spirv: Use the same types for resource indices as pointers
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "util/u_math.h"
28 #include "util/bitscan.h"
29
30 using namespace brw;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
43 }
44
45 void
46 fs_visitor::nir_setup_outputs()
47 {
48 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
49 return;
50
51 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
52
53 /* Calculate the size of output registers in a separate pass, before
54 * allocating them. With ARB_enhanced_layouts, multiple output variables
55 * may occupy the same slot, but have different type sizes.
56 */
57 nir_foreach_variable(var, &nir->outputs) {
58 const int loc = var->data.driver_location;
59 const unsigned var_vec4s =
60 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
61 : type_size_vec4(var->type);
62 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
63 }
64
65 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
66 if (vec4s[loc] == 0) {
67 loc++;
68 continue;
69 }
70
71 unsigned reg_size = vec4s[loc];
72
73 /* Check if there are any ranges that start within this range and extend
74 * past it. If so, include them in this allocation.
75 */
76 for (unsigned i = 1; i < reg_size; i++)
77 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
78
79 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
80 for (unsigned i = 0; i < reg_size; i++)
81 outputs[loc + i] = offset(reg, bld, 4 * i);
82
83 loc += reg_size;
84 }
85 }
86
87 void
88 fs_visitor::nir_setup_uniforms()
89 {
90 /* Only the first compile gets to set up uniforms. */
91 if (push_constant_loc) {
92 assert(pull_constant_loc);
93 return;
94 }
95
96 uniforms = nir->num_uniforms / 4;
97
98 if (stage == MESA_SHADER_COMPUTE) {
99 /* Add a uniform for the thread local id. It must be the last uniform
100 * on the list.
101 */
102 assert(uniforms == prog_data->nr_params);
103 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
104 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
105 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
106 }
107 }
108
109 static bool
110 emit_system_values_block(nir_block *block, fs_visitor *v)
111 {
112 fs_reg *reg;
113
114 nir_foreach_instr(instr, block) {
115 if (instr->type != nir_instr_type_intrinsic)
116 continue;
117
118 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
119 switch (intrin->intrinsic) {
120 case nir_intrinsic_load_vertex_id:
121 case nir_intrinsic_load_base_vertex:
122 unreachable("should be lowered by nir_lower_system_values().");
123
124 case nir_intrinsic_load_vertex_id_zero_base:
125 case nir_intrinsic_load_is_indexed_draw:
126 case nir_intrinsic_load_first_vertex:
127 case nir_intrinsic_load_instance_id:
128 case nir_intrinsic_load_base_instance:
129 case nir_intrinsic_load_draw_id:
130 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
131
132 case nir_intrinsic_load_invocation_id:
133 if (v->stage == MESA_SHADER_TESS_CTRL)
134 break;
135 assert(v->stage == MESA_SHADER_GEOMETRY);
136 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
137 if (reg->file == BAD_FILE) {
138 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
139 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
140 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
141 abld.SHR(iid, g1, brw_imm_ud(27u));
142 *reg = iid;
143 }
144 break;
145
146 case nir_intrinsic_load_sample_pos:
147 assert(v->stage == MESA_SHADER_FRAGMENT);
148 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
149 if (reg->file == BAD_FILE)
150 *reg = *v->emit_samplepos_setup();
151 break;
152
153 case nir_intrinsic_load_sample_id:
154 assert(v->stage == MESA_SHADER_FRAGMENT);
155 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
156 if (reg->file == BAD_FILE)
157 *reg = *v->emit_sampleid_setup();
158 break;
159
160 case nir_intrinsic_load_sample_mask_in:
161 assert(v->stage == MESA_SHADER_FRAGMENT);
162 assert(v->devinfo->gen >= 7);
163 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
164 if (reg->file == BAD_FILE)
165 *reg = *v->emit_samplemaskin_setup();
166 break;
167
168 case nir_intrinsic_load_work_group_id:
169 assert(v->stage == MESA_SHADER_COMPUTE);
170 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
171 if (reg->file == BAD_FILE)
172 *reg = *v->emit_cs_work_group_id_setup();
173 break;
174
175 case nir_intrinsic_load_helper_invocation:
176 assert(v->stage == MESA_SHADER_FRAGMENT);
177 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
178 if (reg->file == BAD_FILE) {
179 const fs_builder abld =
180 v->bld.annotate("gl_HelperInvocation", NULL);
181
182 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
183 * pixel mask is in g1.7 of the thread payload.
184 *
185 * We move the per-channel pixel enable bit to the low bit of each
186 * channel by shifting the byte containing the pixel mask by the
187 * vector immediate 0x76543210UV.
188 *
189 * The region of <1,8,0> reads only 1 byte (the pixel masks for
190 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
191 * masks for 2 and 3) in SIMD16.
192 */
193 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
194
195 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
196 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
197 hbld.SHR(offset(shifted, hbld, i),
198 stride(retype(brw_vec1_grf(1 + i, 7),
199 BRW_REGISTER_TYPE_UB),
200 1, 8, 0),
201 brw_imm_v(0x76543210));
202 }
203
204 /* A set bit in the pixel mask means the channel is enabled, but
205 * that is the opposite of gl_HelperInvocation so we need to invert
206 * the mask.
207 *
208 * The negate source-modifier bit of logical instructions on Gen8+
209 * performs 1's complement negation, so we can use that instead of
210 * a NOT instruction.
211 */
212 fs_reg inverted = negate(shifted);
213 if (v->devinfo->gen < 8) {
214 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
215 abld.NOT(inverted, shifted);
216 }
217
218 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
219 * with 1 and negating.
220 */
221 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
222 abld.AND(anded, inverted, brw_imm_uw(1));
223
224 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
225 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
226 *reg = dst;
227 }
228 break;
229
230 default:
231 break;
232 }
233 }
234
235 return true;
236 }
237
238 void
239 fs_visitor::nir_emit_system_values()
240 {
241 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
242 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
243 nir_system_values[i] = fs_reg();
244 }
245
246 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
247 * never end up using it.
248 */
249 {
250 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
251 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
252 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
253
254 const fs_builder allbld8 = abld.group(8, 0).exec_all();
255 allbld8.MOV(reg, brw_imm_v(0x76543210));
256 if (dispatch_width > 8)
257 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
258 if (dispatch_width > 16) {
259 const fs_builder allbld16 = abld.group(16, 0).exec_all();
260 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
261 }
262 }
263
264 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
265 nir_foreach_block(block, impl)
266 emit_system_values_block(block, this);
267 }
268
269 /*
270 * Returns a type based on a reference_type (word, float, half-float) and a
271 * given bit_size.
272 *
273 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
274 *
275 * @FIXME: 64-bit return types are always DF on integer types to maintain
276 * compability with uses of DF previously to the introduction of int64
277 * support.
278 */
279 static brw_reg_type
280 brw_reg_type_from_bit_size(const unsigned bit_size,
281 const brw_reg_type reference_type)
282 {
283 switch(reference_type) {
284 case BRW_REGISTER_TYPE_HF:
285 case BRW_REGISTER_TYPE_F:
286 case BRW_REGISTER_TYPE_DF:
287 switch(bit_size) {
288 case 16:
289 return BRW_REGISTER_TYPE_HF;
290 case 32:
291 return BRW_REGISTER_TYPE_F;
292 case 64:
293 return BRW_REGISTER_TYPE_DF;
294 default:
295 unreachable("Invalid bit size");
296 }
297 case BRW_REGISTER_TYPE_B:
298 case BRW_REGISTER_TYPE_W:
299 case BRW_REGISTER_TYPE_D:
300 case BRW_REGISTER_TYPE_Q:
301 switch(bit_size) {
302 case 8:
303 return BRW_REGISTER_TYPE_B;
304 case 16:
305 return BRW_REGISTER_TYPE_W;
306 case 32:
307 return BRW_REGISTER_TYPE_D;
308 case 64:
309 return BRW_REGISTER_TYPE_Q;
310 default:
311 unreachable("Invalid bit size");
312 }
313 case BRW_REGISTER_TYPE_UB:
314 case BRW_REGISTER_TYPE_UW:
315 case BRW_REGISTER_TYPE_UD:
316 case BRW_REGISTER_TYPE_UQ:
317 switch(bit_size) {
318 case 8:
319 return BRW_REGISTER_TYPE_UB;
320 case 16:
321 return BRW_REGISTER_TYPE_UW;
322 case 32:
323 return BRW_REGISTER_TYPE_UD;
324 case 64:
325 return BRW_REGISTER_TYPE_UQ;
326 default:
327 unreachable("Invalid bit size");
328 }
329 default:
330 unreachable("Unknown type");
331 }
332 }
333
334 void
335 fs_visitor::nir_emit_impl(nir_function_impl *impl)
336 {
337 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
338 for (unsigned i = 0; i < impl->reg_alloc; i++) {
339 nir_locals[i] = fs_reg();
340 }
341
342 foreach_list_typed(nir_register, reg, node, &impl->registers) {
343 unsigned array_elems =
344 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
345 unsigned size = array_elems * reg->num_components;
346 const brw_reg_type reg_type =
347 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
348 nir_locals[reg->index] = bld.vgrf(reg_type, size);
349 }
350
351 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
352 impl->ssa_alloc);
353
354 nir_emit_cf_list(&impl->body);
355 }
356
357 void
358 fs_visitor::nir_emit_cf_list(exec_list *list)
359 {
360 exec_list_validate(list);
361 foreach_list_typed(nir_cf_node, node, node, list) {
362 switch (node->type) {
363 case nir_cf_node_if:
364 nir_emit_if(nir_cf_node_as_if(node));
365 break;
366
367 case nir_cf_node_loop:
368 nir_emit_loop(nir_cf_node_as_loop(node));
369 break;
370
371 case nir_cf_node_block:
372 nir_emit_block(nir_cf_node_as_block(node));
373 break;
374
375 default:
376 unreachable("Invalid CFG node block");
377 }
378 }
379 }
380
381 void
382 fs_visitor::nir_emit_if(nir_if *if_stmt)
383 {
384 bool invert;
385 fs_reg cond_reg;
386
387 /* If the condition has the form !other_condition, use other_condition as
388 * the source, but invert the predicate on the if instruction.
389 */
390 nir_alu_instr *const cond = nir_src_as_alu_instr(&if_stmt->condition);
391 if (cond != NULL && cond->op == nir_op_inot) {
392 assert(!cond->src[0].negate);
393 assert(!cond->src[0].abs);
394
395 invert = true;
396 cond_reg = get_nir_src(cond->src[0].src);
397 } else {
398 invert = false;
399 cond_reg = get_nir_src(if_stmt->condition);
400 }
401
402 /* first, put the condition into f0 */
403 fs_inst *inst = bld.MOV(bld.null_reg_d(),
404 retype(cond_reg, BRW_REGISTER_TYPE_D));
405 inst->conditional_mod = BRW_CONDITIONAL_NZ;
406
407 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
408
409 nir_emit_cf_list(&if_stmt->then_list);
410
411 /* note: if the else is empty, dead CF elimination will remove it */
412 bld.emit(BRW_OPCODE_ELSE);
413
414 nir_emit_cf_list(&if_stmt->else_list);
415
416 bld.emit(BRW_OPCODE_ENDIF);
417
418 if (devinfo->gen < 7)
419 limit_dispatch_width(16, "Non-uniform control flow unsupported "
420 "in SIMD32 mode.");
421 }
422
423 void
424 fs_visitor::nir_emit_loop(nir_loop *loop)
425 {
426 bld.emit(BRW_OPCODE_DO);
427
428 nir_emit_cf_list(&loop->body);
429
430 bld.emit(BRW_OPCODE_WHILE);
431
432 if (devinfo->gen < 7)
433 limit_dispatch_width(16, "Non-uniform control flow unsupported "
434 "in SIMD32 mode.");
435 }
436
437 void
438 fs_visitor::nir_emit_block(nir_block *block)
439 {
440 nir_foreach_instr(instr, block) {
441 nir_emit_instr(instr);
442 }
443 }
444
445 void
446 fs_visitor::nir_emit_instr(nir_instr *instr)
447 {
448 const fs_builder abld = bld.annotate(NULL, instr);
449
450 switch (instr->type) {
451 case nir_instr_type_alu:
452 nir_emit_alu(abld, nir_instr_as_alu(instr));
453 break;
454
455 case nir_instr_type_deref:
456 /* Derefs can exist for images but they do nothing */
457 break;
458
459 case nir_instr_type_intrinsic:
460 switch (stage) {
461 case MESA_SHADER_VERTEX:
462 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
463 break;
464 case MESA_SHADER_TESS_CTRL:
465 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
466 break;
467 case MESA_SHADER_TESS_EVAL:
468 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
469 break;
470 case MESA_SHADER_GEOMETRY:
471 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
472 break;
473 case MESA_SHADER_FRAGMENT:
474 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
475 break;
476 case MESA_SHADER_COMPUTE:
477 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
478 break;
479 default:
480 unreachable("unsupported shader stage");
481 }
482 break;
483
484 case nir_instr_type_tex:
485 nir_emit_texture(abld, nir_instr_as_tex(instr));
486 break;
487
488 case nir_instr_type_load_const:
489 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
490 break;
491
492 case nir_instr_type_ssa_undef:
493 /* We create a new VGRF for undefs on every use (by handling
494 * them in get_nir_src()), rather than for each definition.
495 * This helps register coalescing eliminate MOVs from undef.
496 */
497 break;
498
499 case nir_instr_type_jump:
500 nir_emit_jump(abld, nir_instr_as_jump(instr));
501 break;
502
503 default:
504 unreachable("unknown instruction type");
505 }
506 }
507
508 /**
509 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
510 * match instr.
511 */
512 bool
513 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
514 const fs_reg &result)
515 {
516 if (!instr->src[0].src.is_ssa ||
517 !instr->src[0].src.ssa->parent_instr)
518 return false;
519
520 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
521 return false;
522
523 nir_alu_instr *src0 =
524 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
525
526 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
527 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
528 return false;
529
530 /* If either opcode has source modifiers, bail.
531 *
532 * TODO: We can potentially handle source modifiers if both of the opcodes
533 * we're combining are signed integers.
534 */
535 if (instr->src[0].abs || instr->src[0].negate ||
536 src0->src[0].abs || src0->src[0].negate)
537 return false;
538
539 unsigned element = nir_src_as_uint(src0->src[1].src);
540
541 /* Element type to extract.*/
542 const brw_reg_type type = brw_int_type(
543 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
544 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
545
546 fs_reg op0 = get_nir_src(src0->src[0].src);
547 op0.type = brw_type_for_nir_type(devinfo,
548 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
549 nir_src_bit_size(src0->src[0].src)));
550 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
551
552 set_saturate(instr->dest.saturate,
553 bld.MOV(result, subscript(op0, type, element)));
554 return true;
555 }
556
557 bool
558 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
559 const fs_reg &result)
560 {
561 if (!instr->src[0].src.is_ssa ||
562 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
563 return false;
564
565 nir_intrinsic_instr *src0 =
566 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
567
568 if (src0->intrinsic != nir_intrinsic_load_front_face)
569 return false;
570
571 if (!nir_src_is_const(instr->src[1].src) ||
572 !nir_src_is_const(instr->src[2].src))
573 return false;
574
575 const float value1 = nir_src_as_float(instr->src[1].src);
576 const float value2 = nir_src_as_float(instr->src[2].src);
577 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
578 return false;
579
580 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
581 assert(value1 == -value2);
582
583 fs_reg tmp = vgrf(glsl_type::int_type);
584
585 if (devinfo->gen >= 6) {
586 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
587 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
588
589 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
590 *
591 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
592 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
593 *
594 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
595 *
596 * This negation looks like it's safe in practice, because bits 0:4 will
597 * surely be TRIANGLES
598 */
599
600 if (value1 == -1.0f) {
601 g0.negate = true;
602 }
603
604 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
605 g0, brw_imm_uw(0x3f80));
606 } else {
607 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
608 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
609
610 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
611 *
612 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
613 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
614 *
615 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
616 *
617 * This negation looks like it's safe in practice, because bits 0:4 will
618 * surely be TRIANGLES
619 */
620
621 if (value1 == -1.0f) {
622 g1_6.negate = true;
623 }
624
625 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
626 }
627 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
628
629 return true;
630 }
631
632 static void
633 emit_find_msb_using_lzd(const fs_builder &bld,
634 const fs_reg &result,
635 const fs_reg &src,
636 bool is_signed)
637 {
638 fs_inst *inst;
639 fs_reg temp = src;
640
641 if (is_signed) {
642 /* LZD of an absolute value source almost always does the right
643 * thing. There are two problem values:
644 *
645 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
646 * 0. However, findMSB(int(0x80000000)) == 30.
647 *
648 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
649 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
650 *
651 * For a value of zero or negative one, -1 will be returned.
652 *
653 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
654 * findMSB(-(1<<x)) should return x-1.
655 *
656 * For all negative number cases, including 0x80000000 and
657 * 0xffffffff, the correct value is obtained from LZD if instead of
658 * negating the (already negative) value the logical-not is used. A
659 * conditonal logical-not can be achieved in two instructions.
660 */
661 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
662
663 bld.ASR(temp, src, brw_imm_d(31));
664 bld.XOR(temp, temp, src);
665 }
666
667 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
668 retype(temp, BRW_REGISTER_TYPE_UD));
669
670 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
671 * from the LSB side. Subtract the result from 31 to convert the MSB
672 * count into an LSB count. If no bits are set, LZD will return 32.
673 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
674 */
675 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
676 inst->src[0].negate = true;
677 }
678
679 static brw_rnd_mode
680 brw_rnd_mode_from_nir_op (const nir_op op) {
681 switch (op) {
682 case nir_op_f2f16_rtz:
683 return BRW_RND_MODE_RTZ;
684 case nir_op_f2f16_rtne:
685 return BRW_RND_MODE_RTNE;
686 default:
687 unreachable("Operation doesn't support rounding mode");
688 }
689 }
690
691 fs_reg
692 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
693 nir_alu_instr *instr,
694 fs_reg *op,
695 bool need_dest)
696 {
697 fs_reg result =
698 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
699
700 result.type = brw_type_for_nir_type(devinfo,
701 (nir_alu_type)(nir_op_infos[instr->op].output_type |
702 nir_dest_bit_size(instr->dest.dest)));
703
704 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
705 op[i] = get_nir_src(instr->src[i].src);
706 op[i].type = brw_type_for_nir_type(devinfo,
707 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
708 nir_src_bit_size(instr->src[i].src)));
709 op[i].abs = instr->src[i].abs;
710 op[i].negate = instr->src[i].negate;
711 }
712
713 /* Move and vecN instrutions may still be vectored. Return the raw,
714 * vectored source and destination so that fs_visitor::nir_emit_alu can
715 * handle it. Other callers should not have to handle these kinds of
716 * instructions.
717 */
718 switch (instr->op) {
719 case nir_op_imov:
720 case nir_op_fmov:
721 case nir_op_vec2:
722 case nir_op_vec3:
723 case nir_op_vec4:
724 return result;
725 default:
726 break;
727 }
728
729 /* At this point, we have dealt with any instruction that operates on
730 * more than a single channel. Therefore, we can just adjust the source
731 * and destination registers for that channel and emit the instruction.
732 */
733 unsigned channel = 0;
734 if (nir_op_infos[instr->op].output_size == 0) {
735 /* Since NIR is doing the scalarizing for us, we should only ever see
736 * vectorized operations with a single channel.
737 */
738 assert(util_bitcount(instr->dest.write_mask) == 1);
739 channel = ffs(instr->dest.write_mask) - 1;
740
741 result = offset(result, bld, channel);
742 }
743
744 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
745 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
746 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
747 }
748
749 return result;
750 }
751
752 void
753 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
754 fs_reg *op)
755 {
756 for (unsigned i = 0; i < 2; i++) {
757 nir_alu_instr *const inot_instr =
758 nir_src_as_alu_instr(&instr->src[i].src);
759
760 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
761 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
762 /* The source of the inot is now the source of instr. */
763 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
764
765 assert(!op[i].negate);
766 op[i].negate = true;
767 } else {
768 op[i] = resolve_source_modifiers(op[i]);
769 }
770 }
771 }
772
773 bool
774 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
775 fs_reg result,
776 nir_alu_instr *instr)
777 {
778 if (devinfo->gen < 6 || devinfo->gen >= 12)
779 return false;
780
781 nir_alu_instr *const inot_instr = nir_src_as_alu_instr(&instr->src[0].src);
782
783 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
784 return false;
785
786 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
787 * of valid size-changing combinations is a bit more complex.
788 *
789 * The source restriction is just because I was lazy about generating the
790 * constant below.
791 */
792 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
793 nir_src_bit_size(inot_instr->src[0].src) != 32)
794 return false;
795
796 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
797 * this is float(1 + a).
798 */
799 fs_reg op;
800
801 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
802
803 /* Ignore the saturate modifier, if there is one. The result of the
804 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
805 */
806 bld.ADD(result, op, brw_imm_d(1));
807
808 return true;
809 }
810
811 void
812 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
813 {
814 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
815 fs_inst *inst;
816
817 fs_reg op[4];
818 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, true);
819
820 switch (instr->op) {
821 case nir_op_imov:
822 case nir_op_fmov:
823 case nir_op_vec2:
824 case nir_op_vec3:
825 case nir_op_vec4: {
826 fs_reg temp = result;
827 bool need_extra_copy = false;
828 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
829 if (!instr->src[i].src.is_ssa &&
830 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
831 need_extra_copy = true;
832 temp = bld.vgrf(result.type, 4);
833 break;
834 }
835 }
836
837 for (unsigned i = 0; i < 4; i++) {
838 if (!(instr->dest.write_mask & (1 << i)))
839 continue;
840
841 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
842 inst = bld.MOV(offset(temp, bld, i),
843 offset(op[0], bld, instr->src[0].swizzle[i]));
844 } else {
845 inst = bld.MOV(offset(temp, bld, i),
846 offset(op[i], bld, instr->src[i].swizzle[0]));
847 }
848 inst->saturate = instr->dest.saturate;
849 }
850
851 /* In this case the source and destination registers were the same,
852 * so we need to insert an extra set of moves in order to deal with
853 * any swizzling.
854 */
855 if (need_extra_copy) {
856 for (unsigned i = 0; i < 4; i++) {
857 if (!(instr->dest.write_mask & (1 << i)))
858 continue;
859
860 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
861 }
862 }
863 return;
864 }
865
866 case nir_op_i2f32:
867 case nir_op_u2f32:
868 if (optimize_extract_to_float(instr, result))
869 return;
870 inst = bld.MOV(result, op[0]);
871 inst->saturate = instr->dest.saturate;
872 break;
873
874 case nir_op_f2f16_rtne:
875 case nir_op_f2f16_rtz:
876 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
877 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
878 /* fallthrough */
879
880 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
881 * on the HW gen, it is a special hw opcode or just a MOV, and
882 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
883 *
884 * But if we want to use that opcode, we need to provide support on
885 * different optimizations and lowerings. As right now HF support is
886 * only for gen8+, it will be better to use directly the MOV, and use
887 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
888 */
889
890 case nir_op_f2f16:
891 inst = bld.MOV(result, op[0]);
892 inst->saturate = instr->dest.saturate;
893 break;
894
895 case nir_op_b2i8:
896 case nir_op_b2i16:
897 case nir_op_b2i32:
898 case nir_op_b2i64:
899 case nir_op_b2f16:
900 case nir_op_b2f32:
901 case nir_op_b2f64:
902 if (try_emit_b2fi_of_inot(bld, result, instr))
903 break;
904 op[0].type = BRW_REGISTER_TYPE_D;
905 op[0].negate = !op[0].negate;
906 /* fallthrough */
907 case nir_op_f2f64:
908 case nir_op_f2i64:
909 case nir_op_f2u64:
910 case nir_op_i2f64:
911 case nir_op_i2i64:
912 case nir_op_u2f64:
913 case nir_op_u2u64:
914 case nir_op_f2f32:
915 case nir_op_f2i32:
916 case nir_op_f2u32:
917 case nir_op_f2i16:
918 case nir_op_f2u16:
919 case nir_op_i2i32:
920 case nir_op_u2u32:
921 case nir_op_i2i16:
922 case nir_op_u2u16:
923 case nir_op_i2f16:
924 case nir_op_u2f16:
925 case nir_op_i2i8:
926 case nir_op_u2u8:
927 inst = bld.MOV(result, op[0]);
928 inst->saturate = instr->dest.saturate;
929 break;
930
931 case nir_op_fsign: {
932 assert(!instr->dest.saturate);
933 if (op[0].abs) {
934 /* Straightforward since the source can be assumed to be either
935 * strictly >= 0 or strictly <= 0 depending on the setting of the
936 * negate flag.
937 */
938 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
939
940 inst = (op[0].negate)
941 ? bld.MOV(result, brw_imm_f(-1.0f))
942 : bld.MOV(result, brw_imm_f(1.0f));
943
944 set_predicate(BRW_PREDICATE_NORMAL, inst);
945 } else if (type_sz(op[0].type) < 8) {
946 /* AND(val, 0x80000000) gives the sign bit.
947 *
948 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
949 * zero.
950 */
951 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
952
953 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
954 op[0].type = BRW_REGISTER_TYPE_UD;
955 result.type = BRW_REGISTER_TYPE_UD;
956 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
957
958 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
959 inst->predicate = BRW_PREDICATE_NORMAL;
960 } else {
961 /* For doubles we do the same but we need to consider:
962 *
963 * - 2-src instructions can't operate with 64-bit immediates
964 * - The sign is encoded in the high 32-bit of each DF
965 * - We need to produce a DF result.
966 */
967
968 fs_reg zero = vgrf(glsl_type::double_type);
969 bld.MOV(zero, setup_imm_df(bld, 0.0));
970 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
971
972 bld.MOV(result, zero);
973
974 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
975 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
976 brw_imm_ud(0x80000000u));
977
978 set_predicate(BRW_PREDICATE_NORMAL,
979 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
980 }
981 break;
982 }
983
984 case nir_op_frcp:
985 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
986 inst->saturate = instr->dest.saturate;
987 break;
988
989 case nir_op_fexp2:
990 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
991 inst->saturate = instr->dest.saturate;
992 break;
993
994 case nir_op_flog2:
995 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
996 inst->saturate = instr->dest.saturate;
997 break;
998
999 case nir_op_fsin:
1000 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1001 inst->saturate = instr->dest.saturate;
1002 break;
1003
1004 case nir_op_fcos:
1005 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1006 inst->saturate = instr->dest.saturate;
1007 break;
1008
1009 case nir_op_fddx:
1010 if (fs_key->high_quality_derivatives) {
1011 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1012 } else {
1013 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1014 }
1015 inst->saturate = instr->dest.saturate;
1016 break;
1017 case nir_op_fddx_fine:
1018 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1019 inst->saturate = instr->dest.saturate;
1020 break;
1021 case nir_op_fddx_coarse:
1022 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1023 inst->saturate = instr->dest.saturate;
1024 break;
1025 case nir_op_fddy:
1026 if (fs_key->high_quality_derivatives) {
1027 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1028 } else {
1029 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1030 }
1031 inst->saturate = instr->dest.saturate;
1032 break;
1033 case nir_op_fddy_fine:
1034 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1035 inst->saturate = instr->dest.saturate;
1036 break;
1037 case nir_op_fddy_coarse:
1038 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1039 inst->saturate = instr->dest.saturate;
1040 break;
1041
1042 case nir_op_iadd:
1043 case nir_op_fadd:
1044 inst = bld.ADD(result, op[0], op[1]);
1045 inst->saturate = instr->dest.saturate;
1046 break;
1047
1048 case nir_op_uadd_sat:
1049 inst = bld.ADD(result, op[0], op[1]);
1050 inst->saturate = true;
1051 break;
1052
1053 case nir_op_fmul:
1054 inst = bld.MUL(result, op[0], op[1]);
1055 inst->saturate = instr->dest.saturate;
1056 break;
1057
1058 case nir_op_imul_2x32_64:
1059 case nir_op_umul_2x32_64:
1060 bld.MUL(result, op[0], op[1]);
1061 break;
1062
1063 case nir_op_imul:
1064 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1065 bld.MUL(result, op[0], op[1]);
1066 break;
1067
1068 case nir_op_imul_high:
1069 case nir_op_umul_high:
1070 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1071 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1072 break;
1073
1074 case nir_op_idiv:
1075 case nir_op_udiv:
1076 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1077 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1078 break;
1079
1080 case nir_op_uadd_carry:
1081 unreachable("Should have been lowered by carry_to_arith().");
1082
1083 case nir_op_usub_borrow:
1084 unreachable("Should have been lowered by borrow_to_arith().");
1085
1086 case nir_op_umod:
1087 case nir_op_irem:
1088 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1089 * appears that our hardware just does the right thing for signed
1090 * remainder.
1091 */
1092 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1093 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1094 break;
1095
1096 case nir_op_imod: {
1097 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1098 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1099
1100 /* Math instructions don't support conditional mod */
1101 inst = bld.MOV(bld.null_reg_d(), result);
1102 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1103
1104 /* Now, we need to determine if signs of the sources are different.
1105 * When we XOR the sources, the top bit is 0 if they are the same and 1
1106 * if they are different. We can then use a conditional modifier to
1107 * turn that into a predicate. This leads us to an XOR.l instruction.
1108 *
1109 * Technically, according to the PRM, you're not allowed to use .l on a
1110 * XOR instruction. However, emperical experiments and Curro's reading
1111 * of the simulator source both indicate that it's safe.
1112 */
1113 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1114 inst = bld.XOR(tmp, op[0], op[1]);
1115 inst->predicate = BRW_PREDICATE_NORMAL;
1116 inst->conditional_mod = BRW_CONDITIONAL_L;
1117
1118 /* If the result of the initial remainder operation is non-zero and the
1119 * two sources have different signs, add in a copy of op[1] to get the
1120 * final integer modulus value.
1121 */
1122 inst = bld.ADD(result, result, op[1]);
1123 inst->predicate = BRW_PREDICATE_NORMAL;
1124 break;
1125 }
1126
1127 case nir_op_flt32:
1128 case nir_op_fge32:
1129 case nir_op_feq32:
1130 case nir_op_fne32: {
1131 fs_reg dest = result;
1132
1133 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1134 if (bit_size != 32)
1135 dest = bld.vgrf(op[0].type, 1);
1136
1137 brw_conditional_mod cond;
1138 switch (instr->op) {
1139 case nir_op_flt32:
1140 cond = BRW_CONDITIONAL_L;
1141 break;
1142 case nir_op_fge32:
1143 cond = BRW_CONDITIONAL_GE;
1144 break;
1145 case nir_op_feq32:
1146 cond = BRW_CONDITIONAL_Z;
1147 break;
1148 case nir_op_fne32:
1149 cond = BRW_CONDITIONAL_NZ;
1150 break;
1151 default:
1152 unreachable("bad opcode");
1153 }
1154
1155 bld.CMP(dest, op[0], op[1], cond);
1156
1157 if (bit_size > 32) {
1158 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1159 } else if(bit_size < 32) {
1160 /* When we convert the result to 32-bit we need to be careful and do
1161 * it as a signed conversion to get sign extension (for 32-bit true)
1162 */
1163 const brw_reg_type src_type =
1164 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1165
1166 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1167 }
1168 break;
1169 }
1170
1171 case nir_op_ilt32:
1172 case nir_op_ult32:
1173 case nir_op_ige32:
1174 case nir_op_uge32:
1175 case nir_op_ieq32:
1176 case nir_op_ine32: {
1177 fs_reg dest = result;
1178
1179 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1180 if (bit_size != 32)
1181 dest = bld.vgrf(op[0].type, 1);
1182
1183 brw_conditional_mod cond;
1184 switch (instr->op) {
1185 case nir_op_ilt32:
1186 case nir_op_ult32:
1187 cond = BRW_CONDITIONAL_L;
1188 break;
1189 case nir_op_ige32:
1190 case nir_op_uge32:
1191 cond = BRW_CONDITIONAL_GE;
1192 break;
1193 case nir_op_ieq32:
1194 cond = BRW_CONDITIONAL_Z;
1195 break;
1196 case nir_op_ine32:
1197 cond = BRW_CONDITIONAL_NZ;
1198 break;
1199 default:
1200 unreachable("bad opcode");
1201 }
1202 bld.CMP(dest, op[0], op[1], cond);
1203
1204 if (bit_size > 32) {
1205 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1206 } else if (bit_size < 32) {
1207 /* When we convert the result to 32-bit we need to be careful and do
1208 * it as a signed conversion to get sign extension (for 32-bit true)
1209 */
1210 const brw_reg_type src_type =
1211 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1212
1213 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1214 }
1215 break;
1216 }
1217
1218 case nir_op_inot:
1219 if (devinfo->gen >= 8) {
1220 nir_alu_instr *const inot_src_instr =
1221 nir_src_as_alu_instr(&instr->src[0].src);
1222
1223 if (inot_src_instr != NULL &&
1224 (inot_src_instr->op == nir_op_ior ||
1225 inot_src_instr->op == nir_op_ixor ||
1226 inot_src_instr->op == nir_op_iand) &&
1227 !inot_src_instr->src[0].abs &&
1228 !inot_src_instr->src[0].negate &&
1229 !inot_src_instr->src[1].abs &&
1230 !inot_src_instr->src[1].negate) {
1231 /* The sources of the source logical instruction are now the
1232 * sources of the instruction that will be generated.
1233 */
1234 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1235 resolve_inot_sources(bld, inot_src_instr, op);
1236
1237 /* Smash all of the sources and destination to be signed. This
1238 * doesn't matter for the operation of the instruction, but cmod
1239 * propagation fails on unsigned sources with negation (due to
1240 * fs_inst::can_do_cmod returning false).
1241 */
1242 result.type =
1243 brw_type_for_nir_type(devinfo,
1244 (nir_alu_type)(nir_type_int |
1245 nir_dest_bit_size(instr->dest.dest)));
1246 op[0].type =
1247 brw_type_for_nir_type(devinfo,
1248 (nir_alu_type)(nir_type_int |
1249 nir_src_bit_size(inot_src_instr->src[0].src)));
1250 op[1].type =
1251 brw_type_for_nir_type(devinfo,
1252 (nir_alu_type)(nir_type_int |
1253 nir_src_bit_size(inot_src_instr->src[1].src)));
1254
1255 /* For XOR, only invert one of the sources. Arbitrarily choose
1256 * the first source.
1257 */
1258 op[0].negate = !op[0].negate;
1259 if (inot_src_instr->op != nir_op_ixor)
1260 op[1].negate = !op[1].negate;
1261
1262 switch (inot_src_instr->op) {
1263 case nir_op_ior:
1264 bld.AND(result, op[0], op[1]);
1265 return;
1266
1267 case nir_op_iand:
1268 bld.OR(result, op[0], op[1]);
1269 return;
1270
1271 case nir_op_ixor:
1272 bld.XOR(result, op[0], op[1]);
1273 return;
1274
1275 default:
1276 unreachable("impossible opcode");
1277 }
1278 }
1279 op[0] = resolve_source_modifiers(op[0]);
1280 }
1281 bld.NOT(result, op[0]);
1282 break;
1283 case nir_op_ixor:
1284 if (devinfo->gen >= 8) {
1285 resolve_inot_sources(bld, instr, op);
1286 }
1287 bld.XOR(result, op[0], op[1]);
1288 break;
1289 case nir_op_ior:
1290 if (devinfo->gen >= 8) {
1291 resolve_inot_sources(bld, instr, op);
1292 }
1293 bld.OR(result, op[0], op[1]);
1294 break;
1295 case nir_op_iand:
1296 if (devinfo->gen >= 8) {
1297 resolve_inot_sources(bld, instr, op);
1298 }
1299 bld.AND(result, op[0], op[1]);
1300 break;
1301
1302 case nir_op_fdot2:
1303 case nir_op_fdot3:
1304 case nir_op_fdot4:
1305 case nir_op_b32all_fequal2:
1306 case nir_op_b32all_iequal2:
1307 case nir_op_b32all_fequal3:
1308 case nir_op_b32all_iequal3:
1309 case nir_op_b32all_fequal4:
1310 case nir_op_b32all_iequal4:
1311 case nir_op_b32any_fnequal2:
1312 case nir_op_b32any_inequal2:
1313 case nir_op_b32any_fnequal3:
1314 case nir_op_b32any_inequal3:
1315 case nir_op_b32any_fnequal4:
1316 case nir_op_b32any_inequal4:
1317 unreachable("Lowered by nir_lower_alu_reductions");
1318
1319 case nir_op_fnoise1_1:
1320 case nir_op_fnoise1_2:
1321 case nir_op_fnoise1_3:
1322 case nir_op_fnoise1_4:
1323 case nir_op_fnoise2_1:
1324 case nir_op_fnoise2_2:
1325 case nir_op_fnoise2_3:
1326 case nir_op_fnoise2_4:
1327 case nir_op_fnoise3_1:
1328 case nir_op_fnoise3_2:
1329 case nir_op_fnoise3_3:
1330 case nir_op_fnoise3_4:
1331 case nir_op_fnoise4_1:
1332 case nir_op_fnoise4_2:
1333 case nir_op_fnoise4_3:
1334 case nir_op_fnoise4_4:
1335 unreachable("not reached: should be handled by lower_noise");
1336
1337 case nir_op_ldexp:
1338 unreachable("not reached: should be handled by ldexp_to_arith()");
1339
1340 case nir_op_fsqrt:
1341 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1342 inst->saturate = instr->dest.saturate;
1343 break;
1344
1345 case nir_op_frsq:
1346 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1347 inst->saturate = instr->dest.saturate;
1348 break;
1349
1350 case nir_op_i2b32:
1351 case nir_op_f2b32: {
1352 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1353 if (bit_size == 64) {
1354 /* two-argument instructions can't take 64-bit immediates */
1355 fs_reg zero;
1356 fs_reg tmp;
1357
1358 if (instr->op == nir_op_f2b32) {
1359 zero = vgrf(glsl_type::double_type);
1360 tmp = vgrf(glsl_type::double_type);
1361 bld.MOV(zero, setup_imm_df(bld, 0.0));
1362 } else {
1363 zero = vgrf(glsl_type::int64_t_type);
1364 tmp = vgrf(glsl_type::int64_t_type);
1365 bld.MOV(zero, brw_imm_q(0));
1366 }
1367
1368 /* A SIMD16 execution needs to be split in two instructions, so use
1369 * a vgrf instead of the flag register as dst so instruction splitting
1370 * works
1371 */
1372 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1373 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1374 } else {
1375 fs_reg zero;
1376 if (bit_size == 32) {
1377 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1378 } else {
1379 assert(bit_size == 16);
1380 zero = instr->op == nir_op_f2b32 ?
1381 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1382 }
1383 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1384 }
1385 break;
1386 }
1387
1388 case nir_op_ftrunc:
1389 inst = bld.RNDZ(result, op[0]);
1390 inst->saturate = instr->dest.saturate;
1391 break;
1392
1393 case nir_op_fceil: {
1394 op[0].negate = !op[0].negate;
1395 fs_reg temp = vgrf(glsl_type::float_type);
1396 bld.RNDD(temp, op[0]);
1397 temp.negate = true;
1398 inst = bld.MOV(result, temp);
1399 inst->saturate = instr->dest.saturate;
1400 break;
1401 }
1402 case nir_op_ffloor:
1403 inst = bld.RNDD(result, op[0]);
1404 inst->saturate = instr->dest.saturate;
1405 break;
1406 case nir_op_ffract:
1407 inst = bld.FRC(result, op[0]);
1408 inst->saturate = instr->dest.saturate;
1409 break;
1410 case nir_op_fround_even:
1411 inst = bld.RNDE(result, op[0]);
1412 inst->saturate = instr->dest.saturate;
1413 break;
1414
1415 case nir_op_fquantize2f16: {
1416 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1417 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1418 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1419
1420 /* The destination stride must be at least as big as the source stride. */
1421 tmp16.type = BRW_REGISTER_TYPE_W;
1422 tmp16.stride = 2;
1423
1424 /* Check for denormal */
1425 fs_reg abs_src0 = op[0];
1426 abs_src0.abs = true;
1427 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1428 BRW_CONDITIONAL_L);
1429 /* Get the appropriately signed zero */
1430 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1431 retype(op[0], BRW_REGISTER_TYPE_UD),
1432 brw_imm_ud(0x80000000));
1433 /* Do the actual F32 -> F16 -> F32 conversion */
1434 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1435 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1436 /* Select that or zero based on normal status */
1437 inst = bld.SEL(result, zero, tmp32);
1438 inst->predicate = BRW_PREDICATE_NORMAL;
1439 inst->saturate = instr->dest.saturate;
1440 break;
1441 }
1442
1443 case nir_op_imin:
1444 case nir_op_umin:
1445 case nir_op_fmin:
1446 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1447 inst->saturate = instr->dest.saturate;
1448 break;
1449
1450 case nir_op_imax:
1451 case nir_op_umax:
1452 case nir_op_fmax:
1453 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1454 inst->saturate = instr->dest.saturate;
1455 break;
1456
1457 case nir_op_pack_snorm_2x16:
1458 case nir_op_pack_snorm_4x8:
1459 case nir_op_pack_unorm_2x16:
1460 case nir_op_pack_unorm_4x8:
1461 case nir_op_unpack_snorm_2x16:
1462 case nir_op_unpack_snorm_4x8:
1463 case nir_op_unpack_unorm_2x16:
1464 case nir_op_unpack_unorm_4x8:
1465 case nir_op_unpack_half_2x16:
1466 case nir_op_pack_half_2x16:
1467 unreachable("not reached: should be handled by lower_packing_builtins");
1468
1469 case nir_op_unpack_half_2x16_split_x:
1470 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1471 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1472 inst->saturate = instr->dest.saturate;
1473 break;
1474 case nir_op_unpack_half_2x16_split_y:
1475 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1476 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1477 inst->saturate = instr->dest.saturate;
1478 break;
1479
1480 case nir_op_pack_64_2x32_split:
1481 case nir_op_pack_32_2x16_split:
1482 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1483 break;
1484
1485 case nir_op_unpack_64_2x32_split_x:
1486 case nir_op_unpack_64_2x32_split_y: {
1487 if (instr->op == nir_op_unpack_64_2x32_split_x)
1488 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1489 else
1490 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1491 break;
1492 }
1493
1494 case nir_op_unpack_32_2x16_split_x:
1495 case nir_op_unpack_32_2x16_split_y: {
1496 if (instr->op == nir_op_unpack_32_2x16_split_x)
1497 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1498 else
1499 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1500 break;
1501 }
1502
1503 case nir_op_fpow:
1504 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1505 inst->saturate = instr->dest.saturate;
1506 break;
1507
1508 case nir_op_bitfield_reverse:
1509 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1510 bld.BFREV(result, op[0]);
1511 break;
1512
1513 case nir_op_bit_count:
1514 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1515 bld.CBIT(result, op[0]);
1516 break;
1517
1518 case nir_op_ufind_msb: {
1519 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1520 emit_find_msb_using_lzd(bld, result, op[0], false);
1521 break;
1522 }
1523
1524 case nir_op_ifind_msb: {
1525 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1526
1527 if (devinfo->gen < 7) {
1528 emit_find_msb_using_lzd(bld, result, op[0], true);
1529 } else {
1530 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1531
1532 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1533 * count from the LSB side. If FBH didn't return an error
1534 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1535 * count into an LSB count.
1536 */
1537 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1538
1539 inst = bld.ADD(result, result, brw_imm_d(31));
1540 inst->predicate = BRW_PREDICATE_NORMAL;
1541 inst->src[0].negate = true;
1542 }
1543 break;
1544 }
1545
1546 case nir_op_find_lsb:
1547 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1548
1549 if (devinfo->gen < 7) {
1550 fs_reg temp = vgrf(glsl_type::int_type);
1551
1552 /* (x & -x) generates a value that consists of only the LSB of x.
1553 * For all powers of 2, findMSB(y) == findLSB(y).
1554 */
1555 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1556 fs_reg negated_src = src;
1557
1558 /* One must be negated, and the other must be non-negated. It
1559 * doesn't matter which is which.
1560 */
1561 negated_src.negate = true;
1562 src.negate = false;
1563
1564 bld.AND(temp, src, negated_src);
1565 emit_find_msb_using_lzd(bld, result, temp, false);
1566 } else {
1567 bld.FBL(result, op[0]);
1568 }
1569 break;
1570
1571 case nir_op_ubitfield_extract:
1572 case nir_op_ibitfield_extract:
1573 unreachable("should have been lowered");
1574 case nir_op_ubfe:
1575 case nir_op_ibfe:
1576 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1577 bld.BFE(result, op[2], op[1], op[0]);
1578 break;
1579 case nir_op_bfm:
1580 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1581 bld.BFI1(result, op[0], op[1]);
1582 break;
1583 case nir_op_bfi:
1584 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1585 bld.BFI2(result, op[0], op[1], op[2]);
1586 break;
1587
1588 case nir_op_bitfield_insert:
1589 unreachable("not reached: should have been lowered");
1590
1591 case nir_op_ishl:
1592 bld.SHL(result, op[0], op[1]);
1593 break;
1594 case nir_op_ishr:
1595 bld.ASR(result, op[0], op[1]);
1596 break;
1597 case nir_op_ushr:
1598 bld.SHR(result, op[0], op[1]);
1599 break;
1600
1601 case nir_op_pack_half_2x16_split:
1602 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1603 break;
1604
1605 case nir_op_ffma:
1606 inst = bld.MAD(result, op[2], op[1], op[0]);
1607 inst->saturate = instr->dest.saturate;
1608 break;
1609
1610 case nir_op_flrp:
1611 inst = bld.LRP(result, op[0], op[1], op[2]);
1612 inst->saturate = instr->dest.saturate;
1613 break;
1614
1615 case nir_op_b32csel:
1616 if (optimize_frontfacing_ternary(instr, result))
1617 return;
1618
1619 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1620 inst = bld.SEL(result, op[1], op[2]);
1621 inst->predicate = BRW_PREDICATE_NORMAL;
1622 break;
1623
1624 case nir_op_extract_u8:
1625 case nir_op_extract_i8: {
1626 unsigned byte = nir_src_as_uint(instr->src[1].src);
1627
1628 /* The PRMs say:
1629 *
1630 * BDW+
1631 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1632 * Use two instructions and a word or DWord intermediate integer type.
1633 */
1634 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1635 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1636
1637 if (instr->op == nir_op_extract_i8) {
1638 /* If we need to sign extend, extract to a word first */
1639 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1640 bld.MOV(w_temp, subscript(op[0], type, byte));
1641 bld.MOV(result, w_temp);
1642 } else {
1643 /* Otherwise use an AND with 0xff and a word type */
1644 bld.AND(result, subscript(op[0], type, byte / 2), brw_imm_uw(0xff));
1645 }
1646 } else {
1647 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1648 bld.MOV(result, subscript(op[0], type, byte));
1649 }
1650 break;
1651 }
1652
1653 case nir_op_extract_u16:
1654 case nir_op_extract_i16: {
1655 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1656 unsigned word = nir_src_as_uint(instr->src[1].src);
1657 bld.MOV(result, subscript(op[0], type, word));
1658 break;
1659 }
1660
1661 default:
1662 unreachable("unhandled instruction");
1663 }
1664
1665 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1666 * to sign extend the low bit to 0/~0
1667 */
1668 if (devinfo->gen <= 5 &&
1669 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1670 fs_reg masked = vgrf(glsl_type::int_type);
1671 bld.AND(masked, result, brw_imm_d(1));
1672 masked.negate = true;
1673 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1674 }
1675 }
1676
1677 void
1678 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1679 nir_load_const_instr *instr)
1680 {
1681 const brw_reg_type reg_type =
1682 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1683 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1684
1685 switch (instr->def.bit_size) {
1686 case 8:
1687 for (unsigned i = 0; i < instr->def.num_components; i++)
1688 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value.i8[i]));
1689 break;
1690
1691 case 16:
1692 for (unsigned i = 0; i < instr->def.num_components; i++)
1693 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1694 break;
1695
1696 case 32:
1697 for (unsigned i = 0; i < instr->def.num_components; i++)
1698 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1699 break;
1700
1701 case 64:
1702 assert(devinfo->gen >= 7);
1703 if (devinfo->gen == 7) {
1704 /* We don't get 64-bit integer types until gen8 */
1705 for (unsigned i = 0; i < instr->def.num_components; i++) {
1706 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1707 setup_imm_df(bld, instr->value.f64[i]));
1708 }
1709 } else {
1710 for (unsigned i = 0; i < instr->def.num_components; i++)
1711 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1712 }
1713 break;
1714
1715 default:
1716 unreachable("Invalid bit size");
1717 }
1718
1719 nir_ssa_values[instr->def.index] = reg;
1720 }
1721
1722 fs_reg
1723 fs_visitor::get_nir_src(const nir_src &src)
1724 {
1725 fs_reg reg;
1726 if (src.is_ssa) {
1727 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1728 const brw_reg_type reg_type =
1729 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1730 reg = bld.vgrf(reg_type, src.ssa->num_components);
1731 } else {
1732 reg = nir_ssa_values[src.ssa->index];
1733 }
1734 } else {
1735 /* We don't handle indirects on locals */
1736 assert(src.reg.indirect == NULL);
1737 reg = offset(nir_locals[src.reg.reg->index], bld,
1738 src.reg.base_offset * src.reg.reg->num_components);
1739 }
1740
1741 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1742 /* The only 64-bit type available on gen7 is DF, so use that. */
1743 reg.type = BRW_REGISTER_TYPE_DF;
1744 } else {
1745 /* To avoid floating-point denorm flushing problems, set the type by
1746 * default to an integer type - instructions that need floating point
1747 * semantics will set this to F if they need to
1748 */
1749 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1750 BRW_REGISTER_TYPE_D);
1751 }
1752
1753 return reg;
1754 }
1755
1756 /**
1757 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1758 *
1759 * This function should not be called on any value which may be 64 bits.
1760 * We could theoretically support 64-bit on gen8+ but we choose not to
1761 * because it wouldn't work in general (no gen7 support) and there are
1762 * enough restrictions in 64-bit immediates that you can't take the return
1763 * value and treat it the same as the result of get_nir_src().
1764 */
1765 fs_reg
1766 fs_visitor::get_nir_src_imm(const nir_src &src)
1767 {
1768 assert(nir_src_bit_size(src) == 32);
1769 return nir_src_is_const(src) ?
1770 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1771 }
1772
1773 fs_reg
1774 fs_visitor::get_nir_dest(const nir_dest &dest)
1775 {
1776 if (dest.is_ssa) {
1777 const brw_reg_type reg_type =
1778 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1779 dest.ssa.bit_size == 8 ?
1780 BRW_REGISTER_TYPE_D :
1781 BRW_REGISTER_TYPE_F);
1782 nir_ssa_values[dest.ssa.index] =
1783 bld.vgrf(reg_type, dest.ssa.num_components);
1784 return nir_ssa_values[dest.ssa.index];
1785 } else {
1786 /* We don't handle indirects on locals */
1787 assert(dest.reg.indirect == NULL);
1788 return offset(nir_locals[dest.reg.reg->index], bld,
1789 dest.reg.base_offset * dest.reg.reg->num_components);
1790 }
1791 }
1792
1793 void
1794 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1795 unsigned wr_mask)
1796 {
1797 for (unsigned i = 0; i < 4; i++) {
1798 if (!((wr_mask >> i) & 1))
1799 continue;
1800
1801 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1802 new_inst->dst = offset(new_inst->dst, bld, i);
1803 for (unsigned j = 0; j < new_inst->sources; j++)
1804 if (new_inst->src[j].file == VGRF)
1805 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1806
1807 bld.emit(new_inst);
1808 }
1809 }
1810
1811 static fs_inst *
1812 emit_pixel_interpolater_send(const fs_builder &bld,
1813 enum opcode opcode,
1814 const fs_reg &dst,
1815 const fs_reg &src,
1816 const fs_reg &desc,
1817 glsl_interp_mode interpolation)
1818 {
1819 struct brw_wm_prog_data *wm_prog_data =
1820 brw_wm_prog_data(bld.shader->stage_prog_data);
1821
1822 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1823 /* 2 floats per slot returned */
1824 inst->size_written = 2 * dst.component_size(inst->exec_size);
1825 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1826
1827 wm_prog_data->pulls_bary = true;
1828
1829 return inst;
1830 }
1831
1832 /**
1833 * Computes 1 << x, given a D/UD register containing some value x.
1834 */
1835 static fs_reg
1836 intexp2(const fs_builder &bld, const fs_reg &x)
1837 {
1838 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1839
1840 fs_reg result = bld.vgrf(x.type, 1);
1841 fs_reg one = bld.vgrf(x.type, 1);
1842
1843 bld.MOV(one, retype(brw_imm_d(1), one.type));
1844 bld.SHL(result, one, x);
1845 return result;
1846 }
1847
1848 void
1849 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1850 {
1851 assert(stage == MESA_SHADER_GEOMETRY);
1852
1853 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1854
1855 if (gs_compile->control_data_header_size_bits == 0)
1856 return;
1857
1858 /* We can only do EndPrimitive() functionality when the control data
1859 * consists of cut bits. Fortunately, the only time it isn't is when the
1860 * output type is points, in which case EndPrimitive() is a no-op.
1861 */
1862 if (gs_prog_data->control_data_format !=
1863 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1864 return;
1865 }
1866
1867 /* Cut bits use one bit per vertex. */
1868 assert(gs_compile->control_data_bits_per_vertex == 1);
1869
1870 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1871 vertex_count.type = BRW_REGISTER_TYPE_UD;
1872
1873 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1874 * vertex n, 0 otherwise. So all we need to do here is mark bit
1875 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1876 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1877 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1878 *
1879 * Note that if EndPrimitive() is called before emitting any vertices, this
1880 * will cause us to set bit 31 of the control_data_bits register to 1.
1881 * That's fine because:
1882 *
1883 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1884 * output, so the hardware will ignore cut bit 31.
1885 *
1886 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1887 * last vertex, so setting cut bit 31 has no effect (since the primitive
1888 * is automatically ended when the GS terminates).
1889 *
1890 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1891 * control_data_bits register to 0 when the first vertex is emitted.
1892 */
1893
1894 const fs_builder abld = bld.annotate("end primitive");
1895
1896 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1897 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1898 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1899 fs_reg mask = intexp2(abld, prev_count);
1900 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1901 * attention to the lower 5 bits of its second source argument, so on this
1902 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1903 * ((vertex_count - 1) % 32).
1904 */
1905 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1906 }
1907
1908 void
1909 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1910 {
1911 assert(stage == MESA_SHADER_GEOMETRY);
1912 assert(gs_compile->control_data_bits_per_vertex != 0);
1913
1914 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1915
1916 const fs_builder abld = bld.annotate("emit control data bits");
1917 const fs_builder fwa_bld = bld.exec_all();
1918
1919 /* We use a single UD register to accumulate control data bits (32 bits
1920 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1921 * at a time.
1922 *
1923 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1924 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1925 * use the Channel Mask phase to enable/disable which DWord within that
1926 * group to write. (Remember, different SIMD8 channels may have emitted
1927 * different numbers of vertices, so we may need per-slot offsets.)
1928 *
1929 * Channel masking presents an annoying problem: we may have to replicate
1930 * the data up to 4 times:
1931 *
1932 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1933 *
1934 * To avoid penalizing shaders that emit a small number of vertices, we
1935 * can avoid these sometimes: if the size of the control data header is
1936 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1937 * land in the same 128-bit group, so we can skip per-slot offsets.
1938 *
1939 * Similarly, if the control data header is <= 32 bits, there is only one
1940 * DWord, so we can skip channel masks.
1941 */
1942 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1943
1944 fs_reg channel_mask, per_slot_offset;
1945
1946 if (gs_compile->control_data_header_size_bits > 32) {
1947 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1948 channel_mask = vgrf(glsl_type::uint_type);
1949 }
1950
1951 if (gs_compile->control_data_header_size_bits > 128) {
1952 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1953 per_slot_offset = vgrf(glsl_type::uint_type);
1954 }
1955
1956 /* Figure out which DWord we're trying to write to using the formula:
1957 *
1958 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1959 *
1960 * Since bits_per_vertex is a power of two, and is known at compile
1961 * time, this can be optimized to:
1962 *
1963 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1964 */
1965 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1966 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1967 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1968 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1969 unsigned log2_bits_per_vertex =
1970 util_last_bit(gs_compile->control_data_bits_per_vertex);
1971 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1972
1973 if (per_slot_offset.file != BAD_FILE) {
1974 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1975 * the appropriate OWord within the control data header.
1976 */
1977 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1978 }
1979
1980 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1981 * write to the appropriate DWORD within the OWORD.
1982 */
1983 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1984 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1985 channel_mask = intexp2(fwa_bld, channel);
1986 /* Then the channel masks need to be in bits 23:16. */
1987 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1988 }
1989
1990 /* Store the control data bits in the message payload and send it. */
1991 unsigned mlen = 2;
1992 if (channel_mask.file != BAD_FILE)
1993 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1994 if (per_slot_offset.file != BAD_FILE)
1995 mlen++;
1996
1997 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1998 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1999 unsigned i = 0;
2000 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2001 if (per_slot_offset.file != BAD_FILE)
2002 sources[i++] = per_slot_offset;
2003 if (channel_mask.file != BAD_FILE)
2004 sources[i++] = channel_mask;
2005 while (i < mlen) {
2006 sources[i++] = this->control_data_bits;
2007 }
2008
2009 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2010 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2011 inst->mlen = mlen;
2012 /* We need to increment Global Offset by 256-bits to make room for
2013 * Broadwell's extra "Vertex Count" payload at the beginning of the
2014 * URB entry. Since this is an OWord message, Global Offset is counted
2015 * in 128-bit units, so we must set it to 2.
2016 */
2017 if (gs_prog_data->static_vertex_count == -1)
2018 inst->offset = 2;
2019 }
2020
2021 void
2022 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2023 unsigned stream_id)
2024 {
2025 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2026
2027 /* Note: we are calling this *before* increasing vertex_count, so
2028 * this->vertex_count == vertex_count - 1 in the formula above.
2029 */
2030
2031 /* Stream mode uses 2 bits per vertex */
2032 assert(gs_compile->control_data_bits_per_vertex == 2);
2033
2034 /* Must be a valid stream */
2035 assert(stream_id < MAX_VERTEX_STREAMS);
2036
2037 /* Control data bits are initialized to 0 so we don't have to set any
2038 * bits when sending vertices to stream 0.
2039 */
2040 if (stream_id == 0)
2041 return;
2042
2043 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2044
2045 /* reg::sid = stream_id */
2046 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2047 abld.MOV(sid, brw_imm_ud(stream_id));
2048
2049 /* reg:shift_count = 2 * (vertex_count - 1) */
2050 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2051 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2052
2053 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2054 * attention to the lower 5 bits of its second source argument, so on this
2055 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2056 * stream_id << ((2 * (vertex_count - 1)) % 32).
2057 */
2058 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2059 abld.SHL(mask, sid, shift_count);
2060 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2061 }
2062
2063 void
2064 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2065 unsigned stream_id)
2066 {
2067 assert(stage == MESA_SHADER_GEOMETRY);
2068
2069 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2070
2071 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2072 vertex_count.type = BRW_REGISTER_TYPE_UD;
2073
2074 /* Haswell and later hardware ignores the "Render Stream Select" bits
2075 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2076 * and instead sends all primitives down the pipeline for rasterization.
2077 * If the SOL stage is enabled, "Render Stream Select" is honored and
2078 * primitives bound to non-zero streams are discarded after stream output.
2079 *
2080 * Since the only purpose of primives sent to non-zero streams is to
2081 * be recorded by transform feedback, we can simply discard all geometry
2082 * bound to these streams when transform feedback is disabled.
2083 */
2084 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2085 return;
2086
2087 /* If we're outputting 32 control data bits or less, then we can wait
2088 * until the shader is over to output them all. Otherwise we need to
2089 * output them as we go. Now is the time to do it, since we're about to
2090 * output the vertex_count'th vertex, so it's guaranteed that the
2091 * control data bits associated with the (vertex_count - 1)th vertex are
2092 * correct.
2093 */
2094 if (gs_compile->control_data_header_size_bits > 32) {
2095 const fs_builder abld =
2096 bld.annotate("emit vertex: emit control data bits");
2097
2098 /* Only emit control data bits if we've finished accumulating a batch
2099 * of 32 bits. This is the case when:
2100 *
2101 * (vertex_count * bits_per_vertex) % 32 == 0
2102 *
2103 * (in other words, when the last 5 bits of vertex_count *
2104 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2105 * integer n (which is always the case, since bits_per_vertex is
2106 * always 1 or 2), this is equivalent to requiring that the last 5-n
2107 * bits of vertex_count are 0:
2108 *
2109 * vertex_count & (2^(5-n) - 1) == 0
2110 *
2111 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2112 * equivalent to:
2113 *
2114 * vertex_count & (32 / bits_per_vertex - 1) == 0
2115 *
2116 * TODO: If vertex_count is an immediate, we could do some of this math
2117 * at compile time...
2118 */
2119 fs_inst *inst =
2120 abld.AND(bld.null_reg_d(), vertex_count,
2121 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2122 inst->conditional_mod = BRW_CONDITIONAL_Z;
2123
2124 abld.IF(BRW_PREDICATE_NORMAL);
2125 /* If vertex_count is 0, then no control data bits have been
2126 * accumulated yet, so we can skip emitting them.
2127 */
2128 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2129 BRW_CONDITIONAL_NEQ);
2130 abld.IF(BRW_PREDICATE_NORMAL);
2131 emit_gs_control_data_bits(vertex_count);
2132 abld.emit(BRW_OPCODE_ENDIF);
2133
2134 /* Reset control_data_bits to 0 so we can start accumulating a new
2135 * batch.
2136 *
2137 * Note: in the case where vertex_count == 0, this neutralizes the
2138 * effect of any call to EndPrimitive() that the shader may have
2139 * made before outputting its first vertex.
2140 */
2141 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2142 inst->force_writemask_all = true;
2143 abld.emit(BRW_OPCODE_ENDIF);
2144 }
2145
2146 emit_urb_writes(vertex_count);
2147
2148 /* In stream mode we have to set control data bits for all vertices
2149 * unless we have disabled control data bits completely (which we do
2150 * do for GL_POINTS outputs that don't use streams).
2151 */
2152 if (gs_compile->control_data_header_size_bits > 0 &&
2153 gs_prog_data->control_data_format ==
2154 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2155 set_gs_stream_control_data_bits(vertex_count, stream_id);
2156 }
2157 }
2158
2159 void
2160 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2161 const nir_src &vertex_src,
2162 unsigned base_offset,
2163 const nir_src &offset_src,
2164 unsigned num_components,
2165 unsigned first_component)
2166 {
2167 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2168 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2169
2170 /* TODO: figure out push input layout for invocations == 1 */
2171 /* TODO: make this work with 64-bit inputs */
2172 if (gs_prog_data->invocations == 1 &&
2173 type_sz(dst.type) <= 4 &&
2174 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2175 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2176 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2177 nir_src_as_uint(vertex_src) * push_reg_count;
2178 for (unsigned i = 0; i < num_components; i++) {
2179 bld.MOV(offset(dst, bld, i),
2180 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2181 }
2182 return;
2183 }
2184
2185 /* Resort to the pull model. Ensure the VUE handles are provided. */
2186 assert(gs_prog_data->base.include_vue_handles);
2187
2188 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2189 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2190
2191 if (gs_prog_data->invocations == 1) {
2192 if (nir_src_is_const(vertex_src)) {
2193 /* The vertex index is constant; just select the proper URB handle. */
2194 icp_handle =
2195 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2196 BRW_REGISTER_TYPE_UD);
2197 } else {
2198 /* The vertex index is non-constant. We need to use indirect
2199 * addressing to fetch the proper URB handle.
2200 *
2201 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2202 * indicating that channel <n> should read the handle from
2203 * DWord <n>. We convert that to bytes by multiplying by 4.
2204 *
2205 * Next, we convert the vertex index to bytes by multiplying
2206 * by 32 (shifting by 5), and add the two together. This is
2207 * the final indirect byte offset.
2208 */
2209 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2210 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2211 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2212 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2213
2214 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2215 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2216 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2217 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2218 /* Convert vertex_index to bytes (multiply by 32) */
2219 bld.SHL(vertex_offset_bytes,
2220 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2221 brw_imm_ud(5u));
2222 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2223
2224 /* Use first_icp_handle as the base offset. There is one register
2225 * of URB handles per vertex, so inform the register allocator that
2226 * we might read up to nir->info.gs.vertices_in registers.
2227 */
2228 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2229 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2230 fs_reg(icp_offset_bytes),
2231 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2232 }
2233 } else {
2234 assert(gs_prog_data->invocations > 1);
2235
2236 if (nir_src_is_const(vertex_src)) {
2237 unsigned vertex = nir_src_as_uint(vertex_src);
2238 assert(devinfo->gen >= 9 || vertex <= 5);
2239 bld.MOV(icp_handle,
2240 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2241 BRW_REGISTER_TYPE_UD));
2242 } else {
2243 /* The vertex index is non-constant. We need to use indirect
2244 * addressing to fetch the proper URB handle.
2245 *
2246 */
2247 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2248
2249 /* Convert vertex_index to bytes (multiply by 4) */
2250 bld.SHL(icp_offset_bytes,
2251 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2252 brw_imm_ud(2u));
2253
2254 /* Use first_icp_handle as the base offset. There is one DWord
2255 * of URB handles per vertex, so inform the register allocator that
2256 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2257 */
2258 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2259 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2260 fs_reg(icp_offset_bytes),
2261 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2262 REG_SIZE));
2263 }
2264 }
2265
2266 fs_inst *inst;
2267
2268 fs_reg tmp_dst = dst;
2269 fs_reg indirect_offset = get_nir_src(offset_src);
2270 unsigned num_iterations = 1;
2271 unsigned orig_num_components = num_components;
2272
2273 if (type_sz(dst.type) == 8) {
2274 if (num_components > 2) {
2275 num_iterations = 2;
2276 num_components = 2;
2277 }
2278 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2279 tmp_dst = tmp;
2280 first_component = first_component / 2;
2281 }
2282
2283 for (unsigned iter = 0; iter < num_iterations; iter++) {
2284 if (nir_src_is_const(offset_src)) {
2285 /* Constant indexing - use global offset. */
2286 if (first_component != 0) {
2287 unsigned read_components = num_components + first_component;
2288 fs_reg tmp = bld.vgrf(dst.type, read_components);
2289 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2290 inst->size_written = read_components *
2291 tmp.component_size(inst->exec_size);
2292 for (unsigned i = 0; i < num_components; i++) {
2293 bld.MOV(offset(tmp_dst, bld, i),
2294 offset(tmp, bld, i + first_component));
2295 }
2296 } else {
2297 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2298 icp_handle);
2299 inst->size_written = num_components *
2300 tmp_dst.component_size(inst->exec_size);
2301 }
2302 inst->offset = base_offset + nir_src_as_uint(offset_src);
2303 inst->mlen = 1;
2304 } else {
2305 /* Indirect indexing - use per-slot offsets as well. */
2306 const fs_reg srcs[] = { icp_handle, indirect_offset };
2307 unsigned read_components = num_components + first_component;
2308 fs_reg tmp = bld.vgrf(dst.type, read_components);
2309 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2310 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2311 if (first_component != 0) {
2312 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2313 payload);
2314 inst->size_written = read_components *
2315 tmp.component_size(inst->exec_size);
2316 for (unsigned i = 0; i < num_components; i++) {
2317 bld.MOV(offset(tmp_dst, bld, i),
2318 offset(tmp, bld, i + first_component));
2319 }
2320 } else {
2321 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2322 payload);
2323 inst->size_written = num_components *
2324 tmp_dst.component_size(inst->exec_size);
2325 }
2326 inst->offset = base_offset;
2327 inst->mlen = 2;
2328 }
2329
2330 if (type_sz(dst.type) == 8) {
2331 shuffle_from_32bit_read(bld,
2332 offset(dst, bld, iter * 2),
2333 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2334 0,
2335 num_components);
2336 }
2337
2338 if (num_iterations > 1) {
2339 num_components = orig_num_components - 2;
2340 if(nir_src_is_const(offset_src)) {
2341 base_offset++;
2342 } else {
2343 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2344 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2345 indirect_offset = new_indirect;
2346 }
2347 }
2348 }
2349 }
2350
2351 fs_reg
2352 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2353 {
2354 nir_src *offset_src = nir_get_io_offset_src(instr);
2355
2356 if (nir_src_is_const(*offset_src)) {
2357 /* The only constant offset we should find is 0. brw_nir.c's
2358 * add_const_offset_to_base() will fold other constant offsets
2359 * into instr->const_index[0].
2360 */
2361 assert(nir_src_as_uint(*offset_src) == 0);
2362 return fs_reg();
2363 }
2364
2365 return get_nir_src(*offset_src);
2366 }
2367
2368 void
2369 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2370 nir_intrinsic_instr *instr)
2371 {
2372 assert(stage == MESA_SHADER_VERTEX);
2373
2374 fs_reg dest;
2375 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2376 dest = get_nir_dest(instr->dest);
2377
2378 switch (instr->intrinsic) {
2379 case nir_intrinsic_load_vertex_id:
2380 case nir_intrinsic_load_base_vertex:
2381 unreachable("should be lowered by nir_lower_system_values()");
2382
2383 case nir_intrinsic_load_input: {
2384 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2385 unsigned first_component = nir_intrinsic_component(instr);
2386 unsigned num_components = instr->num_components;
2387
2388 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2389
2390 if (type_sz(dest.type) == 8)
2391 first_component /= 2;
2392
2393 /* For 16-bit support maybe a temporary will be needed to copy from
2394 * the ATTR file.
2395 */
2396 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2397 first_component, num_components);
2398 break;
2399 }
2400
2401 case nir_intrinsic_load_vertex_id_zero_base:
2402 case nir_intrinsic_load_instance_id:
2403 case nir_intrinsic_load_base_instance:
2404 case nir_intrinsic_load_draw_id:
2405 case nir_intrinsic_load_first_vertex:
2406 case nir_intrinsic_load_is_indexed_draw:
2407 unreachable("lowered by brw_nir_lower_vs_inputs");
2408
2409 default:
2410 nir_emit_intrinsic(bld, instr);
2411 break;
2412 }
2413 }
2414
2415 void
2416 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2417 nir_intrinsic_instr *instr)
2418 {
2419 assert(stage == MESA_SHADER_TESS_CTRL);
2420 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2421 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2422
2423 fs_reg dst;
2424 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2425 dst = get_nir_dest(instr->dest);
2426
2427 switch (instr->intrinsic) {
2428 case nir_intrinsic_load_primitive_id:
2429 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2430 break;
2431 case nir_intrinsic_load_invocation_id:
2432 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2433 break;
2434 case nir_intrinsic_load_patch_vertices_in:
2435 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2436 brw_imm_d(tcs_key->input_vertices));
2437 break;
2438
2439 case nir_intrinsic_barrier: {
2440 if (tcs_prog_data->instances == 1)
2441 break;
2442
2443 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2444 fs_reg m0_2 = component(m0, 2);
2445
2446 const fs_builder chanbld = bld.exec_all().group(1, 0);
2447
2448 /* Zero the message header */
2449 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2450
2451 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2452 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2453 brw_imm_ud(INTEL_MASK(16, 13)));
2454
2455 /* Shift it up to bits 27:24. */
2456 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2457
2458 /* Set the Barrier Count and the enable bit */
2459 chanbld.OR(m0_2, m0_2,
2460 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2461
2462 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2463 break;
2464 }
2465
2466 case nir_intrinsic_load_input:
2467 unreachable("nir_lower_io should never give us these.");
2468 break;
2469
2470 case nir_intrinsic_load_per_vertex_input: {
2471 fs_reg indirect_offset = get_indirect_offset(instr);
2472 unsigned imm_offset = instr->const_index[0];
2473
2474 const nir_src &vertex_src = instr->src[0];
2475
2476 fs_inst *inst;
2477
2478 fs_reg icp_handle;
2479
2480 if (nir_src_is_const(vertex_src)) {
2481 /* Emit a MOV to resolve <0,1,0> regioning. */
2482 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2483 unsigned vertex = nir_src_as_uint(vertex_src);
2484 bld.MOV(icp_handle,
2485 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2486 BRW_REGISTER_TYPE_UD));
2487 } else if (tcs_prog_data->instances == 1 &&
2488 vertex_src.is_ssa &&
2489 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2490 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2491 /* For the common case of only 1 instance, an array index of
2492 * gl_InvocationID means reading g1. Skip all the indirect work.
2493 */
2494 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2495 } else {
2496 /* The vertex index is non-constant. We need to use indirect
2497 * addressing to fetch the proper URB handle.
2498 */
2499 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2500
2501 /* Each ICP handle is a single DWord (4 bytes) */
2502 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2503 bld.SHL(vertex_offset_bytes,
2504 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2505 brw_imm_ud(2u));
2506
2507 /* Start at g1. We might read up to 4 registers. */
2508 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2509 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2510 brw_imm_ud(4 * REG_SIZE));
2511 }
2512
2513 /* We can only read two double components with each URB read, so
2514 * we send two read messages in that case, each one loading up to
2515 * two double components.
2516 */
2517 unsigned num_iterations = 1;
2518 unsigned num_components = instr->num_components;
2519 unsigned first_component = nir_intrinsic_component(instr);
2520 fs_reg orig_dst = dst;
2521 if (type_sz(dst.type) == 8) {
2522 first_component = first_component / 2;
2523 if (instr->num_components > 2) {
2524 num_iterations = 2;
2525 num_components = 2;
2526 }
2527
2528 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2529 dst = tmp;
2530 }
2531
2532 for (unsigned iter = 0; iter < num_iterations; iter++) {
2533 if (indirect_offset.file == BAD_FILE) {
2534 /* Constant indexing - use global offset. */
2535 if (first_component != 0) {
2536 unsigned read_components = num_components + first_component;
2537 fs_reg tmp = bld.vgrf(dst.type, read_components);
2538 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2539 for (unsigned i = 0; i < num_components; i++) {
2540 bld.MOV(offset(dst, bld, i),
2541 offset(tmp, bld, i + first_component));
2542 }
2543 } else {
2544 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2545 }
2546 inst->offset = imm_offset;
2547 inst->mlen = 1;
2548 } else {
2549 /* Indirect indexing - use per-slot offsets as well. */
2550 const fs_reg srcs[] = { icp_handle, indirect_offset };
2551 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2552 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2553 if (first_component != 0) {
2554 unsigned read_components = num_components + first_component;
2555 fs_reg tmp = bld.vgrf(dst.type, read_components);
2556 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2557 payload);
2558 for (unsigned i = 0; i < num_components; i++) {
2559 bld.MOV(offset(dst, bld, i),
2560 offset(tmp, bld, i + first_component));
2561 }
2562 } else {
2563 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2564 payload);
2565 }
2566 inst->offset = imm_offset;
2567 inst->mlen = 2;
2568 }
2569 inst->size_written = (num_components + first_component) *
2570 inst->dst.component_size(inst->exec_size);
2571
2572 /* If we are reading 64-bit data using 32-bit read messages we need
2573 * build proper 64-bit data elements by shuffling the low and high
2574 * 32-bit components around like we do for other things like UBOs
2575 * or SSBOs.
2576 */
2577 if (type_sz(dst.type) == 8) {
2578 shuffle_from_32bit_read(bld,
2579 offset(orig_dst, bld, iter * 2),
2580 retype(dst, BRW_REGISTER_TYPE_D),
2581 0, num_components);
2582 }
2583
2584 /* Copy the temporary to the destination to deal with writemasking.
2585 *
2586 * Also attempt to deal with gl_PointSize being in the .w component.
2587 */
2588 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2589 assert(type_sz(dst.type) < 8);
2590 inst->dst = bld.vgrf(dst.type, 4);
2591 inst->size_written = 4 * REG_SIZE;
2592 bld.MOV(dst, offset(inst->dst, bld, 3));
2593 }
2594
2595 /* If we are loading double data and we need a second read message
2596 * adjust the write offset
2597 */
2598 if (num_iterations > 1) {
2599 num_components = instr->num_components - 2;
2600 imm_offset++;
2601 }
2602 }
2603 break;
2604 }
2605
2606 case nir_intrinsic_load_output:
2607 case nir_intrinsic_load_per_vertex_output: {
2608 fs_reg indirect_offset = get_indirect_offset(instr);
2609 unsigned imm_offset = instr->const_index[0];
2610 unsigned first_component = nir_intrinsic_component(instr);
2611
2612 fs_inst *inst;
2613 if (indirect_offset.file == BAD_FILE) {
2614 /* Replicate the patch handle to all enabled channels */
2615 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2616 bld.MOV(patch_handle,
2617 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2618
2619 {
2620 if (first_component != 0) {
2621 unsigned read_components =
2622 instr->num_components + first_component;
2623 fs_reg tmp = bld.vgrf(dst.type, read_components);
2624 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2625 patch_handle);
2626 inst->size_written = read_components * REG_SIZE;
2627 for (unsigned i = 0; i < instr->num_components; i++) {
2628 bld.MOV(offset(dst, bld, i),
2629 offset(tmp, bld, i + first_component));
2630 }
2631 } else {
2632 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2633 patch_handle);
2634 inst->size_written = instr->num_components * REG_SIZE;
2635 }
2636 inst->offset = imm_offset;
2637 inst->mlen = 1;
2638 }
2639 } else {
2640 /* Indirect indexing - use per-slot offsets as well. */
2641 const fs_reg srcs[] = {
2642 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2643 indirect_offset
2644 };
2645 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2646 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2647 if (first_component != 0) {
2648 unsigned read_components =
2649 instr->num_components + first_component;
2650 fs_reg tmp = bld.vgrf(dst.type, read_components);
2651 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2652 payload);
2653 inst->size_written = read_components * REG_SIZE;
2654 for (unsigned i = 0; i < instr->num_components; i++) {
2655 bld.MOV(offset(dst, bld, i),
2656 offset(tmp, bld, i + first_component));
2657 }
2658 } else {
2659 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2660 payload);
2661 inst->size_written = instr->num_components * REG_SIZE;
2662 }
2663 inst->offset = imm_offset;
2664 inst->mlen = 2;
2665 }
2666 break;
2667 }
2668
2669 case nir_intrinsic_store_output:
2670 case nir_intrinsic_store_per_vertex_output: {
2671 fs_reg value = get_nir_src(instr->src[0]);
2672 bool is_64bit = (instr->src[0].is_ssa ?
2673 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2674 fs_reg indirect_offset = get_indirect_offset(instr);
2675 unsigned imm_offset = instr->const_index[0];
2676 unsigned mask = instr->const_index[1];
2677 unsigned header_regs = 0;
2678 fs_reg srcs[7];
2679 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2680
2681 if (indirect_offset.file != BAD_FILE) {
2682 srcs[header_regs++] = indirect_offset;
2683 }
2684
2685 if (mask == 0)
2686 break;
2687
2688 unsigned num_components = util_last_bit(mask);
2689 enum opcode opcode;
2690
2691 /* We can only pack two 64-bit components in a single message, so send
2692 * 2 messages if we have more components
2693 */
2694 unsigned num_iterations = 1;
2695 unsigned iter_components = num_components;
2696 unsigned first_component = nir_intrinsic_component(instr);
2697 if (is_64bit) {
2698 first_component = first_component / 2;
2699 if (instr->num_components > 2) {
2700 num_iterations = 2;
2701 iter_components = 2;
2702 }
2703 }
2704
2705 mask = mask << first_component;
2706
2707 for (unsigned iter = 0; iter < num_iterations; iter++) {
2708 if (!is_64bit && mask != WRITEMASK_XYZW) {
2709 srcs[header_regs++] = brw_imm_ud(mask << 16);
2710 opcode = indirect_offset.file != BAD_FILE ?
2711 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2712 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2713 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2714 /* Expand the 64-bit mask to 32-bit channels. We only handle
2715 * two channels in each iteration, so we only care about X/Y.
2716 */
2717 unsigned mask32 = 0;
2718 if (mask & WRITEMASK_X)
2719 mask32 |= WRITEMASK_XY;
2720 if (mask & WRITEMASK_Y)
2721 mask32 |= WRITEMASK_ZW;
2722
2723 /* If the mask does not include any of the channels X or Y there
2724 * is nothing to do in this iteration. Move on to the next couple
2725 * of 64-bit channels.
2726 */
2727 if (!mask32) {
2728 mask >>= 2;
2729 imm_offset++;
2730 continue;
2731 }
2732
2733 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2734 opcode = indirect_offset.file != BAD_FILE ?
2735 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2736 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2737 } else {
2738 opcode = indirect_offset.file != BAD_FILE ?
2739 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2740 SHADER_OPCODE_URB_WRITE_SIMD8;
2741 }
2742
2743 for (unsigned i = 0; i < iter_components; i++) {
2744 if (!(mask & (1 << (i + first_component))))
2745 continue;
2746
2747 if (!is_64bit) {
2748 srcs[header_regs + i + first_component] = offset(value, bld, i);
2749 } else {
2750 /* We need to shuffle the 64-bit data to match the layout
2751 * expected by our 32-bit URB write messages. We use a temporary
2752 * for that.
2753 */
2754 unsigned channel = iter * 2 + i;
2755 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2756
2757 srcs[header_regs + (i + first_component) * 2] = dest;
2758 srcs[header_regs + (i + first_component) * 2 + 1] =
2759 offset(dest, bld, 1);
2760 }
2761 }
2762
2763 unsigned mlen =
2764 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2765 (is_64bit ? 2 * first_component : first_component);
2766 fs_reg payload =
2767 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2768 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2769
2770 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2771 inst->offset = imm_offset;
2772 inst->mlen = mlen;
2773
2774 /* If this is a 64-bit attribute, select the next two 64-bit channels
2775 * to be handled in the next iteration.
2776 */
2777 if (is_64bit) {
2778 mask >>= 2;
2779 imm_offset++;
2780 }
2781 }
2782 break;
2783 }
2784
2785 default:
2786 nir_emit_intrinsic(bld, instr);
2787 break;
2788 }
2789 }
2790
2791 void
2792 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2793 nir_intrinsic_instr *instr)
2794 {
2795 assert(stage == MESA_SHADER_TESS_EVAL);
2796 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2797
2798 fs_reg dest;
2799 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2800 dest = get_nir_dest(instr->dest);
2801
2802 switch (instr->intrinsic) {
2803 case nir_intrinsic_load_primitive_id:
2804 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2805 break;
2806 case nir_intrinsic_load_tess_coord:
2807 /* gl_TessCoord is part of the payload in g1-3 */
2808 for (unsigned i = 0; i < 3; i++) {
2809 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2810 }
2811 break;
2812
2813 case nir_intrinsic_load_input:
2814 case nir_intrinsic_load_per_vertex_input: {
2815 fs_reg indirect_offset = get_indirect_offset(instr);
2816 unsigned imm_offset = instr->const_index[0];
2817 unsigned first_component = nir_intrinsic_component(instr);
2818
2819 if (type_sz(dest.type) == 8) {
2820 first_component = first_component / 2;
2821 }
2822
2823 fs_inst *inst;
2824 if (indirect_offset.file == BAD_FILE) {
2825 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2826 * which is 16 registers (since each holds 2 vec4 slots).
2827 */
2828 unsigned slot_count = 1;
2829 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2830 slot_count++;
2831
2832 const unsigned max_push_slots = 32;
2833 if (imm_offset + slot_count <= max_push_slots) {
2834 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2835 for (int i = 0; i < instr->num_components; i++) {
2836 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2837 i + first_component;
2838 bld.MOV(offset(dest, bld, i), component(src, comp));
2839 }
2840
2841 tes_prog_data->base.urb_read_length =
2842 MAX2(tes_prog_data->base.urb_read_length,
2843 DIV_ROUND_UP(imm_offset + slot_count, 2));
2844 } else {
2845 /* Replicate the patch handle to all enabled channels */
2846 const fs_reg srcs[] = {
2847 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2848 };
2849 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2850 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2851
2852 if (first_component != 0) {
2853 unsigned read_components =
2854 instr->num_components + first_component;
2855 fs_reg tmp = bld.vgrf(dest.type, read_components);
2856 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2857 patch_handle);
2858 inst->size_written = read_components * REG_SIZE;
2859 for (unsigned i = 0; i < instr->num_components; i++) {
2860 bld.MOV(offset(dest, bld, i),
2861 offset(tmp, bld, i + first_component));
2862 }
2863 } else {
2864 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2865 patch_handle);
2866 inst->size_written = instr->num_components * REG_SIZE;
2867 }
2868 inst->mlen = 1;
2869 inst->offset = imm_offset;
2870 }
2871 } else {
2872 /* Indirect indexing - use per-slot offsets as well. */
2873
2874 /* We can only read two double components with each URB read, so
2875 * we send two read messages in that case, each one loading up to
2876 * two double components.
2877 */
2878 unsigned num_iterations = 1;
2879 unsigned num_components = instr->num_components;
2880 fs_reg orig_dest = dest;
2881 if (type_sz(dest.type) == 8) {
2882 if (instr->num_components > 2) {
2883 num_iterations = 2;
2884 num_components = 2;
2885 }
2886 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2887 dest = tmp;
2888 }
2889
2890 for (unsigned iter = 0; iter < num_iterations; iter++) {
2891 const fs_reg srcs[] = {
2892 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2893 indirect_offset
2894 };
2895 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2896 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2897
2898 if (first_component != 0) {
2899 unsigned read_components =
2900 num_components + first_component;
2901 fs_reg tmp = bld.vgrf(dest.type, read_components);
2902 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2903 payload);
2904 for (unsigned i = 0; i < num_components; i++) {
2905 bld.MOV(offset(dest, bld, i),
2906 offset(tmp, bld, i + first_component));
2907 }
2908 } else {
2909 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2910 payload);
2911 }
2912 inst->mlen = 2;
2913 inst->offset = imm_offset;
2914 inst->size_written = (num_components + first_component) *
2915 inst->dst.component_size(inst->exec_size);
2916
2917 /* If we are reading 64-bit data using 32-bit read messages we need
2918 * build proper 64-bit data elements by shuffling the low and high
2919 * 32-bit components around like we do for other things like UBOs
2920 * or SSBOs.
2921 */
2922 if (type_sz(dest.type) == 8) {
2923 shuffle_from_32bit_read(bld,
2924 offset(orig_dest, bld, iter * 2),
2925 retype(dest, BRW_REGISTER_TYPE_D),
2926 0, num_components);
2927 }
2928
2929 /* If we are loading double data and we need a second read message
2930 * adjust the offset
2931 */
2932 if (num_iterations > 1) {
2933 num_components = instr->num_components - 2;
2934 imm_offset++;
2935 }
2936 }
2937 }
2938 break;
2939 }
2940 default:
2941 nir_emit_intrinsic(bld, instr);
2942 break;
2943 }
2944 }
2945
2946 void
2947 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2948 nir_intrinsic_instr *instr)
2949 {
2950 assert(stage == MESA_SHADER_GEOMETRY);
2951 fs_reg indirect_offset;
2952
2953 fs_reg dest;
2954 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2955 dest = get_nir_dest(instr->dest);
2956
2957 switch (instr->intrinsic) {
2958 case nir_intrinsic_load_primitive_id:
2959 assert(stage == MESA_SHADER_GEOMETRY);
2960 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2961 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2962 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2963 break;
2964
2965 case nir_intrinsic_load_input:
2966 unreachable("load_input intrinsics are invalid for the GS stage");
2967
2968 case nir_intrinsic_load_per_vertex_input:
2969 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2970 instr->src[1], instr->num_components,
2971 nir_intrinsic_component(instr));
2972 break;
2973
2974 case nir_intrinsic_emit_vertex_with_counter:
2975 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2976 break;
2977
2978 case nir_intrinsic_end_primitive_with_counter:
2979 emit_gs_end_primitive(instr->src[0]);
2980 break;
2981
2982 case nir_intrinsic_set_vertex_count:
2983 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2984 break;
2985
2986 case nir_intrinsic_load_invocation_id: {
2987 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2988 assert(val.file != BAD_FILE);
2989 dest.type = val.type;
2990 bld.MOV(dest, val);
2991 break;
2992 }
2993
2994 default:
2995 nir_emit_intrinsic(bld, instr);
2996 break;
2997 }
2998 }
2999
3000 /**
3001 * Fetch the current render target layer index.
3002 */
3003 static fs_reg
3004 fetch_render_target_array_index(const fs_builder &bld)
3005 {
3006 if (bld.shader->devinfo->gen >= 6) {
3007 /* The render target array index is provided in the thread payload as
3008 * bits 26:16 of r0.0.
3009 */
3010 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3011 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3012 brw_imm_uw(0x7ff));
3013 return idx;
3014 } else {
3015 /* Pre-SNB we only ever render into the first layer of the framebuffer
3016 * since layered rendering is not implemented.
3017 */
3018 return brw_imm_ud(0);
3019 }
3020 }
3021
3022 /**
3023 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3024 * framebuffer at the current fragment coordinates and sample index.
3025 */
3026 fs_inst *
3027 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3028 unsigned target)
3029 {
3030 const struct gen_device_info *devinfo = bld.shader->devinfo;
3031
3032 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3033 const brw_wm_prog_key *wm_key =
3034 reinterpret_cast<const brw_wm_prog_key *>(key);
3035 assert(!wm_key->coherent_fb_fetch);
3036 const struct brw_wm_prog_data *wm_prog_data =
3037 brw_wm_prog_data(stage_prog_data);
3038
3039 /* Calculate the surface index relative to the start of the texture binding
3040 * table block, since that's what the texturing messages expect.
3041 */
3042 const unsigned surface = target +
3043 wm_prog_data->binding_table.render_target_read_start -
3044 wm_prog_data->base.binding_table.texture_start;
3045
3046 /* Calculate the fragment coordinates. */
3047 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3048 bld.MOV(offset(coords, bld, 0), pixel_x);
3049 bld.MOV(offset(coords, bld, 1), pixel_y);
3050 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3051
3052 /* Calculate the sample index and MCS payload when multisampling. Luckily
3053 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3054 * shouldn't be necessary to recompile based on whether the framebuffer is
3055 * CMS or UMS.
3056 */
3057 if (wm_key->multisample_fbo &&
3058 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3059 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3060
3061 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3062 const fs_reg mcs = wm_key->multisample_fbo ?
3063 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3064
3065 /* Use either a normal or a CMS texel fetch message depending on whether
3066 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3067 * message just in case the framebuffer uses 16x multisampling, it should
3068 * be equivalent to the normal CMS fetch for lower multisampling modes.
3069 */
3070 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3071 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3072 SHADER_OPCODE_TXF_CMS_LOGICAL;
3073
3074 /* Emit the instruction. */
3075 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3076 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3077 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3078 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3079 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3080 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3081 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3082 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3083 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3084
3085 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3086 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3087
3088 return inst;
3089 }
3090
3091 /**
3092 * Actual coherent framebuffer read implemented using the native render target
3093 * read message. Requires SKL+.
3094 */
3095 static fs_inst *
3096 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3097 {
3098 assert(bld.shader->devinfo->gen >= 9);
3099 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3100 inst->target = target;
3101 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3102
3103 return inst;
3104 }
3105
3106 static fs_reg
3107 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3108 {
3109 if (n && regs[0].file != BAD_FILE) {
3110 return regs[0];
3111
3112 } else {
3113 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3114
3115 for (unsigned i = 0; i < n; i++)
3116 regs[i] = tmp;
3117
3118 return tmp;
3119 }
3120 }
3121
3122 static fs_reg
3123 alloc_frag_output(fs_visitor *v, unsigned location)
3124 {
3125 assert(v->stage == MESA_SHADER_FRAGMENT);
3126 const brw_wm_prog_key *const key =
3127 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3128 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3129 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3130
3131 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3132 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3133
3134 else if (l == FRAG_RESULT_COLOR)
3135 return alloc_temporary(v->bld, 4, v->outputs,
3136 MAX2(key->nr_color_regions, 1));
3137
3138 else if (l == FRAG_RESULT_DEPTH)
3139 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3140
3141 else if (l == FRAG_RESULT_STENCIL)
3142 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3143
3144 else if (l == FRAG_RESULT_SAMPLE_MASK)
3145 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3146
3147 else if (l >= FRAG_RESULT_DATA0 &&
3148 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3149 return alloc_temporary(v->bld, 4,
3150 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3151
3152 else
3153 unreachable("Invalid location");
3154 }
3155
3156 void
3157 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3158 nir_intrinsic_instr *instr)
3159 {
3160 assert(stage == MESA_SHADER_FRAGMENT);
3161
3162 fs_reg dest;
3163 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3164 dest = get_nir_dest(instr->dest);
3165
3166 switch (instr->intrinsic) {
3167 case nir_intrinsic_load_front_face:
3168 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3169 *emit_frontfacing_interpolation());
3170 break;
3171
3172 case nir_intrinsic_load_sample_pos: {
3173 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3174 assert(sample_pos.file != BAD_FILE);
3175 dest.type = sample_pos.type;
3176 bld.MOV(dest, sample_pos);
3177 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3178 break;
3179 }
3180
3181 case nir_intrinsic_load_layer_id:
3182 dest.type = BRW_REGISTER_TYPE_UD;
3183 bld.MOV(dest, fetch_render_target_array_index(bld));
3184 break;
3185
3186 case nir_intrinsic_load_helper_invocation:
3187 case nir_intrinsic_load_sample_mask_in:
3188 case nir_intrinsic_load_sample_id: {
3189 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3190 fs_reg val = nir_system_values[sv];
3191 assert(val.file != BAD_FILE);
3192 dest.type = val.type;
3193 bld.MOV(dest, val);
3194 break;
3195 }
3196
3197 case nir_intrinsic_store_output: {
3198 const fs_reg src = get_nir_src(instr->src[0]);
3199 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3200 const unsigned location = nir_intrinsic_base(instr) +
3201 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3202 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3203 src.type);
3204
3205 for (unsigned j = 0; j < instr->num_components; j++)
3206 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3207 offset(src, bld, j));
3208
3209 break;
3210 }
3211
3212 case nir_intrinsic_load_output: {
3213 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3214 BRW_NIR_FRAG_OUTPUT_LOCATION);
3215 assert(l >= FRAG_RESULT_DATA0);
3216 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3217 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3218 const fs_reg tmp = bld.vgrf(dest.type, 4);
3219
3220 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3221 emit_coherent_fb_read(bld, tmp, target);
3222 else
3223 emit_non_coherent_fb_read(bld, tmp, target);
3224
3225 for (unsigned j = 0; j < instr->num_components; j++) {
3226 bld.MOV(offset(dest, bld, j),
3227 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3228 }
3229
3230 break;
3231 }
3232
3233 case nir_intrinsic_discard:
3234 case nir_intrinsic_discard_if: {
3235 /* We track our discarded pixels in f0.1. By predicating on it, we can
3236 * update just the flag bits that aren't yet discarded. If there's no
3237 * condition, we emit a CMP of g0 != g0, so all currently executing
3238 * channels will get turned off.
3239 */
3240 fs_inst *cmp;
3241 if (instr->intrinsic == nir_intrinsic_discard_if) {
3242 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3243 brw_imm_d(0), BRW_CONDITIONAL_Z);
3244 } else {
3245 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3246 BRW_REGISTER_TYPE_UW));
3247 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3248 }
3249 cmp->predicate = BRW_PREDICATE_NORMAL;
3250 cmp->flag_subreg = 1;
3251
3252 if (devinfo->gen >= 6) {
3253 emit_discard_jump();
3254 }
3255
3256 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3257 break;
3258 }
3259
3260 case nir_intrinsic_load_input: {
3261 /* load_input is only used for flat inputs */
3262 unsigned base = nir_intrinsic_base(instr);
3263 unsigned comp = nir_intrinsic_component(instr);
3264 unsigned num_components = instr->num_components;
3265 fs_reg orig_dest = dest;
3266 enum brw_reg_type type = dest.type;
3267
3268 /* Special case fields in the VUE header */
3269 if (base == VARYING_SLOT_LAYER)
3270 comp = 1;
3271 else if (base == VARYING_SLOT_VIEWPORT)
3272 comp = 2;
3273
3274 if (nir_dest_bit_size(instr->dest) == 64) {
3275 /* const_index is in 32-bit type size units that could not be aligned
3276 * with DF. We need to read the double vector as if it was a float
3277 * vector of twice the number of components to fetch the right data.
3278 */
3279 type = BRW_REGISTER_TYPE_F;
3280 num_components *= 2;
3281 dest = bld.vgrf(type, num_components);
3282 }
3283
3284 for (unsigned int i = 0; i < num_components; i++) {
3285 bld.MOV(offset(retype(dest, type), bld, i),
3286 retype(component(interp_reg(base, comp + i), 3), type));
3287 }
3288
3289 if (nir_dest_bit_size(instr->dest) == 64) {
3290 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3291 instr->num_components);
3292 }
3293 break;
3294 }
3295
3296 case nir_intrinsic_load_barycentric_pixel:
3297 case nir_intrinsic_load_barycentric_centroid:
3298 case nir_intrinsic_load_barycentric_sample:
3299 /* Do nothing - load_interpolated_input handling will handle it later. */
3300 break;
3301
3302 case nir_intrinsic_load_barycentric_at_sample: {
3303 const glsl_interp_mode interpolation =
3304 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3305
3306 if (nir_src_is_const(instr->src[0])) {
3307 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3308
3309 emit_pixel_interpolater_send(bld,
3310 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3311 dest,
3312 fs_reg(), /* src */
3313 brw_imm_ud(msg_data),
3314 interpolation);
3315 } else {
3316 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3317 BRW_REGISTER_TYPE_UD);
3318
3319 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3320 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3321 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3322 bld.exec_all().group(1, 0)
3323 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3324 emit_pixel_interpolater_send(bld,
3325 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3326 dest,
3327 fs_reg(), /* src */
3328 msg_data,
3329 interpolation);
3330 } else {
3331 /* Make a loop that sends a message to the pixel interpolater
3332 * for the sample number in each live channel. If there are
3333 * multiple channels with the same sample number then these
3334 * will be handled simultaneously with a single interation of
3335 * the loop.
3336 */
3337 bld.emit(BRW_OPCODE_DO);
3338
3339 /* Get the next live sample number into sample_id_reg */
3340 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3341
3342 /* Set the flag register so that we can perform the send
3343 * message on all channels that have the same sample number
3344 */
3345 bld.CMP(bld.null_reg_ud(),
3346 sample_src, sample_id,
3347 BRW_CONDITIONAL_EQ);
3348 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3349 bld.exec_all().group(1, 0)
3350 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3351 fs_inst *inst =
3352 emit_pixel_interpolater_send(bld,
3353 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3354 dest,
3355 fs_reg(), /* src */
3356 component(msg_data, 0),
3357 interpolation);
3358 set_predicate(BRW_PREDICATE_NORMAL, inst);
3359
3360 /* Continue the loop if there are any live channels left */
3361 set_predicate_inv(BRW_PREDICATE_NORMAL,
3362 true, /* inverse */
3363 bld.emit(BRW_OPCODE_WHILE));
3364 }
3365 }
3366 break;
3367 }
3368
3369 case nir_intrinsic_load_barycentric_at_offset: {
3370 const glsl_interp_mode interpolation =
3371 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3372
3373 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3374
3375 if (const_offset) {
3376 assert(nir_src_bit_size(instr->src[0]) == 32);
3377 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3378 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3379
3380 emit_pixel_interpolater_send(bld,
3381 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3382 dest,
3383 fs_reg(), /* src */
3384 brw_imm_ud(off_x | (off_y << 4)),
3385 interpolation);
3386 } else {
3387 fs_reg src = vgrf(glsl_type::ivec2_type);
3388 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3389 BRW_REGISTER_TYPE_F);
3390 for (int i = 0; i < 2; i++) {
3391 fs_reg temp = vgrf(glsl_type::float_type);
3392 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3393 fs_reg itemp = vgrf(glsl_type::int_type);
3394 /* float to int */
3395 bld.MOV(itemp, temp);
3396
3397 /* Clamp the upper end of the range to +7/16.
3398 * ARB_gpu_shader5 requires that we support a maximum offset
3399 * of +0.5, which isn't representable in a S0.4 value -- if
3400 * we didn't clamp it, we'd end up with -8/16, which is the
3401 * opposite of what the shader author wanted.
3402 *
3403 * This is legal due to ARB_gpu_shader5's quantization
3404 * rules:
3405 *
3406 * "Not all values of <offset> may be supported; x and y
3407 * offsets may be rounded to fixed-point values with the
3408 * number of fraction bits given by the
3409 * implementation-dependent constant
3410 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3411 */
3412 set_condmod(BRW_CONDITIONAL_L,
3413 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3414 }
3415
3416 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3417 emit_pixel_interpolater_send(bld,
3418 opcode,
3419 dest,
3420 src,
3421 brw_imm_ud(0u),
3422 interpolation);
3423 }
3424 break;
3425 }
3426
3427 case nir_intrinsic_load_interpolated_input: {
3428 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3429 emit_fragcoord_interpolation(dest);
3430 break;
3431 }
3432
3433 assert(instr->src[0].ssa &&
3434 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3435 nir_intrinsic_instr *bary_intrinsic =
3436 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3437 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3438 enum glsl_interp_mode interp_mode =
3439 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3440 fs_reg dst_xy;
3441
3442 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3443 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3444 /* Use the result of the PI message */
3445 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3446 } else {
3447 /* Use the delta_xy values computed from the payload */
3448 enum brw_barycentric_mode bary =
3449 brw_barycentric_mode(interp_mode, bary_intrin);
3450
3451 dst_xy = this->delta_xy[bary];
3452 }
3453
3454 for (unsigned int i = 0; i < instr->num_components; i++) {
3455 fs_reg interp =
3456 component(interp_reg(nir_intrinsic_base(instr),
3457 nir_intrinsic_component(instr) + i), 0);
3458 interp.type = BRW_REGISTER_TYPE_F;
3459 dest.type = BRW_REGISTER_TYPE_F;
3460
3461 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3462 fs_reg tmp = vgrf(glsl_type::float_type);
3463 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3464 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3465 } else {
3466 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3467 }
3468 }
3469 break;
3470 }
3471
3472 default:
3473 nir_emit_intrinsic(bld, instr);
3474 break;
3475 }
3476 }
3477
3478 static int
3479 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3480 {
3481 if (nir_src_is_const(instr->src[src])) {
3482 int64_t add_val = nir_src_as_int(instr->src[src]);
3483 if (add_val == 1)
3484 return BRW_AOP_INC;
3485 else if (add_val == -1)
3486 return BRW_AOP_DEC;
3487 }
3488
3489 return BRW_AOP_ADD;
3490 }
3491
3492 void
3493 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3494 nir_intrinsic_instr *instr)
3495 {
3496 assert(stage == MESA_SHADER_COMPUTE);
3497 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3498
3499 fs_reg dest;
3500 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3501 dest = get_nir_dest(instr->dest);
3502
3503 switch (instr->intrinsic) {
3504 case nir_intrinsic_barrier:
3505 emit_barrier();
3506 cs_prog_data->uses_barrier = true;
3507 break;
3508
3509 case nir_intrinsic_load_subgroup_id:
3510 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3511 break;
3512
3513 case nir_intrinsic_load_local_invocation_id:
3514 case nir_intrinsic_load_work_group_id: {
3515 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3516 fs_reg val = nir_system_values[sv];
3517 assert(val.file != BAD_FILE);
3518 dest.type = val.type;
3519 for (unsigned i = 0; i < 3; i++)
3520 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3521 break;
3522 }
3523
3524 case nir_intrinsic_load_num_work_groups: {
3525 const unsigned surface =
3526 cs_prog_data->binding_table.work_groups_start;
3527
3528 cs_prog_data->uses_num_work_groups = true;
3529
3530 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3531 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3532 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3533 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3534
3535 /* Read the 3 GLuint components of gl_NumWorkGroups */
3536 for (unsigned i = 0; i < 3; i++) {
3537 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3538 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3539 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3540 }
3541 break;
3542 }
3543
3544 case nir_intrinsic_shared_atomic_add:
3545 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3546 break;
3547 case nir_intrinsic_shared_atomic_imin:
3548 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3549 break;
3550 case nir_intrinsic_shared_atomic_umin:
3551 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3552 break;
3553 case nir_intrinsic_shared_atomic_imax:
3554 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3555 break;
3556 case nir_intrinsic_shared_atomic_umax:
3557 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3558 break;
3559 case nir_intrinsic_shared_atomic_and:
3560 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3561 break;
3562 case nir_intrinsic_shared_atomic_or:
3563 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3564 break;
3565 case nir_intrinsic_shared_atomic_xor:
3566 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3567 break;
3568 case nir_intrinsic_shared_atomic_exchange:
3569 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3570 break;
3571 case nir_intrinsic_shared_atomic_comp_swap:
3572 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3573 break;
3574 case nir_intrinsic_shared_atomic_fmin:
3575 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3576 break;
3577 case nir_intrinsic_shared_atomic_fmax:
3578 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3579 break;
3580 case nir_intrinsic_shared_atomic_fcomp_swap:
3581 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3582 break;
3583
3584 case nir_intrinsic_load_shared: {
3585 assert(devinfo->gen >= 7);
3586 assert(stage == MESA_SHADER_COMPUTE);
3587
3588 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3589 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3590 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3591 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3592 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3593
3594 /* Make dest unsigned because that's what the temporary will be */
3595 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3596
3597 /* Read the vector */
3598 if (nir_intrinsic_align(instr) >= 4) {
3599 assert(nir_dest_bit_size(instr->dest) == 32);
3600 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3601 fs_inst *inst =
3602 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3603 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3604 inst->size_written = instr->num_components * dispatch_width * 4;
3605 } else {
3606 assert(nir_dest_bit_size(instr->dest) <= 32);
3607 assert(nir_dest_num_components(instr->dest) == 1);
3608 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3609
3610 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3611 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3612 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3613 bld.MOV(dest, read_result);
3614 }
3615 break;
3616 }
3617
3618 case nir_intrinsic_store_shared: {
3619 assert(devinfo->gen >= 7);
3620 assert(stage == MESA_SHADER_COMPUTE);
3621
3622 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3623 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3624 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3625 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3626 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3627
3628 fs_reg data = get_nir_src(instr->src[0]);
3629 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3630
3631 assert(nir_intrinsic_write_mask(instr) ==
3632 (1u << instr->num_components) - 1);
3633 if (nir_intrinsic_align(instr) >= 4) {
3634 assert(nir_src_bit_size(instr->src[0]) == 32);
3635 assert(nir_src_num_components(instr->src[0]) <= 4);
3636 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3637 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3638 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3639 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3640 } else {
3641 assert(nir_src_bit_size(instr->src[0]) <= 32);
3642 assert(nir_src_num_components(instr->src[0]) == 1);
3643 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3644
3645 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3646 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3647
3648 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3649 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3650 }
3651 break;
3652 }
3653
3654 default:
3655 nir_emit_intrinsic(bld, instr);
3656 break;
3657 }
3658 }
3659
3660 static fs_reg
3661 brw_nir_reduction_op_identity(const fs_builder &bld,
3662 nir_op op, brw_reg_type type)
3663 {
3664 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3665 switch (type_sz(type)) {
3666 case 2:
3667 assert(type != BRW_REGISTER_TYPE_HF);
3668 return retype(brw_imm_uw(value.u16[0]), type);
3669 case 4:
3670 return retype(brw_imm_ud(value.u32[0]), type);
3671 case 8:
3672 if (type == BRW_REGISTER_TYPE_DF)
3673 return setup_imm_df(bld, value.f64[0]);
3674 else
3675 return retype(brw_imm_u64(value.u64[0]), type);
3676 default:
3677 unreachable("Invalid type size");
3678 }
3679 }
3680
3681 static opcode
3682 brw_op_for_nir_reduction_op(nir_op op)
3683 {
3684 switch (op) {
3685 case nir_op_iadd: return BRW_OPCODE_ADD;
3686 case nir_op_fadd: return BRW_OPCODE_ADD;
3687 case nir_op_imul: return BRW_OPCODE_MUL;
3688 case nir_op_fmul: return BRW_OPCODE_MUL;
3689 case nir_op_imin: return BRW_OPCODE_SEL;
3690 case nir_op_umin: return BRW_OPCODE_SEL;
3691 case nir_op_fmin: return BRW_OPCODE_SEL;
3692 case nir_op_imax: return BRW_OPCODE_SEL;
3693 case nir_op_umax: return BRW_OPCODE_SEL;
3694 case nir_op_fmax: return BRW_OPCODE_SEL;
3695 case nir_op_iand: return BRW_OPCODE_AND;
3696 case nir_op_ior: return BRW_OPCODE_OR;
3697 case nir_op_ixor: return BRW_OPCODE_XOR;
3698 default:
3699 unreachable("Invalid reduction operation");
3700 }
3701 }
3702
3703 static brw_conditional_mod
3704 brw_cond_mod_for_nir_reduction_op(nir_op op)
3705 {
3706 switch (op) {
3707 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3708 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3709 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3710 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3711 case nir_op_imin: return BRW_CONDITIONAL_L;
3712 case nir_op_umin: return BRW_CONDITIONAL_L;
3713 case nir_op_fmin: return BRW_CONDITIONAL_L;
3714 case nir_op_imax: return BRW_CONDITIONAL_GE;
3715 case nir_op_umax: return BRW_CONDITIONAL_GE;
3716 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3717 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3718 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3719 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3720 default:
3721 unreachable("Invalid reduction operation");
3722 }
3723 }
3724
3725 fs_reg
3726 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3727 nir_intrinsic_instr *instr)
3728 {
3729 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3730
3731 if (stage_prog_data->binding_table.image_start > 0) {
3732 if (image.file == BRW_IMMEDIATE_VALUE) {
3733 image.d += stage_prog_data->binding_table.image_start;
3734 } else {
3735 bld.ADD(image, image,
3736 brw_imm_d(stage_prog_data->binding_table.image_start));
3737 }
3738 }
3739
3740 return bld.emit_uniformize(image);
3741 }
3742
3743 fs_reg
3744 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3745 nir_intrinsic_instr *instr)
3746 {
3747 /* SSBO stores are weird in that their index is in src[1] */
3748 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3749
3750 fs_reg surf_index;
3751 if (nir_src_is_const(instr->src[src])) {
3752 unsigned index = stage_prog_data->binding_table.ssbo_start +
3753 nir_src_as_uint(instr->src[src]);
3754 surf_index = brw_imm_ud(index);
3755 } else {
3756 surf_index = vgrf(glsl_type::uint_type);
3757 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3758 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3759 }
3760
3761 return bld.emit_uniformize(surf_index);
3762 }
3763
3764 static unsigned
3765 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3766 {
3767 switch (nir_intrinsic_image_dim(instr)) {
3768 case GLSL_SAMPLER_DIM_1D:
3769 return 1 + nir_intrinsic_image_array(instr);
3770 case GLSL_SAMPLER_DIM_2D:
3771 case GLSL_SAMPLER_DIM_RECT:
3772 return 2 + nir_intrinsic_image_array(instr);
3773 case GLSL_SAMPLER_DIM_3D:
3774 case GLSL_SAMPLER_DIM_CUBE:
3775 return 3;
3776 case GLSL_SAMPLER_DIM_BUF:
3777 return 1;
3778 case GLSL_SAMPLER_DIM_MS:
3779 return 2 + nir_intrinsic_image_array(instr);
3780 default:
3781 unreachable("Invalid image dimension");
3782 }
3783 }
3784
3785 void
3786 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3787 {
3788 fs_reg dest;
3789 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3790 dest = get_nir_dest(instr->dest);
3791
3792 switch (instr->intrinsic) {
3793 case nir_intrinsic_image_load:
3794 case nir_intrinsic_image_store:
3795 case nir_intrinsic_image_atomic_add:
3796 case nir_intrinsic_image_atomic_min:
3797 case nir_intrinsic_image_atomic_max:
3798 case nir_intrinsic_image_atomic_and:
3799 case nir_intrinsic_image_atomic_or:
3800 case nir_intrinsic_image_atomic_xor:
3801 case nir_intrinsic_image_atomic_exchange:
3802 case nir_intrinsic_image_atomic_comp_swap: {
3803 if (stage == MESA_SHADER_FRAGMENT &&
3804 instr->intrinsic != nir_intrinsic_image_load)
3805 brw_wm_prog_data(prog_data)->has_side_effects = true;
3806
3807 /* Get some metadata from the image intrinsic. */
3808 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3809 const GLenum format = nir_intrinsic_format(instr);
3810
3811 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3812 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3813 get_nir_image_intrinsic_image(bld, instr);
3814 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3815 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
3816 brw_imm_ud(image_intrinsic_coord_components(instr));
3817
3818 /* Emit an image load, store or atomic op. */
3819 if (instr->intrinsic == nir_intrinsic_image_load) {
3820 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3821 fs_inst *inst =
3822 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
3823 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3824 inst->size_written = instr->num_components * dispatch_width * 4;
3825 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3826 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3827 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
3828 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
3829 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3830 } else {
3831 int op;
3832 unsigned num_srcs = info->num_srcs;
3833
3834 switch (instr->intrinsic) {
3835 case nir_intrinsic_image_atomic_add:
3836 assert(num_srcs == 4);
3837
3838 op = get_op_for_atomic_add(instr, 3);
3839
3840 if (op != BRW_AOP_ADD)
3841 num_srcs = 3;
3842 break;
3843 case nir_intrinsic_image_atomic_min:
3844 assert(format == GL_R32UI || format == GL_R32I);
3845 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3846 break;
3847 case nir_intrinsic_image_atomic_max:
3848 assert(format == GL_R32UI || format == GL_R32I);
3849 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3850 break;
3851 case nir_intrinsic_image_atomic_and:
3852 op = BRW_AOP_AND;
3853 break;
3854 case nir_intrinsic_image_atomic_or:
3855 op = BRW_AOP_OR;
3856 break;
3857 case nir_intrinsic_image_atomic_xor:
3858 op = BRW_AOP_XOR;
3859 break;
3860 case nir_intrinsic_image_atomic_exchange:
3861 op = BRW_AOP_MOV;
3862 break;
3863 case nir_intrinsic_image_atomic_comp_swap:
3864 op = BRW_AOP_CMPWR;
3865 break;
3866 default:
3867 unreachable("Not reachable.");
3868 }
3869
3870 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
3871
3872 fs_reg data;
3873 if (num_srcs >= 4)
3874 data = get_nir_src(instr->src[3]);
3875 if (num_srcs >= 5) {
3876 fs_reg tmp = bld.vgrf(data.type, 2);
3877 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
3878 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
3879 data = tmp;
3880 }
3881 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3882
3883 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
3884 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3885 }
3886 break;
3887 }
3888
3889 case nir_intrinsic_image_size: {
3890 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3891 * into will handle the binding table index for us in the geneerator.
3892 */
3893 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3894 BRW_REGISTER_TYPE_UD);
3895 image = bld.emit_uniformize(image);
3896
3897 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3898 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
3899 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
3900 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
3901 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
3902
3903 /* Since the image size is always uniform, we can just emit a SIMD8
3904 * query instruction and splat the result out.
3905 */
3906 const fs_builder ubld = bld.exec_all().group(8, 0);
3907
3908 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3909 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
3910 tmp, srcs, ARRAY_SIZE(srcs));
3911 inst->size_written = 4 * REG_SIZE;
3912
3913 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3914 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3915 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3916 offset(retype(dest, tmp.type), bld, c),
3917 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3918 } else {
3919 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3920 component(offset(tmp, ubld, c), 0));
3921 }
3922 }
3923 break;
3924 }
3925
3926 case nir_intrinsic_image_load_raw_intel: {
3927 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3928 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3929 get_nir_image_intrinsic_image(bld, instr);
3930 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3931 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3932 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3933
3934 fs_inst *inst =
3935 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3936 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3937 inst->size_written = instr->num_components * dispatch_width * 4;
3938 break;
3939 }
3940
3941 case nir_intrinsic_image_store_raw_intel: {
3942 if (stage == MESA_SHADER_FRAGMENT)
3943 brw_wm_prog_data(prog_data)->has_side_effects = true;
3944
3945 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3946 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3947 get_nir_image_intrinsic_image(bld, instr);
3948 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3949 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
3950 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3951 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3952
3953 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3954 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3955 break;
3956 }
3957
3958 case nir_intrinsic_group_memory_barrier:
3959 case nir_intrinsic_memory_barrier_shared:
3960 case nir_intrinsic_memory_barrier_atomic_counter:
3961 case nir_intrinsic_memory_barrier_buffer:
3962 case nir_intrinsic_memory_barrier_image:
3963 case nir_intrinsic_memory_barrier: {
3964 const fs_builder ubld = bld.group(8, 0);
3965 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3966 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3967 ->size_written = 2 * REG_SIZE;
3968 break;
3969 }
3970
3971 case nir_intrinsic_shader_clock: {
3972 /* We cannot do anything if there is an event, so ignore it for now */
3973 const fs_reg shader_clock = get_timestamp(bld);
3974 const fs_reg srcs[] = { component(shader_clock, 0),
3975 component(shader_clock, 1) };
3976 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3977 break;
3978 }
3979
3980 case nir_intrinsic_image_samples:
3981 /* The driver does not support multi-sampled images. */
3982 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3983 break;
3984
3985 case nir_intrinsic_load_uniform: {
3986 /* Offsets are in bytes but they should always aligned to
3987 * the type size
3988 */
3989 assert(instr->const_index[0] % 4 == 0 ||
3990 instr->const_index[0] % type_sz(dest.type) == 0);
3991
3992 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3993
3994 if (nir_src_is_const(instr->src[0])) {
3995 unsigned load_offset = nir_src_as_uint(instr->src[0]);
3996 assert(load_offset % type_sz(dest.type) == 0);
3997 /* For 16-bit types we add the module of the const_index[0]
3998 * offset to access to not 32-bit aligned element
3999 */
4000 src.offset = load_offset + instr->const_index[0] % 4;
4001
4002 for (unsigned j = 0; j < instr->num_components; j++) {
4003 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4004 }
4005 } else {
4006 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4007 BRW_REGISTER_TYPE_UD);
4008
4009 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4010 * go past the end of the uniform. In order to keep the n'th
4011 * component from running past, we subtract off the size of all but
4012 * one component of the vector.
4013 */
4014 assert(instr->const_index[1] >=
4015 instr->num_components * (int) type_sz(dest.type));
4016 unsigned read_size = instr->const_index[1] -
4017 (instr->num_components - 1) * type_sz(dest.type);
4018
4019 bool supports_64bit_indirects =
4020 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4021
4022 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4023 for (unsigned j = 0; j < instr->num_components; j++) {
4024 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4025 offset(dest, bld, j), offset(src, bld, j),
4026 indirect, brw_imm_ud(read_size));
4027 }
4028 } else {
4029 const unsigned num_mov_indirects =
4030 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4031 /* We read a little bit less per MOV INDIRECT, as they are now
4032 * 32-bits ones instead of 64-bit. Fix read_size then.
4033 */
4034 const unsigned read_size_32bit = read_size -
4035 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4036 for (unsigned j = 0; j < instr->num_components; j++) {
4037 for (unsigned i = 0; i < num_mov_indirects; i++) {
4038 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4039 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4040 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4041 indirect, brw_imm_ud(read_size_32bit));
4042 }
4043 }
4044 }
4045 }
4046 break;
4047 }
4048
4049 case nir_intrinsic_load_ubo: {
4050 fs_reg surf_index;
4051 if (nir_src_is_const(instr->src[0])) {
4052 const unsigned index = stage_prog_data->binding_table.ubo_start +
4053 nir_src_as_uint(instr->src[0]);
4054 surf_index = brw_imm_ud(index);
4055 } else {
4056 /* The block index is not a constant. Evaluate the index expression
4057 * per-channel and add the base UBO index; we have to select a value
4058 * from any live channel.
4059 */
4060 surf_index = vgrf(glsl_type::uint_type);
4061 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4062 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4063 surf_index = bld.emit_uniformize(surf_index);
4064 }
4065
4066 if (!nir_src_is_const(instr->src[1])) {
4067 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4068 BRW_REGISTER_TYPE_UD);
4069
4070 for (int i = 0; i < instr->num_components; i++)
4071 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4072 base_offset, i * type_sz(dest.type));
4073 } else {
4074 /* Even if we are loading doubles, a pull constant load will load
4075 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4076 * need to load a full dvec4 we will have to emit 2 loads. This is
4077 * similar to demote_pull_constants(), except that in that case we
4078 * see individual accesses to each component of the vector and then
4079 * we let CSE deal with duplicate loads. Here we see a vector access
4080 * and we have to split it if necessary.
4081 */
4082 const unsigned type_size = type_sz(dest.type);
4083 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4084
4085 /* See if we've selected this as a push constant candidate */
4086 if (nir_src_is_const(instr->src[0])) {
4087 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4088 const unsigned offset_256b = load_offset / 32;
4089
4090 fs_reg push_reg;
4091 for (int i = 0; i < 4; i++) {
4092 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4093 if (range->block == ubo_block &&
4094 offset_256b >= range->start &&
4095 offset_256b < range->start + range->length) {
4096
4097 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4098 push_reg.offset = load_offset - 32 * range->start;
4099 break;
4100 }
4101 }
4102
4103 if (push_reg.file != BAD_FILE) {
4104 for (unsigned i = 0; i < instr->num_components; i++) {
4105 bld.MOV(offset(dest, bld, i),
4106 byte_offset(push_reg, i * type_size));
4107 }
4108 break;
4109 }
4110 }
4111
4112 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4113 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4114 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4115
4116 for (unsigned c = 0; c < instr->num_components;) {
4117 const unsigned base = load_offset + c * type_size;
4118 /* Number of usable components in the next block-aligned load. */
4119 const unsigned count = MIN2(instr->num_components - c,
4120 (block_sz - base % block_sz) / type_size);
4121
4122 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4123 packed_consts, surf_index,
4124 brw_imm_ud(base & ~(block_sz - 1)));
4125
4126 const fs_reg consts =
4127 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4128 dest.type);
4129
4130 for (unsigned d = 0; d < count; d++)
4131 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4132
4133 c += count;
4134 }
4135 }
4136 break;
4137 }
4138
4139 case nir_intrinsic_load_global: {
4140 assert(devinfo->gen >= 8);
4141
4142 if (nir_intrinsic_align(instr) >= 4) {
4143 assert(nir_dest_bit_size(instr->dest) == 32);
4144 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4145 dest,
4146 get_nir_src(instr->src[0]), /* Address */
4147 fs_reg(), /* No source data */
4148 brw_imm_ud(instr->num_components));
4149 inst->size_written = instr->num_components *
4150 inst->dst.component_size(inst->exec_size);
4151 } else {
4152 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4153 assert(bit_size <= 32);
4154 assert(nir_dest_num_components(instr->dest) == 1);
4155 brw_reg_type data_type =
4156 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4157 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4158 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4159 tmp,
4160 get_nir_src(instr->src[0]), /* Address */
4161 fs_reg(), /* No source data */
4162 brw_imm_ud(bit_size));
4163 bld.MOV(retype(dest, data_type), tmp);
4164 }
4165 break;
4166 }
4167
4168 case nir_intrinsic_store_global:
4169 assert(devinfo->gen >= 8);
4170
4171 if (stage == MESA_SHADER_FRAGMENT)
4172 brw_wm_prog_data(prog_data)->has_side_effects = true;
4173
4174 if (nir_intrinsic_align(instr) >= 4) {
4175 assert(nir_src_bit_size(instr->src[0]) == 32);
4176 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4177 fs_reg(),
4178 get_nir_src(instr->src[1]), /* Address */
4179 get_nir_src(instr->src[0]), /* Data */
4180 brw_imm_ud(instr->num_components));
4181 } else {
4182 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4183 assert(bit_size <= 32);
4184 assert(nir_src_num_components(instr->src[0]) == 1);
4185 brw_reg_type data_type =
4186 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4187 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4188 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4189 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4190 fs_reg(),
4191 get_nir_src(instr->src[1]), /* Address */
4192 tmp, /* Data */
4193 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4194 }
4195 break;
4196
4197 case nir_intrinsic_global_atomic_add:
4198 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4199 break;
4200 case nir_intrinsic_global_atomic_imin:
4201 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4202 break;
4203 case nir_intrinsic_global_atomic_umin:
4204 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4205 break;
4206 case nir_intrinsic_global_atomic_imax:
4207 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4208 break;
4209 case nir_intrinsic_global_atomic_umax:
4210 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4211 break;
4212 case nir_intrinsic_global_atomic_and:
4213 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4214 break;
4215 case nir_intrinsic_global_atomic_or:
4216 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4217 break;
4218 case nir_intrinsic_global_atomic_xor:
4219 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4220 break;
4221 case nir_intrinsic_global_atomic_exchange:
4222 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4223 break;
4224 case nir_intrinsic_global_atomic_comp_swap:
4225 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4226 break;
4227 case nir_intrinsic_global_atomic_fmin:
4228 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4229 break;
4230 case nir_intrinsic_global_atomic_fmax:
4231 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4232 break;
4233 case nir_intrinsic_global_atomic_fcomp_swap:
4234 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4235 break;
4236
4237 case nir_intrinsic_load_ssbo: {
4238 assert(devinfo->gen >= 7);
4239
4240 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4241 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4242 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4243 get_nir_ssbo_intrinsic_index(bld, instr);
4244 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4245 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4246
4247 /* Make dest unsigned because that's what the temporary will be */
4248 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4249
4250 /* Read the vector */
4251 if (nir_intrinsic_align(instr) >= 4) {
4252 assert(nir_dest_bit_size(instr->dest) == 32);
4253 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4254 fs_inst *inst =
4255 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4256 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4257 inst->size_written = instr->num_components * dispatch_width * 4;
4258 } else {
4259 assert(nir_dest_bit_size(instr->dest) <= 32);
4260 assert(nir_dest_num_components(instr->dest) == 1);
4261 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4262
4263 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4264 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4265 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4266 bld.MOV(dest, read_result);
4267 }
4268 break;
4269 }
4270
4271 case nir_intrinsic_store_ssbo: {
4272 assert(devinfo->gen >= 7);
4273
4274 if (stage == MESA_SHADER_FRAGMENT)
4275 brw_wm_prog_data(prog_data)->has_side_effects = true;
4276
4277 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4278 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4279 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4280 get_nir_ssbo_intrinsic_index(bld, instr);
4281 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4282 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4283
4284 fs_reg data = get_nir_src(instr->src[0]);
4285 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4286
4287 assert(nir_intrinsic_write_mask(instr) ==
4288 (1u << instr->num_components) - 1);
4289 if (nir_intrinsic_align(instr) >= 4) {
4290 assert(nir_src_bit_size(instr->src[0]) == 32);
4291 assert(nir_src_num_components(instr->src[0]) <= 4);
4292 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4293 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4294 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4295 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4296 } else {
4297 assert(nir_src_bit_size(instr->src[0]) <= 32);
4298 assert(nir_src_num_components(instr->src[0]) == 1);
4299 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4300
4301 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4302 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4303
4304 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4305 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4306 }
4307 break;
4308 }
4309
4310 case nir_intrinsic_store_output: {
4311 fs_reg src = get_nir_src(instr->src[0]);
4312
4313 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4314 unsigned num_components = instr->num_components;
4315 unsigned first_component = nir_intrinsic_component(instr);
4316 if (nir_src_bit_size(instr->src[0]) == 64) {
4317 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4318 num_components *= 2;
4319 }
4320
4321 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4322 4 * store_offset), src.type);
4323 for (unsigned j = 0; j < num_components; j++) {
4324 bld.MOV(offset(new_dest, bld, j + first_component),
4325 offset(src, bld, j));
4326 }
4327 break;
4328 }
4329
4330 case nir_intrinsic_ssbo_atomic_add:
4331 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4332 break;
4333 case nir_intrinsic_ssbo_atomic_imin:
4334 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4335 break;
4336 case nir_intrinsic_ssbo_atomic_umin:
4337 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4338 break;
4339 case nir_intrinsic_ssbo_atomic_imax:
4340 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4341 break;
4342 case nir_intrinsic_ssbo_atomic_umax:
4343 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4344 break;
4345 case nir_intrinsic_ssbo_atomic_and:
4346 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4347 break;
4348 case nir_intrinsic_ssbo_atomic_or:
4349 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4350 break;
4351 case nir_intrinsic_ssbo_atomic_xor:
4352 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4353 break;
4354 case nir_intrinsic_ssbo_atomic_exchange:
4355 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4356 break;
4357 case nir_intrinsic_ssbo_atomic_comp_swap:
4358 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4359 break;
4360 case nir_intrinsic_ssbo_atomic_fmin:
4361 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4362 break;
4363 case nir_intrinsic_ssbo_atomic_fmax:
4364 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4365 break;
4366 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4367 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4368 break;
4369
4370 case nir_intrinsic_get_buffer_size: {
4371 assert(nir_src_num_components(instr->src[0]) == 1);
4372 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4373 nir_src_as_uint(instr->src[0]) : 0;
4374
4375 /* A resinfo's sampler message is used to get the buffer size. The
4376 * SIMD8's writeback message consists of four registers and SIMD16's
4377 * writeback message consists of 8 destination registers (two per each
4378 * component). Because we are only interested on the first channel of
4379 * the first returned component, where resinfo returns the buffer size
4380 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4381 * the dispatch width.
4382 */
4383 const fs_builder ubld = bld.exec_all().group(8, 0);
4384 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4385 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4386
4387 /* Set LOD = 0 */
4388 ubld.MOV(src_payload, brw_imm_d(0));
4389
4390 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4391 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4392 src_payload, brw_imm_ud(index));
4393 inst->header_size = 0;
4394 inst->mlen = 1;
4395 inst->size_written = 4 * REG_SIZE;
4396
4397 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4398 *
4399 * "Out-of-bounds checking is always performed at a DWord granularity. If
4400 * any part of the DWord is out-of-bounds then the whole DWord is
4401 * considered out-of-bounds."
4402 *
4403 * This implies that types with size smaller than 4-bytes need to be
4404 * padded if they don't complete the last dword of the buffer. But as we
4405 * need to maintain the original size we need to reverse the padding
4406 * calculation to return the correct size to know the number of elements
4407 * of an unsized array. As we stored in the last two bits of the surface
4408 * size the needed padding for the buffer, we calculate here the
4409 * original buffer_size reversing the surface_size calculation:
4410 *
4411 * surface_size = isl_align(buffer_size, 4) +
4412 * (isl_align(buffer_size) - buffer_size)
4413 *
4414 * buffer_size = surface_size & ~3 - surface_size & 3
4415 */
4416
4417 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4418 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4419 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4420
4421 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4422 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4423 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4424
4425 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4426 break;
4427 }
4428
4429 case nir_intrinsic_load_subgroup_invocation:
4430 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4431 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4432 break;
4433
4434 case nir_intrinsic_load_subgroup_eq_mask:
4435 case nir_intrinsic_load_subgroup_ge_mask:
4436 case nir_intrinsic_load_subgroup_gt_mask:
4437 case nir_intrinsic_load_subgroup_le_mask:
4438 case nir_intrinsic_load_subgroup_lt_mask:
4439 unreachable("not reached");
4440
4441 case nir_intrinsic_vote_any: {
4442 const fs_builder ubld = bld.exec_all().group(1, 0);
4443
4444 /* The any/all predicates do not consider channel enables. To prevent
4445 * dead channels from affecting the result, we initialize the flag with
4446 * with the identity value for the logical operation.
4447 */
4448 if (dispatch_width == 32) {
4449 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4450 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4451 brw_imm_ud(0));
4452 } else {
4453 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4454 }
4455 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4456
4457 /* For some reason, the any/all predicates don't work properly with
4458 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4459 * doesn't read the correct subset of the flag register and you end up
4460 * getting garbage in the second half. Work around this by using a pair
4461 * of 1-wide MOVs and scattering the result.
4462 */
4463 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4464 ubld.MOV(res1, brw_imm_d(0));
4465 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4466 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4467 BRW_PREDICATE_ALIGN1_ANY32H,
4468 ubld.MOV(res1, brw_imm_d(-1)));
4469
4470 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4471 break;
4472 }
4473 case nir_intrinsic_vote_all: {
4474 const fs_builder ubld = bld.exec_all().group(1, 0);
4475
4476 /* The any/all predicates do not consider channel enables. To prevent
4477 * dead channels from affecting the result, we initialize the flag with
4478 * with the identity value for the logical operation.
4479 */
4480 if (dispatch_width == 32) {
4481 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4482 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4483 brw_imm_ud(0xffffffff));
4484 } else {
4485 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4486 }
4487 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4488
4489 /* For some reason, the any/all predicates don't work properly with
4490 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4491 * doesn't read the correct subset of the flag register and you end up
4492 * getting garbage in the second half. Work around this by using a pair
4493 * of 1-wide MOVs and scattering the result.
4494 */
4495 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4496 ubld.MOV(res1, brw_imm_d(0));
4497 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4498 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4499 BRW_PREDICATE_ALIGN1_ALL32H,
4500 ubld.MOV(res1, brw_imm_d(-1)));
4501
4502 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4503 break;
4504 }
4505 case nir_intrinsic_vote_feq:
4506 case nir_intrinsic_vote_ieq: {
4507 fs_reg value = get_nir_src(instr->src[0]);
4508 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4509 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4510 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4511 }
4512
4513 fs_reg uniformized = bld.emit_uniformize(value);
4514 const fs_builder ubld = bld.exec_all().group(1, 0);
4515
4516 /* The any/all predicates do not consider channel enables. To prevent
4517 * dead channels from affecting the result, we initialize the flag with
4518 * with the identity value for the logical operation.
4519 */
4520 if (dispatch_width == 32) {
4521 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4522 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4523 brw_imm_ud(0xffffffff));
4524 } else {
4525 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4526 }
4527 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4528
4529 /* For some reason, the any/all predicates don't work properly with
4530 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4531 * doesn't read the correct subset of the flag register and you end up
4532 * getting garbage in the second half. Work around this by using a pair
4533 * of 1-wide MOVs and scattering the result.
4534 */
4535 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4536 ubld.MOV(res1, brw_imm_d(0));
4537 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4538 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4539 BRW_PREDICATE_ALIGN1_ALL32H,
4540 ubld.MOV(res1, brw_imm_d(-1)));
4541
4542 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4543 break;
4544 }
4545
4546 case nir_intrinsic_ballot: {
4547 const fs_reg value = retype(get_nir_src(instr->src[0]),
4548 BRW_REGISTER_TYPE_UD);
4549 struct brw_reg flag = brw_flag_reg(0, 0);
4550 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4551 * as f0.0. This is a problem for fragment programs as we currently use
4552 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4553 * programs yet so this isn't a problem. When we do, something will
4554 * have to change.
4555 */
4556 if (dispatch_width == 32)
4557 flag.type = BRW_REGISTER_TYPE_UD;
4558
4559 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4560 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4561
4562 if (instr->dest.ssa.bit_size > 32) {
4563 dest.type = BRW_REGISTER_TYPE_UQ;
4564 } else {
4565 dest.type = BRW_REGISTER_TYPE_UD;
4566 }
4567 bld.MOV(dest, flag);
4568 break;
4569 }
4570
4571 case nir_intrinsic_read_invocation: {
4572 const fs_reg value = get_nir_src(instr->src[0]);
4573 const fs_reg invocation = get_nir_src(instr->src[1]);
4574 fs_reg tmp = bld.vgrf(value.type);
4575
4576 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4577 bld.emit_uniformize(invocation));
4578
4579 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4580 break;
4581 }
4582
4583 case nir_intrinsic_read_first_invocation: {
4584 const fs_reg value = get_nir_src(instr->src[0]);
4585 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4586 break;
4587 }
4588
4589 case nir_intrinsic_shuffle: {
4590 const fs_reg value = get_nir_src(instr->src[0]);
4591 const fs_reg index = get_nir_src(instr->src[1]);
4592
4593 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4594 break;
4595 }
4596
4597 case nir_intrinsic_first_invocation: {
4598 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4599 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4600 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4601 fs_reg(component(tmp, 0)));
4602 break;
4603 }
4604
4605 case nir_intrinsic_quad_broadcast: {
4606 const fs_reg value = get_nir_src(instr->src[0]);
4607 const unsigned index = nir_src_as_uint(instr->src[1]);
4608
4609 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4610 value, brw_imm_ud(index), brw_imm_ud(4));
4611 break;
4612 }
4613
4614 case nir_intrinsic_quad_swap_horizontal: {
4615 const fs_reg value = get_nir_src(instr->src[0]);
4616 const fs_reg tmp = bld.vgrf(value.type);
4617 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4618
4619 const fs_reg src_left = horiz_stride(value, 2);
4620 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4621 const fs_reg tmp_left = horiz_stride(tmp, 2);
4622 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4623
4624 ubld.MOV(tmp_left, src_right);
4625 ubld.MOV(tmp_right, src_left);
4626
4627 bld.MOV(retype(dest, value.type), tmp);
4628 break;
4629 }
4630
4631 case nir_intrinsic_quad_swap_vertical: {
4632 const fs_reg value = get_nir_src(instr->src[0]);
4633 if (nir_src_bit_size(instr->src[0]) == 32) {
4634 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4635 const fs_reg tmp = bld.vgrf(value.type);
4636 const fs_builder ubld = bld.exec_all();
4637 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4638 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4639 bld.MOV(retype(dest, value.type), tmp);
4640 } else {
4641 /* For larger data types, we have to either emit dispatch_width many
4642 * MOVs or else fall back to doing indirects.
4643 */
4644 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4645 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4646 brw_imm_w(0x2));
4647 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4648 }
4649 break;
4650 }
4651
4652 case nir_intrinsic_quad_swap_diagonal: {
4653 const fs_reg value = get_nir_src(instr->src[0]);
4654 if (nir_src_bit_size(instr->src[0]) == 32) {
4655 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4656 const fs_reg tmp = bld.vgrf(value.type);
4657 const fs_builder ubld = bld.exec_all();
4658 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4659 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4660 bld.MOV(retype(dest, value.type), tmp);
4661 } else {
4662 /* For larger data types, we have to either emit dispatch_width many
4663 * MOVs or else fall back to doing indirects.
4664 */
4665 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4666 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4667 brw_imm_w(0x3));
4668 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4669 }
4670 break;
4671 }
4672
4673 case nir_intrinsic_reduce: {
4674 fs_reg src = get_nir_src(instr->src[0]);
4675 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4676 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4677 if (cluster_size == 0 || cluster_size > dispatch_width)
4678 cluster_size = dispatch_width;
4679
4680 /* Figure out the source type */
4681 src.type = brw_type_for_nir_type(devinfo,
4682 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4683 nir_src_bit_size(instr->src[0])));
4684
4685 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4686 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4687 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4688
4689 /* Set up a register for all of our scratching around and initialize it
4690 * to reduction operation's identity value.
4691 */
4692 fs_reg scan = bld.vgrf(src.type);
4693 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4694
4695 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4696
4697 dest.type = src.type;
4698 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4699 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4700 * the distance between clusters is at least 2 GRFs. In this case,
4701 * we don't need the weird striding of the CLUSTER_BROADCAST
4702 * instruction and can just do regular MOVs.
4703 */
4704 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4705 const unsigned groups =
4706 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4707 const unsigned group_size = dispatch_width / groups;
4708 for (unsigned i = 0; i < groups; i++) {
4709 const unsigned cluster = (i * group_size) / cluster_size;
4710 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4711 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4712 component(scan, comp));
4713 }
4714 } else {
4715 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4716 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4717 }
4718 break;
4719 }
4720
4721 case nir_intrinsic_inclusive_scan:
4722 case nir_intrinsic_exclusive_scan: {
4723 fs_reg src = get_nir_src(instr->src[0]);
4724 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4725
4726 /* Figure out the source type */
4727 src.type = brw_type_for_nir_type(devinfo,
4728 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4729 nir_src_bit_size(instr->src[0])));
4730
4731 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4732 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4733 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4734
4735 /* Set up a register for all of our scratching around and initialize it
4736 * to reduction operation's identity value.
4737 */
4738 fs_reg scan = bld.vgrf(src.type);
4739 const fs_builder allbld = bld.exec_all();
4740 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4741
4742 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4743 /* Exclusive scan is a bit harder because we have to do an annoying
4744 * shift of the contents before we can begin. To make things worse,
4745 * we can't do this with a normal stride; we have to use indirects.
4746 */
4747 fs_reg shifted = bld.vgrf(src.type);
4748 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4749 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4750 brw_imm_w(-1));
4751 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4752 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4753 scan = shifted;
4754 }
4755
4756 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4757
4758 bld.MOV(retype(dest, src.type), scan);
4759 break;
4760 }
4761
4762 case nir_intrinsic_begin_invocation_interlock: {
4763 const fs_builder ubld = bld.group(8, 0);
4764 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4765
4766 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4767 REG_SIZE;
4768
4769 break;
4770 }
4771
4772 case nir_intrinsic_end_invocation_interlock: {
4773 /* We don't need to do anything here */
4774 break;
4775 }
4776
4777 default:
4778 unreachable("unknown intrinsic");
4779 }
4780 }
4781
4782 void
4783 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4784 int op, nir_intrinsic_instr *instr)
4785 {
4786 if (stage == MESA_SHADER_FRAGMENT)
4787 brw_wm_prog_data(prog_data)->has_side_effects = true;
4788
4789 fs_reg dest;
4790 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4791 dest = get_nir_dest(instr->dest);
4792
4793 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4794 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4795 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4796 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4797 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4798
4799 fs_reg data;
4800 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4801 data = get_nir_src(instr->src[2]);
4802
4803 if (op == BRW_AOP_CMPWR) {
4804 fs_reg tmp = bld.vgrf(data.type, 2);
4805 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4806 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4807 data = tmp;
4808 }
4809 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4810
4811 /* Emit the actual atomic operation */
4812
4813 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4814 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4815 }
4816
4817 void
4818 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4819 int op, nir_intrinsic_instr *instr)
4820 {
4821 if (stage == MESA_SHADER_FRAGMENT)
4822 brw_wm_prog_data(prog_data)->has_side_effects = true;
4823
4824 fs_reg dest;
4825 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4826 dest = get_nir_dest(instr->dest);
4827
4828 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4829 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4830 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4831 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4832 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4833
4834 fs_reg data = get_nir_src(instr->src[2]);
4835 if (op == BRW_AOP_FCMPWR) {
4836 fs_reg tmp = bld.vgrf(data.type, 2);
4837 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4838 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4839 data = tmp;
4840 }
4841 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4842
4843 /* Emit the actual atomic operation */
4844
4845 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4846 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4847 }
4848
4849 void
4850 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4851 int op, nir_intrinsic_instr *instr)
4852 {
4853 fs_reg dest;
4854 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4855 dest = get_nir_dest(instr->dest);
4856
4857 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4858 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4859 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4860 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4861
4862 fs_reg data;
4863 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4864 data = get_nir_src(instr->src[1]);
4865 if (op == BRW_AOP_CMPWR) {
4866 fs_reg tmp = bld.vgrf(data.type, 2);
4867 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4868 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4869 data = tmp;
4870 }
4871 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4872
4873 /* Get the offset */
4874 if (nir_src_is_const(instr->src[0])) {
4875 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4876 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4877 } else {
4878 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4879 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4880 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4881 brw_imm_ud(instr->const_index[0]));
4882 }
4883
4884 /* Emit the actual atomic operation operation */
4885
4886 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4887 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4888 }
4889
4890 void
4891 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4892 int op, nir_intrinsic_instr *instr)
4893 {
4894 fs_reg dest;
4895 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4896 dest = get_nir_dest(instr->dest);
4897
4898 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4899 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4900 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4901 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4902
4903 fs_reg data = get_nir_src(instr->src[1]);
4904 if (op == BRW_AOP_FCMPWR) {
4905 fs_reg tmp = bld.vgrf(data.type, 2);
4906 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4907 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4908 data = tmp;
4909 }
4910 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4911
4912 /* Get the offset */
4913 if (nir_src_is_const(instr->src[0])) {
4914 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4915 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4916 } else {
4917 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4918 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4919 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4920 brw_imm_ud(instr->const_index[0]));
4921 }
4922
4923 /* Emit the actual atomic operation operation */
4924
4925 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4926 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4927 }
4928
4929 void
4930 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
4931 int op, nir_intrinsic_instr *instr)
4932 {
4933 if (stage == MESA_SHADER_FRAGMENT)
4934 brw_wm_prog_data(prog_data)->has_side_effects = true;
4935
4936 fs_reg dest;
4937 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4938 dest = get_nir_dest(instr->dest);
4939
4940 fs_reg addr = get_nir_src(instr->src[0]);
4941
4942 fs_reg data;
4943 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4944 data = get_nir_src(instr->src[1]);
4945
4946 if (op == BRW_AOP_CMPWR) {
4947 fs_reg tmp = bld.vgrf(data.type, 2);
4948 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4949 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4950 data = tmp;
4951 }
4952
4953 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4954 dest, addr, data, brw_imm_ud(op));
4955 }
4956
4957 void
4958 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
4959 int op, nir_intrinsic_instr *instr)
4960 {
4961 if (stage == MESA_SHADER_FRAGMENT)
4962 brw_wm_prog_data(prog_data)->has_side_effects = true;
4963
4964 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
4965 fs_reg dest = get_nir_dest(instr->dest);
4966
4967 fs_reg addr = get_nir_src(instr->src[0]);
4968
4969 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
4970 fs_reg data = get_nir_src(instr->src[1]);
4971
4972 if (op == BRW_AOP_FCMPWR) {
4973 fs_reg tmp = bld.vgrf(data.type, 2);
4974 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4975 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4976 data = tmp;
4977 }
4978
4979 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4980 dest, addr, data, brw_imm_ud(op));
4981 }
4982
4983 void
4984 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4985 {
4986 unsigned texture = instr->texture_index;
4987 unsigned sampler = instr->sampler_index;
4988
4989 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4990
4991 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4992 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4993
4994 int lod_components = 0;
4995
4996 /* The hardware requires a LOD for buffer textures */
4997 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4998 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4999
5000 uint32_t header_bits = 0;
5001 for (unsigned i = 0; i < instr->num_srcs; i++) {
5002 fs_reg src = get_nir_src(instr->src[i].src);
5003 switch (instr->src[i].src_type) {
5004 case nir_tex_src_bias:
5005 srcs[TEX_LOGICAL_SRC_LOD] =
5006 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5007 break;
5008 case nir_tex_src_comparator:
5009 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5010 break;
5011 case nir_tex_src_coord:
5012 switch (instr->op) {
5013 case nir_texop_txf:
5014 case nir_texop_txf_ms:
5015 case nir_texop_txf_ms_mcs:
5016 case nir_texop_samples_identical:
5017 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5018 break;
5019 default:
5020 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5021 break;
5022 }
5023 break;
5024 case nir_tex_src_ddx:
5025 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5026 lod_components = nir_tex_instr_src_size(instr, i);
5027 break;
5028 case nir_tex_src_ddy:
5029 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5030 break;
5031 case nir_tex_src_lod:
5032 switch (instr->op) {
5033 case nir_texop_txs:
5034 srcs[TEX_LOGICAL_SRC_LOD] =
5035 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5036 break;
5037 case nir_texop_txf:
5038 srcs[TEX_LOGICAL_SRC_LOD] =
5039 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5040 break;
5041 default:
5042 srcs[TEX_LOGICAL_SRC_LOD] =
5043 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5044 break;
5045 }
5046 break;
5047 case nir_tex_src_min_lod:
5048 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5049 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5050 break;
5051 case nir_tex_src_ms_index:
5052 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5053 break;
5054
5055 case nir_tex_src_offset: {
5056 nir_const_value *const_offset =
5057 nir_src_as_const_value(instr->src[i].src);
5058 assert(nir_src_bit_size(instr->src[i].src) == 32);
5059 unsigned offset_bits = 0;
5060 if (const_offset &&
5061 brw_texture_offset(const_offset->i32,
5062 nir_tex_instr_src_size(instr, i),
5063 &offset_bits)) {
5064 header_bits |= offset_bits;
5065 } else {
5066 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5067 retype(src, BRW_REGISTER_TYPE_D);
5068 }
5069 break;
5070 }
5071
5072 case nir_tex_src_projector:
5073 unreachable("should be lowered");
5074
5075 case nir_tex_src_texture_offset: {
5076 /* Emit code to evaluate the actual indexing expression */
5077 fs_reg tmp = vgrf(glsl_type::uint_type);
5078 bld.ADD(tmp, src, brw_imm_ud(texture));
5079 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5080 break;
5081 }
5082
5083 case nir_tex_src_sampler_offset: {
5084 /* Emit code to evaluate the actual indexing expression */
5085 fs_reg tmp = vgrf(glsl_type::uint_type);
5086 bld.ADD(tmp, src, brw_imm_ud(sampler));
5087 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5088 break;
5089 }
5090
5091 case nir_tex_src_ms_mcs:
5092 assert(instr->op == nir_texop_txf_ms);
5093 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5094 break;
5095
5096 case nir_tex_src_plane: {
5097 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5098 const uint32_t texture_index =
5099 instr->texture_index +
5100 stage_prog_data->binding_table.plane_start[plane] -
5101 stage_prog_data->binding_table.texture_start;
5102
5103 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5104 break;
5105 }
5106
5107 default:
5108 unreachable("unknown texture source");
5109 }
5110 }
5111
5112 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5113 (instr->op == nir_texop_txf_ms ||
5114 instr->op == nir_texop_samples_identical)) {
5115 if (devinfo->gen >= 7 &&
5116 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5117 srcs[TEX_LOGICAL_SRC_MCS] =
5118 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5119 instr->coord_components,
5120 srcs[TEX_LOGICAL_SRC_SURFACE]);
5121 } else {
5122 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5123 }
5124 }
5125
5126 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5127 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5128
5129 enum opcode opcode;
5130 switch (instr->op) {
5131 case nir_texop_tex:
5132 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5133 SHADER_OPCODE_TXL_LOGICAL);
5134 break;
5135 case nir_texop_txb:
5136 opcode = FS_OPCODE_TXB_LOGICAL;
5137 break;
5138 case nir_texop_txl:
5139 opcode = SHADER_OPCODE_TXL_LOGICAL;
5140 break;
5141 case nir_texop_txd:
5142 opcode = SHADER_OPCODE_TXD_LOGICAL;
5143 break;
5144 case nir_texop_txf:
5145 opcode = SHADER_OPCODE_TXF_LOGICAL;
5146 break;
5147 case nir_texop_txf_ms:
5148 if ((key_tex->msaa_16 & (1 << sampler)))
5149 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5150 else
5151 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5152 break;
5153 case nir_texop_txf_ms_mcs:
5154 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5155 break;
5156 case nir_texop_query_levels:
5157 case nir_texop_txs:
5158 opcode = SHADER_OPCODE_TXS_LOGICAL;
5159 break;
5160 case nir_texop_lod:
5161 opcode = SHADER_OPCODE_LOD_LOGICAL;
5162 break;
5163 case nir_texop_tg4:
5164 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5165 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5166 else
5167 opcode = SHADER_OPCODE_TG4_LOGICAL;
5168 break;
5169 case nir_texop_texture_samples:
5170 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5171 break;
5172 case nir_texop_samples_identical: {
5173 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5174
5175 /* If mcs is an immediate value, it means there is no MCS. In that case
5176 * just return false.
5177 */
5178 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5179 bld.MOV(dst, brw_imm_ud(0u));
5180 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5181 fs_reg tmp = vgrf(glsl_type::uint_type);
5182 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5183 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5184 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5185 } else {
5186 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5187 BRW_CONDITIONAL_EQ);
5188 }
5189 return;
5190 }
5191 default:
5192 unreachable("unknown texture opcode");
5193 }
5194
5195 if (instr->op == nir_texop_tg4) {
5196 if (instr->component == 1 &&
5197 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5198 /* gather4 sampler is broken for green channel on RG32F --
5199 * we must ask for blue instead.
5200 */
5201 header_bits |= 2 << 16;
5202 } else {
5203 header_bits |= instr->component << 16;
5204 }
5205 }
5206
5207 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5208 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5209 inst->offset = header_bits;
5210
5211 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5212 if (devinfo->gen >= 9 &&
5213 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5214 unsigned write_mask = instr->dest.is_ssa ?
5215 nir_ssa_def_components_read(&instr->dest.ssa):
5216 (1 << dest_size) - 1;
5217 assert(write_mask != 0); /* dead code should have been eliminated */
5218 inst->size_written = util_last_bit(write_mask) *
5219 inst->dst.component_size(inst->exec_size);
5220 } else {
5221 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5222 }
5223
5224 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5225 inst->shadow_compare = true;
5226
5227 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5228 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5229
5230 fs_reg nir_dest[4];
5231 for (unsigned i = 0; i < dest_size; i++)
5232 nir_dest[i] = offset(dst, bld, i);
5233
5234 if (instr->op == nir_texop_query_levels) {
5235 /* # levels is in .w */
5236 nir_dest[0] = offset(dst, bld, 3);
5237 } else if (instr->op == nir_texop_txs &&
5238 dest_size >= 3 && devinfo->gen < 7) {
5239 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5240 fs_reg depth = offset(dst, bld, 2);
5241 nir_dest[2] = vgrf(glsl_type::int_type);
5242 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5243 }
5244
5245 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5246 }
5247
5248 void
5249 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5250 {
5251 switch (instr->type) {
5252 case nir_jump_break:
5253 bld.emit(BRW_OPCODE_BREAK);
5254 break;
5255 case nir_jump_continue:
5256 bld.emit(BRW_OPCODE_CONTINUE);
5257 break;
5258 case nir_jump_return:
5259 default:
5260 unreachable("unknown jump");
5261 }
5262 }
5263
5264 /*
5265 * This helper takes a source register and un/shuffles it into the destination
5266 * register.
5267 *
5268 * If source type size is smaller than destination type size the operation
5269 * needed is a component shuffle. The opposite case would be an unshuffle. If
5270 * source/destination type size is equal a shuffle is done that would be
5271 * equivalent to a simple MOV.
5272 *
5273 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5274 * components .xyz 16-bit vector on SIMD8 would be.
5275 *
5276 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5277 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5278 *
5279 * This helper will return the following 2 32-bit components with the 16-bit
5280 * values shuffled:
5281 *
5282 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5283 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5284 *
5285 * For unshuffle, the example would be the opposite, a 64-bit type source
5286 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5287 * would be:
5288 *
5289 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5290 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5291 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5292 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5293 *
5294 * The returned result would be the following 4 32-bit components unshuffled:
5295 *
5296 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5297 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5298 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5299 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5300 *
5301 * - Source and destination register must not be overlapped.
5302 * - components units are measured in terms of the smaller type between
5303 * source and destination because we are un/shuffling the smaller
5304 * components from/into the bigger ones.
5305 * - first_component parameter allows skipping source components.
5306 */
5307 void
5308 shuffle_src_to_dst(const fs_builder &bld,
5309 const fs_reg &dst,
5310 const fs_reg &src,
5311 uint32_t first_component,
5312 uint32_t components)
5313 {
5314 if (type_sz(src.type) == type_sz(dst.type)) {
5315 assert(!regions_overlap(dst,
5316 type_sz(dst.type) * bld.dispatch_width() * components,
5317 offset(src, bld, first_component),
5318 type_sz(src.type) * bld.dispatch_width() * components));
5319 for (unsigned i = 0; i < components; i++) {
5320 bld.MOV(retype(offset(dst, bld, i), src.type),
5321 offset(src, bld, i + first_component));
5322 }
5323 } else if (type_sz(src.type) < type_sz(dst.type)) {
5324 /* Source is shuffled into destination */
5325 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5326 assert(!regions_overlap(dst,
5327 type_sz(dst.type) * bld.dispatch_width() *
5328 DIV_ROUND_UP(components, size_ratio),
5329 offset(src, bld, first_component),
5330 type_sz(src.type) * bld.dispatch_width() * components));
5331
5332 brw_reg_type shuffle_type =
5333 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5334 BRW_REGISTER_TYPE_D);
5335 for (unsigned i = 0; i < components; i++) {
5336 fs_reg shuffle_component_i =
5337 subscript(offset(dst, bld, i / size_ratio),
5338 shuffle_type, i % size_ratio);
5339 bld.MOV(shuffle_component_i,
5340 retype(offset(src, bld, i + first_component), shuffle_type));
5341 }
5342 } else {
5343 /* Source is unshuffled into destination */
5344 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5345 assert(!regions_overlap(dst,
5346 type_sz(dst.type) * bld.dispatch_width() * components,
5347 offset(src, bld, first_component / size_ratio),
5348 type_sz(src.type) * bld.dispatch_width() *
5349 DIV_ROUND_UP(components + (first_component % size_ratio),
5350 size_ratio)));
5351
5352 brw_reg_type shuffle_type =
5353 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5354 BRW_REGISTER_TYPE_D);
5355 for (unsigned i = 0; i < components; i++) {
5356 fs_reg shuffle_component_i =
5357 subscript(offset(src, bld, (first_component + i) / size_ratio),
5358 shuffle_type, (first_component + i) % size_ratio);
5359 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5360 shuffle_component_i);
5361 }
5362 }
5363 }
5364
5365 void
5366 shuffle_from_32bit_read(const fs_builder &bld,
5367 const fs_reg &dst,
5368 const fs_reg &src,
5369 uint32_t first_component,
5370 uint32_t components)
5371 {
5372 assert(type_sz(src.type) == 4);
5373
5374 /* This function takes components in units of the destination type while
5375 * shuffle_src_to_dst takes components in units of the smallest type
5376 */
5377 if (type_sz(dst.type) > 4) {
5378 assert(type_sz(dst.type) == 8);
5379 first_component *= 2;
5380 components *= 2;
5381 }
5382
5383 shuffle_src_to_dst(bld, dst, src, first_component, components);
5384 }
5385
5386 fs_reg
5387 shuffle_for_32bit_write(const fs_builder &bld,
5388 const fs_reg &src,
5389 uint32_t first_component,
5390 uint32_t components)
5391 {
5392 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5393 DIV_ROUND_UP (components * type_sz(src.type), 4));
5394 /* This function takes components in units of the source type while
5395 * shuffle_src_to_dst takes components in units of the smallest type
5396 */
5397 if (type_sz(src.type) > 4) {
5398 assert(type_sz(src.type) == 8);
5399 first_component *= 2;
5400 components *= 2;
5401 }
5402
5403 shuffle_src_to_dst(bld, dst, src, first_component, components);
5404
5405 return dst;
5406 }
5407
5408 fs_reg
5409 setup_imm_df(const fs_builder &bld, double v)
5410 {
5411 const struct gen_device_info *devinfo = bld.shader->devinfo;
5412 assert(devinfo->gen >= 7);
5413
5414 if (devinfo->gen >= 8)
5415 return brw_imm_df(v);
5416
5417 /* gen7.5 does not support DF immediates straighforward but the DIM
5418 * instruction allows to set the 64-bit immediate value.
5419 */
5420 if (devinfo->is_haswell) {
5421 const fs_builder ubld = bld.exec_all().group(1, 0);
5422 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5423 ubld.DIM(dst, brw_imm_df(v));
5424 return component(dst, 0);
5425 }
5426
5427 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5428 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5429 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5430 *
5431 * Alternatively, we could also produce a normal VGRF (without stride 0)
5432 * by writing to all the channels in the VGRF, however, that would hit the
5433 * gen7 bug where we have to split writes that span more than 1 register
5434 * into instructions with a width of 4 (otherwise the write to the second
5435 * register written runs into an execmask hardware bug) which isn't very
5436 * nice.
5437 */
5438 union {
5439 double d;
5440 struct {
5441 uint32_t i1;
5442 uint32_t i2;
5443 };
5444 } di;
5445
5446 di.d = v;
5447
5448 const fs_builder ubld = bld.exec_all().group(1, 0);
5449 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5450 ubld.MOV(tmp, brw_imm_ud(di.i1));
5451 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5452
5453 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5454 }
5455
5456 fs_reg
5457 setup_imm_b(const fs_builder &bld, int8_t v)
5458 {
5459 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5460 bld.MOV(tmp, brw_imm_w(v));
5461 return tmp;
5462 }
5463
5464 fs_reg
5465 setup_imm_ub(const fs_builder &bld, uint8_t v)
5466 {
5467 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5468 bld.MOV(tmp, brw_imm_uw(v));
5469 return tmp;
5470 }