intel/fs,vec4: Clean up a repeated pattern with SSBOs
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28 #include "util/u_math.h"
29
30 using namespace brw;
31 using namespace brw::surface_access;
32
33 void
34 fs_visitor::emit_nir_code()
35 {
36 /* emit the arrays used for inputs and outputs - load/store intrinsics will
37 * be converted to reads/writes of these arrays
38 */
39 nir_setup_outputs();
40 nir_setup_uniforms();
41 nir_emit_system_values();
42
43 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
44 }
45
46 void
47 fs_visitor::nir_setup_outputs()
48 {
49 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
50 return;
51
52 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
53
54 /* Calculate the size of output registers in a separate pass, before
55 * allocating them. With ARB_enhanced_layouts, multiple output variables
56 * may occupy the same slot, but have different type sizes.
57 */
58 nir_foreach_variable(var, &nir->outputs) {
59 const int loc = var->data.driver_location;
60 const unsigned var_vec4s =
61 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
62 : type_size_vec4(var->type);
63 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
64 }
65
66 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
67 if (vec4s[loc] == 0) {
68 loc++;
69 continue;
70 }
71
72 unsigned reg_size = vec4s[loc];
73
74 /* Check if there are any ranges that start within this range and extend
75 * past it. If so, include them in this allocation.
76 */
77 for (unsigned i = 1; i < reg_size; i++)
78 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
79
80 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
81 for (unsigned i = 0; i < reg_size; i++)
82 outputs[loc + i] = offset(reg, bld, 4 * i);
83
84 loc += reg_size;
85 }
86 }
87
88 void
89 fs_visitor::nir_setup_uniforms()
90 {
91 /* Only the first compile gets to set up uniforms. */
92 if (push_constant_loc) {
93 assert(pull_constant_loc);
94 return;
95 }
96
97 uniforms = nir->num_uniforms / 4;
98
99 if (stage == MESA_SHADER_COMPUTE) {
100 /* Add a uniform for the thread local id. It must be the last uniform
101 * on the list.
102 */
103 assert(uniforms == prog_data->nr_params);
104 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
105 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
106 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
107 }
108 }
109
110 static bool
111 emit_system_values_block(nir_block *block, fs_visitor *v)
112 {
113 fs_reg *reg;
114
115 nir_foreach_instr(instr, block) {
116 if (instr->type != nir_instr_type_intrinsic)
117 continue;
118
119 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
120 switch (intrin->intrinsic) {
121 case nir_intrinsic_load_vertex_id:
122 case nir_intrinsic_load_base_vertex:
123 unreachable("should be lowered by nir_lower_system_values().");
124
125 case nir_intrinsic_load_vertex_id_zero_base:
126 case nir_intrinsic_load_is_indexed_draw:
127 case nir_intrinsic_load_first_vertex:
128 case nir_intrinsic_load_instance_id:
129 case nir_intrinsic_load_base_instance:
130 case nir_intrinsic_load_draw_id:
131 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
132
133 case nir_intrinsic_load_invocation_id:
134 if (v->stage == MESA_SHADER_TESS_CTRL)
135 break;
136 assert(v->stage == MESA_SHADER_GEOMETRY);
137 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
138 if (reg->file == BAD_FILE) {
139 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
140 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
141 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
142 abld.SHR(iid, g1, brw_imm_ud(27u));
143 *reg = iid;
144 }
145 break;
146
147 case nir_intrinsic_load_sample_pos:
148 assert(v->stage == MESA_SHADER_FRAGMENT);
149 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
150 if (reg->file == BAD_FILE)
151 *reg = *v->emit_samplepos_setup();
152 break;
153
154 case nir_intrinsic_load_sample_id:
155 assert(v->stage == MESA_SHADER_FRAGMENT);
156 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
157 if (reg->file == BAD_FILE)
158 *reg = *v->emit_sampleid_setup();
159 break;
160
161 case nir_intrinsic_load_sample_mask_in:
162 assert(v->stage == MESA_SHADER_FRAGMENT);
163 assert(v->devinfo->gen >= 7);
164 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
165 if (reg->file == BAD_FILE)
166 *reg = *v->emit_samplemaskin_setup();
167 break;
168
169 case nir_intrinsic_load_work_group_id:
170 assert(v->stage == MESA_SHADER_COMPUTE);
171 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
172 if (reg->file == BAD_FILE)
173 *reg = *v->emit_cs_work_group_id_setup();
174 break;
175
176 case nir_intrinsic_load_helper_invocation:
177 assert(v->stage == MESA_SHADER_FRAGMENT);
178 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
179 if (reg->file == BAD_FILE) {
180 const fs_builder abld =
181 v->bld.annotate("gl_HelperInvocation", NULL);
182
183 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
184 * pixel mask is in g1.7 of the thread payload.
185 *
186 * We move the per-channel pixel enable bit to the low bit of each
187 * channel by shifting the byte containing the pixel mask by the
188 * vector immediate 0x76543210UV.
189 *
190 * The region of <1,8,0> reads only 1 byte (the pixel masks for
191 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
192 * masks for 2 and 3) in SIMD16.
193 */
194 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
195
196 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
197 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
198 hbld.SHR(offset(shifted, hbld, i),
199 stride(retype(brw_vec1_grf(1 + i, 7),
200 BRW_REGISTER_TYPE_UB),
201 1, 8, 0),
202 brw_imm_v(0x76543210));
203 }
204
205 /* A set bit in the pixel mask means the channel is enabled, but
206 * that is the opposite of gl_HelperInvocation so we need to invert
207 * the mask.
208 *
209 * The negate source-modifier bit of logical instructions on Gen8+
210 * performs 1's complement negation, so we can use that instead of
211 * a NOT instruction.
212 */
213 fs_reg inverted = negate(shifted);
214 if (v->devinfo->gen < 8) {
215 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
216 abld.NOT(inverted, shifted);
217 }
218
219 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
220 * with 1 and negating.
221 */
222 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
223 abld.AND(anded, inverted, brw_imm_uw(1));
224
225 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
226 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
227 *reg = dst;
228 }
229 break;
230
231 default:
232 break;
233 }
234 }
235
236 return true;
237 }
238
239 void
240 fs_visitor::nir_emit_system_values()
241 {
242 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
243 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
244 nir_system_values[i] = fs_reg();
245 }
246
247 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
248 * never end up using it.
249 */
250 {
251 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
252 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
253 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
254
255 const fs_builder allbld8 = abld.group(8, 0).exec_all();
256 allbld8.MOV(reg, brw_imm_v(0x76543210));
257 if (dispatch_width > 8)
258 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
259 if (dispatch_width > 16) {
260 const fs_builder allbld16 = abld.group(16, 0).exec_all();
261 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
262 }
263 }
264
265 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
266 nir_foreach_block(block, impl)
267 emit_system_values_block(block, this);
268 }
269
270 /*
271 * Returns a type based on a reference_type (word, float, half-float) and a
272 * given bit_size.
273 *
274 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
275 *
276 * @FIXME: 64-bit return types are always DF on integer types to maintain
277 * compability with uses of DF previously to the introduction of int64
278 * support.
279 */
280 static brw_reg_type
281 brw_reg_type_from_bit_size(const unsigned bit_size,
282 const brw_reg_type reference_type)
283 {
284 switch(reference_type) {
285 case BRW_REGISTER_TYPE_HF:
286 case BRW_REGISTER_TYPE_F:
287 case BRW_REGISTER_TYPE_DF:
288 switch(bit_size) {
289 case 16:
290 return BRW_REGISTER_TYPE_HF;
291 case 32:
292 return BRW_REGISTER_TYPE_F;
293 case 64:
294 return BRW_REGISTER_TYPE_DF;
295 default:
296 unreachable("Invalid bit size");
297 }
298 case BRW_REGISTER_TYPE_B:
299 case BRW_REGISTER_TYPE_W:
300 case BRW_REGISTER_TYPE_D:
301 case BRW_REGISTER_TYPE_Q:
302 switch(bit_size) {
303 case 8:
304 return BRW_REGISTER_TYPE_B;
305 case 16:
306 return BRW_REGISTER_TYPE_W;
307 case 32:
308 return BRW_REGISTER_TYPE_D;
309 case 64:
310 return BRW_REGISTER_TYPE_Q;
311 default:
312 unreachable("Invalid bit size");
313 }
314 case BRW_REGISTER_TYPE_UB:
315 case BRW_REGISTER_TYPE_UW:
316 case BRW_REGISTER_TYPE_UD:
317 case BRW_REGISTER_TYPE_UQ:
318 switch(bit_size) {
319 case 8:
320 return BRW_REGISTER_TYPE_UB;
321 case 16:
322 return BRW_REGISTER_TYPE_UW;
323 case 32:
324 return BRW_REGISTER_TYPE_UD;
325 case 64:
326 return BRW_REGISTER_TYPE_UQ;
327 default:
328 unreachable("Invalid bit size");
329 }
330 default:
331 unreachable("Unknown type");
332 }
333 }
334
335 void
336 fs_visitor::nir_emit_impl(nir_function_impl *impl)
337 {
338 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
339 for (unsigned i = 0; i < impl->reg_alloc; i++) {
340 nir_locals[i] = fs_reg();
341 }
342
343 foreach_list_typed(nir_register, reg, node, &impl->registers) {
344 unsigned array_elems =
345 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
346 unsigned size = array_elems * reg->num_components;
347 const brw_reg_type reg_type =
348 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
349 nir_locals[reg->index] = bld.vgrf(reg_type, size);
350 }
351
352 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
353 impl->ssa_alloc);
354
355 nir_emit_cf_list(&impl->body);
356 }
357
358 void
359 fs_visitor::nir_emit_cf_list(exec_list *list)
360 {
361 exec_list_validate(list);
362 foreach_list_typed(nir_cf_node, node, node, list) {
363 switch (node->type) {
364 case nir_cf_node_if:
365 nir_emit_if(nir_cf_node_as_if(node));
366 break;
367
368 case nir_cf_node_loop:
369 nir_emit_loop(nir_cf_node_as_loop(node));
370 break;
371
372 case nir_cf_node_block:
373 nir_emit_block(nir_cf_node_as_block(node));
374 break;
375
376 default:
377 unreachable("Invalid CFG node block");
378 }
379 }
380 }
381
382 void
383 fs_visitor::nir_emit_if(nir_if *if_stmt)
384 {
385 /* first, put the condition into f0 */
386 fs_inst *inst = bld.MOV(bld.null_reg_d(),
387 retype(get_nir_src(if_stmt->condition),
388 BRW_REGISTER_TYPE_D));
389 inst->conditional_mod = BRW_CONDITIONAL_NZ;
390
391 bld.IF(BRW_PREDICATE_NORMAL);
392
393 nir_emit_cf_list(&if_stmt->then_list);
394
395 /* note: if the else is empty, dead CF elimination will remove it */
396 bld.emit(BRW_OPCODE_ELSE);
397
398 nir_emit_cf_list(&if_stmt->else_list);
399
400 bld.emit(BRW_OPCODE_ENDIF);
401
402 if (devinfo->gen < 7)
403 limit_dispatch_width(16, "Non-uniform control flow unsupported "
404 "in SIMD32 mode.");
405 }
406
407 void
408 fs_visitor::nir_emit_loop(nir_loop *loop)
409 {
410 bld.emit(BRW_OPCODE_DO);
411
412 nir_emit_cf_list(&loop->body);
413
414 bld.emit(BRW_OPCODE_WHILE);
415
416 if (devinfo->gen < 7)
417 limit_dispatch_width(16, "Non-uniform control flow unsupported "
418 "in SIMD32 mode.");
419 }
420
421 void
422 fs_visitor::nir_emit_block(nir_block *block)
423 {
424 nir_foreach_instr(instr, block) {
425 nir_emit_instr(instr);
426 }
427 }
428
429 void
430 fs_visitor::nir_emit_instr(nir_instr *instr)
431 {
432 const fs_builder abld = bld.annotate(NULL, instr);
433
434 switch (instr->type) {
435 case nir_instr_type_alu:
436 nir_emit_alu(abld, nir_instr_as_alu(instr));
437 break;
438
439 case nir_instr_type_deref:
440 /* Derefs can exist for images but they do nothing */
441 break;
442
443 case nir_instr_type_intrinsic:
444 switch (stage) {
445 case MESA_SHADER_VERTEX:
446 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
447 break;
448 case MESA_SHADER_TESS_CTRL:
449 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
450 break;
451 case MESA_SHADER_TESS_EVAL:
452 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
453 break;
454 case MESA_SHADER_GEOMETRY:
455 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
456 break;
457 case MESA_SHADER_FRAGMENT:
458 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
459 break;
460 case MESA_SHADER_COMPUTE:
461 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
462 break;
463 default:
464 unreachable("unsupported shader stage");
465 }
466 break;
467
468 case nir_instr_type_tex:
469 nir_emit_texture(abld, nir_instr_as_tex(instr));
470 break;
471
472 case nir_instr_type_load_const:
473 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
474 break;
475
476 case nir_instr_type_ssa_undef:
477 /* We create a new VGRF for undefs on every use (by handling
478 * them in get_nir_src()), rather than for each definition.
479 * This helps register coalescing eliminate MOVs from undef.
480 */
481 break;
482
483 case nir_instr_type_jump:
484 nir_emit_jump(abld, nir_instr_as_jump(instr));
485 break;
486
487 default:
488 unreachable("unknown instruction type");
489 }
490 }
491
492 /**
493 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
494 * match instr.
495 */
496 bool
497 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
498 const fs_reg &result)
499 {
500 if (!instr->src[0].src.is_ssa ||
501 !instr->src[0].src.ssa->parent_instr)
502 return false;
503
504 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
505 return false;
506
507 nir_alu_instr *src0 =
508 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
509
510 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
511 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
512 return false;
513
514 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
515 assert(element != NULL);
516
517 /* Element type to extract.*/
518 const brw_reg_type type = brw_int_type(
519 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
520 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
521
522 fs_reg op0 = get_nir_src(src0->src[0].src);
523 op0.type = brw_type_for_nir_type(devinfo,
524 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
525 nir_src_bit_size(src0->src[0].src)));
526 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
527
528 set_saturate(instr->dest.saturate,
529 bld.MOV(result, subscript(op0, type, element->u32[0])));
530 return true;
531 }
532
533 bool
534 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
535 const fs_reg &result)
536 {
537 if (!instr->src[0].src.is_ssa ||
538 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
539 return false;
540
541 nir_intrinsic_instr *src0 =
542 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
543
544 if (src0->intrinsic != nir_intrinsic_load_front_face)
545 return false;
546
547 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
548 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
549 return false;
550
551 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
552 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
553 return false;
554
555 fs_reg tmp = vgrf(glsl_type::int_type);
556
557 if (devinfo->gen >= 6) {
558 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
559 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
560
561 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
562 *
563 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
564 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
565 *
566 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
567 *
568 * This negation looks like it's safe in practice, because bits 0:4 will
569 * surely be TRIANGLES
570 */
571
572 if (value1->f32[0] == -1.0f) {
573 g0.negate = true;
574 }
575
576 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
577 g0, brw_imm_uw(0x3f80));
578 } else {
579 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
580 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
581
582 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
583 *
584 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
585 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
586 *
587 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
588 *
589 * This negation looks like it's safe in practice, because bits 0:4 will
590 * surely be TRIANGLES
591 */
592
593 if (value1->f32[0] == -1.0f) {
594 g1_6.negate = true;
595 }
596
597 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
598 }
599 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
600
601 return true;
602 }
603
604 static void
605 emit_find_msb_using_lzd(const fs_builder &bld,
606 const fs_reg &result,
607 const fs_reg &src,
608 bool is_signed)
609 {
610 fs_inst *inst;
611 fs_reg temp = src;
612
613 if (is_signed) {
614 /* LZD of an absolute value source almost always does the right
615 * thing. There are two problem values:
616 *
617 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
618 * 0. However, findMSB(int(0x80000000)) == 30.
619 *
620 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
621 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
622 *
623 * For a value of zero or negative one, -1 will be returned.
624 *
625 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
626 * findMSB(-(1<<x)) should return x-1.
627 *
628 * For all negative number cases, including 0x80000000 and
629 * 0xffffffff, the correct value is obtained from LZD if instead of
630 * negating the (already negative) value the logical-not is used. A
631 * conditonal logical-not can be achieved in two instructions.
632 */
633 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
634
635 bld.ASR(temp, src, brw_imm_d(31));
636 bld.XOR(temp, temp, src);
637 }
638
639 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
640 retype(temp, BRW_REGISTER_TYPE_UD));
641
642 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
643 * from the LSB side. Subtract the result from 31 to convert the MSB
644 * count into an LSB count. If no bits are set, LZD will return 32.
645 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
646 */
647 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
648 inst->src[0].negate = true;
649 }
650
651 static brw_rnd_mode
652 brw_rnd_mode_from_nir_op (const nir_op op) {
653 switch (op) {
654 case nir_op_f2f16_rtz:
655 return BRW_RND_MODE_RTZ;
656 case nir_op_f2f16_rtne:
657 return BRW_RND_MODE_RTNE;
658 default:
659 unreachable("Operation doesn't support rounding mode");
660 }
661 }
662
663 void
664 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
665 {
666 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
667 fs_inst *inst;
668
669 fs_reg result = get_nir_dest(instr->dest.dest);
670 result.type = brw_type_for_nir_type(devinfo,
671 (nir_alu_type)(nir_op_infos[instr->op].output_type |
672 nir_dest_bit_size(instr->dest.dest)));
673
674 fs_reg op[4];
675 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
676 op[i] = get_nir_src(instr->src[i].src);
677 op[i].type = brw_type_for_nir_type(devinfo,
678 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
679 nir_src_bit_size(instr->src[i].src)));
680 op[i].abs = instr->src[i].abs;
681 op[i].negate = instr->src[i].negate;
682 }
683
684 /* We get a bunch of mov's out of the from_ssa pass and they may still
685 * be vectorized. We'll handle them as a special-case. We'll also
686 * handle vecN here because it's basically the same thing.
687 */
688 switch (instr->op) {
689 case nir_op_imov:
690 case nir_op_fmov:
691 case nir_op_vec2:
692 case nir_op_vec3:
693 case nir_op_vec4: {
694 fs_reg temp = result;
695 bool need_extra_copy = false;
696 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
697 if (!instr->src[i].src.is_ssa &&
698 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
699 need_extra_copy = true;
700 temp = bld.vgrf(result.type, 4);
701 break;
702 }
703 }
704
705 for (unsigned i = 0; i < 4; i++) {
706 if (!(instr->dest.write_mask & (1 << i)))
707 continue;
708
709 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
710 inst = bld.MOV(offset(temp, bld, i),
711 offset(op[0], bld, instr->src[0].swizzle[i]));
712 } else {
713 inst = bld.MOV(offset(temp, bld, i),
714 offset(op[i], bld, instr->src[i].swizzle[0]));
715 }
716 inst->saturate = instr->dest.saturate;
717 }
718
719 /* In this case the source and destination registers were the same,
720 * so we need to insert an extra set of moves in order to deal with
721 * any swizzling.
722 */
723 if (need_extra_copy) {
724 for (unsigned i = 0; i < 4; i++) {
725 if (!(instr->dest.write_mask & (1 << i)))
726 continue;
727
728 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
729 }
730 }
731 return;
732 }
733 default:
734 break;
735 }
736
737 /* At this point, we have dealt with any instruction that operates on
738 * more than a single channel. Therefore, we can just adjust the source
739 * and destination registers for that channel and emit the instruction.
740 */
741 unsigned channel = 0;
742 if (nir_op_infos[instr->op].output_size == 0) {
743 /* Since NIR is doing the scalarizing for us, we should only ever see
744 * vectorized operations with a single channel.
745 */
746 assert(util_bitcount(instr->dest.write_mask) == 1);
747 channel = ffs(instr->dest.write_mask) - 1;
748
749 result = offset(result, bld, channel);
750 }
751
752 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
753 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
754 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
755 }
756
757 switch (instr->op) {
758 case nir_op_i2f32:
759 case nir_op_u2f32:
760 if (optimize_extract_to_float(instr, result))
761 return;
762 inst = bld.MOV(result, op[0]);
763 inst->saturate = instr->dest.saturate;
764 break;
765
766 case nir_op_f2f16_rtne:
767 case nir_op_f2f16_rtz:
768 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
769 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
770 /* fallthrough */
771
772 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
773 * on the HW gen, it is a special hw opcode or just a MOV, and
774 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
775 *
776 * But if we want to use that opcode, we need to provide support on
777 * different optimizations and lowerings. As right now HF support is
778 * only for gen8+, it will be better to use directly the MOV, and use
779 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
780 */
781
782 case nir_op_f2f16:
783 inst = bld.MOV(result, op[0]);
784 inst->saturate = instr->dest.saturate;
785 break;
786
787 case nir_op_b2i:
788 case nir_op_b2f:
789 op[0].type = BRW_REGISTER_TYPE_D;
790 op[0].negate = !op[0].negate;
791 /* fallthrough */
792 case nir_op_f2f64:
793 case nir_op_f2i64:
794 case nir_op_f2u64:
795 case nir_op_i2f64:
796 case nir_op_i2i64:
797 case nir_op_u2f64:
798 case nir_op_u2u64:
799 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
800 *
801 * "When source or destination is 64b (...), regioning in Align1
802 * must follow these rules:
803 *
804 * 1. Source and destination horizontal stride must be aligned to
805 * the same qword.
806 * (...)"
807 *
808 * This means that conversions from bit-sizes smaller than 64-bit to
809 * 64-bit need to have the source data elements aligned to 64-bit.
810 * This restriction does not apply to BDW and later.
811 */
812 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
813 nir_src_bit_size(instr->src[0].src) < 64 &&
814 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
815 fs_reg tmp = bld.vgrf(result.type, 1);
816 tmp = subscript(tmp, op[0].type, 0);
817 inst = bld.MOV(tmp, op[0]);
818 inst = bld.MOV(result, tmp);
819 inst->saturate = instr->dest.saturate;
820 break;
821 }
822 /* fallthrough */
823 case nir_op_f2f32:
824 case nir_op_f2i32:
825 case nir_op_f2u32:
826 case nir_op_f2i16:
827 case nir_op_f2u16:
828 case nir_op_i2i32:
829 case nir_op_u2u32:
830 case nir_op_i2i16:
831 case nir_op_u2u16:
832 case nir_op_i2f16:
833 case nir_op_u2f16:
834 case nir_op_i2i8:
835 case nir_op_u2u8:
836 inst = bld.MOV(result, op[0]);
837 inst->saturate = instr->dest.saturate;
838 break;
839
840 case nir_op_fsign: {
841 assert(!instr->dest.saturate);
842 if (op[0].abs) {
843 /* Straightforward since the source can be assumed to be either
844 * strictly >= 0 or strictly <= 0 depending on the setting of the
845 * negate flag.
846 */
847 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
848
849 inst = (op[0].negate)
850 ? bld.MOV(result, brw_imm_f(-1.0f))
851 : bld.MOV(result, brw_imm_f(1.0f));
852
853 set_predicate(BRW_PREDICATE_NORMAL, inst);
854 } else if (type_sz(op[0].type) < 8) {
855 /* AND(val, 0x80000000) gives the sign bit.
856 *
857 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
858 * zero.
859 */
860 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
861
862 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
863 op[0].type = BRW_REGISTER_TYPE_UD;
864 result.type = BRW_REGISTER_TYPE_UD;
865 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
866
867 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
868 inst->predicate = BRW_PREDICATE_NORMAL;
869 } else {
870 /* For doubles we do the same but we need to consider:
871 *
872 * - 2-src instructions can't operate with 64-bit immediates
873 * - The sign is encoded in the high 32-bit of each DF
874 * - We need to produce a DF result.
875 */
876
877 fs_reg zero = vgrf(glsl_type::double_type);
878 bld.MOV(zero, setup_imm_df(bld, 0.0));
879 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
880
881 bld.MOV(result, zero);
882
883 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
884 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
885 brw_imm_ud(0x80000000u));
886
887 set_predicate(BRW_PREDICATE_NORMAL,
888 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
889 }
890 break;
891 }
892
893 case nir_op_isign: {
894 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
895 * -> non-negative val generates 0x00000000.
896 * Predicated OR sets 1 if val is positive.
897 */
898 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
899 assert(bit_size == 32 || bit_size == 16);
900
901 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
902 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
903 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
904
905 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
906 bld.ASR(result, op[0], shift);
907 inst = bld.OR(result, result, one);
908 inst->predicate = BRW_PREDICATE_NORMAL;
909 break;
910 }
911
912 case nir_op_frcp:
913 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
914 inst->saturate = instr->dest.saturate;
915 break;
916
917 case nir_op_fexp2:
918 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
919 inst->saturate = instr->dest.saturate;
920 break;
921
922 case nir_op_flog2:
923 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
924 inst->saturate = instr->dest.saturate;
925 break;
926
927 case nir_op_fsin:
928 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
929 inst->saturate = instr->dest.saturate;
930 break;
931
932 case nir_op_fcos:
933 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936
937 case nir_op_fddx:
938 if (fs_key->high_quality_derivatives) {
939 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
940 } else {
941 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
942 }
943 inst->saturate = instr->dest.saturate;
944 break;
945 case nir_op_fddx_fine:
946 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
947 inst->saturate = instr->dest.saturate;
948 break;
949 case nir_op_fddx_coarse:
950 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
951 inst->saturate = instr->dest.saturate;
952 break;
953 case nir_op_fddy:
954 if (fs_key->high_quality_derivatives) {
955 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
956 } else {
957 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
958 }
959 inst->saturate = instr->dest.saturate;
960 break;
961 case nir_op_fddy_fine:
962 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
963 inst->saturate = instr->dest.saturate;
964 break;
965 case nir_op_fddy_coarse:
966 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
967 inst->saturate = instr->dest.saturate;
968 break;
969
970 case nir_op_iadd:
971 case nir_op_fadd:
972 inst = bld.ADD(result, op[0], op[1]);
973 inst->saturate = instr->dest.saturate;
974 break;
975
976 case nir_op_fmul:
977 inst = bld.MUL(result, op[0], op[1]);
978 inst->saturate = instr->dest.saturate;
979 break;
980
981 case nir_op_imul:
982 assert(nir_dest_bit_size(instr->dest.dest) < 64);
983 bld.MUL(result, op[0], op[1]);
984 break;
985
986 case nir_op_imul_high:
987 case nir_op_umul_high:
988 assert(nir_dest_bit_size(instr->dest.dest) < 64);
989 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
990 break;
991
992 case nir_op_idiv:
993 case nir_op_udiv:
994 assert(nir_dest_bit_size(instr->dest.dest) < 64);
995 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
996 break;
997
998 case nir_op_uadd_carry:
999 unreachable("Should have been lowered by carry_to_arith().");
1000
1001 case nir_op_usub_borrow:
1002 unreachable("Should have been lowered by borrow_to_arith().");
1003
1004 case nir_op_umod:
1005 case nir_op_irem:
1006 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1007 * appears that our hardware just does the right thing for signed
1008 * remainder.
1009 */
1010 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1011 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1012 break;
1013
1014 case nir_op_imod: {
1015 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1016 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1017
1018 /* Math instructions don't support conditional mod */
1019 inst = bld.MOV(bld.null_reg_d(), result);
1020 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1021
1022 /* Now, we need to determine if signs of the sources are different.
1023 * When we XOR the sources, the top bit is 0 if they are the same and 1
1024 * if they are different. We can then use a conditional modifier to
1025 * turn that into a predicate. This leads us to an XOR.l instruction.
1026 *
1027 * Technically, according to the PRM, you're not allowed to use .l on a
1028 * XOR instruction. However, emperical experiments and Curro's reading
1029 * of the simulator source both indicate that it's safe.
1030 */
1031 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1032 inst = bld.XOR(tmp, op[0], op[1]);
1033 inst->predicate = BRW_PREDICATE_NORMAL;
1034 inst->conditional_mod = BRW_CONDITIONAL_L;
1035
1036 /* If the result of the initial remainder operation is non-zero and the
1037 * two sources have different signs, add in a copy of op[1] to get the
1038 * final integer modulus value.
1039 */
1040 inst = bld.ADD(result, result, op[1]);
1041 inst->predicate = BRW_PREDICATE_NORMAL;
1042 break;
1043 }
1044
1045 case nir_op_flt:
1046 case nir_op_fge:
1047 case nir_op_feq:
1048 case nir_op_fne: {
1049 fs_reg dest = result;
1050
1051 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1052 if (bit_size != 32)
1053 dest = bld.vgrf(op[0].type, 1);
1054
1055 brw_conditional_mod cond;
1056 switch (instr->op) {
1057 case nir_op_flt:
1058 cond = BRW_CONDITIONAL_L;
1059 break;
1060 case nir_op_fge:
1061 cond = BRW_CONDITIONAL_GE;
1062 break;
1063 case nir_op_feq:
1064 cond = BRW_CONDITIONAL_Z;
1065 break;
1066 case nir_op_fne:
1067 cond = BRW_CONDITIONAL_NZ;
1068 break;
1069 default:
1070 unreachable("bad opcode");
1071 }
1072
1073 bld.CMP(dest, op[0], op[1], cond);
1074
1075 if (bit_size > 32) {
1076 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1077 } else if(bit_size < 32) {
1078 /* When we convert the result to 32-bit we need to be careful and do
1079 * it as a signed conversion to get sign extension (for 32-bit true)
1080 */
1081 const brw_reg_type src_type =
1082 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1083
1084 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1085 }
1086 break;
1087 }
1088
1089 case nir_op_ilt:
1090 case nir_op_ult:
1091 case nir_op_ige:
1092 case nir_op_uge:
1093 case nir_op_ieq:
1094 case nir_op_ine: {
1095 fs_reg dest = result;
1096
1097 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1098 if (bit_size != 32)
1099 dest = bld.vgrf(op[0].type, 1);
1100
1101 brw_conditional_mod cond;
1102 switch (instr->op) {
1103 case nir_op_ilt:
1104 case nir_op_ult:
1105 cond = BRW_CONDITIONAL_L;
1106 break;
1107 case nir_op_ige:
1108 case nir_op_uge:
1109 cond = BRW_CONDITIONAL_GE;
1110 break;
1111 case nir_op_ieq:
1112 cond = BRW_CONDITIONAL_Z;
1113 break;
1114 case nir_op_ine:
1115 cond = BRW_CONDITIONAL_NZ;
1116 break;
1117 default:
1118 unreachable("bad opcode");
1119 }
1120 bld.CMP(dest, op[0], op[1], cond);
1121
1122 if (bit_size > 32) {
1123 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1124 } else if (bit_size < 32) {
1125 /* When we convert the result to 32-bit we need to be careful and do
1126 * it as a signed conversion to get sign extension (for 32-bit true)
1127 */
1128 const brw_reg_type src_type =
1129 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1130
1131 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1132 }
1133 break;
1134 }
1135
1136 case nir_op_inot:
1137 if (devinfo->gen >= 8) {
1138 op[0] = resolve_source_modifiers(op[0]);
1139 }
1140 bld.NOT(result, op[0]);
1141 break;
1142 case nir_op_ixor:
1143 if (devinfo->gen >= 8) {
1144 op[0] = resolve_source_modifiers(op[0]);
1145 op[1] = resolve_source_modifiers(op[1]);
1146 }
1147 bld.XOR(result, op[0], op[1]);
1148 break;
1149 case nir_op_ior:
1150 if (devinfo->gen >= 8) {
1151 op[0] = resolve_source_modifiers(op[0]);
1152 op[1] = resolve_source_modifiers(op[1]);
1153 }
1154 bld.OR(result, op[0], op[1]);
1155 break;
1156 case nir_op_iand:
1157 if (devinfo->gen >= 8) {
1158 op[0] = resolve_source_modifiers(op[0]);
1159 op[1] = resolve_source_modifiers(op[1]);
1160 }
1161 bld.AND(result, op[0], op[1]);
1162 break;
1163
1164 case nir_op_fdot2:
1165 case nir_op_fdot3:
1166 case nir_op_fdot4:
1167 case nir_op_ball_fequal2:
1168 case nir_op_ball_iequal2:
1169 case nir_op_ball_fequal3:
1170 case nir_op_ball_iequal3:
1171 case nir_op_ball_fequal4:
1172 case nir_op_ball_iequal4:
1173 case nir_op_bany_fnequal2:
1174 case nir_op_bany_inequal2:
1175 case nir_op_bany_fnequal3:
1176 case nir_op_bany_inequal3:
1177 case nir_op_bany_fnequal4:
1178 case nir_op_bany_inequal4:
1179 unreachable("Lowered by nir_lower_alu_reductions");
1180
1181 case nir_op_fnoise1_1:
1182 case nir_op_fnoise1_2:
1183 case nir_op_fnoise1_3:
1184 case nir_op_fnoise1_4:
1185 case nir_op_fnoise2_1:
1186 case nir_op_fnoise2_2:
1187 case nir_op_fnoise2_3:
1188 case nir_op_fnoise2_4:
1189 case nir_op_fnoise3_1:
1190 case nir_op_fnoise3_2:
1191 case nir_op_fnoise3_3:
1192 case nir_op_fnoise3_4:
1193 case nir_op_fnoise4_1:
1194 case nir_op_fnoise4_2:
1195 case nir_op_fnoise4_3:
1196 case nir_op_fnoise4_4:
1197 unreachable("not reached: should be handled by lower_noise");
1198
1199 case nir_op_ldexp:
1200 unreachable("not reached: should be handled by ldexp_to_arith()");
1201
1202 case nir_op_fsqrt:
1203 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1204 inst->saturate = instr->dest.saturate;
1205 break;
1206
1207 case nir_op_frsq:
1208 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1209 inst->saturate = instr->dest.saturate;
1210 break;
1211
1212 case nir_op_i2b:
1213 case nir_op_f2b: {
1214 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1215 if (bit_size == 64) {
1216 /* two-argument instructions can't take 64-bit immediates */
1217 fs_reg zero;
1218 fs_reg tmp;
1219
1220 if (instr->op == nir_op_f2b) {
1221 zero = vgrf(glsl_type::double_type);
1222 tmp = vgrf(glsl_type::double_type);
1223 bld.MOV(zero, setup_imm_df(bld, 0.0));
1224 } else {
1225 zero = vgrf(glsl_type::int64_t_type);
1226 tmp = vgrf(glsl_type::int64_t_type);
1227 bld.MOV(zero, brw_imm_q(0));
1228 }
1229
1230 /* A SIMD16 execution needs to be split in two instructions, so use
1231 * a vgrf instead of the flag register as dst so instruction splitting
1232 * works
1233 */
1234 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1235 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1236 } else {
1237 fs_reg zero;
1238 if (bit_size == 32) {
1239 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1240 } else {
1241 assert(bit_size == 16);
1242 zero = instr->op == nir_op_f2b ?
1243 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1244 }
1245 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1246 }
1247 break;
1248 }
1249
1250 case nir_op_ftrunc:
1251 inst = bld.RNDZ(result, op[0]);
1252 inst->saturate = instr->dest.saturate;
1253 break;
1254
1255 case nir_op_fceil: {
1256 op[0].negate = !op[0].negate;
1257 fs_reg temp = vgrf(glsl_type::float_type);
1258 bld.RNDD(temp, op[0]);
1259 temp.negate = true;
1260 inst = bld.MOV(result, temp);
1261 inst->saturate = instr->dest.saturate;
1262 break;
1263 }
1264 case nir_op_ffloor:
1265 inst = bld.RNDD(result, op[0]);
1266 inst->saturate = instr->dest.saturate;
1267 break;
1268 case nir_op_ffract:
1269 inst = bld.FRC(result, op[0]);
1270 inst->saturate = instr->dest.saturate;
1271 break;
1272 case nir_op_fround_even:
1273 inst = bld.RNDE(result, op[0]);
1274 inst->saturate = instr->dest.saturate;
1275 break;
1276
1277 case nir_op_fquantize2f16: {
1278 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1279 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1280 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1281
1282 /* The destination stride must be at least as big as the source stride. */
1283 tmp16.type = BRW_REGISTER_TYPE_W;
1284 tmp16.stride = 2;
1285
1286 /* Check for denormal */
1287 fs_reg abs_src0 = op[0];
1288 abs_src0.abs = true;
1289 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1290 BRW_CONDITIONAL_L);
1291 /* Get the appropriately signed zero */
1292 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1293 retype(op[0], BRW_REGISTER_TYPE_UD),
1294 brw_imm_ud(0x80000000));
1295 /* Do the actual F32 -> F16 -> F32 conversion */
1296 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1297 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1298 /* Select that or zero based on normal status */
1299 inst = bld.SEL(result, zero, tmp32);
1300 inst->predicate = BRW_PREDICATE_NORMAL;
1301 inst->saturate = instr->dest.saturate;
1302 break;
1303 }
1304
1305 case nir_op_imin:
1306 case nir_op_umin:
1307 case nir_op_fmin:
1308 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1309 inst->saturate = instr->dest.saturate;
1310 break;
1311
1312 case nir_op_imax:
1313 case nir_op_umax:
1314 case nir_op_fmax:
1315 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1316 inst->saturate = instr->dest.saturate;
1317 break;
1318
1319 case nir_op_pack_snorm_2x16:
1320 case nir_op_pack_snorm_4x8:
1321 case nir_op_pack_unorm_2x16:
1322 case nir_op_pack_unorm_4x8:
1323 case nir_op_unpack_snorm_2x16:
1324 case nir_op_unpack_snorm_4x8:
1325 case nir_op_unpack_unorm_2x16:
1326 case nir_op_unpack_unorm_4x8:
1327 case nir_op_unpack_half_2x16:
1328 case nir_op_pack_half_2x16:
1329 unreachable("not reached: should be handled by lower_packing_builtins");
1330
1331 case nir_op_unpack_half_2x16_split_x:
1332 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1333 inst->saturate = instr->dest.saturate;
1334 break;
1335 case nir_op_unpack_half_2x16_split_y:
1336 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1337 inst->saturate = instr->dest.saturate;
1338 break;
1339
1340 case nir_op_pack_64_2x32_split:
1341 case nir_op_pack_32_2x16_split:
1342 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1343 break;
1344
1345 case nir_op_unpack_64_2x32_split_x:
1346 case nir_op_unpack_64_2x32_split_y: {
1347 if (instr->op == nir_op_unpack_64_2x32_split_x)
1348 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1349 else
1350 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1351 break;
1352 }
1353
1354 case nir_op_unpack_32_2x16_split_x:
1355 case nir_op_unpack_32_2x16_split_y: {
1356 if (instr->op == nir_op_unpack_32_2x16_split_x)
1357 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1358 else
1359 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1360 break;
1361 }
1362
1363 case nir_op_fpow:
1364 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1365 inst->saturate = instr->dest.saturate;
1366 break;
1367
1368 case nir_op_bitfield_reverse:
1369 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1370 bld.BFREV(result, op[0]);
1371 break;
1372
1373 case nir_op_bit_count:
1374 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1375 bld.CBIT(result, op[0]);
1376 break;
1377
1378 case nir_op_ufind_msb: {
1379 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1380 emit_find_msb_using_lzd(bld, result, op[0], false);
1381 break;
1382 }
1383
1384 case nir_op_ifind_msb: {
1385 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1386
1387 if (devinfo->gen < 7) {
1388 emit_find_msb_using_lzd(bld, result, op[0], true);
1389 } else {
1390 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1391
1392 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1393 * count from the LSB side. If FBH didn't return an error
1394 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1395 * count into an LSB count.
1396 */
1397 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1398
1399 inst = bld.ADD(result, result, brw_imm_d(31));
1400 inst->predicate = BRW_PREDICATE_NORMAL;
1401 inst->src[0].negate = true;
1402 }
1403 break;
1404 }
1405
1406 case nir_op_find_lsb:
1407 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1408
1409 if (devinfo->gen < 7) {
1410 fs_reg temp = vgrf(glsl_type::int_type);
1411
1412 /* (x & -x) generates a value that consists of only the LSB of x.
1413 * For all powers of 2, findMSB(y) == findLSB(y).
1414 */
1415 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1416 fs_reg negated_src = src;
1417
1418 /* One must be negated, and the other must be non-negated. It
1419 * doesn't matter which is which.
1420 */
1421 negated_src.negate = true;
1422 src.negate = false;
1423
1424 bld.AND(temp, src, negated_src);
1425 emit_find_msb_using_lzd(bld, result, temp, false);
1426 } else {
1427 bld.FBL(result, op[0]);
1428 }
1429 break;
1430
1431 case nir_op_ubitfield_extract:
1432 case nir_op_ibitfield_extract:
1433 unreachable("should have been lowered");
1434 case nir_op_ubfe:
1435 case nir_op_ibfe:
1436 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1437 bld.BFE(result, op[2], op[1], op[0]);
1438 break;
1439 case nir_op_bfm:
1440 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1441 bld.BFI1(result, op[0], op[1]);
1442 break;
1443 case nir_op_bfi:
1444 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1445 bld.BFI2(result, op[0], op[1], op[2]);
1446 break;
1447
1448 case nir_op_bitfield_insert:
1449 unreachable("not reached: should have been lowered");
1450
1451 case nir_op_ishl:
1452 case nir_op_ishr:
1453 case nir_op_ushr: {
1454 fs_reg shift_count = op[1];
1455
1456 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1457 if (op[1].file == VGRF &&
1458 (result.type == BRW_REGISTER_TYPE_Q ||
1459 result.type == BRW_REGISTER_TYPE_UQ)) {
1460 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1461 BRW_REGISTER_TYPE_UD);
1462 shift_count.stride = 2;
1463 bld.MOV(shift_count, op[1]);
1464 }
1465 }
1466
1467 switch (instr->op) {
1468 case nir_op_ishl:
1469 bld.SHL(result, op[0], shift_count);
1470 break;
1471 case nir_op_ishr:
1472 bld.ASR(result, op[0], shift_count);
1473 break;
1474 case nir_op_ushr:
1475 bld.SHR(result, op[0], shift_count);
1476 break;
1477 default:
1478 unreachable("not reached");
1479 }
1480 break;
1481 }
1482
1483 case nir_op_pack_half_2x16_split:
1484 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1485 break;
1486
1487 case nir_op_ffma:
1488 inst = bld.MAD(result, op[2], op[1], op[0]);
1489 inst->saturate = instr->dest.saturate;
1490 break;
1491
1492 case nir_op_flrp:
1493 inst = bld.LRP(result, op[0], op[1], op[2]);
1494 inst->saturate = instr->dest.saturate;
1495 break;
1496
1497 case nir_op_bcsel:
1498 if (optimize_frontfacing_ternary(instr, result))
1499 return;
1500
1501 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1502 inst = bld.SEL(result, op[1], op[2]);
1503 inst->predicate = BRW_PREDICATE_NORMAL;
1504 break;
1505
1506 case nir_op_extract_u8:
1507 case nir_op_extract_i8: {
1508 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1509 assert(byte != NULL);
1510
1511 /* The PRMs say:
1512 *
1513 * BDW+
1514 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1515 * Use two instructions and a word or DWord intermediate integer type.
1516 */
1517 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1518 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1519
1520 if (instr->op == nir_op_extract_i8) {
1521 /* If we need to sign extend, extract to a word first */
1522 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1523 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1524 bld.MOV(result, w_temp);
1525 } else {
1526 /* Otherwise use an AND with 0xff and a word type */
1527 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1528 }
1529 } else {
1530 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1531 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1532 }
1533 break;
1534 }
1535
1536 case nir_op_extract_u16:
1537 case nir_op_extract_i16: {
1538 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1539 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1540 assert(word != NULL);
1541 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1542 break;
1543 }
1544
1545 default:
1546 unreachable("unhandled instruction");
1547 }
1548
1549 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1550 * to sign extend the low bit to 0/~0
1551 */
1552 if (devinfo->gen <= 5 &&
1553 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1554 fs_reg masked = vgrf(glsl_type::int_type);
1555 bld.AND(masked, result, brw_imm_d(1));
1556 masked.negate = true;
1557 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1558 }
1559 }
1560
1561 void
1562 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1563 nir_load_const_instr *instr)
1564 {
1565 const brw_reg_type reg_type =
1566 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1567 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1568
1569 switch (instr->def.bit_size) {
1570 case 8:
1571 for (unsigned i = 0; i < instr->def.num_components; i++)
1572 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value.i8[i]));
1573 break;
1574
1575 case 16:
1576 for (unsigned i = 0; i < instr->def.num_components; i++)
1577 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1578 break;
1579
1580 case 32:
1581 for (unsigned i = 0; i < instr->def.num_components; i++)
1582 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1583 break;
1584
1585 case 64:
1586 assert(devinfo->gen >= 7);
1587 if (devinfo->gen == 7) {
1588 /* We don't get 64-bit integer types until gen8 */
1589 for (unsigned i = 0; i < instr->def.num_components; i++) {
1590 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1591 setup_imm_df(bld, instr->value.f64[i]));
1592 }
1593 } else {
1594 for (unsigned i = 0; i < instr->def.num_components; i++)
1595 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1596 }
1597 break;
1598
1599 default:
1600 unreachable("Invalid bit size");
1601 }
1602
1603 nir_ssa_values[instr->def.index] = reg;
1604 }
1605
1606 fs_reg
1607 fs_visitor::get_nir_src(const nir_src &src)
1608 {
1609 fs_reg reg;
1610 if (src.is_ssa) {
1611 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1612 const brw_reg_type reg_type =
1613 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1614 reg = bld.vgrf(reg_type, src.ssa->num_components);
1615 } else {
1616 reg = nir_ssa_values[src.ssa->index];
1617 }
1618 } else {
1619 /* We don't handle indirects on locals */
1620 assert(src.reg.indirect == NULL);
1621 reg = offset(nir_locals[src.reg.reg->index], bld,
1622 src.reg.base_offset * src.reg.reg->num_components);
1623 }
1624
1625 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1626 /* The only 64-bit type available on gen7 is DF, so use that. */
1627 reg.type = BRW_REGISTER_TYPE_DF;
1628 } else {
1629 /* To avoid floating-point denorm flushing problems, set the type by
1630 * default to an integer type - instructions that need floating point
1631 * semantics will set this to F if they need to
1632 */
1633 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1634 BRW_REGISTER_TYPE_D);
1635 }
1636
1637 return reg;
1638 }
1639
1640 /**
1641 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1642 *
1643 * This function should not be called on any value which may be 64 bits.
1644 * We could theoretically support 64-bit on gen8+ but we choose not to
1645 * because it wouldn't work in general (no gen7 support) and there are
1646 * enough restrictions in 64-bit immediates that you can't take the return
1647 * value and treat it the same as the result of get_nir_src().
1648 */
1649 fs_reg
1650 fs_visitor::get_nir_src_imm(const nir_src &src)
1651 {
1652 nir_const_value *val = nir_src_as_const_value(src);
1653 assert(nir_src_bit_size(src) == 32);
1654 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1655 }
1656
1657 fs_reg
1658 fs_visitor::get_nir_dest(const nir_dest &dest)
1659 {
1660 if (dest.is_ssa) {
1661 const brw_reg_type reg_type =
1662 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1663 dest.ssa.bit_size == 8 ?
1664 BRW_REGISTER_TYPE_D :
1665 BRW_REGISTER_TYPE_F);
1666 nir_ssa_values[dest.ssa.index] =
1667 bld.vgrf(reg_type, dest.ssa.num_components);
1668 return nir_ssa_values[dest.ssa.index];
1669 } else {
1670 /* We don't handle indirects on locals */
1671 assert(dest.reg.indirect == NULL);
1672 return offset(nir_locals[dest.reg.reg->index], bld,
1673 dest.reg.base_offset * dest.reg.reg->num_components);
1674 }
1675 }
1676
1677 void
1678 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1679 unsigned wr_mask)
1680 {
1681 for (unsigned i = 0; i < 4; i++) {
1682 if (!((wr_mask >> i) & 1))
1683 continue;
1684
1685 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1686 new_inst->dst = offset(new_inst->dst, bld, i);
1687 for (unsigned j = 0; j < new_inst->sources; j++)
1688 if (new_inst->src[j].file == VGRF)
1689 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1690
1691 bld.emit(new_inst);
1692 }
1693 }
1694
1695 static fs_inst *
1696 emit_pixel_interpolater_send(const fs_builder &bld,
1697 enum opcode opcode,
1698 const fs_reg &dst,
1699 const fs_reg &src,
1700 const fs_reg &desc,
1701 glsl_interp_mode interpolation)
1702 {
1703 struct brw_wm_prog_data *wm_prog_data =
1704 brw_wm_prog_data(bld.shader->stage_prog_data);
1705
1706 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1707 /* 2 floats per slot returned */
1708 inst->size_written = 2 * dst.component_size(inst->exec_size);
1709 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1710
1711 wm_prog_data->pulls_bary = true;
1712
1713 return inst;
1714 }
1715
1716 /**
1717 * Computes 1 << x, given a D/UD register containing some value x.
1718 */
1719 static fs_reg
1720 intexp2(const fs_builder &bld, const fs_reg &x)
1721 {
1722 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1723
1724 fs_reg result = bld.vgrf(x.type, 1);
1725 fs_reg one = bld.vgrf(x.type, 1);
1726
1727 bld.MOV(one, retype(brw_imm_d(1), one.type));
1728 bld.SHL(result, one, x);
1729 return result;
1730 }
1731
1732 void
1733 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1734 {
1735 assert(stage == MESA_SHADER_GEOMETRY);
1736
1737 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1738
1739 if (gs_compile->control_data_header_size_bits == 0)
1740 return;
1741
1742 /* We can only do EndPrimitive() functionality when the control data
1743 * consists of cut bits. Fortunately, the only time it isn't is when the
1744 * output type is points, in which case EndPrimitive() is a no-op.
1745 */
1746 if (gs_prog_data->control_data_format !=
1747 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1748 return;
1749 }
1750
1751 /* Cut bits use one bit per vertex. */
1752 assert(gs_compile->control_data_bits_per_vertex == 1);
1753
1754 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1755 vertex_count.type = BRW_REGISTER_TYPE_UD;
1756
1757 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1758 * vertex n, 0 otherwise. So all we need to do here is mark bit
1759 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1760 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1761 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1762 *
1763 * Note that if EndPrimitive() is called before emitting any vertices, this
1764 * will cause us to set bit 31 of the control_data_bits register to 1.
1765 * That's fine because:
1766 *
1767 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1768 * output, so the hardware will ignore cut bit 31.
1769 *
1770 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1771 * last vertex, so setting cut bit 31 has no effect (since the primitive
1772 * is automatically ended when the GS terminates).
1773 *
1774 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1775 * control_data_bits register to 0 when the first vertex is emitted.
1776 */
1777
1778 const fs_builder abld = bld.annotate("end primitive");
1779
1780 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1781 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1782 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1783 fs_reg mask = intexp2(abld, prev_count);
1784 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1785 * attention to the lower 5 bits of its second source argument, so on this
1786 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1787 * ((vertex_count - 1) % 32).
1788 */
1789 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1790 }
1791
1792 void
1793 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1794 {
1795 assert(stage == MESA_SHADER_GEOMETRY);
1796 assert(gs_compile->control_data_bits_per_vertex != 0);
1797
1798 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1799
1800 const fs_builder abld = bld.annotate("emit control data bits");
1801 const fs_builder fwa_bld = bld.exec_all();
1802
1803 /* We use a single UD register to accumulate control data bits (32 bits
1804 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1805 * at a time.
1806 *
1807 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1808 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1809 * use the Channel Mask phase to enable/disable which DWord within that
1810 * group to write. (Remember, different SIMD8 channels may have emitted
1811 * different numbers of vertices, so we may need per-slot offsets.)
1812 *
1813 * Channel masking presents an annoying problem: we may have to replicate
1814 * the data up to 4 times:
1815 *
1816 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1817 *
1818 * To avoid penalizing shaders that emit a small number of vertices, we
1819 * can avoid these sometimes: if the size of the control data header is
1820 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1821 * land in the same 128-bit group, so we can skip per-slot offsets.
1822 *
1823 * Similarly, if the control data header is <= 32 bits, there is only one
1824 * DWord, so we can skip channel masks.
1825 */
1826 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1827
1828 fs_reg channel_mask, per_slot_offset;
1829
1830 if (gs_compile->control_data_header_size_bits > 32) {
1831 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1832 channel_mask = vgrf(glsl_type::uint_type);
1833 }
1834
1835 if (gs_compile->control_data_header_size_bits > 128) {
1836 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1837 per_slot_offset = vgrf(glsl_type::uint_type);
1838 }
1839
1840 /* Figure out which DWord we're trying to write to using the formula:
1841 *
1842 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1843 *
1844 * Since bits_per_vertex is a power of two, and is known at compile
1845 * time, this can be optimized to:
1846 *
1847 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1848 */
1849 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1850 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1851 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1852 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1853 unsigned log2_bits_per_vertex =
1854 util_last_bit(gs_compile->control_data_bits_per_vertex);
1855 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1856
1857 if (per_slot_offset.file != BAD_FILE) {
1858 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1859 * the appropriate OWord within the control data header.
1860 */
1861 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1862 }
1863
1864 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1865 * write to the appropriate DWORD within the OWORD.
1866 */
1867 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1868 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1869 channel_mask = intexp2(fwa_bld, channel);
1870 /* Then the channel masks need to be in bits 23:16. */
1871 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1872 }
1873
1874 /* Store the control data bits in the message payload and send it. */
1875 int mlen = 2;
1876 if (channel_mask.file != BAD_FILE)
1877 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1878 if (per_slot_offset.file != BAD_FILE)
1879 mlen++;
1880
1881 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1882 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1883 int i = 0;
1884 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1885 if (per_slot_offset.file != BAD_FILE)
1886 sources[i++] = per_slot_offset;
1887 if (channel_mask.file != BAD_FILE)
1888 sources[i++] = channel_mask;
1889 while (i < mlen) {
1890 sources[i++] = this->control_data_bits;
1891 }
1892
1893 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1894 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1895 inst->mlen = mlen;
1896 /* We need to increment Global Offset by 256-bits to make room for
1897 * Broadwell's extra "Vertex Count" payload at the beginning of the
1898 * URB entry. Since this is an OWord message, Global Offset is counted
1899 * in 128-bit units, so we must set it to 2.
1900 */
1901 if (gs_prog_data->static_vertex_count == -1)
1902 inst->offset = 2;
1903 }
1904
1905 void
1906 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1907 unsigned stream_id)
1908 {
1909 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1910
1911 /* Note: we are calling this *before* increasing vertex_count, so
1912 * this->vertex_count == vertex_count - 1 in the formula above.
1913 */
1914
1915 /* Stream mode uses 2 bits per vertex */
1916 assert(gs_compile->control_data_bits_per_vertex == 2);
1917
1918 /* Must be a valid stream */
1919 assert(stream_id < MAX_VERTEX_STREAMS);
1920
1921 /* Control data bits are initialized to 0 so we don't have to set any
1922 * bits when sending vertices to stream 0.
1923 */
1924 if (stream_id == 0)
1925 return;
1926
1927 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1928
1929 /* reg::sid = stream_id */
1930 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1931 abld.MOV(sid, brw_imm_ud(stream_id));
1932
1933 /* reg:shift_count = 2 * (vertex_count - 1) */
1934 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1935 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1936
1937 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1938 * attention to the lower 5 bits of its second source argument, so on this
1939 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1940 * stream_id << ((2 * (vertex_count - 1)) % 32).
1941 */
1942 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1943 abld.SHL(mask, sid, shift_count);
1944 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1945 }
1946
1947 void
1948 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1949 unsigned stream_id)
1950 {
1951 assert(stage == MESA_SHADER_GEOMETRY);
1952
1953 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1954
1955 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1956 vertex_count.type = BRW_REGISTER_TYPE_UD;
1957
1958 /* Haswell and later hardware ignores the "Render Stream Select" bits
1959 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1960 * and instead sends all primitives down the pipeline for rasterization.
1961 * If the SOL stage is enabled, "Render Stream Select" is honored and
1962 * primitives bound to non-zero streams are discarded after stream output.
1963 *
1964 * Since the only purpose of primives sent to non-zero streams is to
1965 * be recorded by transform feedback, we can simply discard all geometry
1966 * bound to these streams when transform feedback is disabled.
1967 */
1968 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1969 return;
1970
1971 /* If we're outputting 32 control data bits or less, then we can wait
1972 * until the shader is over to output them all. Otherwise we need to
1973 * output them as we go. Now is the time to do it, since we're about to
1974 * output the vertex_count'th vertex, so it's guaranteed that the
1975 * control data bits associated with the (vertex_count - 1)th vertex are
1976 * correct.
1977 */
1978 if (gs_compile->control_data_header_size_bits > 32) {
1979 const fs_builder abld =
1980 bld.annotate("emit vertex: emit control data bits");
1981
1982 /* Only emit control data bits if we've finished accumulating a batch
1983 * of 32 bits. This is the case when:
1984 *
1985 * (vertex_count * bits_per_vertex) % 32 == 0
1986 *
1987 * (in other words, when the last 5 bits of vertex_count *
1988 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1989 * integer n (which is always the case, since bits_per_vertex is
1990 * always 1 or 2), this is equivalent to requiring that the last 5-n
1991 * bits of vertex_count are 0:
1992 *
1993 * vertex_count & (2^(5-n) - 1) == 0
1994 *
1995 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1996 * equivalent to:
1997 *
1998 * vertex_count & (32 / bits_per_vertex - 1) == 0
1999 *
2000 * TODO: If vertex_count is an immediate, we could do some of this math
2001 * at compile time...
2002 */
2003 fs_inst *inst =
2004 abld.AND(bld.null_reg_d(), vertex_count,
2005 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2006 inst->conditional_mod = BRW_CONDITIONAL_Z;
2007
2008 abld.IF(BRW_PREDICATE_NORMAL);
2009 /* If vertex_count is 0, then no control data bits have been
2010 * accumulated yet, so we can skip emitting them.
2011 */
2012 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2013 BRW_CONDITIONAL_NEQ);
2014 abld.IF(BRW_PREDICATE_NORMAL);
2015 emit_gs_control_data_bits(vertex_count);
2016 abld.emit(BRW_OPCODE_ENDIF);
2017
2018 /* Reset control_data_bits to 0 so we can start accumulating a new
2019 * batch.
2020 *
2021 * Note: in the case where vertex_count == 0, this neutralizes the
2022 * effect of any call to EndPrimitive() that the shader may have
2023 * made before outputting its first vertex.
2024 */
2025 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2026 inst->force_writemask_all = true;
2027 abld.emit(BRW_OPCODE_ENDIF);
2028 }
2029
2030 emit_urb_writes(vertex_count);
2031
2032 /* In stream mode we have to set control data bits for all vertices
2033 * unless we have disabled control data bits completely (which we do
2034 * do for GL_POINTS outputs that don't use streams).
2035 */
2036 if (gs_compile->control_data_header_size_bits > 0 &&
2037 gs_prog_data->control_data_format ==
2038 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2039 set_gs_stream_control_data_bits(vertex_count, stream_id);
2040 }
2041 }
2042
2043 void
2044 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2045 const nir_src &vertex_src,
2046 unsigned base_offset,
2047 const nir_src &offset_src,
2048 unsigned num_components,
2049 unsigned first_component)
2050 {
2051 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2052
2053 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2054 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2055 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2056
2057 /* TODO: figure out push input layout for invocations == 1 */
2058 /* TODO: make this work with 64-bit inputs */
2059 if (gs_prog_data->invocations == 1 &&
2060 type_sz(dst.type) <= 4 &&
2061 offset_const != NULL && vertex_const != NULL &&
2062 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2063 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2064 vertex_const->u32[0] * push_reg_count;
2065 for (unsigned i = 0; i < num_components; i++) {
2066 bld.MOV(offset(dst, bld, i),
2067 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2068 }
2069 return;
2070 }
2071
2072 /* Resort to the pull model. Ensure the VUE handles are provided. */
2073 assert(gs_prog_data->base.include_vue_handles);
2074
2075 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2076 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2077
2078 if (gs_prog_data->invocations == 1) {
2079 if (vertex_const) {
2080 /* The vertex index is constant; just select the proper URB handle. */
2081 icp_handle =
2082 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2083 BRW_REGISTER_TYPE_UD);
2084 } else {
2085 /* The vertex index is non-constant. We need to use indirect
2086 * addressing to fetch the proper URB handle.
2087 *
2088 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2089 * indicating that channel <n> should read the handle from
2090 * DWord <n>. We convert that to bytes by multiplying by 4.
2091 *
2092 * Next, we convert the vertex index to bytes by multiplying
2093 * by 32 (shifting by 5), and add the two together. This is
2094 * the final indirect byte offset.
2095 */
2096 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2097 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2098 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2099 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2100
2101 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2102 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2103 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2104 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2105 /* Convert vertex_index to bytes (multiply by 32) */
2106 bld.SHL(vertex_offset_bytes,
2107 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2108 brw_imm_ud(5u));
2109 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2110
2111 /* Use first_icp_handle as the base offset. There is one register
2112 * of URB handles per vertex, so inform the register allocator that
2113 * we might read up to nir->info.gs.vertices_in registers.
2114 */
2115 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2116 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2117 fs_reg(icp_offset_bytes),
2118 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2119 }
2120 } else {
2121 assert(gs_prog_data->invocations > 1);
2122
2123 if (vertex_const) {
2124 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2125 bld.MOV(icp_handle,
2126 retype(brw_vec1_grf(first_icp_handle +
2127 vertex_const->i32[0] / 8,
2128 vertex_const->i32[0] % 8),
2129 BRW_REGISTER_TYPE_UD));
2130 } else {
2131 /* The vertex index is non-constant. We need to use indirect
2132 * addressing to fetch the proper URB handle.
2133 *
2134 */
2135 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2136
2137 /* Convert vertex_index to bytes (multiply by 4) */
2138 bld.SHL(icp_offset_bytes,
2139 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2140 brw_imm_ud(2u));
2141
2142 /* Use first_icp_handle as the base offset. There is one DWord
2143 * of URB handles per vertex, so inform the register allocator that
2144 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2145 */
2146 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2147 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2148 fs_reg(icp_offset_bytes),
2149 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2150 REG_SIZE));
2151 }
2152 }
2153
2154 fs_inst *inst;
2155
2156 fs_reg tmp_dst = dst;
2157 fs_reg indirect_offset = get_nir_src(offset_src);
2158 unsigned num_iterations = 1;
2159 unsigned orig_num_components = num_components;
2160
2161 if (type_sz(dst.type) == 8) {
2162 if (num_components > 2) {
2163 num_iterations = 2;
2164 num_components = 2;
2165 }
2166 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2167 tmp_dst = tmp;
2168 first_component = first_component / 2;
2169 }
2170
2171 for (unsigned iter = 0; iter < num_iterations; iter++) {
2172 if (offset_const) {
2173 /* Constant indexing - use global offset. */
2174 if (first_component != 0) {
2175 unsigned read_components = num_components + first_component;
2176 fs_reg tmp = bld.vgrf(dst.type, read_components);
2177 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2178 inst->size_written = read_components *
2179 tmp.component_size(inst->exec_size);
2180 for (unsigned i = 0; i < num_components; i++) {
2181 bld.MOV(offset(tmp_dst, bld, i),
2182 offset(tmp, bld, i + first_component));
2183 }
2184 } else {
2185 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2186 icp_handle);
2187 inst->size_written = num_components *
2188 tmp_dst.component_size(inst->exec_size);
2189 }
2190 inst->offset = base_offset + offset_const->u32[0];
2191 inst->mlen = 1;
2192 } else {
2193 /* Indirect indexing - use per-slot offsets as well. */
2194 const fs_reg srcs[] = { icp_handle, indirect_offset };
2195 unsigned read_components = num_components + first_component;
2196 fs_reg tmp = bld.vgrf(dst.type, read_components);
2197 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2198 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2199 if (first_component != 0) {
2200 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2201 payload);
2202 inst->size_written = read_components *
2203 tmp.component_size(inst->exec_size);
2204 for (unsigned i = 0; i < num_components; i++) {
2205 bld.MOV(offset(tmp_dst, bld, i),
2206 offset(tmp, bld, i + first_component));
2207 }
2208 } else {
2209 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2210 payload);
2211 inst->size_written = num_components *
2212 tmp_dst.component_size(inst->exec_size);
2213 }
2214 inst->offset = base_offset;
2215 inst->mlen = 2;
2216 }
2217
2218 if (type_sz(dst.type) == 8) {
2219 shuffle_from_32bit_read(bld,
2220 offset(dst, bld, iter * 2),
2221 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2222 0,
2223 num_components);
2224 }
2225
2226 if (num_iterations > 1) {
2227 num_components = orig_num_components - 2;
2228 if(offset_const) {
2229 base_offset++;
2230 } else {
2231 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2232 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2233 indirect_offset = new_indirect;
2234 }
2235 }
2236 }
2237 }
2238
2239 fs_reg
2240 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2241 {
2242 nir_src *offset_src = nir_get_io_offset_src(instr);
2243 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2244
2245 if (const_value) {
2246 /* The only constant offset we should find is 0. brw_nir.c's
2247 * add_const_offset_to_base() will fold other constant offsets
2248 * into instr->const_index[0].
2249 */
2250 assert(const_value->u32[0] == 0);
2251 return fs_reg();
2252 }
2253
2254 return get_nir_src(*offset_src);
2255 }
2256
2257 static void
2258 do_untyped_vector_read(const fs_builder &bld,
2259 const fs_reg dest,
2260 const fs_reg surf_index,
2261 const fs_reg offset_reg,
2262 unsigned num_components)
2263 {
2264 if (type_sz(dest.type) <= 2) {
2265 assert(dest.stride == 1);
2266 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2267
2268 if (is_const_offset) {
2269 uint32_t start = offset_reg.ud & ~3;
2270 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2271 end = ALIGN(end, 4);
2272 assert (end - start <= 16);
2273
2274 /* At this point we have 16-bit component/s that have constant
2275 * offset aligned to 4-bytes that can be read with untyped_reads.
2276 * untyped_read message requires 32-bit aligned offsets.
2277 */
2278 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2279 unsigned num_components_32bit = (end - start) / 4;
2280
2281 fs_reg read_result =
2282 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2283 1 /* dims */,
2284 num_components_32bit,
2285 BRW_PREDICATE_NONE);
2286 shuffle_from_32bit_read(bld, dest, read_result, first_component,
2287 num_components);
2288 } else {
2289 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2290 for (unsigned i = 0; i < num_components; i++) {
2291 if (i == 0) {
2292 bld.MOV(read_offset, offset_reg);
2293 } else {
2294 bld.ADD(read_offset, offset_reg,
2295 brw_imm_ud(i * type_sz(dest.type)));
2296 }
2297 /* Non constant offsets are not guaranteed to be aligned 32-bits
2298 * so they are read using one byte_scattered_read message
2299 * for each component.
2300 */
2301 fs_reg read_result =
2302 emit_byte_scattered_read(bld, surf_index, read_offset,
2303 1 /* dims */, 1,
2304 type_sz(dest.type) * 8 /* bit_size */,
2305 BRW_PREDICATE_NONE);
2306 bld.MOV(offset(dest, bld, i),
2307 subscript (read_result, dest.type, 0));
2308 }
2309 }
2310 } else if (type_sz(dest.type) == 4) {
2311 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2312 1 /* dims */,
2313 num_components,
2314 BRW_PREDICATE_NONE);
2315 read_result.type = dest.type;
2316 for (unsigned i = 0; i < num_components; i++)
2317 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2318 } else if (type_sz(dest.type) == 8) {
2319 /* Reading a dvec, so we need to:
2320 *
2321 * 1. Multiply num_components by 2, to account for the fact that we
2322 * need to read 64-bit components.
2323 * 2. Shuffle the result of the load to form valid 64-bit elements
2324 * 3. Emit a second load (for components z/w) if needed.
2325 */
2326 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2327 bld.MOV(read_offset, offset_reg);
2328
2329 int iters = num_components <= 2 ? 1 : 2;
2330
2331 /* Load the dvec, the first iteration loads components x/y, the second
2332 * iteration, if needed, loads components z/w
2333 */
2334 for (int it = 0; it < iters; it++) {
2335 /* Compute number of components to read in this iteration */
2336 int iter_components = MIN2(2, num_components);
2337 num_components -= iter_components;
2338
2339 /* Read. Since this message reads 32-bit components, we need to
2340 * read twice as many components.
2341 */
2342 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2343 1 /* dims */,
2344 iter_components * 2,
2345 BRW_PREDICATE_NONE);
2346
2347 /* Shuffle the 32-bit load result into valid 64-bit data */
2348 shuffle_from_32bit_read(bld, offset(dest, bld, it * 2),
2349 read_result, 0, iter_components);
2350
2351 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2352 }
2353 } else {
2354 unreachable("Unsupported type");
2355 }
2356 }
2357
2358 void
2359 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2360 nir_intrinsic_instr *instr)
2361 {
2362 assert(stage == MESA_SHADER_VERTEX);
2363
2364 fs_reg dest;
2365 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2366 dest = get_nir_dest(instr->dest);
2367
2368 switch (instr->intrinsic) {
2369 case nir_intrinsic_load_vertex_id:
2370 case nir_intrinsic_load_base_vertex:
2371 unreachable("should be lowered by nir_lower_system_values()");
2372
2373 case nir_intrinsic_load_input: {
2374 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2375 unsigned first_component = nir_intrinsic_component(instr);
2376 unsigned num_components = instr->num_components;
2377
2378 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2379 assert(const_offset && "Indirect input loads not allowed");
2380 src = offset(src, bld, const_offset->u32[0]);
2381
2382 if (type_sz(dest.type) == 8)
2383 first_component /= 2;
2384
2385 /* For 16-bit support maybe a temporary will be needed to copy from
2386 * the ATTR file.
2387 */
2388 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2389 first_component, num_components);
2390 break;
2391 }
2392
2393 case nir_intrinsic_load_vertex_id_zero_base:
2394 case nir_intrinsic_load_instance_id:
2395 case nir_intrinsic_load_base_instance:
2396 case nir_intrinsic_load_draw_id:
2397 case nir_intrinsic_load_first_vertex:
2398 case nir_intrinsic_load_is_indexed_draw:
2399 unreachable("lowered by brw_nir_lower_vs_inputs");
2400
2401 default:
2402 nir_emit_intrinsic(bld, instr);
2403 break;
2404 }
2405 }
2406
2407 void
2408 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2409 nir_intrinsic_instr *instr)
2410 {
2411 assert(stage == MESA_SHADER_TESS_CTRL);
2412 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2413 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2414
2415 fs_reg dst;
2416 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2417 dst = get_nir_dest(instr->dest);
2418
2419 switch (instr->intrinsic) {
2420 case nir_intrinsic_load_primitive_id:
2421 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2422 break;
2423 case nir_intrinsic_load_invocation_id:
2424 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2425 break;
2426 case nir_intrinsic_load_patch_vertices_in:
2427 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2428 brw_imm_d(tcs_key->input_vertices));
2429 break;
2430
2431 case nir_intrinsic_barrier: {
2432 if (tcs_prog_data->instances == 1)
2433 break;
2434
2435 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2436 fs_reg m0_2 = component(m0, 2);
2437
2438 const fs_builder chanbld = bld.exec_all().group(1, 0);
2439
2440 /* Zero the message header */
2441 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2442
2443 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2444 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2445 brw_imm_ud(INTEL_MASK(16, 13)));
2446
2447 /* Shift it up to bits 27:24. */
2448 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2449
2450 /* Set the Barrier Count and the enable bit */
2451 chanbld.OR(m0_2, m0_2,
2452 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2453
2454 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2455 break;
2456 }
2457
2458 case nir_intrinsic_load_input:
2459 unreachable("nir_lower_io should never give us these.");
2460 break;
2461
2462 case nir_intrinsic_load_per_vertex_input: {
2463 fs_reg indirect_offset = get_indirect_offset(instr);
2464 unsigned imm_offset = instr->const_index[0];
2465
2466 const nir_src &vertex_src = instr->src[0];
2467 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2468
2469 fs_inst *inst;
2470
2471 fs_reg icp_handle;
2472
2473 if (vertex_const) {
2474 /* Emit a MOV to resolve <0,1,0> regioning. */
2475 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2476 bld.MOV(icp_handle,
2477 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2478 vertex_const->i32[0] & 7),
2479 BRW_REGISTER_TYPE_UD));
2480 } else if (tcs_prog_data->instances == 1 &&
2481 vertex_src.is_ssa &&
2482 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2483 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2484 /* For the common case of only 1 instance, an array index of
2485 * gl_InvocationID means reading g1. Skip all the indirect work.
2486 */
2487 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2488 } else {
2489 /* The vertex index is non-constant. We need to use indirect
2490 * addressing to fetch the proper URB handle.
2491 */
2492 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2493
2494 /* Each ICP handle is a single DWord (4 bytes) */
2495 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2496 bld.SHL(vertex_offset_bytes,
2497 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2498 brw_imm_ud(2u));
2499
2500 /* Start at g1. We might read up to 4 registers. */
2501 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2502 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2503 brw_imm_ud(4 * REG_SIZE));
2504 }
2505
2506 /* We can only read two double components with each URB read, so
2507 * we send two read messages in that case, each one loading up to
2508 * two double components.
2509 */
2510 unsigned num_iterations = 1;
2511 unsigned num_components = instr->num_components;
2512 unsigned first_component = nir_intrinsic_component(instr);
2513 fs_reg orig_dst = dst;
2514 if (type_sz(dst.type) == 8) {
2515 first_component = first_component / 2;
2516 if (instr->num_components > 2) {
2517 num_iterations = 2;
2518 num_components = 2;
2519 }
2520
2521 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2522 dst = tmp;
2523 }
2524
2525 for (unsigned iter = 0; iter < num_iterations; iter++) {
2526 if (indirect_offset.file == BAD_FILE) {
2527 /* Constant indexing - use global offset. */
2528 if (first_component != 0) {
2529 unsigned read_components = num_components + first_component;
2530 fs_reg tmp = bld.vgrf(dst.type, read_components);
2531 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2532 for (unsigned i = 0; i < num_components; i++) {
2533 bld.MOV(offset(dst, bld, i),
2534 offset(tmp, bld, i + first_component));
2535 }
2536 } else {
2537 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2538 }
2539 inst->offset = imm_offset;
2540 inst->mlen = 1;
2541 } else {
2542 /* Indirect indexing - use per-slot offsets as well. */
2543 const fs_reg srcs[] = { icp_handle, indirect_offset };
2544 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2545 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2546 if (first_component != 0) {
2547 unsigned read_components = num_components + first_component;
2548 fs_reg tmp = bld.vgrf(dst.type, read_components);
2549 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2550 payload);
2551 for (unsigned i = 0; i < num_components; i++) {
2552 bld.MOV(offset(dst, bld, i),
2553 offset(tmp, bld, i + first_component));
2554 }
2555 } else {
2556 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2557 payload);
2558 }
2559 inst->offset = imm_offset;
2560 inst->mlen = 2;
2561 }
2562 inst->size_written = (num_components + first_component) *
2563 inst->dst.component_size(inst->exec_size);
2564
2565 /* If we are reading 64-bit data using 32-bit read messages we need
2566 * build proper 64-bit data elements by shuffling the low and high
2567 * 32-bit components around like we do for other things like UBOs
2568 * or SSBOs.
2569 */
2570 if (type_sz(dst.type) == 8) {
2571 shuffle_from_32bit_read(bld,
2572 offset(orig_dst, bld, iter * 2),
2573 retype(dst, BRW_REGISTER_TYPE_D),
2574 0, num_components);
2575 }
2576
2577 /* Copy the temporary to the destination to deal with writemasking.
2578 *
2579 * Also attempt to deal with gl_PointSize being in the .w component.
2580 */
2581 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2582 assert(type_sz(dst.type) < 8);
2583 inst->dst = bld.vgrf(dst.type, 4);
2584 inst->size_written = 4 * REG_SIZE;
2585 bld.MOV(dst, offset(inst->dst, bld, 3));
2586 }
2587
2588 /* If we are loading double data and we need a second read message
2589 * adjust the write offset
2590 */
2591 if (num_iterations > 1) {
2592 num_components = instr->num_components - 2;
2593 imm_offset++;
2594 }
2595 }
2596 break;
2597 }
2598
2599 case nir_intrinsic_load_output:
2600 case nir_intrinsic_load_per_vertex_output: {
2601 fs_reg indirect_offset = get_indirect_offset(instr);
2602 unsigned imm_offset = instr->const_index[0];
2603 unsigned first_component = nir_intrinsic_component(instr);
2604
2605 fs_inst *inst;
2606 if (indirect_offset.file == BAD_FILE) {
2607 /* Replicate the patch handle to all enabled channels */
2608 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2609 bld.MOV(patch_handle,
2610 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2611
2612 {
2613 if (first_component != 0) {
2614 unsigned read_components =
2615 instr->num_components + first_component;
2616 fs_reg tmp = bld.vgrf(dst.type, read_components);
2617 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2618 patch_handle);
2619 inst->size_written = read_components * REG_SIZE;
2620 for (unsigned i = 0; i < instr->num_components; i++) {
2621 bld.MOV(offset(dst, bld, i),
2622 offset(tmp, bld, i + first_component));
2623 }
2624 } else {
2625 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2626 patch_handle);
2627 inst->size_written = instr->num_components * REG_SIZE;
2628 }
2629 inst->offset = imm_offset;
2630 inst->mlen = 1;
2631 }
2632 } else {
2633 /* Indirect indexing - use per-slot offsets as well. */
2634 const fs_reg srcs[] = {
2635 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2636 indirect_offset
2637 };
2638 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2639 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2640 if (first_component != 0) {
2641 unsigned read_components =
2642 instr->num_components + first_component;
2643 fs_reg tmp = bld.vgrf(dst.type, read_components);
2644 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2645 payload);
2646 inst->size_written = read_components * REG_SIZE;
2647 for (unsigned i = 0; i < instr->num_components; i++) {
2648 bld.MOV(offset(dst, bld, i),
2649 offset(tmp, bld, i + first_component));
2650 }
2651 } else {
2652 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2653 payload);
2654 inst->size_written = instr->num_components * REG_SIZE;
2655 }
2656 inst->offset = imm_offset;
2657 inst->mlen = 2;
2658 }
2659 break;
2660 }
2661
2662 case nir_intrinsic_store_output:
2663 case nir_intrinsic_store_per_vertex_output: {
2664 fs_reg value = get_nir_src(instr->src[0]);
2665 bool is_64bit = (instr->src[0].is_ssa ?
2666 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2667 fs_reg indirect_offset = get_indirect_offset(instr);
2668 unsigned imm_offset = instr->const_index[0];
2669 unsigned mask = instr->const_index[1];
2670 unsigned header_regs = 0;
2671 fs_reg srcs[7];
2672 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2673
2674 if (indirect_offset.file != BAD_FILE) {
2675 srcs[header_regs++] = indirect_offset;
2676 }
2677
2678 if (mask == 0)
2679 break;
2680
2681 unsigned num_components = util_last_bit(mask);
2682 enum opcode opcode;
2683
2684 /* We can only pack two 64-bit components in a single message, so send
2685 * 2 messages if we have more components
2686 */
2687 unsigned num_iterations = 1;
2688 unsigned iter_components = num_components;
2689 unsigned first_component = nir_intrinsic_component(instr);
2690 if (is_64bit) {
2691 first_component = first_component / 2;
2692 if (instr->num_components > 2) {
2693 num_iterations = 2;
2694 iter_components = 2;
2695 }
2696 }
2697
2698 mask = mask << first_component;
2699
2700 for (unsigned iter = 0; iter < num_iterations; iter++) {
2701 if (!is_64bit && mask != WRITEMASK_XYZW) {
2702 srcs[header_regs++] = brw_imm_ud(mask << 16);
2703 opcode = indirect_offset.file != BAD_FILE ?
2704 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2705 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2706 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2707 /* Expand the 64-bit mask to 32-bit channels. We only handle
2708 * two channels in each iteration, so we only care about X/Y.
2709 */
2710 unsigned mask32 = 0;
2711 if (mask & WRITEMASK_X)
2712 mask32 |= WRITEMASK_XY;
2713 if (mask & WRITEMASK_Y)
2714 mask32 |= WRITEMASK_ZW;
2715
2716 /* If the mask does not include any of the channels X or Y there
2717 * is nothing to do in this iteration. Move on to the next couple
2718 * of 64-bit channels.
2719 */
2720 if (!mask32) {
2721 mask >>= 2;
2722 imm_offset++;
2723 continue;
2724 }
2725
2726 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2727 opcode = indirect_offset.file != BAD_FILE ?
2728 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2729 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2730 } else {
2731 opcode = indirect_offset.file != BAD_FILE ?
2732 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2733 SHADER_OPCODE_URB_WRITE_SIMD8;
2734 }
2735
2736 for (unsigned i = 0; i < iter_components; i++) {
2737 if (!(mask & (1 << (i + first_component))))
2738 continue;
2739
2740 if (!is_64bit) {
2741 srcs[header_regs + i + first_component] = offset(value, bld, i);
2742 } else {
2743 /* We need to shuffle the 64-bit data to match the layout
2744 * expected by our 32-bit URB write messages. We use a temporary
2745 * for that.
2746 */
2747 unsigned channel = iter * 2 + i;
2748 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2749
2750 srcs[header_regs + (i + first_component) * 2] = dest;
2751 srcs[header_regs + (i + first_component) * 2 + 1] =
2752 offset(dest, bld, 1);
2753 }
2754 }
2755
2756 unsigned mlen =
2757 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2758 (is_64bit ? 2 * first_component : first_component);
2759 fs_reg payload =
2760 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2761 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2762
2763 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2764 inst->offset = imm_offset;
2765 inst->mlen = mlen;
2766
2767 /* If this is a 64-bit attribute, select the next two 64-bit channels
2768 * to be handled in the next iteration.
2769 */
2770 if (is_64bit) {
2771 mask >>= 2;
2772 imm_offset++;
2773 }
2774 }
2775 break;
2776 }
2777
2778 default:
2779 nir_emit_intrinsic(bld, instr);
2780 break;
2781 }
2782 }
2783
2784 void
2785 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2786 nir_intrinsic_instr *instr)
2787 {
2788 assert(stage == MESA_SHADER_TESS_EVAL);
2789 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2790
2791 fs_reg dest;
2792 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2793 dest = get_nir_dest(instr->dest);
2794
2795 switch (instr->intrinsic) {
2796 case nir_intrinsic_load_primitive_id:
2797 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2798 break;
2799 case nir_intrinsic_load_tess_coord:
2800 /* gl_TessCoord is part of the payload in g1-3 */
2801 for (unsigned i = 0; i < 3; i++) {
2802 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2803 }
2804 break;
2805
2806 case nir_intrinsic_load_input:
2807 case nir_intrinsic_load_per_vertex_input: {
2808 fs_reg indirect_offset = get_indirect_offset(instr);
2809 unsigned imm_offset = instr->const_index[0];
2810 unsigned first_component = nir_intrinsic_component(instr);
2811
2812 if (type_sz(dest.type) == 8) {
2813 first_component = first_component / 2;
2814 }
2815
2816 fs_inst *inst;
2817 if (indirect_offset.file == BAD_FILE) {
2818 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2819 * which is 16 registers (since each holds 2 vec4 slots).
2820 */
2821 unsigned slot_count = 1;
2822 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2823 slot_count++;
2824
2825 const unsigned max_push_slots = 32;
2826 if (imm_offset + slot_count <= max_push_slots) {
2827 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2828 for (int i = 0; i < instr->num_components; i++) {
2829 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2830 i + first_component;
2831 bld.MOV(offset(dest, bld, i), component(src, comp));
2832 }
2833
2834 tes_prog_data->base.urb_read_length =
2835 MAX2(tes_prog_data->base.urb_read_length,
2836 DIV_ROUND_UP(imm_offset + slot_count, 2));
2837 } else {
2838 /* Replicate the patch handle to all enabled channels */
2839 const fs_reg srcs[] = {
2840 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2841 };
2842 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2843 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2844
2845 if (first_component != 0) {
2846 unsigned read_components =
2847 instr->num_components + first_component;
2848 fs_reg tmp = bld.vgrf(dest.type, read_components);
2849 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2850 patch_handle);
2851 inst->size_written = read_components * REG_SIZE;
2852 for (unsigned i = 0; i < instr->num_components; i++) {
2853 bld.MOV(offset(dest, bld, i),
2854 offset(tmp, bld, i + first_component));
2855 }
2856 } else {
2857 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2858 patch_handle);
2859 inst->size_written = instr->num_components * REG_SIZE;
2860 }
2861 inst->mlen = 1;
2862 inst->offset = imm_offset;
2863 }
2864 } else {
2865 /* Indirect indexing - use per-slot offsets as well. */
2866
2867 /* We can only read two double components with each URB read, so
2868 * we send two read messages in that case, each one loading up to
2869 * two double components.
2870 */
2871 unsigned num_iterations = 1;
2872 unsigned num_components = instr->num_components;
2873 fs_reg orig_dest = dest;
2874 if (type_sz(dest.type) == 8) {
2875 if (instr->num_components > 2) {
2876 num_iterations = 2;
2877 num_components = 2;
2878 }
2879 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2880 dest = tmp;
2881 }
2882
2883 for (unsigned iter = 0; iter < num_iterations; iter++) {
2884 const fs_reg srcs[] = {
2885 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2886 indirect_offset
2887 };
2888 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2889 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2890
2891 if (first_component != 0) {
2892 unsigned read_components =
2893 num_components + first_component;
2894 fs_reg tmp = bld.vgrf(dest.type, read_components);
2895 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2896 payload);
2897 for (unsigned i = 0; i < num_components; i++) {
2898 bld.MOV(offset(dest, bld, i),
2899 offset(tmp, bld, i + first_component));
2900 }
2901 } else {
2902 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2903 payload);
2904 }
2905 inst->mlen = 2;
2906 inst->offset = imm_offset;
2907 inst->size_written = (num_components + first_component) *
2908 inst->dst.component_size(inst->exec_size);
2909
2910 /* If we are reading 64-bit data using 32-bit read messages we need
2911 * build proper 64-bit data elements by shuffling the low and high
2912 * 32-bit components around like we do for other things like UBOs
2913 * or SSBOs.
2914 */
2915 if (type_sz(dest.type) == 8) {
2916 shuffle_from_32bit_read(bld,
2917 offset(orig_dest, bld, iter * 2),
2918 retype(dest, BRW_REGISTER_TYPE_D),
2919 0, num_components);
2920 }
2921
2922 /* If we are loading double data and we need a second read message
2923 * adjust the offset
2924 */
2925 if (num_iterations > 1) {
2926 num_components = instr->num_components - 2;
2927 imm_offset++;
2928 }
2929 }
2930 }
2931 break;
2932 }
2933 default:
2934 nir_emit_intrinsic(bld, instr);
2935 break;
2936 }
2937 }
2938
2939 void
2940 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2941 nir_intrinsic_instr *instr)
2942 {
2943 assert(stage == MESA_SHADER_GEOMETRY);
2944 fs_reg indirect_offset;
2945
2946 fs_reg dest;
2947 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2948 dest = get_nir_dest(instr->dest);
2949
2950 switch (instr->intrinsic) {
2951 case nir_intrinsic_load_primitive_id:
2952 assert(stage == MESA_SHADER_GEOMETRY);
2953 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2954 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2955 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2956 break;
2957
2958 case nir_intrinsic_load_input:
2959 unreachable("load_input intrinsics are invalid for the GS stage");
2960
2961 case nir_intrinsic_load_per_vertex_input:
2962 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2963 instr->src[1], instr->num_components,
2964 nir_intrinsic_component(instr));
2965 break;
2966
2967 case nir_intrinsic_emit_vertex_with_counter:
2968 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2969 break;
2970
2971 case nir_intrinsic_end_primitive_with_counter:
2972 emit_gs_end_primitive(instr->src[0]);
2973 break;
2974
2975 case nir_intrinsic_set_vertex_count:
2976 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2977 break;
2978
2979 case nir_intrinsic_load_invocation_id: {
2980 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2981 assert(val.file != BAD_FILE);
2982 dest.type = val.type;
2983 bld.MOV(dest, val);
2984 break;
2985 }
2986
2987 default:
2988 nir_emit_intrinsic(bld, instr);
2989 break;
2990 }
2991 }
2992
2993 /**
2994 * Fetch the current render target layer index.
2995 */
2996 static fs_reg
2997 fetch_render_target_array_index(const fs_builder &bld)
2998 {
2999 if (bld.shader->devinfo->gen >= 6) {
3000 /* The render target array index is provided in the thread payload as
3001 * bits 26:16 of r0.0.
3002 */
3003 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3004 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3005 brw_imm_uw(0x7ff));
3006 return idx;
3007 } else {
3008 /* Pre-SNB we only ever render into the first layer of the framebuffer
3009 * since layered rendering is not implemented.
3010 */
3011 return brw_imm_ud(0);
3012 }
3013 }
3014
3015 /**
3016 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3017 * framebuffer at the current fragment coordinates and sample index.
3018 */
3019 fs_inst *
3020 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3021 unsigned target)
3022 {
3023 const struct gen_device_info *devinfo = bld.shader->devinfo;
3024
3025 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3026 const brw_wm_prog_key *wm_key =
3027 reinterpret_cast<const brw_wm_prog_key *>(key);
3028 assert(!wm_key->coherent_fb_fetch);
3029 const struct brw_wm_prog_data *wm_prog_data =
3030 brw_wm_prog_data(stage_prog_data);
3031
3032 /* Calculate the surface index relative to the start of the texture binding
3033 * table block, since that's what the texturing messages expect.
3034 */
3035 const unsigned surface = target +
3036 wm_prog_data->binding_table.render_target_read_start -
3037 wm_prog_data->base.binding_table.texture_start;
3038
3039 brw_mark_surface_used(
3040 bld.shader->stage_prog_data,
3041 wm_prog_data->binding_table.render_target_read_start + target);
3042
3043 /* Calculate the fragment coordinates. */
3044 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3045 bld.MOV(offset(coords, bld, 0), pixel_x);
3046 bld.MOV(offset(coords, bld, 1), pixel_y);
3047 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3048
3049 /* Calculate the sample index and MCS payload when multisampling. Luckily
3050 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3051 * shouldn't be necessary to recompile based on whether the framebuffer is
3052 * CMS or UMS.
3053 */
3054 if (wm_key->multisample_fbo &&
3055 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3056 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3057
3058 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3059 const fs_reg mcs = wm_key->multisample_fbo ?
3060 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3061
3062 /* Use either a normal or a CMS texel fetch message depending on whether
3063 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3064 * message just in case the framebuffer uses 16x multisampling, it should
3065 * be equivalent to the normal CMS fetch for lower multisampling modes.
3066 */
3067 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3068 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3069 SHADER_OPCODE_TXF_CMS_LOGICAL;
3070
3071 /* Emit the instruction. */
3072 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3073 sample, mcs,
3074 brw_imm_ud(surface), brw_imm_ud(0),
3075 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3076 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3077
3078 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3079 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3080
3081 return inst;
3082 }
3083
3084 /**
3085 * Actual coherent framebuffer read implemented using the native render target
3086 * read message. Requires SKL+.
3087 */
3088 static fs_inst *
3089 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3090 {
3091 assert(bld.shader->devinfo->gen >= 9);
3092 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3093 inst->target = target;
3094 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3095
3096 return inst;
3097 }
3098
3099 static fs_reg
3100 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3101 {
3102 if (n && regs[0].file != BAD_FILE) {
3103 return regs[0];
3104
3105 } else {
3106 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3107
3108 for (unsigned i = 0; i < n; i++)
3109 regs[i] = tmp;
3110
3111 return tmp;
3112 }
3113 }
3114
3115 static fs_reg
3116 alloc_frag_output(fs_visitor *v, unsigned location)
3117 {
3118 assert(v->stage == MESA_SHADER_FRAGMENT);
3119 const brw_wm_prog_key *const key =
3120 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3121 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3122 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3123
3124 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3125 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3126
3127 else if (l == FRAG_RESULT_COLOR)
3128 return alloc_temporary(v->bld, 4, v->outputs,
3129 MAX2(key->nr_color_regions, 1));
3130
3131 else if (l == FRAG_RESULT_DEPTH)
3132 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3133
3134 else if (l == FRAG_RESULT_STENCIL)
3135 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3136
3137 else if (l == FRAG_RESULT_SAMPLE_MASK)
3138 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3139
3140 else if (l >= FRAG_RESULT_DATA0 &&
3141 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3142 return alloc_temporary(v->bld, 4,
3143 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3144
3145 else
3146 unreachable("Invalid location");
3147 }
3148
3149 void
3150 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3151 nir_intrinsic_instr *instr)
3152 {
3153 assert(stage == MESA_SHADER_FRAGMENT);
3154
3155 fs_reg dest;
3156 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3157 dest = get_nir_dest(instr->dest);
3158
3159 switch (instr->intrinsic) {
3160 case nir_intrinsic_load_front_face:
3161 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3162 *emit_frontfacing_interpolation());
3163 break;
3164
3165 case nir_intrinsic_load_sample_pos: {
3166 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3167 assert(sample_pos.file != BAD_FILE);
3168 dest.type = sample_pos.type;
3169 bld.MOV(dest, sample_pos);
3170 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3171 break;
3172 }
3173
3174 case nir_intrinsic_load_layer_id:
3175 dest.type = BRW_REGISTER_TYPE_UD;
3176 bld.MOV(dest, fetch_render_target_array_index(bld));
3177 break;
3178
3179 case nir_intrinsic_load_helper_invocation:
3180 case nir_intrinsic_load_sample_mask_in:
3181 case nir_intrinsic_load_sample_id: {
3182 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3183 fs_reg val = nir_system_values[sv];
3184 assert(val.file != BAD_FILE);
3185 dest.type = val.type;
3186 bld.MOV(dest, val);
3187 break;
3188 }
3189
3190 case nir_intrinsic_store_output: {
3191 const fs_reg src = get_nir_src(instr->src[0]);
3192 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3193 assert(const_offset && "Indirect output stores not allowed");
3194 const unsigned location = nir_intrinsic_base(instr) +
3195 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3196 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3197 src.type);
3198
3199 for (unsigned j = 0; j < instr->num_components; j++)
3200 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3201 offset(src, bld, j));
3202
3203 break;
3204 }
3205
3206 case nir_intrinsic_load_output: {
3207 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3208 BRW_NIR_FRAG_OUTPUT_LOCATION);
3209 assert(l >= FRAG_RESULT_DATA0);
3210 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3211 assert(const_offset && "Indirect output loads not allowed");
3212 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3213 const fs_reg tmp = bld.vgrf(dest.type, 4);
3214
3215 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3216 emit_coherent_fb_read(bld, tmp, target);
3217 else
3218 emit_non_coherent_fb_read(bld, tmp, target);
3219
3220 for (unsigned j = 0; j < instr->num_components; j++) {
3221 bld.MOV(offset(dest, bld, j),
3222 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3223 }
3224
3225 break;
3226 }
3227
3228 case nir_intrinsic_discard:
3229 case nir_intrinsic_discard_if: {
3230 /* We track our discarded pixels in f0.1. By predicating on it, we can
3231 * update just the flag bits that aren't yet discarded. If there's no
3232 * condition, we emit a CMP of g0 != g0, so all currently executing
3233 * channels will get turned off.
3234 */
3235 fs_inst *cmp;
3236 if (instr->intrinsic == nir_intrinsic_discard_if) {
3237 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3238 brw_imm_d(0), BRW_CONDITIONAL_Z);
3239 } else {
3240 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3241 BRW_REGISTER_TYPE_UW));
3242 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3243 }
3244 cmp->predicate = BRW_PREDICATE_NORMAL;
3245 cmp->flag_subreg = 1;
3246
3247 if (devinfo->gen >= 6) {
3248 emit_discard_jump();
3249 }
3250
3251 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3252 break;
3253 }
3254
3255 case nir_intrinsic_load_input: {
3256 /* load_input is only used for flat inputs */
3257 unsigned base = nir_intrinsic_base(instr);
3258 unsigned comp = nir_intrinsic_component(instr);
3259 unsigned num_components = instr->num_components;
3260 fs_reg orig_dest = dest;
3261 enum brw_reg_type type = dest.type;
3262
3263 /* Special case fields in the VUE header */
3264 if (base == VARYING_SLOT_LAYER)
3265 comp = 1;
3266 else if (base == VARYING_SLOT_VIEWPORT)
3267 comp = 2;
3268
3269 if (nir_dest_bit_size(instr->dest) == 64) {
3270 /* const_index is in 32-bit type size units that could not be aligned
3271 * with DF. We need to read the double vector as if it was a float
3272 * vector of twice the number of components to fetch the right data.
3273 */
3274 type = BRW_REGISTER_TYPE_F;
3275 num_components *= 2;
3276 dest = bld.vgrf(type, num_components);
3277 }
3278
3279 for (unsigned int i = 0; i < num_components; i++) {
3280 bld.MOV(offset(retype(dest, type), bld, i),
3281 retype(component(interp_reg(base, comp + i), 3), type));
3282 }
3283
3284 if (nir_dest_bit_size(instr->dest) == 64) {
3285 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3286 instr->num_components);
3287 }
3288 break;
3289 }
3290
3291 case nir_intrinsic_load_barycentric_pixel:
3292 case nir_intrinsic_load_barycentric_centroid:
3293 case nir_intrinsic_load_barycentric_sample:
3294 /* Do nothing - load_interpolated_input handling will handle it later. */
3295 break;
3296
3297 case nir_intrinsic_load_barycentric_at_sample: {
3298 const glsl_interp_mode interpolation =
3299 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3300
3301 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3302
3303 if (const_sample) {
3304 unsigned msg_data = const_sample->i32[0] << 4;
3305
3306 emit_pixel_interpolater_send(bld,
3307 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3308 dest,
3309 fs_reg(), /* src */
3310 brw_imm_ud(msg_data),
3311 interpolation);
3312 } else {
3313 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3314 BRW_REGISTER_TYPE_UD);
3315
3316 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3317 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3318 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3319 bld.exec_all().group(1, 0)
3320 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3321 emit_pixel_interpolater_send(bld,
3322 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3323 dest,
3324 fs_reg(), /* src */
3325 msg_data,
3326 interpolation);
3327 } else {
3328 /* Make a loop that sends a message to the pixel interpolater
3329 * for the sample number in each live channel. If there are
3330 * multiple channels with the same sample number then these
3331 * will be handled simultaneously with a single interation of
3332 * the loop.
3333 */
3334 bld.emit(BRW_OPCODE_DO);
3335
3336 /* Get the next live sample number into sample_id_reg */
3337 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3338
3339 /* Set the flag register so that we can perform the send
3340 * message on all channels that have the same sample number
3341 */
3342 bld.CMP(bld.null_reg_ud(),
3343 sample_src, sample_id,
3344 BRW_CONDITIONAL_EQ);
3345 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3346 bld.exec_all().group(1, 0)
3347 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3348 fs_inst *inst =
3349 emit_pixel_interpolater_send(bld,
3350 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3351 dest,
3352 fs_reg(), /* src */
3353 component(msg_data, 0),
3354 interpolation);
3355 set_predicate(BRW_PREDICATE_NORMAL, inst);
3356
3357 /* Continue the loop if there are any live channels left */
3358 set_predicate_inv(BRW_PREDICATE_NORMAL,
3359 true, /* inverse */
3360 bld.emit(BRW_OPCODE_WHILE));
3361 }
3362 }
3363 break;
3364 }
3365
3366 case nir_intrinsic_load_barycentric_at_offset: {
3367 const glsl_interp_mode interpolation =
3368 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3369
3370 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3371
3372 if (const_offset) {
3373 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3374 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3375
3376 emit_pixel_interpolater_send(bld,
3377 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3378 dest,
3379 fs_reg(), /* src */
3380 brw_imm_ud(off_x | (off_y << 4)),
3381 interpolation);
3382 } else {
3383 fs_reg src = vgrf(glsl_type::ivec2_type);
3384 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3385 BRW_REGISTER_TYPE_F);
3386 for (int i = 0; i < 2; i++) {
3387 fs_reg temp = vgrf(glsl_type::float_type);
3388 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3389 fs_reg itemp = vgrf(glsl_type::int_type);
3390 /* float to int */
3391 bld.MOV(itemp, temp);
3392
3393 /* Clamp the upper end of the range to +7/16.
3394 * ARB_gpu_shader5 requires that we support a maximum offset
3395 * of +0.5, which isn't representable in a S0.4 value -- if
3396 * we didn't clamp it, we'd end up with -8/16, which is the
3397 * opposite of what the shader author wanted.
3398 *
3399 * This is legal due to ARB_gpu_shader5's quantization
3400 * rules:
3401 *
3402 * "Not all values of <offset> may be supported; x and y
3403 * offsets may be rounded to fixed-point values with the
3404 * number of fraction bits given by the
3405 * implementation-dependent constant
3406 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3407 */
3408 set_condmod(BRW_CONDITIONAL_L,
3409 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3410 }
3411
3412 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3413 emit_pixel_interpolater_send(bld,
3414 opcode,
3415 dest,
3416 src,
3417 brw_imm_ud(0u),
3418 interpolation);
3419 }
3420 break;
3421 }
3422
3423 case nir_intrinsic_load_interpolated_input: {
3424 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3425 emit_fragcoord_interpolation(dest);
3426 break;
3427 }
3428
3429 assert(instr->src[0].ssa &&
3430 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3431 nir_intrinsic_instr *bary_intrinsic =
3432 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3433 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3434 enum glsl_interp_mode interp_mode =
3435 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3436 fs_reg dst_xy;
3437
3438 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3439 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3440 /* Use the result of the PI message */
3441 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3442 } else {
3443 /* Use the delta_xy values computed from the payload */
3444 enum brw_barycentric_mode bary =
3445 brw_barycentric_mode(interp_mode, bary_intrin);
3446
3447 dst_xy = this->delta_xy[bary];
3448 }
3449
3450 for (unsigned int i = 0; i < instr->num_components; i++) {
3451 fs_reg interp =
3452 component(interp_reg(nir_intrinsic_base(instr),
3453 nir_intrinsic_component(instr) + i), 0);
3454 interp.type = BRW_REGISTER_TYPE_F;
3455 dest.type = BRW_REGISTER_TYPE_F;
3456
3457 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3458 fs_reg tmp = vgrf(glsl_type::float_type);
3459 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3460 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3461 } else {
3462 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3463 }
3464 }
3465 break;
3466 }
3467
3468 default:
3469 nir_emit_intrinsic(bld, instr);
3470 break;
3471 }
3472 }
3473
3474 static int
3475 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3476 {
3477 const nir_const_value *const val = nir_src_as_const_value(instr->src[src]);
3478
3479 if (val != NULL) {
3480 if (val->i32[0] == 1)
3481 return BRW_AOP_INC;
3482 else if (val->i32[0] == -1)
3483 return BRW_AOP_DEC;
3484 }
3485
3486 return BRW_AOP_ADD;
3487 }
3488
3489 void
3490 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3491 nir_intrinsic_instr *instr)
3492 {
3493 assert(stage == MESA_SHADER_COMPUTE);
3494 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3495
3496 fs_reg dest;
3497 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3498 dest = get_nir_dest(instr->dest);
3499
3500 switch (instr->intrinsic) {
3501 case nir_intrinsic_barrier:
3502 emit_barrier();
3503 cs_prog_data->uses_barrier = true;
3504 break;
3505
3506 case nir_intrinsic_load_subgroup_id:
3507 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3508 break;
3509
3510 case nir_intrinsic_load_local_invocation_id:
3511 case nir_intrinsic_load_work_group_id: {
3512 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3513 fs_reg val = nir_system_values[sv];
3514 assert(val.file != BAD_FILE);
3515 dest.type = val.type;
3516 for (unsigned i = 0; i < 3; i++)
3517 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3518 break;
3519 }
3520
3521 case nir_intrinsic_load_num_work_groups: {
3522 const unsigned surface =
3523 cs_prog_data->binding_table.work_groups_start;
3524
3525 cs_prog_data->uses_num_work_groups = true;
3526
3527 fs_reg surf_index = brw_imm_ud(surface);
3528 brw_mark_surface_used(prog_data, surface);
3529
3530 /* Read the 3 GLuint components of gl_NumWorkGroups */
3531 for (unsigned i = 0; i < 3; i++) {
3532 fs_reg read_result =
3533 emit_untyped_read(bld, surf_index,
3534 brw_imm_ud(i << 2),
3535 1 /* dims */, 1 /* size */,
3536 BRW_PREDICATE_NONE);
3537 read_result.type = dest.type;
3538 bld.MOV(dest, read_result);
3539 dest = offset(dest, bld, 1);
3540 }
3541 break;
3542 }
3543
3544 case nir_intrinsic_shared_atomic_add:
3545 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3546 break;
3547 case nir_intrinsic_shared_atomic_imin:
3548 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3549 break;
3550 case nir_intrinsic_shared_atomic_umin:
3551 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3552 break;
3553 case nir_intrinsic_shared_atomic_imax:
3554 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3555 break;
3556 case nir_intrinsic_shared_atomic_umax:
3557 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3558 break;
3559 case nir_intrinsic_shared_atomic_and:
3560 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3561 break;
3562 case nir_intrinsic_shared_atomic_or:
3563 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3564 break;
3565 case nir_intrinsic_shared_atomic_xor:
3566 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3567 break;
3568 case nir_intrinsic_shared_atomic_exchange:
3569 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3570 break;
3571 case nir_intrinsic_shared_atomic_comp_swap:
3572 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3573 break;
3574 case nir_intrinsic_shared_atomic_fmin:
3575 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3576 break;
3577 case nir_intrinsic_shared_atomic_fmax:
3578 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3579 break;
3580 case nir_intrinsic_shared_atomic_fcomp_swap:
3581 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3582 break;
3583
3584 case nir_intrinsic_load_shared: {
3585 assert(devinfo->gen >= 7);
3586
3587 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3588
3589 /* Get the offset to read from */
3590 fs_reg offset_reg;
3591 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3592 if (const_offset) {
3593 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3594 } else {
3595 offset_reg = vgrf(glsl_type::uint_type);
3596 bld.ADD(offset_reg,
3597 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3598 brw_imm_ud(instr->const_index[0]));
3599 }
3600
3601 /* Read the vector */
3602 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3603 instr->num_components);
3604 break;
3605 }
3606
3607 case nir_intrinsic_store_shared: {
3608 assert(devinfo->gen >= 7);
3609
3610 /* Block index */
3611 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3612
3613 /* Value */
3614 fs_reg val_reg = get_nir_src(instr->src[0]);
3615
3616 /* Writemask */
3617 unsigned writemask = instr->const_index[1];
3618
3619 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3620 * since the untyped writes below operate in units of 32-bits, which
3621 * means that we need to write twice as many components each time.
3622 * Also, we have to suffle 64-bit data to be in the appropriate layout
3623 * expected by our 32-bit write messages.
3624 */
3625 unsigned type_size = 4;
3626 if (nir_src_bit_size(instr->src[0]) == 64) {
3627 type_size = 8;
3628 val_reg = shuffle_for_32bit_write(bld, val_reg, 0,
3629 instr->num_components);
3630 }
3631
3632 unsigned type_slots = type_size / 4;
3633
3634 /* Combine groups of consecutive enabled channels in one write
3635 * message. We use ffs to find the first enabled channel and then ffs on
3636 * the bit-inverse, down-shifted writemask to determine the length of
3637 * the block of enabled bits.
3638 */
3639 while (writemask) {
3640 unsigned first_component = ffs(writemask) - 1;
3641 unsigned length = ffs(~(writemask >> first_component)) - 1;
3642
3643 /* We can't write more than 2 64-bit components at once. Limit the
3644 * length of the write to what we can do and let the next iteration
3645 * handle the rest
3646 */
3647 if (type_size > 4)
3648 length = MIN2(2, length);
3649
3650 fs_reg offset_reg;
3651 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3652 if (const_offset) {
3653 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3654 type_size * first_component);
3655 } else {
3656 offset_reg = vgrf(glsl_type::uint_type);
3657 bld.ADD(offset_reg,
3658 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3659 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3660 }
3661
3662 emit_untyped_write(bld, surf_index, offset_reg,
3663 offset(val_reg, bld, first_component * type_slots),
3664 1 /* dims */, length * type_slots,
3665 BRW_PREDICATE_NONE);
3666
3667 /* Clear the bits in the writemask that we just wrote, then try
3668 * again to see if more channels are left.
3669 */
3670 writemask &= (15 << (first_component + length));
3671 }
3672
3673 break;
3674 }
3675
3676 default:
3677 nir_emit_intrinsic(bld, instr);
3678 break;
3679 }
3680 }
3681
3682 static fs_reg
3683 brw_nir_reduction_op_identity(const fs_builder &bld,
3684 nir_op op, brw_reg_type type)
3685 {
3686 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3687 switch (type_sz(type)) {
3688 case 2:
3689 assert(type != BRW_REGISTER_TYPE_HF);
3690 return retype(brw_imm_uw(value.u16[0]), type);
3691 case 4:
3692 return retype(brw_imm_ud(value.u32[0]), type);
3693 case 8:
3694 if (type == BRW_REGISTER_TYPE_DF)
3695 return setup_imm_df(bld, value.f64[0]);
3696 else
3697 return retype(brw_imm_u64(value.u64[0]), type);
3698 default:
3699 unreachable("Invalid type size");
3700 }
3701 }
3702
3703 static opcode
3704 brw_op_for_nir_reduction_op(nir_op op)
3705 {
3706 switch (op) {
3707 case nir_op_iadd: return BRW_OPCODE_ADD;
3708 case nir_op_fadd: return BRW_OPCODE_ADD;
3709 case nir_op_imul: return BRW_OPCODE_MUL;
3710 case nir_op_fmul: return BRW_OPCODE_MUL;
3711 case nir_op_imin: return BRW_OPCODE_SEL;
3712 case nir_op_umin: return BRW_OPCODE_SEL;
3713 case nir_op_fmin: return BRW_OPCODE_SEL;
3714 case nir_op_imax: return BRW_OPCODE_SEL;
3715 case nir_op_umax: return BRW_OPCODE_SEL;
3716 case nir_op_fmax: return BRW_OPCODE_SEL;
3717 case nir_op_iand: return BRW_OPCODE_AND;
3718 case nir_op_ior: return BRW_OPCODE_OR;
3719 case nir_op_ixor: return BRW_OPCODE_XOR;
3720 default:
3721 unreachable("Invalid reduction operation");
3722 }
3723 }
3724
3725 static brw_conditional_mod
3726 brw_cond_mod_for_nir_reduction_op(nir_op op)
3727 {
3728 switch (op) {
3729 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3730 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3731 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3732 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3733 case nir_op_imin: return BRW_CONDITIONAL_L;
3734 case nir_op_umin: return BRW_CONDITIONAL_L;
3735 case nir_op_fmin: return BRW_CONDITIONAL_L;
3736 case nir_op_imax: return BRW_CONDITIONAL_GE;
3737 case nir_op_umax: return BRW_CONDITIONAL_GE;
3738 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3739 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3740 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3741 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3742 default:
3743 unreachable("Invalid reduction operation");
3744 }
3745 }
3746
3747 fs_reg
3748 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3749 nir_intrinsic_instr *instr)
3750 {
3751 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3752
3753 if (stage_prog_data->binding_table.image_start > 0) {
3754 if (image.file == BRW_IMMEDIATE_VALUE) {
3755 image.d += stage_prog_data->binding_table.image_start;
3756 } else {
3757 bld.ADD(image, image,
3758 brw_imm_d(stage_prog_data->binding_table.image_start));
3759 }
3760 }
3761
3762 return bld.emit_uniformize(image);
3763 }
3764
3765 fs_reg
3766 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3767 nir_intrinsic_instr *instr)
3768 {
3769 /* SSBO stores are weird in that their index is in src[1] */
3770 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3771 nir_const_value *const_uniform_block =
3772 nir_src_as_const_value(instr->src[src]);
3773
3774 fs_reg surf_index;
3775 if (const_uniform_block) {
3776 unsigned index = stage_prog_data->binding_table.ssbo_start +
3777 const_uniform_block->u32[0];
3778 surf_index = brw_imm_ud(index);
3779 brw_mark_surface_used(prog_data, index);
3780 } else {
3781 surf_index = vgrf(glsl_type::uint_type);
3782 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3783 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3784
3785 /* Assume this may touch any UBO. It would be nice to provide
3786 * a tighter bound, but the array information is already lowered away.
3787 */
3788 brw_mark_surface_used(prog_data,
3789 stage_prog_data->binding_table.ssbo_start +
3790 nir->info.num_ssbos - 1);
3791 }
3792
3793 return surf_index;
3794 }
3795
3796 static unsigned
3797 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3798 {
3799 switch (nir_intrinsic_image_dim(instr)) {
3800 case GLSL_SAMPLER_DIM_1D:
3801 return 1 + nir_intrinsic_image_array(instr);
3802 case GLSL_SAMPLER_DIM_2D:
3803 case GLSL_SAMPLER_DIM_RECT:
3804 return 2 + nir_intrinsic_image_array(instr);
3805 case GLSL_SAMPLER_DIM_3D:
3806 case GLSL_SAMPLER_DIM_CUBE:
3807 return 3;
3808 case GLSL_SAMPLER_DIM_BUF:
3809 return 1;
3810 case GLSL_SAMPLER_DIM_MS:
3811 return 2 + nir_intrinsic_image_array(instr);
3812 default:
3813 unreachable("Invalid image dimension");
3814 }
3815 }
3816
3817 void
3818 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3819 {
3820 fs_reg dest;
3821 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3822 dest = get_nir_dest(instr->dest);
3823
3824 switch (instr->intrinsic) {
3825 case nir_intrinsic_image_load:
3826 case nir_intrinsic_image_store:
3827 case nir_intrinsic_image_atomic_add:
3828 case nir_intrinsic_image_atomic_min:
3829 case nir_intrinsic_image_atomic_max:
3830 case nir_intrinsic_image_atomic_and:
3831 case nir_intrinsic_image_atomic_or:
3832 case nir_intrinsic_image_atomic_xor:
3833 case nir_intrinsic_image_atomic_exchange:
3834 case nir_intrinsic_image_atomic_comp_swap: {
3835 if (stage == MESA_SHADER_FRAGMENT &&
3836 instr->intrinsic != nir_intrinsic_image_load)
3837 brw_wm_prog_data(prog_data)->has_side_effects = true;
3838
3839 /* Get some metadata from the image intrinsic. */
3840 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3841 const unsigned dims = image_intrinsic_coord_components(instr);
3842 const GLenum format = nir_intrinsic_format(instr);
3843 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3844
3845 /* Get the arguments of the image intrinsic. */
3846 const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3847 const fs_reg coords = retype(get_nir_src(instr->src[1]),
3848 BRW_REGISTER_TYPE_UD);
3849 fs_reg tmp;
3850
3851 /* Emit an image load, store or atomic op. */
3852 if (instr->intrinsic == nir_intrinsic_image_load) {
3853 tmp = emit_typed_read(bld, image, coords, dims,
3854 instr->num_components);
3855 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3856 const fs_reg src0 = get_nir_src(instr->src[3]);
3857 emit_typed_write(bld, image, coords, src0, dims,
3858 instr->num_components);
3859 } else {
3860 int op;
3861 unsigned num_srcs = info->num_srcs;
3862
3863 switch (instr->intrinsic) {
3864 case nir_intrinsic_image_atomic_add:
3865 assert(num_srcs == 4);
3866
3867 op = get_op_for_atomic_add(instr, 3);
3868
3869 if (op != BRW_AOP_ADD)
3870 num_srcs = 3;
3871 break;
3872 case nir_intrinsic_image_atomic_min:
3873 assert(format == GL_R32UI || format == GL_R32I);
3874 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3875 break;
3876 case nir_intrinsic_image_atomic_max:
3877 assert(format == GL_R32UI || format == GL_R32I);
3878 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3879 break;
3880 case nir_intrinsic_image_atomic_and:
3881 op = BRW_AOP_AND;
3882 break;
3883 case nir_intrinsic_image_atomic_or:
3884 op = BRW_AOP_OR;
3885 break;
3886 case nir_intrinsic_image_atomic_xor:
3887 op = BRW_AOP_XOR;
3888 break;
3889 case nir_intrinsic_image_atomic_exchange:
3890 op = BRW_AOP_MOV;
3891 break;
3892 case nir_intrinsic_image_atomic_comp_swap:
3893 op = BRW_AOP_CMPWR;
3894 break;
3895 default:
3896 unreachable("Not reachable.");
3897 }
3898
3899 const fs_reg src0 = (num_srcs >= 4 ?
3900 get_nir_src(instr->src[3]) : fs_reg());
3901 const fs_reg src1 = (num_srcs >= 5 ?
3902 get_nir_src(instr->src[4]) : fs_reg());
3903
3904 tmp = emit_typed_atomic(bld, image, coords, src0, src1, dims, 1, op);
3905 }
3906
3907 /* Assign the result. */
3908 for (unsigned c = 0; c < dest_components; ++c) {
3909 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3910 offset(tmp, bld, c));
3911 }
3912 break;
3913 }
3914
3915 case nir_intrinsic_image_size: {
3916 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3917 * into will handle the binding table index for us in the geneerator.
3918 */
3919 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3920 BRW_REGISTER_TYPE_UD);
3921 image = bld.emit_uniformize(image);
3922
3923 /* Since the image size is always uniform, we can just emit a SIMD8
3924 * query instruction and splat the result out.
3925 */
3926 const fs_builder ubld = bld.exec_all().group(8, 0);
3927
3928 /* The LOD also serves as the message payload */
3929 fs_reg lod = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3930 ubld.MOV(lod, brw_imm_ud(0));
3931
3932 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3933 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE, tmp, lod, image);
3934 inst->mlen = 1;
3935 inst->size_written = 4 * REG_SIZE;
3936
3937 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3938 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3939 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3940 offset(retype(dest, tmp.type), bld, c),
3941 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3942 } else {
3943 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3944 component(offset(tmp, ubld, c), 0));
3945 }
3946 }
3947 break;
3948 }
3949
3950 case nir_intrinsic_image_load_raw_intel: {
3951 const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3952 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3953 BRW_REGISTER_TYPE_UD);
3954
3955 fs_reg tmp = emit_untyped_read(bld, image, addr, 1,
3956 instr->num_components);
3957
3958 for (unsigned c = 0; c < instr->num_components; ++c) {
3959 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3960 offset(tmp, bld, c));
3961 }
3962 break;
3963 }
3964
3965 case nir_intrinsic_image_store_raw_intel: {
3966 const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3967 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3968 BRW_REGISTER_TYPE_UD);
3969 const fs_reg data = retype(get_nir_src(instr->src[2]),
3970 BRW_REGISTER_TYPE_UD);
3971
3972 brw_wm_prog_data(prog_data)->has_side_effects = true;
3973
3974 emit_untyped_write(bld, image, addr, data, 1,
3975 instr->num_components);
3976 break;
3977 }
3978
3979 case nir_intrinsic_group_memory_barrier:
3980 case nir_intrinsic_memory_barrier_shared:
3981 case nir_intrinsic_memory_barrier_atomic_counter:
3982 case nir_intrinsic_memory_barrier_buffer:
3983 case nir_intrinsic_memory_barrier_image:
3984 case nir_intrinsic_memory_barrier: {
3985 const fs_builder ubld = bld.group(8, 0);
3986 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3987 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3988 ->size_written = 2 * REG_SIZE;
3989 break;
3990 }
3991
3992 case nir_intrinsic_shader_clock: {
3993 /* We cannot do anything if there is an event, so ignore it for now */
3994 const fs_reg shader_clock = get_timestamp(bld);
3995 const fs_reg srcs[] = { component(shader_clock, 0),
3996 component(shader_clock, 1) };
3997 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3998 break;
3999 }
4000
4001 case nir_intrinsic_image_samples:
4002 /* The driver does not support multi-sampled images. */
4003 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4004 break;
4005
4006 case nir_intrinsic_load_uniform: {
4007 /* Offsets are in bytes but they should always aligned to
4008 * the type size
4009 */
4010 assert(instr->const_index[0] % 4 == 0 ||
4011 instr->const_index[0] % type_sz(dest.type) == 0);
4012
4013 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4014
4015 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4016 if (const_offset) {
4017 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
4018 /* For 16-bit types we add the module of the const_index[0]
4019 * offset to access to not 32-bit aligned element
4020 */
4021 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
4022
4023 for (unsigned j = 0; j < instr->num_components; j++) {
4024 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4025 }
4026 } else {
4027 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4028 BRW_REGISTER_TYPE_UD);
4029
4030 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4031 * go past the end of the uniform. In order to keep the n'th
4032 * component from running past, we subtract off the size of all but
4033 * one component of the vector.
4034 */
4035 assert(instr->const_index[1] >=
4036 instr->num_components * (int) type_sz(dest.type));
4037 unsigned read_size = instr->const_index[1] -
4038 (instr->num_components - 1) * type_sz(dest.type);
4039
4040 bool supports_64bit_indirects =
4041 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4042
4043 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4044 for (unsigned j = 0; j < instr->num_components; j++) {
4045 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4046 offset(dest, bld, j), offset(src, bld, j),
4047 indirect, brw_imm_ud(read_size));
4048 }
4049 } else {
4050 const unsigned num_mov_indirects =
4051 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4052 /* We read a little bit less per MOV INDIRECT, as they are now
4053 * 32-bits ones instead of 64-bit. Fix read_size then.
4054 */
4055 const unsigned read_size_32bit = read_size -
4056 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4057 for (unsigned j = 0; j < instr->num_components; j++) {
4058 for (unsigned i = 0; i < num_mov_indirects; i++) {
4059 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4060 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4061 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4062 indirect, brw_imm_ud(read_size_32bit));
4063 }
4064 }
4065 }
4066 }
4067 break;
4068 }
4069
4070 case nir_intrinsic_load_ubo: {
4071 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4072 fs_reg surf_index;
4073
4074 if (const_index) {
4075 const unsigned index = stage_prog_data->binding_table.ubo_start +
4076 const_index->u32[0];
4077 surf_index = brw_imm_ud(index);
4078 brw_mark_surface_used(prog_data, index);
4079 } else {
4080 /* The block index is not a constant. Evaluate the index expression
4081 * per-channel and add the base UBO index; we have to select a value
4082 * from any live channel.
4083 */
4084 surf_index = vgrf(glsl_type::uint_type);
4085 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4086 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4087 surf_index = bld.emit_uniformize(surf_index);
4088
4089 /* Assume this may touch any UBO. It would be nice to provide
4090 * a tighter bound, but the array information is already lowered away.
4091 */
4092 brw_mark_surface_used(prog_data,
4093 stage_prog_data->binding_table.ubo_start +
4094 nir->info.num_ubos - 1);
4095 }
4096
4097 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4098 if (const_offset == NULL) {
4099 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4100 BRW_REGISTER_TYPE_UD);
4101
4102 for (int i = 0; i < instr->num_components; i++)
4103 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4104 base_offset, i * type_sz(dest.type));
4105 } else {
4106 /* Even if we are loading doubles, a pull constant load will load
4107 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4108 * need to load a full dvec4 we will have to emit 2 loads. This is
4109 * similar to demote_pull_constants(), except that in that case we
4110 * see individual accesses to each component of the vector and then
4111 * we let CSE deal with duplicate loads. Here we see a vector access
4112 * and we have to split it if necessary.
4113 */
4114 const unsigned type_size = type_sz(dest.type);
4115
4116 /* See if we've selected this as a push constant candidate */
4117 if (const_index) {
4118 const unsigned ubo_block = const_index->u32[0];
4119 const unsigned offset_256b = const_offset->u32[0] / 32;
4120
4121 fs_reg push_reg;
4122 for (int i = 0; i < 4; i++) {
4123 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4124 if (range->block == ubo_block &&
4125 offset_256b >= range->start &&
4126 offset_256b < range->start + range->length) {
4127
4128 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4129 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4130 break;
4131 }
4132 }
4133
4134 if (push_reg.file != BAD_FILE) {
4135 for (unsigned i = 0; i < instr->num_components; i++) {
4136 bld.MOV(offset(dest, bld, i),
4137 byte_offset(push_reg, i * type_size));
4138 }
4139 break;
4140 }
4141 }
4142
4143 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4144 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4145 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4146
4147 for (unsigned c = 0; c < instr->num_components;) {
4148 const unsigned base = const_offset->u32[0] + c * type_size;
4149 /* Number of usable components in the next block-aligned load. */
4150 const unsigned count = MIN2(instr->num_components - c,
4151 (block_sz - base % block_sz) / type_size);
4152
4153 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4154 packed_consts, surf_index,
4155 brw_imm_ud(base & ~(block_sz - 1)));
4156
4157 const fs_reg consts =
4158 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4159 dest.type);
4160
4161 for (unsigned d = 0; d < count; d++)
4162 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4163
4164 c += count;
4165 }
4166 }
4167 break;
4168 }
4169
4170 case nir_intrinsic_load_ssbo: {
4171 assert(devinfo->gen >= 7);
4172
4173 fs_reg surf_index = get_nir_ssbo_intrinsic_index(bld, instr);
4174 fs_reg offset_reg = get_nir_src_imm(instr->src[1]);
4175
4176 /* Read the vector */
4177 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4178 instr->num_components);
4179
4180 break;
4181 }
4182
4183 case nir_intrinsic_store_ssbo: {
4184 assert(devinfo->gen >= 7);
4185
4186 if (stage == MESA_SHADER_FRAGMENT)
4187 brw_wm_prog_data(prog_data)->has_side_effects = true;
4188
4189 fs_reg surf_index = get_nir_ssbo_intrinsic_index(bld, instr);
4190
4191 /* Value */
4192 fs_reg val_reg = get_nir_src(instr->src[0]);
4193
4194 /* Writemask */
4195 unsigned writemask = instr->const_index[0];
4196
4197 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4198 * since the untyped writes below operate in units of 32-bits, which
4199 * means that we need to write twice as many components each time.
4200 * Also, we have to suffle 64-bit data to be in the appropriate layout
4201 * expected by our 32-bit write messages.
4202 */
4203 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4204 unsigned type_size = bit_size / 8;
4205
4206 /* Combine groups of consecutive enabled channels in one write
4207 * message. We use ffs to find the first enabled channel and then ffs on
4208 * the bit-inverse, down-shifted writemask to determine the num_components
4209 * of the block of enabled bits.
4210 */
4211 while (writemask) {
4212 unsigned first_component = ffs(writemask) - 1;
4213 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4214 fs_reg write_src = offset(val_reg, bld, first_component);
4215
4216 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4217
4218 if (type_size > 4) {
4219 /* We can't write more than 2 64-bit components at once. Limit
4220 * the num_components of the write to what we can do and let the next
4221 * iteration handle the rest.
4222 */
4223 num_components = MIN2(2, num_components);
4224 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4225 num_components);
4226 } else if (type_size < 4) {
4227 /* For 16-bit types we pack two consecutive values into a 32-bit
4228 * word and use an untyped write message. For single values or not
4229 * 32-bit-aligned we need to use byte-scattered writes because
4230 * untyped writes works with 32-bit components with 32-bit
4231 * alignment. byte_scattered_write messages only support one
4232 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4233 * could be enabled we can not guarantee that not constant offsets
4234 * to be 32-bit aligned for 16-bit types. For example an array, of
4235 * 16-bit vec3 with array element stride of 6.
4236 *
4237 * In the case of 32-bit aligned constant offsets if there is
4238 * a 3-components vector we submit one untyped-write message
4239 * of 32-bit (first two components), and one byte-scattered
4240 * write message (the last component).
4241 */
4242
4243 if ( !const_offset || ((const_offset->u32[0] +
4244 type_size * first_component) % 4)) {
4245 /* If we use a .yz writemask we also need to emit 2
4246 * byte-scattered write messages because of y-component not
4247 * being aligned to 32-bit.
4248 */
4249 num_components = 1;
4250 } else if (num_components * type_size > 4 &&
4251 (num_components * type_size % 4)) {
4252 /* If the pending components size is not a multiple of 4 bytes
4253 * we left the not aligned components for following emits of
4254 * length == 1 with byte_scattered_write.
4255 */
4256 num_components -= (num_components * type_size % 4) / type_size;
4257 } else if (num_components * type_size < 4) {
4258 num_components = 1;
4259 }
4260 /* For num_components == 1 we are also shuffling the component
4261 * because byte scattered writes of 16-bit need values to be dword
4262 * aligned. Shuffling only one component would be the same as
4263 * striding it.
4264 */
4265 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4266 num_components);
4267 }
4268
4269 fs_reg offset_reg;
4270
4271 if (const_offset) {
4272 offset_reg = brw_imm_ud(const_offset->u32[0] +
4273 type_size * first_component);
4274 } else {
4275 offset_reg = vgrf(glsl_type::uint_type);
4276 bld.ADD(offset_reg,
4277 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4278 brw_imm_ud(type_size * first_component));
4279 }
4280
4281 if (type_size < 4 && num_components == 1) {
4282 /* Untyped Surface messages have a fixed 32-bit size, so we need
4283 * to rely on byte scattered in order to write 16-bit elements.
4284 * The byte_scattered_write message needs that every written 16-bit
4285 * type to be aligned 32-bits (stride=2).
4286 */
4287 emit_byte_scattered_write(bld, surf_index, offset_reg,
4288 write_src,
4289 1 /* dims */,
4290 bit_size,
4291 BRW_PREDICATE_NONE);
4292 } else {
4293 assert(num_components * type_size <= 16);
4294 assert((num_components * type_size) % 4 == 0);
4295 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4296 offset_reg.ud % 4 == 0);
4297 unsigned num_slots = (num_components * type_size) / 4;
4298
4299 emit_untyped_write(bld, surf_index, offset_reg,
4300 write_src,
4301 1 /* dims */, num_slots,
4302 BRW_PREDICATE_NONE);
4303 }
4304
4305 /* Clear the bits in the writemask that we just wrote, then try
4306 * again to see if more channels are left.
4307 */
4308 writemask &= (15 << (first_component + num_components));
4309 }
4310 break;
4311 }
4312
4313 case nir_intrinsic_store_output: {
4314 fs_reg src = get_nir_src(instr->src[0]);
4315
4316 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4317 assert(const_offset && "Indirect output stores not allowed");
4318
4319 unsigned num_components = instr->num_components;
4320 unsigned first_component = nir_intrinsic_component(instr);
4321 if (nir_src_bit_size(instr->src[0]) == 64) {
4322 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4323 num_components *= 2;
4324 }
4325
4326 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4327 4 * const_offset->u32[0]), src.type);
4328 for (unsigned j = 0; j < num_components; j++) {
4329 bld.MOV(offset(new_dest, bld, j + first_component),
4330 offset(src, bld, j));
4331 }
4332 break;
4333 }
4334
4335 case nir_intrinsic_ssbo_atomic_add:
4336 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4337 break;
4338 case nir_intrinsic_ssbo_atomic_imin:
4339 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4340 break;
4341 case nir_intrinsic_ssbo_atomic_umin:
4342 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4343 break;
4344 case nir_intrinsic_ssbo_atomic_imax:
4345 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4346 break;
4347 case nir_intrinsic_ssbo_atomic_umax:
4348 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4349 break;
4350 case nir_intrinsic_ssbo_atomic_and:
4351 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4352 break;
4353 case nir_intrinsic_ssbo_atomic_or:
4354 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4355 break;
4356 case nir_intrinsic_ssbo_atomic_xor:
4357 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4358 break;
4359 case nir_intrinsic_ssbo_atomic_exchange:
4360 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4361 break;
4362 case nir_intrinsic_ssbo_atomic_comp_swap:
4363 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4364 break;
4365 case nir_intrinsic_ssbo_atomic_fmin:
4366 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4367 break;
4368 case nir_intrinsic_ssbo_atomic_fmax:
4369 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4370 break;
4371 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4372 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4373 break;
4374
4375 case nir_intrinsic_get_buffer_size: {
4376 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4377 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4378
4379 /* A resinfo's sampler message is used to get the buffer size. The
4380 * SIMD8's writeback message consists of four registers and SIMD16's
4381 * writeback message consists of 8 destination registers (two per each
4382 * component). Because we are only interested on the first channel of
4383 * the first returned component, where resinfo returns the buffer size
4384 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4385 * the dispatch width.
4386 */
4387 const fs_builder ubld = bld.exec_all().group(8, 0);
4388 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4389 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4390
4391 /* Set LOD = 0 */
4392 ubld.MOV(src_payload, brw_imm_d(0));
4393
4394 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4395 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4396 src_payload, brw_imm_ud(index));
4397 inst->header_size = 0;
4398 inst->mlen = 1;
4399 inst->size_written = 4 * REG_SIZE;
4400
4401 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4402 *
4403 * "Out-of-bounds checking is always performed at a DWord granularity. If
4404 * any part of the DWord is out-of-bounds then the whole DWord is
4405 * considered out-of-bounds."
4406 *
4407 * This implies that types with size smaller than 4-bytes need to be
4408 * padded if they don't complete the last dword of the buffer. But as we
4409 * need to maintain the original size we need to reverse the padding
4410 * calculation to return the correct size to know the number of elements
4411 * of an unsized array. As we stored in the last two bits of the surface
4412 * size the needed padding for the buffer, we calculate here the
4413 * original buffer_size reversing the surface_size calculation:
4414 *
4415 * surface_size = isl_align(buffer_size, 4) +
4416 * (isl_align(buffer_size) - buffer_size)
4417 *
4418 * buffer_size = surface_size & ~3 - surface_size & 3
4419 */
4420
4421 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4422 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4423 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4424
4425 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4426 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4427 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4428
4429 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4430
4431 brw_mark_surface_used(prog_data, index);
4432 break;
4433 }
4434
4435 case nir_intrinsic_load_subgroup_invocation:
4436 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4437 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4438 break;
4439
4440 case nir_intrinsic_load_subgroup_eq_mask:
4441 case nir_intrinsic_load_subgroup_ge_mask:
4442 case nir_intrinsic_load_subgroup_gt_mask:
4443 case nir_intrinsic_load_subgroup_le_mask:
4444 case nir_intrinsic_load_subgroup_lt_mask:
4445 unreachable("not reached");
4446
4447 case nir_intrinsic_vote_any: {
4448 const fs_builder ubld = bld.exec_all().group(1, 0);
4449
4450 /* The any/all predicates do not consider channel enables. To prevent
4451 * dead channels from affecting the result, we initialize the flag with
4452 * with the identity value for the logical operation.
4453 */
4454 if (dispatch_width == 32) {
4455 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4456 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4457 brw_imm_ud(0));
4458 } else {
4459 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4460 }
4461 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4462
4463 /* For some reason, the any/all predicates don't work properly with
4464 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4465 * doesn't read the correct subset of the flag register and you end up
4466 * getting garbage in the second half. Work around this by using a pair
4467 * of 1-wide MOVs and scattering the result.
4468 */
4469 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4470 ubld.MOV(res1, brw_imm_d(0));
4471 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4472 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4473 BRW_PREDICATE_ALIGN1_ANY32H,
4474 ubld.MOV(res1, brw_imm_d(-1)));
4475
4476 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4477 break;
4478 }
4479 case nir_intrinsic_vote_all: {
4480 const fs_builder ubld = bld.exec_all().group(1, 0);
4481
4482 /* The any/all predicates do not consider channel enables. To prevent
4483 * dead channels from affecting the result, we initialize the flag with
4484 * with the identity value for the logical operation.
4485 */
4486 if (dispatch_width == 32) {
4487 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4488 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4489 brw_imm_ud(0xffffffff));
4490 } else {
4491 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4492 }
4493 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4494
4495 /* For some reason, the any/all predicates don't work properly with
4496 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4497 * doesn't read the correct subset of the flag register and you end up
4498 * getting garbage in the second half. Work around this by using a pair
4499 * of 1-wide MOVs and scattering the result.
4500 */
4501 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4502 ubld.MOV(res1, brw_imm_d(0));
4503 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4504 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4505 BRW_PREDICATE_ALIGN1_ALL32H,
4506 ubld.MOV(res1, brw_imm_d(-1)));
4507
4508 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4509 break;
4510 }
4511 case nir_intrinsic_vote_feq:
4512 case nir_intrinsic_vote_ieq: {
4513 fs_reg value = get_nir_src(instr->src[0]);
4514 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4515 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4516 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4517 }
4518
4519 fs_reg uniformized = bld.emit_uniformize(value);
4520 const fs_builder ubld = bld.exec_all().group(1, 0);
4521
4522 /* The any/all predicates do not consider channel enables. To prevent
4523 * dead channels from affecting the result, we initialize the flag with
4524 * with the identity value for the logical operation.
4525 */
4526 if (dispatch_width == 32) {
4527 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4528 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4529 brw_imm_ud(0xffffffff));
4530 } else {
4531 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4532 }
4533 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4534
4535 /* For some reason, the any/all predicates don't work properly with
4536 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4537 * doesn't read the correct subset of the flag register and you end up
4538 * getting garbage in the second half. Work around this by using a pair
4539 * of 1-wide MOVs and scattering the result.
4540 */
4541 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4542 ubld.MOV(res1, brw_imm_d(0));
4543 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4544 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4545 BRW_PREDICATE_ALIGN1_ALL32H,
4546 ubld.MOV(res1, brw_imm_d(-1)));
4547
4548 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4549 break;
4550 }
4551
4552 case nir_intrinsic_ballot: {
4553 const fs_reg value = retype(get_nir_src(instr->src[0]),
4554 BRW_REGISTER_TYPE_UD);
4555 struct brw_reg flag = brw_flag_reg(0, 0);
4556 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4557 * as f0.0. This is a problem for fragment programs as we currently use
4558 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4559 * programs yet so this isn't a problem. When we do, something will
4560 * have to change.
4561 */
4562 if (dispatch_width == 32)
4563 flag.type = BRW_REGISTER_TYPE_UD;
4564
4565 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4566 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4567
4568 if (instr->dest.ssa.bit_size > 32) {
4569 dest.type = BRW_REGISTER_TYPE_UQ;
4570 } else {
4571 dest.type = BRW_REGISTER_TYPE_UD;
4572 }
4573 bld.MOV(dest, flag);
4574 break;
4575 }
4576
4577 case nir_intrinsic_read_invocation: {
4578 const fs_reg value = get_nir_src(instr->src[0]);
4579 const fs_reg invocation = get_nir_src(instr->src[1]);
4580 fs_reg tmp = bld.vgrf(value.type);
4581
4582 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4583 bld.emit_uniformize(invocation));
4584
4585 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4586 break;
4587 }
4588
4589 case nir_intrinsic_read_first_invocation: {
4590 const fs_reg value = get_nir_src(instr->src[0]);
4591 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4592 break;
4593 }
4594
4595 case nir_intrinsic_shuffle: {
4596 const fs_reg value = get_nir_src(instr->src[0]);
4597 const fs_reg index = get_nir_src(instr->src[1]);
4598
4599 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4600 break;
4601 }
4602
4603 case nir_intrinsic_first_invocation: {
4604 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4605 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4606 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4607 fs_reg(component(tmp, 0)));
4608 break;
4609 }
4610
4611 case nir_intrinsic_quad_broadcast: {
4612 const fs_reg value = get_nir_src(instr->src[0]);
4613 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4614 assert(nir_src_bit_size(instr->src[1]) == 32);
4615
4616 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4617 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4618 break;
4619 }
4620
4621 case nir_intrinsic_quad_swap_horizontal: {
4622 const fs_reg value = get_nir_src(instr->src[0]);
4623 const fs_reg tmp = bld.vgrf(value.type);
4624 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4625
4626 const fs_reg src_left = horiz_stride(value, 2);
4627 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4628 const fs_reg tmp_left = horiz_stride(tmp, 2);
4629 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4630
4631 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4632 *
4633 * "When source or destination datatype is 64b or operation is
4634 * integer DWord multiply, regioning in Align1 must follow
4635 * these rules:
4636 *
4637 * [...]
4638 *
4639 * 3. Source and Destination offset must be the same, except
4640 * the case of scalar source."
4641 *
4642 * In order to work around this, we have to emit two 32-bit MOVs instead
4643 * of a single 64-bit MOV to do the shuffle.
4644 */
4645 if (type_sz(value.type) > 4 &&
4646 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4647 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4648 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4649 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4650 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4651 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4652 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4653 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4654 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4655 } else {
4656 ubld.MOV(tmp_left, src_right);
4657 ubld.MOV(tmp_right, src_left);
4658 }
4659 bld.MOV(retype(dest, value.type), tmp);
4660 break;
4661 }
4662
4663 case nir_intrinsic_quad_swap_vertical: {
4664 const fs_reg value = get_nir_src(instr->src[0]);
4665 if (nir_src_bit_size(instr->src[0]) == 32) {
4666 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4667 const fs_reg tmp = bld.vgrf(value.type);
4668 const fs_builder ubld = bld.exec_all();
4669 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4670 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4671 bld.MOV(retype(dest, value.type), tmp);
4672 } else {
4673 /* For larger data types, we have to either emit dispatch_width many
4674 * MOVs or else fall back to doing indirects.
4675 */
4676 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4677 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4678 brw_imm_w(0x2));
4679 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4680 }
4681 break;
4682 }
4683
4684 case nir_intrinsic_quad_swap_diagonal: {
4685 const fs_reg value = get_nir_src(instr->src[0]);
4686 if (nir_src_bit_size(instr->src[0]) == 32) {
4687 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4688 const fs_reg tmp = bld.vgrf(value.type);
4689 const fs_builder ubld = bld.exec_all();
4690 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4691 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4692 bld.MOV(retype(dest, value.type), tmp);
4693 } else {
4694 /* For larger data types, we have to either emit dispatch_width many
4695 * MOVs or else fall back to doing indirects.
4696 */
4697 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4698 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4699 brw_imm_w(0x3));
4700 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4701 }
4702 break;
4703 }
4704
4705 case nir_intrinsic_reduce: {
4706 fs_reg src = get_nir_src(instr->src[0]);
4707 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4708 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4709 if (cluster_size == 0 || cluster_size > dispatch_width)
4710 cluster_size = dispatch_width;
4711
4712 /* Figure out the source type */
4713 src.type = brw_type_for_nir_type(devinfo,
4714 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4715 nir_src_bit_size(instr->src[0])));
4716
4717 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4718 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4719 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4720
4721 /* Set up a register for all of our scratching around and initialize it
4722 * to reduction operation's identity value.
4723 */
4724 fs_reg scan = bld.vgrf(src.type);
4725 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4726
4727 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4728
4729 dest.type = src.type;
4730 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4731 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4732 * the distance between clusters is at least 2 GRFs. In this case,
4733 * we don't need the weird striding of the CLUSTER_BROADCAST
4734 * instruction and can just do regular MOVs.
4735 */
4736 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4737 const unsigned groups =
4738 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4739 const unsigned group_size = dispatch_width / groups;
4740 for (unsigned i = 0; i < groups; i++) {
4741 const unsigned cluster = (i * group_size) / cluster_size;
4742 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4743 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4744 component(scan, comp));
4745 }
4746 } else {
4747 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4748 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4749 }
4750 break;
4751 }
4752
4753 case nir_intrinsic_inclusive_scan:
4754 case nir_intrinsic_exclusive_scan: {
4755 fs_reg src = get_nir_src(instr->src[0]);
4756 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4757
4758 /* Figure out the source type */
4759 src.type = brw_type_for_nir_type(devinfo,
4760 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4761 nir_src_bit_size(instr->src[0])));
4762
4763 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4764 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4765 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4766
4767 /* Set up a register for all of our scratching around and initialize it
4768 * to reduction operation's identity value.
4769 */
4770 fs_reg scan = bld.vgrf(src.type);
4771 const fs_builder allbld = bld.exec_all();
4772 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4773
4774 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4775 /* Exclusive scan is a bit harder because we have to do an annoying
4776 * shift of the contents before we can begin. To make things worse,
4777 * we can't do this with a normal stride; we have to use indirects.
4778 */
4779 fs_reg shifted = bld.vgrf(src.type);
4780 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4781 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4782 brw_imm_w(-1));
4783 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4784 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4785 scan = shifted;
4786 }
4787
4788 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4789
4790 bld.MOV(retype(dest, src.type), scan);
4791 break;
4792 }
4793
4794 case nir_intrinsic_begin_fragment_shader_ordering:
4795 case nir_intrinsic_begin_invocation_interlock: {
4796 const fs_builder ubld = bld.group(8, 0);
4797 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4798
4799 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4800 REG_SIZE;
4801
4802 break;
4803 }
4804
4805 case nir_intrinsic_end_invocation_interlock: {
4806 /* We don't need to do anything here */
4807 break;
4808 }
4809
4810 default:
4811 unreachable("unknown intrinsic");
4812 }
4813 }
4814
4815 void
4816 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4817 int op, nir_intrinsic_instr *instr)
4818 {
4819 if (stage == MESA_SHADER_FRAGMENT)
4820 brw_wm_prog_data(prog_data)->has_side_effects = true;
4821
4822 fs_reg dest;
4823 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4824 dest = get_nir_dest(instr->dest);
4825
4826 fs_reg surface = get_nir_ssbo_intrinsic_index(bld, instr);
4827 fs_reg offset = get_nir_src(instr->src[1]);
4828 fs_reg data1;
4829 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4830 data1 = get_nir_src(instr->src[2]);
4831 fs_reg data2;
4832 if (op == BRW_AOP_CMPWR)
4833 data2 = get_nir_src(instr->src[3]);
4834
4835 /* Emit the actual atomic operation */
4836
4837 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4838 data1, data2,
4839 1 /* dims */, 1 /* rsize */,
4840 op,
4841 BRW_PREDICATE_NONE);
4842 dest.type = atomic_result.type;
4843 bld.MOV(dest, atomic_result);
4844 }
4845
4846 void
4847 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4848 int op, nir_intrinsic_instr *instr)
4849 {
4850 if (stage == MESA_SHADER_FRAGMENT)
4851 brw_wm_prog_data(prog_data)->has_side_effects = true;
4852
4853 fs_reg dest;
4854 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4855 dest = get_nir_dest(instr->dest);
4856
4857 fs_reg surface = get_nir_ssbo_intrinsic_index(bld, instr);
4858 fs_reg offset = get_nir_src(instr->src[1]);
4859 fs_reg data1 = get_nir_src(instr->src[2]);
4860 fs_reg data2;
4861 if (op == BRW_AOP_FCMPWR)
4862 data2 = get_nir_src(instr->src[3]);
4863
4864 /* Emit the actual atomic operation */
4865
4866 fs_reg atomic_result = emit_untyped_atomic_float(bld, surface, offset,
4867 data1, data2,
4868 1 /* dims */, 1 /* rsize */,
4869 op,
4870 BRW_PREDICATE_NONE);
4871 dest.type = atomic_result.type;
4872 bld.MOV(dest, atomic_result);
4873 }
4874
4875 void
4876 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4877 int op, nir_intrinsic_instr *instr)
4878 {
4879 fs_reg dest;
4880 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4881 dest = get_nir_dest(instr->dest);
4882
4883 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4884 fs_reg offset;
4885 fs_reg data1;
4886 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4887 data1 = get_nir_src(instr->src[1]);
4888 fs_reg data2;
4889 if (op == BRW_AOP_CMPWR)
4890 data2 = get_nir_src(instr->src[2]);
4891
4892 /* Get the offset */
4893 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4894 if (const_offset) {
4895 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4896 } else {
4897 offset = vgrf(glsl_type::uint_type);
4898 bld.ADD(offset,
4899 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4900 brw_imm_ud(instr->const_index[0]));
4901 }
4902
4903 /* Emit the actual atomic operation operation */
4904
4905 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4906 data1, data2,
4907 1 /* dims */, 1 /* rsize */,
4908 op,
4909 BRW_PREDICATE_NONE);
4910 dest.type = atomic_result.type;
4911 bld.MOV(dest, atomic_result);
4912 }
4913
4914 void
4915 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4916 int op, nir_intrinsic_instr *instr)
4917 {
4918 fs_reg dest;
4919 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4920 dest = get_nir_dest(instr->dest);
4921
4922 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4923 fs_reg offset;
4924 fs_reg data1 = get_nir_src(instr->src[1]);
4925 fs_reg data2;
4926 if (op == BRW_AOP_FCMPWR)
4927 data2 = get_nir_src(instr->src[2]);
4928
4929 /* Get the offset */
4930 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4931 if (const_offset) {
4932 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4933 } else {
4934 offset = vgrf(glsl_type::uint_type);
4935 bld.ADD(offset,
4936 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4937 brw_imm_ud(instr->const_index[0]));
4938 }
4939
4940 /* Emit the actual atomic operation operation */
4941
4942 fs_reg atomic_result = emit_untyped_atomic_float(bld, surface, offset,
4943 data1, data2,
4944 1 /* dims */, 1 /* rsize */,
4945 op,
4946 BRW_PREDICATE_NONE);
4947 dest.type = atomic_result.type;
4948 bld.MOV(dest, atomic_result);
4949 }
4950
4951 void
4952 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4953 {
4954 unsigned texture = instr->texture_index;
4955 unsigned sampler = instr->sampler_index;
4956
4957 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4958
4959 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4960 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4961
4962 int lod_components = 0;
4963
4964 /* The hardware requires a LOD for buffer textures */
4965 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4966 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4967
4968 uint32_t header_bits = 0;
4969 for (unsigned i = 0; i < instr->num_srcs; i++) {
4970 fs_reg src = get_nir_src(instr->src[i].src);
4971 switch (instr->src[i].src_type) {
4972 case nir_tex_src_bias:
4973 srcs[TEX_LOGICAL_SRC_LOD] =
4974 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4975 break;
4976 case nir_tex_src_comparator:
4977 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4978 break;
4979 case nir_tex_src_coord:
4980 switch (instr->op) {
4981 case nir_texop_txf:
4982 case nir_texop_txf_ms:
4983 case nir_texop_txf_ms_mcs:
4984 case nir_texop_samples_identical:
4985 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4986 break;
4987 default:
4988 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4989 break;
4990 }
4991 break;
4992 case nir_tex_src_ddx:
4993 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4994 lod_components = nir_tex_instr_src_size(instr, i);
4995 break;
4996 case nir_tex_src_ddy:
4997 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4998 break;
4999 case nir_tex_src_lod:
5000 switch (instr->op) {
5001 case nir_texop_txs:
5002 srcs[TEX_LOGICAL_SRC_LOD] =
5003 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5004 break;
5005 case nir_texop_txf:
5006 srcs[TEX_LOGICAL_SRC_LOD] =
5007 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5008 break;
5009 default:
5010 srcs[TEX_LOGICAL_SRC_LOD] =
5011 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5012 break;
5013 }
5014 break;
5015 case nir_tex_src_ms_index:
5016 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5017 break;
5018
5019 case nir_tex_src_offset: {
5020 nir_const_value *const_offset =
5021 nir_src_as_const_value(instr->src[i].src);
5022 unsigned offset_bits = 0;
5023 if (const_offset &&
5024 brw_texture_offset(const_offset->i32,
5025 nir_tex_instr_src_size(instr, i),
5026 &offset_bits)) {
5027 header_bits |= offset_bits;
5028 } else {
5029 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5030 retype(src, BRW_REGISTER_TYPE_D);
5031 }
5032 break;
5033 }
5034
5035 case nir_tex_src_projector:
5036 unreachable("should be lowered");
5037
5038 case nir_tex_src_texture_offset: {
5039 /* Figure out the highest possible texture index and mark it as used */
5040 uint32_t max_used = texture + instr->texture_array_size - 1;
5041 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5042 max_used += stage_prog_data->binding_table.gather_texture_start;
5043 } else {
5044 max_used += stage_prog_data->binding_table.texture_start;
5045 }
5046 brw_mark_surface_used(prog_data, max_used);
5047
5048 /* Emit code to evaluate the actual indexing expression */
5049 fs_reg tmp = vgrf(glsl_type::uint_type);
5050 bld.ADD(tmp, src, brw_imm_ud(texture));
5051 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5052 break;
5053 }
5054
5055 case nir_tex_src_sampler_offset: {
5056 /* Emit code to evaluate the actual indexing expression */
5057 fs_reg tmp = vgrf(glsl_type::uint_type);
5058 bld.ADD(tmp, src, brw_imm_ud(sampler));
5059 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5060 break;
5061 }
5062
5063 case nir_tex_src_ms_mcs:
5064 assert(instr->op == nir_texop_txf_ms);
5065 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5066 break;
5067
5068 case nir_tex_src_plane: {
5069 nir_const_value *const_plane =
5070 nir_src_as_const_value(instr->src[i].src);
5071 const uint32_t plane = const_plane->u32[0];
5072 const uint32_t texture_index =
5073 instr->texture_index +
5074 stage_prog_data->binding_table.plane_start[plane] -
5075 stage_prog_data->binding_table.texture_start;
5076
5077 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5078 break;
5079 }
5080
5081 default:
5082 unreachable("unknown texture source");
5083 }
5084 }
5085
5086 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5087 (instr->op == nir_texop_txf_ms ||
5088 instr->op == nir_texop_samples_identical)) {
5089 if (devinfo->gen >= 7 &&
5090 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5091 srcs[TEX_LOGICAL_SRC_MCS] =
5092 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5093 instr->coord_components,
5094 srcs[TEX_LOGICAL_SRC_SURFACE]);
5095 } else {
5096 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5097 }
5098 }
5099
5100 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5101 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5102
5103 enum opcode opcode;
5104 switch (instr->op) {
5105 case nir_texop_tex:
5106 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5107 SHADER_OPCODE_TXL_LOGICAL);
5108 break;
5109 case nir_texop_txb:
5110 opcode = FS_OPCODE_TXB_LOGICAL;
5111 break;
5112 case nir_texop_txl:
5113 opcode = SHADER_OPCODE_TXL_LOGICAL;
5114 break;
5115 case nir_texop_txd:
5116 opcode = SHADER_OPCODE_TXD_LOGICAL;
5117 break;
5118 case nir_texop_txf:
5119 opcode = SHADER_OPCODE_TXF_LOGICAL;
5120 break;
5121 case nir_texop_txf_ms:
5122 if ((key_tex->msaa_16 & (1 << sampler)))
5123 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5124 else
5125 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5126 break;
5127 case nir_texop_txf_ms_mcs:
5128 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5129 break;
5130 case nir_texop_query_levels:
5131 case nir_texop_txs:
5132 opcode = SHADER_OPCODE_TXS_LOGICAL;
5133 break;
5134 case nir_texop_lod:
5135 opcode = SHADER_OPCODE_LOD_LOGICAL;
5136 break;
5137 case nir_texop_tg4:
5138 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5139 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5140 else
5141 opcode = SHADER_OPCODE_TG4_LOGICAL;
5142 break;
5143 case nir_texop_texture_samples:
5144 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5145 break;
5146 case nir_texop_samples_identical: {
5147 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5148
5149 /* If mcs is an immediate value, it means there is no MCS. In that case
5150 * just return false.
5151 */
5152 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5153 bld.MOV(dst, brw_imm_ud(0u));
5154 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5155 fs_reg tmp = vgrf(glsl_type::uint_type);
5156 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5157 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5158 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5159 } else {
5160 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5161 BRW_CONDITIONAL_EQ);
5162 }
5163 return;
5164 }
5165 default:
5166 unreachable("unknown texture opcode");
5167 }
5168
5169 if (instr->op == nir_texop_tg4) {
5170 if (instr->component == 1 &&
5171 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5172 /* gather4 sampler is broken for green channel on RG32F --
5173 * we must ask for blue instead.
5174 */
5175 header_bits |= 2 << 16;
5176 } else {
5177 header_bits |= instr->component << 16;
5178 }
5179 }
5180
5181 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5182 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5183 inst->offset = header_bits;
5184
5185 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5186 if (devinfo->gen >= 9 &&
5187 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5188 unsigned write_mask = instr->dest.is_ssa ?
5189 nir_ssa_def_components_read(&instr->dest.ssa):
5190 (1 << dest_size) - 1;
5191 assert(write_mask != 0); /* dead code should have been eliminated */
5192 inst->size_written = util_last_bit(write_mask) *
5193 inst->dst.component_size(inst->exec_size);
5194 } else {
5195 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5196 }
5197
5198 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5199 inst->shadow_compare = true;
5200
5201 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5202 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5203
5204 fs_reg nir_dest[4];
5205 for (unsigned i = 0; i < dest_size; i++)
5206 nir_dest[i] = offset(dst, bld, i);
5207
5208 if (instr->op == nir_texop_query_levels) {
5209 /* # levels is in .w */
5210 nir_dest[0] = offset(dst, bld, 3);
5211 } else if (instr->op == nir_texop_txs &&
5212 dest_size >= 3 && devinfo->gen < 7) {
5213 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5214 fs_reg depth = offset(dst, bld, 2);
5215 nir_dest[2] = vgrf(glsl_type::int_type);
5216 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5217 }
5218
5219 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5220 }
5221
5222 void
5223 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5224 {
5225 switch (instr->type) {
5226 case nir_jump_break:
5227 bld.emit(BRW_OPCODE_BREAK);
5228 break;
5229 case nir_jump_continue:
5230 bld.emit(BRW_OPCODE_CONTINUE);
5231 break;
5232 case nir_jump_return:
5233 default:
5234 unreachable("unknown jump");
5235 }
5236 }
5237
5238 /*
5239 * This helper takes a source register and un/shuffles it into the destination
5240 * register.
5241 *
5242 * If source type size is smaller than destination type size the operation
5243 * needed is a component shuffle. The opposite case would be an unshuffle. If
5244 * source/destination type size is equal a shuffle is done that would be
5245 * equivalent to a simple MOV.
5246 *
5247 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5248 * components .xyz 16-bit vector on SIMD8 would be.
5249 *
5250 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5251 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5252 *
5253 * This helper will return the following 2 32-bit components with the 16-bit
5254 * values shuffled:
5255 *
5256 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5257 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5258 *
5259 * For unshuffle, the example would be the opposite, a 64-bit type source
5260 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5261 * would be:
5262 *
5263 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5264 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5265 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5266 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5267 *
5268 * The returned result would be the following 4 32-bit components unshuffled:
5269 *
5270 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5271 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5272 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5273 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5274 *
5275 * - Source and destination register must not be overlapped.
5276 * - components units are measured in terms of the smaller type between
5277 * source and destination because we are un/shuffling the smaller
5278 * components from/into the bigger ones.
5279 * - first_component parameter allows skipping source components.
5280 */
5281 void
5282 shuffle_src_to_dst(const fs_builder &bld,
5283 const fs_reg &dst,
5284 const fs_reg &src,
5285 uint32_t first_component,
5286 uint32_t components)
5287 {
5288 if (type_sz(src.type) == type_sz(dst.type)) {
5289 assert(!regions_overlap(dst,
5290 type_sz(dst.type) * bld.dispatch_width() * components,
5291 offset(src, bld, first_component),
5292 type_sz(src.type) * bld.dispatch_width() * components));
5293 for (unsigned i = 0; i < components; i++) {
5294 bld.MOV(retype(offset(dst, bld, i), src.type),
5295 offset(src, bld, i + first_component));
5296 }
5297 } else if (type_sz(src.type) < type_sz(dst.type)) {
5298 /* Source is shuffled into destination */
5299 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5300 assert(!regions_overlap(dst,
5301 type_sz(dst.type) * bld.dispatch_width() *
5302 DIV_ROUND_UP(components, size_ratio),
5303 offset(src, bld, first_component),
5304 type_sz(src.type) * bld.dispatch_width() * components));
5305
5306 brw_reg_type shuffle_type =
5307 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5308 BRW_REGISTER_TYPE_D);
5309 for (unsigned i = 0; i < components; i++) {
5310 fs_reg shuffle_component_i =
5311 subscript(offset(dst, bld, i / size_ratio),
5312 shuffle_type, i % size_ratio);
5313 bld.MOV(shuffle_component_i,
5314 retype(offset(src, bld, i + first_component), shuffle_type));
5315 }
5316 } else {
5317 /* Source is unshuffled into destination */
5318 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5319 assert(!regions_overlap(dst,
5320 type_sz(dst.type) * bld.dispatch_width() * components,
5321 offset(src, bld, first_component / size_ratio),
5322 type_sz(src.type) * bld.dispatch_width() *
5323 DIV_ROUND_UP(components + (first_component % size_ratio),
5324 size_ratio)));
5325
5326 brw_reg_type shuffle_type =
5327 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5328 BRW_REGISTER_TYPE_D);
5329 for (unsigned i = 0; i < components; i++) {
5330 fs_reg shuffle_component_i =
5331 subscript(offset(src, bld, (first_component + i) / size_ratio),
5332 shuffle_type, (first_component + i) % size_ratio);
5333 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5334 shuffle_component_i);
5335 }
5336 }
5337 }
5338
5339 void
5340 shuffle_from_32bit_read(const fs_builder &bld,
5341 const fs_reg &dst,
5342 const fs_reg &src,
5343 uint32_t first_component,
5344 uint32_t components)
5345 {
5346 assert(type_sz(src.type) == 4);
5347
5348 /* This function takes components in units of the destination type while
5349 * shuffle_src_to_dst takes components in units of the smallest type
5350 */
5351 if (type_sz(dst.type) > 4) {
5352 assert(type_sz(dst.type) == 8);
5353 first_component *= 2;
5354 components *= 2;
5355 }
5356
5357 shuffle_src_to_dst(bld, dst, src, first_component, components);
5358 }
5359
5360 fs_reg
5361 shuffle_for_32bit_write(const fs_builder &bld,
5362 const fs_reg &src,
5363 uint32_t first_component,
5364 uint32_t components)
5365 {
5366 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5367 DIV_ROUND_UP (components * type_sz(src.type), 4));
5368 /* This function takes components in units of the source type while
5369 * shuffle_src_to_dst takes components in units of the smallest type
5370 */
5371 if (type_sz(src.type) > 4) {
5372 assert(type_sz(src.type) == 8);
5373 first_component *= 2;
5374 components *= 2;
5375 }
5376
5377 shuffle_src_to_dst(bld, dst, src, first_component, components);
5378
5379 return dst;
5380 }
5381
5382 fs_reg
5383 setup_imm_df(const fs_builder &bld, double v)
5384 {
5385 const struct gen_device_info *devinfo = bld.shader->devinfo;
5386 assert(devinfo->gen >= 7);
5387
5388 if (devinfo->gen >= 8)
5389 return brw_imm_df(v);
5390
5391 /* gen7.5 does not support DF immediates straighforward but the DIM
5392 * instruction allows to set the 64-bit immediate value.
5393 */
5394 if (devinfo->is_haswell) {
5395 const fs_builder ubld = bld.exec_all().group(1, 0);
5396 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5397 ubld.DIM(dst, brw_imm_df(v));
5398 return component(dst, 0);
5399 }
5400
5401 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5402 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5403 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5404 *
5405 * Alternatively, we could also produce a normal VGRF (without stride 0)
5406 * by writing to all the channels in the VGRF, however, that would hit the
5407 * gen7 bug where we have to split writes that span more than 1 register
5408 * into instructions with a width of 4 (otherwise the write to the second
5409 * register written runs into an execmask hardware bug) which isn't very
5410 * nice.
5411 */
5412 union {
5413 double d;
5414 struct {
5415 uint32_t i1;
5416 uint32_t i2;
5417 };
5418 } di;
5419
5420 di.d = v;
5421
5422 const fs_builder ubld = bld.exec_all().group(1, 0);
5423 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5424 ubld.MOV(tmp, brw_imm_ud(di.i1));
5425 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5426
5427 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5428 }
5429
5430 fs_reg
5431 setup_imm_b(const fs_builder &bld, int8_t v)
5432 {
5433 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5434 bld.MOV(tmp, brw_imm_w(v));
5435 return tmp;
5436 }
5437
5438 fs_reg
5439 setup_imm_ub(const fs_builder &bld, uint8_t v)
5440 {
5441 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5442 bld.MOV(tmp, brw_imm_uw(v));
5443 return tmp;
5444 }