intel/fs: Fix extract_u8 of an odd byte from a 64-bit integer
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "util/u_math.h"
28 #include "util/bitscan.h"
29
30 using namespace brw;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
43 }
44
45 void
46 fs_visitor::nir_setup_outputs()
47 {
48 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
49 return;
50
51 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
52
53 /* Calculate the size of output registers in a separate pass, before
54 * allocating them. With ARB_enhanced_layouts, multiple output variables
55 * may occupy the same slot, but have different type sizes.
56 */
57 nir_foreach_variable(var, &nir->outputs) {
58 const int loc = var->data.driver_location;
59 const unsigned var_vec4s =
60 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
61 : type_size_vec4(var->type);
62 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
63 }
64
65 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
66 if (vec4s[loc] == 0) {
67 loc++;
68 continue;
69 }
70
71 unsigned reg_size = vec4s[loc];
72
73 /* Check if there are any ranges that start within this range and extend
74 * past it. If so, include them in this allocation.
75 */
76 for (unsigned i = 1; i < reg_size; i++)
77 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
78
79 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
80 for (unsigned i = 0; i < reg_size; i++)
81 outputs[loc + i] = offset(reg, bld, 4 * i);
82
83 loc += reg_size;
84 }
85 }
86
87 void
88 fs_visitor::nir_setup_uniforms()
89 {
90 /* Only the first compile gets to set up uniforms. */
91 if (push_constant_loc) {
92 assert(pull_constant_loc);
93 return;
94 }
95
96 uniforms = nir->num_uniforms / 4;
97
98 if (stage == MESA_SHADER_COMPUTE) {
99 /* Add a uniform for the thread local id. It must be the last uniform
100 * on the list.
101 */
102 assert(uniforms == prog_data->nr_params);
103 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
104 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
105 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
106 }
107 }
108
109 static bool
110 emit_system_values_block(nir_block *block, fs_visitor *v)
111 {
112 fs_reg *reg;
113
114 nir_foreach_instr(instr, block) {
115 if (instr->type != nir_instr_type_intrinsic)
116 continue;
117
118 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
119 switch (intrin->intrinsic) {
120 case nir_intrinsic_load_vertex_id:
121 case nir_intrinsic_load_base_vertex:
122 unreachable("should be lowered by nir_lower_system_values().");
123
124 case nir_intrinsic_load_vertex_id_zero_base:
125 case nir_intrinsic_load_is_indexed_draw:
126 case nir_intrinsic_load_first_vertex:
127 case nir_intrinsic_load_instance_id:
128 case nir_intrinsic_load_base_instance:
129 case nir_intrinsic_load_draw_id:
130 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
131
132 case nir_intrinsic_load_invocation_id:
133 if (v->stage == MESA_SHADER_TESS_CTRL)
134 break;
135 assert(v->stage == MESA_SHADER_GEOMETRY);
136 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
137 if (reg->file == BAD_FILE) {
138 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
139 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
140 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
141 abld.SHR(iid, g1, brw_imm_ud(27u));
142 *reg = iid;
143 }
144 break;
145
146 case nir_intrinsic_load_sample_pos:
147 assert(v->stage == MESA_SHADER_FRAGMENT);
148 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
149 if (reg->file == BAD_FILE)
150 *reg = *v->emit_samplepos_setup();
151 break;
152
153 case nir_intrinsic_load_sample_id:
154 assert(v->stage == MESA_SHADER_FRAGMENT);
155 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
156 if (reg->file == BAD_FILE)
157 *reg = *v->emit_sampleid_setup();
158 break;
159
160 case nir_intrinsic_load_sample_mask_in:
161 assert(v->stage == MESA_SHADER_FRAGMENT);
162 assert(v->devinfo->gen >= 7);
163 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
164 if (reg->file == BAD_FILE)
165 *reg = *v->emit_samplemaskin_setup();
166 break;
167
168 case nir_intrinsic_load_work_group_id:
169 assert(v->stage == MESA_SHADER_COMPUTE);
170 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
171 if (reg->file == BAD_FILE)
172 *reg = *v->emit_cs_work_group_id_setup();
173 break;
174
175 case nir_intrinsic_load_helper_invocation:
176 assert(v->stage == MESA_SHADER_FRAGMENT);
177 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
178 if (reg->file == BAD_FILE) {
179 const fs_builder abld =
180 v->bld.annotate("gl_HelperInvocation", NULL);
181
182 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
183 * pixel mask is in g1.7 of the thread payload.
184 *
185 * We move the per-channel pixel enable bit to the low bit of each
186 * channel by shifting the byte containing the pixel mask by the
187 * vector immediate 0x76543210UV.
188 *
189 * The region of <1,8,0> reads only 1 byte (the pixel masks for
190 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
191 * masks for 2 and 3) in SIMD16.
192 */
193 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
194
195 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
196 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
197 hbld.SHR(offset(shifted, hbld, i),
198 stride(retype(brw_vec1_grf(1 + i, 7),
199 BRW_REGISTER_TYPE_UB),
200 1, 8, 0),
201 brw_imm_v(0x76543210));
202 }
203
204 /* A set bit in the pixel mask means the channel is enabled, but
205 * that is the opposite of gl_HelperInvocation so we need to invert
206 * the mask.
207 *
208 * The negate source-modifier bit of logical instructions on Gen8+
209 * performs 1's complement negation, so we can use that instead of
210 * a NOT instruction.
211 */
212 fs_reg inverted = negate(shifted);
213 if (v->devinfo->gen < 8) {
214 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
215 abld.NOT(inverted, shifted);
216 }
217
218 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
219 * with 1 and negating.
220 */
221 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
222 abld.AND(anded, inverted, brw_imm_uw(1));
223
224 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
225 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
226 *reg = dst;
227 }
228 break;
229
230 default:
231 break;
232 }
233 }
234
235 return true;
236 }
237
238 void
239 fs_visitor::nir_emit_system_values()
240 {
241 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
242 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
243 nir_system_values[i] = fs_reg();
244 }
245
246 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
247 * never end up using it.
248 */
249 {
250 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
251 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
252 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
253
254 const fs_builder allbld8 = abld.group(8, 0).exec_all();
255 allbld8.MOV(reg, brw_imm_v(0x76543210));
256 if (dispatch_width > 8)
257 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
258 if (dispatch_width > 16) {
259 const fs_builder allbld16 = abld.group(16, 0).exec_all();
260 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
261 }
262 }
263
264 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
265 nir_foreach_block(block, impl)
266 emit_system_values_block(block, this);
267 }
268
269 /*
270 * Returns a type based on a reference_type (word, float, half-float) and a
271 * given bit_size.
272 *
273 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
274 *
275 * @FIXME: 64-bit return types are always DF on integer types to maintain
276 * compability with uses of DF previously to the introduction of int64
277 * support.
278 */
279 static brw_reg_type
280 brw_reg_type_from_bit_size(const unsigned bit_size,
281 const brw_reg_type reference_type)
282 {
283 switch(reference_type) {
284 case BRW_REGISTER_TYPE_HF:
285 case BRW_REGISTER_TYPE_F:
286 case BRW_REGISTER_TYPE_DF:
287 switch(bit_size) {
288 case 16:
289 return BRW_REGISTER_TYPE_HF;
290 case 32:
291 return BRW_REGISTER_TYPE_F;
292 case 64:
293 return BRW_REGISTER_TYPE_DF;
294 default:
295 unreachable("Invalid bit size");
296 }
297 case BRW_REGISTER_TYPE_B:
298 case BRW_REGISTER_TYPE_W:
299 case BRW_REGISTER_TYPE_D:
300 case BRW_REGISTER_TYPE_Q:
301 switch(bit_size) {
302 case 8:
303 return BRW_REGISTER_TYPE_B;
304 case 16:
305 return BRW_REGISTER_TYPE_W;
306 case 32:
307 return BRW_REGISTER_TYPE_D;
308 case 64:
309 return BRW_REGISTER_TYPE_Q;
310 default:
311 unreachable("Invalid bit size");
312 }
313 case BRW_REGISTER_TYPE_UB:
314 case BRW_REGISTER_TYPE_UW:
315 case BRW_REGISTER_TYPE_UD:
316 case BRW_REGISTER_TYPE_UQ:
317 switch(bit_size) {
318 case 8:
319 return BRW_REGISTER_TYPE_UB;
320 case 16:
321 return BRW_REGISTER_TYPE_UW;
322 case 32:
323 return BRW_REGISTER_TYPE_UD;
324 case 64:
325 return BRW_REGISTER_TYPE_UQ;
326 default:
327 unreachable("Invalid bit size");
328 }
329 default:
330 unreachable("Unknown type");
331 }
332 }
333
334 void
335 fs_visitor::nir_emit_impl(nir_function_impl *impl)
336 {
337 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
338 for (unsigned i = 0; i < impl->reg_alloc; i++) {
339 nir_locals[i] = fs_reg();
340 }
341
342 foreach_list_typed(nir_register, reg, node, &impl->registers) {
343 unsigned array_elems =
344 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
345 unsigned size = array_elems * reg->num_components;
346 const brw_reg_type reg_type =
347 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
348 nir_locals[reg->index] = bld.vgrf(reg_type, size);
349 }
350
351 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
352 impl->ssa_alloc);
353
354 nir_emit_cf_list(&impl->body);
355 }
356
357 void
358 fs_visitor::nir_emit_cf_list(exec_list *list)
359 {
360 exec_list_validate(list);
361 foreach_list_typed(nir_cf_node, node, node, list) {
362 switch (node->type) {
363 case nir_cf_node_if:
364 nir_emit_if(nir_cf_node_as_if(node));
365 break;
366
367 case nir_cf_node_loop:
368 nir_emit_loop(nir_cf_node_as_loop(node));
369 break;
370
371 case nir_cf_node_block:
372 nir_emit_block(nir_cf_node_as_block(node));
373 break;
374
375 default:
376 unreachable("Invalid CFG node block");
377 }
378 }
379 }
380
381 void
382 fs_visitor::nir_emit_if(nir_if *if_stmt)
383 {
384 bool invert;
385 fs_reg cond_reg;
386
387 /* If the condition has the form !other_condition, use other_condition as
388 * the source, but invert the predicate on the if instruction.
389 */
390 nir_alu_instr *const cond = nir_src_as_alu_instr(&if_stmt->condition);
391 if (cond != NULL && cond->op == nir_op_inot) {
392 assert(!cond->src[0].negate);
393 assert(!cond->src[0].abs);
394
395 invert = true;
396 cond_reg = get_nir_src(cond->src[0].src);
397 } else {
398 invert = false;
399 cond_reg = get_nir_src(if_stmt->condition);
400 }
401
402 /* first, put the condition into f0 */
403 fs_inst *inst = bld.MOV(bld.null_reg_d(),
404 retype(cond_reg, BRW_REGISTER_TYPE_D));
405 inst->conditional_mod = BRW_CONDITIONAL_NZ;
406
407 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
408
409 nir_emit_cf_list(&if_stmt->then_list);
410
411 /* note: if the else is empty, dead CF elimination will remove it */
412 bld.emit(BRW_OPCODE_ELSE);
413
414 nir_emit_cf_list(&if_stmt->else_list);
415
416 bld.emit(BRW_OPCODE_ENDIF);
417
418 if (devinfo->gen < 7)
419 limit_dispatch_width(16, "Non-uniform control flow unsupported "
420 "in SIMD32 mode.");
421 }
422
423 void
424 fs_visitor::nir_emit_loop(nir_loop *loop)
425 {
426 bld.emit(BRW_OPCODE_DO);
427
428 nir_emit_cf_list(&loop->body);
429
430 bld.emit(BRW_OPCODE_WHILE);
431
432 if (devinfo->gen < 7)
433 limit_dispatch_width(16, "Non-uniform control flow unsupported "
434 "in SIMD32 mode.");
435 }
436
437 void
438 fs_visitor::nir_emit_block(nir_block *block)
439 {
440 nir_foreach_instr(instr, block) {
441 nir_emit_instr(instr);
442 }
443 }
444
445 void
446 fs_visitor::nir_emit_instr(nir_instr *instr)
447 {
448 const fs_builder abld = bld.annotate(NULL, instr);
449
450 switch (instr->type) {
451 case nir_instr_type_alu:
452 nir_emit_alu(abld, nir_instr_as_alu(instr));
453 break;
454
455 case nir_instr_type_deref:
456 /* Derefs can exist for images but they do nothing */
457 break;
458
459 case nir_instr_type_intrinsic:
460 switch (stage) {
461 case MESA_SHADER_VERTEX:
462 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
463 break;
464 case MESA_SHADER_TESS_CTRL:
465 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
466 break;
467 case MESA_SHADER_TESS_EVAL:
468 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
469 break;
470 case MESA_SHADER_GEOMETRY:
471 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
472 break;
473 case MESA_SHADER_FRAGMENT:
474 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
475 break;
476 case MESA_SHADER_COMPUTE:
477 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
478 break;
479 default:
480 unreachable("unsupported shader stage");
481 }
482 break;
483
484 case nir_instr_type_tex:
485 nir_emit_texture(abld, nir_instr_as_tex(instr));
486 break;
487
488 case nir_instr_type_load_const:
489 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
490 break;
491
492 case nir_instr_type_ssa_undef:
493 /* We create a new VGRF for undefs on every use (by handling
494 * them in get_nir_src()), rather than for each definition.
495 * This helps register coalescing eliminate MOVs from undef.
496 */
497 break;
498
499 case nir_instr_type_jump:
500 nir_emit_jump(abld, nir_instr_as_jump(instr));
501 break;
502
503 default:
504 unreachable("unknown instruction type");
505 }
506 }
507
508 /**
509 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
510 * match instr.
511 */
512 bool
513 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
514 const fs_reg &result)
515 {
516 if (!instr->src[0].src.is_ssa ||
517 !instr->src[0].src.ssa->parent_instr)
518 return false;
519
520 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
521 return false;
522
523 nir_alu_instr *src0 =
524 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
525
526 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
527 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
528 return false;
529
530 /* If either opcode has source modifiers, bail.
531 *
532 * TODO: We can potentially handle source modifiers if both of the opcodes
533 * we're combining are signed integers.
534 */
535 if (instr->src[0].abs || instr->src[0].negate ||
536 src0->src[0].abs || src0->src[0].negate)
537 return false;
538
539 unsigned element = nir_src_as_uint(src0->src[1].src);
540
541 /* Element type to extract.*/
542 const brw_reg_type type = brw_int_type(
543 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
544 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
545
546 fs_reg op0 = get_nir_src(src0->src[0].src);
547 op0.type = brw_type_for_nir_type(devinfo,
548 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
549 nir_src_bit_size(src0->src[0].src)));
550 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
551
552 set_saturate(instr->dest.saturate,
553 bld.MOV(result, subscript(op0, type, element)));
554 return true;
555 }
556
557 bool
558 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
559 const fs_reg &result)
560 {
561 if (!instr->src[0].src.is_ssa ||
562 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
563 return false;
564
565 nir_intrinsic_instr *src0 =
566 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
567
568 if (src0->intrinsic != nir_intrinsic_load_front_face)
569 return false;
570
571 if (!nir_src_is_const(instr->src[1].src) ||
572 !nir_src_is_const(instr->src[2].src))
573 return false;
574
575 const float value1 = nir_src_as_float(instr->src[1].src);
576 const float value2 = nir_src_as_float(instr->src[2].src);
577 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
578 return false;
579
580 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
581 assert(value1 == -value2);
582
583 fs_reg tmp = vgrf(glsl_type::int_type);
584
585 if (devinfo->gen >= 6) {
586 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
587 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
588
589 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
590 *
591 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
592 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
593 *
594 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
595 *
596 * This negation looks like it's safe in practice, because bits 0:4 will
597 * surely be TRIANGLES
598 */
599
600 if (value1 == -1.0f) {
601 g0.negate = true;
602 }
603
604 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
605 g0, brw_imm_uw(0x3f80));
606 } else {
607 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
608 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
609
610 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
611 *
612 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
613 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
614 *
615 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
616 *
617 * This negation looks like it's safe in practice, because bits 0:4 will
618 * surely be TRIANGLES
619 */
620
621 if (value1 == -1.0f) {
622 g1_6.negate = true;
623 }
624
625 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
626 }
627 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
628
629 return true;
630 }
631
632 static void
633 emit_find_msb_using_lzd(const fs_builder &bld,
634 const fs_reg &result,
635 const fs_reg &src,
636 bool is_signed)
637 {
638 fs_inst *inst;
639 fs_reg temp = src;
640
641 if (is_signed) {
642 /* LZD of an absolute value source almost always does the right
643 * thing. There are two problem values:
644 *
645 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
646 * 0. However, findMSB(int(0x80000000)) == 30.
647 *
648 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
649 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
650 *
651 * For a value of zero or negative one, -1 will be returned.
652 *
653 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
654 * findMSB(-(1<<x)) should return x-1.
655 *
656 * For all negative number cases, including 0x80000000 and
657 * 0xffffffff, the correct value is obtained from LZD if instead of
658 * negating the (already negative) value the logical-not is used. A
659 * conditonal logical-not can be achieved in two instructions.
660 */
661 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
662
663 bld.ASR(temp, src, brw_imm_d(31));
664 bld.XOR(temp, temp, src);
665 }
666
667 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
668 retype(temp, BRW_REGISTER_TYPE_UD));
669
670 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
671 * from the LSB side. Subtract the result from 31 to convert the MSB
672 * count into an LSB count. If no bits are set, LZD will return 32.
673 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
674 */
675 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
676 inst->src[0].negate = true;
677 }
678
679 static brw_rnd_mode
680 brw_rnd_mode_from_nir_op (const nir_op op) {
681 switch (op) {
682 case nir_op_f2f16_rtz:
683 return BRW_RND_MODE_RTZ;
684 case nir_op_f2f16_rtne:
685 return BRW_RND_MODE_RTNE;
686 default:
687 unreachable("Operation doesn't support rounding mode");
688 }
689 }
690
691 fs_reg
692 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
693 nir_alu_instr *instr,
694 fs_reg *op,
695 bool need_dest)
696 {
697 fs_reg result =
698 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
699
700 result.type = brw_type_for_nir_type(devinfo,
701 (nir_alu_type)(nir_op_infos[instr->op].output_type |
702 nir_dest_bit_size(instr->dest.dest)));
703
704 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
705 op[i] = get_nir_src(instr->src[i].src);
706 op[i].type = brw_type_for_nir_type(devinfo,
707 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
708 nir_src_bit_size(instr->src[i].src)));
709 op[i].abs = instr->src[i].abs;
710 op[i].negate = instr->src[i].negate;
711 }
712
713 /* Move and vecN instrutions may still be vectored. Return the raw,
714 * vectored source and destination so that fs_visitor::nir_emit_alu can
715 * handle it. Other callers should not have to handle these kinds of
716 * instructions.
717 */
718 switch (instr->op) {
719 case nir_op_imov:
720 case nir_op_fmov:
721 case nir_op_vec2:
722 case nir_op_vec3:
723 case nir_op_vec4:
724 return result;
725 default:
726 break;
727 }
728
729 /* At this point, we have dealt with any instruction that operates on
730 * more than a single channel. Therefore, we can just adjust the source
731 * and destination registers for that channel and emit the instruction.
732 */
733 unsigned channel = 0;
734 if (nir_op_infos[instr->op].output_size == 0) {
735 /* Since NIR is doing the scalarizing for us, we should only ever see
736 * vectorized operations with a single channel.
737 */
738 assert(util_bitcount(instr->dest.write_mask) == 1);
739 channel = ffs(instr->dest.write_mask) - 1;
740
741 result = offset(result, bld, channel);
742 }
743
744 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
745 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
746 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
747 }
748
749 return result;
750 }
751
752 void
753 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
754 fs_reg *op)
755 {
756 for (unsigned i = 0; i < 2; i++) {
757 nir_alu_instr *const inot_instr =
758 nir_src_as_alu_instr(&instr->src[i].src);
759
760 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
761 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
762 /* The source of the inot is now the source of instr. */
763 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
764
765 assert(!op[i].negate);
766 op[i].negate = true;
767 } else {
768 op[i] = resolve_source_modifiers(op[i]);
769 }
770 }
771 }
772
773 bool
774 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
775 fs_reg result,
776 nir_alu_instr *instr)
777 {
778 if (devinfo->gen < 6 || devinfo->gen >= 12)
779 return false;
780
781 nir_alu_instr *const inot_instr = nir_src_as_alu_instr(&instr->src[0].src);
782
783 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
784 return false;
785
786 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
787 * of valid size-changing combinations is a bit more complex.
788 *
789 * The source restriction is just because I was lazy about generating the
790 * constant below.
791 */
792 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
793 nir_src_bit_size(inot_instr->src[0].src) != 32)
794 return false;
795
796 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
797 * this is float(1 + a).
798 */
799 fs_reg op;
800
801 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
802
803 /* Ignore the saturate modifier, if there is one. The result of the
804 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
805 */
806 bld.ADD(result, op, brw_imm_d(1));
807
808 return true;
809 }
810
811 void
812 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
813 {
814 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
815 fs_inst *inst;
816
817 fs_reg op[4];
818 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, true);
819
820 switch (instr->op) {
821 case nir_op_imov:
822 case nir_op_fmov:
823 case nir_op_vec2:
824 case nir_op_vec3:
825 case nir_op_vec4: {
826 fs_reg temp = result;
827 bool need_extra_copy = false;
828 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
829 if (!instr->src[i].src.is_ssa &&
830 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
831 need_extra_copy = true;
832 temp = bld.vgrf(result.type, 4);
833 break;
834 }
835 }
836
837 for (unsigned i = 0; i < 4; i++) {
838 if (!(instr->dest.write_mask & (1 << i)))
839 continue;
840
841 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
842 inst = bld.MOV(offset(temp, bld, i),
843 offset(op[0], bld, instr->src[0].swizzle[i]));
844 } else {
845 inst = bld.MOV(offset(temp, bld, i),
846 offset(op[i], bld, instr->src[i].swizzle[0]));
847 }
848 inst->saturate = instr->dest.saturate;
849 }
850
851 /* In this case the source and destination registers were the same,
852 * so we need to insert an extra set of moves in order to deal with
853 * any swizzling.
854 */
855 if (need_extra_copy) {
856 for (unsigned i = 0; i < 4; i++) {
857 if (!(instr->dest.write_mask & (1 << i)))
858 continue;
859
860 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
861 }
862 }
863 return;
864 }
865
866 case nir_op_i2f32:
867 case nir_op_u2f32:
868 if (optimize_extract_to_float(instr, result))
869 return;
870 inst = bld.MOV(result, op[0]);
871 inst->saturate = instr->dest.saturate;
872 break;
873
874 case nir_op_f2f16_rtne:
875 case nir_op_f2f16_rtz:
876 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
877 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
878 /* fallthrough */
879
880 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
881 * on the HW gen, it is a special hw opcode or just a MOV, and
882 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
883 *
884 * But if we want to use that opcode, we need to provide support on
885 * different optimizations and lowerings. As right now HF support is
886 * only for gen8+, it will be better to use directly the MOV, and use
887 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
888 */
889
890 case nir_op_f2f16:
891 inst = bld.MOV(result, op[0]);
892 inst->saturate = instr->dest.saturate;
893 break;
894
895 case nir_op_b2i8:
896 case nir_op_b2i16:
897 case nir_op_b2i32:
898 case nir_op_b2i64:
899 case nir_op_b2f16:
900 case nir_op_b2f32:
901 case nir_op_b2f64:
902 if (try_emit_b2fi_of_inot(bld, result, instr))
903 break;
904 op[0].type = BRW_REGISTER_TYPE_D;
905 op[0].negate = !op[0].negate;
906 /* fallthrough */
907 case nir_op_f2f64:
908 case nir_op_f2i64:
909 case nir_op_f2u64:
910 case nir_op_i2f64:
911 case nir_op_i2i64:
912 case nir_op_u2f64:
913 case nir_op_u2u64:
914 case nir_op_f2f32:
915 case nir_op_f2i32:
916 case nir_op_f2u32:
917 case nir_op_f2i16:
918 case nir_op_f2u16:
919 case nir_op_i2i32:
920 case nir_op_u2u32:
921 case nir_op_i2i16:
922 case nir_op_u2u16:
923 case nir_op_i2f16:
924 case nir_op_u2f16:
925 case nir_op_i2i8:
926 case nir_op_u2u8:
927 inst = bld.MOV(result, op[0]);
928 inst->saturate = instr->dest.saturate;
929 break;
930
931 case nir_op_fsign: {
932 assert(!instr->dest.saturate);
933 if (op[0].abs) {
934 /* Straightforward since the source can be assumed to be either
935 * strictly >= 0 or strictly <= 0 depending on the setting of the
936 * negate flag.
937 */
938 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
939
940 inst = (op[0].negate)
941 ? bld.MOV(result, brw_imm_f(-1.0f))
942 : bld.MOV(result, brw_imm_f(1.0f));
943
944 set_predicate(BRW_PREDICATE_NORMAL, inst);
945 } else if (type_sz(op[0].type) < 8) {
946 /* AND(val, 0x80000000) gives the sign bit.
947 *
948 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
949 * zero.
950 */
951 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
952
953 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
954 op[0].type = BRW_REGISTER_TYPE_UD;
955 result.type = BRW_REGISTER_TYPE_UD;
956 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
957
958 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
959 inst->predicate = BRW_PREDICATE_NORMAL;
960 } else {
961 /* For doubles we do the same but we need to consider:
962 *
963 * - 2-src instructions can't operate with 64-bit immediates
964 * - The sign is encoded in the high 32-bit of each DF
965 * - We need to produce a DF result.
966 */
967
968 fs_reg zero = vgrf(glsl_type::double_type);
969 bld.MOV(zero, setup_imm_df(bld, 0.0));
970 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
971
972 bld.MOV(result, zero);
973
974 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
975 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
976 brw_imm_ud(0x80000000u));
977
978 set_predicate(BRW_PREDICATE_NORMAL,
979 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
980 }
981 break;
982 }
983
984 case nir_op_frcp:
985 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
986 inst->saturate = instr->dest.saturate;
987 break;
988
989 case nir_op_fexp2:
990 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
991 inst->saturate = instr->dest.saturate;
992 break;
993
994 case nir_op_flog2:
995 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
996 inst->saturate = instr->dest.saturate;
997 break;
998
999 case nir_op_fsin:
1000 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1001 inst->saturate = instr->dest.saturate;
1002 break;
1003
1004 case nir_op_fcos:
1005 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1006 inst->saturate = instr->dest.saturate;
1007 break;
1008
1009 case nir_op_fddx:
1010 if (fs_key->high_quality_derivatives) {
1011 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1012 } else {
1013 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1014 }
1015 inst->saturate = instr->dest.saturate;
1016 break;
1017 case nir_op_fddx_fine:
1018 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1019 inst->saturate = instr->dest.saturate;
1020 break;
1021 case nir_op_fddx_coarse:
1022 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1023 inst->saturate = instr->dest.saturate;
1024 break;
1025 case nir_op_fddy:
1026 if (fs_key->high_quality_derivatives) {
1027 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1028 } else {
1029 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1030 }
1031 inst->saturate = instr->dest.saturate;
1032 break;
1033 case nir_op_fddy_fine:
1034 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1035 inst->saturate = instr->dest.saturate;
1036 break;
1037 case nir_op_fddy_coarse:
1038 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1039 inst->saturate = instr->dest.saturate;
1040 break;
1041
1042 case nir_op_iadd:
1043 case nir_op_fadd:
1044 inst = bld.ADD(result, op[0], op[1]);
1045 inst->saturate = instr->dest.saturate;
1046 break;
1047
1048 case nir_op_uadd_sat:
1049 inst = bld.ADD(result, op[0], op[1]);
1050 inst->saturate = true;
1051 break;
1052
1053 case nir_op_fmul:
1054 inst = bld.MUL(result, op[0], op[1]);
1055 inst->saturate = instr->dest.saturate;
1056 break;
1057
1058 case nir_op_imul_2x32_64:
1059 case nir_op_umul_2x32_64:
1060 bld.MUL(result, op[0], op[1]);
1061 break;
1062
1063 case nir_op_imul:
1064 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1065 bld.MUL(result, op[0], op[1]);
1066 break;
1067
1068 case nir_op_imul_high:
1069 case nir_op_umul_high:
1070 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1071 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1072 break;
1073
1074 case nir_op_idiv:
1075 case nir_op_udiv:
1076 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1077 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1078 break;
1079
1080 case nir_op_uadd_carry:
1081 unreachable("Should have been lowered by carry_to_arith().");
1082
1083 case nir_op_usub_borrow:
1084 unreachable("Should have been lowered by borrow_to_arith().");
1085
1086 case nir_op_umod:
1087 case nir_op_irem:
1088 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1089 * appears that our hardware just does the right thing for signed
1090 * remainder.
1091 */
1092 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1093 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1094 break;
1095
1096 case nir_op_imod: {
1097 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1098 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1099
1100 /* Math instructions don't support conditional mod */
1101 inst = bld.MOV(bld.null_reg_d(), result);
1102 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1103
1104 /* Now, we need to determine if signs of the sources are different.
1105 * When we XOR the sources, the top bit is 0 if they are the same and 1
1106 * if they are different. We can then use a conditional modifier to
1107 * turn that into a predicate. This leads us to an XOR.l instruction.
1108 *
1109 * Technically, according to the PRM, you're not allowed to use .l on a
1110 * XOR instruction. However, emperical experiments and Curro's reading
1111 * of the simulator source both indicate that it's safe.
1112 */
1113 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1114 inst = bld.XOR(tmp, op[0], op[1]);
1115 inst->predicate = BRW_PREDICATE_NORMAL;
1116 inst->conditional_mod = BRW_CONDITIONAL_L;
1117
1118 /* If the result of the initial remainder operation is non-zero and the
1119 * two sources have different signs, add in a copy of op[1] to get the
1120 * final integer modulus value.
1121 */
1122 inst = bld.ADD(result, result, op[1]);
1123 inst->predicate = BRW_PREDICATE_NORMAL;
1124 break;
1125 }
1126
1127 case nir_op_flt32:
1128 case nir_op_fge32:
1129 case nir_op_feq32:
1130 case nir_op_fne32: {
1131 fs_reg dest = result;
1132
1133 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1134 if (bit_size != 32)
1135 dest = bld.vgrf(op[0].type, 1);
1136
1137 brw_conditional_mod cond;
1138 switch (instr->op) {
1139 case nir_op_flt32:
1140 cond = BRW_CONDITIONAL_L;
1141 break;
1142 case nir_op_fge32:
1143 cond = BRW_CONDITIONAL_GE;
1144 break;
1145 case nir_op_feq32:
1146 cond = BRW_CONDITIONAL_Z;
1147 break;
1148 case nir_op_fne32:
1149 cond = BRW_CONDITIONAL_NZ;
1150 break;
1151 default:
1152 unreachable("bad opcode");
1153 }
1154
1155 bld.CMP(dest, op[0], op[1], cond);
1156
1157 if (bit_size > 32) {
1158 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1159 } else if(bit_size < 32) {
1160 /* When we convert the result to 32-bit we need to be careful and do
1161 * it as a signed conversion to get sign extension (for 32-bit true)
1162 */
1163 const brw_reg_type src_type =
1164 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1165
1166 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1167 }
1168 break;
1169 }
1170
1171 case nir_op_ilt32:
1172 case nir_op_ult32:
1173 case nir_op_ige32:
1174 case nir_op_uge32:
1175 case nir_op_ieq32:
1176 case nir_op_ine32: {
1177 fs_reg dest = result;
1178
1179 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1180 if (bit_size != 32)
1181 dest = bld.vgrf(op[0].type, 1);
1182
1183 brw_conditional_mod cond;
1184 switch (instr->op) {
1185 case nir_op_ilt32:
1186 case nir_op_ult32:
1187 cond = BRW_CONDITIONAL_L;
1188 break;
1189 case nir_op_ige32:
1190 case nir_op_uge32:
1191 cond = BRW_CONDITIONAL_GE;
1192 break;
1193 case nir_op_ieq32:
1194 cond = BRW_CONDITIONAL_Z;
1195 break;
1196 case nir_op_ine32:
1197 cond = BRW_CONDITIONAL_NZ;
1198 break;
1199 default:
1200 unreachable("bad opcode");
1201 }
1202 bld.CMP(dest, op[0], op[1], cond);
1203
1204 if (bit_size > 32) {
1205 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1206 } else if (bit_size < 32) {
1207 /* When we convert the result to 32-bit we need to be careful and do
1208 * it as a signed conversion to get sign extension (for 32-bit true)
1209 */
1210 const brw_reg_type src_type =
1211 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1212
1213 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1214 }
1215 break;
1216 }
1217
1218 case nir_op_inot:
1219 if (devinfo->gen >= 8) {
1220 nir_alu_instr *const inot_src_instr =
1221 nir_src_as_alu_instr(&instr->src[0].src);
1222
1223 if (inot_src_instr != NULL &&
1224 (inot_src_instr->op == nir_op_ior ||
1225 inot_src_instr->op == nir_op_ixor ||
1226 inot_src_instr->op == nir_op_iand) &&
1227 !inot_src_instr->src[0].abs &&
1228 !inot_src_instr->src[0].negate &&
1229 !inot_src_instr->src[1].abs &&
1230 !inot_src_instr->src[1].negate) {
1231 /* The sources of the source logical instruction are now the
1232 * sources of the instruction that will be generated.
1233 */
1234 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1235 resolve_inot_sources(bld, inot_src_instr, op);
1236
1237 /* Smash all of the sources and destination to be signed. This
1238 * doesn't matter for the operation of the instruction, but cmod
1239 * propagation fails on unsigned sources with negation (due to
1240 * fs_inst::can_do_cmod returning false).
1241 */
1242 result.type =
1243 brw_type_for_nir_type(devinfo,
1244 (nir_alu_type)(nir_type_int |
1245 nir_dest_bit_size(instr->dest.dest)));
1246 op[0].type =
1247 brw_type_for_nir_type(devinfo,
1248 (nir_alu_type)(nir_type_int |
1249 nir_src_bit_size(inot_src_instr->src[0].src)));
1250 op[1].type =
1251 brw_type_for_nir_type(devinfo,
1252 (nir_alu_type)(nir_type_int |
1253 nir_src_bit_size(inot_src_instr->src[1].src)));
1254
1255 /* For XOR, only invert one of the sources. Arbitrarily choose
1256 * the first source.
1257 */
1258 op[0].negate = !op[0].negate;
1259 if (inot_src_instr->op != nir_op_ixor)
1260 op[1].negate = !op[1].negate;
1261
1262 switch (inot_src_instr->op) {
1263 case nir_op_ior:
1264 bld.AND(result, op[0], op[1]);
1265 return;
1266
1267 case nir_op_iand:
1268 bld.OR(result, op[0], op[1]);
1269 return;
1270
1271 case nir_op_ixor:
1272 bld.XOR(result, op[0], op[1]);
1273 return;
1274
1275 default:
1276 unreachable("impossible opcode");
1277 }
1278 }
1279 op[0] = resolve_source_modifiers(op[0]);
1280 }
1281 bld.NOT(result, op[0]);
1282 break;
1283 case nir_op_ixor:
1284 if (devinfo->gen >= 8) {
1285 resolve_inot_sources(bld, instr, op);
1286 }
1287 bld.XOR(result, op[0], op[1]);
1288 break;
1289 case nir_op_ior:
1290 if (devinfo->gen >= 8) {
1291 resolve_inot_sources(bld, instr, op);
1292 }
1293 bld.OR(result, op[0], op[1]);
1294 break;
1295 case nir_op_iand:
1296 if (devinfo->gen >= 8) {
1297 resolve_inot_sources(bld, instr, op);
1298 }
1299 bld.AND(result, op[0], op[1]);
1300 break;
1301
1302 case nir_op_fdot2:
1303 case nir_op_fdot3:
1304 case nir_op_fdot4:
1305 case nir_op_b32all_fequal2:
1306 case nir_op_b32all_iequal2:
1307 case nir_op_b32all_fequal3:
1308 case nir_op_b32all_iequal3:
1309 case nir_op_b32all_fequal4:
1310 case nir_op_b32all_iequal4:
1311 case nir_op_b32any_fnequal2:
1312 case nir_op_b32any_inequal2:
1313 case nir_op_b32any_fnequal3:
1314 case nir_op_b32any_inequal3:
1315 case nir_op_b32any_fnequal4:
1316 case nir_op_b32any_inequal4:
1317 unreachable("Lowered by nir_lower_alu_reductions");
1318
1319 case nir_op_fnoise1_1:
1320 case nir_op_fnoise1_2:
1321 case nir_op_fnoise1_3:
1322 case nir_op_fnoise1_4:
1323 case nir_op_fnoise2_1:
1324 case nir_op_fnoise2_2:
1325 case nir_op_fnoise2_3:
1326 case nir_op_fnoise2_4:
1327 case nir_op_fnoise3_1:
1328 case nir_op_fnoise3_2:
1329 case nir_op_fnoise3_3:
1330 case nir_op_fnoise3_4:
1331 case nir_op_fnoise4_1:
1332 case nir_op_fnoise4_2:
1333 case nir_op_fnoise4_3:
1334 case nir_op_fnoise4_4:
1335 unreachable("not reached: should be handled by lower_noise");
1336
1337 case nir_op_ldexp:
1338 unreachable("not reached: should be handled by ldexp_to_arith()");
1339
1340 case nir_op_fsqrt:
1341 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1342 inst->saturate = instr->dest.saturate;
1343 break;
1344
1345 case nir_op_frsq:
1346 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1347 inst->saturate = instr->dest.saturate;
1348 break;
1349
1350 case nir_op_i2b32:
1351 case nir_op_f2b32: {
1352 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1353 if (bit_size == 64) {
1354 /* two-argument instructions can't take 64-bit immediates */
1355 fs_reg zero;
1356 fs_reg tmp;
1357
1358 if (instr->op == nir_op_f2b32) {
1359 zero = vgrf(glsl_type::double_type);
1360 tmp = vgrf(glsl_type::double_type);
1361 bld.MOV(zero, setup_imm_df(bld, 0.0));
1362 } else {
1363 zero = vgrf(glsl_type::int64_t_type);
1364 tmp = vgrf(glsl_type::int64_t_type);
1365 bld.MOV(zero, brw_imm_q(0));
1366 }
1367
1368 /* A SIMD16 execution needs to be split in two instructions, so use
1369 * a vgrf instead of the flag register as dst so instruction splitting
1370 * works
1371 */
1372 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1373 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1374 } else {
1375 fs_reg zero;
1376 if (bit_size == 32) {
1377 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1378 } else {
1379 assert(bit_size == 16);
1380 zero = instr->op == nir_op_f2b32 ?
1381 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1382 }
1383 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1384 }
1385 break;
1386 }
1387
1388 case nir_op_ftrunc:
1389 inst = bld.RNDZ(result, op[0]);
1390 inst->saturate = instr->dest.saturate;
1391 break;
1392
1393 case nir_op_fceil: {
1394 op[0].negate = !op[0].negate;
1395 fs_reg temp = vgrf(glsl_type::float_type);
1396 bld.RNDD(temp, op[0]);
1397 temp.negate = true;
1398 inst = bld.MOV(result, temp);
1399 inst->saturate = instr->dest.saturate;
1400 break;
1401 }
1402 case nir_op_ffloor:
1403 inst = bld.RNDD(result, op[0]);
1404 inst->saturate = instr->dest.saturate;
1405 break;
1406 case nir_op_ffract:
1407 inst = bld.FRC(result, op[0]);
1408 inst->saturate = instr->dest.saturate;
1409 break;
1410 case nir_op_fround_even:
1411 inst = bld.RNDE(result, op[0]);
1412 inst->saturate = instr->dest.saturate;
1413 break;
1414
1415 case nir_op_fquantize2f16: {
1416 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1417 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1418 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1419
1420 /* The destination stride must be at least as big as the source stride. */
1421 tmp16.type = BRW_REGISTER_TYPE_W;
1422 tmp16.stride = 2;
1423
1424 /* Check for denormal */
1425 fs_reg abs_src0 = op[0];
1426 abs_src0.abs = true;
1427 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1428 BRW_CONDITIONAL_L);
1429 /* Get the appropriately signed zero */
1430 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1431 retype(op[0], BRW_REGISTER_TYPE_UD),
1432 brw_imm_ud(0x80000000));
1433 /* Do the actual F32 -> F16 -> F32 conversion */
1434 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1435 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1436 /* Select that or zero based on normal status */
1437 inst = bld.SEL(result, zero, tmp32);
1438 inst->predicate = BRW_PREDICATE_NORMAL;
1439 inst->saturate = instr->dest.saturate;
1440 break;
1441 }
1442
1443 case nir_op_imin:
1444 case nir_op_umin:
1445 case nir_op_fmin:
1446 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1447 inst->saturate = instr->dest.saturate;
1448 break;
1449
1450 case nir_op_imax:
1451 case nir_op_umax:
1452 case nir_op_fmax:
1453 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1454 inst->saturate = instr->dest.saturate;
1455 break;
1456
1457 case nir_op_pack_snorm_2x16:
1458 case nir_op_pack_snorm_4x8:
1459 case nir_op_pack_unorm_2x16:
1460 case nir_op_pack_unorm_4x8:
1461 case nir_op_unpack_snorm_2x16:
1462 case nir_op_unpack_snorm_4x8:
1463 case nir_op_unpack_unorm_2x16:
1464 case nir_op_unpack_unorm_4x8:
1465 case nir_op_unpack_half_2x16:
1466 case nir_op_pack_half_2x16:
1467 unreachable("not reached: should be handled by lower_packing_builtins");
1468
1469 case nir_op_unpack_half_2x16_split_x:
1470 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1471 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1472 inst->saturate = instr->dest.saturate;
1473 break;
1474 case nir_op_unpack_half_2x16_split_y:
1475 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1476 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1477 inst->saturate = instr->dest.saturate;
1478 break;
1479
1480 case nir_op_pack_64_2x32_split:
1481 case nir_op_pack_32_2x16_split:
1482 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1483 break;
1484
1485 case nir_op_unpack_64_2x32_split_x:
1486 case nir_op_unpack_64_2x32_split_y: {
1487 if (instr->op == nir_op_unpack_64_2x32_split_x)
1488 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1489 else
1490 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1491 break;
1492 }
1493
1494 case nir_op_unpack_32_2x16_split_x:
1495 case nir_op_unpack_32_2x16_split_y: {
1496 if (instr->op == nir_op_unpack_32_2x16_split_x)
1497 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1498 else
1499 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1500 break;
1501 }
1502
1503 case nir_op_fpow:
1504 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1505 inst->saturate = instr->dest.saturate;
1506 break;
1507
1508 case nir_op_bitfield_reverse:
1509 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1510 bld.BFREV(result, op[0]);
1511 break;
1512
1513 case nir_op_bit_count:
1514 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1515 bld.CBIT(result, op[0]);
1516 break;
1517
1518 case nir_op_ufind_msb: {
1519 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1520 emit_find_msb_using_lzd(bld, result, op[0], false);
1521 break;
1522 }
1523
1524 case nir_op_ifind_msb: {
1525 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1526
1527 if (devinfo->gen < 7) {
1528 emit_find_msb_using_lzd(bld, result, op[0], true);
1529 } else {
1530 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1531
1532 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1533 * count from the LSB side. If FBH didn't return an error
1534 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1535 * count into an LSB count.
1536 */
1537 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1538
1539 inst = bld.ADD(result, result, brw_imm_d(31));
1540 inst->predicate = BRW_PREDICATE_NORMAL;
1541 inst->src[0].negate = true;
1542 }
1543 break;
1544 }
1545
1546 case nir_op_find_lsb:
1547 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1548
1549 if (devinfo->gen < 7) {
1550 fs_reg temp = vgrf(glsl_type::int_type);
1551
1552 /* (x & -x) generates a value that consists of only the LSB of x.
1553 * For all powers of 2, findMSB(y) == findLSB(y).
1554 */
1555 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1556 fs_reg negated_src = src;
1557
1558 /* One must be negated, and the other must be non-negated. It
1559 * doesn't matter which is which.
1560 */
1561 negated_src.negate = true;
1562 src.negate = false;
1563
1564 bld.AND(temp, src, negated_src);
1565 emit_find_msb_using_lzd(bld, result, temp, false);
1566 } else {
1567 bld.FBL(result, op[0]);
1568 }
1569 break;
1570
1571 case nir_op_ubitfield_extract:
1572 case nir_op_ibitfield_extract:
1573 unreachable("should have been lowered");
1574 case nir_op_ubfe:
1575 case nir_op_ibfe:
1576 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1577 bld.BFE(result, op[2], op[1], op[0]);
1578 break;
1579 case nir_op_bfm:
1580 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1581 bld.BFI1(result, op[0], op[1]);
1582 break;
1583 case nir_op_bfi:
1584 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1585 bld.BFI2(result, op[0], op[1], op[2]);
1586 break;
1587
1588 case nir_op_bitfield_insert:
1589 unreachable("not reached: should have been lowered");
1590
1591 case nir_op_ishl:
1592 bld.SHL(result, op[0], op[1]);
1593 break;
1594 case nir_op_ishr:
1595 bld.ASR(result, op[0], op[1]);
1596 break;
1597 case nir_op_ushr:
1598 bld.SHR(result, op[0], op[1]);
1599 break;
1600
1601 case nir_op_pack_half_2x16_split:
1602 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1603 break;
1604
1605 case nir_op_ffma:
1606 inst = bld.MAD(result, op[2], op[1], op[0]);
1607 inst->saturate = instr->dest.saturate;
1608 break;
1609
1610 case nir_op_flrp:
1611 inst = bld.LRP(result, op[0], op[1], op[2]);
1612 inst->saturate = instr->dest.saturate;
1613 break;
1614
1615 case nir_op_b32csel:
1616 if (optimize_frontfacing_ternary(instr, result))
1617 return;
1618
1619 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1620 inst = bld.SEL(result, op[1], op[2]);
1621 inst->predicate = BRW_PREDICATE_NORMAL;
1622 break;
1623
1624 case nir_op_extract_u8:
1625 case nir_op_extract_i8: {
1626 unsigned byte = nir_src_as_uint(instr->src[1].src);
1627
1628 /* The PRMs say:
1629 *
1630 * BDW+
1631 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1632 * Use two instructions and a word or DWord intermediate integer type.
1633 */
1634 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1635 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1636
1637 if (instr->op == nir_op_extract_i8) {
1638 /* If we need to sign extend, extract to a word first */
1639 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1640 bld.MOV(w_temp, subscript(op[0], type, byte));
1641 bld.MOV(result, w_temp);
1642 } else if (byte & 1) {
1643 /* Extract the high byte from the word containing the desired byte
1644 * offset.
1645 */
1646 bld.SHR(result,
1647 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1648 brw_imm_uw(8));
1649 } else {
1650 /* Otherwise use an AND with 0xff and a word type */
1651 bld.AND(result,
1652 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1653 brw_imm_uw(0xff));
1654 }
1655 } else {
1656 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1657 bld.MOV(result, subscript(op[0], type, byte));
1658 }
1659 break;
1660 }
1661
1662 case nir_op_extract_u16:
1663 case nir_op_extract_i16: {
1664 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1665 unsigned word = nir_src_as_uint(instr->src[1].src);
1666 bld.MOV(result, subscript(op[0], type, word));
1667 break;
1668 }
1669
1670 default:
1671 unreachable("unhandled instruction");
1672 }
1673
1674 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1675 * to sign extend the low bit to 0/~0
1676 */
1677 if (devinfo->gen <= 5 &&
1678 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1679 fs_reg masked = vgrf(glsl_type::int_type);
1680 bld.AND(masked, result, brw_imm_d(1));
1681 masked.negate = true;
1682 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1683 }
1684 }
1685
1686 void
1687 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1688 nir_load_const_instr *instr)
1689 {
1690 const brw_reg_type reg_type =
1691 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1692 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1693
1694 switch (instr->def.bit_size) {
1695 case 8:
1696 for (unsigned i = 0; i < instr->def.num_components; i++)
1697 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value.i8[i]));
1698 break;
1699
1700 case 16:
1701 for (unsigned i = 0; i < instr->def.num_components; i++)
1702 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1703 break;
1704
1705 case 32:
1706 for (unsigned i = 0; i < instr->def.num_components; i++)
1707 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1708 break;
1709
1710 case 64:
1711 assert(devinfo->gen >= 7);
1712 if (devinfo->gen == 7) {
1713 /* We don't get 64-bit integer types until gen8 */
1714 for (unsigned i = 0; i < instr->def.num_components; i++) {
1715 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1716 setup_imm_df(bld, instr->value.f64[i]));
1717 }
1718 } else {
1719 for (unsigned i = 0; i < instr->def.num_components; i++)
1720 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1721 }
1722 break;
1723
1724 default:
1725 unreachable("Invalid bit size");
1726 }
1727
1728 nir_ssa_values[instr->def.index] = reg;
1729 }
1730
1731 fs_reg
1732 fs_visitor::get_nir_src(const nir_src &src)
1733 {
1734 fs_reg reg;
1735 if (src.is_ssa) {
1736 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1737 const brw_reg_type reg_type =
1738 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1739 reg = bld.vgrf(reg_type, src.ssa->num_components);
1740 } else {
1741 reg = nir_ssa_values[src.ssa->index];
1742 }
1743 } else {
1744 /* We don't handle indirects on locals */
1745 assert(src.reg.indirect == NULL);
1746 reg = offset(nir_locals[src.reg.reg->index], bld,
1747 src.reg.base_offset * src.reg.reg->num_components);
1748 }
1749
1750 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1751 /* The only 64-bit type available on gen7 is DF, so use that. */
1752 reg.type = BRW_REGISTER_TYPE_DF;
1753 } else {
1754 /* To avoid floating-point denorm flushing problems, set the type by
1755 * default to an integer type - instructions that need floating point
1756 * semantics will set this to F if they need to
1757 */
1758 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1759 BRW_REGISTER_TYPE_D);
1760 }
1761
1762 return reg;
1763 }
1764
1765 /**
1766 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1767 *
1768 * This function should not be called on any value which may be 64 bits.
1769 * We could theoretically support 64-bit on gen8+ but we choose not to
1770 * because it wouldn't work in general (no gen7 support) and there are
1771 * enough restrictions in 64-bit immediates that you can't take the return
1772 * value and treat it the same as the result of get_nir_src().
1773 */
1774 fs_reg
1775 fs_visitor::get_nir_src_imm(const nir_src &src)
1776 {
1777 assert(nir_src_bit_size(src) == 32);
1778 return nir_src_is_const(src) ?
1779 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1780 }
1781
1782 fs_reg
1783 fs_visitor::get_nir_dest(const nir_dest &dest)
1784 {
1785 if (dest.is_ssa) {
1786 const brw_reg_type reg_type =
1787 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1788 dest.ssa.bit_size == 8 ?
1789 BRW_REGISTER_TYPE_D :
1790 BRW_REGISTER_TYPE_F);
1791 nir_ssa_values[dest.ssa.index] =
1792 bld.vgrf(reg_type, dest.ssa.num_components);
1793 return nir_ssa_values[dest.ssa.index];
1794 } else {
1795 /* We don't handle indirects on locals */
1796 assert(dest.reg.indirect == NULL);
1797 return offset(nir_locals[dest.reg.reg->index], bld,
1798 dest.reg.base_offset * dest.reg.reg->num_components);
1799 }
1800 }
1801
1802 void
1803 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1804 unsigned wr_mask)
1805 {
1806 for (unsigned i = 0; i < 4; i++) {
1807 if (!((wr_mask >> i) & 1))
1808 continue;
1809
1810 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1811 new_inst->dst = offset(new_inst->dst, bld, i);
1812 for (unsigned j = 0; j < new_inst->sources; j++)
1813 if (new_inst->src[j].file == VGRF)
1814 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1815
1816 bld.emit(new_inst);
1817 }
1818 }
1819
1820 static fs_inst *
1821 emit_pixel_interpolater_send(const fs_builder &bld,
1822 enum opcode opcode,
1823 const fs_reg &dst,
1824 const fs_reg &src,
1825 const fs_reg &desc,
1826 glsl_interp_mode interpolation)
1827 {
1828 struct brw_wm_prog_data *wm_prog_data =
1829 brw_wm_prog_data(bld.shader->stage_prog_data);
1830
1831 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1832 /* 2 floats per slot returned */
1833 inst->size_written = 2 * dst.component_size(inst->exec_size);
1834 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1835
1836 wm_prog_data->pulls_bary = true;
1837
1838 return inst;
1839 }
1840
1841 /**
1842 * Computes 1 << x, given a D/UD register containing some value x.
1843 */
1844 static fs_reg
1845 intexp2(const fs_builder &bld, const fs_reg &x)
1846 {
1847 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1848
1849 fs_reg result = bld.vgrf(x.type, 1);
1850 fs_reg one = bld.vgrf(x.type, 1);
1851
1852 bld.MOV(one, retype(brw_imm_d(1), one.type));
1853 bld.SHL(result, one, x);
1854 return result;
1855 }
1856
1857 void
1858 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1859 {
1860 assert(stage == MESA_SHADER_GEOMETRY);
1861
1862 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1863
1864 if (gs_compile->control_data_header_size_bits == 0)
1865 return;
1866
1867 /* We can only do EndPrimitive() functionality when the control data
1868 * consists of cut bits. Fortunately, the only time it isn't is when the
1869 * output type is points, in which case EndPrimitive() is a no-op.
1870 */
1871 if (gs_prog_data->control_data_format !=
1872 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1873 return;
1874 }
1875
1876 /* Cut bits use one bit per vertex. */
1877 assert(gs_compile->control_data_bits_per_vertex == 1);
1878
1879 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1880 vertex_count.type = BRW_REGISTER_TYPE_UD;
1881
1882 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1883 * vertex n, 0 otherwise. So all we need to do here is mark bit
1884 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1885 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1886 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1887 *
1888 * Note that if EndPrimitive() is called before emitting any vertices, this
1889 * will cause us to set bit 31 of the control_data_bits register to 1.
1890 * That's fine because:
1891 *
1892 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1893 * output, so the hardware will ignore cut bit 31.
1894 *
1895 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1896 * last vertex, so setting cut bit 31 has no effect (since the primitive
1897 * is automatically ended when the GS terminates).
1898 *
1899 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1900 * control_data_bits register to 0 when the first vertex is emitted.
1901 */
1902
1903 const fs_builder abld = bld.annotate("end primitive");
1904
1905 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1906 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1907 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1908 fs_reg mask = intexp2(abld, prev_count);
1909 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1910 * attention to the lower 5 bits of its second source argument, so on this
1911 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1912 * ((vertex_count - 1) % 32).
1913 */
1914 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1915 }
1916
1917 void
1918 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1919 {
1920 assert(stage == MESA_SHADER_GEOMETRY);
1921 assert(gs_compile->control_data_bits_per_vertex != 0);
1922
1923 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1924
1925 const fs_builder abld = bld.annotate("emit control data bits");
1926 const fs_builder fwa_bld = bld.exec_all();
1927
1928 /* We use a single UD register to accumulate control data bits (32 bits
1929 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1930 * at a time.
1931 *
1932 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1933 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1934 * use the Channel Mask phase to enable/disable which DWord within that
1935 * group to write. (Remember, different SIMD8 channels may have emitted
1936 * different numbers of vertices, so we may need per-slot offsets.)
1937 *
1938 * Channel masking presents an annoying problem: we may have to replicate
1939 * the data up to 4 times:
1940 *
1941 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1942 *
1943 * To avoid penalizing shaders that emit a small number of vertices, we
1944 * can avoid these sometimes: if the size of the control data header is
1945 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1946 * land in the same 128-bit group, so we can skip per-slot offsets.
1947 *
1948 * Similarly, if the control data header is <= 32 bits, there is only one
1949 * DWord, so we can skip channel masks.
1950 */
1951 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1952
1953 fs_reg channel_mask, per_slot_offset;
1954
1955 if (gs_compile->control_data_header_size_bits > 32) {
1956 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1957 channel_mask = vgrf(glsl_type::uint_type);
1958 }
1959
1960 if (gs_compile->control_data_header_size_bits > 128) {
1961 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1962 per_slot_offset = vgrf(glsl_type::uint_type);
1963 }
1964
1965 /* Figure out which DWord we're trying to write to using the formula:
1966 *
1967 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1968 *
1969 * Since bits_per_vertex is a power of two, and is known at compile
1970 * time, this can be optimized to:
1971 *
1972 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1973 */
1974 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1975 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1976 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1977 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1978 unsigned log2_bits_per_vertex =
1979 util_last_bit(gs_compile->control_data_bits_per_vertex);
1980 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1981
1982 if (per_slot_offset.file != BAD_FILE) {
1983 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1984 * the appropriate OWord within the control data header.
1985 */
1986 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1987 }
1988
1989 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1990 * write to the appropriate DWORD within the OWORD.
1991 */
1992 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1993 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1994 channel_mask = intexp2(fwa_bld, channel);
1995 /* Then the channel masks need to be in bits 23:16. */
1996 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1997 }
1998
1999 /* Store the control data bits in the message payload and send it. */
2000 unsigned mlen = 2;
2001 if (channel_mask.file != BAD_FILE)
2002 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2003 if (per_slot_offset.file != BAD_FILE)
2004 mlen++;
2005
2006 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2007 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2008 unsigned i = 0;
2009 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2010 if (per_slot_offset.file != BAD_FILE)
2011 sources[i++] = per_slot_offset;
2012 if (channel_mask.file != BAD_FILE)
2013 sources[i++] = channel_mask;
2014 while (i < mlen) {
2015 sources[i++] = this->control_data_bits;
2016 }
2017
2018 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2019 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2020 inst->mlen = mlen;
2021 /* We need to increment Global Offset by 256-bits to make room for
2022 * Broadwell's extra "Vertex Count" payload at the beginning of the
2023 * URB entry. Since this is an OWord message, Global Offset is counted
2024 * in 128-bit units, so we must set it to 2.
2025 */
2026 if (gs_prog_data->static_vertex_count == -1)
2027 inst->offset = 2;
2028 }
2029
2030 void
2031 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2032 unsigned stream_id)
2033 {
2034 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2035
2036 /* Note: we are calling this *before* increasing vertex_count, so
2037 * this->vertex_count == vertex_count - 1 in the formula above.
2038 */
2039
2040 /* Stream mode uses 2 bits per vertex */
2041 assert(gs_compile->control_data_bits_per_vertex == 2);
2042
2043 /* Must be a valid stream */
2044 assert(stream_id < MAX_VERTEX_STREAMS);
2045
2046 /* Control data bits are initialized to 0 so we don't have to set any
2047 * bits when sending vertices to stream 0.
2048 */
2049 if (stream_id == 0)
2050 return;
2051
2052 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2053
2054 /* reg::sid = stream_id */
2055 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2056 abld.MOV(sid, brw_imm_ud(stream_id));
2057
2058 /* reg:shift_count = 2 * (vertex_count - 1) */
2059 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2060 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2061
2062 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2063 * attention to the lower 5 bits of its second source argument, so on this
2064 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2065 * stream_id << ((2 * (vertex_count - 1)) % 32).
2066 */
2067 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2068 abld.SHL(mask, sid, shift_count);
2069 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2070 }
2071
2072 void
2073 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2074 unsigned stream_id)
2075 {
2076 assert(stage == MESA_SHADER_GEOMETRY);
2077
2078 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2079
2080 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2081 vertex_count.type = BRW_REGISTER_TYPE_UD;
2082
2083 /* Haswell and later hardware ignores the "Render Stream Select" bits
2084 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2085 * and instead sends all primitives down the pipeline for rasterization.
2086 * If the SOL stage is enabled, "Render Stream Select" is honored and
2087 * primitives bound to non-zero streams are discarded after stream output.
2088 *
2089 * Since the only purpose of primives sent to non-zero streams is to
2090 * be recorded by transform feedback, we can simply discard all geometry
2091 * bound to these streams when transform feedback is disabled.
2092 */
2093 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2094 return;
2095
2096 /* If we're outputting 32 control data bits or less, then we can wait
2097 * until the shader is over to output them all. Otherwise we need to
2098 * output them as we go. Now is the time to do it, since we're about to
2099 * output the vertex_count'th vertex, so it's guaranteed that the
2100 * control data bits associated with the (vertex_count - 1)th vertex are
2101 * correct.
2102 */
2103 if (gs_compile->control_data_header_size_bits > 32) {
2104 const fs_builder abld =
2105 bld.annotate("emit vertex: emit control data bits");
2106
2107 /* Only emit control data bits if we've finished accumulating a batch
2108 * of 32 bits. This is the case when:
2109 *
2110 * (vertex_count * bits_per_vertex) % 32 == 0
2111 *
2112 * (in other words, when the last 5 bits of vertex_count *
2113 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2114 * integer n (which is always the case, since bits_per_vertex is
2115 * always 1 or 2), this is equivalent to requiring that the last 5-n
2116 * bits of vertex_count are 0:
2117 *
2118 * vertex_count & (2^(5-n) - 1) == 0
2119 *
2120 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2121 * equivalent to:
2122 *
2123 * vertex_count & (32 / bits_per_vertex - 1) == 0
2124 *
2125 * TODO: If vertex_count is an immediate, we could do some of this math
2126 * at compile time...
2127 */
2128 fs_inst *inst =
2129 abld.AND(bld.null_reg_d(), vertex_count,
2130 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2131 inst->conditional_mod = BRW_CONDITIONAL_Z;
2132
2133 abld.IF(BRW_PREDICATE_NORMAL);
2134 /* If vertex_count is 0, then no control data bits have been
2135 * accumulated yet, so we can skip emitting them.
2136 */
2137 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2138 BRW_CONDITIONAL_NEQ);
2139 abld.IF(BRW_PREDICATE_NORMAL);
2140 emit_gs_control_data_bits(vertex_count);
2141 abld.emit(BRW_OPCODE_ENDIF);
2142
2143 /* Reset control_data_bits to 0 so we can start accumulating a new
2144 * batch.
2145 *
2146 * Note: in the case where vertex_count == 0, this neutralizes the
2147 * effect of any call to EndPrimitive() that the shader may have
2148 * made before outputting its first vertex.
2149 */
2150 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2151 inst->force_writemask_all = true;
2152 abld.emit(BRW_OPCODE_ENDIF);
2153 }
2154
2155 emit_urb_writes(vertex_count);
2156
2157 /* In stream mode we have to set control data bits for all vertices
2158 * unless we have disabled control data bits completely (which we do
2159 * do for GL_POINTS outputs that don't use streams).
2160 */
2161 if (gs_compile->control_data_header_size_bits > 0 &&
2162 gs_prog_data->control_data_format ==
2163 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2164 set_gs_stream_control_data_bits(vertex_count, stream_id);
2165 }
2166 }
2167
2168 void
2169 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2170 const nir_src &vertex_src,
2171 unsigned base_offset,
2172 const nir_src &offset_src,
2173 unsigned num_components,
2174 unsigned first_component)
2175 {
2176 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2177 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2178
2179 /* TODO: figure out push input layout for invocations == 1 */
2180 /* TODO: make this work with 64-bit inputs */
2181 if (gs_prog_data->invocations == 1 &&
2182 type_sz(dst.type) <= 4 &&
2183 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2184 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2185 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2186 nir_src_as_uint(vertex_src) * push_reg_count;
2187 for (unsigned i = 0; i < num_components; i++) {
2188 bld.MOV(offset(dst, bld, i),
2189 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2190 }
2191 return;
2192 }
2193
2194 /* Resort to the pull model. Ensure the VUE handles are provided. */
2195 assert(gs_prog_data->base.include_vue_handles);
2196
2197 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2198 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2199
2200 if (gs_prog_data->invocations == 1) {
2201 if (nir_src_is_const(vertex_src)) {
2202 /* The vertex index is constant; just select the proper URB handle. */
2203 icp_handle =
2204 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2205 BRW_REGISTER_TYPE_UD);
2206 } else {
2207 /* The vertex index is non-constant. We need to use indirect
2208 * addressing to fetch the proper URB handle.
2209 *
2210 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2211 * indicating that channel <n> should read the handle from
2212 * DWord <n>. We convert that to bytes by multiplying by 4.
2213 *
2214 * Next, we convert the vertex index to bytes by multiplying
2215 * by 32 (shifting by 5), and add the two together. This is
2216 * the final indirect byte offset.
2217 */
2218 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2219 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2220 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2221 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2222
2223 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2224 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2225 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2226 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2227 /* Convert vertex_index to bytes (multiply by 32) */
2228 bld.SHL(vertex_offset_bytes,
2229 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2230 brw_imm_ud(5u));
2231 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2232
2233 /* Use first_icp_handle as the base offset. There is one register
2234 * of URB handles per vertex, so inform the register allocator that
2235 * we might read up to nir->info.gs.vertices_in registers.
2236 */
2237 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2238 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2239 fs_reg(icp_offset_bytes),
2240 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2241 }
2242 } else {
2243 assert(gs_prog_data->invocations > 1);
2244
2245 if (nir_src_is_const(vertex_src)) {
2246 unsigned vertex = nir_src_as_uint(vertex_src);
2247 assert(devinfo->gen >= 9 || vertex <= 5);
2248 bld.MOV(icp_handle,
2249 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2250 BRW_REGISTER_TYPE_UD));
2251 } else {
2252 /* The vertex index is non-constant. We need to use indirect
2253 * addressing to fetch the proper URB handle.
2254 *
2255 */
2256 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2257
2258 /* Convert vertex_index to bytes (multiply by 4) */
2259 bld.SHL(icp_offset_bytes,
2260 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2261 brw_imm_ud(2u));
2262
2263 /* Use first_icp_handle as the base offset. There is one DWord
2264 * of URB handles per vertex, so inform the register allocator that
2265 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2266 */
2267 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2268 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2269 fs_reg(icp_offset_bytes),
2270 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2271 REG_SIZE));
2272 }
2273 }
2274
2275 fs_inst *inst;
2276
2277 fs_reg tmp_dst = dst;
2278 fs_reg indirect_offset = get_nir_src(offset_src);
2279 unsigned num_iterations = 1;
2280 unsigned orig_num_components = num_components;
2281
2282 if (type_sz(dst.type) == 8) {
2283 if (num_components > 2) {
2284 num_iterations = 2;
2285 num_components = 2;
2286 }
2287 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2288 tmp_dst = tmp;
2289 first_component = first_component / 2;
2290 }
2291
2292 for (unsigned iter = 0; iter < num_iterations; iter++) {
2293 if (nir_src_is_const(offset_src)) {
2294 /* Constant indexing - use global offset. */
2295 if (first_component != 0) {
2296 unsigned read_components = num_components + first_component;
2297 fs_reg tmp = bld.vgrf(dst.type, read_components);
2298 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2299 inst->size_written = read_components *
2300 tmp.component_size(inst->exec_size);
2301 for (unsigned i = 0; i < num_components; i++) {
2302 bld.MOV(offset(tmp_dst, bld, i),
2303 offset(tmp, bld, i + first_component));
2304 }
2305 } else {
2306 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2307 icp_handle);
2308 inst->size_written = num_components *
2309 tmp_dst.component_size(inst->exec_size);
2310 }
2311 inst->offset = base_offset + nir_src_as_uint(offset_src);
2312 inst->mlen = 1;
2313 } else {
2314 /* Indirect indexing - use per-slot offsets as well. */
2315 const fs_reg srcs[] = { icp_handle, indirect_offset };
2316 unsigned read_components = num_components + first_component;
2317 fs_reg tmp = bld.vgrf(dst.type, read_components);
2318 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2319 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2320 if (first_component != 0) {
2321 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2322 payload);
2323 inst->size_written = read_components *
2324 tmp.component_size(inst->exec_size);
2325 for (unsigned i = 0; i < num_components; i++) {
2326 bld.MOV(offset(tmp_dst, bld, i),
2327 offset(tmp, bld, i + first_component));
2328 }
2329 } else {
2330 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2331 payload);
2332 inst->size_written = num_components *
2333 tmp_dst.component_size(inst->exec_size);
2334 }
2335 inst->offset = base_offset;
2336 inst->mlen = 2;
2337 }
2338
2339 if (type_sz(dst.type) == 8) {
2340 shuffle_from_32bit_read(bld,
2341 offset(dst, bld, iter * 2),
2342 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2343 0,
2344 num_components);
2345 }
2346
2347 if (num_iterations > 1) {
2348 num_components = orig_num_components - 2;
2349 if(nir_src_is_const(offset_src)) {
2350 base_offset++;
2351 } else {
2352 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2353 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2354 indirect_offset = new_indirect;
2355 }
2356 }
2357 }
2358 }
2359
2360 fs_reg
2361 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2362 {
2363 nir_src *offset_src = nir_get_io_offset_src(instr);
2364
2365 if (nir_src_is_const(*offset_src)) {
2366 /* The only constant offset we should find is 0. brw_nir.c's
2367 * add_const_offset_to_base() will fold other constant offsets
2368 * into instr->const_index[0].
2369 */
2370 assert(nir_src_as_uint(*offset_src) == 0);
2371 return fs_reg();
2372 }
2373
2374 return get_nir_src(*offset_src);
2375 }
2376
2377 void
2378 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2379 nir_intrinsic_instr *instr)
2380 {
2381 assert(stage == MESA_SHADER_VERTEX);
2382
2383 fs_reg dest;
2384 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2385 dest = get_nir_dest(instr->dest);
2386
2387 switch (instr->intrinsic) {
2388 case nir_intrinsic_load_vertex_id:
2389 case nir_intrinsic_load_base_vertex:
2390 unreachable("should be lowered by nir_lower_system_values()");
2391
2392 case nir_intrinsic_load_input: {
2393 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2394 unsigned first_component = nir_intrinsic_component(instr);
2395 unsigned num_components = instr->num_components;
2396
2397 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2398
2399 if (type_sz(dest.type) == 8)
2400 first_component /= 2;
2401
2402 /* For 16-bit support maybe a temporary will be needed to copy from
2403 * the ATTR file.
2404 */
2405 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2406 first_component, num_components);
2407 break;
2408 }
2409
2410 case nir_intrinsic_load_vertex_id_zero_base:
2411 case nir_intrinsic_load_instance_id:
2412 case nir_intrinsic_load_base_instance:
2413 case nir_intrinsic_load_draw_id:
2414 case nir_intrinsic_load_first_vertex:
2415 case nir_intrinsic_load_is_indexed_draw:
2416 unreachable("lowered by brw_nir_lower_vs_inputs");
2417
2418 default:
2419 nir_emit_intrinsic(bld, instr);
2420 break;
2421 }
2422 }
2423
2424 void
2425 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2426 nir_intrinsic_instr *instr)
2427 {
2428 assert(stage == MESA_SHADER_TESS_CTRL);
2429 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2430 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2431
2432 fs_reg dst;
2433 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2434 dst = get_nir_dest(instr->dest);
2435
2436 switch (instr->intrinsic) {
2437 case nir_intrinsic_load_primitive_id:
2438 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2439 break;
2440 case nir_intrinsic_load_invocation_id:
2441 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2442 break;
2443 case nir_intrinsic_load_patch_vertices_in:
2444 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2445 brw_imm_d(tcs_key->input_vertices));
2446 break;
2447
2448 case nir_intrinsic_barrier: {
2449 if (tcs_prog_data->instances == 1)
2450 break;
2451
2452 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2453 fs_reg m0_2 = component(m0, 2);
2454
2455 const fs_builder chanbld = bld.exec_all().group(1, 0);
2456
2457 /* Zero the message header */
2458 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2459
2460 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2461 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2462 brw_imm_ud(INTEL_MASK(16, 13)));
2463
2464 /* Shift it up to bits 27:24. */
2465 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2466
2467 /* Set the Barrier Count and the enable bit */
2468 chanbld.OR(m0_2, m0_2,
2469 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2470
2471 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2472 break;
2473 }
2474
2475 case nir_intrinsic_load_input:
2476 unreachable("nir_lower_io should never give us these.");
2477 break;
2478
2479 case nir_intrinsic_load_per_vertex_input: {
2480 fs_reg indirect_offset = get_indirect_offset(instr);
2481 unsigned imm_offset = instr->const_index[0];
2482
2483 const nir_src &vertex_src = instr->src[0];
2484
2485 fs_inst *inst;
2486
2487 fs_reg icp_handle;
2488
2489 if (nir_src_is_const(vertex_src)) {
2490 /* Emit a MOV to resolve <0,1,0> regioning. */
2491 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2492 unsigned vertex = nir_src_as_uint(vertex_src);
2493 bld.MOV(icp_handle,
2494 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2495 BRW_REGISTER_TYPE_UD));
2496 } else if (tcs_prog_data->instances == 1 &&
2497 vertex_src.is_ssa &&
2498 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2499 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2500 /* For the common case of only 1 instance, an array index of
2501 * gl_InvocationID means reading g1. Skip all the indirect work.
2502 */
2503 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2504 } else {
2505 /* The vertex index is non-constant. We need to use indirect
2506 * addressing to fetch the proper URB handle.
2507 */
2508 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2509
2510 /* Each ICP handle is a single DWord (4 bytes) */
2511 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2512 bld.SHL(vertex_offset_bytes,
2513 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2514 brw_imm_ud(2u));
2515
2516 /* Start at g1. We might read up to 4 registers. */
2517 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2518 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2519 brw_imm_ud(4 * REG_SIZE));
2520 }
2521
2522 /* We can only read two double components with each URB read, so
2523 * we send two read messages in that case, each one loading up to
2524 * two double components.
2525 */
2526 unsigned num_iterations = 1;
2527 unsigned num_components = instr->num_components;
2528 unsigned first_component = nir_intrinsic_component(instr);
2529 fs_reg orig_dst = dst;
2530 if (type_sz(dst.type) == 8) {
2531 first_component = first_component / 2;
2532 if (instr->num_components > 2) {
2533 num_iterations = 2;
2534 num_components = 2;
2535 }
2536
2537 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2538 dst = tmp;
2539 }
2540
2541 for (unsigned iter = 0; iter < num_iterations; iter++) {
2542 if (indirect_offset.file == BAD_FILE) {
2543 /* Constant indexing - use global offset. */
2544 if (first_component != 0) {
2545 unsigned read_components = num_components + first_component;
2546 fs_reg tmp = bld.vgrf(dst.type, read_components);
2547 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2548 for (unsigned i = 0; i < num_components; i++) {
2549 bld.MOV(offset(dst, bld, i),
2550 offset(tmp, bld, i + first_component));
2551 }
2552 } else {
2553 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2554 }
2555 inst->offset = imm_offset;
2556 inst->mlen = 1;
2557 } else {
2558 /* Indirect indexing - use per-slot offsets as well. */
2559 const fs_reg srcs[] = { icp_handle, indirect_offset };
2560 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2561 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2562 if (first_component != 0) {
2563 unsigned read_components = num_components + first_component;
2564 fs_reg tmp = bld.vgrf(dst.type, read_components);
2565 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2566 payload);
2567 for (unsigned i = 0; i < num_components; i++) {
2568 bld.MOV(offset(dst, bld, i),
2569 offset(tmp, bld, i + first_component));
2570 }
2571 } else {
2572 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2573 payload);
2574 }
2575 inst->offset = imm_offset;
2576 inst->mlen = 2;
2577 }
2578 inst->size_written = (num_components + first_component) *
2579 inst->dst.component_size(inst->exec_size);
2580
2581 /* If we are reading 64-bit data using 32-bit read messages we need
2582 * build proper 64-bit data elements by shuffling the low and high
2583 * 32-bit components around like we do for other things like UBOs
2584 * or SSBOs.
2585 */
2586 if (type_sz(dst.type) == 8) {
2587 shuffle_from_32bit_read(bld,
2588 offset(orig_dst, bld, iter * 2),
2589 retype(dst, BRW_REGISTER_TYPE_D),
2590 0, num_components);
2591 }
2592
2593 /* Copy the temporary to the destination to deal with writemasking.
2594 *
2595 * Also attempt to deal with gl_PointSize being in the .w component.
2596 */
2597 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2598 assert(type_sz(dst.type) < 8);
2599 inst->dst = bld.vgrf(dst.type, 4);
2600 inst->size_written = 4 * REG_SIZE;
2601 bld.MOV(dst, offset(inst->dst, bld, 3));
2602 }
2603
2604 /* If we are loading double data and we need a second read message
2605 * adjust the write offset
2606 */
2607 if (num_iterations > 1) {
2608 num_components = instr->num_components - 2;
2609 imm_offset++;
2610 }
2611 }
2612 break;
2613 }
2614
2615 case nir_intrinsic_load_output:
2616 case nir_intrinsic_load_per_vertex_output: {
2617 fs_reg indirect_offset = get_indirect_offset(instr);
2618 unsigned imm_offset = instr->const_index[0];
2619 unsigned first_component = nir_intrinsic_component(instr);
2620
2621 fs_inst *inst;
2622 if (indirect_offset.file == BAD_FILE) {
2623 /* Replicate the patch handle to all enabled channels */
2624 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2625 bld.MOV(patch_handle,
2626 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2627
2628 {
2629 if (first_component != 0) {
2630 unsigned read_components =
2631 instr->num_components + first_component;
2632 fs_reg tmp = bld.vgrf(dst.type, read_components);
2633 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2634 patch_handle);
2635 inst->size_written = read_components * REG_SIZE;
2636 for (unsigned i = 0; i < instr->num_components; i++) {
2637 bld.MOV(offset(dst, bld, i),
2638 offset(tmp, bld, i + first_component));
2639 }
2640 } else {
2641 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2642 patch_handle);
2643 inst->size_written = instr->num_components * REG_SIZE;
2644 }
2645 inst->offset = imm_offset;
2646 inst->mlen = 1;
2647 }
2648 } else {
2649 /* Indirect indexing - use per-slot offsets as well. */
2650 const fs_reg srcs[] = {
2651 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2652 indirect_offset
2653 };
2654 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2655 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2656 if (first_component != 0) {
2657 unsigned read_components =
2658 instr->num_components + first_component;
2659 fs_reg tmp = bld.vgrf(dst.type, read_components);
2660 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2661 payload);
2662 inst->size_written = read_components * REG_SIZE;
2663 for (unsigned i = 0; i < instr->num_components; i++) {
2664 bld.MOV(offset(dst, bld, i),
2665 offset(tmp, bld, i + first_component));
2666 }
2667 } else {
2668 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2669 payload);
2670 inst->size_written = instr->num_components * REG_SIZE;
2671 }
2672 inst->offset = imm_offset;
2673 inst->mlen = 2;
2674 }
2675 break;
2676 }
2677
2678 case nir_intrinsic_store_output:
2679 case nir_intrinsic_store_per_vertex_output: {
2680 fs_reg value = get_nir_src(instr->src[0]);
2681 bool is_64bit = (instr->src[0].is_ssa ?
2682 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2683 fs_reg indirect_offset = get_indirect_offset(instr);
2684 unsigned imm_offset = instr->const_index[0];
2685 unsigned mask = instr->const_index[1];
2686 unsigned header_regs = 0;
2687 fs_reg srcs[7];
2688 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2689
2690 if (indirect_offset.file != BAD_FILE) {
2691 srcs[header_regs++] = indirect_offset;
2692 }
2693
2694 if (mask == 0)
2695 break;
2696
2697 unsigned num_components = util_last_bit(mask);
2698 enum opcode opcode;
2699
2700 /* We can only pack two 64-bit components in a single message, so send
2701 * 2 messages if we have more components
2702 */
2703 unsigned num_iterations = 1;
2704 unsigned iter_components = num_components;
2705 unsigned first_component = nir_intrinsic_component(instr);
2706 if (is_64bit) {
2707 first_component = first_component / 2;
2708 if (instr->num_components > 2) {
2709 num_iterations = 2;
2710 iter_components = 2;
2711 }
2712 }
2713
2714 mask = mask << first_component;
2715
2716 for (unsigned iter = 0; iter < num_iterations; iter++) {
2717 if (!is_64bit && mask != WRITEMASK_XYZW) {
2718 srcs[header_regs++] = brw_imm_ud(mask << 16);
2719 opcode = indirect_offset.file != BAD_FILE ?
2720 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2721 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2722 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2723 /* Expand the 64-bit mask to 32-bit channels. We only handle
2724 * two channels in each iteration, so we only care about X/Y.
2725 */
2726 unsigned mask32 = 0;
2727 if (mask & WRITEMASK_X)
2728 mask32 |= WRITEMASK_XY;
2729 if (mask & WRITEMASK_Y)
2730 mask32 |= WRITEMASK_ZW;
2731
2732 /* If the mask does not include any of the channels X or Y there
2733 * is nothing to do in this iteration. Move on to the next couple
2734 * of 64-bit channels.
2735 */
2736 if (!mask32) {
2737 mask >>= 2;
2738 imm_offset++;
2739 continue;
2740 }
2741
2742 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2743 opcode = indirect_offset.file != BAD_FILE ?
2744 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2745 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2746 } else {
2747 opcode = indirect_offset.file != BAD_FILE ?
2748 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2749 SHADER_OPCODE_URB_WRITE_SIMD8;
2750 }
2751
2752 for (unsigned i = 0; i < iter_components; i++) {
2753 if (!(mask & (1 << (i + first_component))))
2754 continue;
2755
2756 if (!is_64bit) {
2757 srcs[header_regs + i + first_component] = offset(value, bld, i);
2758 } else {
2759 /* We need to shuffle the 64-bit data to match the layout
2760 * expected by our 32-bit URB write messages. We use a temporary
2761 * for that.
2762 */
2763 unsigned channel = iter * 2 + i;
2764 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2765
2766 srcs[header_regs + (i + first_component) * 2] = dest;
2767 srcs[header_regs + (i + first_component) * 2 + 1] =
2768 offset(dest, bld, 1);
2769 }
2770 }
2771
2772 unsigned mlen =
2773 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2774 (is_64bit ? 2 * first_component : first_component);
2775 fs_reg payload =
2776 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2777 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2778
2779 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2780 inst->offset = imm_offset;
2781 inst->mlen = mlen;
2782
2783 /* If this is a 64-bit attribute, select the next two 64-bit channels
2784 * to be handled in the next iteration.
2785 */
2786 if (is_64bit) {
2787 mask >>= 2;
2788 imm_offset++;
2789 }
2790 }
2791 break;
2792 }
2793
2794 default:
2795 nir_emit_intrinsic(bld, instr);
2796 break;
2797 }
2798 }
2799
2800 void
2801 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2802 nir_intrinsic_instr *instr)
2803 {
2804 assert(stage == MESA_SHADER_TESS_EVAL);
2805 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2806
2807 fs_reg dest;
2808 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2809 dest = get_nir_dest(instr->dest);
2810
2811 switch (instr->intrinsic) {
2812 case nir_intrinsic_load_primitive_id:
2813 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2814 break;
2815 case nir_intrinsic_load_tess_coord:
2816 /* gl_TessCoord is part of the payload in g1-3 */
2817 for (unsigned i = 0; i < 3; i++) {
2818 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2819 }
2820 break;
2821
2822 case nir_intrinsic_load_input:
2823 case nir_intrinsic_load_per_vertex_input: {
2824 fs_reg indirect_offset = get_indirect_offset(instr);
2825 unsigned imm_offset = instr->const_index[0];
2826 unsigned first_component = nir_intrinsic_component(instr);
2827
2828 if (type_sz(dest.type) == 8) {
2829 first_component = first_component / 2;
2830 }
2831
2832 fs_inst *inst;
2833 if (indirect_offset.file == BAD_FILE) {
2834 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2835 * which is 16 registers (since each holds 2 vec4 slots).
2836 */
2837 unsigned slot_count = 1;
2838 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2839 slot_count++;
2840
2841 const unsigned max_push_slots = 32;
2842 if (imm_offset + slot_count <= max_push_slots) {
2843 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2844 for (int i = 0; i < instr->num_components; i++) {
2845 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2846 i + first_component;
2847 bld.MOV(offset(dest, bld, i), component(src, comp));
2848 }
2849
2850 tes_prog_data->base.urb_read_length =
2851 MAX2(tes_prog_data->base.urb_read_length,
2852 DIV_ROUND_UP(imm_offset + slot_count, 2));
2853 } else {
2854 /* Replicate the patch handle to all enabled channels */
2855 const fs_reg srcs[] = {
2856 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2857 };
2858 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2859 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2860
2861 if (first_component != 0) {
2862 unsigned read_components =
2863 instr->num_components + first_component;
2864 fs_reg tmp = bld.vgrf(dest.type, read_components);
2865 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2866 patch_handle);
2867 inst->size_written = read_components * REG_SIZE;
2868 for (unsigned i = 0; i < instr->num_components; i++) {
2869 bld.MOV(offset(dest, bld, i),
2870 offset(tmp, bld, i + first_component));
2871 }
2872 } else {
2873 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2874 patch_handle);
2875 inst->size_written = instr->num_components * REG_SIZE;
2876 }
2877 inst->mlen = 1;
2878 inst->offset = imm_offset;
2879 }
2880 } else {
2881 /* Indirect indexing - use per-slot offsets as well. */
2882
2883 /* We can only read two double components with each URB read, so
2884 * we send two read messages in that case, each one loading up to
2885 * two double components.
2886 */
2887 unsigned num_iterations = 1;
2888 unsigned num_components = instr->num_components;
2889 fs_reg orig_dest = dest;
2890 if (type_sz(dest.type) == 8) {
2891 if (instr->num_components > 2) {
2892 num_iterations = 2;
2893 num_components = 2;
2894 }
2895 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2896 dest = tmp;
2897 }
2898
2899 for (unsigned iter = 0; iter < num_iterations; iter++) {
2900 const fs_reg srcs[] = {
2901 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2902 indirect_offset
2903 };
2904 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2905 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2906
2907 if (first_component != 0) {
2908 unsigned read_components =
2909 num_components + first_component;
2910 fs_reg tmp = bld.vgrf(dest.type, read_components);
2911 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2912 payload);
2913 for (unsigned i = 0; i < num_components; i++) {
2914 bld.MOV(offset(dest, bld, i),
2915 offset(tmp, bld, i + first_component));
2916 }
2917 } else {
2918 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2919 payload);
2920 }
2921 inst->mlen = 2;
2922 inst->offset = imm_offset;
2923 inst->size_written = (num_components + first_component) *
2924 inst->dst.component_size(inst->exec_size);
2925
2926 /* If we are reading 64-bit data using 32-bit read messages we need
2927 * build proper 64-bit data elements by shuffling the low and high
2928 * 32-bit components around like we do for other things like UBOs
2929 * or SSBOs.
2930 */
2931 if (type_sz(dest.type) == 8) {
2932 shuffle_from_32bit_read(bld,
2933 offset(orig_dest, bld, iter * 2),
2934 retype(dest, BRW_REGISTER_TYPE_D),
2935 0, num_components);
2936 }
2937
2938 /* If we are loading double data and we need a second read message
2939 * adjust the offset
2940 */
2941 if (num_iterations > 1) {
2942 num_components = instr->num_components - 2;
2943 imm_offset++;
2944 }
2945 }
2946 }
2947 break;
2948 }
2949 default:
2950 nir_emit_intrinsic(bld, instr);
2951 break;
2952 }
2953 }
2954
2955 void
2956 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2957 nir_intrinsic_instr *instr)
2958 {
2959 assert(stage == MESA_SHADER_GEOMETRY);
2960 fs_reg indirect_offset;
2961
2962 fs_reg dest;
2963 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2964 dest = get_nir_dest(instr->dest);
2965
2966 switch (instr->intrinsic) {
2967 case nir_intrinsic_load_primitive_id:
2968 assert(stage == MESA_SHADER_GEOMETRY);
2969 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2970 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2971 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2972 break;
2973
2974 case nir_intrinsic_load_input:
2975 unreachable("load_input intrinsics are invalid for the GS stage");
2976
2977 case nir_intrinsic_load_per_vertex_input:
2978 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2979 instr->src[1], instr->num_components,
2980 nir_intrinsic_component(instr));
2981 break;
2982
2983 case nir_intrinsic_emit_vertex_with_counter:
2984 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2985 break;
2986
2987 case nir_intrinsic_end_primitive_with_counter:
2988 emit_gs_end_primitive(instr->src[0]);
2989 break;
2990
2991 case nir_intrinsic_set_vertex_count:
2992 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2993 break;
2994
2995 case nir_intrinsic_load_invocation_id: {
2996 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2997 assert(val.file != BAD_FILE);
2998 dest.type = val.type;
2999 bld.MOV(dest, val);
3000 break;
3001 }
3002
3003 default:
3004 nir_emit_intrinsic(bld, instr);
3005 break;
3006 }
3007 }
3008
3009 /**
3010 * Fetch the current render target layer index.
3011 */
3012 static fs_reg
3013 fetch_render_target_array_index(const fs_builder &bld)
3014 {
3015 if (bld.shader->devinfo->gen >= 6) {
3016 /* The render target array index is provided in the thread payload as
3017 * bits 26:16 of r0.0.
3018 */
3019 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3020 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3021 brw_imm_uw(0x7ff));
3022 return idx;
3023 } else {
3024 /* Pre-SNB we only ever render into the first layer of the framebuffer
3025 * since layered rendering is not implemented.
3026 */
3027 return brw_imm_ud(0);
3028 }
3029 }
3030
3031 /**
3032 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3033 * framebuffer at the current fragment coordinates and sample index.
3034 */
3035 fs_inst *
3036 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3037 unsigned target)
3038 {
3039 const struct gen_device_info *devinfo = bld.shader->devinfo;
3040
3041 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3042 const brw_wm_prog_key *wm_key =
3043 reinterpret_cast<const brw_wm_prog_key *>(key);
3044 assert(!wm_key->coherent_fb_fetch);
3045 const struct brw_wm_prog_data *wm_prog_data =
3046 brw_wm_prog_data(stage_prog_data);
3047
3048 /* Calculate the surface index relative to the start of the texture binding
3049 * table block, since that's what the texturing messages expect.
3050 */
3051 const unsigned surface = target +
3052 wm_prog_data->binding_table.render_target_read_start -
3053 wm_prog_data->base.binding_table.texture_start;
3054
3055 /* Calculate the fragment coordinates. */
3056 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3057 bld.MOV(offset(coords, bld, 0), pixel_x);
3058 bld.MOV(offset(coords, bld, 1), pixel_y);
3059 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3060
3061 /* Calculate the sample index and MCS payload when multisampling. Luckily
3062 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3063 * shouldn't be necessary to recompile based on whether the framebuffer is
3064 * CMS or UMS.
3065 */
3066 if (wm_key->multisample_fbo &&
3067 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3068 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3069
3070 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3071 const fs_reg mcs = wm_key->multisample_fbo ?
3072 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3073
3074 /* Use either a normal or a CMS texel fetch message depending on whether
3075 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3076 * message just in case the framebuffer uses 16x multisampling, it should
3077 * be equivalent to the normal CMS fetch for lower multisampling modes.
3078 */
3079 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3080 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3081 SHADER_OPCODE_TXF_CMS_LOGICAL;
3082
3083 /* Emit the instruction. */
3084 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3085 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3086 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3087 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3088 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3089 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3090 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3091 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3092 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3093
3094 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3095 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3096
3097 return inst;
3098 }
3099
3100 /**
3101 * Actual coherent framebuffer read implemented using the native render target
3102 * read message. Requires SKL+.
3103 */
3104 static fs_inst *
3105 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3106 {
3107 assert(bld.shader->devinfo->gen >= 9);
3108 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3109 inst->target = target;
3110 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3111
3112 return inst;
3113 }
3114
3115 static fs_reg
3116 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3117 {
3118 if (n && regs[0].file != BAD_FILE) {
3119 return regs[0];
3120
3121 } else {
3122 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3123
3124 for (unsigned i = 0; i < n; i++)
3125 regs[i] = tmp;
3126
3127 return tmp;
3128 }
3129 }
3130
3131 static fs_reg
3132 alloc_frag_output(fs_visitor *v, unsigned location)
3133 {
3134 assert(v->stage == MESA_SHADER_FRAGMENT);
3135 const brw_wm_prog_key *const key =
3136 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3137 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3138 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3139
3140 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3141 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3142
3143 else if (l == FRAG_RESULT_COLOR)
3144 return alloc_temporary(v->bld, 4, v->outputs,
3145 MAX2(key->nr_color_regions, 1));
3146
3147 else if (l == FRAG_RESULT_DEPTH)
3148 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3149
3150 else if (l == FRAG_RESULT_STENCIL)
3151 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3152
3153 else if (l == FRAG_RESULT_SAMPLE_MASK)
3154 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3155
3156 else if (l >= FRAG_RESULT_DATA0 &&
3157 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3158 return alloc_temporary(v->bld, 4,
3159 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3160
3161 else
3162 unreachable("Invalid location");
3163 }
3164
3165 void
3166 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3167 nir_intrinsic_instr *instr)
3168 {
3169 assert(stage == MESA_SHADER_FRAGMENT);
3170
3171 fs_reg dest;
3172 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3173 dest = get_nir_dest(instr->dest);
3174
3175 switch (instr->intrinsic) {
3176 case nir_intrinsic_load_front_face:
3177 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3178 *emit_frontfacing_interpolation());
3179 break;
3180
3181 case nir_intrinsic_load_sample_pos: {
3182 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3183 assert(sample_pos.file != BAD_FILE);
3184 dest.type = sample_pos.type;
3185 bld.MOV(dest, sample_pos);
3186 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3187 break;
3188 }
3189
3190 case nir_intrinsic_load_layer_id:
3191 dest.type = BRW_REGISTER_TYPE_UD;
3192 bld.MOV(dest, fetch_render_target_array_index(bld));
3193 break;
3194
3195 case nir_intrinsic_load_helper_invocation:
3196 case nir_intrinsic_load_sample_mask_in:
3197 case nir_intrinsic_load_sample_id: {
3198 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3199 fs_reg val = nir_system_values[sv];
3200 assert(val.file != BAD_FILE);
3201 dest.type = val.type;
3202 bld.MOV(dest, val);
3203 break;
3204 }
3205
3206 case nir_intrinsic_store_output: {
3207 const fs_reg src = get_nir_src(instr->src[0]);
3208 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3209 const unsigned location = nir_intrinsic_base(instr) +
3210 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3211 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3212 src.type);
3213
3214 for (unsigned j = 0; j < instr->num_components; j++)
3215 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3216 offset(src, bld, j));
3217
3218 break;
3219 }
3220
3221 case nir_intrinsic_load_output: {
3222 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3223 BRW_NIR_FRAG_OUTPUT_LOCATION);
3224 assert(l >= FRAG_RESULT_DATA0);
3225 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3226 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3227 const fs_reg tmp = bld.vgrf(dest.type, 4);
3228
3229 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3230 emit_coherent_fb_read(bld, tmp, target);
3231 else
3232 emit_non_coherent_fb_read(bld, tmp, target);
3233
3234 for (unsigned j = 0; j < instr->num_components; j++) {
3235 bld.MOV(offset(dest, bld, j),
3236 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3237 }
3238
3239 break;
3240 }
3241
3242 case nir_intrinsic_discard:
3243 case nir_intrinsic_discard_if: {
3244 /* We track our discarded pixels in f0.1. By predicating on it, we can
3245 * update just the flag bits that aren't yet discarded. If there's no
3246 * condition, we emit a CMP of g0 != g0, so all currently executing
3247 * channels will get turned off.
3248 */
3249 fs_inst *cmp;
3250 if (instr->intrinsic == nir_intrinsic_discard_if) {
3251 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3252 brw_imm_d(0), BRW_CONDITIONAL_Z);
3253 } else {
3254 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3255 BRW_REGISTER_TYPE_UW));
3256 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3257 }
3258 cmp->predicate = BRW_PREDICATE_NORMAL;
3259 cmp->flag_subreg = 1;
3260
3261 if (devinfo->gen >= 6) {
3262 emit_discard_jump();
3263 }
3264
3265 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3266 break;
3267 }
3268
3269 case nir_intrinsic_load_input: {
3270 /* load_input is only used for flat inputs */
3271 unsigned base = nir_intrinsic_base(instr);
3272 unsigned comp = nir_intrinsic_component(instr);
3273 unsigned num_components = instr->num_components;
3274 fs_reg orig_dest = dest;
3275 enum brw_reg_type type = dest.type;
3276
3277 /* Special case fields in the VUE header */
3278 if (base == VARYING_SLOT_LAYER)
3279 comp = 1;
3280 else if (base == VARYING_SLOT_VIEWPORT)
3281 comp = 2;
3282
3283 if (nir_dest_bit_size(instr->dest) == 64) {
3284 /* const_index is in 32-bit type size units that could not be aligned
3285 * with DF. We need to read the double vector as if it was a float
3286 * vector of twice the number of components to fetch the right data.
3287 */
3288 type = BRW_REGISTER_TYPE_F;
3289 num_components *= 2;
3290 dest = bld.vgrf(type, num_components);
3291 }
3292
3293 for (unsigned int i = 0; i < num_components; i++) {
3294 bld.MOV(offset(retype(dest, type), bld, i),
3295 retype(component(interp_reg(base, comp + i), 3), type));
3296 }
3297
3298 if (nir_dest_bit_size(instr->dest) == 64) {
3299 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3300 instr->num_components);
3301 }
3302 break;
3303 }
3304
3305 case nir_intrinsic_load_barycentric_pixel:
3306 case nir_intrinsic_load_barycentric_centroid:
3307 case nir_intrinsic_load_barycentric_sample:
3308 /* Do nothing - load_interpolated_input handling will handle it later. */
3309 break;
3310
3311 case nir_intrinsic_load_barycentric_at_sample: {
3312 const glsl_interp_mode interpolation =
3313 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3314
3315 if (nir_src_is_const(instr->src[0])) {
3316 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3317
3318 emit_pixel_interpolater_send(bld,
3319 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3320 dest,
3321 fs_reg(), /* src */
3322 brw_imm_ud(msg_data),
3323 interpolation);
3324 } else {
3325 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3326 BRW_REGISTER_TYPE_UD);
3327
3328 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3329 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3330 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3331 bld.exec_all().group(1, 0)
3332 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3333 emit_pixel_interpolater_send(bld,
3334 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3335 dest,
3336 fs_reg(), /* src */
3337 msg_data,
3338 interpolation);
3339 } else {
3340 /* Make a loop that sends a message to the pixel interpolater
3341 * for the sample number in each live channel. If there are
3342 * multiple channels with the same sample number then these
3343 * will be handled simultaneously with a single interation of
3344 * the loop.
3345 */
3346 bld.emit(BRW_OPCODE_DO);
3347
3348 /* Get the next live sample number into sample_id_reg */
3349 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3350
3351 /* Set the flag register so that we can perform the send
3352 * message on all channels that have the same sample number
3353 */
3354 bld.CMP(bld.null_reg_ud(),
3355 sample_src, sample_id,
3356 BRW_CONDITIONAL_EQ);
3357 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3358 bld.exec_all().group(1, 0)
3359 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3360 fs_inst *inst =
3361 emit_pixel_interpolater_send(bld,
3362 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3363 dest,
3364 fs_reg(), /* src */
3365 component(msg_data, 0),
3366 interpolation);
3367 set_predicate(BRW_PREDICATE_NORMAL, inst);
3368
3369 /* Continue the loop if there are any live channels left */
3370 set_predicate_inv(BRW_PREDICATE_NORMAL,
3371 true, /* inverse */
3372 bld.emit(BRW_OPCODE_WHILE));
3373 }
3374 }
3375 break;
3376 }
3377
3378 case nir_intrinsic_load_barycentric_at_offset: {
3379 const glsl_interp_mode interpolation =
3380 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3381
3382 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3383
3384 if (const_offset) {
3385 assert(nir_src_bit_size(instr->src[0]) == 32);
3386 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3387 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3388
3389 emit_pixel_interpolater_send(bld,
3390 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3391 dest,
3392 fs_reg(), /* src */
3393 brw_imm_ud(off_x | (off_y << 4)),
3394 interpolation);
3395 } else {
3396 fs_reg src = vgrf(glsl_type::ivec2_type);
3397 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3398 BRW_REGISTER_TYPE_F);
3399 for (int i = 0; i < 2; i++) {
3400 fs_reg temp = vgrf(glsl_type::float_type);
3401 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3402 fs_reg itemp = vgrf(glsl_type::int_type);
3403 /* float to int */
3404 bld.MOV(itemp, temp);
3405
3406 /* Clamp the upper end of the range to +7/16.
3407 * ARB_gpu_shader5 requires that we support a maximum offset
3408 * of +0.5, which isn't representable in a S0.4 value -- if
3409 * we didn't clamp it, we'd end up with -8/16, which is the
3410 * opposite of what the shader author wanted.
3411 *
3412 * This is legal due to ARB_gpu_shader5's quantization
3413 * rules:
3414 *
3415 * "Not all values of <offset> may be supported; x and y
3416 * offsets may be rounded to fixed-point values with the
3417 * number of fraction bits given by the
3418 * implementation-dependent constant
3419 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3420 */
3421 set_condmod(BRW_CONDITIONAL_L,
3422 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3423 }
3424
3425 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3426 emit_pixel_interpolater_send(bld,
3427 opcode,
3428 dest,
3429 src,
3430 brw_imm_ud(0u),
3431 interpolation);
3432 }
3433 break;
3434 }
3435
3436 case nir_intrinsic_load_interpolated_input: {
3437 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3438 emit_fragcoord_interpolation(dest);
3439 break;
3440 }
3441
3442 assert(instr->src[0].ssa &&
3443 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3444 nir_intrinsic_instr *bary_intrinsic =
3445 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3446 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3447 enum glsl_interp_mode interp_mode =
3448 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3449 fs_reg dst_xy;
3450
3451 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3452 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3453 /* Use the result of the PI message */
3454 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3455 } else {
3456 /* Use the delta_xy values computed from the payload */
3457 enum brw_barycentric_mode bary =
3458 brw_barycentric_mode(interp_mode, bary_intrin);
3459
3460 dst_xy = this->delta_xy[bary];
3461 }
3462
3463 for (unsigned int i = 0; i < instr->num_components; i++) {
3464 fs_reg interp =
3465 component(interp_reg(nir_intrinsic_base(instr),
3466 nir_intrinsic_component(instr) + i), 0);
3467 interp.type = BRW_REGISTER_TYPE_F;
3468 dest.type = BRW_REGISTER_TYPE_F;
3469
3470 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3471 fs_reg tmp = vgrf(glsl_type::float_type);
3472 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3473 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3474 } else {
3475 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3476 }
3477 }
3478 break;
3479 }
3480
3481 default:
3482 nir_emit_intrinsic(bld, instr);
3483 break;
3484 }
3485 }
3486
3487 static int
3488 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3489 {
3490 if (nir_src_is_const(instr->src[src])) {
3491 int64_t add_val = nir_src_as_int(instr->src[src]);
3492 if (add_val == 1)
3493 return BRW_AOP_INC;
3494 else if (add_val == -1)
3495 return BRW_AOP_DEC;
3496 }
3497
3498 return BRW_AOP_ADD;
3499 }
3500
3501 void
3502 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3503 nir_intrinsic_instr *instr)
3504 {
3505 assert(stage == MESA_SHADER_COMPUTE);
3506 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3507
3508 fs_reg dest;
3509 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3510 dest = get_nir_dest(instr->dest);
3511
3512 switch (instr->intrinsic) {
3513 case nir_intrinsic_barrier:
3514 emit_barrier();
3515 cs_prog_data->uses_barrier = true;
3516 break;
3517
3518 case nir_intrinsic_load_subgroup_id:
3519 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3520 break;
3521
3522 case nir_intrinsic_load_local_invocation_id:
3523 case nir_intrinsic_load_work_group_id: {
3524 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3525 fs_reg val = nir_system_values[sv];
3526 assert(val.file != BAD_FILE);
3527 dest.type = val.type;
3528 for (unsigned i = 0; i < 3; i++)
3529 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3530 break;
3531 }
3532
3533 case nir_intrinsic_load_num_work_groups: {
3534 const unsigned surface =
3535 cs_prog_data->binding_table.work_groups_start;
3536
3537 cs_prog_data->uses_num_work_groups = true;
3538
3539 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3540 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3541 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3542 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3543
3544 /* Read the 3 GLuint components of gl_NumWorkGroups */
3545 for (unsigned i = 0; i < 3; i++) {
3546 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3547 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3548 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3549 }
3550 break;
3551 }
3552
3553 case nir_intrinsic_shared_atomic_add:
3554 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3555 break;
3556 case nir_intrinsic_shared_atomic_imin:
3557 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3558 break;
3559 case nir_intrinsic_shared_atomic_umin:
3560 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3561 break;
3562 case nir_intrinsic_shared_atomic_imax:
3563 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3564 break;
3565 case nir_intrinsic_shared_atomic_umax:
3566 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3567 break;
3568 case nir_intrinsic_shared_atomic_and:
3569 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3570 break;
3571 case nir_intrinsic_shared_atomic_or:
3572 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3573 break;
3574 case nir_intrinsic_shared_atomic_xor:
3575 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3576 break;
3577 case nir_intrinsic_shared_atomic_exchange:
3578 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3579 break;
3580 case nir_intrinsic_shared_atomic_comp_swap:
3581 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3582 break;
3583 case nir_intrinsic_shared_atomic_fmin:
3584 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3585 break;
3586 case nir_intrinsic_shared_atomic_fmax:
3587 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3588 break;
3589 case nir_intrinsic_shared_atomic_fcomp_swap:
3590 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3591 break;
3592
3593 case nir_intrinsic_load_shared: {
3594 assert(devinfo->gen >= 7);
3595 assert(stage == MESA_SHADER_COMPUTE);
3596
3597 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3598 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3599 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3600 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3601 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3602
3603 /* Make dest unsigned because that's what the temporary will be */
3604 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3605
3606 /* Read the vector */
3607 if (nir_intrinsic_align(instr) >= 4) {
3608 assert(nir_dest_bit_size(instr->dest) == 32);
3609 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3610 fs_inst *inst =
3611 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3612 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3613 inst->size_written = instr->num_components * dispatch_width * 4;
3614 } else {
3615 assert(nir_dest_bit_size(instr->dest) <= 32);
3616 assert(nir_dest_num_components(instr->dest) == 1);
3617 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3618
3619 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3620 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3621 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3622 bld.MOV(dest, read_result);
3623 }
3624 break;
3625 }
3626
3627 case nir_intrinsic_store_shared: {
3628 assert(devinfo->gen >= 7);
3629 assert(stage == MESA_SHADER_COMPUTE);
3630
3631 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3632 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3633 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3634 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3635 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3636
3637 fs_reg data = get_nir_src(instr->src[0]);
3638 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3639
3640 assert(nir_intrinsic_write_mask(instr) ==
3641 (1u << instr->num_components) - 1);
3642 if (nir_intrinsic_align(instr) >= 4) {
3643 assert(nir_src_bit_size(instr->src[0]) == 32);
3644 assert(nir_src_num_components(instr->src[0]) <= 4);
3645 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3646 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3647 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3648 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3649 } else {
3650 assert(nir_src_bit_size(instr->src[0]) <= 32);
3651 assert(nir_src_num_components(instr->src[0]) == 1);
3652 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3653
3654 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3655 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3656
3657 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3658 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3659 }
3660 break;
3661 }
3662
3663 default:
3664 nir_emit_intrinsic(bld, instr);
3665 break;
3666 }
3667 }
3668
3669 static fs_reg
3670 brw_nir_reduction_op_identity(const fs_builder &bld,
3671 nir_op op, brw_reg_type type)
3672 {
3673 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3674 switch (type_sz(type)) {
3675 case 2:
3676 assert(type != BRW_REGISTER_TYPE_HF);
3677 return retype(brw_imm_uw(value.u16[0]), type);
3678 case 4:
3679 return retype(brw_imm_ud(value.u32[0]), type);
3680 case 8:
3681 if (type == BRW_REGISTER_TYPE_DF)
3682 return setup_imm_df(bld, value.f64[0]);
3683 else
3684 return retype(brw_imm_u64(value.u64[0]), type);
3685 default:
3686 unreachable("Invalid type size");
3687 }
3688 }
3689
3690 static opcode
3691 brw_op_for_nir_reduction_op(nir_op op)
3692 {
3693 switch (op) {
3694 case nir_op_iadd: return BRW_OPCODE_ADD;
3695 case nir_op_fadd: return BRW_OPCODE_ADD;
3696 case nir_op_imul: return BRW_OPCODE_MUL;
3697 case nir_op_fmul: return BRW_OPCODE_MUL;
3698 case nir_op_imin: return BRW_OPCODE_SEL;
3699 case nir_op_umin: return BRW_OPCODE_SEL;
3700 case nir_op_fmin: return BRW_OPCODE_SEL;
3701 case nir_op_imax: return BRW_OPCODE_SEL;
3702 case nir_op_umax: return BRW_OPCODE_SEL;
3703 case nir_op_fmax: return BRW_OPCODE_SEL;
3704 case nir_op_iand: return BRW_OPCODE_AND;
3705 case nir_op_ior: return BRW_OPCODE_OR;
3706 case nir_op_ixor: return BRW_OPCODE_XOR;
3707 default:
3708 unreachable("Invalid reduction operation");
3709 }
3710 }
3711
3712 static brw_conditional_mod
3713 brw_cond_mod_for_nir_reduction_op(nir_op op)
3714 {
3715 switch (op) {
3716 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3717 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3718 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3719 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3720 case nir_op_imin: return BRW_CONDITIONAL_L;
3721 case nir_op_umin: return BRW_CONDITIONAL_L;
3722 case nir_op_fmin: return BRW_CONDITIONAL_L;
3723 case nir_op_imax: return BRW_CONDITIONAL_GE;
3724 case nir_op_umax: return BRW_CONDITIONAL_GE;
3725 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3726 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3727 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3728 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3729 default:
3730 unreachable("Invalid reduction operation");
3731 }
3732 }
3733
3734 fs_reg
3735 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3736 nir_intrinsic_instr *instr)
3737 {
3738 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3739
3740 if (stage_prog_data->binding_table.image_start > 0) {
3741 if (image.file == BRW_IMMEDIATE_VALUE) {
3742 image.d += stage_prog_data->binding_table.image_start;
3743 } else {
3744 bld.ADD(image, image,
3745 brw_imm_d(stage_prog_data->binding_table.image_start));
3746 }
3747 }
3748
3749 return bld.emit_uniformize(image);
3750 }
3751
3752 fs_reg
3753 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3754 nir_intrinsic_instr *instr)
3755 {
3756 /* SSBO stores are weird in that their index is in src[1] */
3757 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3758
3759 fs_reg surf_index;
3760 if (nir_src_is_const(instr->src[src])) {
3761 unsigned index = stage_prog_data->binding_table.ssbo_start +
3762 nir_src_as_uint(instr->src[src]);
3763 surf_index = brw_imm_ud(index);
3764 } else {
3765 surf_index = vgrf(glsl_type::uint_type);
3766 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3767 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3768 }
3769
3770 return bld.emit_uniformize(surf_index);
3771 }
3772
3773 static unsigned
3774 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3775 {
3776 switch (nir_intrinsic_image_dim(instr)) {
3777 case GLSL_SAMPLER_DIM_1D:
3778 return 1 + nir_intrinsic_image_array(instr);
3779 case GLSL_SAMPLER_DIM_2D:
3780 case GLSL_SAMPLER_DIM_RECT:
3781 return 2 + nir_intrinsic_image_array(instr);
3782 case GLSL_SAMPLER_DIM_3D:
3783 case GLSL_SAMPLER_DIM_CUBE:
3784 return 3;
3785 case GLSL_SAMPLER_DIM_BUF:
3786 return 1;
3787 case GLSL_SAMPLER_DIM_MS:
3788 return 2 + nir_intrinsic_image_array(instr);
3789 default:
3790 unreachable("Invalid image dimension");
3791 }
3792 }
3793
3794 void
3795 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3796 {
3797 fs_reg dest;
3798 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3799 dest = get_nir_dest(instr->dest);
3800
3801 switch (instr->intrinsic) {
3802 case nir_intrinsic_image_load:
3803 case nir_intrinsic_image_store:
3804 case nir_intrinsic_image_atomic_add:
3805 case nir_intrinsic_image_atomic_min:
3806 case nir_intrinsic_image_atomic_max:
3807 case nir_intrinsic_image_atomic_and:
3808 case nir_intrinsic_image_atomic_or:
3809 case nir_intrinsic_image_atomic_xor:
3810 case nir_intrinsic_image_atomic_exchange:
3811 case nir_intrinsic_image_atomic_comp_swap: {
3812 if (stage == MESA_SHADER_FRAGMENT &&
3813 instr->intrinsic != nir_intrinsic_image_load)
3814 brw_wm_prog_data(prog_data)->has_side_effects = true;
3815
3816 /* Get some metadata from the image intrinsic. */
3817 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3818 const GLenum format = nir_intrinsic_format(instr);
3819
3820 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3821 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3822 get_nir_image_intrinsic_image(bld, instr);
3823 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3824 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
3825 brw_imm_ud(image_intrinsic_coord_components(instr));
3826
3827 /* Emit an image load, store or atomic op. */
3828 if (instr->intrinsic == nir_intrinsic_image_load) {
3829 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3830 fs_inst *inst =
3831 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
3832 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3833 inst->size_written = instr->num_components * dispatch_width * 4;
3834 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3835 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3836 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
3837 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
3838 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3839 } else {
3840 int op;
3841 unsigned num_srcs = info->num_srcs;
3842
3843 switch (instr->intrinsic) {
3844 case nir_intrinsic_image_atomic_add:
3845 assert(num_srcs == 4);
3846
3847 op = get_op_for_atomic_add(instr, 3);
3848
3849 if (op != BRW_AOP_ADD)
3850 num_srcs = 3;
3851 break;
3852 case nir_intrinsic_image_atomic_min:
3853 assert(format == GL_R32UI || format == GL_R32I);
3854 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3855 break;
3856 case nir_intrinsic_image_atomic_max:
3857 assert(format == GL_R32UI || format == GL_R32I);
3858 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3859 break;
3860 case nir_intrinsic_image_atomic_and:
3861 op = BRW_AOP_AND;
3862 break;
3863 case nir_intrinsic_image_atomic_or:
3864 op = BRW_AOP_OR;
3865 break;
3866 case nir_intrinsic_image_atomic_xor:
3867 op = BRW_AOP_XOR;
3868 break;
3869 case nir_intrinsic_image_atomic_exchange:
3870 op = BRW_AOP_MOV;
3871 break;
3872 case nir_intrinsic_image_atomic_comp_swap:
3873 op = BRW_AOP_CMPWR;
3874 break;
3875 default:
3876 unreachable("Not reachable.");
3877 }
3878
3879 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
3880
3881 fs_reg data;
3882 if (num_srcs >= 4)
3883 data = get_nir_src(instr->src[3]);
3884 if (num_srcs >= 5) {
3885 fs_reg tmp = bld.vgrf(data.type, 2);
3886 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
3887 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
3888 data = tmp;
3889 }
3890 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3891
3892 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
3893 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3894 }
3895 break;
3896 }
3897
3898 case nir_intrinsic_image_size: {
3899 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3900 * into will handle the binding table index for us in the geneerator.
3901 */
3902 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3903 BRW_REGISTER_TYPE_UD);
3904 image = bld.emit_uniformize(image);
3905
3906 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3907 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
3908 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
3909 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
3910 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
3911
3912 /* Since the image size is always uniform, we can just emit a SIMD8
3913 * query instruction and splat the result out.
3914 */
3915 const fs_builder ubld = bld.exec_all().group(8, 0);
3916
3917 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3918 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
3919 tmp, srcs, ARRAY_SIZE(srcs));
3920 inst->size_written = 4 * REG_SIZE;
3921
3922 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3923 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3924 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3925 offset(retype(dest, tmp.type), bld, c),
3926 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3927 } else {
3928 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3929 component(offset(tmp, ubld, c), 0));
3930 }
3931 }
3932 break;
3933 }
3934
3935 case nir_intrinsic_image_load_raw_intel: {
3936 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3937 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3938 get_nir_image_intrinsic_image(bld, instr);
3939 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3940 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3941 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3942
3943 fs_inst *inst =
3944 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3945 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3946 inst->size_written = instr->num_components * dispatch_width * 4;
3947 break;
3948 }
3949
3950 case nir_intrinsic_image_store_raw_intel: {
3951 if (stage == MESA_SHADER_FRAGMENT)
3952 brw_wm_prog_data(prog_data)->has_side_effects = true;
3953
3954 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3955 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3956 get_nir_image_intrinsic_image(bld, instr);
3957 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3958 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
3959 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3960 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3961
3962 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3963 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3964 break;
3965 }
3966
3967 case nir_intrinsic_group_memory_barrier:
3968 case nir_intrinsic_memory_barrier_shared:
3969 case nir_intrinsic_memory_barrier_atomic_counter:
3970 case nir_intrinsic_memory_barrier_buffer:
3971 case nir_intrinsic_memory_barrier_image:
3972 case nir_intrinsic_memory_barrier: {
3973 const fs_builder ubld = bld.group(8, 0);
3974 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3975 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3976 ->size_written = 2 * REG_SIZE;
3977 break;
3978 }
3979
3980 case nir_intrinsic_shader_clock: {
3981 /* We cannot do anything if there is an event, so ignore it for now */
3982 const fs_reg shader_clock = get_timestamp(bld);
3983 const fs_reg srcs[] = { component(shader_clock, 0),
3984 component(shader_clock, 1) };
3985 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3986 break;
3987 }
3988
3989 case nir_intrinsic_image_samples:
3990 /* The driver does not support multi-sampled images. */
3991 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3992 break;
3993
3994 case nir_intrinsic_load_uniform: {
3995 /* Offsets are in bytes but they should always aligned to
3996 * the type size
3997 */
3998 assert(instr->const_index[0] % 4 == 0 ||
3999 instr->const_index[0] % type_sz(dest.type) == 0);
4000
4001 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4002
4003 if (nir_src_is_const(instr->src[0])) {
4004 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4005 assert(load_offset % type_sz(dest.type) == 0);
4006 /* For 16-bit types we add the module of the const_index[0]
4007 * offset to access to not 32-bit aligned element
4008 */
4009 src.offset = load_offset + instr->const_index[0] % 4;
4010
4011 for (unsigned j = 0; j < instr->num_components; j++) {
4012 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4013 }
4014 } else {
4015 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4016 BRW_REGISTER_TYPE_UD);
4017
4018 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4019 * go past the end of the uniform. In order to keep the n'th
4020 * component from running past, we subtract off the size of all but
4021 * one component of the vector.
4022 */
4023 assert(instr->const_index[1] >=
4024 instr->num_components * (int) type_sz(dest.type));
4025 unsigned read_size = instr->const_index[1] -
4026 (instr->num_components - 1) * type_sz(dest.type);
4027
4028 bool supports_64bit_indirects =
4029 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4030
4031 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4032 for (unsigned j = 0; j < instr->num_components; j++) {
4033 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4034 offset(dest, bld, j), offset(src, bld, j),
4035 indirect, brw_imm_ud(read_size));
4036 }
4037 } else {
4038 const unsigned num_mov_indirects =
4039 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4040 /* We read a little bit less per MOV INDIRECT, as they are now
4041 * 32-bits ones instead of 64-bit. Fix read_size then.
4042 */
4043 const unsigned read_size_32bit = read_size -
4044 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4045 for (unsigned j = 0; j < instr->num_components; j++) {
4046 for (unsigned i = 0; i < num_mov_indirects; i++) {
4047 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4048 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4049 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4050 indirect, brw_imm_ud(read_size_32bit));
4051 }
4052 }
4053 }
4054 }
4055 break;
4056 }
4057
4058 case nir_intrinsic_load_ubo: {
4059 fs_reg surf_index;
4060 if (nir_src_is_const(instr->src[0])) {
4061 const unsigned index = stage_prog_data->binding_table.ubo_start +
4062 nir_src_as_uint(instr->src[0]);
4063 surf_index = brw_imm_ud(index);
4064 } else {
4065 /* The block index is not a constant. Evaluate the index expression
4066 * per-channel and add the base UBO index; we have to select a value
4067 * from any live channel.
4068 */
4069 surf_index = vgrf(glsl_type::uint_type);
4070 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4071 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4072 surf_index = bld.emit_uniformize(surf_index);
4073 }
4074
4075 if (!nir_src_is_const(instr->src[1])) {
4076 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4077 BRW_REGISTER_TYPE_UD);
4078
4079 for (int i = 0; i < instr->num_components; i++)
4080 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4081 base_offset, i * type_sz(dest.type));
4082 } else {
4083 /* Even if we are loading doubles, a pull constant load will load
4084 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4085 * need to load a full dvec4 we will have to emit 2 loads. This is
4086 * similar to demote_pull_constants(), except that in that case we
4087 * see individual accesses to each component of the vector and then
4088 * we let CSE deal with duplicate loads. Here we see a vector access
4089 * and we have to split it if necessary.
4090 */
4091 const unsigned type_size = type_sz(dest.type);
4092 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4093
4094 /* See if we've selected this as a push constant candidate */
4095 if (nir_src_is_const(instr->src[0])) {
4096 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4097 const unsigned offset_256b = load_offset / 32;
4098
4099 fs_reg push_reg;
4100 for (int i = 0; i < 4; i++) {
4101 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4102 if (range->block == ubo_block &&
4103 offset_256b >= range->start &&
4104 offset_256b < range->start + range->length) {
4105
4106 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4107 push_reg.offset = load_offset - 32 * range->start;
4108 break;
4109 }
4110 }
4111
4112 if (push_reg.file != BAD_FILE) {
4113 for (unsigned i = 0; i < instr->num_components; i++) {
4114 bld.MOV(offset(dest, bld, i),
4115 byte_offset(push_reg, i * type_size));
4116 }
4117 break;
4118 }
4119 }
4120
4121 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4122 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4123 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4124
4125 for (unsigned c = 0; c < instr->num_components;) {
4126 const unsigned base = load_offset + c * type_size;
4127 /* Number of usable components in the next block-aligned load. */
4128 const unsigned count = MIN2(instr->num_components - c,
4129 (block_sz - base % block_sz) / type_size);
4130
4131 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4132 packed_consts, surf_index,
4133 brw_imm_ud(base & ~(block_sz - 1)));
4134
4135 const fs_reg consts =
4136 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4137 dest.type);
4138
4139 for (unsigned d = 0; d < count; d++)
4140 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4141
4142 c += count;
4143 }
4144 }
4145 break;
4146 }
4147
4148 case nir_intrinsic_load_global: {
4149 assert(devinfo->gen >= 8);
4150
4151 if (nir_intrinsic_align(instr) >= 4) {
4152 assert(nir_dest_bit_size(instr->dest) == 32);
4153 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4154 dest,
4155 get_nir_src(instr->src[0]), /* Address */
4156 fs_reg(), /* No source data */
4157 brw_imm_ud(instr->num_components));
4158 inst->size_written = instr->num_components *
4159 inst->dst.component_size(inst->exec_size);
4160 } else {
4161 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4162 assert(bit_size <= 32);
4163 assert(nir_dest_num_components(instr->dest) == 1);
4164 brw_reg_type data_type =
4165 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4166 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4167 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4168 tmp,
4169 get_nir_src(instr->src[0]), /* Address */
4170 fs_reg(), /* No source data */
4171 brw_imm_ud(bit_size));
4172 bld.MOV(retype(dest, data_type), tmp);
4173 }
4174 break;
4175 }
4176
4177 case nir_intrinsic_store_global:
4178 assert(devinfo->gen >= 8);
4179
4180 if (stage == MESA_SHADER_FRAGMENT)
4181 brw_wm_prog_data(prog_data)->has_side_effects = true;
4182
4183 if (nir_intrinsic_align(instr) >= 4) {
4184 assert(nir_src_bit_size(instr->src[0]) == 32);
4185 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4186 fs_reg(),
4187 get_nir_src(instr->src[1]), /* Address */
4188 get_nir_src(instr->src[0]), /* Data */
4189 brw_imm_ud(instr->num_components));
4190 } else {
4191 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4192 assert(bit_size <= 32);
4193 assert(nir_src_num_components(instr->src[0]) == 1);
4194 brw_reg_type data_type =
4195 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4196 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4197 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4198 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4199 fs_reg(),
4200 get_nir_src(instr->src[1]), /* Address */
4201 tmp, /* Data */
4202 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4203 }
4204 break;
4205
4206 case nir_intrinsic_global_atomic_add:
4207 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4208 break;
4209 case nir_intrinsic_global_atomic_imin:
4210 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4211 break;
4212 case nir_intrinsic_global_atomic_umin:
4213 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4214 break;
4215 case nir_intrinsic_global_atomic_imax:
4216 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4217 break;
4218 case nir_intrinsic_global_atomic_umax:
4219 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4220 break;
4221 case nir_intrinsic_global_atomic_and:
4222 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4223 break;
4224 case nir_intrinsic_global_atomic_or:
4225 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4226 break;
4227 case nir_intrinsic_global_atomic_xor:
4228 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4229 break;
4230 case nir_intrinsic_global_atomic_exchange:
4231 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4232 break;
4233 case nir_intrinsic_global_atomic_comp_swap:
4234 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4235 break;
4236 case nir_intrinsic_global_atomic_fmin:
4237 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4238 break;
4239 case nir_intrinsic_global_atomic_fmax:
4240 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4241 break;
4242 case nir_intrinsic_global_atomic_fcomp_swap:
4243 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4244 break;
4245
4246 case nir_intrinsic_load_ssbo: {
4247 assert(devinfo->gen >= 7);
4248
4249 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4250 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4251 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4252 get_nir_ssbo_intrinsic_index(bld, instr);
4253 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4254 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4255
4256 /* Make dest unsigned because that's what the temporary will be */
4257 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4258
4259 /* Read the vector */
4260 if (nir_intrinsic_align(instr) >= 4) {
4261 assert(nir_dest_bit_size(instr->dest) == 32);
4262 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4263 fs_inst *inst =
4264 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4265 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4266 inst->size_written = instr->num_components * dispatch_width * 4;
4267 } else {
4268 assert(nir_dest_bit_size(instr->dest) <= 32);
4269 assert(nir_dest_num_components(instr->dest) == 1);
4270 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4271
4272 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4273 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4274 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4275 bld.MOV(dest, read_result);
4276 }
4277 break;
4278 }
4279
4280 case nir_intrinsic_store_ssbo: {
4281 assert(devinfo->gen >= 7);
4282
4283 if (stage == MESA_SHADER_FRAGMENT)
4284 brw_wm_prog_data(prog_data)->has_side_effects = true;
4285
4286 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4287 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4288 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4289 get_nir_ssbo_intrinsic_index(bld, instr);
4290 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4291 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4292
4293 fs_reg data = get_nir_src(instr->src[0]);
4294 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4295
4296 assert(nir_intrinsic_write_mask(instr) ==
4297 (1u << instr->num_components) - 1);
4298 if (nir_intrinsic_align(instr) >= 4) {
4299 assert(nir_src_bit_size(instr->src[0]) == 32);
4300 assert(nir_src_num_components(instr->src[0]) <= 4);
4301 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4302 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4303 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4304 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4305 } else {
4306 assert(nir_src_bit_size(instr->src[0]) <= 32);
4307 assert(nir_src_num_components(instr->src[0]) == 1);
4308 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4309
4310 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4311 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4312
4313 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4314 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4315 }
4316 break;
4317 }
4318
4319 case nir_intrinsic_store_output: {
4320 fs_reg src = get_nir_src(instr->src[0]);
4321
4322 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4323 unsigned num_components = instr->num_components;
4324 unsigned first_component = nir_intrinsic_component(instr);
4325 if (nir_src_bit_size(instr->src[0]) == 64) {
4326 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4327 num_components *= 2;
4328 }
4329
4330 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4331 4 * store_offset), src.type);
4332 for (unsigned j = 0; j < num_components; j++) {
4333 bld.MOV(offset(new_dest, bld, j + first_component),
4334 offset(src, bld, j));
4335 }
4336 break;
4337 }
4338
4339 case nir_intrinsic_ssbo_atomic_add:
4340 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4341 break;
4342 case nir_intrinsic_ssbo_atomic_imin:
4343 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4344 break;
4345 case nir_intrinsic_ssbo_atomic_umin:
4346 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4347 break;
4348 case nir_intrinsic_ssbo_atomic_imax:
4349 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4350 break;
4351 case nir_intrinsic_ssbo_atomic_umax:
4352 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4353 break;
4354 case nir_intrinsic_ssbo_atomic_and:
4355 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4356 break;
4357 case nir_intrinsic_ssbo_atomic_or:
4358 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4359 break;
4360 case nir_intrinsic_ssbo_atomic_xor:
4361 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4362 break;
4363 case nir_intrinsic_ssbo_atomic_exchange:
4364 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4365 break;
4366 case nir_intrinsic_ssbo_atomic_comp_swap:
4367 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4368 break;
4369 case nir_intrinsic_ssbo_atomic_fmin:
4370 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4371 break;
4372 case nir_intrinsic_ssbo_atomic_fmax:
4373 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4374 break;
4375 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4376 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4377 break;
4378
4379 case nir_intrinsic_get_buffer_size: {
4380 assert(nir_src_num_components(instr->src[0]) == 1);
4381 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4382 nir_src_as_uint(instr->src[0]) : 0;
4383
4384 /* A resinfo's sampler message is used to get the buffer size. The
4385 * SIMD8's writeback message consists of four registers and SIMD16's
4386 * writeback message consists of 8 destination registers (two per each
4387 * component). Because we are only interested on the first channel of
4388 * the first returned component, where resinfo returns the buffer size
4389 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4390 * the dispatch width.
4391 */
4392 const fs_builder ubld = bld.exec_all().group(8, 0);
4393 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4394 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4395
4396 /* Set LOD = 0 */
4397 ubld.MOV(src_payload, brw_imm_d(0));
4398
4399 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4400 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4401 src_payload, brw_imm_ud(index));
4402 inst->header_size = 0;
4403 inst->mlen = 1;
4404 inst->size_written = 4 * REG_SIZE;
4405
4406 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4407 *
4408 * "Out-of-bounds checking is always performed at a DWord granularity. If
4409 * any part of the DWord is out-of-bounds then the whole DWord is
4410 * considered out-of-bounds."
4411 *
4412 * This implies that types with size smaller than 4-bytes need to be
4413 * padded if they don't complete the last dword of the buffer. But as we
4414 * need to maintain the original size we need to reverse the padding
4415 * calculation to return the correct size to know the number of elements
4416 * of an unsized array. As we stored in the last two bits of the surface
4417 * size the needed padding for the buffer, we calculate here the
4418 * original buffer_size reversing the surface_size calculation:
4419 *
4420 * surface_size = isl_align(buffer_size, 4) +
4421 * (isl_align(buffer_size) - buffer_size)
4422 *
4423 * buffer_size = surface_size & ~3 - surface_size & 3
4424 */
4425
4426 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4427 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4428 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4429
4430 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4431 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4432 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4433
4434 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4435 break;
4436 }
4437
4438 case nir_intrinsic_load_subgroup_invocation:
4439 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4440 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4441 break;
4442
4443 case nir_intrinsic_load_subgroup_eq_mask:
4444 case nir_intrinsic_load_subgroup_ge_mask:
4445 case nir_intrinsic_load_subgroup_gt_mask:
4446 case nir_intrinsic_load_subgroup_le_mask:
4447 case nir_intrinsic_load_subgroup_lt_mask:
4448 unreachable("not reached");
4449
4450 case nir_intrinsic_vote_any: {
4451 const fs_builder ubld = bld.exec_all().group(1, 0);
4452
4453 /* The any/all predicates do not consider channel enables. To prevent
4454 * dead channels from affecting the result, we initialize the flag with
4455 * with the identity value for the logical operation.
4456 */
4457 if (dispatch_width == 32) {
4458 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4459 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4460 brw_imm_ud(0));
4461 } else {
4462 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4463 }
4464 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4465
4466 /* For some reason, the any/all predicates don't work properly with
4467 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4468 * doesn't read the correct subset of the flag register and you end up
4469 * getting garbage in the second half. Work around this by using a pair
4470 * of 1-wide MOVs and scattering the result.
4471 */
4472 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4473 ubld.MOV(res1, brw_imm_d(0));
4474 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4475 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4476 BRW_PREDICATE_ALIGN1_ANY32H,
4477 ubld.MOV(res1, brw_imm_d(-1)));
4478
4479 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4480 break;
4481 }
4482 case nir_intrinsic_vote_all: {
4483 const fs_builder ubld = bld.exec_all().group(1, 0);
4484
4485 /* The any/all predicates do not consider channel enables. To prevent
4486 * dead channels from affecting the result, we initialize the flag with
4487 * with the identity value for the logical operation.
4488 */
4489 if (dispatch_width == 32) {
4490 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4491 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4492 brw_imm_ud(0xffffffff));
4493 } else {
4494 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4495 }
4496 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4497
4498 /* For some reason, the any/all predicates don't work properly with
4499 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4500 * doesn't read the correct subset of the flag register and you end up
4501 * getting garbage in the second half. Work around this by using a pair
4502 * of 1-wide MOVs and scattering the result.
4503 */
4504 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4505 ubld.MOV(res1, brw_imm_d(0));
4506 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4507 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4508 BRW_PREDICATE_ALIGN1_ALL32H,
4509 ubld.MOV(res1, brw_imm_d(-1)));
4510
4511 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4512 break;
4513 }
4514 case nir_intrinsic_vote_feq:
4515 case nir_intrinsic_vote_ieq: {
4516 fs_reg value = get_nir_src(instr->src[0]);
4517 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4518 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4519 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4520 }
4521
4522 fs_reg uniformized = bld.emit_uniformize(value);
4523 const fs_builder ubld = bld.exec_all().group(1, 0);
4524
4525 /* The any/all predicates do not consider channel enables. To prevent
4526 * dead channels from affecting the result, we initialize the flag with
4527 * with the identity value for the logical operation.
4528 */
4529 if (dispatch_width == 32) {
4530 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4531 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4532 brw_imm_ud(0xffffffff));
4533 } else {
4534 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4535 }
4536 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4537
4538 /* For some reason, the any/all predicates don't work properly with
4539 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4540 * doesn't read the correct subset of the flag register and you end up
4541 * getting garbage in the second half. Work around this by using a pair
4542 * of 1-wide MOVs and scattering the result.
4543 */
4544 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4545 ubld.MOV(res1, brw_imm_d(0));
4546 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4547 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4548 BRW_PREDICATE_ALIGN1_ALL32H,
4549 ubld.MOV(res1, brw_imm_d(-1)));
4550
4551 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4552 break;
4553 }
4554
4555 case nir_intrinsic_ballot: {
4556 const fs_reg value = retype(get_nir_src(instr->src[0]),
4557 BRW_REGISTER_TYPE_UD);
4558 struct brw_reg flag = brw_flag_reg(0, 0);
4559 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4560 * as f0.0. This is a problem for fragment programs as we currently use
4561 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4562 * programs yet so this isn't a problem. When we do, something will
4563 * have to change.
4564 */
4565 if (dispatch_width == 32)
4566 flag.type = BRW_REGISTER_TYPE_UD;
4567
4568 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4569 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4570
4571 if (instr->dest.ssa.bit_size > 32) {
4572 dest.type = BRW_REGISTER_TYPE_UQ;
4573 } else {
4574 dest.type = BRW_REGISTER_TYPE_UD;
4575 }
4576 bld.MOV(dest, flag);
4577 break;
4578 }
4579
4580 case nir_intrinsic_read_invocation: {
4581 const fs_reg value = get_nir_src(instr->src[0]);
4582 const fs_reg invocation = get_nir_src(instr->src[1]);
4583 fs_reg tmp = bld.vgrf(value.type);
4584
4585 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4586 bld.emit_uniformize(invocation));
4587
4588 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4589 break;
4590 }
4591
4592 case nir_intrinsic_read_first_invocation: {
4593 const fs_reg value = get_nir_src(instr->src[0]);
4594 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4595 break;
4596 }
4597
4598 case nir_intrinsic_shuffle: {
4599 const fs_reg value = get_nir_src(instr->src[0]);
4600 const fs_reg index = get_nir_src(instr->src[1]);
4601
4602 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4603 break;
4604 }
4605
4606 case nir_intrinsic_first_invocation: {
4607 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4608 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4609 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4610 fs_reg(component(tmp, 0)));
4611 break;
4612 }
4613
4614 case nir_intrinsic_quad_broadcast: {
4615 const fs_reg value = get_nir_src(instr->src[0]);
4616 const unsigned index = nir_src_as_uint(instr->src[1]);
4617
4618 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4619 value, brw_imm_ud(index), brw_imm_ud(4));
4620 break;
4621 }
4622
4623 case nir_intrinsic_quad_swap_horizontal: {
4624 const fs_reg value = get_nir_src(instr->src[0]);
4625 const fs_reg tmp = bld.vgrf(value.type);
4626 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4627
4628 const fs_reg src_left = horiz_stride(value, 2);
4629 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4630 const fs_reg tmp_left = horiz_stride(tmp, 2);
4631 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4632
4633 ubld.MOV(tmp_left, src_right);
4634 ubld.MOV(tmp_right, src_left);
4635
4636 bld.MOV(retype(dest, value.type), tmp);
4637 break;
4638 }
4639
4640 case nir_intrinsic_quad_swap_vertical: {
4641 const fs_reg value = get_nir_src(instr->src[0]);
4642 if (nir_src_bit_size(instr->src[0]) == 32) {
4643 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4644 const fs_reg tmp = bld.vgrf(value.type);
4645 const fs_builder ubld = bld.exec_all();
4646 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4647 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4648 bld.MOV(retype(dest, value.type), tmp);
4649 } else {
4650 /* For larger data types, we have to either emit dispatch_width many
4651 * MOVs or else fall back to doing indirects.
4652 */
4653 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4654 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4655 brw_imm_w(0x2));
4656 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4657 }
4658 break;
4659 }
4660
4661 case nir_intrinsic_quad_swap_diagonal: {
4662 const fs_reg value = get_nir_src(instr->src[0]);
4663 if (nir_src_bit_size(instr->src[0]) == 32) {
4664 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4665 const fs_reg tmp = bld.vgrf(value.type);
4666 const fs_builder ubld = bld.exec_all();
4667 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4668 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4669 bld.MOV(retype(dest, value.type), tmp);
4670 } else {
4671 /* For larger data types, we have to either emit dispatch_width many
4672 * MOVs or else fall back to doing indirects.
4673 */
4674 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4675 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4676 brw_imm_w(0x3));
4677 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4678 }
4679 break;
4680 }
4681
4682 case nir_intrinsic_reduce: {
4683 fs_reg src = get_nir_src(instr->src[0]);
4684 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4685 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4686 if (cluster_size == 0 || cluster_size > dispatch_width)
4687 cluster_size = dispatch_width;
4688
4689 /* Figure out the source type */
4690 src.type = brw_type_for_nir_type(devinfo,
4691 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4692 nir_src_bit_size(instr->src[0])));
4693
4694 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4695 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4696 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4697
4698 /* Set up a register for all of our scratching around and initialize it
4699 * to reduction operation's identity value.
4700 */
4701 fs_reg scan = bld.vgrf(src.type);
4702 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4703
4704 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4705
4706 dest.type = src.type;
4707 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4708 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4709 * the distance between clusters is at least 2 GRFs. In this case,
4710 * we don't need the weird striding of the CLUSTER_BROADCAST
4711 * instruction and can just do regular MOVs.
4712 */
4713 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4714 const unsigned groups =
4715 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4716 const unsigned group_size = dispatch_width / groups;
4717 for (unsigned i = 0; i < groups; i++) {
4718 const unsigned cluster = (i * group_size) / cluster_size;
4719 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4720 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4721 component(scan, comp));
4722 }
4723 } else {
4724 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4725 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4726 }
4727 break;
4728 }
4729
4730 case nir_intrinsic_inclusive_scan:
4731 case nir_intrinsic_exclusive_scan: {
4732 fs_reg src = get_nir_src(instr->src[0]);
4733 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4734
4735 /* Figure out the source type */
4736 src.type = brw_type_for_nir_type(devinfo,
4737 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4738 nir_src_bit_size(instr->src[0])));
4739
4740 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4741 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4742 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4743
4744 /* Set up a register for all of our scratching around and initialize it
4745 * to reduction operation's identity value.
4746 */
4747 fs_reg scan = bld.vgrf(src.type);
4748 const fs_builder allbld = bld.exec_all();
4749 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4750
4751 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4752 /* Exclusive scan is a bit harder because we have to do an annoying
4753 * shift of the contents before we can begin. To make things worse,
4754 * we can't do this with a normal stride; we have to use indirects.
4755 */
4756 fs_reg shifted = bld.vgrf(src.type);
4757 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4758 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4759 brw_imm_w(-1));
4760 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4761 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4762 scan = shifted;
4763 }
4764
4765 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4766
4767 bld.MOV(retype(dest, src.type), scan);
4768 break;
4769 }
4770
4771 case nir_intrinsic_begin_invocation_interlock: {
4772 const fs_builder ubld = bld.group(8, 0);
4773 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4774
4775 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4776 REG_SIZE;
4777
4778 break;
4779 }
4780
4781 case nir_intrinsic_end_invocation_interlock: {
4782 /* We don't need to do anything here */
4783 break;
4784 }
4785
4786 default:
4787 unreachable("unknown intrinsic");
4788 }
4789 }
4790
4791 void
4792 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4793 int op, nir_intrinsic_instr *instr)
4794 {
4795 if (stage == MESA_SHADER_FRAGMENT)
4796 brw_wm_prog_data(prog_data)->has_side_effects = true;
4797
4798 fs_reg dest;
4799 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4800 dest = get_nir_dest(instr->dest);
4801
4802 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4803 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4804 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4805 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4806 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4807
4808 fs_reg data;
4809 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4810 data = get_nir_src(instr->src[2]);
4811
4812 if (op == BRW_AOP_CMPWR) {
4813 fs_reg tmp = bld.vgrf(data.type, 2);
4814 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4815 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4816 data = tmp;
4817 }
4818 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4819
4820 /* Emit the actual atomic operation */
4821
4822 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4823 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4824 }
4825
4826 void
4827 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4828 int op, nir_intrinsic_instr *instr)
4829 {
4830 if (stage == MESA_SHADER_FRAGMENT)
4831 brw_wm_prog_data(prog_data)->has_side_effects = true;
4832
4833 fs_reg dest;
4834 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4835 dest = get_nir_dest(instr->dest);
4836
4837 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4838 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4839 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4840 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4841 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4842
4843 fs_reg data = get_nir_src(instr->src[2]);
4844 if (op == BRW_AOP_FCMPWR) {
4845 fs_reg tmp = bld.vgrf(data.type, 2);
4846 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4847 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4848 data = tmp;
4849 }
4850 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4851
4852 /* Emit the actual atomic operation */
4853
4854 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4855 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4856 }
4857
4858 void
4859 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4860 int op, nir_intrinsic_instr *instr)
4861 {
4862 fs_reg dest;
4863 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4864 dest = get_nir_dest(instr->dest);
4865
4866 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4867 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4868 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4869 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4870
4871 fs_reg data;
4872 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4873 data = get_nir_src(instr->src[1]);
4874 if (op == BRW_AOP_CMPWR) {
4875 fs_reg tmp = bld.vgrf(data.type, 2);
4876 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4877 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4878 data = tmp;
4879 }
4880 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4881
4882 /* Get the offset */
4883 if (nir_src_is_const(instr->src[0])) {
4884 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4885 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4886 } else {
4887 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4888 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4889 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4890 brw_imm_ud(instr->const_index[0]));
4891 }
4892
4893 /* Emit the actual atomic operation operation */
4894
4895 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4896 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4897 }
4898
4899 void
4900 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4901 int op, nir_intrinsic_instr *instr)
4902 {
4903 fs_reg dest;
4904 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4905 dest = get_nir_dest(instr->dest);
4906
4907 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4908 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4909 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4910 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4911
4912 fs_reg data = get_nir_src(instr->src[1]);
4913 if (op == BRW_AOP_FCMPWR) {
4914 fs_reg tmp = bld.vgrf(data.type, 2);
4915 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4916 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4917 data = tmp;
4918 }
4919 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4920
4921 /* Get the offset */
4922 if (nir_src_is_const(instr->src[0])) {
4923 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4924 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4925 } else {
4926 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4927 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4928 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4929 brw_imm_ud(instr->const_index[0]));
4930 }
4931
4932 /* Emit the actual atomic operation operation */
4933
4934 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4935 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4936 }
4937
4938 void
4939 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
4940 int op, nir_intrinsic_instr *instr)
4941 {
4942 if (stage == MESA_SHADER_FRAGMENT)
4943 brw_wm_prog_data(prog_data)->has_side_effects = true;
4944
4945 fs_reg dest;
4946 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4947 dest = get_nir_dest(instr->dest);
4948
4949 fs_reg addr = get_nir_src(instr->src[0]);
4950
4951 fs_reg data;
4952 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4953 data = get_nir_src(instr->src[1]);
4954
4955 if (op == BRW_AOP_CMPWR) {
4956 fs_reg tmp = bld.vgrf(data.type, 2);
4957 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4958 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4959 data = tmp;
4960 }
4961
4962 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4963 dest, addr, data, brw_imm_ud(op));
4964 }
4965
4966 void
4967 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
4968 int op, nir_intrinsic_instr *instr)
4969 {
4970 if (stage == MESA_SHADER_FRAGMENT)
4971 brw_wm_prog_data(prog_data)->has_side_effects = true;
4972
4973 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
4974 fs_reg dest = get_nir_dest(instr->dest);
4975
4976 fs_reg addr = get_nir_src(instr->src[0]);
4977
4978 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
4979 fs_reg data = get_nir_src(instr->src[1]);
4980
4981 if (op == BRW_AOP_FCMPWR) {
4982 fs_reg tmp = bld.vgrf(data.type, 2);
4983 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4984 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4985 data = tmp;
4986 }
4987
4988 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4989 dest, addr, data, brw_imm_ud(op));
4990 }
4991
4992 void
4993 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4994 {
4995 unsigned texture = instr->texture_index;
4996 unsigned sampler = instr->sampler_index;
4997
4998 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4999
5000 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5001 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5002
5003 int lod_components = 0;
5004
5005 /* The hardware requires a LOD for buffer textures */
5006 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5007 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5008
5009 uint32_t header_bits = 0;
5010 for (unsigned i = 0; i < instr->num_srcs; i++) {
5011 fs_reg src = get_nir_src(instr->src[i].src);
5012 switch (instr->src[i].src_type) {
5013 case nir_tex_src_bias:
5014 srcs[TEX_LOGICAL_SRC_LOD] =
5015 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5016 break;
5017 case nir_tex_src_comparator:
5018 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5019 break;
5020 case nir_tex_src_coord:
5021 switch (instr->op) {
5022 case nir_texop_txf:
5023 case nir_texop_txf_ms:
5024 case nir_texop_txf_ms_mcs:
5025 case nir_texop_samples_identical:
5026 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5027 break;
5028 default:
5029 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5030 break;
5031 }
5032 break;
5033 case nir_tex_src_ddx:
5034 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5035 lod_components = nir_tex_instr_src_size(instr, i);
5036 break;
5037 case nir_tex_src_ddy:
5038 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5039 break;
5040 case nir_tex_src_lod:
5041 switch (instr->op) {
5042 case nir_texop_txs:
5043 srcs[TEX_LOGICAL_SRC_LOD] =
5044 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5045 break;
5046 case nir_texop_txf:
5047 srcs[TEX_LOGICAL_SRC_LOD] =
5048 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5049 break;
5050 default:
5051 srcs[TEX_LOGICAL_SRC_LOD] =
5052 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5053 break;
5054 }
5055 break;
5056 case nir_tex_src_min_lod:
5057 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5058 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5059 break;
5060 case nir_tex_src_ms_index:
5061 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5062 break;
5063
5064 case nir_tex_src_offset: {
5065 nir_const_value *const_offset =
5066 nir_src_as_const_value(instr->src[i].src);
5067 assert(nir_src_bit_size(instr->src[i].src) == 32);
5068 unsigned offset_bits = 0;
5069 if (const_offset &&
5070 brw_texture_offset(const_offset->i32,
5071 nir_tex_instr_src_size(instr, i),
5072 &offset_bits)) {
5073 header_bits |= offset_bits;
5074 } else {
5075 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5076 retype(src, BRW_REGISTER_TYPE_D);
5077 }
5078 break;
5079 }
5080
5081 case nir_tex_src_projector:
5082 unreachable("should be lowered");
5083
5084 case nir_tex_src_texture_offset: {
5085 /* Emit code to evaluate the actual indexing expression */
5086 fs_reg tmp = vgrf(glsl_type::uint_type);
5087 bld.ADD(tmp, src, brw_imm_ud(texture));
5088 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5089 break;
5090 }
5091
5092 case nir_tex_src_sampler_offset: {
5093 /* Emit code to evaluate the actual indexing expression */
5094 fs_reg tmp = vgrf(glsl_type::uint_type);
5095 bld.ADD(tmp, src, brw_imm_ud(sampler));
5096 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5097 break;
5098 }
5099
5100 case nir_tex_src_ms_mcs:
5101 assert(instr->op == nir_texop_txf_ms);
5102 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5103 break;
5104
5105 case nir_tex_src_plane: {
5106 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5107 const uint32_t texture_index =
5108 instr->texture_index +
5109 stage_prog_data->binding_table.plane_start[plane] -
5110 stage_prog_data->binding_table.texture_start;
5111
5112 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5113 break;
5114 }
5115
5116 default:
5117 unreachable("unknown texture source");
5118 }
5119 }
5120
5121 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5122 (instr->op == nir_texop_txf_ms ||
5123 instr->op == nir_texop_samples_identical)) {
5124 if (devinfo->gen >= 7 &&
5125 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5126 srcs[TEX_LOGICAL_SRC_MCS] =
5127 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5128 instr->coord_components,
5129 srcs[TEX_LOGICAL_SRC_SURFACE]);
5130 } else {
5131 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5132 }
5133 }
5134
5135 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5136 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5137
5138 enum opcode opcode;
5139 switch (instr->op) {
5140 case nir_texop_tex:
5141 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5142 SHADER_OPCODE_TXL_LOGICAL);
5143 break;
5144 case nir_texop_txb:
5145 opcode = FS_OPCODE_TXB_LOGICAL;
5146 break;
5147 case nir_texop_txl:
5148 opcode = SHADER_OPCODE_TXL_LOGICAL;
5149 break;
5150 case nir_texop_txd:
5151 opcode = SHADER_OPCODE_TXD_LOGICAL;
5152 break;
5153 case nir_texop_txf:
5154 opcode = SHADER_OPCODE_TXF_LOGICAL;
5155 break;
5156 case nir_texop_txf_ms:
5157 if ((key_tex->msaa_16 & (1 << sampler)))
5158 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5159 else
5160 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5161 break;
5162 case nir_texop_txf_ms_mcs:
5163 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5164 break;
5165 case nir_texop_query_levels:
5166 case nir_texop_txs:
5167 opcode = SHADER_OPCODE_TXS_LOGICAL;
5168 break;
5169 case nir_texop_lod:
5170 opcode = SHADER_OPCODE_LOD_LOGICAL;
5171 break;
5172 case nir_texop_tg4:
5173 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5174 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5175 else
5176 opcode = SHADER_OPCODE_TG4_LOGICAL;
5177 break;
5178 case nir_texop_texture_samples:
5179 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5180 break;
5181 case nir_texop_samples_identical: {
5182 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5183
5184 /* If mcs is an immediate value, it means there is no MCS. In that case
5185 * just return false.
5186 */
5187 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5188 bld.MOV(dst, brw_imm_ud(0u));
5189 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5190 fs_reg tmp = vgrf(glsl_type::uint_type);
5191 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5192 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5193 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5194 } else {
5195 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5196 BRW_CONDITIONAL_EQ);
5197 }
5198 return;
5199 }
5200 default:
5201 unreachable("unknown texture opcode");
5202 }
5203
5204 if (instr->op == nir_texop_tg4) {
5205 if (instr->component == 1 &&
5206 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5207 /* gather4 sampler is broken for green channel on RG32F --
5208 * we must ask for blue instead.
5209 */
5210 header_bits |= 2 << 16;
5211 } else {
5212 header_bits |= instr->component << 16;
5213 }
5214 }
5215
5216 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5217 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5218 inst->offset = header_bits;
5219
5220 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5221 if (devinfo->gen >= 9 &&
5222 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5223 unsigned write_mask = instr->dest.is_ssa ?
5224 nir_ssa_def_components_read(&instr->dest.ssa):
5225 (1 << dest_size) - 1;
5226 assert(write_mask != 0); /* dead code should have been eliminated */
5227 inst->size_written = util_last_bit(write_mask) *
5228 inst->dst.component_size(inst->exec_size);
5229 } else {
5230 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5231 }
5232
5233 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5234 inst->shadow_compare = true;
5235
5236 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5237 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5238
5239 fs_reg nir_dest[4];
5240 for (unsigned i = 0; i < dest_size; i++)
5241 nir_dest[i] = offset(dst, bld, i);
5242
5243 if (instr->op == nir_texop_query_levels) {
5244 /* # levels is in .w */
5245 nir_dest[0] = offset(dst, bld, 3);
5246 } else if (instr->op == nir_texop_txs &&
5247 dest_size >= 3 && devinfo->gen < 7) {
5248 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5249 fs_reg depth = offset(dst, bld, 2);
5250 nir_dest[2] = vgrf(glsl_type::int_type);
5251 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5252 }
5253
5254 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5255 }
5256
5257 void
5258 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5259 {
5260 switch (instr->type) {
5261 case nir_jump_break:
5262 bld.emit(BRW_OPCODE_BREAK);
5263 break;
5264 case nir_jump_continue:
5265 bld.emit(BRW_OPCODE_CONTINUE);
5266 break;
5267 case nir_jump_return:
5268 default:
5269 unreachable("unknown jump");
5270 }
5271 }
5272
5273 /*
5274 * This helper takes a source register and un/shuffles it into the destination
5275 * register.
5276 *
5277 * If source type size is smaller than destination type size the operation
5278 * needed is a component shuffle. The opposite case would be an unshuffle. If
5279 * source/destination type size is equal a shuffle is done that would be
5280 * equivalent to a simple MOV.
5281 *
5282 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5283 * components .xyz 16-bit vector on SIMD8 would be.
5284 *
5285 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5286 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5287 *
5288 * This helper will return the following 2 32-bit components with the 16-bit
5289 * values shuffled:
5290 *
5291 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5292 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5293 *
5294 * For unshuffle, the example would be the opposite, a 64-bit type source
5295 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5296 * would be:
5297 *
5298 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5299 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5300 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5301 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5302 *
5303 * The returned result would be the following 4 32-bit components unshuffled:
5304 *
5305 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5306 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5307 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5308 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5309 *
5310 * - Source and destination register must not be overlapped.
5311 * - components units are measured in terms of the smaller type between
5312 * source and destination because we are un/shuffling the smaller
5313 * components from/into the bigger ones.
5314 * - first_component parameter allows skipping source components.
5315 */
5316 void
5317 shuffle_src_to_dst(const fs_builder &bld,
5318 const fs_reg &dst,
5319 const fs_reg &src,
5320 uint32_t first_component,
5321 uint32_t components)
5322 {
5323 if (type_sz(src.type) == type_sz(dst.type)) {
5324 assert(!regions_overlap(dst,
5325 type_sz(dst.type) * bld.dispatch_width() * components,
5326 offset(src, bld, first_component),
5327 type_sz(src.type) * bld.dispatch_width() * components));
5328 for (unsigned i = 0; i < components; i++) {
5329 bld.MOV(retype(offset(dst, bld, i), src.type),
5330 offset(src, bld, i + first_component));
5331 }
5332 } else if (type_sz(src.type) < type_sz(dst.type)) {
5333 /* Source is shuffled into destination */
5334 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5335 assert(!regions_overlap(dst,
5336 type_sz(dst.type) * bld.dispatch_width() *
5337 DIV_ROUND_UP(components, size_ratio),
5338 offset(src, bld, first_component),
5339 type_sz(src.type) * bld.dispatch_width() * components));
5340
5341 brw_reg_type shuffle_type =
5342 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5343 BRW_REGISTER_TYPE_D);
5344 for (unsigned i = 0; i < components; i++) {
5345 fs_reg shuffle_component_i =
5346 subscript(offset(dst, bld, i / size_ratio),
5347 shuffle_type, i % size_ratio);
5348 bld.MOV(shuffle_component_i,
5349 retype(offset(src, bld, i + first_component), shuffle_type));
5350 }
5351 } else {
5352 /* Source is unshuffled into destination */
5353 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5354 assert(!regions_overlap(dst,
5355 type_sz(dst.type) * bld.dispatch_width() * components,
5356 offset(src, bld, first_component / size_ratio),
5357 type_sz(src.type) * bld.dispatch_width() *
5358 DIV_ROUND_UP(components + (first_component % size_ratio),
5359 size_ratio)));
5360
5361 brw_reg_type shuffle_type =
5362 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5363 BRW_REGISTER_TYPE_D);
5364 for (unsigned i = 0; i < components; i++) {
5365 fs_reg shuffle_component_i =
5366 subscript(offset(src, bld, (first_component + i) / size_ratio),
5367 shuffle_type, (first_component + i) % size_ratio);
5368 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5369 shuffle_component_i);
5370 }
5371 }
5372 }
5373
5374 void
5375 shuffle_from_32bit_read(const fs_builder &bld,
5376 const fs_reg &dst,
5377 const fs_reg &src,
5378 uint32_t first_component,
5379 uint32_t components)
5380 {
5381 assert(type_sz(src.type) == 4);
5382
5383 /* This function takes components in units of the destination type while
5384 * shuffle_src_to_dst takes components in units of the smallest type
5385 */
5386 if (type_sz(dst.type) > 4) {
5387 assert(type_sz(dst.type) == 8);
5388 first_component *= 2;
5389 components *= 2;
5390 }
5391
5392 shuffle_src_to_dst(bld, dst, src, first_component, components);
5393 }
5394
5395 fs_reg
5396 shuffle_for_32bit_write(const fs_builder &bld,
5397 const fs_reg &src,
5398 uint32_t first_component,
5399 uint32_t components)
5400 {
5401 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5402 DIV_ROUND_UP (components * type_sz(src.type), 4));
5403 /* This function takes components in units of the source type while
5404 * shuffle_src_to_dst takes components in units of the smallest type
5405 */
5406 if (type_sz(src.type) > 4) {
5407 assert(type_sz(src.type) == 8);
5408 first_component *= 2;
5409 components *= 2;
5410 }
5411
5412 shuffle_src_to_dst(bld, dst, src, first_component, components);
5413
5414 return dst;
5415 }
5416
5417 fs_reg
5418 setup_imm_df(const fs_builder &bld, double v)
5419 {
5420 const struct gen_device_info *devinfo = bld.shader->devinfo;
5421 assert(devinfo->gen >= 7);
5422
5423 if (devinfo->gen >= 8)
5424 return brw_imm_df(v);
5425
5426 /* gen7.5 does not support DF immediates straighforward but the DIM
5427 * instruction allows to set the 64-bit immediate value.
5428 */
5429 if (devinfo->is_haswell) {
5430 const fs_builder ubld = bld.exec_all().group(1, 0);
5431 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5432 ubld.DIM(dst, brw_imm_df(v));
5433 return component(dst, 0);
5434 }
5435
5436 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5437 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5438 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5439 *
5440 * Alternatively, we could also produce a normal VGRF (without stride 0)
5441 * by writing to all the channels in the VGRF, however, that would hit the
5442 * gen7 bug where we have to split writes that span more than 1 register
5443 * into instructions with a width of 4 (otherwise the write to the second
5444 * register written runs into an execmask hardware bug) which isn't very
5445 * nice.
5446 */
5447 union {
5448 double d;
5449 struct {
5450 uint32_t i1;
5451 uint32_t i2;
5452 };
5453 } di;
5454
5455 di.d = v;
5456
5457 const fs_builder ubld = bld.exec_all().group(1, 0);
5458 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5459 ubld.MOV(tmp, brw_imm_ud(di.i1));
5460 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5461
5462 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5463 }
5464
5465 fs_reg
5466 setup_imm_b(const fs_builder &bld, int8_t v)
5467 {
5468 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5469 bld.MOV(tmp, brw_imm_w(v));
5470 return tmp;
5471 }
5472
5473 fs_reg
5474 setup_imm_ub(const fs_builder &bld, uint8_t v)
5475 {
5476 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5477 bld.MOV(tmp, brw_imm_uw(v));
5478 return tmp;
5479 }