i);
5083 break;
5084 case nir_tex_src_ddy:
5085 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5086 break;
5087 case nir_tex_src_lod:
5088 switch (instr->op) {
5089 case nir_texop_txs:
5090 srcs[TEX_LOGICAL_SRC_LOD] =
5091 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5092 break;
5093 case nir_texop_txf:
5094 srcs[TEX_LOGICAL_SRC_LOD] =
5095 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5096 break;
5097 default:
5098 srcs[TEX_LOGICAL_SRC_LOD] =
5099 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5100 break;
5101 }
5102 break;
5103 case nir_tex_src_ms_index:
5104 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5105 break;
5106
5107 case nir_tex_src_offset: {
5108 nir_const_value *const_offset =
5109 nir_src_as_const_value(instr->src[i].src);
5110 unsigned offset_bits = 0;
5111 if (const_offset &&
5112 brw_texture_offset(const_offset->i32,
5113 nir_tex_instr_src_size(instr, i),
5114 &offset_bits)) {
5115 header_bits |= offset_bits;
5116 } else {
5117 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5118 retype(src, BRW_REGISTER_TYPE_D);
5119 }
5120 break;
5121 }
5122
5123 case nir_tex_src_projector:
5124 unreachable("should be lowered");
5125
5126 case nir_tex_src_texture_offset: {
5127 /* Figure out the highest possible texture index and mark it as used */
5128 uint32_t max_used = texture + instr->texture_array_size - 1;
5129 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5130 max_used += stage_prog_data->binding_table.gather_texture_start;
5131 } else {
5132 max_used += stage_prog_data->binding_table.texture_start;
5133 }
5134 brw_mark_surface_used(prog_data, max_used);
5135
5136 /* Emit code to evaluate the actual indexing expression */
5137 fs_reg tmp = vgrf(glsl_type::uint_type);
5138 bld.ADD(tmp, src, brw_imm_ud(texture));
5139 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5140 break;
5141 }
5142
5143 case nir_tex_src_sampler_offset: {
5144 /* Emit code to evaluate the actual indexing expression */
5145 fs_reg tmp = vgrf(glsl_type::uint_type);
5146 bld.ADD(tmp, src, brw_imm_ud(sampler));
5147 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5148 break;
5149 }
5150
5151 case nir_tex_src_ms_mcs:
5152 assert(instr->op == nir_texop_txf_ms);
5153 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5154 break;
5155
5156 case nir_tex_src_plane: {
5157 nir_const_value *const_plane =
5158 nir_src_as_const_value(instr->src[i].src);
5159 const uint32_t plane = const_plane->u32[0];
5160 const uint32_t texture_index =
5161 instr->texture_index +
5162 stage_prog_data->binding_table.plane_start[plane] -
5163 stage_prog_data->binding_table.texture_start;
5164
5165 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5166 break;
5167 }
5168
5169 default:
5170 unreachable("unknown texture source");
5171 }
5172 }
5173
5174 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5175 (instr->op == nir_texop_txf_ms ||
5176 instr->op == nir_texop_samples_identical)) {
5177 if (devinfo->gen >= 7 &&
5178 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5179 srcs[TEX_LOGICAL_SRC_MCS] =
5180 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5181 instr->coord_components,
5182 srcs[TEX_LOGICAL_SRC_SURFACE]);
5183 } else {
5184 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5185 }
5186 }
5187
5188 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5189 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5190
5191 enum opcode opcode;
5192 switch (instr->op) {
5193 case nir_texop_tex:
5194 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5195 SHADER_OPCODE_TXL_LOGICAL);
5196 break;
5197 case nir_texop_txb:
5198 opcode = FS_OPCODE_TXB_LOGICAL;
5199 break;
5200 case nir_texop_txl:
5201 opcode = SHADER_OPCODE_TXL_LOGICAL;
5202 break;
5203 case nir_texop_txd:
5204 opcode = SHADER_OPCODE_TXD_LOGICAL;
5205 break;
5206 case nir_texop_txf:
5207 opcode = SHADER_OPCODE_TXF_LOGICAL;
5208 break;
5209 case nir_texop_txf_ms:
5210 if ((key_tex->msaa_16 & (1 << sampler)))
5211 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5212 else
5213 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5214 break;
5215 case nir_texop_txf_ms_mcs:
5216 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5217 break;
5218 case nir_texop_query_levels:
5219 case nir_texop_txs:
5220 opcode = SHADER_OPCODE_TXS_LOGICAL;
5221 break;
5222 case nir_texop_lod:
5223 opcode = SHADER_OPCODE_LOD_LOGICAL;
5224 break;
5225 case nir_texop_tg4:
5226 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5227 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5228 else
5229 opcode = SHADER_OPCODE_TG4_LOGICAL;
5230 break;
5231 case nir_texop_texture_samples:
5232 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5233 break;
5234 case nir_texop_samples_identical: {
5235 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5236
5237 /* If mcs is an immediate value, it means there is no MCS. In that case
5238 * just return false.
5239 */
5240 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5241 bld.MOV(dst, brw_imm_ud(0u));
5242 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5243 fs_reg tmp = vgrf(glsl_type::uint_type);
5244 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5245 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5246 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5247 } else {
5248 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5249 BRW_CONDITIONAL_EQ);
5250 }
5251 return;
5252 }
5253 default:
5254 unreachable("unknown texture opcode");
5255 }
5256
5257 if (instr->op == nir_texop_tg4) {
5258 if (instr->component == 1 &&
5259 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5260 /* gather4 sampler is broken for green channel on RG32F --
5261 * we must ask for blue instead.
5262 */
5263 header_bits |= 2 << 16;
5264 } else {
5265 header_bits |= instr->component << 16;
5266 }
5267 }
5268
5269 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5270 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5271 inst->offset = header_bits;
5272
5273 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5274 if (devinfo->gen >= 9 &&
5275 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5276 unsigned write_mask = instr->dest.is_ssa ?
5277 nir_ssa_def_components_read(&instr->dest.ssa):
5278 (1 << dest_size) - 1;
5279 assert(write_mask != 0); /* dead code should have been eliminated */
5280 inst->size_written = util_last_bit(write_mask) *
5281 inst->dst.component_size(inst->exec_size);
5282 } else {
5283 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5284 }
5285
5286 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5287 inst->shadow_compare = true;
5288
5289 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5290 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5291
5292 fs_reg nir_dest[4];
5293 for (unsigned i = 0; i < dest_size; i++)
5294 nir_dest[i] = offset(dst, bld, i);
5295
5296 if (instr->op == nir_texop_query_levels) {
5297 /* # levels is in .w */
5298 nir_dest[0] = offset(dst, bld, 3);
5299 } else if (instr->op == nir_texop_txs &&
5300 dest_size >= 3 && devinfo->gen < 7) {
5301 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5302 fs_reg depth = offset(dst, bld, 2);
5303 nir_dest[2] = vgrf(glsl_type::int_type);
5304 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5305 }
5306
5307 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5308 }
5309
5310 void
5311 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5312 {
5313 switch (instr->type) {
5314 case nir_jump_break:
5315 bld.emit(BRW_OPCODE_BREAK);
5316 break;
5317 case nir_jump_continue:
5318 bld.emit(BRW_OPCODE_CONTINUE);
5319 break;
5320 case nir_jump_return:
5321 default:
5322 unreachable("unknown jump");
5323 }
5324 }
5325
5326 /*
5327 * This helper takes a source register and un/shuffles it into the destination
5328 * register.
5329 *
5330 * If source type size is smaller than destination type size the operation
5331 * needed is a component shuffle. The opposite case would be an unshuffle. If
5332 * source/destination type size is equal a shuffle is done that would be
5333 * equivalent to a simple MOV.
5334 *
5335 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5336 * components .xyz 16-bit vector on SIMD8 would be.
5337 *
5338 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5339 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5340 *
5341 * This helper will return the following 2 32-bit components with the 16-bit
5342 * values shuffled:
5343 *
5344 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5345 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5346 *
5347 * For unshuffle, the example would be the opposite, a 64-bit type source
5348 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5349 * would be:
5350 *
5351 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5352 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5353 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5354 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5355 *
5356 * The returned result would be the following 4 32-bit components unshuffled:
5357 *
5358 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5359 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5360 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5361 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5362 *
5363 * - Source and destination register must not be overlapped.
5364 * - components units are measured in terms of the smaller type between
5365 * source and destination because we are un/shuffling the smaller
5366 * components from/into the bigger ones.
5367 * - first_component parameter allows skipping source components.
5368 */
5369 void
5370 shuffle_src_to_dst(const fs_builder &bld,
5371 const fs_reg &dst,
5372 const fs_reg &src,
5373 uint32_t first_component,
5374 uint32_t components)
5375 {
5376 if (type_sz(src.type) == type_sz(dst.type)) {
5377 assert(!regions_overlap(dst,
5378 type_sz(dst.type) * bld.dispatch_width() * components,
5379 offset(src, bld, first_component),
5380 type_sz(src.type) * bld.dispatch_width() * components));
5381 for (unsigned i = 0; i < components; i++) {
5382 bld.MOV(retype(offset(dst, bld, i), src.type),
5383 offset(src, bld, i + first_component));
5384 }
5385 } else if (type_sz(src.type) < type_sz(dst.type)) {
5386 /* Source is shuffled into destination */
5387 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5388 assert(!regions_overlap(dst,
5389 type_sz(dst.type) * bld.dispatch_width() *
5390 DIV_ROUND_UP(components, size_ratio),
5391 offset(src, bld, first_component),
5392 type_sz(src.type) * bld.dispatch_width() * components));
5393
5394 brw_reg_type shuffle_type =
5395 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5396 BRW_REGISTER_TYPE_D);
5397 for (unsigned i = 0; i < components; i++) {
5398 fs_reg shuffle_component_i =
5399 subscript(offset(dst, bld, i / size_ratio),
5400 shuffle_type, i % size_ratio);
5401 bld.MOV(shuffle_component_i,
5402 retype(offset(src, bld, i + first_component), shuffle_type));
5403 }
5404 } else {
5405 /* Source is unshuffled into destination */
5406 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5407 assert(!regions_overlap(dst,
5408 type_sz(dst.type) * bld.dispatch_width() * components,
5409 offset(src, bld, first_component / size_ratio),
5410 type_sz(src.type) * bld.dispatch_width() *
5411 DIV_ROUND_UP(components + (first_component % size_ratio),
5412 size_ratio)));
5413
5414 brw_reg_type shuffle_type =
5415 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5416 BRW_REGISTER_TYPE_D);
5417 for (unsigned i = 0; i < components; i++) {
5418 fs_reg shuffle_component_i =
5419 subscript(offset(src, bld, (first_component + i) / size_ratio),
5420 shuffle_type, (first_component + i) % size_ratio);
5421 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5422 shuffle_component_i);
5423 }
5424 }
5425 }
5426
5427 void
5428 shuffle_from_32bit_read(const fs_builder &bld,
5429 const fs_reg &dst,
5430 const fs_reg &src,
5431 uint32_t first_component,
5432 uint32_t components)
5433 {
5434 assert(type_sz(src.type) == 4);
5435
5436 /* This function takes components in units of the destination type while
5437 * shuffle_src_to_dst takes components in units of the smallest type
5438 */
5439 if (type_sz(dst.type) > 4) {
5440 assert(type_sz(dst.type) == 8);
5441 first_component *= 2;
5442 components *= 2;
5443 }
5444
5445 shuffle_src_to_dst(bld, dst, src, first_component, components);
5446 }
5447
5448 fs_reg
5449 shuffle_for_32bit_write(const fs_builder &bld,
5450 const fs_reg &src,
5451 uint32_t first_component,
5452 uint32_t components)
5453 {
5454 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5455 DIV_ROUND_UP (components * type_sz(src.type), 4));
5456 /* This function takes components in units of the source type while
5457 * shuffle_src_to_dst takes components in units of the smallest type
5458 */
5459 if (type_sz(src.type) > 4) {
5460 assert(type_sz(src.type) == 8);
5461 first_component *= 2;
5462 components *= 2;
5463 }
5464
5465 shuffle_src_to_dst(bld, dst, src, first_component, components);
5466
5467 return dst;
5468 }
5469
5470 fs_reg
5471 setup_imm_df(const fs_builder &bld, double v)
5472 {
5473 const struct gen_device_info *devinfo = bld.shader->devinfo;
5474 assert(devinfo->gen >= 7);
5475
5476 if (devinfo->gen >= 8)
5477 return brw_imm_df(v);
5478
5479 /* gen7.5 does not support DF immediates straighforward but the DIM
5480 * instruction allows to set the 64-bit immediate value.
5481 */
5482 if (devinfo->is_haswell) {
5483 const fs_builder ubld = bld.exec_all().group(1, 0);
5484 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5485 ubld.DIM(dst, brw_imm_df(v));
5486 return component(dst, 0);
5487 }
5488
5489 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5490 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5491 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5492 *
5493 * Alternatively, we could also produce a normal VGRF (without stride 0)
5494 * by writing to all the channels in the VGRF, however, that would hit the
5495 * gen7 bug where we have to split writes that span more than 1 register
5496 * into instructions with a width of 4 (otherwise the write to the second
5497 * register written runs into an execmask hardware bug) which isn't very
5498 * nice.
5499 */
5500 union {
5501 double d;
5502 struct {
5503 uint32_t i1;
5504 uint32_t i2;
5505 };
5506 } di;
5507
5508 di.d = v;
5509
5510 const fs_builder ubld = bld.exec_all().group(1, 0);
5511 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5512 ubld.MOV(tmp, brw_imm_ud(di.i1));
5513 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5514
5515 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5516 }
5517
5518 fs_reg
5519 setup_imm_b(const fs_builder &bld, int8_t v)
5520 {
5521 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5522 bld.MOV(tmp, brw_imm_w(v));
5523 return tmp;
5524 }
5525
5526 fs_reg
5527 setup_imm_ub(const fs_builder &bld, uint8_t v)
5528 {
5529 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5530 bld.MOV(tmp, brw_imm_uw(v));
5531 return tmp;
5532 }