intel/compiler: fix isign for 16-bit integers
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 nir_foreach_variable(var, &nir->outputs) {
71 const int loc = var->data.driver_location;
72 if (outputs[loc].file == BAD_FILE) {
73 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s[loc]);
74 for (unsigned i = 0; i < vec4s[loc]; i++) {
75 outputs[loc + i] = offset(reg, bld, 4 * i);
76 }
77 }
78 }
79 }
80
81 void
82 fs_visitor::nir_setup_uniforms()
83 {
84 /* Only the first compile gets to set up uniforms. */
85 if (push_constant_loc) {
86 assert(pull_constant_loc);
87 return;
88 }
89
90 uniforms = nir->num_uniforms / 4;
91
92 if (stage == MESA_SHADER_COMPUTE) {
93 /* Add a uniform for the thread local id. It must be the last uniform
94 * on the list.
95 */
96 assert(uniforms == prog_data->nr_params);
97 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
98 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
99 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
100 }
101 }
102
103 static bool
104 emit_system_values_block(nir_block *block, fs_visitor *v)
105 {
106 fs_reg *reg;
107
108 nir_foreach_instr(instr, block) {
109 if (instr->type != nir_instr_type_intrinsic)
110 continue;
111
112 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
113 switch (intrin->intrinsic) {
114 case nir_intrinsic_load_vertex_id:
115 case nir_intrinsic_load_base_vertex:
116 unreachable("should be lowered by nir_lower_system_values().");
117
118 case nir_intrinsic_load_vertex_id_zero_base:
119 case nir_intrinsic_load_is_indexed_draw:
120 case nir_intrinsic_load_first_vertex:
121 case nir_intrinsic_load_instance_id:
122 case nir_intrinsic_load_base_instance:
123 case nir_intrinsic_load_draw_id:
124 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
125
126 case nir_intrinsic_load_invocation_id:
127 if (v->stage == MESA_SHADER_TESS_CTRL)
128 break;
129 assert(v->stage == MESA_SHADER_GEOMETRY);
130 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
131 if (reg->file == BAD_FILE) {
132 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
133 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
134 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
135 abld.SHR(iid, g1, brw_imm_ud(27u));
136 *reg = iid;
137 }
138 break;
139
140 case nir_intrinsic_load_sample_pos:
141 assert(v->stage == MESA_SHADER_FRAGMENT);
142 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
143 if (reg->file == BAD_FILE)
144 *reg = *v->emit_samplepos_setup();
145 break;
146
147 case nir_intrinsic_load_sample_id:
148 assert(v->stage == MESA_SHADER_FRAGMENT);
149 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
150 if (reg->file == BAD_FILE)
151 *reg = *v->emit_sampleid_setup();
152 break;
153
154 case nir_intrinsic_load_sample_mask_in:
155 assert(v->stage == MESA_SHADER_FRAGMENT);
156 assert(v->devinfo->gen >= 7);
157 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
158 if (reg->file == BAD_FILE)
159 *reg = *v->emit_samplemaskin_setup();
160 break;
161
162 case nir_intrinsic_load_work_group_id:
163 assert(v->stage == MESA_SHADER_COMPUTE);
164 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
165 if (reg->file == BAD_FILE)
166 *reg = *v->emit_cs_work_group_id_setup();
167 break;
168
169 case nir_intrinsic_load_helper_invocation:
170 assert(v->stage == MESA_SHADER_FRAGMENT);
171 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
172 if (reg->file == BAD_FILE) {
173 const fs_builder abld =
174 v->bld.annotate("gl_HelperInvocation", NULL);
175
176 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
177 * pixel mask is in g1.7 of the thread payload.
178 *
179 * We move the per-channel pixel enable bit to the low bit of each
180 * channel by shifting the byte containing the pixel mask by the
181 * vector immediate 0x76543210UV.
182 *
183 * The region of <1,8,0> reads only 1 byte (the pixel masks for
184 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
185 * masks for 2 and 3) in SIMD16.
186 */
187 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
188 abld.SHR(shifted,
189 stride(byte_offset(retype(brw_vec1_grf(1, 0),
190 BRW_REGISTER_TYPE_UB), 28),
191 1, 8, 0),
192 brw_imm_v(0x76543210));
193
194 /* A set bit in the pixel mask means the channel is enabled, but
195 * that is the opposite of gl_HelperInvocation so we need to invert
196 * the mask.
197 *
198 * The negate source-modifier bit of logical instructions on Gen8+
199 * performs 1's complement negation, so we can use that instead of
200 * a NOT instruction.
201 */
202 fs_reg inverted = negate(shifted);
203 if (v->devinfo->gen < 8) {
204 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
205 abld.NOT(inverted, shifted);
206 }
207
208 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
209 * with 1 and negating.
210 */
211 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
212 abld.AND(anded, inverted, brw_imm_uw(1));
213
214 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
215 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
216 *reg = dst;
217 }
218 break;
219
220 default:
221 break;
222 }
223 }
224
225 return true;
226 }
227
228 void
229 fs_visitor::nir_emit_system_values()
230 {
231 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
232 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
233 nir_system_values[i] = fs_reg();
234 }
235
236 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
237 * never end up using it.
238 */
239 {
240 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
241 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
242 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
243
244 const fs_builder allbld8 = abld.group(8, 0).exec_all();
245 allbld8.MOV(reg, brw_imm_v(0x76543210));
246 if (dispatch_width > 8)
247 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
248 if (dispatch_width > 16) {
249 const fs_builder allbld16 = abld.group(16, 0).exec_all();
250 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
251 }
252 }
253
254 nir_foreach_function(function, nir) {
255 assert(strcmp(function->name, "main") == 0);
256 assert(function->impl);
257 nir_foreach_block(block, function->impl) {
258 emit_system_values_block(block, this);
259 }
260 }
261 }
262
263 /*
264 * Returns a type based on a reference_type (word, float, half-float) and a
265 * given bit_size.
266 *
267 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
268 *
269 * @FIXME: 64-bit return types are always DF on integer types to maintain
270 * compability with uses of DF previously to the introduction of int64
271 * support.
272 */
273 static brw_reg_type
274 brw_reg_type_from_bit_size(const unsigned bit_size,
275 const brw_reg_type reference_type)
276 {
277 switch(reference_type) {
278 case BRW_REGISTER_TYPE_HF:
279 case BRW_REGISTER_TYPE_F:
280 case BRW_REGISTER_TYPE_DF:
281 switch(bit_size) {
282 case 16:
283 return BRW_REGISTER_TYPE_HF;
284 case 32:
285 return BRW_REGISTER_TYPE_F;
286 case 64:
287 return BRW_REGISTER_TYPE_DF;
288 default:
289 unreachable("Invalid bit size");
290 }
291 case BRW_REGISTER_TYPE_W:
292 case BRW_REGISTER_TYPE_D:
293 case BRW_REGISTER_TYPE_Q:
294 switch(bit_size) {
295 case 16:
296 return BRW_REGISTER_TYPE_W;
297 case 32:
298 return BRW_REGISTER_TYPE_D;
299 case 64:
300 return BRW_REGISTER_TYPE_Q;
301 default:
302 unreachable("Invalid bit size");
303 }
304 case BRW_REGISTER_TYPE_UW:
305 case BRW_REGISTER_TYPE_UD:
306 case BRW_REGISTER_TYPE_UQ:
307 switch(bit_size) {
308 case 16:
309 return BRW_REGISTER_TYPE_UW;
310 case 32:
311 return BRW_REGISTER_TYPE_UD;
312 case 64:
313 return BRW_REGISTER_TYPE_UQ;
314 default:
315 unreachable("Invalid bit size");
316 }
317 default:
318 unreachable("Unknown type");
319 }
320 }
321
322 void
323 fs_visitor::nir_emit_impl(nir_function_impl *impl)
324 {
325 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
326 for (unsigned i = 0; i < impl->reg_alloc; i++) {
327 nir_locals[i] = fs_reg();
328 }
329
330 foreach_list_typed(nir_register, reg, node, &impl->registers) {
331 unsigned array_elems =
332 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
333 unsigned size = array_elems * reg->num_components;
334 const brw_reg_type reg_type =
335 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
336 nir_locals[reg->index] = bld.vgrf(reg_type, size);
337 }
338
339 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
340 impl->ssa_alloc);
341
342 nir_emit_cf_list(&impl->body);
343 }
344
345 void
346 fs_visitor::nir_emit_cf_list(exec_list *list)
347 {
348 exec_list_validate(list);
349 foreach_list_typed(nir_cf_node, node, node, list) {
350 switch (node->type) {
351 case nir_cf_node_if:
352 nir_emit_if(nir_cf_node_as_if(node));
353 break;
354
355 case nir_cf_node_loop:
356 nir_emit_loop(nir_cf_node_as_loop(node));
357 break;
358
359 case nir_cf_node_block:
360 nir_emit_block(nir_cf_node_as_block(node));
361 break;
362
363 default:
364 unreachable("Invalid CFG node block");
365 }
366 }
367 }
368
369 void
370 fs_visitor::nir_emit_if(nir_if *if_stmt)
371 {
372 /* first, put the condition into f0 */
373 fs_inst *inst = bld.MOV(bld.null_reg_d(),
374 retype(get_nir_src(if_stmt->condition),
375 BRW_REGISTER_TYPE_D));
376 inst->conditional_mod = BRW_CONDITIONAL_NZ;
377
378 bld.IF(BRW_PREDICATE_NORMAL);
379
380 nir_emit_cf_list(&if_stmt->then_list);
381
382 /* note: if the else is empty, dead CF elimination will remove it */
383 bld.emit(BRW_OPCODE_ELSE);
384
385 nir_emit_cf_list(&if_stmt->else_list);
386
387 bld.emit(BRW_OPCODE_ENDIF);
388 }
389
390 void
391 fs_visitor::nir_emit_loop(nir_loop *loop)
392 {
393 bld.emit(BRW_OPCODE_DO);
394
395 nir_emit_cf_list(&loop->body);
396
397 bld.emit(BRW_OPCODE_WHILE);
398 }
399
400 void
401 fs_visitor::nir_emit_block(nir_block *block)
402 {
403 nir_foreach_instr(instr, block) {
404 nir_emit_instr(instr);
405 }
406 }
407
408 void
409 fs_visitor::nir_emit_instr(nir_instr *instr)
410 {
411 const fs_builder abld = bld.annotate(NULL, instr);
412
413 switch (instr->type) {
414 case nir_instr_type_alu:
415 nir_emit_alu(abld, nir_instr_as_alu(instr));
416 break;
417
418 case nir_instr_type_intrinsic:
419 switch (stage) {
420 case MESA_SHADER_VERTEX:
421 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
422 break;
423 case MESA_SHADER_TESS_CTRL:
424 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
425 break;
426 case MESA_SHADER_TESS_EVAL:
427 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
428 break;
429 case MESA_SHADER_GEOMETRY:
430 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
431 break;
432 case MESA_SHADER_FRAGMENT:
433 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
434 break;
435 case MESA_SHADER_COMPUTE:
436 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
437 break;
438 default:
439 unreachable("unsupported shader stage");
440 }
441 break;
442
443 case nir_instr_type_tex:
444 nir_emit_texture(abld, nir_instr_as_tex(instr));
445 break;
446
447 case nir_instr_type_load_const:
448 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
449 break;
450
451 case nir_instr_type_ssa_undef:
452 /* We create a new VGRF for undefs on every use (by handling
453 * them in get_nir_src()), rather than for each definition.
454 * This helps register coalescing eliminate MOVs from undef.
455 */
456 break;
457
458 case nir_instr_type_jump:
459 nir_emit_jump(abld, nir_instr_as_jump(instr));
460 break;
461
462 default:
463 unreachable("unknown instruction type");
464 }
465 }
466
467 /**
468 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
469 * match instr.
470 */
471 bool
472 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
473 const fs_reg &result)
474 {
475 if (!instr->src[0].src.is_ssa ||
476 !instr->src[0].src.ssa->parent_instr)
477 return false;
478
479 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
480 return false;
481
482 nir_alu_instr *src0 =
483 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
484
485 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
486 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
487 return false;
488
489 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
490 assert(element != NULL);
491
492 /* Element type to extract.*/
493 const brw_reg_type type = brw_int_type(
494 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
495 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
496
497 fs_reg op0 = get_nir_src(src0->src[0].src);
498 op0.type = brw_type_for_nir_type(devinfo,
499 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
500 nir_src_bit_size(src0->src[0].src)));
501 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
502
503 set_saturate(instr->dest.saturate,
504 bld.MOV(result, subscript(op0, type, element->u32[0])));
505 return true;
506 }
507
508 bool
509 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
510 const fs_reg &result)
511 {
512 if (!instr->src[0].src.is_ssa ||
513 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
514 return false;
515
516 nir_intrinsic_instr *src0 =
517 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
518
519 if (src0->intrinsic != nir_intrinsic_load_front_face)
520 return false;
521
522 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
523 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
524 return false;
525
526 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
527 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
528 return false;
529
530 fs_reg tmp = vgrf(glsl_type::int_type);
531
532 if (devinfo->gen >= 6) {
533 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
534 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
535
536 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
537 *
538 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
539 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
540 *
541 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
542 *
543 * This negation looks like it's safe in practice, because bits 0:4 will
544 * surely be TRIANGLES
545 */
546
547 if (value1->f32[0] == -1.0f) {
548 g0.negate = true;
549 }
550
551 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
552 g0, brw_imm_uw(0x3f80));
553 } else {
554 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
555 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
556
557 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
558 *
559 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
560 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
561 *
562 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
563 *
564 * This negation looks like it's safe in practice, because bits 0:4 will
565 * surely be TRIANGLES
566 */
567
568 if (value1->f32[0] == -1.0f) {
569 g1_6.negate = true;
570 }
571
572 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
573 }
574 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
575
576 return true;
577 }
578
579 static void
580 emit_find_msb_using_lzd(const fs_builder &bld,
581 const fs_reg &result,
582 const fs_reg &src,
583 bool is_signed)
584 {
585 fs_inst *inst;
586 fs_reg temp = src;
587
588 if (is_signed) {
589 /* LZD of an absolute value source almost always does the right
590 * thing. There are two problem values:
591 *
592 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
593 * 0. However, findMSB(int(0x80000000)) == 30.
594 *
595 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
596 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
597 *
598 * For a value of zero or negative one, -1 will be returned.
599 *
600 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
601 * findMSB(-(1<<x)) should return x-1.
602 *
603 * For all negative number cases, including 0x80000000 and
604 * 0xffffffff, the correct value is obtained from LZD if instead of
605 * negating the (already negative) value the logical-not is used. A
606 * conditonal logical-not can be achieved in two instructions.
607 */
608 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
609
610 bld.ASR(temp, src, brw_imm_d(31));
611 bld.XOR(temp, temp, src);
612 }
613
614 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
615 retype(temp, BRW_REGISTER_TYPE_UD));
616
617 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
618 * from the LSB side. Subtract the result from 31 to convert the MSB
619 * count into an LSB count. If no bits are set, LZD will return 32.
620 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
621 */
622 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
623 inst->src[0].negate = true;
624 }
625
626 static brw_rnd_mode
627 brw_rnd_mode_from_nir_op (const nir_op op) {
628 switch (op) {
629 case nir_op_f2f16_rtz:
630 return BRW_RND_MODE_RTZ;
631 case nir_op_f2f16_rtne:
632 return BRW_RND_MODE_RTNE;
633 default:
634 unreachable("Operation doesn't support rounding mode");
635 }
636 }
637
638 void
639 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
640 {
641 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
642 fs_inst *inst;
643
644 fs_reg result = get_nir_dest(instr->dest.dest);
645 result.type = brw_type_for_nir_type(devinfo,
646 (nir_alu_type)(nir_op_infos[instr->op].output_type |
647 nir_dest_bit_size(instr->dest.dest)));
648
649 fs_reg op[4];
650 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
651 op[i] = get_nir_src(instr->src[i].src);
652 op[i].type = brw_type_for_nir_type(devinfo,
653 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
654 nir_src_bit_size(instr->src[i].src)));
655 op[i].abs = instr->src[i].abs;
656 op[i].negate = instr->src[i].negate;
657 }
658
659 /* We get a bunch of mov's out of the from_ssa pass and they may still
660 * be vectorized. We'll handle them as a special-case. We'll also
661 * handle vecN here because it's basically the same thing.
662 */
663 switch (instr->op) {
664 case nir_op_imov:
665 case nir_op_fmov:
666 case nir_op_vec2:
667 case nir_op_vec3:
668 case nir_op_vec4: {
669 fs_reg temp = result;
670 bool need_extra_copy = false;
671 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
672 if (!instr->src[i].src.is_ssa &&
673 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
674 need_extra_copy = true;
675 temp = bld.vgrf(result.type, 4);
676 break;
677 }
678 }
679
680 for (unsigned i = 0; i < 4; i++) {
681 if (!(instr->dest.write_mask & (1 << i)))
682 continue;
683
684 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
685 inst = bld.MOV(offset(temp, bld, i),
686 offset(op[0], bld, instr->src[0].swizzle[i]));
687 } else {
688 inst = bld.MOV(offset(temp, bld, i),
689 offset(op[i], bld, instr->src[i].swizzle[0]));
690 }
691 inst->saturate = instr->dest.saturate;
692 }
693
694 /* In this case the source and destination registers were the same,
695 * so we need to insert an extra set of moves in order to deal with
696 * any swizzling.
697 */
698 if (need_extra_copy) {
699 for (unsigned i = 0; i < 4; i++) {
700 if (!(instr->dest.write_mask & (1 << i)))
701 continue;
702
703 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
704 }
705 }
706 return;
707 }
708 default:
709 break;
710 }
711
712 /* At this point, we have dealt with any instruction that operates on
713 * more than a single channel. Therefore, we can just adjust the source
714 * and destination registers for that channel and emit the instruction.
715 */
716 unsigned channel = 0;
717 if (nir_op_infos[instr->op].output_size == 0) {
718 /* Since NIR is doing the scalarizing for us, we should only ever see
719 * vectorized operations with a single channel.
720 */
721 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
722 channel = ffs(instr->dest.write_mask) - 1;
723
724 result = offset(result, bld, channel);
725 }
726
727 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
728 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
729 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
730 }
731
732 switch (instr->op) {
733 case nir_op_i2f32:
734 case nir_op_u2f32:
735 if (optimize_extract_to_float(instr, result))
736 return;
737 inst = bld.MOV(result, op[0]);
738 inst->saturate = instr->dest.saturate;
739 break;
740
741 case nir_op_f2f16_rtne:
742 case nir_op_f2f16_rtz:
743 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
744 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
745 /* fallthrough */
746
747 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
748 * on the HW gen, it is a special hw opcode or just a MOV, and
749 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
750 *
751 * But if we want to use that opcode, we need to provide support on
752 * different optimizations and lowerings. As right now HF support is
753 * only for gen8+, it will be better to use directly the MOV, and use
754 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
755 */
756
757 case nir_op_f2f16_undef:
758 case nir_op_i2i16:
759 case nir_op_u2u16: {
760 /* TODO: Fixing aligment rules for conversions from 32-bits to
761 * 16-bit types should be moved to lower_conversions
762 */
763 fs_reg tmp = bld.vgrf(op[0].type, 1);
764 tmp = subscript(tmp, result.type, 0);
765 inst = bld.MOV(tmp, op[0]);
766 inst->saturate = instr->dest.saturate;
767 inst = bld.MOV(result, tmp);
768 inst->saturate = instr->dest.saturate;
769 break;
770 }
771
772 case nir_op_f2f64:
773 case nir_op_f2i64:
774 case nir_op_f2u64:
775 case nir_op_i2f64:
776 case nir_op_i2i64:
777 case nir_op_u2f64:
778 case nir_op_u2u64:
779 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
780 *
781 * "When source or destination is 64b (...), regioning in Align1
782 * must follow these rules:
783 *
784 * 1. Source and destination horizontal stride must be aligned to
785 * the same qword.
786 * (...)"
787 *
788 * This means that 32-bit to 64-bit conversions need to have the 32-bit
789 * data elements aligned to 64-bit. This restriction does not apply to
790 * BDW and later.
791 */
792 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
793 nir_src_bit_size(instr->src[0].src) == 32 &&
794 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
795 fs_reg tmp = bld.vgrf(result.type, 1);
796 tmp = subscript(tmp, op[0].type, 0);
797 inst = bld.MOV(tmp, op[0]);
798 inst = bld.MOV(result, tmp);
799 inst->saturate = instr->dest.saturate;
800 break;
801 }
802 /* fallthrough */
803 case nir_op_f2f32:
804 case nir_op_f2i32:
805 case nir_op_f2u32:
806 case nir_op_i2i32:
807 case nir_op_u2u32:
808 inst = bld.MOV(result, op[0]);
809 inst->saturate = instr->dest.saturate;
810 break;
811
812 case nir_op_fsign: {
813 if (op[0].abs) {
814 /* Straightforward since the source can be assumed to be
815 * non-negative.
816 */
817 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
818 set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
819
820 } else if (type_sz(op[0].type) < 8) {
821 /* AND(val, 0x80000000) gives the sign bit.
822 *
823 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
824 * zero.
825 */
826 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
827
828 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
829 op[0].type = BRW_REGISTER_TYPE_UD;
830 result.type = BRW_REGISTER_TYPE_UD;
831 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
832
833 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
834 inst->predicate = BRW_PREDICATE_NORMAL;
835 if (instr->dest.saturate) {
836 inst = bld.MOV(result, result);
837 inst->saturate = true;
838 }
839 } else {
840 /* For doubles we do the same but we need to consider:
841 *
842 * - 2-src instructions can't operate with 64-bit immediates
843 * - The sign is encoded in the high 32-bit of each DF
844 * - We need to produce a DF result.
845 */
846
847 fs_reg zero = vgrf(glsl_type::double_type);
848 bld.MOV(zero, setup_imm_df(bld, 0.0));
849 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
850
851 bld.MOV(result, zero);
852
853 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
854 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
855 brw_imm_ud(0x80000000u));
856
857 set_predicate(BRW_PREDICATE_NORMAL,
858 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
859
860 if (instr->dest.saturate) {
861 inst = bld.MOV(result, result);
862 inst->saturate = true;
863 }
864 }
865 break;
866 }
867
868 case nir_op_isign: {
869 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
870 * -> non-negative val generates 0x00000000.
871 * Predicated OR sets 1 if val is positive.
872 */
873 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
874 assert(bit_size == 32 || bit_size == 16);
875
876 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
877 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
878 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
879
880 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
881 bld.ASR(result, op[0], shift);
882 inst = bld.OR(result, result, one);
883 inst->predicate = BRW_PREDICATE_NORMAL;
884 break;
885 }
886
887 case nir_op_frcp:
888 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
889 inst->saturate = instr->dest.saturate;
890 break;
891
892 case nir_op_fexp2:
893 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
894 inst->saturate = instr->dest.saturate;
895 break;
896
897 case nir_op_flog2:
898 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
899 inst->saturate = instr->dest.saturate;
900 break;
901
902 case nir_op_fsin:
903 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
904 inst->saturate = instr->dest.saturate;
905 break;
906
907 case nir_op_fcos:
908 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
909 inst->saturate = instr->dest.saturate;
910 break;
911
912 case nir_op_fddx:
913 if (fs_key->high_quality_derivatives) {
914 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
915 } else {
916 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
917 }
918 inst->saturate = instr->dest.saturate;
919 break;
920 case nir_op_fddx_fine:
921 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
922 inst->saturate = instr->dest.saturate;
923 break;
924 case nir_op_fddx_coarse:
925 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
926 inst->saturate = instr->dest.saturate;
927 break;
928 case nir_op_fddy:
929 if (fs_key->high_quality_derivatives) {
930 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
931 } else {
932 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
933 }
934 inst->saturate = instr->dest.saturate;
935 break;
936 case nir_op_fddy_fine:
937 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
938 inst->saturate = instr->dest.saturate;
939 break;
940 case nir_op_fddy_coarse:
941 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
942 inst->saturate = instr->dest.saturate;
943 break;
944
945 case nir_op_iadd:
946 case nir_op_fadd:
947 inst = bld.ADD(result, op[0], op[1]);
948 inst->saturate = instr->dest.saturate;
949 break;
950
951 case nir_op_fmul:
952 inst = bld.MUL(result, op[0], op[1]);
953 inst->saturate = instr->dest.saturate;
954 break;
955
956 case nir_op_imul:
957 assert(nir_dest_bit_size(instr->dest.dest) < 64);
958 bld.MUL(result, op[0], op[1]);
959 break;
960
961 case nir_op_imul_high:
962 case nir_op_umul_high:
963 assert(nir_dest_bit_size(instr->dest.dest) < 64);
964 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
965 break;
966
967 case nir_op_idiv:
968 case nir_op_udiv:
969 assert(nir_dest_bit_size(instr->dest.dest) < 64);
970 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
971 break;
972
973 case nir_op_uadd_carry:
974 unreachable("Should have been lowered by carry_to_arith().");
975
976 case nir_op_usub_borrow:
977 unreachable("Should have been lowered by borrow_to_arith().");
978
979 case nir_op_umod:
980 case nir_op_irem:
981 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
982 * appears that our hardware just does the right thing for signed
983 * remainder.
984 */
985 assert(nir_dest_bit_size(instr->dest.dest) < 64);
986 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
987 break;
988
989 case nir_op_imod: {
990 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
991 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
992
993 /* Math instructions don't support conditional mod */
994 inst = bld.MOV(bld.null_reg_d(), result);
995 inst->conditional_mod = BRW_CONDITIONAL_NZ;
996
997 /* Now, we need to determine if signs of the sources are different.
998 * When we XOR the sources, the top bit is 0 if they are the same and 1
999 * if they are different. We can then use a conditional modifier to
1000 * turn that into a predicate. This leads us to an XOR.l instruction.
1001 *
1002 * Technically, according to the PRM, you're not allowed to use .l on a
1003 * XOR instruction. However, emperical experiments and Curro's reading
1004 * of the simulator source both indicate that it's safe.
1005 */
1006 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1007 inst = bld.XOR(tmp, op[0], op[1]);
1008 inst->predicate = BRW_PREDICATE_NORMAL;
1009 inst->conditional_mod = BRW_CONDITIONAL_L;
1010
1011 /* If the result of the initial remainder operation is non-zero and the
1012 * two sources have different signs, add in a copy of op[1] to get the
1013 * final integer modulus value.
1014 */
1015 inst = bld.ADD(result, result, op[1]);
1016 inst->predicate = BRW_PREDICATE_NORMAL;
1017 break;
1018 }
1019
1020 case nir_op_flt:
1021 case nir_op_fge:
1022 case nir_op_feq:
1023 case nir_op_fne: {
1024 fs_reg dest = result;
1025 if (nir_src_bit_size(instr->src[0].src) > 32) {
1026 dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
1027 }
1028 brw_conditional_mod cond;
1029 switch (instr->op) {
1030 case nir_op_flt:
1031 cond = BRW_CONDITIONAL_L;
1032 break;
1033 case nir_op_fge:
1034 cond = BRW_CONDITIONAL_GE;
1035 break;
1036 case nir_op_feq:
1037 cond = BRW_CONDITIONAL_Z;
1038 break;
1039 case nir_op_fne:
1040 cond = BRW_CONDITIONAL_NZ;
1041 break;
1042 default:
1043 unreachable("bad opcode");
1044 }
1045 bld.CMP(dest, op[0], op[1], cond);
1046 if (nir_src_bit_size(instr->src[0].src) > 32) {
1047 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1048 }
1049 break;
1050 }
1051
1052 case nir_op_ilt:
1053 case nir_op_ult:
1054 case nir_op_ige:
1055 case nir_op_uge:
1056 case nir_op_ieq:
1057 case nir_op_ine: {
1058 fs_reg dest = result;
1059 if (nir_src_bit_size(instr->src[0].src) > 32) {
1060 dest = bld.vgrf(BRW_REGISTER_TYPE_UQ, 1);
1061 }
1062
1063 brw_conditional_mod cond;
1064 switch (instr->op) {
1065 case nir_op_ilt:
1066 case nir_op_ult:
1067 cond = BRW_CONDITIONAL_L;
1068 break;
1069 case nir_op_ige:
1070 case nir_op_uge:
1071 cond = BRW_CONDITIONAL_GE;
1072 break;
1073 case nir_op_ieq:
1074 cond = BRW_CONDITIONAL_Z;
1075 break;
1076 case nir_op_ine:
1077 cond = BRW_CONDITIONAL_NZ;
1078 break;
1079 default:
1080 unreachable("bad opcode");
1081 }
1082 bld.CMP(dest, op[0], op[1], cond);
1083 if (nir_src_bit_size(instr->src[0].src) > 32) {
1084 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1085 }
1086 break;
1087 }
1088
1089 case nir_op_inot:
1090 if (devinfo->gen >= 8) {
1091 op[0] = resolve_source_modifiers(op[0]);
1092 }
1093 bld.NOT(result, op[0]);
1094 break;
1095 case nir_op_ixor:
1096 if (devinfo->gen >= 8) {
1097 op[0] = resolve_source_modifiers(op[0]);
1098 op[1] = resolve_source_modifiers(op[1]);
1099 }
1100 bld.XOR(result, op[0], op[1]);
1101 break;
1102 case nir_op_ior:
1103 if (devinfo->gen >= 8) {
1104 op[0] = resolve_source_modifiers(op[0]);
1105 op[1] = resolve_source_modifiers(op[1]);
1106 }
1107 bld.OR(result, op[0], op[1]);
1108 break;
1109 case nir_op_iand:
1110 if (devinfo->gen >= 8) {
1111 op[0] = resolve_source_modifiers(op[0]);
1112 op[1] = resolve_source_modifiers(op[1]);
1113 }
1114 bld.AND(result, op[0], op[1]);
1115 break;
1116
1117 case nir_op_fdot2:
1118 case nir_op_fdot3:
1119 case nir_op_fdot4:
1120 case nir_op_ball_fequal2:
1121 case nir_op_ball_iequal2:
1122 case nir_op_ball_fequal3:
1123 case nir_op_ball_iequal3:
1124 case nir_op_ball_fequal4:
1125 case nir_op_ball_iequal4:
1126 case nir_op_bany_fnequal2:
1127 case nir_op_bany_inequal2:
1128 case nir_op_bany_fnequal3:
1129 case nir_op_bany_inequal3:
1130 case nir_op_bany_fnequal4:
1131 case nir_op_bany_inequal4:
1132 unreachable("Lowered by nir_lower_alu_reductions");
1133
1134 case nir_op_fnoise1_1:
1135 case nir_op_fnoise1_2:
1136 case nir_op_fnoise1_3:
1137 case nir_op_fnoise1_4:
1138 case nir_op_fnoise2_1:
1139 case nir_op_fnoise2_2:
1140 case nir_op_fnoise2_3:
1141 case nir_op_fnoise2_4:
1142 case nir_op_fnoise3_1:
1143 case nir_op_fnoise3_2:
1144 case nir_op_fnoise3_3:
1145 case nir_op_fnoise3_4:
1146 case nir_op_fnoise4_1:
1147 case nir_op_fnoise4_2:
1148 case nir_op_fnoise4_3:
1149 case nir_op_fnoise4_4:
1150 unreachable("not reached: should be handled by lower_noise");
1151
1152 case nir_op_ldexp:
1153 unreachable("not reached: should be handled by ldexp_to_arith()");
1154
1155 case nir_op_fsqrt:
1156 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1157 inst->saturate = instr->dest.saturate;
1158 break;
1159
1160 case nir_op_frsq:
1161 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1162 inst->saturate = instr->dest.saturate;
1163 break;
1164
1165 case nir_op_b2i:
1166 case nir_op_b2f:
1167 bld.MOV(result, negate(op[0]));
1168 break;
1169
1170 case nir_op_i2b:
1171 case nir_op_f2b:
1172 if (nir_src_bit_size(instr->src[0].src) == 64) {
1173 /* two-argument instructions can't take 64-bit immediates */
1174 fs_reg zero;
1175 fs_reg tmp;
1176
1177 if (instr->op == nir_op_f2b) {
1178 zero = vgrf(glsl_type::double_type);
1179 tmp = vgrf(glsl_type::double_type);
1180 bld.MOV(zero, setup_imm_df(bld, 0.0));
1181 } else {
1182 zero = vgrf(glsl_type::int64_t_type);
1183 tmp = vgrf(glsl_type::int64_t_type);
1184 bld.MOV(zero, brw_imm_q(0));
1185 }
1186
1187 /* A SIMD16 execution needs to be split in two instructions, so use
1188 * a vgrf instead of the flag register as dst so instruction splitting
1189 * works
1190 */
1191 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1192 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1193 } else {
1194 if (instr->op == nir_op_f2b) {
1195 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
1196 } else {
1197 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1198 }
1199 }
1200 break;
1201
1202 case nir_op_ftrunc:
1203 inst = bld.RNDZ(result, op[0]);
1204 inst->saturate = instr->dest.saturate;
1205 break;
1206
1207 case nir_op_fceil: {
1208 op[0].negate = !op[0].negate;
1209 fs_reg temp = vgrf(glsl_type::float_type);
1210 bld.RNDD(temp, op[0]);
1211 temp.negate = true;
1212 inst = bld.MOV(result, temp);
1213 inst->saturate = instr->dest.saturate;
1214 break;
1215 }
1216 case nir_op_ffloor:
1217 inst = bld.RNDD(result, op[0]);
1218 inst->saturate = instr->dest.saturate;
1219 break;
1220 case nir_op_ffract:
1221 inst = bld.FRC(result, op[0]);
1222 inst->saturate = instr->dest.saturate;
1223 break;
1224 case nir_op_fround_even:
1225 inst = bld.RNDE(result, op[0]);
1226 inst->saturate = instr->dest.saturate;
1227 break;
1228
1229 case nir_op_fquantize2f16: {
1230 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1231 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1232 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1233
1234 /* The destination stride must be at least as big as the source stride. */
1235 tmp16.type = BRW_REGISTER_TYPE_W;
1236 tmp16.stride = 2;
1237
1238 /* Check for denormal */
1239 fs_reg abs_src0 = op[0];
1240 abs_src0.abs = true;
1241 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1242 BRW_CONDITIONAL_L);
1243 /* Get the appropriately signed zero */
1244 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1245 retype(op[0], BRW_REGISTER_TYPE_UD),
1246 brw_imm_ud(0x80000000));
1247 /* Do the actual F32 -> F16 -> F32 conversion */
1248 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1249 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1250 /* Select that or zero based on normal status */
1251 inst = bld.SEL(result, zero, tmp32);
1252 inst->predicate = BRW_PREDICATE_NORMAL;
1253 inst->saturate = instr->dest.saturate;
1254 break;
1255 }
1256
1257 case nir_op_imin:
1258 case nir_op_umin:
1259 case nir_op_fmin:
1260 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1261 inst->saturate = instr->dest.saturate;
1262 break;
1263
1264 case nir_op_imax:
1265 case nir_op_umax:
1266 case nir_op_fmax:
1267 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1268 inst->saturate = instr->dest.saturate;
1269 break;
1270
1271 case nir_op_pack_snorm_2x16:
1272 case nir_op_pack_snorm_4x8:
1273 case nir_op_pack_unorm_2x16:
1274 case nir_op_pack_unorm_4x8:
1275 case nir_op_unpack_snorm_2x16:
1276 case nir_op_unpack_snorm_4x8:
1277 case nir_op_unpack_unorm_2x16:
1278 case nir_op_unpack_unorm_4x8:
1279 case nir_op_unpack_half_2x16:
1280 case nir_op_pack_half_2x16:
1281 unreachable("not reached: should be handled by lower_packing_builtins");
1282
1283 case nir_op_unpack_half_2x16_split_x:
1284 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1285 inst->saturate = instr->dest.saturate;
1286 break;
1287 case nir_op_unpack_half_2x16_split_y:
1288 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1289 inst->saturate = instr->dest.saturate;
1290 break;
1291
1292 case nir_op_pack_64_2x32_split:
1293 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1294 break;
1295
1296 case nir_op_unpack_64_2x32_split_x:
1297 case nir_op_unpack_64_2x32_split_y: {
1298 if (instr->op == nir_op_unpack_64_2x32_split_x)
1299 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1300 else
1301 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1302 break;
1303 }
1304
1305 case nir_op_fpow:
1306 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1307 inst->saturate = instr->dest.saturate;
1308 break;
1309
1310 case nir_op_bitfield_reverse:
1311 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1312 bld.BFREV(result, op[0]);
1313 break;
1314
1315 case nir_op_bit_count:
1316 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1317 bld.CBIT(result, op[0]);
1318 break;
1319
1320 case nir_op_ufind_msb: {
1321 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1322 emit_find_msb_using_lzd(bld, result, op[0], false);
1323 break;
1324 }
1325
1326 case nir_op_ifind_msb: {
1327 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1328
1329 if (devinfo->gen < 7) {
1330 emit_find_msb_using_lzd(bld, result, op[0], true);
1331 } else {
1332 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1333
1334 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1335 * count from the LSB side. If FBH didn't return an error
1336 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1337 * count into an LSB count.
1338 */
1339 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1340
1341 inst = bld.ADD(result, result, brw_imm_d(31));
1342 inst->predicate = BRW_PREDICATE_NORMAL;
1343 inst->src[0].negate = true;
1344 }
1345 break;
1346 }
1347
1348 case nir_op_find_lsb:
1349 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1350
1351 if (devinfo->gen < 7) {
1352 fs_reg temp = vgrf(glsl_type::int_type);
1353
1354 /* (x & -x) generates a value that consists of only the LSB of x.
1355 * For all powers of 2, findMSB(y) == findLSB(y).
1356 */
1357 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1358 fs_reg negated_src = src;
1359
1360 /* One must be negated, and the other must be non-negated. It
1361 * doesn't matter which is which.
1362 */
1363 negated_src.negate = true;
1364 src.negate = false;
1365
1366 bld.AND(temp, src, negated_src);
1367 emit_find_msb_using_lzd(bld, result, temp, false);
1368 } else {
1369 bld.FBL(result, op[0]);
1370 }
1371 break;
1372
1373 case nir_op_ubitfield_extract:
1374 case nir_op_ibitfield_extract:
1375 unreachable("should have been lowered");
1376 case nir_op_ubfe:
1377 case nir_op_ibfe:
1378 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1379 bld.BFE(result, op[2], op[1], op[0]);
1380 break;
1381 case nir_op_bfm:
1382 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1383 bld.BFI1(result, op[0], op[1]);
1384 break;
1385 case nir_op_bfi:
1386 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1387 bld.BFI2(result, op[0], op[1], op[2]);
1388 break;
1389
1390 case nir_op_bitfield_insert:
1391 unreachable("not reached: should have been lowered");
1392
1393 case nir_op_ishl:
1394 case nir_op_ishr:
1395 case nir_op_ushr: {
1396 fs_reg shift_count = op[1];
1397
1398 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1399 if (op[1].file == VGRF &&
1400 (result.type == BRW_REGISTER_TYPE_Q ||
1401 result.type == BRW_REGISTER_TYPE_UQ)) {
1402 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1403 BRW_REGISTER_TYPE_UD);
1404 shift_count.stride = 2;
1405 bld.MOV(shift_count, op[1]);
1406 }
1407 }
1408
1409 switch (instr->op) {
1410 case nir_op_ishl:
1411 bld.SHL(result, op[0], shift_count);
1412 break;
1413 case nir_op_ishr:
1414 bld.ASR(result, op[0], shift_count);
1415 break;
1416 case nir_op_ushr:
1417 bld.SHR(result, op[0], shift_count);
1418 break;
1419 default:
1420 unreachable("not reached");
1421 }
1422 break;
1423 }
1424
1425 case nir_op_pack_half_2x16_split:
1426 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1427 break;
1428
1429 case nir_op_ffma:
1430 inst = bld.MAD(result, op[2], op[1], op[0]);
1431 inst->saturate = instr->dest.saturate;
1432 break;
1433
1434 case nir_op_flrp:
1435 inst = bld.LRP(result, op[0], op[1], op[2]);
1436 inst->saturate = instr->dest.saturate;
1437 break;
1438
1439 case nir_op_bcsel:
1440 if (optimize_frontfacing_ternary(instr, result))
1441 return;
1442
1443 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1444 inst = bld.SEL(result, op[1], op[2]);
1445 inst->predicate = BRW_PREDICATE_NORMAL;
1446 break;
1447
1448 case nir_op_extract_u8:
1449 case nir_op_extract_i8: {
1450 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1451 assert(byte != NULL);
1452
1453 /* The PRMs say:
1454 *
1455 * BDW+
1456 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1457 * Use two instructions and a word or DWord intermediate integer type.
1458 */
1459 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1460 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1461
1462 if (instr->op == nir_op_extract_i8) {
1463 /* If we need to sign extend, extract to a word first */
1464 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1465 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1466 bld.MOV(result, w_temp);
1467 } else {
1468 /* Otherwise use an AND with 0xff and a word type */
1469 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1470 }
1471 } else {
1472 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1473 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1474 }
1475 break;
1476 }
1477
1478 case nir_op_extract_u16:
1479 case nir_op_extract_i16: {
1480 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1481 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1482 assert(word != NULL);
1483 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1484 break;
1485 }
1486
1487 default:
1488 unreachable("unhandled instruction");
1489 }
1490
1491 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1492 * to sign extend the low bit to 0/~0
1493 */
1494 if (devinfo->gen <= 5 &&
1495 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1496 fs_reg masked = vgrf(glsl_type::int_type);
1497 bld.AND(masked, result, brw_imm_d(1));
1498 masked.negate = true;
1499 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1500 }
1501 }
1502
1503 void
1504 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1505 nir_load_const_instr *instr)
1506 {
1507 const brw_reg_type reg_type =
1508 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1509 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1510
1511 switch (instr->def.bit_size) {
1512 case 32:
1513 for (unsigned i = 0; i < instr->def.num_components; i++)
1514 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1515 break;
1516
1517 case 64:
1518 assert(devinfo->gen >= 7);
1519 if (devinfo->gen == 7) {
1520 /* We don't get 64-bit integer types until gen8 */
1521 for (unsigned i = 0; i < instr->def.num_components; i++) {
1522 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1523 setup_imm_df(bld, instr->value.f64[i]));
1524 }
1525 } else {
1526 for (unsigned i = 0; i < instr->def.num_components; i++)
1527 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1528 }
1529 break;
1530
1531 default:
1532 unreachable("Invalid bit size");
1533 }
1534
1535 nir_ssa_values[instr->def.index] = reg;
1536 }
1537
1538 fs_reg
1539 fs_visitor::get_nir_src(const nir_src &src)
1540 {
1541 fs_reg reg;
1542 if (src.is_ssa) {
1543 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1544 const brw_reg_type reg_type =
1545 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1546 reg = bld.vgrf(reg_type, src.ssa->num_components);
1547 } else {
1548 reg = nir_ssa_values[src.ssa->index];
1549 }
1550 } else {
1551 /* We don't handle indirects on locals */
1552 assert(src.reg.indirect == NULL);
1553 reg = offset(nir_locals[src.reg.reg->index], bld,
1554 src.reg.base_offset * src.reg.reg->num_components);
1555 }
1556
1557 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1558 /* The only 64-bit type available on gen7 is DF, so use that. */
1559 reg.type = BRW_REGISTER_TYPE_DF;
1560 } else {
1561 /* To avoid floating-point denorm flushing problems, set the type by
1562 * default to an integer type - instructions that need floating point
1563 * semantics will set this to F if they need to
1564 */
1565 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1566 BRW_REGISTER_TYPE_D);
1567 }
1568
1569 return reg;
1570 }
1571
1572 /**
1573 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1574 *
1575 * This function should not be called on any value which may be 64 bits.
1576 * We could theoretically support 64-bit on gen8+ but we choose not to
1577 * because it wouldn't work in general (no gen7 support) and there are
1578 * enough restrictions in 64-bit immediates that you can't take the return
1579 * value and treat it the same as the result of get_nir_src().
1580 */
1581 fs_reg
1582 fs_visitor::get_nir_src_imm(const nir_src &src)
1583 {
1584 nir_const_value *val = nir_src_as_const_value(src);
1585 assert(nir_src_bit_size(src) == 32);
1586 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1587 }
1588
1589 fs_reg
1590 fs_visitor::get_nir_dest(const nir_dest &dest)
1591 {
1592 if (dest.is_ssa) {
1593 const brw_reg_type reg_type =
1594 brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
1595 nir_ssa_values[dest.ssa.index] =
1596 bld.vgrf(reg_type, dest.ssa.num_components);
1597 return nir_ssa_values[dest.ssa.index];
1598 } else {
1599 /* We don't handle indirects on locals */
1600 assert(dest.reg.indirect == NULL);
1601 return offset(nir_locals[dest.reg.reg->index], bld,
1602 dest.reg.base_offset * dest.reg.reg->num_components);
1603 }
1604 }
1605
1606 fs_reg
1607 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1608 {
1609 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1610 BRW_REGISTER_TYPE_UD);
1611 fs_reg indirect;
1612 unsigned indirect_max = 0;
1613
1614 for (const nir_deref *tail = &deref->deref; tail->child;
1615 tail = tail->child) {
1616 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1617 assert(tail->child->deref_type == nir_deref_type_array);
1618 const unsigned size = glsl_get_length(tail->type);
1619 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1620 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1621 image = offset(image, bld, base * element_size);
1622
1623 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1624 fs_reg tmp = vgrf(glsl_type::uint_type);
1625
1626 /* Accessing an invalid surface index with the dataport can result
1627 * in a hang. According to the spec "if the index used to
1628 * select an individual element is negative or greater than or
1629 * equal to the size of the array, the results of the operation
1630 * are undefined but may not lead to termination" -- which is one
1631 * of the possible outcomes of the hang. Clamp the index to
1632 * prevent access outside of the array bounds.
1633 */
1634 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1635 BRW_REGISTER_TYPE_UD),
1636 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1637
1638 indirect_max += element_size * (tail->type->length - 1);
1639
1640 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1641 if (indirect.file == BAD_FILE) {
1642 indirect = tmp;
1643 } else {
1644 bld.ADD(indirect, indirect, tmp);
1645 }
1646 }
1647 }
1648
1649 if (indirect.file == BAD_FILE) {
1650 return image;
1651 } else {
1652 /* Emit a pile of MOVs to load the uniform into a temporary. The
1653 * dead-code elimination pass will get rid of what we don't use.
1654 */
1655 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1656 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1657 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1658 offset(tmp, bld, j), offset(image, bld, j),
1659 indirect, brw_imm_ud((indirect_max + 1) * 4));
1660 }
1661 return tmp;
1662 }
1663 }
1664
1665 void
1666 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1667 unsigned wr_mask)
1668 {
1669 for (unsigned i = 0; i < 4; i++) {
1670 if (!((wr_mask >> i) & 1))
1671 continue;
1672
1673 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1674 new_inst->dst = offset(new_inst->dst, bld, i);
1675 for (unsigned j = 0; j < new_inst->sources; j++)
1676 if (new_inst->src[j].file == VGRF)
1677 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1678
1679 bld.emit(new_inst);
1680 }
1681 }
1682
1683 /**
1684 * Get the matching channel register datatype for an image intrinsic of the
1685 * specified GLSL image type.
1686 */
1687 static brw_reg_type
1688 get_image_base_type(const glsl_type *type)
1689 {
1690 switch ((glsl_base_type)type->sampled_type) {
1691 case GLSL_TYPE_UINT:
1692 return BRW_REGISTER_TYPE_UD;
1693 case GLSL_TYPE_INT:
1694 return BRW_REGISTER_TYPE_D;
1695 case GLSL_TYPE_FLOAT:
1696 return BRW_REGISTER_TYPE_F;
1697 default:
1698 unreachable("Not reached.");
1699 }
1700 }
1701
1702 /**
1703 * Get the appropriate atomic op for an image atomic intrinsic.
1704 */
1705 static unsigned
1706 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1707 {
1708 switch (op) {
1709 case nir_intrinsic_image_var_atomic_add:
1710 return BRW_AOP_ADD;
1711 case nir_intrinsic_image_var_atomic_min:
1712 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1713 BRW_AOP_IMIN : BRW_AOP_UMIN);
1714 case nir_intrinsic_image_var_atomic_max:
1715 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1716 BRW_AOP_IMAX : BRW_AOP_UMAX);
1717 case nir_intrinsic_image_var_atomic_and:
1718 return BRW_AOP_AND;
1719 case nir_intrinsic_image_var_atomic_or:
1720 return BRW_AOP_OR;
1721 case nir_intrinsic_image_var_atomic_xor:
1722 return BRW_AOP_XOR;
1723 case nir_intrinsic_image_var_atomic_exchange:
1724 return BRW_AOP_MOV;
1725 case nir_intrinsic_image_var_atomic_comp_swap:
1726 return BRW_AOP_CMPWR;
1727 default:
1728 unreachable("Not reachable.");
1729 }
1730 }
1731
1732 static fs_inst *
1733 emit_pixel_interpolater_send(const fs_builder &bld,
1734 enum opcode opcode,
1735 const fs_reg &dst,
1736 const fs_reg &src,
1737 const fs_reg &desc,
1738 glsl_interp_mode interpolation)
1739 {
1740 struct brw_wm_prog_data *wm_prog_data =
1741 brw_wm_prog_data(bld.shader->stage_prog_data);
1742 fs_inst *inst;
1743 fs_reg payload;
1744 int mlen;
1745
1746 if (src.file == BAD_FILE) {
1747 /* Dummy payload */
1748 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1749 mlen = 1;
1750 } else {
1751 payload = src;
1752 mlen = 2 * bld.dispatch_width() / 8;
1753 }
1754
1755 inst = bld.emit(opcode, dst, payload, desc);
1756 inst->mlen = mlen;
1757 /* 2 floats per slot returned */
1758 inst->size_written = 2 * dst.component_size(inst->exec_size);
1759 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1760
1761 wm_prog_data->pulls_bary = true;
1762
1763 return inst;
1764 }
1765
1766 /**
1767 * Computes 1 << x, given a D/UD register containing some value x.
1768 */
1769 static fs_reg
1770 intexp2(const fs_builder &bld, const fs_reg &x)
1771 {
1772 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1773
1774 fs_reg result = bld.vgrf(x.type, 1);
1775 fs_reg one = bld.vgrf(x.type, 1);
1776
1777 bld.MOV(one, retype(brw_imm_d(1), one.type));
1778 bld.SHL(result, one, x);
1779 return result;
1780 }
1781
1782 void
1783 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1784 {
1785 assert(stage == MESA_SHADER_GEOMETRY);
1786
1787 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1788
1789 if (gs_compile->control_data_header_size_bits == 0)
1790 return;
1791
1792 /* We can only do EndPrimitive() functionality when the control data
1793 * consists of cut bits. Fortunately, the only time it isn't is when the
1794 * output type is points, in which case EndPrimitive() is a no-op.
1795 */
1796 if (gs_prog_data->control_data_format !=
1797 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1798 return;
1799 }
1800
1801 /* Cut bits use one bit per vertex. */
1802 assert(gs_compile->control_data_bits_per_vertex == 1);
1803
1804 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1805 vertex_count.type = BRW_REGISTER_TYPE_UD;
1806
1807 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1808 * vertex n, 0 otherwise. So all we need to do here is mark bit
1809 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1810 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1811 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1812 *
1813 * Note that if EndPrimitive() is called before emitting any vertices, this
1814 * will cause us to set bit 31 of the control_data_bits register to 1.
1815 * That's fine because:
1816 *
1817 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1818 * output, so the hardware will ignore cut bit 31.
1819 *
1820 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1821 * last vertex, so setting cut bit 31 has no effect (since the primitive
1822 * is automatically ended when the GS terminates).
1823 *
1824 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1825 * control_data_bits register to 0 when the first vertex is emitted.
1826 */
1827
1828 const fs_builder abld = bld.annotate("end primitive");
1829
1830 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1831 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1832 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1833 fs_reg mask = intexp2(abld, prev_count);
1834 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1835 * attention to the lower 5 bits of its second source argument, so on this
1836 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1837 * ((vertex_count - 1) % 32).
1838 */
1839 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1840 }
1841
1842 void
1843 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1844 {
1845 assert(stage == MESA_SHADER_GEOMETRY);
1846 assert(gs_compile->control_data_bits_per_vertex != 0);
1847
1848 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1849
1850 const fs_builder abld = bld.annotate("emit control data bits");
1851 const fs_builder fwa_bld = bld.exec_all();
1852
1853 /* We use a single UD register to accumulate control data bits (32 bits
1854 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1855 * at a time.
1856 *
1857 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1858 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1859 * use the Channel Mask phase to enable/disable which DWord within that
1860 * group to write. (Remember, different SIMD8 channels may have emitted
1861 * different numbers of vertices, so we may need per-slot offsets.)
1862 *
1863 * Channel masking presents an annoying problem: we may have to replicate
1864 * the data up to 4 times:
1865 *
1866 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1867 *
1868 * To avoid penalizing shaders that emit a small number of vertices, we
1869 * can avoid these sometimes: if the size of the control data header is
1870 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1871 * land in the same 128-bit group, so we can skip per-slot offsets.
1872 *
1873 * Similarly, if the control data header is <= 32 bits, there is only one
1874 * DWord, so we can skip channel masks.
1875 */
1876 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1877
1878 fs_reg channel_mask, per_slot_offset;
1879
1880 if (gs_compile->control_data_header_size_bits > 32) {
1881 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1882 channel_mask = vgrf(glsl_type::uint_type);
1883 }
1884
1885 if (gs_compile->control_data_header_size_bits > 128) {
1886 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1887 per_slot_offset = vgrf(glsl_type::uint_type);
1888 }
1889
1890 /* Figure out which DWord we're trying to write to using the formula:
1891 *
1892 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1893 *
1894 * Since bits_per_vertex is a power of two, and is known at compile
1895 * time, this can be optimized to:
1896 *
1897 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1898 */
1899 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1900 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1901 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1902 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1903 unsigned log2_bits_per_vertex =
1904 util_last_bit(gs_compile->control_data_bits_per_vertex);
1905 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1906
1907 if (per_slot_offset.file != BAD_FILE) {
1908 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1909 * the appropriate OWord within the control data header.
1910 */
1911 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1912 }
1913
1914 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1915 * write to the appropriate DWORD within the OWORD.
1916 */
1917 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1918 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1919 channel_mask = intexp2(fwa_bld, channel);
1920 /* Then the channel masks need to be in bits 23:16. */
1921 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1922 }
1923
1924 /* Store the control data bits in the message payload and send it. */
1925 int mlen = 2;
1926 if (channel_mask.file != BAD_FILE)
1927 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1928 if (per_slot_offset.file != BAD_FILE)
1929 mlen++;
1930
1931 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1932 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1933 int i = 0;
1934 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1935 if (per_slot_offset.file != BAD_FILE)
1936 sources[i++] = per_slot_offset;
1937 if (channel_mask.file != BAD_FILE)
1938 sources[i++] = channel_mask;
1939 while (i < mlen) {
1940 sources[i++] = this->control_data_bits;
1941 }
1942
1943 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1944 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1945 inst->mlen = mlen;
1946 /* We need to increment Global Offset by 256-bits to make room for
1947 * Broadwell's extra "Vertex Count" payload at the beginning of the
1948 * URB entry. Since this is an OWord message, Global Offset is counted
1949 * in 128-bit units, so we must set it to 2.
1950 */
1951 if (gs_prog_data->static_vertex_count == -1)
1952 inst->offset = 2;
1953 }
1954
1955 void
1956 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1957 unsigned stream_id)
1958 {
1959 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1960
1961 /* Note: we are calling this *before* increasing vertex_count, so
1962 * this->vertex_count == vertex_count - 1 in the formula above.
1963 */
1964
1965 /* Stream mode uses 2 bits per vertex */
1966 assert(gs_compile->control_data_bits_per_vertex == 2);
1967
1968 /* Must be a valid stream */
1969 assert(stream_id < MAX_VERTEX_STREAMS);
1970
1971 /* Control data bits are initialized to 0 so we don't have to set any
1972 * bits when sending vertices to stream 0.
1973 */
1974 if (stream_id == 0)
1975 return;
1976
1977 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1978
1979 /* reg::sid = stream_id */
1980 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1981 abld.MOV(sid, brw_imm_ud(stream_id));
1982
1983 /* reg:shift_count = 2 * (vertex_count - 1) */
1984 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1985 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1986
1987 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1988 * attention to the lower 5 bits of its second source argument, so on this
1989 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1990 * stream_id << ((2 * (vertex_count - 1)) % 32).
1991 */
1992 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1993 abld.SHL(mask, sid, shift_count);
1994 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1995 }
1996
1997 void
1998 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1999 unsigned stream_id)
2000 {
2001 assert(stage == MESA_SHADER_GEOMETRY);
2002
2003 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2004
2005 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2006 vertex_count.type = BRW_REGISTER_TYPE_UD;
2007
2008 /* Haswell and later hardware ignores the "Render Stream Select" bits
2009 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2010 * and instead sends all primitives down the pipeline for rasterization.
2011 * If the SOL stage is enabled, "Render Stream Select" is honored and
2012 * primitives bound to non-zero streams are discarded after stream output.
2013 *
2014 * Since the only purpose of primives sent to non-zero streams is to
2015 * be recorded by transform feedback, we can simply discard all geometry
2016 * bound to these streams when transform feedback is disabled.
2017 */
2018 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2019 return;
2020
2021 /* If we're outputting 32 control data bits or less, then we can wait
2022 * until the shader is over to output them all. Otherwise we need to
2023 * output them as we go. Now is the time to do it, since we're about to
2024 * output the vertex_count'th vertex, so it's guaranteed that the
2025 * control data bits associated with the (vertex_count - 1)th vertex are
2026 * correct.
2027 */
2028 if (gs_compile->control_data_header_size_bits > 32) {
2029 const fs_builder abld =
2030 bld.annotate("emit vertex: emit control data bits");
2031
2032 /* Only emit control data bits if we've finished accumulating a batch
2033 * of 32 bits. This is the case when:
2034 *
2035 * (vertex_count * bits_per_vertex) % 32 == 0
2036 *
2037 * (in other words, when the last 5 bits of vertex_count *
2038 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2039 * integer n (which is always the case, since bits_per_vertex is
2040 * always 1 or 2), this is equivalent to requiring that the last 5-n
2041 * bits of vertex_count are 0:
2042 *
2043 * vertex_count & (2^(5-n) - 1) == 0
2044 *
2045 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2046 * equivalent to:
2047 *
2048 * vertex_count & (32 / bits_per_vertex - 1) == 0
2049 *
2050 * TODO: If vertex_count is an immediate, we could do some of this math
2051 * at compile time...
2052 */
2053 fs_inst *inst =
2054 abld.AND(bld.null_reg_d(), vertex_count,
2055 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2056 inst->conditional_mod = BRW_CONDITIONAL_Z;
2057
2058 abld.IF(BRW_PREDICATE_NORMAL);
2059 /* If vertex_count is 0, then no control data bits have been
2060 * accumulated yet, so we can skip emitting them.
2061 */
2062 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2063 BRW_CONDITIONAL_NEQ);
2064 abld.IF(BRW_PREDICATE_NORMAL);
2065 emit_gs_control_data_bits(vertex_count);
2066 abld.emit(BRW_OPCODE_ENDIF);
2067
2068 /* Reset control_data_bits to 0 so we can start accumulating a new
2069 * batch.
2070 *
2071 * Note: in the case where vertex_count == 0, this neutralizes the
2072 * effect of any call to EndPrimitive() that the shader may have
2073 * made before outputting its first vertex.
2074 */
2075 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2076 inst->force_writemask_all = true;
2077 abld.emit(BRW_OPCODE_ENDIF);
2078 }
2079
2080 emit_urb_writes(vertex_count);
2081
2082 /* In stream mode we have to set control data bits for all vertices
2083 * unless we have disabled control data bits completely (which we do
2084 * do for GL_POINTS outputs that don't use streams).
2085 */
2086 if (gs_compile->control_data_header_size_bits > 0 &&
2087 gs_prog_data->control_data_format ==
2088 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2089 set_gs_stream_control_data_bits(vertex_count, stream_id);
2090 }
2091 }
2092
2093 void
2094 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2095 const nir_src &vertex_src,
2096 unsigned base_offset,
2097 const nir_src &offset_src,
2098 unsigned num_components,
2099 unsigned first_component)
2100 {
2101 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2102
2103 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2104 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2105 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2106
2107 /* TODO: figure out push input layout for invocations == 1 */
2108 /* TODO: make this work with 64-bit inputs */
2109 if (gs_prog_data->invocations == 1 &&
2110 type_sz(dst.type) <= 4 &&
2111 offset_const != NULL && vertex_const != NULL &&
2112 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2113 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2114 vertex_const->u32[0] * push_reg_count;
2115 for (unsigned i = 0; i < num_components; i++) {
2116 bld.MOV(offset(dst, bld, i),
2117 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2118 }
2119 return;
2120 }
2121
2122 /* Resort to the pull model. Ensure the VUE handles are provided. */
2123 assert(gs_prog_data->base.include_vue_handles);
2124
2125 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2126 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2127
2128 if (gs_prog_data->invocations == 1) {
2129 if (vertex_const) {
2130 /* The vertex index is constant; just select the proper URB handle. */
2131 icp_handle =
2132 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2133 BRW_REGISTER_TYPE_UD);
2134 } else {
2135 /* The vertex index is non-constant. We need to use indirect
2136 * addressing to fetch the proper URB handle.
2137 *
2138 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2139 * indicating that channel <n> should read the handle from
2140 * DWord <n>. We convert that to bytes by multiplying by 4.
2141 *
2142 * Next, we convert the vertex index to bytes by multiplying
2143 * by 32 (shifting by 5), and add the two together. This is
2144 * the final indirect byte offset.
2145 */
2146 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2147 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2148 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2149 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2150
2151 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2152 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2153 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2154 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2155 /* Convert vertex_index to bytes (multiply by 32) */
2156 bld.SHL(vertex_offset_bytes,
2157 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2158 brw_imm_ud(5u));
2159 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2160
2161 /* Use first_icp_handle as the base offset. There is one register
2162 * of URB handles per vertex, so inform the register allocator that
2163 * we might read up to nir->info.gs.vertices_in registers.
2164 */
2165 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2166 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2167 fs_reg(icp_offset_bytes),
2168 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2169 }
2170 } else {
2171 assert(gs_prog_data->invocations > 1);
2172
2173 if (vertex_const) {
2174 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2175 bld.MOV(icp_handle,
2176 retype(brw_vec1_grf(first_icp_handle +
2177 vertex_const->i32[0] / 8,
2178 vertex_const->i32[0] % 8),
2179 BRW_REGISTER_TYPE_UD));
2180 } else {
2181 /* The vertex index is non-constant. We need to use indirect
2182 * addressing to fetch the proper URB handle.
2183 *
2184 */
2185 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2186
2187 /* Convert vertex_index to bytes (multiply by 4) */
2188 bld.SHL(icp_offset_bytes,
2189 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2190 brw_imm_ud(2u));
2191
2192 /* Use first_icp_handle as the base offset. There is one DWord
2193 * of URB handles per vertex, so inform the register allocator that
2194 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2195 */
2196 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2197 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2198 fs_reg(icp_offset_bytes),
2199 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2200 REG_SIZE));
2201 }
2202 }
2203
2204 fs_inst *inst;
2205
2206 fs_reg tmp_dst = dst;
2207 fs_reg indirect_offset = get_nir_src(offset_src);
2208 unsigned num_iterations = 1;
2209 unsigned orig_num_components = num_components;
2210
2211 if (type_sz(dst.type) == 8) {
2212 if (num_components > 2) {
2213 num_iterations = 2;
2214 num_components = 2;
2215 }
2216 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2217 tmp_dst = tmp;
2218 first_component = first_component / 2;
2219 }
2220
2221 for (unsigned iter = 0; iter < num_iterations; iter++) {
2222 if (offset_const) {
2223 /* Constant indexing - use global offset. */
2224 if (first_component != 0) {
2225 unsigned read_components = num_components + first_component;
2226 fs_reg tmp = bld.vgrf(dst.type, read_components);
2227 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2228 inst->size_written = read_components *
2229 tmp.component_size(inst->exec_size);
2230 for (unsigned i = 0; i < num_components; i++) {
2231 bld.MOV(offset(tmp_dst, bld, i),
2232 offset(tmp, bld, i + first_component));
2233 }
2234 } else {
2235 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2236 icp_handle);
2237 inst->size_written = num_components *
2238 tmp_dst.component_size(inst->exec_size);
2239 }
2240 inst->offset = base_offset + offset_const->u32[0];
2241 inst->mlen = 1;
2242 } else {
2243 /* Indirect indexing - use per-slot offsets as well. */
2244 const fs_reg srcs[] = { icp_handle, indirect_offset };
2245 unsigned read_components = num_components + first_component;
2246 fs_reg tmp = bld.vgrf(dst.type, read_components);
2247 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2248 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2249 if (first_component != 0) {
2250 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2251 payload);
2252 inst->size_written = read_components *
2253 tmp.component_size(inst->exec_size);
2254 for (unsigned i = 0; i < num_components; i++) {
2255 bld.MOV(offset(tmp_dst, bld, i),
2256 offset(tmp, bld, i + first_component));
2257 }
2258 } else {
2259 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2260 payload);
2261 inst->size_written = num_components *
2262 tmp_dst.component_size(inst->exec_size);
2263 }
2264 inst->offset = base_offset;
2265 inst->mlen = 2;
2266 }
2267
2268 if (type_sz(dst.type) == 8) {
2269 shuffle_32bit_load_result_to_64bit_data(
2270 bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
2271
2272 for (unsigned c = 0; c < num_components; c++)
2273 bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
2274 }
2275
2276 if (num_iterations > 1) {
2277 num_components = orig_num_components - 2;
2278 if(offset_const) {
2279 base_offset++;
2280 } else {
2281 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2282 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2283 indirect_offset = new_indirect;
2284 }
2285 }
2286 }
2287 }
2288
2289 fs_reg
2290 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2291 {
2292 nir_src *offset_src = nir_get_io_offset_src(instr);
2293 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2294
2295 if (const_value) {
2296 /* The only constant offset we should find is 0. brw_nir.c's
2297 * add_const_offset_to_base() will fold other constant offsets
2298 * into instr->const_index[0].
2299 */
2300 assert(const_value->u32[0] == 0);
2301 return fs_reg();
2302 }
2303
2304 return get_nir_src(*offset_src);
2305 }
2306
2307 static void
2308 do_untyped_vector_read(const fs_builder &bld,
2309 const fs_reg dest,
2310 const fs_reg surf_index,
2311 const fs_reg offset_reg,
2312 unsigned num_components)
2313 {
2314 if (type_sz(dest.type) <= 2) {
2315 assert(dest.stride == 1);
2316 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2317
2318 if (is_const_offset) {
2319 uint32_t start = offset_reg.ud & ~3;
2320 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2321 end = ALIGN(end, 4);
2322 assert (end - start <= 16);
2323
2324 /* At this point we have 16-bit component/s that have constant
2325 * offset aligned to 4-bytes that can be read with untyped_reads.
2326 * untyped_read message requires 32-bit aligned offsets.
2327 */
2328 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2329 unsigned num_components_32bit = (end - start) / 4;
2330
2331 fs_reg read_result =
2332 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2333 1 /* dims */,
2334 num_components_32bit,
2335 BRW_PREDICATE_NONE);
2336 shuffle_32bit_load_result_to_16bit_data(bld,
2337 retype(dest, BRW_REGISTER_TYPE_W),
2338 retype(read_result, BRW_REGISTER_TYPE_D),
2339 first_component, num_components);
2340 } else {
2341 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2342 for (unsigned i = 0; i < num_components; i++) {
2343 if (i == 0) {
2344 bld.MOV(read_offset, offset_reg);
2345 } else {
2346 bld.ADD(read_offset, offset_reg,
2347 brw_imm_ud(i * type_sz(dest.type)));
2348 }
2349 /* Non constant offsets are not guaranteed to be aligned 32-bits
2350 * so they are read using one byte_scattered_read message
2351 * for each component.
2352 */
2353 fs_reg read_result =
2354 emit_byte_scattered_read(bld, surf_index, read_offset,
2355 1 /* dims */, 1,
2356 type_sz(dest.type) * 8 /* bit_size */,
2357 BRW_PREDICATE_NONE);
2358 bld.MOV(offset(dest, bld, i),
2359 subscript (read_result, dest.type, 0));
2360 }
2361 }
2362 } else if (type_sz(dest.type) == 4) {
2363 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2364 1 /* dims */,
2365 num_components,
2366 BRW_PREDICATE_NONE);
2367 read_result.type = dest.type;
2368 for (unsigned i = 0; i < num_components; i++)
2369 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2370 } else if (type_sz(dest.type) == 8) {
2371 /* Reading a dvec, so we need to:
2372 *
2373 * 1. Multiply num_components by 2, to account for the fact that we
2374 * need to read 64-bit components.
2375 * 2. Shuffle the result of the load to form valid 64-bit elements
2376 * 3. Emit a second load (for components z/w) if needed.
2377 */
2378 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2379 bld.MOV(read_offset, offset_reg);
2380
2381 int iters = num_components <= 2 ? 1 : 2;
2382
2383 /* Load the dvec, the first iteration loads components x/y, the second
2384 * iteration, if needed, loads components z/w
2385 */
2386 for (int it = 0; it < iters; it++) {
2387 /* Compute number of components to read in this iteration */
2388 int iter_components = MIN2(2, num_components);
2389 num_components -= iter_components;
2390
2391 /* Read. Since this message reads 32-bit components, we need to
2392 * read twice as many components.
2393 */
2394 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2395 1 /* dims */,
2396 iter_components * 2,
2397 BRW_PREDICATE_NONE);
2398
2399 /* Shuffle the 32-bit load result into valid 64-bit data */
2400 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2401 shuffle_32bit_load_result_to_64bit_data(
2402 bld, packed_result, read_result, iter_components);
2403
2404 /* Move each component to its destination */
2405 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2406 for (int c = 0; c < iter_components; c++) {
2407 bld.MOV(offset(dest, bld, it * 2 + c),
2408 offset(packed_result, bld, c));
2409 }
2410
2411 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2412 }
2413 } else {
2414 unreachable("Unsupported type");
2415 }
2416 }
2417
2418 void
2419 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2420 nir_intrinsic_instr *instr)
2421 {
2422 assert(stage == MESA_SHADER_VERTEX);
2423
2424 fs_reg dest;
2425 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2426 dest = get_nir_dest(instr->dest);
2427
2428 switch (instr->intrinsic) {
2429 case nir_intrinsic_load_vertex_id:
2430 case nir_intrinsic_load_base_vertex:
2431 unreachable("should be lowered by nir_lower_system_values()");
2432
2433 case nir_intrinsic_load_vertex_id_zero_base:
2434 case nir_intrinsic_load_instance_id:
2435 case nir_intrinsic_load_base_instance:
2436 case nir_intrinsic_load_draw_id: {
2437 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2438 fs_reg val = nir_system_values[sv];
2439 assert(val.file != BAD_FILE);
2440 dest.type = val.type;
2441 bld.MOV(dest, val);
2442 break;
2443 }
2444
2445 case nir_intrinsic_load_input: {
2446 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2447 unsigned first_component = nir_intrinsic_component(instr);
2448 unsigned num_components = instr->num_components;
2449
2450 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2451 assert(const_offset && "Indirect input loads not allowed");
2452 src = offset(src, bld, const_offset->u32[0]);
2453
2454 if (type_sz(dest.type) == 8)
2455 first_component /= 2;
2456
2457 for (unsigned j = 0; j < num_components; j++) {
2458 bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
2459 }
2460
2461 if (type_sz(dest.type) == 8) {
2462 shuffle_32bit_load_result_to_64bit_data(bld,
2463 dest,
2464 retype(dest, BRW_REGISTER_TYPE_F),
2465 instr->num_components);
2466 }
2467 break;
2468 }
2469
2470 case nir_intrinsic_load_first_vertex:
2471 case nir_intrinsic_load_is_indexed_draw:
2472 unreachable("lowered by brw_nir_lower_vs_inputs");
2473
2474 default:
2475 nir_emit_intrinsic(bld, instr);
2476 break;
2477 }
2478 }
2479
2480 void
2481 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2482 nir_intrinsic_instr *instr)
2483 {
2484 assert(stage == MESA_SHADER_TESS_CTRL);
2485 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2486 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2487
2488 fs_reg dst;
2489 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2490 dst = get_nir_dest(instr->dest);
2491
2492 switch (instr->intrinsic) {
2493 case nir_intrinsic_load_primitive_id:
2494 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2495 break;
2496 case nir_intrinsic_load_invocation_id:
2497 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2498 break;
2499 case nir_intrinsic_load_patch_vertices_in:
2500 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2501 brw_imm_d(tcs_key->input_vertices));
2502 break;
2503
2504 case nir_intrinsic_barrier: {
2505 if (tcs_prog_data->instances == 1)
2506 break;
2507
2508 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2509 fs_reg m0_2 = component(m0, 2);
2510
2511 const fs_builder chanbld = bld.exec_all().group(1, 0);
2512
2513 /* Zero the message header */
2514 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2515
2516 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2517 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2518 brw_imm_ud(INTEL_MASK(16, 13)));
2519
2520 /* Shift it up to bits 27:24. */
2521 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2522
2523 /* Set the Barrier Count and the enable bit */
2524 chanbld.OR(m0_2, m0_2,
2525 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2526
2527 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2528 break;
2529 }
2530
2531 case nir_intrinsic_load_input:
2532 unreachable("nir_lower_io should never give us these.");
2533 break;
2534
2535 case nir_intrinsic_load_per_vertex_input: {
2536 fs_reg indirect_offset = get_indirect_offset(instr);
2537 unsigned imm_offset = instr->const_index[0];
2538
2539 const nir_src &vertex_src = instr->src[0];
2540 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2541
2542 fs_inst *inst;
2543
2544 fs_reg icp_handle;
2545
2546 if (vertex_const) {
2547 /* Emit a MOV to resolve <0,1,0> regioning. */
2548 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2549 bld.MOV(icp_handle,
2550 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2551 vertex_const->i32[0] & 7),
2552 BRW_REGISTER_TYPE_UD));
2553 } else if (tcs_prog_data->instances == 1 &&
2554 vertex_src.is_ssa &&
2555 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2556 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2557 /* For the common case of only 1 instance, an array index of
2558 * gl_InvocationID means reading g1. Skip all the indirect work.
2559 */
2560 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2561 } else {
2562 /* The vertex index is non-constant. We need to use indirect
2563 * addressing to fetch the proper URB handle.
2564 */
2565 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2566
2567 /* Each ICP handle is a single DWord (4 bytes) */
2568 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2569 bld.SHL(vertex_offset_bytes,
2570 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2571 brw_imm_ud(2u));
2572
2573 /* Start at g1. We might read up to 4 registers. */
2574 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2575 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2576 brw_imm_ud(4 * REG_SIZE));
2577 }
2578
2579 /* We can only read two double components with each URB read, so
2580 * we send two read messages in that case, each one loading up to
2581 * two double components.
2582 */
2583 unsigned num_iterations = 1;
2584 unsigned num_components = instr->num_components;
2585 unsigned first_component = nir_intrinsic_component(instr);
2586 fs_reg orig_dst = dst;
2587 if (type_sz(dst.type) == 8) {
2588 first_component = first_component / 2;
2589 if (instr->num_components > 2) {
2590 num_iterations = 2;
2591 num_components = 2;
2592 }
2593
2594 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2595 dst = tmp;
2596 }
2597
2598 for (unsigned iter = 0; iter < num_iterations; iter++) {
2599 if (indirect_offset.file == BAD_FILE) {
2600 /* Constant indexing - use global offset. */
2601 if (first_component != 0) {
2602 unsigned read_components = num_components + first_component;
2603 fs_reg tmp = bld.vgrf(dst.type, read_components);
2604 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2605 for (unsigned i = 0; i < num_components; i++) {
2606 bld.MOV(offset(dst, bld, i),
2607 offset(tmp, bld, i + first_component));
2608 }
2609 } else {
2610 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2611 }
2612 inst->offset = imm_offset;
2613 inst->mlen = 1;
2614 } else {
2615 /* Indirect indexing - use per-slot offsets as well. */
2616 const fs_reg srcs[] = { icp_handle, indirect_offset };
2617 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2618 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2619 if (first_component != 0) {
2620 unsigned read_components = num_components + first_component;
2621 fs_reg tmp = bld.vgrf(dst.type, read_components);
2622 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2623 payload);
2624 for (unsigned i = 0; i < num_components; i++) {
2625 bld.MOV(offset(dst, bld, i),
2626 offset(tmp, bld, i + first_component));
2627 }
2628 } else {
2629 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2630 payload);
2631 }
2632 inst->offset = imm_offset;
2633 inst->mlen = 2;
2634 }
2635 inst->size_written = (num_components + first_component) *
2636 inst->dst.component_size(inst->exec_size);
2637
2638 /* If we are reading 64-bit data using 32-bit read messages we need
2639 * build proper 64-bit data elements by shuffling the low and high
2640 * 32-bit components around like we do for other things like UBOs
2641 * or SSBOs.
2642 */
2643 if (type_sz(dst.type) == 8) {
2644 shuffle_32bit_load_result_to_64bit_data(
2645 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2646
2647 for (unsigned c = 0; c < num_components; c++) {
2648 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2649 offset(dst, bld, c));
2650 }
2651 }
2652
2653 /* Copy the temporary to the destination to deal with writemasking.
2654 *
2655 * Also attempt to deal with gl_PointSize being in the .w component.
2656 */
2657 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2658 assert(type_sz(dst.type) < 8);
2659 inst->dst = bld.vgrf(dst.type, 4);
2660 inst->size_written = 4 * REG_SIZE;
2661 bld.MOV(dst, offset(inst->dst, bld, 3));
2662 }
2663
2664 /* If we are loading double data and we need a second read message
2665 * adjust the write offset
2666 */
2667 if (num_iterations > 1) {
2668 num_components = instr->num_components - 2;
2669 imm_offset++;
2670 }
2671 }
2672 break;
2673 }
2674
2675 case nir_intrinsic_load_output:
2676 case nir_intrinsic_load_per_vertex_output: {
2677 fs_reg indirect_offset = get_indirect_offset(instr);
2678 unsigned imm_offset = instr->const_index[0];
2679 unsigned first_component = nir_intrinsic_component(instr);
2680
2681 fs_inst *inst;
2682 if (indirect_offset.file == BAD_FILE) {
2683 /* Replicate the patch handle to all enabled channels */
2684 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2685 bld.MOV(patch_handle,
2686 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2687
2688 {
2689 if (first_component != 0) {
2690 unsigned read_components =
2691 instr->num_components + first_component;
2692 fs_reg tmp = bld.vgrf(dst.type, read_components);
2693 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2694 patch_handle);
2695 inst->size_written = read_components * REG_SIZE;
2696 for (unsigned i = 0; i < instr->num_components; i++) {
2697 bld.MOV(offset(dst, bld, i),
2698 offset(tmp, bld, i + first_component));
2699 }
2700 } else {
2701 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2702 patch_handle);
2703 inst->size_written = instr->num_components * REG_SIZE;
2704 }
2705 inst->offset = imm_offset;
2706 inst->mlen = 1;
2707 }
2708 } else {
2709 /* Indirect indexing - use per-slot offsets as well. */
2710 const fs_reg srcs[] = {
2711 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2712 indirect_offset
2713 };
2714 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2715 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2716 if (first_component != 0) {
2717 unsigned read_components =
2718 instr->num_components + first_component;
2719 fs_reg tmp = bld.vgrf(dst.type, read_components);
2720 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2721 payload);
2722 inst->size_written = read_components * REG_SIZE;
2723 for (unsigned i = 0; i < instr->num_components; i++) {
2724 bld.MOV(offset(dst, bld, i),
2725 offset(tmp, bld, i + first_component));
2726 }
2727 } else {
2728 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2729 payload);
2730 inst->size_written = instr->num_components * REG_SIZE;
2731 }
2732 inst->offset = imm_offset;
2733 inst->mlen = 2;
2734 }
2735 break;
2736 }
2737
2738 case nir_intrinsic_store_output:
2739 case nir_intrinsic_store_per_vertex_output: {
2740 fs_reg value = get_nir_src(instr->src[0]);
2741 bool is_64bit = (instr->src[0].is_ssa ?
2742 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2743 fs_reg indirect_offset = get_indirect_offset(instr);
2744 unsigned imm_offset = instr->const_index[0];
2745 unsigned mask = instr->const_index[1];
2746 unsigned header_regs = 0;
2747 fs_reg srcs[7];
2748 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2749
2750 if (indirect_offset.file != BAD_FILE) {
2751 srcs[header_regs++] = indirect_offset;
2752 }
2753
2754 if (mask == 0)
2755 break;
2756
2757 unsigned num_components = util_last_bit(mask);
2758 enum opcode opcode;
2759
2760 /* We can only pack two 64-bit components in a single message, so send
2761 * 2 messages if we have more components
2762 */
2763 unsigned num_iterations = 1;
2764 unsigned iter_components = num_components;
2765 unsigned first_component = nir_intrinsic_component(instr);
2766 if (is_64bit) {
2767 first_component = first_component / 2;
2768 if (instr->num_components > 2) {
2769 num_iterations = 2;
2770 iter_components = 2;
2771 }
2772 }
2773
2774 mask = mask << first_component;
2775
2776 for (unsigned iter = 0; iter < num_iterations; iter++) {
2777 if (!is_64bit && mask != WRITEMASK_XYZW) {
2778 srcs[header_regs++] = brw_imm_ud(mask << 16);
2779 opcode = indirect_offset.file != BAD_FILE ?
2780 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2781 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2782 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2783 /* Expand the 64-bit mask to 32-bit channels. We only handle
2784 * two channels in each iteration, so we only care about X/Y.
2785 */
2786 unsigned mask32 = 0;
2787 if (mask & WRITEMASK_X)
2788 mask32 |= WRITEMASK_XY;
2789 if (mask & WRITEMASK_Y)
2790 mask32 |= WRITEMASK_ZW;
2791
2792 /* If the mask does not include any of the channels X or Y there
2793 * is nothing to do in this iteration. Move on to the next couple
2794 * of 64-bit channels.
2795 */
2796 if (!mask32) {
2797 mask >>= 2;
2798 imm_offset++;
2799 continue;
2800 }
2801
2802 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2803 opcode = indirect_offset.file != BAD_FILE ?
2804 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2805 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2806 } else {
2807 opcode = indirect_offset.file != BAD_FILE ?
2808 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2809 SHADER_OPCODE_URB_WRITE_SIMD8;
2810 }
2811
2812 for (unsigned i = 0; i < iter_components; i++) {
2813 if (!(mask & (1 << (i + first_component))))
2814 continue;
2815
2816 if (!is_64bit) {
2817 srcs[header_regs + i + first_component] = offset(value, bld, i);
2818 } else {
2819 /* We need to shuffle the 64-bit data to match the layout
2820 * expected by our 32-bit URB write messages. We use a temporary
2821 * for that.
2822 */
2823 unsigned channel = iter * 2 + i;
2824 fs_reg dest = shuffle_64bit_data_for_32bit_write(bld,
2825 offset(value, bld, channel), 1);
2826
2827 srcs[header_regs + (i + first_component) * 2] = dest;
2828 srcs[header_regs + (i + first_component) * 2 + 1] =
2829 offset(dest, bld, 1);
2830 }
2831 }
2832
2833 unsigned mlen =
2834 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2835 (is_64bit ? 2 * first_component : first_component);
2836 fs_reg payload =
2837 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2838 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2839
2840 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2841 inst->offset = imm_offset;
2842 inst->mlen = mlen;
2843
2844 /* If this is a 64-bit attribute, select the next two 64-bit channels
2845 * to be handled in the next iteration.
2846 */
2847 if (is_64bit) {
2848 mask >>= 2;
2849 imm_offset++;
2850 }
2851 }
2852 break;
2853 }
2854
2855 default:
2856 nir_emit_intrinsic(bld, instr);
2857 break;
2858 }
2859 }
2860
2861 void
2862 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2863 nir_intrinsic_instr *instr)
2864 {
2865 assert(stage == MESA_SHADER_TESS_EVAL);
2866 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2867
2868 fs_reg dest;
2869 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2870 dest = get_nir_dest(instr->dest);
2871
2872 switch (instr->intrinsic) {
2873 case nir_intrinsic_load_primitive_id:
2874 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2875 break;
2876 case nir_intrinsic_load_tess_coord:
2877 /* gl_TessCoord is part of the payload in g1-3 */
2878 for (unsigned i = 0; i < 3; i++) {
2879 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2880 }
2881 break;
2882
2883 case nir_intrinsic_load_input:
2884 case nir_intrinsic_load_per_vertex_input: {
2885 fs_reg indirect_offset = get_indirect_offset(instr);
2886 unsigned imm_offset = instr->const_index[0];
2887 unsigned first_component = nir_intrinsic_component(instr);
2888
2889 if (type_sz(dest.type) == 8) {
2890 first_component = first_component / 2;
2891 }
2892
2893 fs_inst *inst;
2894 if (indirect_offset.file == BAD_FILE) {
2895 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2896 * which is 16 registers (since each holds 2 vec4 slots).
2897 */
2898 unsigned slot_count = 1;
2899 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2900 slot_count++;
2901
2902 const unsigned max_push_slots = 32;
2903 if (imm_offset + slot_count <= max_push_slots) {
2904 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2905 for (int i = 0; i < instr->num_components; i++) {
2906 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2907 i + first_component;
2908 bld.MOV(offset(dest, bld, i), component(src, comp));
2909 }
2910
2911 tes_prog_data->base.urb_read_length =
2912 MAX2(tes_prog_data->base.urb_read_length,
2913 DIV_ROUND_UP(imm_offset + slot_count, 2));
2914 } else {
2915 /* Replicate the patch handle to all enabled channels */
2916 const fs_reg srcs[] = {
2917 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2918 };
2919 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2920 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2921
2922 if (first_component != 0) {
2923 unsigned read_components =
2924 instr->num_components + first_component;
2925 fs_reg tmp = bld.vgrf(dest.type, read_components);
2926 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2927 patch_handle);
2928 inst->size_written = read_components * REG_SIZE;
2929 for (unsigned i = 0; i < instr->num_components; i++) {
2930 bld.MOV(offset(dest, bld, i),
2931 offset(tmp, bld, i + first_component));
2932 }
2933 } else {
2934 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2935 patch_handle);
2936 inst->size_written = instr->num_components * REG_SIZE;
2937 }
2938 inst->mlen = 1;
2939 inst->offset = imm_offset;
2940 }
2941 } else {
2942 /* Indirect indexing - use per-slot offsets as well. */
2943
2944 /* We can only read two double components with each URB read, so
2945 * we send two read messages in that case, each one loading up to
2946 * two double components.
2947 */
2948 unsigned num_iterations = 1;
2949 unsigned num_components = instr->num_components;
2950 fs_reg orig_dest = dest;
2951 if (type_sz(dest.type) == 8) {
2952 if (instr->num_components > 2) {
2953 num_iterations = 2;
2954 num_components = 2;
2955 }
2956 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2957 dest = tmp;
2958 }
2959
2960 for (unsigned iter = 0; iter < num_iterations; iter++) {
2961 const fs_reg srcs[] = {
2962 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2963 indirect_offset
2964 };
2965 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2966 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2967
2968 if (first_component != 0) {
2969 unsigned read_components =
2970 num_components + first_component;
2971 fs_reg tmp = bld.vgrf(dest.type, read_components);
2972 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2973 payload);
2974 for (unsigned i = 0; i < num_components; i++) {
2975 bld.MOV(offset(dest, bld, i),
2976 offset(tmp, bld, i + first_component));
2977 }
2978 } else {
2979 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2980 payload);
2981 }
2982 inst->mlen = 2;
2983 inst->offset = imm_offset;
2984 inst->size_written = (num_components + first_component) *
2985 inst->dst.component_size(inst->exec_size);
2986
2987 /* If we are reading 64-bit data using 32-bit read messages we need
2988 * build proper 64-bit data elements by shuffling the low and high
2989 * 32-bit components around like we do for other things like UBOs
2990 * or SSBOs.
2991 */
2992 if (type_sz(dest.type) == 8) {
2993 shuffle_32bit_load_result_to_64bit_data(
2994 bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
2995
2996 for (unsigned c = 0; c < num_components; c++) {
2997 bld.MOV(offset(orig_dest, bld, iter * 2 + c),
2998 offset(dest, bld, c));
2999 }
3000 }
3001
3002 /* If we are loading double data and we need a second read message
3003 * adjust the offset
3004 */
3005 if (num_iterations > 1) {
3006 num_components = instr->num_components - 2;
3007 imm_offset++;
3008 }
3009 }
3010 }
3011 break;
3012 }
3013 default:
3014 nir_emit_intrinsic(bld, instr);
3015 break;
3016 }
3017 }
3018
3019 void
3020 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3021 nir_intrinsic_instr *instr)
3022 {
3023 assert(stage == MESA_SHADER_GEOMETRY);
3024 fs_reg indirect_offset;
3025
3026 fs_reg dest;
3027 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3028 dest = get_nir_dest(instr->dest);
3029
3030 switch (instr->intrinsic) {
3031 case nir_intrinsic_load_primitive_id:
3032 assert(stage == MESA_SHADER_GEOMETRY);
3033 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3034 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3035 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3036 break;
3037
3038 case nir_intrinsic_load_input:
3039 unreachable("load_input intrinsics are invalid for the GS stage");
3040
3041 case nir_intrinsic_load_per_vertex_input:
3042 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3043 instr->src[1], instr->num_components,
3044 nir_intrinsic_component(instr));
3045 break;
3046
3047 case nir_intrinsic_emit_vertex_with_counter:
3048 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3049 break;
3050
3051 case nir_intrinsic_end_primitive_with_counter:
3052 emit_gs_end_primitive(instr->src[0]);
3053 break;
3054
3055 case nir_intrinsic_set_vertex_count:
3056 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3057 break;
3058
3059 case nir_intrinsic_load_invocation_id: {
3060 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3061 assert(val.file != BAD_FILE);
3062 dest.type = val.type;
3063 bld.MOV(dest, val);
3064 break;
3065 }
3066
3067 default:
3068 nir_emit_intrinsic(bld, instr);
3069 break;
3070 }
3071 }
3072
3073 /**
3074 * Fetch the current render target layer index.
3075 */
3076 static fs_reg
3077 fetch_render_target_array_index(const fs_builder &bld)
3078 {
3079 if (bld.shader->devinfo->gen >= 6) {
3080 /* The render target array index is provided in the thread payload as
3081 * bits 26:16 of r0.0.
3082 */
3083 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3084 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3085 brw_imm_uw(0x7ff));
3086 return idx;
3087 } else {
3088 /* Pre-SNB we only ever render into the first layer of the framebuffer
3089 * since layered rendering is not implemented.
3090 */
3091 return brw_imm_ud(0);
3092 }
3093 }
3094
3095 /**
3096 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3097 * framebuffer at the current fragment coordinates and sample index.
3098 */
3099 fs_inst *
3100 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3101 unsigned target)
3102 {
3103 const struct gen_device_info *devinfo = bld.shader->devinfo;
3104
3105 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3106 const brw_wm_prog_key *wm_key =
3107 reinterpret_cast<const brw_wm_prog_key *>(key);
3108 assert(!wm_key->coherent_fb_fetch);
3109 const struct brw_wm_prog_data *wm_prog_data =
3110 brw_wm_prog_data(stage_prog_data);
3111
3112 /* Calculate the surface index relative to the start of the texture binding
3113 * table block, since that's what the texturing messages expect.
3114 */
3115 const unsigned surface = target +
3116 wm_prog_data->binding_table.render_target_read_start -
3117 wm_prog_data->base.binding_table.texture_start;
3118
3119 brw_mark_surface_used(
3120 bld.shader->stage_prog_data,
3121 wm_prog_data->binding_table.render_target_read_start + target);
3122
3123 /* Calculate the fragment coordinates. */
3124 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3125 bld.MOV(offset(coords, bld, 0), pixel_x);
3126 bld.MOV(offset(coords, bld, 1), pixel_y);
3127 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3128
3129 /* Calculate the sample index and MCS payload when multisampling. Luckily
3130 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3131 * shouldn't be necessary to recompile based on whether the framebuffer is
3132 * CMS or UMS.
3133 */
3134 if (wm_key->multisample_fbo &&
3135 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3136 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3137
3138 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3139 const fs_reg mcs = wm_key->multisample_fbo ?
3140 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3141
3142 /* Use either a normal or a CMS texel fetch message depending on whether
3143 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3144 * message just in case the framebuffer uses 16x multisampling, it should
3145 * be equivalent to the normal CMS fetch for lower multisampling modes.
3146 */
3147 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3148 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3149 SHADER_OPCODE_TXF_CMS_LOGICAL;
3150
3151 /* Emit the instruction. */
3152 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3153 sample, mcs,
3154 brw_imm_ud(surface), brw_imm_ud(0),
3155 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3156 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3157
3158 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3159 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3160
3161 return inst;
3162 }
3163
3164 /**
3165 * Actual coherent framebuffer read implemented using the native render target
3166 * read message. Requires SKL+.
3167 */
3168 static fs_inst *
3169 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3170 {
3171 assert(bld.shader->devinfo->gen >= 9);
3172 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3173 inst->target = target;
3174 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3175
3176 return inst;
3177 }
3178
3179 static fs_reg
3180 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3181 {
3182 if (n && regs[0].file != BAD_FILE) {
3183 return regs[0];
3184
3185 } else {
3186 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3187
3188 for (unsigned i = 0; i < n; i++)
3189 regs[i] = tmp;
3190
3191 return tmp;
3192 }
3193 }
3194
3195 static fs_reg
3196 alloc_frag_output(fs_visitor *v, unsigned location)
3197 {
3198 assert(v->stage == MESA_SHADER_FRAGMENT);
3199 const brw_wm_prog_key *const key =
3200 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3201 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3202 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3203
3204 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3205 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3206
3207 else if (l == FRAG_RESULT_COLOR)
3208 return alloc_temporary(v->bld, 4, v->outputs,
3209 MAX2(key->nr_color_regions, 1));
3210
3211 else if (l == FRAG_RESULT_DEPTH)
3212 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3213
3214 else if (l == FRAG_RESULT_STENCIL)
3215 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3216
3217 else if (l == FRAG_RESULT_SAMPLE_MASK)
3218 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3219
3220 else if (l >= FRAG_RESULT_DATA0 &&
3221 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3222 return alloc_temporary(v->bld, 4,
3223 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3224
3225 else
3226 unreachable("Invalid location");
3227 }
3228
3229 void
3230 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3231 nir_intrinsic_instr *instr)
3232 {
3233 assert(stage == MESA_SHADER_FRAGMENT);
3234
3235 fs_reg dest;
3236 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3237 dest = get_nir_dest(instr->dest);
3238
3239 switch (instr->intrinsic) {
3240 case nir_intrinsic_load_front_face:
3241 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3242 *emit_frontfacing_interpolation());
3243 break;
3244
3245 case nir_intrinsic_load_sample_pos: {
3246 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3247 assert(sample_pos.file != BAD_FILE);
3248 dest.type = sample_pos.type;
3249 bld.MOV(dest, sample_pos);
3250 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3251 break;
3252 }
3253
3254 case nir_intrinsic_load_layer_id:
3255 dest.type = BRW_REGISTER_TYPE_UD;
3256 bld.MOV(dest, fetch_render_target_array_index(bld));
3257 break;
3258
3259 case nir_intrinsic_load_helper_invocation:
3260 case nir_intrinsic_load_sample_mask_in:
3261 case nir_intrinsic_load_sample_id: {
3262 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3263 fs_reg val = nir_system_values[sv];
3264 assert(val.file != BAD_FILE);
3265 dest.type = val.type;
3266 bld.MOV(dest, val);
3267 break;
3268 }
3269
3270 case nir_intrinsic_store_output: {
3271 const fs_reg src = get_nir_src(instr->src[0]);
3272 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3273 assert(const_offset && "Indirect output stores not allowed");
3274 const unsigned location = nir_intrinsic_base(instr) +
3275 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3276 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3277 src.type);
3278
3279 for (unsigned j = 0; j < instr->num_components; j++)
3280 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3281 offset(src, bld, j));
3282
3283 break;
3284 }
3285
3286 case nir_intrinsic_load_output: {
3287 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3288 BRW_NIR_FRAG_OUTPUT_LOCATION);
3289 assert(l >= FRAG_RESULT_DATA0);
3290 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3291 assert(const_offset && "Indirect output loads not allowed");
3292 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3293 const fs_reg tmp = bld.vgrf(dest.type, 4);
3294
3295 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3296 emit_coherent_fb_read(bld, tmp, target);
3297 else
3298 emit_non_coherent_fb_read(bld, tmp, target);
3299
3300 for (unsigned j = 0; j < instr->num_components; j++) {
3301 bld.MOV(offset(dest, bld, j),
3302 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3303 }
3304
3305 break;
3306 }
3307
3308 case nir_intrinsic_discard:
3309 case nir_intrinsic_discard_if: {
3310 /* We track our discarded pixels in f0.1. By predicating on it, we can
3311 * update just the flag bits that aren't yet discarded. If there's no
3312 * condition, we emit a CMP of g0 != g0, so all currently executing
3313 * channels will get turned off.
3314 */
3315 fs_inst *cmp;
3316 if (instr->intrinsic == nir_intrinsic_discard_if) {
3317 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3318 brw_imm_d(0), BRW_CONDITIONAL_Z);
3319 } else {
3320 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3321 BRW_REGISTER_TYPE_UW));
3322 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3323 }
3324 cmp->predicate = BRW_PREDICATE_NORMAL;
3325 cmp->flag_subreg = 1;
3326
3327 if (devinfo->gen >= 6) {
3328 emit_discard_jump();
3329 }
3330 break;
3331 }
3332
3333 case nir_intrinsic_load_input: {
3334 /* load_input is only used for flat inputs */
3335 unsigned base = nir_intrinsic_base(instr);
3336 unsigned component = nir_intrinsic_component(instr);
3337 unsigned num_components = instr->num_components;
3338 enum brw_reg_type type = dest.type;
3339
3340 /* Special case fields in the VUE header */
3341 if (base == VARYING_SLOT_LAYER)
3342 component = 1;
3343 else if (base == VARYING_SLOT_VIEWPORT)
3344 component = 2;
3345
3346 if (nir_dest_bit_size(instr->dest) == 64) {
3347 /* const_index is in 32-bit type size units that could not be aligned
3348 * with DF. We need to read the double vector as if it was a float
3349 * vector of twice the number of components to fetch the right data.
3350 */
3351 type = BRW_REGISTER_TYPE_F;
3352 num_components *= 2;
3353 }
3354
3355 for (unsigned int i = 0; i < num_components; i++) {
3356 struct brw_reg interp = interp_reg(base, component + i);
3357 interp = suboffset(interp, 3);
3358 bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i),
3359 retype(fs_reg(interp), type));
3360 }
3361
3362 if (nir_dest_bit_size(instr->dest) == 64) {
3363 shuffle_32bit_load_result_to_64bit_data(bld,
3364 dest,
3365 retype(dest, type),
3366 instr->num_components);
3367 }
3368 break;
3369 }
3370
3371 case nir_intrinsic_load_barycentric_pixel:
3372 case nir_intrinsic_load_barycentric_centroid:
3373 case nir_intrinsic_load_barycentric_sample:
3374 /* Do nothing - load_interpolated_input handling will handle it later. */
3375 break;
3376
3377 case nir_intrinsic_load_barycentric_at_sample: {
3378 const glsl_interp_mode interpolation =
3379 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3380
3381 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3382
3383 if (const_sample) {
3384 unsigned msg_data = const_sample->i32[0] << 4;
3385
3386 emit_pixel_interpolater_send(bld,
3387 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3388 dest,
3389 fs_reg(), /* src */
3390 brw_imm_ud(msg_data),
3391 interpolation);
3392 } else {
3393 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3394 BRW_REGISTER_TYPE_UD);
3395
3396 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3397 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3398 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3399 bld.exec_all().group(1, 0)
3400 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3401 emit_pixel_interpolater_send(bld,
3402 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3403 dest,
3404 fs_reg(), /* src */
3405 msg_data,
3406 interpolation);
3407 } else {
3408 /* Make a loop that sends a message to the pixel interpolater
3409 * for the sample number in each live channel. If there are
3410 * multiple channels with the same sample number then these
3411 * will be handled simultaneously with a single interation of
3412 * the loop.
3413 */
3414 bld.emit(BRW_OPCODE_DO);
3415
3416 /* Get the next live sample number into sample_id_reg */
3417 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3418
3419 /* Set the flag register so that we can perform the send
3420 * message on all channels that have the same sample number
3421 */
3422 bld.CMP(bld.null_reg_ud(),
3423 sample_src, sample_id,
3424 BRW_CONDITIONAL_EQ);
3425 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3426 bld.exec_all().group(1, 0)
3427 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3428 fs_inst *inst =
3429 emit_pixel_interpolater_send(bld,
3430 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3431 dest,
3432 fs_reg(), /* src */
3433 msg_data,
3434 interpolation);
3435 set_predicate(BRW_PREDICATE_NORMAL, inst);
3436
3437 /* Continue the loop if there are any live channels left */
3438 set_predicate_inv(BRW_PREDICATE_NORMAL,
3439 true, /* inverse */
3440 bld.emit(BRW_OPCODE_WHILE));
3441 }
3442 }
3443 break;
3444 }
3445
3446 case nir_intrinsic_load_barycentric_at_offset: {
3447 const glsl_interp_mode interpolation =
3448 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3449
3450 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3451
3452 if (const_offset) {
3453 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3454 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3455
3456 emit_pixel_interpolater_send(bld,
3457 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3458 dest,
3459 fs_reg(), /* src */
3460 brw_imm_ud(off_x | (off_y << 4)),
3461 interpolation);
3462 } else {
3463 fs_reg src = vgrf(glsl_type::ivec2_type);
3464 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3465 BRW_REGISTER_TYPE_F);
3466 for (int i = 0; i < 2; i++) {
3467 fs_reg temp = vgrf(glsl_type::float_type);
3468 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3469 fs_reg itemp = vgrf(glsl_type::int_type);
3470 /* float to int */
3471 bld.MOV(itemp, temp);
3472
3473 /* Clamp the upper end of the range to +7/16.
3474 * ARB_gpu_shader5 requires that we support a maximum offset
3475 * of +0.5, which isn't representable in a S0.4 value -- if
3476 * we didn't clamp it, we'd end up with -8/16, which is the
3477 * opposite of what the shader author wanted.
3478 *
3479 * This is legal due to ARB_gpu_shader5's quantization
3480 * rules:
3481 *
3482 * "Not all values of <offset> may be supported; x and y
3483 * offsets may be rounded to fixed-point values with the
3484 * number of fraction bits given by the
3485 * implementation-dependent constant
3486 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3487 */
3488 set_condmod(BRW_CONDITIONAL_L,
3489 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3490 }
3491
3492 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3493 emit_pixel_interpolater_send(bld,
3494 opcode,
3495 dest,
3496 src,
3497 brw_imm_ud(0u),
3498 interpolation);
3499 }
3500 break;
3501 }
3502
3503 case nir_intrinsic_load_interpolated_input: {
3504 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3505 emit_fragcoord_interpolation(dest);
3506 break;
3507 }
3508
3509 assert(instr->src[0].ssa &&
3510 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3511 nir_intrinsic_instr *bary_intrinsic =
3512 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3513 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3514 enum glsl_interp_mode interp_mode =
3515 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3516 fs_reg dst_xy;
3517
3518 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3519 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3520 /* Use the result of the PI message */
3521 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3522 } else {
3523 /* Use the delta_xy values computed from the payload */
3524 enum brw_barycentric_mode bary =
3525 brw_barycentric_mode(interp_mode, bary_intrin);
3526
3527 dst_xy = this->delta_xy[bary];
3528 }
3529
3530 for (unsigned int i = 0; i < instr->num_components; i++) {
3531 fs_reg interp =
3532 fs_reg(interp_reg(nir_intrinsic_base(instr),
3533 nir_intrinsic_component(instr) + i));
3534 interp.type = BRW_REGISTER_TYPE_F;
3535 dest.type = BRW_REGISTER_TYPE_F;
3536
3537 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3538 fs_reg tmp = vgrf(glsl_type::float_type);
3539 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3540 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3541 } else {
3542 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3543 }
3544 }
3545 break;
3546 }
3547
3548 default:
3549 nir_emit_intrinsic(bld, instr);
3550 break;
3551 }
3552 }
3553
3554 void
3555 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3556 nir_intrinsic_instr *instr)
3557 {
3558 assert(stage == MESA_SHADER_COMPUTE);
3559 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3560
3561 fs_reg dest;
3562 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3563 dest = get_nir_dest(instr->dest);
3564
3565 switch (instr->intrinsic) {
3566 case nir_intrinsic_barrier:
3567 emit_barrier();
3568 cs_prog_data->uses_barrier = true;
3569 break;
3570
3571 case nir_intrinsic_load_subgroup_id:
3572 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3573 break;
3574
3575 case nir_intrinsic_load_local_invocation_id:
3576 case nir_intrinsic_load_work_group_id: {
3577 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3578 fs_reg val = nir_system_values[sv];
3579 assert(val.file != BAD_FILE);
3580 dest.type = val.type;
3581 for (unsigned i = 0; i < 3; i++)
3582 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3583 break;
3584 }
3585
3586 case nir_intrinsic_load_num_work_groups: {
3587 const unsigned surface =
3588 cs_prog_data->binding_table.work_groups_start;
3589
3590 cs_prog_data->uses_num_work_groups = true;
3591
3592 fs_reg surf_index = brw_imm_ud(surface);
3593 brw_mark_surface_used(prog_data, surface);
3594
3595 /* Read the 3 GLuint components of gl_NumWorkGroups */
3596 for (unsigned i = 0; i < 3; i++) {
3597 fs_reg read_result =
3598 emit_untyped_read(bld, surf_index,
3599 brw_imm_ud(i << 2),
3600 1 /* dims */, 1 /* size */,
3601 BRW_PREDICATE_NONE);
3602 read_result.type = dest.type;
3603 bld.MOV(dest, read_result);
3604 dest = offset(dest, bld, 1);
3605 }
3606 break;
3607 }
3608
3609 case nir_intrinsic_shared_atomic_add:
3610 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3611 break;
3612 case nir_intrinsic_shared_atomic_imin:
3613 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3614 break;
3615 case nir_intrinsic_shared_atomic_umin:
3616 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3617 break;
3618 case nir_intrinsic_shared_atomic_imax:
3619 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3620 break;
3621 case nir_intrinsic_shared_atomic_umax:
3622 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3623 break;
3624 case nir_intrinsic_shared_atomic_and:
3625 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3626 break;
3627 case nir_intrinsic_shared_atomic_or:
3628 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3629 break;
3630 case nir_intrinsic_shared_atomic_xor:
3631 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3632 break;
3633 case nir_intrinsic_shared_atomic_exchange:
3634 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3635 break;
3636 case nir_intrinsic_shared_atomic_comp_swap:
3637 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3638 break;
3639
3640 case nir_intrinsic_load_shared: {
3641 assert(devinfo->gen >= 7);
3642
3643 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3644
3645 /* Get the offset to read from */
3646 fs_reg offset_reg;
3647 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3648 if (const_offset) {
3649 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3650 } else {
3651 offset_reg = vgrf(glsl_type::uint_type);
3652 bld.ADD(offset_reg,
3653 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3654 brw_imm_ud(instr->const_index[0]));
3655 }
3656
3657 /* Read the vector */
3658 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3659 instr->num_components);
3660 break;
3661 }
3662
3663 case nir_intrinsic_store_shared: {
3664 assert(devinfo->gen >= 7);
3665
3666 /* Block index */
3667 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3668
3669 /* Value */
3670 fs_reg val_reg = get_nir_src(instr->src[0]);
3671
3672 /* Writemask */
3673 unsigned writemask = instr->const_index[1];
3674
3675 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3676 * since the untyped writes below operate in units of 32-bits, which
3677 * means that we need to write twice as many components each time.
3678 * Also, we have to suffle 64-bit data to be in the appropriate layout
3679 * expected by our 32-bit write messages.
3680 */
3681 unsigned type_size = 4;
3682 if (nir_src_bit_size(instr->src[0]) == 64) {
3683 type_size = 8;
3684 val_reg = shuffle_64bit_data_for_32bit_write(bld,
3685 val_reg, instr->num_components);
3686 }
3687
3688 unsigned type_slots = type_size / 4;
3689
3690 /* Combine groups of consecutive enabled channels in one write
3691 * message. We use ffs to find the first enabled channel and then ffs on
3692 * the bit-inverse, down-shifted writemask to determine the length of
3693 * the block of enabled bits.
3694 */
3695 while (writemask) {
3696 unsigned first_component = ffs(writemask) - 1;
3697 unsigned length = ffs(~(writemask >> first_component)) - 1;
3698
3699 /* We can't write more than 2 64-bit components at once. Limit the
3700 * length of the write to what we can do and let the next iteration
3701 * handle the rest
3702 */
3703 if (type_size > 4)
3704 length = MIN2(2, length);
3705
3706 fs_reg offset_reg;
3707 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3708 if (const_offset) {
3709 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3710 type_size * first_component);
3711 } else {
3712 offset_reg = vgrf(glsl_type::uint_type);
3713 bld.ADD(offset_reg,
3714 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3715 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3716 }
3717
3718 emit_untyped_write(bld, surf_index, offset_reg,
3719 offset(val_reg, bld, first_component * type_slots),
3720 1 /* dims */, length * type_slots,
3721 BRW_PREDICATE_NONE);
3722
3723 /* Clear the bits in the writemask that we just wrote, then try
3724 * again to see if more channels are left.
3725 */
3726 writemask &= (15 << (first_component + length));
3727 }
3728
3729 break;
3730 }
3731
3732 default:
3733 nir_emit_intrinsic(bld, instr);
3734 break;
3735 }
3736 }
3737
3738 static fs_reg
3739 brw_nir_reduction_op_identity(const fs_builder &bld,
3740 nir_op op, brw_reg_type type)
3741 {
3742 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3743 switch (type_sz(type)) {
3744 case 2:
3745 assert(type != BRW_REGISTER_TYPE_HF);
3746 return retype(brw_imm_uw(value.u16[0]), type);
3747 case 4:
3748 return retype(brw_imm_ud(value.u32[0]), type);
3749 case 8:
3750 if (type == BRW_REGISTER_TYPE_DF)
3751 return setup_imm_df(bld, value.f64[0]);
3752 else
3753 return retype(brw_imm_u64(value.u64[0]), type);
3754 default:
3755 unreachable("Invalid type size");
3756 }
3757 }
3758
3759 static opcode
3760 brw_op_for_nir_reduction_op(nir_op op)
3761 {
3762 switch (op) {
3763 case nir_op_iadd: return BRW_OPCODE_ADD;
3764 case nir_op_fadd: return BRW_OPCODE_ADD;
3765 case nir_op_imul: return BRW_OPCODE_MUL;
3766 case nir_op_fmul: return BRW_OPCODE_MUL;
3767 case nir_op_imin: return BRW_OPCODE_SEL;
3768 case nir_op_umin: return BRW_OPCODE_SEL;
3769 case nir_op_fmin: return BRW_OPCODE_SEL;
3770 case nir_op_imax: return BRW_OPCODE_SEL;
3771 case nir_op_umax: return BRW_OPCODE_SEL;
3772 case nir_op_fmax: return BRW_OPCODE_SEL;
3773 case nir_op_iand: return BRW_OPCODE_AND;
3774 case nir_op_ior: return BRW_OPCODE_OR;
3775 case nir_op_ixor: return BRW_OPCODE_XOR;
3776 default:
3777 unreachable("Invalid reduction operation");
3778 }
3779 }
3780
3781 static brw_conditional_mod
3782 brw_cond_mod_for_nir_reduction_op(nir_op op)
3783 {
3784 switch (op) {
3785 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3786 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3787 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3788 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3789 case nir_op_imin: return BRW_CONDITIONAL_L;
3790 case nir_op_umin: return BRW_CONDITIONAL_L;
3791 case nir_op_fmin: return BRW_CONDITIONAL_L;
3792 case nir_op_imax: return BRW_CONDITIONAL_GE;
3793 case nir_op_umax: return BRW_CONDITIONAL_GE;
3794 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3795 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3796 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3797 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3798 default:
3799 unreachable("Invalid reduction operation");
3800 }
3801 }
3802
3803 void
3804 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3805 {
3806 fs_reg dest;
3807 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3808 dest = get_nir_dest(instr->dest);
3809
3810 switch (instr->intrinsic) {
3811 case nir_intrinsic_image_var_load:
3812 case nir_intrinsic_image_var_store:
3813 case nir_intrinsic_image_var_atomic_add:
3814 case nir_intrinsic_image_var_atomic_min:
3815 case nir_intrinsic_image_var_atomic_max:
3816 case nir_intrinsic_image_var_atomic_and:
3817 case nir_intrinsic_image_var_atomic_or:
3818 case nir_intrinsic_image_var_atomic_xor:
3819 case nir_intrinsic_image_var_atomic_exchange:
3820 case nir_intrinsic_image_var_atomic_comp_swap: {
3821 using namespace image_access;
3822
3823 if (stage == MESA_SHADER_FRAGMENT &&
3824 instr->intrinsic != nir_intrinsic_image_var_load)
3825 brw_wm_prog_data(prog_data)->has_side_effects = true;
3826
3827 /* Get the referenced image variable and type. */
3828 const nir_variable *var = instr->variables[0]->var;
3829 const glsl_type *type = var->type->without_array();
3830 const brw_reg_type base_type = get_image_base_type(type);
3831
3832 /* Get some metadata from the image intrinsic. */
3833 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3834 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3835 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3836 const unsigned format = var->data.image.format;
3837 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3838
3839 /* Get the arguments of the image intrinsic. */
3840 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3841 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3842 BRW_REGISTER_TYPE_UD);
3843 const fs_reg src0 = (info->num_srcs >= 3 ?
3844 retype(get_nir_src(instr->src[2]), base_type) :
3845 fs_reg());
3846 const fs_reg src1 = (info->num_srcs >= 4 ?
3847 retype(get_nir_src(instr->src[3]), base_type) :
3848 fs_reg());
3849 fs_reg tmp;
3850
3851 /* Emit an image load, store or atomic op. */
3852 if (instr->intrinsic == nir_intrinsic_image_var_load)
3853 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3854
3855 else if (instr->intrinsic == nir_intrinsic_image_var_store)
3856 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3857 var->data.image.write_only ? GL_NONE : format);
3858
3859 else
3860 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3861 surf_dims, arr_dims, dest_components,
3862 get_image_atomic_op(instr->intrinsic, type));
3863
3864 /* Assign the result. */
3865 for (unsigned c = 0; c < dest_components; ++c) {
3866 bld.MOV(offset(retype(dest, base_type), bld, c),
3867 offset(tmp, bld, c));
3868 }
3869 break;
3870 }
3871
3872 case nir_intrinsic_memory_barrier_atomic_counter:
3873 case nir_intrinsic_memory_barrier_buffer:
3874 case nir_intrinsic_memory_barrier_image:
3875 case nir_intrinsic_memory_barrier: {
3876 const fs_builder ubld = bld.group(8, 0);
3877 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3878 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3879 ->size_written = 2 * REG_SIZE;
3880 break;
3881 }
3882
3883 case nir_intrinsic_group_memory_barrier:
3884 case nir_intrinsic_memory_barrier_shared:
3885 /* We treat these workgroup-level barriers as no-ops. This should be
3886 * safe at present and as long as:
3887 *
3888 * - Memory access instructions are not subsequently reordered by the
3889 * compiler back-end.
3890 *
3891 * - All threads from a given compute shader workgroup fit within a
3892 * single subslice and therefore talk to the same HDC shared unit
3893 * what supposedly guarantees ordering and coherency between threads
3894 * from the same workgroup. This may change in the future when we
3895 * start splitting workgroups across multiple subslices.
3896 *
3897 * - The context is not in fault-and-stream mode, which could cause
3898 * memory transactions (including to SLM) prior to the barrier to be
3899 * replayed after the barrier if a pagefault occurs. This shouldn't
3900 * be a problem up to and including SKL because fault-and-stream is
3901 * not usable due to hardware issues, but that's likely to change in
3902 * the future.
3903 */
3904 break;
3905
3906 case nir_intrinsic_shader_clock: {
3907 /* We cannot do anything if there is an event, so ignore it for now */
3908 const fs_reg shader_clock = get_timestamp(bld);
3909 const fs_reg srcs[] = { component(shader_clock, 0),
3910 component(shader_clock, 1) };
3911 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3912 break;
3913 }
3914
3915 case nir_intrinsic_image_var_size: {
3916 /* Get the referenced image variable and type. */
3917 const nir_variable *var = instr->variables[0]->var;
3918 const glsl_type *type = var->type->without_array();
3919
3920 /* Get the size of the image. */
3921 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3922 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3923
3924 /* For 1DArray image types, the array index is stored in the Z component.
3925 * Fix this by swizzling the Z component to the Y component.
3926 */
3927 const bool is_1d_array_image =
3928 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3929 type->sampler_array;
3930
3931 /* For CubeArray images, we should count the number of cubes instead
3932 * of the number of faces. Fix it by dividing the (Z component) by 6.
3933 */
3934 const bool is_cube_array_image =
3935 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3936 type->sampler_array;
3937
3938 /* Copy all the components. */
3939 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3940 if ((int)c >= type->coordinate_components()) {
3941 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3942 brw_imm_d(1));
3943 } else if (c == 1 && is_1d_array_image) {
3944 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3945 offset(size, bld, 2));
3946 } else if (c == 2 && is_cube_array_image) {
3947 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3948 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3949 offset(size, bld, c), brw_imm_d(6));
3950 } else {
3951 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3952 offset(size, bld, c));
3953 }
3954 }
3955
3956 break;
3957 }
3958
3959 case nir_intrinsic_image_var_samples:
3960 /* The driver does not support multi-sampled images. */
3961 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3962 break;
3963
3964 case nir_intrinsic_load_uniform: {
3965 /* Offsets are in bytes but they should always aligned to
3966 * the type size
3967 */
3968 assert(instr->const_index[0] % 4 == 0 ||
3969 instr->const_index[0] % type_sz(dest.type) == 0);
3970
3971 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3972
3973 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3974 if (const_offset) {
3975 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
3976 /* For 16-bit types we add the module of the const_index[0]
3977 * offset to access to not 32-bit aligned element
3978 */
3979 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
3980
3981 for (unsigned j = 0; j < instr->num_components; j++) {
3982 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3983 }
3984 } else {
3985 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3986 BRW_REGISTER_TYPE_UD);
3987
3988 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3989 * go past the end of the uniform. In order to keep the n'th
3990 * component from running past, we subtract off the size of all but
3991 * one component of the vector.
3992 */
3993 assert(instr->const_index[1] >=
3994 instr->num_components * (int) type_sz(dest.type));
3995 unsigned read_size = instr->const_index[1] -
3996 (instr->num_components - 1) * type_sz(dest.type);
3997
3998 bool supports_64bit_indirects =
3999 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4000
4001 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4002 for (unsigned j = 0; j < instr->num_components; j++) {
4003 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4004 offset(dest, bld, j), offset(src, bld, j),
4005 indirect, brw_imm_ud(read_size));
4006 }
4007 } else {
4008 const unsigned num_mov_indirects =
4009 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4010 /* We read a little bit less per MOV INDIRECT, as they are now
4011 * 32-bits ones instead of 64-bit. Fix read_size then.
4012 */
4013 const unsigned read_size_32bit = read_size -
4014 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4015 for (unsigned j = 0; j < instr->num_components; j++) {
4016 for (unsigned i = 0; i < num_mov_indirects; i++) {
4017 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4018 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4019 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4020 indirect, brw_imm_ud(read_size_32bit));
4021 }
4022 }
4023 }
4024 }
4025 break;
4026 }
4027
4028 case nir_intrinsic_load_ubo: {
4029 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4030 fs_reg surf_index;
4031
4032 if (const_index) {
4033 const unsigned index = stage_prog_data->binding_table.ubo_start +
4034 const_index->u32[0];
4035 surf_index = brw_imm_ud(index);
4036 brw_mark_surface_used(prog_data, index);
4037 } else {
4038 /* The block index is not a constant. Evaluate the index expression
4039 * per-channel and add the base UBO index; we have to select a value
4040 * from any live channel.
4041 */
4042 surf_index = vgrf(glsl_type::uint_type);
4043 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4044 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4045 surf_index = bld.emit_uniformize(surf_index);
4046
4047 /* Assume this may touch any UBO. It would be nice to provide
4048 * a tighter bound, but the array information is already lowered away.
4049 */
4050 brw_mark_surface_used(prog_data,
4051 stage_prog_data->binding_table.ubo_start +
4052 nir->info.num_ubos - 1);
4053 }
4054
4055 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4056 if (const_offset == NULL) {
4057 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4058 BRW_REGISTER_TYPE_UD);
4059
4060 for (int i = 0; i < instr->num_components; i++)
4061 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4062 base_offset, i * type_sz(dest.type));
4063 } else {
4064 /* Even if we are loading doubles, a pull constant load will load
4065 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4066 * need to load a full dvec4 we will have to emit 2 loads. This is
4067 * similar to demote_pull_constants(), except that in that case we
4068 * see individual accesses to each component of the vector and then
4069 * we let CSE deal with duplicate loads. Here we see a vector access
4070 * and we have to split it if necessary.
4071 */
4072 const unsigned type_size = type_sz(dest.type);
4073
4074 /* See if we've selected this as a push constant candidate */
4075 if (const_index) {
4076 const unsigned ubo_block = const_index->u32[0];
4077 const unsigned offset_256b = const_offset->u32[0] / 32;
4078
4079 fs_reg push_reg;
4080 for (int i = 0; i < 4; i++) {
4081 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4082 if (range->block == ubo_block &&
4083 offset_256b >= range->start &&
4084 offset_256b < range->start + range->length) {
4085
4086 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4087 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4088 break;
4089 }
4090 }
4091
4092 if (push_reg.file != BAD_FILE) {
4093 for (unsigned i = 0; i < instr->num_components; i++) {
4094 bld.MOV(offset(dest, bld, i),
4095 byte_offset(push_reg, i * type_size));
4096 }
4097 break;
4098 }
4099 }
4100
4101 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4102 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4103 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4104
4105 for (unsigned c = 0; c < instr->num_components;) {
4106 const unsigned base = const_offset->u32[0] + c * type_size;
4107 /* Number of usable components in the next block-aligned load. */
4108 const unsigned count = MIN2(instr->num_components - c,
4109 (block_sz - base % block_sz) / type_size);
4110
4111 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4112 packed_consts, surf_index,
4113 brw_imm_ud(base & ~(block_sz - 1)));
4114
4115 const fs_reg consts =
4116 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4117 dest.type);
4118
4119 for (unsigned d = 0; d < count; d++)
4120 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4121
4122 c += count;
4123 }
4124 }
4125 break;
4126 }
4127
4128 case nir_intrinsic_load_ssbo: {
4129 assert(devinfo->gen >= 7);
4130
4131 nir_const_value *const_uniform_block =
4132 nir_src_as_const_value(instr->src[0]);
4133
4134 fs_reg surf_index;
4135 if (const_uniform_block) {
4136 unsigned index = stage_prog_data->binding_table.ssbo_start +
4137 const_uniform_block->u32[0];
4138 surf_index = brw_imm_ud(index);
4139 brw_mark_surface_used(prog_data, index);
4140 } else {
4141 surf_index = vgrf(glsl_type::uint_type);
4142 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4143 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4144
4145 /* Assume this may touch any UBO. It would be nice to provide
4146 * a tighter bound, but the array information is already lowered away.
4147 */
4148 brw_mark_surface_used(prog_data,
4149 stage_prog_data->binding_table.ssbo_start +
4150 nir->info.num_ssbos - 1);
4151 }
4152
4153 fs_reg offset_reg;
4154 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4155 if (const_offset) {
4156 offset_reg = brw_imm_ud(const_offset->u32[0]);
4157 } else {
4158 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4159 }
4160
4161 /* Read the vector */
4162 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4163 instr->num_components);
4164
4165 break;
4166 }
4167
4168 case nir_intrinsic_store_ssbo: {
4169 assert(devinfo->gen >= 7);
4170
4171 if (stage == MESA_SHADER_FRAGMENT)
4172 brw_wm_prog_data(prog_data)->has_side_effects = true;
4173
4174 /* Block index */
4175 fs_reg surf_index;
4176 nir_const_value *const_uniform_block =
4177 nir_src_as_const_value(instr->src[1]);
4178 if (const_uniform_block) {
4179 unsigned index = stage_prog_data->binding_table.ssbo_start +
4180 const_uniform_block->u32[0];
4181 surf_index = brw_imm_ud(index);
4182 brw_mark_surface_used(prog_data, index);
4183 } else {
4184 surf_index = vgrf(glsl_type::uint_type);
4185 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4186 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4187
4188 brw_mark_surface_used(prog_data,
4189 stage_prog_data->binding_table.ssbo_start +
4190 nir->info.num_ssbos - 1);
4191 }
4192
4193 /* Value */
4194 fs_reg val_reg = get_nir_src(instr->src[0]);
4195
4196 /* Writemask */
4197 unsigned writemask = instr->const_index[0];
4198
4199 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4200 * since the untyped writes below operate in units of 32-bits, which
4201 * means that we need to write twice as many components each time.
4202 * Also, we have to suffle 64-bit data to be in the appropriate layout
4203 * expected by our 32-bit write messages.
4204 */
4205 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4206 unsigned type_size = bit_size / 8;
4207
4208 /* Combine groups of consecutive enabled channels in one write
4209 * message. We use ffs to find the first enabled channel and then ffs on
4210 * the bit-inverse, down-shifted writemask to determine the num_components
4211 * of the block of enabled bits.
4212 */
4213 while (writemask) {
4214 unsigned first_component = ffs(writemask) - 1;
4215 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4216 fs_reg write_src = offset(val_reg, bld, first_component);
4217
4218 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4219
4220 if (type_size > 4) {
4221 /* We can't write more than 2 64-bit components at once. Limit
4222 * the num_components of the write to what we can do and let the next
4223 * iteration handle the rest.
4224 */
4225 num_components = MIN2(2, num_components);
4226 write_src = shuffle_64bit_data_for_32bit_write(bld, write_src,
4227 num_components);
4228 } else if (type_size < 4) {
4229 assert(type_size == 2);
4230 /* For 16-bit types we pack two consecutive values into a 32-bit
4231 * word and use an untyped write message. For single values or not
4232 * 32-bit-aligned we need to use byte-scattered writes because
4233 * untyped writes works with 32-bit components with 32-bit
4234 * alignment. byte_scattered_write messages only support one
4235 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4236 * could be enabled we can not guarantee that not constant offsets
4237 * to be 32-bit aligned for 16-bit types. For example an array, of
4238 * 16-bit vec3 with array element stride of 6.
4239 *
4240 * In the case of 32-bit aligned constant offsets if there is
4241 * a 3-components vector we submit one untyped-write message
4242 * of 32-bit (first two components), and one byte-scattered
4243 * write message (the last component).
4244 */
4245
4246 if ( !const_offset || ((const_offset->u32[0] +
4247 type_size * first_component) % 4)) {
4248 /* If we use a .yz writemask we also need to emit 2
4249 * byte-scattered write messages because of y-component not
4250 * being aligned to 32-bit.
4251 */
4252 num_components = 1;
4253 } else if (num_components > 2 && (num_components % 2)) {
4254 /* If there is an odd number of consecutive components we left
4255 * the not paired component for a following emit of length == 1
4256 * with byte_scattered_write.
4257 */
4258 num_components --;
4259 }
4260 /* For num_components == 1 we are also shuffling the component
4261 * because byte scattered writes of 16-bit need values to be dword
4262 * aligned. Shuffling only one component would be the same as
4263 * striding it.
4264 */
4265 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D,
4266 DIV_ROUND_UP(num_components, 2));
4267 shuffle_16bit_data_for_32bit_write(bld, tmp, write_src,
4268 num_components);
4269 write_src = tmp;
4270 }
4271
4272 fs_reg offset_reg;
4273
4274 if (const_offset) {
4275 offset_reg = brw_imm_ud(const_offset->u32[0] +
4276 type_size * first_component);
4277 } else {
4278 offset_reg = vgrf(glsl_type::uint_type);
4279 bld.ADD(offset_reg,
4280 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4281 brw_imm_ud(type_size * first_component));
4282 }
4283
4284 if (type_size < 4 && num_components == 1) {
4285 assert(type_size == 2);
4286 /* Untyped Surface messages have a fixed 32-bit size, so we need
4287 * to rely on byte scattered in order to write 16-bit elements.
4288 * The byte_scattered_write message needs that every written 16-bit
4289 * type to be aligned 32-bits (stride=2).
4290 */
4291 emit_byte_scattered_write(bld, surf_index, offset_reg,
4292 write_src,
4293 1 /* dims */, 1,
4294 bit_size,
4295 BRW_PREDICATE_NONE);
4296 } else {
4297 assert(num_components * type_size <= 16);
4298 assert((num_components * type_size) % 4 == 0);
4299 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4300 offset_reg.ud % 4 == 0);
4301 unsigned num_slots = (num_components * type_size) / 4;
4302
4303 emit_untyped_write(bld, surf_index, offset_reg,
4304 write_src,
4305 1 /* dims */, num_slots,
4306 BRW_PREDICATE_NONE);
4307 }
4308
4309 /* Clear the bits in the writemask that we just wrote, then try
4310 * again to see if more channels are left.
4311 */
4312 writemask &= (15 << (first_component + num_components));
4313 }
4314 break;
4315 }
4316
4317 case nir_intrinsic_store_output: {
4318 fs_reg src = get_nir_src(instr->src[0]);
4319
4320 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4321 assert(const_offset && "Indirect output stores not allowed");
4322
4323 unsigned num_components = instr->num_components;
4324 unsigned first_component = nir_intrinsic_component(instr);
4325 if (nir_src_bit_size(instr->src[0]) == 64) {
4326 src = shuffle_64bit_data_for_32bit_write(bld, src, num_components);
4327 num_components *= 2;
4328 }
4329
4330 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4331 4 * const_offset->u32[0]), src.type);
4332 for (unsigned j = 0; j < num_components; j++) {
4333 bld.MOV(offset(new_dest, bld, j + first_component),
4334 offset(src, bld, j));
4335 }
4336 break;
4337 }
4338
4339 case nir_intrinsic_ssbo_atomic_add:
4340 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4341 break;
4342 case nir_intrinsic_ssbo_atomic_imin:
4343 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4344 break;
4345 case nir_intrinsic_ssbo_atomic_umin:
4346 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4347 break;
4348 case nir_intrinsic_ssbo_atomic_imax:
4349 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4350 break;
4351 case nir_intrinsic_ssbo_atomic_umax:
4352 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4353 break;
4354 case nir_intrinsic_ssbo_atomic_and:
4355 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4356 break;
4357 case nir_intrinsic_ssbo_atomic_or:
4358 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4359 break;
4360 case nir_intrinsic_ssbo_atomic_xor:
4361 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4362 break;
4363 case nir_intrinsic_ssbo_atomic_exchange:
4364 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4365 break;
4366 case nir_intrinsic_ssbo_atomic_comp_swap:
4367 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4368 break;
4369
4370 case nir_intrinsic_get_buffer_size: {
4371 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4372 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4373
4374 /* A resinfo's sampler message is used to get the buffer size. The
4375 * SIMD8's writeback message consists of four registers and SIMD16's
4376 * writeback message consists of 8 destination registers (two per each
4377 * component). Because we are only interested on the first channel of
4378 * the first returned component, where resinfo returns the buffer size
4379 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4380 * the dispatch width.
4381 */
4382 const fs_builder ubld = bld.exec_all().group(8, 0);
4383 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4384 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4385
4386 /* Set LOD = 0 */
4387 ubld.MOV(src_payload, brw_imm_d(0));
4388
4389 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4390 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4391 src_payload, brw_imm_ud(index));
4392 inst->header_size = 0;
4393 inst->mlen = 1;
4394 inst->size_written = 4 * REG_SIZE;
4395
4396 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4397 *
4398 * "Out-of-bounds checking is always performed at a DWord granularity. If
4399 * any part of the DWord is out-of-bounds then the whole DWord is
4400 * considered out-of-bounds."
4401 *
4402 * This implies that types with size smaller than 4-bytes need to be
4403 * padded if they don't complete the last dword of the buffer. But as we
4404 * need to maintain the original size we need to reverse the padding
4405 * calculation to return the correct size to know the number of elements
4406 * of an unsized array. As we stored in the last two bits of the surface
4407 * size the needed padding for the buffer, we calculate here the
4408 * original buffer_size reversing the surface_size calculation:
4409 *
4410 * surface_size = isl_align(buffer_size, 4) +
4411 * (isl_align(buffer_size) - buffer_size)
4412 *
4413 * buffer_size = surface_size & ~3 - surface_size & 3
4414 */
4415
4416 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4417 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4418 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4419
4420 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4421 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4422 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4423
4424 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4425
4426 brw_mark_surface_used(prog_data, index);
4427 break;
4428 }
4429
4430 case nir_intrinsic_load_subgroup_invocation:
4431 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4432 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4433 break;
4434
4435 case nir_intrinsic_load_subgroup_eq_mask:
4436 case nir_intrinsic_load_subgroup_ge_mask:
4437 case nir_intrinsic_load_subgroup_gt_mask:
4438 case nir_intrinsic_load_subgroup_le_mask:
4439 case nir_intrinsic_load_subgroup_lt_mask:
4440 unreachable("not reached");
4441
4442 case nir_intrinsic_vote_any: {
4443 const fs_builder ubld = bld.exec_all().group(1, 0);
4444
4445 /* The any/all predicates do not consider channel enables. To prevent
4446 * dead channels from affecting the result, we initialize the flag with
4447 * with the identity value for the logical operation.
4448 */
4449 if (dispatch_width == 32) {
4450 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4451 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4452 brw_imm_ud(0));
4453 } else {
4454 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4455 }
4456 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4457
4458 /* For some reason, the any/all predicates don't work properly with
4459 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4460 * doesn't read the correct subset of the flag register and you end up
4461 * getting garbage in the second half. Work around this by using a pair
4462 * of 1-wide MOVs and scattering the result.
4463 */
4464 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4465 ubld.MOV(res1, brw_imm_d(0));
4466 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4467 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4468 BRW_PREDICATE_ALIGN1_ANY32H,
4469 ubld.MOV(res1, brw_imm_d(-1)));
4470
4471 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4472 break;
4473 }
4474 case nir_intrinsic_vote_all: {
4475 const fs_builder ubld = bld.exec_all().group(1, 0);
4476
4477 /* The any/all predicates do not consider channel enables. To prevent
4478 * dead channels from affecting the result, we initialize the flag with
4479 * with the identity value for the logical operation.
4480 */
4481 if (dispatch_width == 32) {
4482 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4483 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4484 brw_imm_ud(0xffffffff));
4485 } else {
4486 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4487 }
4488 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4489
4490 /* For some reason, the any/all predicates don't work properly with
4491 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4492 * doesn't read the correct subset of the flag register and you end up
4493 * getting garbage in the second half. Work around this by using a pair
4494 * of 1-wide MOVs and scattering the result.
4495 */
4496 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4497 ubld.MOV(res1, brw_imm_d(0));
4498 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4499 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4500 BRW_PREDICATE_ALIGN1_ALL32H,
4501 ubld.MOV(res1, brw_imm_d(-1)));
4502
4503 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4504 break;
4505 }
4506 case nir_intrinsic_vote_feq:
4507 case nir_intrinsic_vote_ieq: {
4508 fs_reg value = get_nir_src(instr->src[0]);
4509 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4510 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4511 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4512 }
4513
4514 fs_reg uniformized = bld.emit_uniformize(value);
4515 const fs_builder ubld = bld.exec_all().group(1, 0);
4516
4517 /* The any/all predicates do not consider channel enables. To prevent
4518 * dead channels from affecting the result, we initialize the flag with
4519 * with the identity value for the logical operation.
4520 */
4521 if (dispatch_width == 32) {
4522 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4523 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4524 brw_imm_ud(0xffffffff));
4525 } else {
4526 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4527 }
4528 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4529
4530 /* For some reason, the any/all predicates don't work properly with
4531 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4532 * doesn't read the correct subset of the flag register and you end up
4533 * getting garbage in the second half. Work around this by using a pair
4534 * of 1-wide MOVs and scattering the result.
4535 */
4536 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4537 ubld.MOV(res1, brw_imm_d(0));
4538 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4539 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4540 BRW_PREDICATE_ALIGN1_ALL32H,
4541 ubld.MOV(res1, brw_imm_d(-1)));
4542
4543 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4544 break;
4545 }
4546
4547 case nir_intrinsic_ballot: {
4548 const fs_reg value = retype(get_nir_src(instr->src[0]),
4549 BRW_REGISTER_TYPE_UD);
4550 struct brw_reg flag = brw_flag_reg(0, 0);
4551 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4552 * as f0.0. This is a problem for fragment programs as we currently use
4553 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4554 * programs yet so this isn't a problem. When we do, something will
4555 * have to change.
4556 */
4557 if (dispatch_width == 32)
4558 flag.type = BRW_REGISTER_TYPE_UD;
4559
4560 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4561 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4562
4563 if (instr->dest.ssa.bit_size > 32) {
4564 dest.type = BRW_REGISTER_TYPE_UQ;
4565 } else {
4566 dest.type = BRW_REGISTER_TYPE_UD;
4567 }
4568 bld.MOV(dest, flag);
4569 break;
4570 }
4571
4572 case nir_intrinsic_read_invocation: {
4573 const fs_reg value = get_nir_src(instr->src[0]);
4574 const fs_reg invocation = get_nir_src(instr->src[1]);
4575 fs_reg tmp = bld.vgrf(value.type);
4576
4577 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4578 bld.emit_uniformize(invocation));
4579
4580 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4581 break;
4582 }
4583
4584 case nir_intrinsic_read_first_invocation: {
4585 const fs_reg value = get_nir_src(instr->src[0]);
4586 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4587 break;
4588 }
4589
4590 case nir_intrinsic_shuffle: {
4591 const fs_reg value = get_nir_src(instr->src[0]);
4592 const fs_reg index = get_nir_src(instr->src[1]);
4593
4594 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4595 break;
4596 }
4597
4598 case nir_intrinsic_first_invocation: {
4599 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4600 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4601 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4602 fs_reg(component(tmp, 0)));
4603 break;
4604 }
4605
4606 case nir_intrinsic_quad_broadcast: {
4607 const fs_reg value = get_nir_src(instr->src[0]);
4608 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4609 assert(nir_src_bit_size(instr->src[1]) == 32);
4610
4611 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4612 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4613 break;
4614 }
4615
4616 case nir_intrinsic_quad_swap_horizontal: {
4617 const fs_reg value = get_nir_src(instr->src[0]);
4618 const fs_reg tmp = bld.vgrf(value.type);
4619 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4620
4621 const fs_reg src_left = horiz_stride(value, 2);
4622 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4623 const fs_reg tmp_left = horiz_stride(tmp, 2);
4624 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4625
4626 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4627 *
4628 * "When source or destination datatype is 64b or operation is
4629 * integer DWord multiply, regioning in Align1 must follow
4630 * these rules:
4631 *
4632 * [...]
4633 *
4634 * 3. Source and Destination offset must be the same, except
4635 * the case of scalar source."
4636 *
4637 * In order to work around this, we have to emit two 32-bit MOVs instead
4638 * of a single 64-bit MOV to do the shuffle.
4639 */
4640 if (type_sz(value.type) > 4 &&
4641 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4642 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4643 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4644 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4645 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4646 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4647 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4648 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4649 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4650 } else {
4651 ubld.MOV(tmp_left, src_right);
4652 ubld.MOV(tmp_right, src_left);
4653 }
4654 bld.MOV(retype(dest, value.type), tmp);
4655 break;
4656 }
4657
4658 case nir_intrinsic_quad_swap_vertical: {
4659 const fs_reg value = get_nir_src(instr->src[0]);
4660 if (nir_src_bit_size(instr->src[0]) == 32) {
4661 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4662 const fs_reg tmp = bld.vgrf(value.type);
4663 const fs_builder ubld = bld.exec_all();
4664 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4665 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4666 bld.MOV(retype(dest, value.type), tmp);
4667 } else {
4668 /* For larger data types, we have to either emit dispatch_width many
4669 * MOVs or else fall back to doing indirects.
4670 */
4671 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4672 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4673 brw_imm_w(0x2));
4674 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4675 }
4676 break;
4677 }
4678
4679 case nir_intrinsic_quad_swap_diagonal: {
4680 const fs_reg value = get_nir_src(instr->src[0]);
4681 if (nir_src_bit_size(instr->src[0]) == 32) {
4682 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4683 const fs_reg tmp = bld.vgrf(value.type);
4684 const fs_builder ubld = bld.exec_all();
4685 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4686 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4687 bld.MOV(retype(dest, value.type), tmp);
4688 } else {
4689 /* For larger data types, we have to either emit dispatch_width many
4690 * MOVs or else fall back to doing indirects.
4691 */
4692 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4693 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4694 brw_imm_w(0x3));
4695 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4696 }
4697 break;
4698 }
4699
4700 case nir_intrinsic_reduce: {
4701 fs_reg src = get_nir_src(instr->src[0]);
4702 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4703 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4704 if (cluster_size == 0 || cluster_size > dispatch_width)
4705 cluster_size = dispatch_width;
4706
4707 /* Figure out the source type */
4708 src.type = brw_type_for_nir_type(devinfo,
4709 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4710 nir_src_bit_size(instr->src[0])));
4711
4712 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4713 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4714 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4715
4716 /* Set up a register for all of our scratching around and initialize it
4717 * to reduction operation's identity value.
4718 */
4719 fs_reg scan = bld.vgrf(src.type);
4720 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4721
4722 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4723
4724 dest.type = src.type;
4725 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4726 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4727 * the distance between clusters is at least 2 GRFs. In this case,
4728 * we don't need the weird striding of the CLUSTER_BROADCAST
4729 * instruction and can just do regular MOVs.
4730 */
4731 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4732 const unsigned groups =
4733 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4734 const unsigned group_size = dispatch_width / groups;
4735 for (unsigned i = 0; i < groups; i++) {
4736 const unsigned cluster = (i * group_size) / cluster_size;
4737 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4738 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4739 component(scan, comp));
4740 }
4741 } else {
4742 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4743 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4744 }
4745 break;
4746 }
4747
4748 case nir_intrinsic_inclusive_scan:
4749 case nir_intrinsic_exclusive_scan: {
4750 fs_reg src = get_nir_src(instr->src[0]);
4751 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4752
4753 /* Figure out the source type */
4754 src.type = brw_type_for_nir_type(devinfo,
4755 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4756 nir_src_bit_size(instr->src[0])));
4757
4758 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4759 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4760 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4761
4762 /* Set up a register for all of our scratching around and initialize it
4763 * to reduction operation's identity value.
4764 */
4765 fs_reg scan = bld.vgrf(src.type);
4766 const fs_builder allbld = bld.exec_all();
4767 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4768
4769 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4770 /* Exclusive scan is a bit harder because we have to do an annoying
4771 * shift of the contents before we can begin. To make things worse,
4772 * we can't do this with a normal stride; we have to use indirects.
4773 */
4774 fs_reg shifted = bld.vgrf(src.type);
4775 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4776 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4777 brw_imm_w(-1));
4778 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4779 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4780 scan = shifted;
4781 }
4782
4783 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4784
4785 bld.MOV(retype(dest, src.type), scan);
4786 break;
4787 }
4788
4789 default:
4790 unreachable("unknown intrinsic");
4791 }
4792 }
4793
4794 void
4795 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4796 int op, nir_intrinsic_instr *instr)
4797 {
4798 if (stage == MESA_SHADER_FRAGMENT)
4799 brw_wm_prog_data(prog_data)->has_side_effects = true;
4800
4801 fs_reg dest;
4802 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4803 dest = get_nir_dest(instr->dest);
4804
4805 fs_reg surface;
4806 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4807 if (const_surface) {
4808 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4809 const_surface->u32[0];
4810 surface = brw_imm_ud(surf_index);
4811 brw_mark_surface_used(prog_data, surf_index);
4812 } else {
4813 surface = vgrf(glsl_type::uint_type);
4814 bld.ADD(surface, get_nir_src(instr->src[0]),
4815 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4816
4817 /* Assume this may touch any SSBO. This is the same we do for other
4818 * UBO/SSBO accesses with non-constant surface.
4819 */
4820 brw_mark_surface_used(prog_data,
4821 stage_prog_data->binding_table.ssbo_start +
4822 nir->info.num_ssbos - 1);
4823 }
4824
4825 fs_reg offset = get_nir_src(instr->src[1]);
4826 fs_reg data1 = get_nir_src(instr->src[2]);
4827 fs_reg data2;
4828 if (op == BRW_AOP_CMPWR)
4829 data2 = get_nir_src(instr->src[3]);
4830
4831 /* Emit the actual atomic operation */
4832
4833 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4834 data1, data2,
4835 1 /* dims */, 1 /* rsize */,
4836 op,
4837 BRW_PREDICATE_NONE);
4838 dest.type = atomic_result.type;
4839 bld.MOV(dest, atomic_result);
4840 }
4841
4842 void
4843 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4844 int op, nir_intrinsic_instr *instr)
4845 {
4846 fs_reg dest;
4847 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4848 dest = get_nir_dest(instr->dest);
4849
4850 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4851 fs_reg offset;
4852 fs_reg data1 = get_nir_src(instr->src[1]);
4853 fs_reg data2;
4854 if (op == BRW_AOP_CMPWR)
4855 data2 = get_nir_src(instr->src[2]);
4856
4857 /* Get the offset */
4858 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4859 if (const_offset) {
4860 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4861 } else {
4862 offset = vgrf(glsl_type::uint_type);
4863 bld.ADD(offset,
4864 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4865 brw_imm_ud(instr->const_index[0]));
4866 }
4867
4868 /* Emit the actual atomic operation operation */
4869
4870 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4871 data1, data2,
4872 1 /* dims */, 1 /* rsize */,
4873 op,
4874 BRW_PREDICATE_NONE);
4875 dest.type = atomic_result.type;
4876 bld.MOV(dest, atomic_result);
4877 }
4878
4879 void
4880 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4881 {
4882 unsigned texture = instr->texture_index;
4883 unsigned sampler = instr->sampler_index;
4884
4885 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4886
4887 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4888 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4889
4890 int lod_components = 0;
4891
4892 /* The hardware requires a LOD for buffer textures */
4893 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4894 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4895
4896 uint32_t header_bits = 0;
4897 for (unsigned i = 0; i < instr->num_srcs; i++) {
4898 fs_reg src = get_nir_src(instr->src[i].src);
4899 switch (instr->src[i].src_type) {
4900 case nir_tex_src_bias:
4901 srcs[TEX_LOGICAL_SRC_LOD] =
4902 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4903 break;
4904 case nir_tex_src_comparator:
4905 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4906 break;
4907 case nir_tex_src_coord:
4908 switch (instr->op) {
4909 case nir_texop_txf:
4910 case nir_texop_txf_ms:
4911 case nir_texop_txf_ms_mcs:
4912 case nir_texop_samples_identical:
4913 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4914 break;
4915 default:
4916 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4917 break;
4918 }
4919 break;
4920 case nir_tex_src_ddx:
4921 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4922 lod_components = nir_tex_instr_src_size(instr, i);
4923 break;
4924 case nir_tex_src_ddy:
4925 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4926 break;
4927 case nir_tex_src_lod:
4928 switch (instr->op) {
4929 case nir_texop_txs:
4930 srcs[TEX_LOGICAL_SRC_LOD] =
4931 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4932 break;
4933 case nir_texop_txf:
4934 srcs[TEX_LOGICAL_SRC_LOD] =
4935 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4936 break;
4937 default:
4938 srcs[TEX_LOGICAL_SRC_LOD] =
4939 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4940 break;
4941 }
4942 break;
4943 case nir_tex_src_ms_index:
4944 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4945 break;
4946
4947 case nir_tex_src_offset: {
4948 nir_const_value *const_offset =
4949 nir_src_as_const_value(instr->src[i].src);
4950 unsigned offset_bits = 0;
4951 if (const_offset &&
4952 brw_texture_offset(const_offset->i32,
4953 nir_tex_instr_src_size(instr, i),
4954 &offset_bits)) {
4955 header_bits |= offset_bits;
4956 } else {
4957 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
4958 retype(src, BRW_REGISTER_TYPE_D);
4959 }
4960 break;
4961 }
4962
4963 case nir_tex_src_projector:
4964 unreachable("should be lowered");
4965
4966 case nir_tex_src_texture_offset: {
4967 /* Figure out the highest possible texture index and mark it as used */
4968 uint32_t max_used = texture + instr->texture_array_size - 1;
4969 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
4970 max_used += stage_prog_data->binding_table.gather_texture_start;
4971 } else {
4972 max_used += stage_prog_data->binding_table.texture_start;
4973 }
4974 brw_mark_surface_used(prog_data, max_used);
4975
4976 /* Emit code to evaluate the actual indexing expression */
4977 fs_reg tmp = vgrf(glsl_type::uint_type);
4978 bld.ADD(tmp, src, brw_imm_ud(texture));
4979 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4980 break;
4981 }
4982
4983 case nir_tex_src_sampler_offset: {
4984 /* Emit code to evaluate the actual indexing expression */
4985 fs_reg tmp = vgrf(glsl_type::uint_type);
4986 bld.ADD(tmp, src, brw_imm_ud(sampler));
4987 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4988 break;
4989 }
4990
4991 case nir_tex_src_ms_mcs:
4992 assert(instr->op == nir_texop_txf_ms);
4993 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
4994 break;
4995
4996 case nir_tex_src_plane: {
4997 nir_const_value *const_plane =
4998 nir_src_as_const_value(instr->src[i].src);
4999 const uint32_t plane = const_plane->u32[0];
5000 const uint32_t texture_index =
5001 instr->texture_index +
5002 stage_prog_data->binding_table.plane_start[plane] -
5003 stage_prog_data->binding_table.texture_start;
5004
5005 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5006 break;
5007 }
5008
5009 default:
5010 unreachable("unknown texture source");
5011 }
5012 }
5013
5014 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5015 (instr->op == nir_texop_txf_ms ||
5016 instr->op == nir_texop_samples_identical)) {
5017 if (devinfo->gen >= 7 &&
5018 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5019 srcs[TEX_LOGICAL_SRC_MCS] =
5020 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5021 instr->coord_components,
5022 srcs[TEX_LOGICAL_SRC_SURFACE]);
5023 } else {
5024 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5025 }
5026 }
5027
5028 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5029 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5030
5031 enum opcode opcode;
5032 switch (instr->op) {
5033 case nir_texop_tex:
5034 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5035 SHADER_OPCODE_TXL_LOGICAL);
5036 break;
5037 case nir_texop_txb:
5038 opcode = FS_OPCODE_TXB_LOGICAL;
5039 break;
5040 case nir_texop_txl:
5041 opcode = SHADER_OPCODE_TXL_LOGICAL;
5042 break;
5043 case nir_texop_txd:
5044 opcode = SHADER_OPCODE_TXD_LOGICAL;
5045 break;
5046 case nir_texop_txf:
5047 opcode = SHADER_OPCODE_TXF_LOGICAL;
5048 break;
5049 case nir_texop_txf_ms:
5050 if ((key_tex->msaa_16 & (1 << sampler)))
5051 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5052 else
5053 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5054 break;
5055 case nir_texop_txf_ms_mcs:
5056 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5057 break;
5058 case nir_texop_query_levels:
5059 case nir_texop_txs:
5060 opcode = SHADER_OPCODE_TXS_LOGICAL;
5061 break;
5062 case nir_texop_lod:
5063 opcode = SHADER_OPCODE_LOD_LOGICAL;
5064 break;
5065 case nir_texop_tg4:
5066 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5067 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5068 else
5069 opcode = SHADER_OPCODE_TG4_LOGICAL;
5070 break;
5071 case nir_texop_texture_samples:
5072 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5073 break;
5074 case nir_texop_samples_identical: {
5075 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5076
5077 /* If mcs is an immediate value, it means there is no MCS. In that case
5078 * just return false.
5079 */
5080 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5081 bld.MOV(dst, brw_imm_ud(0u));
5082 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5083 fs_reg tmp = vgrf(glsl_type::uint_type);
5084 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5085 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5086 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5087 } else {
5088 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5089 BRW_CONDITIONAL_EQ);
5090 }
5091 return;
5092 }
5093 default:
5094 unreachable("unknown texture opcode");
5095 }
5096
5097 if (instr->op == nir_texop_tg4) {
5098 if (instr->component == 1 &&
5099 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5100 /* gather4 sampler is broken for green channel on RG32F --
5101 * we must ask for blue instead.
5102 */
5103 header_bits |= 2 << 16;
5104 } else {
5105 header_bits |= instr->component << 16;
5106 }
5107 }
5108
5109 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5110 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5111 inst->offset = header_bits;
5112
5113 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5114 if (devinfo->gen >= 9 &&
5115 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5116 unsigned write_mask = instr->dest.is_ssa ?
5117 nir_ssa_def_components_read(&instr->dest.ssa):
5118 (1 << dest_size) - 1;
5119 assert(write_mask != 0); /* dead code should have been eliminated */
5120 inst->size_written = util_last_bit(write_mask) *
5121 inst->dst.component_size(inst->exec_size);
5122 } else {
5123 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5124 }
5125
5126 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5127 inst->shadow_compare = true;
5128
5129 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5130 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5131
5132 fs_reg nir_dest[4];
5133 for (unsigned i = 0; i < dest_size; i++)
5134 nir_dest[i] = offset(dst, bld, i);
5135
5136 if (instr->op == nir_texop_query_levels) {
5137 /* # levels is in .w */
5138 nir_dest[0] = offset(dst, bld, 3);
5139 } else if (instr->op == nir_texop_txs &&
5140 dest_size >= 3 && devinfo->gen < 7) {
5141 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5142 fs_reg depth = offset(dst, bld, 2);
5143 nir_dest[2] = vgrf(glsl_type::int_type);
5144 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5145 }
5146
5147 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5148 }
5149
5150 void
5151 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5152 {
5153 switch (instr->type) {
5154 case nir_jump_break:
5155 bld.emit(BRW_OPCODE_BREAK);
5156 break;
5157 case nir_jump_continue:
5158 bld.emit(BRW_OPCODE_CONTINUE);
5159 break;
5160 case nir_jump_return:
5161 default:
5162 unreachable("unknown jump");
5163 }
5164 }
5165
5166 /**
5167 * This helper takes the result of a load operation that reads 32-bit elements
5168 * in this format:
5169 *
5170 * x x x x x x x x
5171 * y y y y y y y y
5172 * z z z z z z z z
5173 * w w w w w w w w
5174 *
5175 * and shuffles the data to get this:
5176 *
5177 * x y x y x y x y
5178 * x y x y x y x y
5179 * z w z w z w z w
5180 * z w z w z w z w
5181 *
5182 * Which is exactly what we want if the load is reading 64-bit components
5183 * like doubles, where x represents the low 32-bit of the x double component
5184 * and y represents the high 32-bit of the x double component (likewise with
5185 * z and w for double component y). The parameter @components represents
5186 * the number of 64-bit components present in @src. This would typically be
5187 * 2 at most, since we can only fit 2 double elements in the result of a
5188 * vec4 load.
5189 *
5190 * Notice that @dst and @src can be the same register.
5191 */
5192 void
5193 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
5194 const fs_reg &dst,
5195 const fs_reg &src,
5196 uint32_t components)
5197 {
5198 assert(type_sz(src.type) == 4);
5199 assert(type_sz(dst.type) == 8);
5200
5201 /* A temporary that we will use to shuffle the 32-bit data of each
5202 * component in the vector into valid 64-bit data. We can't write directly
5203 * to dst because dst can be (and would usually be) the same as src
5204 * and in that case the first MOV in the loop below would overwrite the
5205 * data read in the second MOV.
5206 */
5207 fs_reg tmp = bld.vgrf(dst.type);
5208
5209 for (unsigned i = 0; i < components; i++) {
5210 const fs_reg component_i = offset(src, bld, 2 * i);
5211
5212 bld.MOV(subscript(tmp, src.type, 0), component_i);
5213 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
5214
5215 bld.MOV(offset(dst, bld, i), tmp);
5216 }
5217 }
5218
5219 void
5220 shuffle_32bit_load_result_to_16bit_data(const fs_builder &bld,
5221 const fs_reg &dst,
5222 const fs_reg &src,
5223 uint32_t first_component,
5224 uint32_t components)
5225 {
5226 assert(type_sz(src.type) == 4);
5227 assert(type_sz(dst.type) == 2);
5228
5229 /* A temporary is used to un-shuffle the 32-bit data of each component in
5230 * into a valid 16-bit vector. We can't write directly to dst because it
5231 * can be the same register as src and in that case the first MOV in the
5232 * loop below would overwrite the data read in the second MOV.
5233 */
5234 fs_reg tmp = retype(bld.vgrf(src.type), dst.type);
5235
5236 for (unsigned i = 0; i < components; i++) {
5237 const fs_reg component_i =
5238 subscript(offset(src, bld, (first_component + i) / 2), dst.type,
5239 (first_component + i) % 2);
5240
5241 bld.MOV(offset(tmp, bld, i % 2), component_i);
5242
5243 if (i % 2) {
5244 bld.MOV(offset(dst, bld, i -1), offset(tmp, bld, 0));
5245 bld.MOV(offset(dst, bld, i), offset(tmp, bld, 1));
5246 }
5247 }
5248 if (components % 2) {
5249 bld.MOV(offset(dst, bld, components - 1), tmp);
5250 }
5251 }
5252
5253 /**
5254 * This helper does the inverse operation of
5255 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
5256 *
5257 * We need to do this when we are going to use untyped write messsages that
5258 * operate with 32-bit components in order to arrange our 64-bit data to be
5259 * in the expected layout.
5260 *
5261 * Notice that callers of this function, unlike in the case of the inverse
5262 * operation, would typically need to call this with dst and src being
5263 * different registers, since they would otherwise corrupt the original
5264 * 64-bit data they are about to write. Because of this the function checks
5265 * that the src and dst regions involved in the operation do not overlap.
5266 */
5267 fs_reg
5268 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
5269 const fs_reg &src,
5270 uint32_t components)
5271 {
5272 assert(type_sz(src.type) == 8);
5273
5274 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D, 2 * components);
5275
5276 for (unsigned i = 0; i < components; i++) {
5277 const fs_reg component_i = offset(src, bld, i);
5278 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
5279 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
5280 }
5281
5282 return dst;
5283 }
5284
5285 void
5286 shuffle_16bit_data_for_32bit_write(const fs_builder &bld,
5287 const fs_reg &dst,
5288 const fs_reg &src,
5289 uint32_t components)
5290 {
5291 assert(type_sz(src.type) == 2);
5292 assert(type_sz(dst.type) == 4);
5293
5294 /* A temporary is used to shuffle the 16-bit data of each component in the
5295 * 32-bit data vector. We can't write directly to dst because it can be the
5296 * same register as src and in that case the first MOV in the loop below
5297 * would overwrite the data read in the second MOV.
5298 */
5299 fs_reg tmp = bld.vgrf(dst.type);
5300
5301 for (unsigned i = 0; i < components; i++) {
5302 const fs_reg component_i = offset(src, bld, i);
5303 bld.MOV(subscript(tmp, src.type, i % 2), component_i);
5304 if (i % 2) {
5305 bld.MOV(offset(dst, bld, i / 2), tmp);
5306 }
5307 }
5308 if (components % 2) {
5309 bld.MOV(offset(dst, bld, components / 2), tmp);
5310 }
5311 }
5312
5313 fs_reg
5314 setup_imm_df(const fs_builder &bld, double v)
5315 {
5316 const struct gen_device_info *devinfo = bld.shader->devinfo;
5317 assert(devinfo->gen >= 7);
5318
5319 if (devinfo->gen >= 8)
5320 return brw_imm_df(v);
5321
5322 /* gen7.5 does not support DF immediates straighforward but the DIM
5323 * instruction allows to set the 64-bit immediate value.
5324 */
5325 if (devinfo->is_haswell) {
5326 const fs_builder ubld = bld.exec_all().group(1, 0);
5327 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5328 ubld.DIM(dst, brw_imm_df(v));
5329 return component(dst, 0);
5330 }
5331
5332 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5333 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5334 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5335 *
5336 * Alternatively, we could also produce a normal VGRF (without stride 0)
5337 * by writing to all the channels in the VGRF, however, that would hit the
5338 * gen7 bug where we have to split writes that span more than 1 register
5339 * into instructions with a width of 4 (otherwise the write to the second
5340 * register written runs into an execmask hardware bug) which isn't very
5341 * nice.
5342 */
5343 union {
5344 double d;
5345 struct {
5346 uint32_t i1;
5347 uint32_t i2;
5348 };
5349 } di;
5350
5351 di.d = v;
5352
5353 const fs_builder ubld = bld.exec_all().group(1, 0);
5354 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5355 ubld.MOV(tmp, brw_imm_ud(di.i1));
5356 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5357
5358 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5359 }