nir: Rework nir_src_as_alu_instr to not take a pointer
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "util/u_math.h"
28 #include "util/bitscan.h"
29
30 using namespace brw;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
43 }
44
45 void
46 fs_visitor::nir_setup_outputs()
47 {
48 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
49 return;
50
51 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
52
53 /* Calculate the size of output registers in a separate pass, before
54 * allocating them. With ARB_enhanced_layouts, multiple output variables
55 * may occupy the same slot, but have different type sizes.
56 */
57 nir_foreach_variable(var, &nir->outputs) {
58 const int loc = var->data.driver_location;
59 const unsigned var_vec4s =
60 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
61 : type_size_vec4(var->type, true);
62 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
63 }
64
65 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
66 if (vec4s[loc] == 0) {
67 loc++;
68 continue;
69 }
70
71 unsigned reg_size = vec4s[loc];
72
73 /* Check if there are any ranges that start within this range and extend
74 * past it. If so, include them in this allocation.
75 */
76 for (unsigned i = 1; i < reg_size; i++)
77 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
78
79 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
80 for (unsigned i = 0; i < reg_size; i++)
81 outputs[loc + i] = offset(reg, bld, 4 * i);
82
83 loc += reg_size;
84 }
85 }
86
87 void
88 fs_visitor::nir_setup_uniforms()
89 {
90 /* Only the first compile gets to set up uniforms. */
91 if (push_constant_loc) {
92 assert(pull_constant_loc);
93 return;
94 }
95
96 uniforms = nir->num_uniforms / 4;
97
98 if (stage == MESA_SHADER_COMPUTE) {
99 /* Add a uniform for the thread local id. It must be the last uniform
100 * on the list.
101 */
102 assert(uniforms == prog_data->nr_params);
103 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
104 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
105 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
106 }
107 }
108
109 static bool
110 emit_system_values_block(nir_block *block, fs_visitor *v)
111 {
112 fs_reg *reg;
113
114 nir_foreach_instr(instr, block) {
115 if (instr->type != nir_instr_type_intrinsic)
116 continue;
117
118 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
119 switch (intrin->intrinsic) {
120 case nir_intrinsic_load_vertex_id:
121 case nir_intrinsic_load_base_vertex:
122 unreachable("should be lowered by nir_lower_system_values().");
123
124 case nir_intrinsic_load_vertex_id_zero_base:
125 case nir_intrinsic_load_is_indexed_draw:
126 case nir_intrinsic_load_first_vertex:
127 case nir_intrinsic_load_instance_id:
128 case nir_intrinsic_load_base_instance:
129 case nir_intrinsic_load_draw_id:
130 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
131
132 case nir_intrinsic_load_invocation_id:
133 if (v->stage == MESA_SHADER_TESS_CTRL)
134 break;
135 assert(v->stage == MESA_SHADER_GEOMETRY);
136 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
137 if (reg->file == BAD_FILE) {
138 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
139 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
140 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
141 abld.SHR(iid, g1, brw_imm_ud(27u));
142 *reg = iid;
143 }
144 break;
145
146 case nir_intrinsic_load_sample_pos:
147 assert(v->stage == MESA_SHADER_FRAGMENT);
148 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
149 if (reg->file == BAD_FILE)
150 *reg = *v->emit_samplepos_setup();
151 break;
152
153 case nir_intrinsic_load_sample_id:
154 assert(v->stage == MESA_SHADER_FRAGMENT);
155 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
156 if (reg->file == BAD_FILE)
157 *reg = *v->emit_sampleid_setup();
158 break;
159
160 case nir_intrinsic_load_sample_mask_in:
161 assert(v->stage == MESA_SHADER_FRAGMENT);
162 assert(v->devinfo->gen >= 7);
163 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
164 if (reg->file == BAD_FILE)
165 *reg = *v->emit_samplemaskin_setup();
166 break;
167
168 case nir_intrinsic_load_work_group_id:
169 assert(v->stage == MESA_SHADER_COMPUTE);
170 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
171 if (reg->file == BAD_FILE)
172 *reg = *v->emit_cs_work_group_id_setup();
173 break;
174
175 case nir_intrinsic_load_helper_invocation:
176 assert(v->stage == MESA_SHADER_FRAGMENT);
177 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
178 if (reg->file == BAD_FILE) {
179 const fs_builder abld =
180 v->bld.annotate("gl_HelperInvocation", NULL);
181
182 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
183 * pixel mask is in g1.7 of the thread payload.
184 *
185 * We move the per-channel pixel enable bit to the low bit of each
186 * channel by shifting the byte containing the pixel mask by the
187 * vector immediate 0x76543210UV.
188 *
189 * The region of <1,8,0> reads only 1 byte (the pixel masks for
190 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
191 * masks for 2 and 3) in SIMD16.
192 */
193 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
194
195 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
196 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
197 hbld.SHR(offset(shifted, hbld, i),
198 stride(retype(brw_vec1_grf(1 + i, 7),
199 BRW_REGISTER_TYPE_UB),
200 1, 8, 0),
201 brw_imm_v(0x76543210));
202 }
203
204 /* A set bit in the pixel mask means the channel is enabled, but
205 * that is the opposite of gl_HelperInvocation so we need to invert
206 * the mask.
207 *
208 * The negate source-modifier bit of logical instructions on Gen8+
209 * performs 1's complement negation, so we can use that instead of
210 * a NOT instruction.
211 */
212 fs_reg inverted = negate(shifted);
213 if (v->devinfo->gen < 8) {
214 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
215 abld.NOT(inverted, shifted);
216 }
217
218 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
219 * with 1 and negating.
220 */
221 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
222 abld.AND(anded, inverted, brw_imm_uw(1));
223
224 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
225 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
226 *reg = dst;
227 }
228 break;
229
230 default:
231 break;
232 }
233 }
234
235 return true;
236 }
237
238 void
239 fs_visitor::nir_emit_system_values()
240 {
241 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
242 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
243 nir_system_values[i] = fs_reg();
244 }
245
246 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
247 * never end up using it.
248 */
249 {
250 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
251 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
252 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
253
254 const fs_builder allbld8 = abld.group(8, 0).exec_all();
255 allbld8.MOV(reg, brw_imm_v(0x76543210));
256 if (dispatch_width > 8)
257 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
258 if (dispatch_width > 16) {
259 const fs_builder allbld16 = abld.group(16, 0).exec_all();
260 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
261 }
262 }
263
264 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
265 nir_foreach_block(block, impl)
266 emit_system_values_block(block, this);
267 }
268
269 /*
270 * Returns a type based on a reference_type (word, float, half-float) and a
271 * given bit_size.
272 *
273 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
274 *
275 * @FIXME: 64-bit return types are always DF on integer types to maintain
276 * compability with uses of DF previously to the introduction of int64
277 * support.
278 */
279 static brw_reg_type
280 brw_reg_type_from_bit_size(const unsigned bit_size,
281 const brw_reg_type reference_type)
282 {
283 switch(reference_type) {
284 case BRW_REGISTER_TYPE_HF:
285 case BRW_REGISTER_TYPE_F:
286 case BRW_REGISTER_TYPE_DF:
287 switch(bit_size) {
288 case 16:
289 return BRW_REGISTER_TYPE_HF;
290 case 32:
291 return BRW_REGISTER_TYPE_F;
292 case 64:
293 return BRW_REGISTER_TYPE_DF;
294 default:
295 unreachable("Invalid bit size");
296 }
297 case BRW_REGISTER_TYPE_B:
298 case BRW_REGISTER_TYPE_W:
299 case BRW_REGISTER_TYPE_D:
300 case BRW_REGISTER_TYPE_Q:
301 switch(bit_size) {
302 case 8:
303 return BRW_REGISTER_TYPE_B;
304 case 16:
305 return BRW_REGISTER_TYPE_W;
306 case 32:
307 return BRW_REGISTER_TYPE_D;
308 case 64:
309 return BRW_REGISTER_TYPE_Q;
310 default:
311 unreachable("Invalid bit size");
312 }
313 case BRW_REGISTER_TYPE_UB:
314 case BRW_REGISTER_TYPE_UW:
315 case BRW_REGISTER_TYPE_UD:
316 case BRW_REGISTER_TYPE_UQ:
317 switch(bit_size) {
318 case 8:
319 return BRW_REGISTER_TYPE_UB;
320 case 16:
321 return BRW_REGISTER_TYPE_UW;
322 case 32:
323 return BRW_REGISTER_TYPE_UD;
324 case 64:
325 return BRW_REGISTER_TYPE_UQ;
326 default:
327 unreachable("Invalid bit size");
328 }
329 default:
330 unreachable("Unknown type");
331 }
332 }
333
334 void
335 fs_visitor::nir_emit_impl(nir_function_impl *impl)
336 {
337 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
338 for (unsigned i = 0; i < impl->reg_alloc; i++) {
339 nir_locals[i] = fs_reg();
340 }
341
342 foreach_list_typed(nir_register, reg, node, &impl->registers) {
343 unsigned array_elems =
344 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
345 unsigned size = array_elems * reg->num_components;
346 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
347 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
348 nir_locals[reg->index] = bld.vgrf(reg_type, size);
349 }
350
351 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
352 impl->ssa_alloc);
353
354 nir_emit_cf_list(&impl->body);
355 }
356
357 void
358 fs_visitor::nir_emit_cf_list(exec_list *list)
359 {
360 exec_list_validate(list);
361 foreach_list_typed(nir_cf_node, node, node, list) {
362 switch (node->type) {
363 case nir_cf_node_if:
364 nir_emit_if(nir_cf_node_as_if(node));
365 break;
366
367 case nir_cf_node_loop:
368 nir_emit_loop(nir_cf_node_as_loop(node));
369 break;
370
371 case nir_cf_node_block:
372 nir_emit_block(nir_cf_node_as_block(node));
373 break;
374
375 default:
376 unreachable("Invalid CFG node block");
377 }
378 }
379 }
380
381 void
382 fs_visitor::nir_emit_if(nir_if *if_stmt)
383 {
384 bool invert;
385 fs_reg cond_reg;
386
387 /* If the condition has the form !other_condition, use other_condition as
388 * the source, but invert the predicate on the if instruction.
389 */
390 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
391 if (cond != NULL && cond->op == nir_op_inot) {
392 assert(!cond->src[0].negate);
393 assert(!cond->src[0].abs);
394
395 invert = true;
396 cond_reg = get_nir_src(cond->src[0].src);
397 } else {
398 invert = false;
399 cond_reg = get_nir_src(if_stmt->condition);
400 }
401
402 /* first, put the condition into f0 */
403 fs_inst *inst = bld.MOV(bld.null_reg_d(),
404 retype(cond_reg, BRW_REGISTER_TYPE_D));
405 inst->conditional_mod = BRW_CONDITIONAL_NZ;
406
407 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
408
409 nir_emit_cf_list(&if_stmt->then_list);
410
411 /* note: if the else is empty, dead CF elimination will remove it */
412 bld.emit(BRW_OPCODE_ELSE);
413
414 nir_emit_cf_list(&if_stmt->else_list);
415
416 bld.emit(BRW_OPCODE_ENDIF);
417
418 if (devinfo->gen < 7)
419 limit_dispatch_width(16, "Non-uniform control flow unsupported "
420 "in SIMD32 mode.");
421 }
422
423 void
424 fs_visitor::nir_emit_loop(nir_loop *loop)
425 {
426 bld.emit(BRW_OPCODE_DO);
427
428 nir_emit_cf_list(&loop->body);
429
430 bld.emit(BRW_OPCODE_WHILE);
431
432 if (devinfo->gen < 7)
433 limit_dispatch_width(16, "Non-uniform control flow unsupported "
434 "in SIMD32 mode.");
435 }
436
437 void
438 fs_visitor::nir_emit_block(nir_block *block)
439 {
440 nir_foreach_instr(instr, block) {
441 nir_emit_instr(instr);
442 }
443 }
444
445 void
446 fs_visitor::nir_emit_instr(nir_instr *instr)
447 {
448 const fs_builder abld = bld.annotate(NULL, instr);
449
450 switch (instr->type) {
451 case nir_instr_type_alu:
452 nir_emit_alu(abld, nir_instr_as_alu(instr));
453 break;
454
455 case nir_instr_type_deref:
456 /* Derefs can exist for images but they do nothing */
457 break;
458
459 case nir_instr_type_intrinsic:
460 switch (stage) {
461 case MESA_SHADER_VERTEX:
462 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
463 break;
464 case MESA_SHADER_TESS_CTRL:
465 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
466 break;
467 case MESA_SHADER_TESS_EVAL:
468 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
469 break;
470 case MESA_SHADER_GEOMETRY:
471 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
472 break;
473 case MESA_SHADER_FRAGMENT:
474 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
475 break;
476 case MESA_SHADER_COMPUTE:
477 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
478 break;
479 default:
480 unreachable("unsupported shader stage");
481 }
482 break;
483
484 case nir_instr_type_tex:
485 nir_emit_texture(abld, nir_instr_as_tex(instr));
486 break;
487
488 case nir_instr_type_load_const:
489 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
490 break;
491
492 case nir_instr_type_ssa_undef:
493 /* We create a new VGRF for undefs on every use (by handling
494 * them in get_nir_src()), rather than for each definition.
495 * This helps register coalescing eliminate MOVs from undef.
496 */
497 break;
498
499 case nir_instr_type_jump:
500 nir_emit_jump(abld, nir_instr_as_jump(instr));
501 break;
502
503 default:
504 unreachable("unknown instruction type");
505 }
506 }
507
508 /**
509 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
510 * match instr.
511 */
512 bool
513 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
514 const fs_reg &result)
515 {
516 if (!instr->src[0].src.is_ssa ||
517 !instr->src[0].src.ssa->parent_instr)
518 return false;
519
520 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
521 return false;
522
523 nir_alu_instr *src0 =
524 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
525
526 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
527 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
528 return false;
529
530 /* If either opcode has source modifiers, bail.
531 *
532 * TODO: We can potentially handle source modifiers if both of the opcodes
533 * we're combining are signed integers.
534 */
535 if (instr->src[0].abs || instr->src[0].negate ||
536 src0->src[0].abs || src0->src[0].negate)
537 return false;
538
539 unsigned element = nir_src_as_uint(src0->src[1].src);
540
541 /* Element type to extract.*/
542 const brw_reg_type type = brw_int_type(
543 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
544 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
545
546 fs_reg op0 = get_nir_src(src0->src[0].src);
547 op0.type = brw_type_for_nir_type(devinfo,
548 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
549 nir_src_bit_size(src0->src[0].src)));
550 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
551
552 set_saturate(instr->dest.saturate,
553 bld.MOV(result, subscript(op0, type, element)));
554 return true;
555 }
556
557 bool
558 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
559 const fs_reg &result)
560 {
561 if (!instr->src[0].src.is_ssa ||
562 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
563 return false;
564
565 nir_intrinsic_instr *src0 =
566 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
567
568 if (src0->intrinsic != nir_intrinsic_load_front_face)
569 return false;
570
571 if (!nir_src_is_const(instr->src[1].src) ||
572 !nir_src_is_const(instr->src[2].src))
573 return false;
574
575 const float value1 = nir_src_as_float(instr->src[1].src);
576 const float value2 = nir_src_as_float(instr->src[2].src);
577 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
578 return false;
579
580 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
581 assert(value1 == -value2);
582
583 fs_reg tmp = vgrf(glsl_type::int_type);
584
585 if (devinfo->gen >= 6) {
586 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
587 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
588
589 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
590 *
591 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
592 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
593 *
594 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
595 *
596 * This negation looks like it's safe in practice, because bits 0:4 will
597 * surely be TRIANGLES
598 */
599
600 if (value1 == -1.0f) {
601 g0.negate = true;
602 }
603
604 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
605 g0, brw_imm_uw(0x3f80));
606 } else {
607 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
608 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
609
610 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
611 *
612 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
613 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
614 *
615 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
616 *
617 * This negation looks like it's safe in practice, because bits 0:4 will
618 * surely be TRIANGLES
619 */
620
621 if (value1 == -1.0f) {
622 g1_6.negate = true;
623 }
624
625 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
626 }
627 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
628
629 return true;
630 }
631
632 static void
633 emit_find_msb_using_lzd(const fs_builder &bld,
634 const fs_reg &result,
635 const fs_reg &src,
636 bool is_signed)
637 {
638 fs_inst *inst;
639 fs_reg temp = src;
640
641 if (is_signed) {
642 /* LZD of an absolute value source almost always does the right
643 * thing. There are two problem values:
644 *
645 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
646 * 0. However, findMSB(int(0x80000000)) == 30.
647 *
648 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
649 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
650 *
651 * For a value of zero or negative one, -1 will be returned.
652 *
653 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
654 * findMSB(-(1<<x)) should return x-1.
655 *
656 * For all negative number cases, including 0x80000000 and
657 * 0xffffffff, the correct value is obtained from LZD if instead of
658 * negating the (already negative) value the logical-not is used. A
659 * conditonal logical-not can be achieved in two instructions.
660 */
661 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
662
663 bld.ASR(temp, src, brw_imm_d(31));
664 bld.XOR(temp, temp, src);
665 }
666
667 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
668 retype(temp, BRW_REGISTER_TYPE_UD));
669
670 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
671 * from the LSB side. Subtract the result from 31 to convert the MSB
672 * count into an LSB count. If no bits are set, LZD will return 32.
673 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
674 */
675 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
676 inst->src[0].negate = true;
677 }
678
679 static brw_rnd_mode
680 brw_rnd_mode_from_nir_op (const nir_op op) {
681 switch (op) {
682 case nir_op_f2f16_rtz:
683 return BRW_RND_MODE_RTZ;
684 case nir_op_f2f16_rtne:
685 return BRW_RND_MODE_RTNE;
686 default:
687 unreachable("Operation doesn't support rounding mode");
688 }
689 }
690
691 fs_reg
692 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
693 nir_alu_instr *instr,
694 fs_reg *op,
695 bool need_dest)
696 {
697 fs_reg result =
698 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
699
700 result.type = brw_type_for_nir_type(devinfo,
701 (nir_alu_type)(nir_op_infos[instr->op].output_type |
702 nir_dest_bit_size(instr->dest.dest)));
703
704 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
705 op[i] = get_nir_src(instr->src[i].src);
706 op[i].type = brw_type_for_nir_type(devinfo,
707 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
708 nir_src_bit_size(instr->src[i].src)));
709 op[i].abs = instr->src[i].abs;
710 op[i].negate = instr->src[i].negate;
711 }
712
713 /* Move and vecN instrutions may still be vectored. Return the raw,
714 * vectored source and destination so that fs_visitor::nir_emit_alu can
715 * handle it. Other callers should not have to handle these kinds of
716 * instructions.
717 */
718 switch (instr->op) {
719 case nir_op_imov:
720 case nir_op_fmov:
721 case nir_op_vec2:
722 case nir_op_vec3:
723 case nir_op_vec4:
724 return result;
725 default:
726 break;
727 }
728
729 /* At this point, we have dealt with any instruction that operates on
730 * more than a single channel. Therefore, we can just adjust the source
731 * and destination registers for that channel and emit the instruction.
732 */
733 unsigned channel = 0;
734 if (nir_op_infos[instr->op].output_size == 0) {
735 /* Since NIR is doing the scalarizing for us, we should only ever see
736 * vectorized operations with a single channel.
737 */
738 assert(util_bitcount(instr->dest.write_mask) == 1);
739 channel = ffs(instr->dest.write_mask) - 1;
740
741 result = offset(result, bld, channel);
742 }
743
744 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
745 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
746 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
747 }
748
749 return result;
750 }
751
752 void
753 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
754 fs_reg *op)
755 {
756 for (unsigned i = 0; i < 2; i++) {
757 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
758
759 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
760 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
761 /* The source of the inot is now the source of instr. */
762 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
763
764 assert(!op[i].negate);
765 op[i].negate = true;
766 } else {
767 op[i] = resolve_source_modifiers(op[i]);
768 }
769 }
770 }
771
772 bool
773 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
774 fs_reg result,
775 nir_alu_instr *instr)
776 {
777 if (devinfo->gen < 6 || devinfo->gen >= 12)
778 return false;
779
780 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
781
782 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
783 return false;
784
785 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
786 * of valid size-changing combinations is a bit more complex.
787 *
788 * The source restriction is just because I was lazy about generating the
789 * constant below.
790 */
791 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
792 nir_src_bit_size(inot_instr->src[0].src) != 32)
793 return false;
794
795 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
796 * this is float(1 + a).
797 */
798 fs_reg op;
799
800 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
801
802 /* Ignore the saturate modifier, if there is one. The result of the
803 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
804 */
805 bld.ADD(result, op, brw_imm_d(1));
806
807 return true;
808 }
809
810 void
811 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
812 {
813 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
814 fs_inst *inst;
815
816 fs_reg op[4];
817 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, true);
818
819 switch (instr->op) {
820 case nir_op_imov:
821 case nir_op_fmov:
822 case nir_op_vec2:
823 case nir_op_vec3:
824 case nir_op_vec4: {
825 fs_reg temp = result;
826 bool need_extra_copy = false;
827 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
828 if (!instr->src[i].src.is_ssa &&
829 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
830 need_extra_copy = true;
831 temp = bld.vgrf(result.type, 4);
832 break;
833 }
834 }
835
836 for (unsigned i = 0; i < 4; i++) {
837 if (!(instr->dest.write_mask & (1 << i)))
838 continue;
839
840 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
841 inst = bld.MOV(offset(temp, bld, i),
842 offset(op[0], bld, instr->src[0].swizzle[i]));
843 } else {
844 inst = bld.MOV(offset(temp, bld, i),
845 offset(op[i], bld, instr->src[i].swizzle[0]));
846 }
847 inst->saturate = instr->dest.saturate;
848 }
849
850 /* In this case the source and destination registers were the same,
851 * so we need to insert an extra set of moves in order to deal with
852 * any swizzling.
853 */
854 if (need_extra_copy) {
855 for (unsigned i = 0; i < 4; i++) {
856 if (!(instr->dest.write_mask & (1 << i)))
857 continue;
858
859 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
860 }
861 }
862 return;
863 }
864
865 case nir_op_i2f32:
866 case nir_op_u2f32:
867 if (optimize_extract_to_float(instr, result))
868 return;
869 inst = bld.MOV(result, op[0]);
870 inst->saturate = instr->dest.saturate;
871 break;
872
873 case nir_op_f2f16_rtne:
874 case nir_op_f2f16_rtz:
875 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
876 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
877 /* fallthrough */
878 case nir_op_f2f16:
879 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
880 * on the HW gen, it is a special hw opcode or just a MOV, and
881 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
882 *
883 * But if we want to use that opcode, we need to provide support on
884 * different optimizations and lowerings. As right now HF support is
885 * only for gen8+, it will be better to use directly the MOV, and use
886 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
887 */
888 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
889 inst = bld.MOV(result, op[0]);
890 inst->saturate = instr->dest.saturate;
891 break;
892
893 case nir_op_b2i8:
894 case nir_op_b2i16:
895 case nir_op_b2i32:
896 case nir_op_b2i64:
897 case nir_op_b2f16:
898 case nir_op_b2f32:
899 case nir_op_b2f64:
900 if (try_emit_b2fi_of_inot(bld, result, instr))
901 break;
902 op[0].type = BRW_REGISTER_TYPE_D;
903 op[0].negate = !op[0].negate;
904 /* fallthrough */
905 case nir_op_i2f64:
906 case nir_op_i2i64:
907 case nir_op_u2f64:
908 case nir_op_u2u64:
909 case nir_op_f2f64:
910 case nir_op_f2i64:
911 case nir_op_f2u64:
912 case nir_op_i2i32:
913 case nir_op_u2u32:
914 case nir_op_f2f32:
915 case nir_op_f2i32:
916 case nir_op_f2u32:
917 case nir_op_i2f16:
918 case nir_op_i2i16:
919 case nir_op_u2f16:
920 case nir_op_u2u16:
921 case nir_op_f2i16:
922 case nir_op_f2u16:
923 case nir_op_i2i8:
924 case nir_op_u2u8:
925 case nir_op_f2i8:
926 case nir_op_f2u8:
927 if (result.type == BRW_REGISTER_TYPE_B ||
928 result.type == BRW_REGISTER_TYPE_UB ||
929 result.type == BRW_REGISTER_TYPE_HF)
930 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
931
932 if (op[0].type == BRW_REGISTER_TYPE_B ||
933 op[0].type == BRW_REGISTER_TYPE_UB ||
934 op[0].type == BRW_REGISTER_TYPE_HF)
935 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
936
937 inst = bld.MOV(result, op[0]);
938 inst->saturate = instr->dest.saturate;
939 break;
940
941 case nir_op_fsign: {
942 assert(!instr->dest.saturate);
943 if (op[0].abs) {
944 /* Straightforward since the source can be assumed to be either
945 * strictly >= 0 or strictly <= 0 depending on the setting of the
946 * negate flag.
947 */
948 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
949
950 inst = (op[0].negate)
951 ? bld.MOV(result, brw_imm_f(-1.0f))
952 : bld.MOV(result, brw_imm_f(1.0f));
953
954 set_predicate(BRW_PREDICATE_NORMAL, inst);
955 } else if (type_sz(op[0].type) == 2) {
956 /* AND(val, 0x8000) gives the sign bit.
957 *
958 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
959 */
960 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
961 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
962
963 op[0].type = BRW_REGISTER_TYPE_UW;
964 result.type = BRW_REGISTER_TYPE_UW;
965 bld.AND(result, op[0], brw_imm_uw(0x8000u));
966
967 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
968 inst->predicate = BRW_PREDICATE_NORMAL;
969 } else if (type_sz(op[0].type) == 4) {
970 /* AND(val, 0x80000000) gives the sign bit.
971 *
972 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
973 * zero.
974 */
975 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
976
977 op[0].type = BRW_REGISTER_TYPE_UD;
978 result.type = BRW_REGISTER_TYPE_UD;
979 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
980
981 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
982 inst->predicate = BRW_PREDICATE_NORMAL;
983 } else {
984 /* For doubles we do the same but we need to consider:
985 *
986 * - 2-src instructions can't operate with 64-bit immediates
987 * - The sign is encoded in the high 32-bit of each DF
988 * - We need to produce a DF result.
989 */
990 assert(type_sz(op[0].type) == 8);
991
992 fs_reg zero = vgrf(glsl_type::double_type);
993 bld.MOV(zero, setup_imm_df(bld, 0.0));
994 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
995
996 bld.MOV(result, zero);
997
998 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
999 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
1000 brw_imm_ud(0x80000000u));
1001
1002 set_predicate(BRW_PREDICATE_NORMAL,
1003 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
1004 }
1005 break;
1006 }
1007
1008 case nir_op_frcp:
1009 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1010 inst->saturate = instr->dest.saturate;
1011 break;
1012
1013 case nir_op_fexp2:
1014 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1015 inst->saturate = instr->dest.saturate;
1016 break;
1017
1018 case nir_op_flog2:
1019 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1020 inst->saturate = instr->dest.saturate;
1021 break;
1022
1023 case nir_op_fsin:
1024 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1025 inst->saturate = instr->dest.saturate;
1026 break;
1027
1028 case nir_op_fcos:
1029 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1030 inst->saturate = instr->dest.saturate;
1031 break;
1032
1033 case nir_op_fddx:
1034 if (fs_key->high_quality_derivatives) {
1035 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1036 } else {
1037 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1038 }
1039 inst->saturate = instr->dest.saturate;
1040 break;
1041 case nir_op_fddx_fine:
1042 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1043 inst->saturate = instr->dest.saturate;
1044 break;
1045 case nir_op_fddx_coarse:
1046 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1047 inst->saturate = instr->dest.saturate;
1048 break;
1049 case nir_op_fddy:
1050 if (fs_key->high_quality_derivatives) {
1051 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1052 } else {
1053 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1054 }
1055 inst->saturate = instr->dest.saturate;
1056 break;
1057 case nir_op_fddy_fine:
1058 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1059 inst->saturate = instr->dest.saturate;
1060 break;
1061 case nir_op_fddy_coarse:
1062 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1063 inst->saturate = instr->dest.saturate;
1064 break;
1065
1066 case nir_op_iadd:
1067 case nir_op_fadd:
1068 inst = bld.ADD(result, op[0], op[1]);
1069 inst->saturate = instr->dest.saturate;
1070 break;
1071
1072 case nir_op_uadd_sat:
1073 inst = bld.ADD(result, op[0], op[1]);
1074 inst->saturate = true;
1075 break;
1076
1077 case nir_op_fmul:
1078 inst = bld.MUL(result, op[0], op[1]);
1079 inst->saturate = instr->dest.saturate;
1080 break;
1081
1082 case nir_op_imul_2x32_64:
1083 case nir_op_umul_2x32_64:
1084 bld.MUL(result, op[0], op[1]);
1085 break;
1086
1087 case nir_op_imul:
1088 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1089 bld.MUL(result, op[0], op[1]);
1090 break;
1091
1092 case nir_op_imul_high:
1093 case nir_op_umul_high:
1094 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1095 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1096 break;
1097
1098 case nir_op_idiv:
1099 case nir_op_udiv:
1100 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1101 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1102 break;
1103
1104 case nir_op_uadd_carry:
1105 unreachable("Should have been lowered by carry_to_arith().");
1106
1107 case nir_op_usub_borrow:
1108 unreachable("Should have been lowered by borrow_to_arith().");
1109
1110 case nir_op_umod:
1111 case nir_op_irem:
1112 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1113 * appears that our hardware just does the right thing for signed
1114 * remainder.
1115 */
1116 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1117 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1118 break;
1119
1120 case nir_op_imod: {
1121 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1122 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1123
1124 /* Math instructions don't support conditional mod */
1125 inst = bld.MOV(bld.null_reg_d(), result);
1126 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1127
1128 /* Now, we need to determine if signs of the sources are different.
1129 * When we XOR the sources, the top bit is 0 if they are the same and 1
1130 * if they are different. We can then use a conditional modifier to
1131 * turn that into a predicate. This leads us to an XOR.l instruction.
1132 *
1133 * Technically, according to the PRM, you're not allowed to use .l on a
1134 * XOR instruction. However, emperical experiments and Curro's reading
1135 * of the simulator source both indicate that it's safe.
1136 */
1137 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1138 inst = bld.XOR(tmp, op[0], op[1]);
1139 inst->predicate = BRW_PREDICATE_NORMAL;
1140 inst->conditional_mod = BRW_CONDITIONAL_L;
1141
1142 /* If the result of the initial remainder operation is non-zero and the
1143 * two sources have different signs, add in a copy of op[1] to get the
1144 * final integer modulus value.
1145 */
1146 inst = bld.ADD(result, result, op[1]);
1147 inst->predicate = BRW_PREDICATE_NORMAL;
1148 break;
1149 }
1150
1151 case nir_op_flt32:
1152 case nir_op_fge32:
1153 case nir_op_feq32:
1154 case nir_op_fne32: {
1155 fs_reg dest = result;
1156
1157 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1158 if (bit_size != 32)
1159 dest = bld.vgrf(op[0].type, 1);
1160
1161 brw_conditional_mod cond;
1162 switch (instr->op) {
1163 case nir_op_flt32:
1164 cond = BRW_CONDITIONAL_L;
1165 break;
1166 case nir_op_fge32:
1167 cond = BRW_CONDITIONAL_GE;
1168 break;
1169 case nir_op_feq32:
1170 cond = BRW_CONDITIONAL_Z;
1171 break;
1172 case nir_op_fne32:
1173 cond = BRW_CONDITIONAL_NZ;
1174 break;
1175 default:
1176 unreachable("bad opcode");
1177 }
1178
1179 bld.CMP(dest, op[0], op[1], cond);
1180
1181 if (bit_size > 32) {
1182 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1183 } else if(bit_size < 32) {
1184 /* When we convert the result to 32-bit we need to be careful and do
1185 * it as a signed conversion to get sign extension (for 32-bit true)
1186 */
1187 const brw_reg_type src_type =
1188 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1189
1190 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1191 }
1192 break;
1193 }
1194
1195 case nir_op_ilt32:
1196 case nir_op_ult32:
1197 case nir_op_ige32:
1198 case nir_op_uge32:
1199 case nir_op_ieq32:
1200 case nir_op_ine32: {
1201 fs_reg dest = result;
1202
1203 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1204 if (bit_size != 32)
1205 dest = bld.vgrf(op[0].type, 1);
1206
1207 brw_conditional_mod cond;
1208 switch (instr->op) {
1209 case nir_op_ilt32:
1210 case nir_op_ult32:
1211 cond = BRW_CONDITIONAL_L;
1212 break;
1213 case nir_op_ige32:
1214 case nir_op_uge32:
1215 cond = BRW_CONDITIONAL_GE;
1216 break;
1217 case nir_op_ieq32:
1218 cond = BRW_CONDITIONAL_Z;
1219 break;
1220 case nir_op_ine32:
1221 cond = BRW_CONDITIONAL_NZ;
1222 break;
1223 default:
1224 unreachable("bad opcode");
1225 }
1226 bld.CMP(dest, op[0], op[1], cond);
1227
1228 if (bit_size > 32) {
1229 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1230 } else if (bit_size < 32) {
1231 /* When we convert the result to 32-bit we need to be careful and do
1232 * it as a signed conversion to get sign extension (for 32-bit true)
1233 */
1234 const brw_reg_type src_type =
1235 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1236
1237 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1238 }
1239 break;
1240 }
1241
1242 case nir_op_inot:
1243 if (devinfo->gen >= 8) {
1244 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1245
1246 if (inot_src_instr != NULL &&
1247 (inot_src_instr->op == nir_op_ior ||
1248 inot_src_instr->op == nir_op_ixor ||
1249 inot_src_instr->op == nir_op_iand) &&
1250 !inot_src_instr->src[0].abs &&
1251 !inot_src_instr->src[0].negate &&
1252 !inot_src_instr->src[1].abs &&
1253 !inot_src_instr->src[1].negate) {
1254 /* The sources of the source logical instruction are now the
1255 * sources of the instruction that will be generated.
1256 */
1257 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1258 resolve_inot_sources(bld, inot_src_instr, op);
1259
1260 /* Smash all of the sources and destination to be signed. This
1261 * doesn't matter for the operation of the instruction, but cmod
1262 * propagation fails on unsigned sources with negation (due to
1263 * fs_inst::can_do_cmod returning false).
1264 */
1265 result.type =
1266 brw_type_for_nir_type(devinfo,
1267 (nir_alu_type)(nir_type_int |
1268 nir_dest_bit_size(instr->dest.dest)));
1269 op[0].type =
1270 brw_type_for_nir_type(devinfo,
1271 (nir_alu_type)(nir_type_int |
1272 nir_src_bit_size(inot_src_instr->src[0].src)));
1273 op[1].type =
1274 brw_type_for_nir_type(devinfo,
1275 (nir_alu_type)(nir_type_int |
1276 nir_src_bit_size(inot_src_instr->src[1].src)));
1277
1278 /* For XOR, only invert one of the sources. Arbitrarily choose
1279 * the first source.
1280 */
1281 op[0].negate = !op[0].negate;
1282 if (inot_src_instr->op != nir_op_ixor)
1283 op[1].negate = !op[1].negate;
1284
1285 switch (inot_src_instr->op) {
1286 case nir_op_ior:
1287 bld.AND(result, op[0], op[1]);
1288 return;
1289
1290 case nir_op_iand:
1291 bld.OR(result, op[0], op[1]);
1292 return;
1293
1294 case nir_op_ixor:
1295 bld.XOR(result, op[0], op[1]);
1296 return;
1297
1298 default:
1299 unreachable("impossible opcode");
1300 }
1301 }
1302 op[0] = resolve_source_modifiers(op[0]);
1303 }
1304 bld.NOT(result, op[0]);
1305 break;
1306 case nir_op_ixor:
1307 if (devinfo->gen >= 8) {
1308 resolve_inot_sources(bld, instr, op);
1309 }
1310 bld.XOR(result, op[0], op[1]);
1311 break;
1312 case nir_op_ior:
1313 if (devinfo->gen >= 8) {
1314 resolve_inot_sources(bld, instr, op);
1315 }
1316 bld.OR(result, op[0], op[1]);
1317 break;
1318 case nir_op_iand:
1319 if (devinfo->gen >= 8) {
1320 resolve_inot_sources(bld, instr, op);
1321 }
1322 bld.AND(result, op[0], op[1]);
1323 break;
1324
1325 case nir_op_fdot2:
1326 case nir_op_fdot3:
1327 case nir_op_fdot4:
1328 case nir_op_b32all_fequal2:
1329 case nir_op_b32all_iequal2:
1330 case nir_op_b32all_fequal3:
1331 case nir_op_b32all_iequal3:
1332 case nir_op_b32all_fequal4:
1333 case nir_op_b32all_iequal4:
1334 case nir_op_b32any_fnequal2:
1335 case nir_op_b32any_inequal2:
1336 case nir_op_b32any_fnequal3:
1337 case nir_op_b32any_inequal3:
1338 case nir_op_b32any_fnequal4:
1339 case nir_op_b32any_inequal4:
1340 unreachable("Lowered by nir_lower_alu_reductions");
1341
1342 case nir_op_fnoise1_1:
1343 case nir_op_fnoise1_2:
1344 case nir_op_fnoise1_3:
1345 case nir_op_fnoise1_4:
1346 case nir_op_fnoise2_1:
1347 case nir_op_fnoise2_2:
1348 case nir_op_fnoise2_3:
1349 case nir_op_fnoise2_4:
1350 case nir_op_fnoise3_1:
1351 case nir_op_fnoise3_2:
1352 case nir_op_fnoise3_3:
1353 case nir_op_fnoise3_4:
1354 case nir_op_fnoise4_1:
1355 case nir_op_fnoise4_2:
1356 case nir_op_fnoise4_3:
1357 case nir_op_fnoise4_4:
1358 unreachable("not reached: should be handled by lower_noise");
1359
1360 case nir_op_ldexp:
1361 unreachable("not reached: should be handled by ldexp_to_arith()");
1362
1363 case nir_op_fsqrt:
1364 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1365 inst->saturate = instr->dest.saturate;
1366 break;
1367
1368 case nir_op_frsq:
1369 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1370 inst->saturate = instr->dest.saturate;
1371 break;
1372
1373 case nir_op_i2b32:
1374 case nir_op_f2b32: {
1375 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1376 if (bit_size == 64) {
1377 /* two-argument instructions can't take 64-bit immediates */
1378 fs_reg zero;
1379 fs_reg tmp;
1380
1381 if (instr->op == nir_op_f2b32) {
1382 zero = vgrf(glsl_type::double_type);
1383 tmp = vgrf(glsl_type::double_type);
1384 bld.MOV(zero, setup_imm_df(bld, 0.0));
1385 } else {
1386 zero = vgrf(glsl_type::int64_t_type);
1387 tmp = vgrf(glsl_type::int64_t_type);
1388 bld.MOV(zero, brw_imm_q(0));
1389 }
1390
1391 /* A SIMD16 execution needs to be split in two instructions, so use
1392 * a vgrf instead of the flag register as dst so instruction splitting
1393 * works
1394 */
1395 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1396 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1397 } else {
1398 fs_reg zero;
1399 if (bit_size == 32) {
1400 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1401 } else {
1402 assert(bit_size == 16);
1403 zero = instr->op == nir_op_f2b32 ?
1404 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1405 }
1406 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1407 }
1408 break;
1409 }
1410
1411 case nir_op_ftrunc:
1412 inst = bld.RNDZ(result, op[0]);
1413 inst->saturate = instr->dest.saturate;
1414 break;
1415
1416 case nir_op_fceil: {
1417 op[0].negate = !op[0].negate;
1418 fs_reg temp = vgrf(glsl_type::float_type);
1419 bld.RNDD(temp, op[0]);
1420 temp.negate = true;
1421 inst = bld.MOV(result, temp);
1422 inst->saturate = instr->dest.saturate;
1423 break;
1424 }
1425 case nir_op_ffloor:
1426 inst = bld.RNDD(result, op[0]);
1427 inst->saturate = instr->dest.saturate;
1428 break;
1429 case nir_op_ffract:
1430 inst = bld.FRC(result, op[0]);
1431 inst->saturate = instr->dest.saturate;
1432 break;
1433 case nir_op_fround_even:
1434 inst = bld.RNDE(result, op[0]);
1435 inst->saturate = instr->dest.saturate;
1436 break;
1437
1438 case nir_op_fquantize2f16: {
1439 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1440 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1441 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1442
1443 /* The destination stride must be at least as big as the source stride. */
1444 tmp16.type = BRW_REGISTER_TYPE_W;
1445 tmp16.stride = 2;
1446
1447 /* Check for denormal */
1448 fs_reg abs_src0 = op[0];
1449 abs_src0.abs = true;
1450 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1451 BRW_CONDITIONAL_L);
1452 /* Get the appropriately signed zero */
1453 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1454 retype(op[0], BRW_REGISTER_TYPE_UD),
1455 brw_imm_ud(0x80000000));
1456 /* Do the actual F32 -> F16 -> F32 conversion */
1457 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1458 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1459 /* Select that or zero based on normal status */
1460 inst = bld.SEL(result, zero, tmp32);
1461 inst->predicate = BRW_PREDICATE_NORMAL;
1462 inst->saturate = instr->dest.saturate;
1463 break;
1464 }
1465
1466 case nir_op_imin:
1467 case nir_op_umin:
1468 case nir_op_fmin:
1469 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1470 inst->saturate = instr->dest.saturate;
1471 break;
1472
1473 case nir_op_imax:
1474 case nir_op_umax:
1475 case nir_op_fmax:
1476 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1477 inst->saturate = instr->dest.saturate;
1478 break;
1479
1480 case nir_op_pack_snorm_2x16:
1481 case nir_op_pack_snorm_4x8:
1482 case nir_op_pack_unorm_2x16:
1483 case nir_op_pack_unorm_4x8:
1484 case nir_op_unpack_snorm_2x16:
1485 case nir_op_unpack_snorm_4x8:
1486 case nir_op_unpack_unorm_2x16:
1487 case nir_op_unpack_unorm_4x8:
1488 case nir_op_unpack_half_2x16:
1489 case nir_op_pack_half_2x16:
1490 unreachable("not reached: should be handled by lower_packing_builtins");
1491
1492 case nir_op_unpack_half_2x16_split_x:
1493 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1494 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1495 inst->saturate = instr->dest.saturate;
1496 break;
1497 case nir_op_unpack_half_2x16_split_y:
1498 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1499 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1500 inst->saturate = instr->dest.saturate;
1501 break;
1502
1503 case nir_op_pack_64_2x32_split:
1504 case nir_op_pack_32_2x16_split:
1505 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1506 break;
1507
1508 case nir_op_unpack_64_2x32_split_x:
1509 case nir_op_unpack_64_2x32_split_y: {
1510 if (instr->op == nir_op_unpack_64_2x32_split_x)
1511 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1512 else
1513 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1514 break;
1515 }
1516
1517 case nir_op_unpack_32_2x16_split_x:
1518 case nir_op_unpack_32_2x16_split_y: {
1519 if (instr->op == nir_op_unpack_32_2x16_split_x)
1520 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1521 else
1522 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1523 break;
1524 }
1525
1526 case nir_op_fpow:
1527 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1528 inst->saturate = instr->dest.saturate;
1529 break;
1530
1531 case nir_op_bitfield_reverse:
1532 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1533 bld.BFREV(result, op[0]);
1534 break;
1535
1536 case nir_op_bit_count:
1537 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1538 bld.CBIT(result, op[0]);
1539 break;
1540
1541 case nir_op_ufind_msb: {
1542 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1543 emit_find_msb_using_lzd(bld, result, op[0], false);
1544 break;
1545 }
1546
1547 case nir_op_ifind_msb: {
1548 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1549
1550 if (devinfo->gen < 7) {
1551 emit_find_msb_using_lzd(bld, result, op[0], true);
1552 } else {
1553 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1554
1555 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1556 * count from the LSB side. If FBH didn't return an error
1557 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1558 * count into an LSB count.
1559 */
1560 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1561
1562 inst = bld.ADD(result, result, brw_imm_d(31));
1563 inst->predicate = BRW_PREDICATE_NORMAL;
1564 inst->src[0].negate = true;
1565 }
1566 break;
1567 }
1568
1569 case nir_op_find_lsb:
1570 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1571
1572 if (devinfo->gen < 7) {
1573 fs_reg temp = vgrf(glsl_type::int_type);
1574
1575 /* (x & -x) generates a value that consists of only the LSB of x.
1576 * For all powers of 2, findMSB(y) == findLSB(y).
1577 */
1578 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1579 fs_reg negated_src = src;
1580
1581 /* One must be negated, and the other must be non-negated. It
1582 * doesn't matter which is which.
1583 */
1584 negated_src.negate = true;
1585 src.negate = false;
1586
1587 bld.AND(temp, src, negated_src);
1588 emit_find_msb_using_lzd(bld, result, temp, false);
1589 } else {
1590 bld.FBL(result, op[0]);
1591 }
1592 break;
1593
1594 case nir_op_ubitfield_extract:
1595 case nir_op_ibitfield_extract:
1596 unreachable("should have been lowered");
1597 case nir_op_ubfe:
1598 case nir_op_ibfe:
1599 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1600 bld.BFE(result, op[2], op[1], op[0]);
1601 break;
1602 case nir_op_bfm:
1603 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1604 bld.BFI1(result, op[0], op[1]);
1605 break;
1606 case nir_op_bfi:
1607 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1608 bld.BFI2(result, op[0], op[1], op[2]);
1609 break;
1610
1611 case nir_op_bitfield_insert:
1612 unreachable("not reached: should have been lowered");
1613
1614 case nir_op_ishl:
1615 bld.SHL(result, op[0], op[1]);
1616 break;
1617 case nir_op_ishr:
1618 bld.ASR(result, op[0], op[1]);
1619 break;
1620 case nir_op_ushr:
1621 bld.SHR(result, op[0], op[1]);
1622 break;
1623
1624 case nir_op_pack_half_2x16_split:
1625 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1626 break;
1627
1628 case nir_op_ffma:
1629 inst = bld.MAD(result, op[2], op[1], op[0]);
1630 inst->saturate = instr->dest.saturate;
1631 break;
1632
1633 case nir_op_flrp:
1634 inst = bld.LRP(result, op[0], op[1], op[2]);
1635 inst->saturate = instr->dest.saturate;
1636 break;
1637
1638 case nir_op_b32csel:
1639 if (optimize_frontfacing_ternary(instr, result))
1640 return;
1641
1642 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1643 inst = bld.SEL(result, op[1], op[2]);
1644 inst->predicate = BRW_PREDICATE_NORMAL;
1645 break;
1646
1647 case nir_op_extract_u8:
1648 case nir_op_extract_i8: {
1649 unsigned byte = nir_src_as_uint(instr->src[1].src);
1650
1651 /* The PRMs say:
1652 *
1653 * BDW+
1654 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1655 * Use two instructions and a word or DWord intermediate integer type.
1656 */
1657 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1658 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1659
1660 if (instr->op == nir_op_extract_i8) {
1661 /* If we need to sign extend, extract to a word first */
1662 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1663 bld.MOV(w_temp, subscript(op[0], type, byte));
1664 bld.MOV(result, w_temp);
1665 } else if (byte & 1) {
1666 /* Extract the high byte from the word containing the desired byte
1667 * offset.
1668 */
1669 bld.SHR(result,
1670 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1671 brw_imm_uw(8));
1672 } else {
1673 /* Otherwise use an AND with 0xff and a word type */
1674 bld.AND(result,
1675 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1676 brw_imm_uw(0xff));
1677 }
1678 } else {
1679 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1680 bld.MOV(result, subscript(op[0], type, byte));
1681 }
1682 break;
1683 }
1684
1685 case nir_op_extract_u16:
1686 case nir_op_extract_i16: {
1687 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1688 unsigned word = nir_src_as_uint(instr->src[1].src);
1689 bld.MOV(result, subscript(op[0], type, word));
1690 break;
1691 }
1692
1693 default:
1694 unreachable("unhandled instruction");
1695 }
1696
1697 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1698 * to sign extend the low bit to 0/~0
1699 */
1700 if (devinfo->gen <= 5 &&
1701 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1702 fs_reg masked = vgrf(glsl_type::int_type);
1703 bld.AND(masked, result, brw_imm_d(1));
1704 masked.negate = true;
1705 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1706 }
1707 }
1708
1709 void
1710 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1711 nir_load_const_instr *instr)
1712 {
1713 const brw_reg_type reg_type =
1714 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1715 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1716
1717 switch (instr->def.bit_size) {
1718 case 8:
1719 for (unsigned i = 0; i < instr->def.num_components; i++)
1720 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1721 break;
1722
1723 case 16:
1724 for (unsigned i = 0; i < instr->def.num_components; i++)
1725 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1726 break;
1727
1728 case 32:
1729 for (unsigned i = 0; i < instr->def.num_components; i++)
1730 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1731 break;
1732
1733 case 64:
1734 assert(devinfo->gen >= 7);
1735 if (devinfo->gen == 7) {
1736 /* We don't get 64-bit integer types until gen8 */
1737 for (unsigned i = 0; i < instr->def.num_components; i++) {
1738 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1739 setup_imm_df(bld, instr->value[i].f64));
1740 }
1741 } else {
1742 for (unsigned i = 0; i < instr->def.num_components; i++)
1743 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1744 }
1745 break;
1746
1747 default:
1748 unreachable("Invalid bit size");
1749 }
1750
1751 nir_ssa_values[instr->def.index] = reg;
1752 }
1753
1754 fs_reg
1755 fs_visitor::get_nir_src(const nir_src &src)
1756 {
1757 fs_reg reg;
1758 if (src.is_ssa) {
1759 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1760 const brw_reg_type reg_type =
1761 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1762 reg = bld.vgrf(reg_type, src.ssa->num_components);
1763 } else {
1764 reg = nir_ssa_values[src.ssa->index];
1765 }
1766 } else {
1767 /* We don't handle indirects on locals */
1768 assert(src.reg.indirect == NULL);
1769 reg = offset(nir_locals[src.reg.reg->index], bld,
1770 src.reg.base_offset * src.reg.reg->num_components);
1771 }
1772
1773 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1774 /* The only 64-bit type available on gen7 is DF, so use that. */
1775 reg.type = BRW_REGISTER_TYPE_DF;
1776 } else {
1777 /* To avoid floating-point denorm flushing problems, set the type by
1778 * default to an integer type - instructions that need floating point
1779 * semantics will set this to F if they need to
1780 */
1781 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1782 BRW_REGISTER_TYPE_D);
1783 }
1784
1785 return reg;
1786 }
1787
1788 /**
1789 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1790 *
1791 * This function should not be called on any value which may be 64 bits.
1792 * We could theoretically support 64-bit on gen8+ but we choose not to
1793 * because it wouldn't work in general (no gen7 support) and there are
1794 * enough restrictions in 64-bit immediates that you can't take the return
1795 * value and treat it the same as the result of get_nir_src().
1796 */
1797 fs_reg
1798 fs_visitor::get_nir_src_imm(const nir_src &src)
1799 {
1800 assert(nir_src_bit_size(src) == 32);
1801 return nir_src_is_const(src) ?
1802 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1803 }
1804
1805 fs_reg
1806 fs_visitor::get_nir_dest(const nir_dest &dest)
1807 {
1808 if (dest.is_ssa) {
1809 const brw_reg_type reg_type =
1810 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1811 dest.ssa.bit_size == 8 ?
1812 BRW_REGISTER_TYPE_D :
1813 BRW_REGISTER_TYPE_F);
1814 nir_ssa_values[dest.ssa.index] =
1815 bld.vgrf(reg_type, dest.ssa.num_components);
1816 return nir_ssa_values[dest.ssa.index];
1817 } else {
1818 /* We don't handle indirects on locals */
1819 assert(dest.reg.indirect == NULL);
1820 return offset(nir_locals[dest.reg.reg->index], bld,
1821 dest.reg.base_offset * dest.reg.reg->num_components);
1822 }
1823 }
1824
1825 void
1826 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1827 unsigned wr_mask)
1828 {
1829 for (unsigned i = 0; i < 4; i++) {
1830 if (!((wr_mask >> i) & 1))
1831 continue;
1832
1833 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1834 new_inst->dst = offset(new_inst->dst, bld, i);
1835 for (unsigned j = 0; j < new_inst->sources; j++)
1836 if (new_inst->src[j].file == VGRF)
1837 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1838
1839 bld.emit(new_inst);
1840 }
1841 }
1842
1843 static fs_inst *
1844 emit_pixel_interpolater_send(const fs_builder &bld,
1845 enum opcode opcode,
1846 const fs_reg &dst,
1847 const fs_reg &src,
1848 const fs_reg &desc,
1849 glsl_interp_mode interpolation)
1850 {
1851 struct brw_wm_prog_data *wm_prog_data =
1852 brw_wm_prog_data(bld.shader->stage_prog_data);
1853
1854 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1855 /* 2 floats per slot returned */
1856 inst->size_written = 2 * dst.component_size(inst->exec_size);
1857 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1858
1859 wm_prog_data->pulls_bary = true;
1860
1861 return inst;
1862 }
1863
1864 /**
1865 * Computes 1 << x, given a D/UD register containing some value x.
1866 */
1867 static fs_reg
1868 intexp2(const fs_builder &bld, const fs_reg &x)
1869 {
1870 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1871
1872 fs_reg result = bld.vgrf(x.type, 1);
1873 fs_reg one = bld.vgrf(x.type, 1);
1874
1875 bld.MOV(one, retype(brw_imm_d(1), one.type));
1876 bld.SHL(result, one, x);
1877 return result;
1878 }
1879
1880 void
1881 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1882 {
1883 assert(stage == MESA_SHADER_GEOMETRY);
1884
1885 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1886
1887 if (gs_compile->control_data_header_size_bits == 0)
1888 return;
1889
1890 /* We can only do EndPrimitive() functionality when the control data
1891 * consists of cut bits. Fortunately, the only time it isn't is when the
1892 * output type is points, in which case EndPrimitive() is a no-op.
1893 */
1894 if (gs_prog_data->control_data_format !=
1895 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1896 return;
1897 }
1898
1899 /* Cut bits use one bit per vertex. */
1900 assert(gs_compile->control_data_bits_per_vertex == 1);
1901
1902 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1903 vertex_count.type = BRW_REGISTER_TYPE_UD;
1904
1905 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1906 * vertex n, 0 otherwise. So all we need to do here is mark bit
1907 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1908 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1909 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1910 *
1911 * Note that if EndPrimitive() is called before emitting any vertices, this
1912 * will cause us to set bit 31 of the control_data_bits register to 1.
1913 * That's fine because:
1914 *
1915 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1916 * output, so the hardware will ignore cut bit 31.
1917 *
1918 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1919 * last vertex, so setting cut bit 31 has no effect (since the primitive
1920 * is automatically ended when the GS terminates).
1921 *
1922 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1923 * control_data_bits register to 0 when the first vertex is emitted.
1924 */
1925
1926 const fs_builder abld = bld.annotate("end primitive");
1927
1928 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1929 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1930 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1931 fs_reg mask = intexp2(abld, prev_count);
1932 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1933 * attention to the lower 5 bits of its second source argument, so on this
1934 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1935 * ((vertex_count - 1) % 32).
1936 */
1937 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1938 }
1939
1940 void
1941 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1942 {
1943 assert(stage == MESA_SHADER_GEOMETRY);
1944 assert(gs_compile->control_data_bits_per_vertex != 0);
1945
1946 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1947
1948 const fs_builder abld = bld.annotate("emit control data bits");
1949 const fs_builder fwa_bld = bld.exec_all();
1950
1951 /* We use a single UD register to accumulate control data bits (32 bits
1952 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1953 * at a time.
1954 *
1955 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1956 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1957 * use the Channel Mask phase to enable/disable which DWord within that
1958 * group to write. (Remember, different SIMD8 channels may have emitted
1959 * different numbers of vertices, so we may need per-slot offsets.)
1960 *
1961 * Channel masking presents an annoying problem: we may have to replicate
1962 * the data up to 4 times:
1963 *
1964 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1965 *
1966 * To avoid penalizing shaders that emit a small number of vertices, we
1967 * can avoid these sometimes: if the size of the control data header is
1968 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1969 * land in the same 128-bit group, so we can skip per-slot offsets.
1970 *
1971 * Similarly, if the control data header is <= 32 bits, there is only one
1972 * DWord, so we can skip channel masks.
1973 */
1974 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1975
1976 fs_reg channel_mask, per_slot_offset;
1977
1978 if (gs_compile->control_data_header_size_bits > 32) {
1979 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1980 channel_mask = vgrf(glsl_type::uint_type);
1981 }
1982
1983 if (gs_compile->control_data_header_size_bits > 128) {
1984 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1985 per_slot_offset = vgrf(glsl_type::uint_type);
1986 }
1987
1988 /* Figure out which DWord we're trying to write to using the formula:
1989 *
1990 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1991 *
1992 * Since bits_per_vertex is a power of two, and is known at compile
1993 * time, this can be optimized to:
1994 *
1995 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1996 */
1997 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1998 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1999 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2000 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2001 unsigned log2_bits_per_vertex =
2002 util_last_bit(gs_compile->control_data_bits_per_vertex);
2003 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2004
2005 if (per_slot_offset.file != BAD_FILE) {
2006 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2007 * the appropriate OWord within the control data header.
2008 */
2009 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2010 }
2011
2012 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2013 * write to the appropriate DWORD within the OWORD.
2014 */
2015 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2016 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2017 channel_mask = intexp2(fwa_bld, channel);
2018 /* Then the channel masks need to be in bits 23:16. */
2019 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2020 }
2021
2022 /* Store the control data bits in the message payload and send it. */
2023 unsigned mlen = 2;
2024 if (channel_mask.file != BAD_FILE)
2025 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2026 if (per_slot_offset.file != BAD_FILE)
2027 mlen++;
2028
2029 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2030 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2031 unsigned i = 0;
2032 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2033 if (per_slot_offset.file != BAD_FILE)
2034 sources[i++] = per_slot_offset;
2035 if (channel_mask.file != BAD_FILE)
2036 sources[i++] = channel_mask;
2037 while (i < mlen) {
2038 sources[i++] = this->control_data_bits;
2039 }
2040
2041 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2042 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2043 inst->mlen = mlen;
2044 /* We need to increment Global Offset by 256-bits to make room for
2045 * Broadwell's extra "Vertex Count" payload at the beginning of the
2046 * URB entry. Since this is an OWord message, Global Offset is counted
2047 * in 128-bit units, so we must set it to 2.
2048 */
2049 if (gs_prog_data->static_vertex_count == -1)
2050 inst->offset = 2;
2051 }
2052
2053 void
2054 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2055 unsigned stream_id)
2056 {
2057 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2058
2059 /* Note: we are calling this *before* increasing vertex_count, so
2060 * this->vertex_count == vertex_count - 1 in the formula above.
2061 */
2062
2063 /* Stream mode uses 2 bits per vertex */
2064 assert(gs_compile->control_data_bits_per_vertex == 2);
2065
2066 /* Must be a valid stream */
2067 assert(stream_id < MAX_VERTEX_STREAMS);
2068
2069 /* Control data bits are initialized to 0 so we don't have to set any
2070 * bits when sending vertices to stream 0.
2071 */
2072 if (stream_id == 0)
2073 return;
2074
2075 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2076
2077 /* reg::sid = stream_id */
2078 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2079 abld.MOV(sid, brw_imm_ud(stream_id));
2080
2081 /* reg:shift_count = 2 * (vertex_count - 1) */
2082 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2083 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2084
2085 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2086 * attention to the lower 5 bits of its second source argument, so on this
2087 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2088 * stream_id << ((2 * (vertex_count - 1)) % 32).
2089 */
2090 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2091 abld.SHL(mask, sid, shift_count);
2092 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2093 }
2094
2095 void
2096 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2097 unsigned stream_id)
2098 {
2099 assert(stage == MESA_SHADER_GEOMETRY);
2100
2101 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2102
2103 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2104 vertex_count.type = BRW_REGISTER_TYPE_UD;
2105
2106 /* Haswell and later hardware ignores the "Render Stream Select" bits
2107 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2108 * and instead sends all primitives down the pipeline for rasterization.
2109 * If the SOL stage is enabled, "Render Stream Select" is honored and
2110 * primitives bound to non-zero streams are discarded after stream output.
2111 *
2112 * Since the only purpose of primives sent to non-zero streams is to
2113 * be recorded by transform feedback, we can simply discard all geometry
2114 * bound to these streams when transform feedback is disabled.
2115 */
2116 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2117 return;
2118
2119 /* If we're outputting 32 control data bits or less, then we can wait
2120 * until the shader is over to output them all. Otherwise we need to
2121 * output them as we go. Now is the time to do it, since we're about to
2122 * output the vertex_count'th vertex, so it's guaranteed that the
2123 * control data bits associated with the (vertex_count - 1)th vertex are
2124 * correct.
2125 */
2126 if (gs_compile->control_data_header_size_bits > 32) {
2127 const fs_builder abld =
2128 bld.annotate("emit vertex: emit control data bits");
2129
2130 /* Only emit control data bits if we've finished accumulating a batch
2131 * of 32 bits. This is the case when:
2132 *
2133 * (vertex_count * bits_per_vertex) % 32 == 0
2134 *
2135 * (in other words, when the last 5 bits of vertex_count *
2136 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2137 * integer n (which is always the case, since bits_per_vertex is
2138 * always 1 or 2), this is equivalent to requiring that the last 5-n
2139 * bits of vertex_count are 0:
2140 *
2141 * vertex_count & (2^(5-n) - 1) == 0
2142 *
2143 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2144 * equivalent to:
2145 *
2146 * vertex_count & (32 / bits_per_vertex - 1) == 0
2147 *
2148 * TODO: If vertex_count is an immediate, we could do some of this math
2149 * at compile time...
2150 */
2151 fs_inst *inst =
2152 abld.AND(bld.null_reg_d(), vertex_count,
2153 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2154 inst->conditional_mod = BRW_CONDITIONAL_Z;
2155
2156 abld.IF(BRW_PREDICATE_NORMAL);
2157 /* If vertex_count is 0, then no control data bits have been
2158 * accumulated yet, so we can skip emitting them.
2159 */
2160 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2161 BRW_CONDITIONAL_NEQ);
2162 abld.IF(BRW_PREDICATE_NORMAL);
2163 emit_gs_control_data_bits(vertex_count);
2164 abld.emit(BRW_OPCODE_ENDIF);
2165
2166 /* Reset control_data_bits to 0 so we can start accumulating a new
2167 * batch.
2168 *
2169 * Note: in the case where vertex_count == 0, this neutralizes the
2170 * effect of any call to EndPrimitive() that the shader may have
2171 * made before outputting its first vertex.
2172 */
2173 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2174 inst->force_writemask_all = true;
2175 abld.emit(BRW_OPCODE_ENDIF);
2176 }
2177
2178 emit_urb_writes(vertex_count);
2179
2180 /* In stream mode we have to set control data bits for all vertices
2181 * unless we have disabled control data bits completely (which we do
2182 * do for GL_POINTS outputs that don't use streams).
2183 */
2184 if (gs_compile->control_data_header_size_bits > 0 &&
2185 gs_prog_data->control_data_format ==
2186 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2187 set_gs_stream_control_data_bits(vertex_count, stream_id);
2188 }
2189 }
2190
2191 void
2192 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2193 const nir_src &vertex_src,
2194 unsigned base_offset,
2195 const nir_src &offset_src,
2196 unsigned num_components,
2197 unsigned first_component)
2198 {
2199 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2200 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2201
2202 /* TODO: figure out push input layout for invocations == 1 */
2203 /* TODO: make this work with 64-bit inputs */
2204 if (gs_prog_data->invocations == 1 &&
2205 type_sz(dst.type) <= 4 &&
2206 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2207 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2208 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2209 nir_src_as_uint(vertex_src) * push_reg_count;
2210 for (unsigned i = 0; i < num_components; i++) {
2211 bld.MOV(offset(dst, bld, i),
2212 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2213 }
2214 return;
2215 }
2216
2217 /* Resort to the pull model. Ensure the VUE handles are provided. */
2218 assert(gs_prog_data->base.include_vue_handles);
2219
2220 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2221 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2222
2223 if (gs_prog_data->invocations == 1) {
2224 if (nir_src_is_const(vertex_src)) {
2225 /* The vertex index is constant; just select the proper URB handle. */
2226 icp_handle =
2227 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2228 BRW_REGISTER_TYPE_UD);
2229 } else {
2230 /* The vertex index is non-constant. We need to use indirect
2231 * addressing to fetch the proper URB handle.
2232 *
2233 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2234 * indicating that channel <n> should read the handle from
2235 * DWord <n>. We convert that to bytes by multiplying by 4.
2236 *
2237 * Next, we convert the vertex index to bytes by multiplying
2238 * by 32 (shifting by 5), and add the two together. This is
2239 * the final indirect byte offset.
2240 */
2241 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2242 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2243 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2244 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2245
2246 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2247 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2248 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2249 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2250 /* Convert vertex_index to bytes (multiply by 32) */
2251 bld.SHL(vertex_offset_bytes,
2252 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2253 brw_imm_ud(5u));
2254 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2255
2256 /* Use first_icp_handle as the base offset. There is one register
2257 * of URB handles per vertex, so inform the register allocator that
2258 * we might read up to nir->info.gs.vertices_in registers.
2259 */
2260 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2261 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2262 fs_reg(icp_offset_bytes),
2263 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2264 }
2265 } else {
2266 assert(gs_prog_data->invocations > 1);
2267
2268 if (nir_src_is_const(vertex_src)) {
2269 unsigned vertex = nir_src_as_uint(vertex_src);
2270 assert(devinfo->gen >= 9 || vertex <= 5);
2271 bld.MOV(icp_handle,
2272 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2273 BRW_REGISTER_TYPE_UD));
2274 } else {
2275 /* The vertex index is non-constant. We need to use indirect
2276 * addressing to fetch the proper URB handle.
2277 *
2278 */
2279 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2280
2281 /* Convert vertex_index to bytes (multiply by 4) */
2282 bld.SHL(icp_offset_bytes,
2283 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2284 brw_imm_ud(2u));
2285
2286 /* Use first_icp_handle as the base offset. There is one DWord
2287 * of URB handles per vertex, so inform the register allocator that
2288 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2289 */
2290 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2291 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2292 fs_reg(icp_offset_bytes),
2293 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2294 REG_SIZE));
2295 }
2296 }
2297
2298 fs_inst *inst;
2299
2300 fs_reg tmp_dst = dst;
2301 fs_reg indirect_offset = get_nir_src(offset_src);
2302 unsigned num_iterations = 1;
2303 unsigned orig_num_components = num_components;
2304
2305 if (type_sz(dst.type) == 8) {
2306 if (num_components > 2) {
2307 num_iterations = 2;
2308 num_components = 2;
2309 }
2310 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2311 tmp_dst = tmp;
2312 first_component = first_component / 2;
2313 }
2314
2315 for (unsigned iter = 0; iter < num_iterations; iter++) {
2316 if (nir_src_is_const(offset_src)) {
2317 /* Constant indexing - use global offset. */
2318 if (first_component != 0) {
2319 unsigned read_components = num_components + first_component;
2320 fs_reg tmp = bld.vgrf(dst.type, read_components);
2321 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2322 inst->size_written = read_components *
2323 tmp.component_size(inst->exec_size);
2324 for (unsigned i = 0; i < num_components; i++) {
2325 bld.MOV(offset(tmp_dst, bld, i),
2326 offset(tmp, bld, i + first_component));
2327 }
2328 } else {
2329 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2330 icp_handle);
2331 inst->size_written = num_components *
2332 tmp_dst.component_size(inst->exec_size);
2333 }
2334 inst->offset = base_offset + nir_src_as_uint(offset_src);
2335 inst->mlen = 1;
2336 } else {
2337 /* Indirect indexing - use per-slot offsets as well. */
2338 const fs_reg srcs[] = { icp_handle, indirect_offset };
2339 unsigned read_components = num_components + first_component;
2340 fs_reg tmp = bld.vgrf(dst.type, read_components);
2341 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2342 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2343 if (first_component != 0) {
2344 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2345 payload);
2346 inst->size_written = read_components *
2347 tmp.component_size(inst->exec_size);
2348 for (unsigned i = 0; i < num_components; i++) {
2349 bld.MOV(offset(tmp_dst, bld, i),
2350 offset(tmp, bld, i + first_component));
2351 }
2352 } else {
2353 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2354 payload);
2355 inst->size_written = num_components *
2356 tmp_dst.component_size(inst->exec_size);
2357 }
2358 inst->offset = base_offset;
2359 inst->mlen = 2;
2360 }
2361
2362 if (type_sz(dst.type) == 8) {
2363 shuffle_from_32bit_read(bld,
2364 offset(dst, bld, iter * 2),
2365 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2366 0,
2367 num_components);
2368 }
2369
2370 if (num_iterations > 1) {
2371 num_components = orig_num_components - 2;
2372 if(nir_src_is_const(offset_src)) {
2373 base_offset++;
2374 } else {
2375 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2376 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2377 indirect_offset = new_indirect;
2378 }
2379 }
2380 }
2381 }
2382
2383 fs_reg
2384 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2385 {
2386 nir_src *offset_src = nir_get_io_offset_src(instr);
2387
2388 if (nir_src_is_const(*offset_src)) {
2389 /* The only constant offset we should find is 0. brw_nir.c's
2390 * add_const_offset_to_base() will fold other constant offsets
2391 * into instr->const_index[0].
2392 */
2393 assert(nir_src_as_uint(*offset_src) == 0);
2394 return fs_reg();
2395 }
2396
2397 return get_nir_src(*offset_src);
2398 }
2399
2400 void
2401 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2402 nir_intrinsic_instr *instr)
2403 {
2404 assert(stage == MESA_SHADER_VERTEX);
2405
2406 fs_reg dest;
2407 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2408 dest = get_nir_dest(instr->dest);
2409
2410 switch (instr->intrinsic) {
2411 case nir_intrinsic_load_vertex_id:
2412 case nir_intrinsic_load_base_vertex:
2413 unreachable("should be lowered by nir_lower_system_values()");
2414
2415 case nir_intrinsic_load_input: {
2416 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2417 unsigned first_component = nir_intrinsic_component(instr);
2418 unsigned num_components = instr->num_components;
2419
2420 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2421
2422 if (type_sz(dest.type) == 8)
2423 first_component /= 2;
2424
2425 /* For 16-bit support maybe a temporary will be needed to copy from
2426 * the ATTR file.
2427 */
2428 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2429 first_component, num_components);
2430 break;
2431 }
2432
2433 case nir_intrinsic_load_vertex_id_zero_base:
2434 case nir_intrinsic_load_instance_id:
2435 case nir_intrinsic_load_base_instance:
2436 case nir_intrinsic_load_draw_id:
2437 case nir_intrinsic_load_first_vertex:
2438 case nir_intrinsic_load_is_indexed_draw:
2439 unreachable("lowered by brw_nir_lower_vs_inputs");
2440
2441 default:
2442 nir_emit_intrinsic(bld, instr);
2443 break;
2444 }
2445 }
2446
2447 void
2448 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2449 nir_intrinsic_instr *instr)
2450 {
2451 assert(stage == MESA_SHADER_TESS_CTRL);
2452 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2453 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2454
2455 fs_reg dst;
2456 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2457 dst = get_nir_dest(instr->dest);
2458
2459 switch (instr->intrinsic) {
2460 case nir_intrinsic_load_primitive_id:
2461 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2462 break;
2463 case nir_intrinsic_load_invocation_id:
2464 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2465 break;
2466 case nir_intrinsic_load_patch_vertices_in:
2467 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2468 brw_imm_d(tcs_key->input_vertices));
2469 break;
2470
2471 case nir_intrinsic_barrier: {
2472 if (tcs_prog_data->instances == 1)
2473 break;
2474
2475 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2476 fs_reg m0_2 = component(m0, 2);
2477
2478 const fs_builder chanbld = bld.exec_all().group(1, 0);
2479
2480 /* Zero the message header */
2481 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2482
2483 if (devinfo->gen < 11) {
2484 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2485 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2486 brw_imm_ud(INTEL_MASK(16, 13)));
2487
2488 /* Shift it up to bits 27:24. */
2489 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2490 } else {
2491 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2492 brw_imm_ud(INTEL_MASK(30, 24)));
2493 }
2494
2495 /* Set the Barrier Count and the enable bit */
2496 if (devinfo->gen < 11) {
2497 chanbld.OR(m0_2, m0_2,
2498 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2499 } else {
2500 chanbld.OR(m0_2, m0_2,
2501 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2502 }
2503
2504 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2505 break;
2506 }
2507
2508 case nir_intrinsic_load_input:
2509 unreachable("nir_lower_io should never give us these.");
2510 break;
2511
2512 case nir_intrinsic_load_per_vertex_input: {
2513 fs_reg indirect_offset = get_indirect_offset(instr);
2514 unsigned imm_offset = instr->const_index[0];
2515
2516 const nir_src &vertex_src = instr->src[0];
2517
2518 fs_inst *inst;
2519
2520 fs_reg icp_handle;
2521
2522 if (nir_src_is_const(vertex_src)) {
2523 /* Emit a MOV to resolve <0,1,0> regioning. */
2524 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2525 unsigned vertex = nir_src_as_uint(vertex_src);
2526 bld.MOV(icp_handle,
2527 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2528 BRW_REGISTER_TYPE_UD));
2529 } else if (tcs_prog_data->instances == 1 &&
2530 vertex_src.is_ssa &&
2531 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2532 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2533 /* For the common case of only 1 instance, an array index of
2534 * gl_InvocationID means reading g1. Skip all the indirect work.
2535 */
2536 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2537 } else {
2538 /* The vertex index is non-constant. We need to use indirect
2539 * addressing to fetch the proper URB handle.
2540 */
2541 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2542
2543 /* Each ICP handle is a single DWord (4 bytes) */
2544 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2545 bld.SHL(vertex_offset_bytes,
2546 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2547 brw_imm_ud(2u));
2548
2549 /* Start at g1. We might read up to 4 registers. */
2550 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2551 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2552 brw_imm_ud(4 * REG_SIZE));
2553 }
2554
2555 /* We can only read two double components with each URB read, so
2556 * we send two read messages in that case, each one loading up to
2557 * two double components.
2558 */
2559 unsigned num_iterations = 1;
2560 unsigned num_components = instr->num_components;
2561 unsigned first_component = nir_intrinsic_component(instr);
2562 fs_reg orig_dst = dst;
2563 if (type_sz(dst.type) == 8) {
2564 first_component = first_component / 2;
2565 if (instr->num_components > 2) {
2566 num_iterations = 2;
2567 num_components = 2;
2568 }
2569
2570 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2571 dst = tmp;
2572 }
2573
2574 for (unsigned iter = 0; iter < num_iterations; iter++) {
2575 if (indirect_offset.file == BAD_FILE) {
2576 /* Constant indexing - use global offset. */
2577 if (first_component != 0) {
2578 unsigned read_components = num_components + first_component;
2579 fs_reg tmp = bld.vgrf(dst.type, read_components);
2580 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2581 for (unsigned i = 0; i < num_components; i++) {
2582 bld.MOV(offset(dst, bld, i),
2583 offset(tmp, bld, i + first_component));
2584 }
2585 } else {
2586 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2587 }
2588 inst->offset = imm_offset;
2589 inst->mlen = 1;
2590 } else {
2591 /* Indirect indexing - use per-slot offsets as well. */
2592 const fs_reg srcs[] = { icp_handle, indirect_offset };
2593 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2594 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2595 if (first_component != 0) {
2596 unsigned read_components = num_components + first_component;
2597 fs_reg tmp = bld.vgrf(dst.type, read_components);
2598 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2599 payload);
2600 for (unsigned i = 0; i < num_components; i++) {
2601 bld.MOV(offset(dst, bld, i),
2602 offset(tmp, bld, i + first_component));
2603 }
2604 } else {
2605 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2606 payload);
2607 }
2608 inst->offset = imm_offset;
2609 inst->mlen = 2;
2610 }
2611 inst->size_written = (num_components + first_component) *
2612 inst->dst.component_size(inst->exec_size);
2613
2614 /* If we are reading 64-bit data using 32-bit read messages we need
2615 * build proper 64-bit data elements by shuffling the low and high
2616 * 32-bit components around like we do for other things like UBOs
2617 * or SSBOs.
2618 */
2619 if (type_sz(dst.type) == 8) {
2620 shuffle_from_32bit_read(bld,
2621 offset(orig_dst, bld, iter * 2),
2622 retype(dst, BRW_REGISTER_TYPE_D),
2623 0, num_components);
2624 }
2625
2626 /* Copy the temporary to the destination to deal with writemasking.
2627 *
2628 * Also attempt to deal with gl_PointSize being in the .w component.
2629 */
2630 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2631 assert(type_sz(dst.type) < 8);
2632 inst->dst = bld.vgrf(dst.type, 4);
2633 inst->size_written = 4 * REG_SIZE;
2634 bld.MOV(dst, offset(inst->dst, bld, 3));
2635 }
2636
2637 /* If we are loading double data and we need a second read message
2638 * adjust the write offset
2639 */
2640 if (num_iterations > 1) {
2641 num_components = instr->num_components - 2;
2642 imm_offset++;
2643 }
2644 }
2645 break;
2646 }
2647
2648 case nir_intrinsic_load_output:
2649 case nir_intrinsic_load_per_vertex_output: {
2650 fs_reg indirect_offset = get_indirect_offset(instr);
2651 unsigned imm_offset = instr->const_index[0];
2652 unsigned first_component = nir_intrinsic_component(instr);
2653
2654 fs_inst *inst;
2655 if (indirect_offset.file == BAD_FILE) {
2656 /* Replicate the patch handle to all enabled channels */
2657 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2658 bld.MOV(patch_handle,
2659 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2660
2661 {
2662 if (first_component != 0) {
2663 unsigned read_components =
2664 instr->num_components + first_component;
2665 fs_reg tmp = bld.vgrf(dst.type, read_components);
2666 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2667 patch_handle);
2668 inst->size_written = read_components * REG_SIZE;
2669 for (unsigned i = 0; i < instr->num_components; i++) {
2670 bld.MOV(offset(dst, bld, i),
2671 offset(tmp, bld, i + first_component));
2672 }
2673 } else {
2674 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2675 patch_handle);
2676 inst->size_written = instr->num_components * REG_SIZE;
2677 }
2678 inst->offset = imm_offset;
2679 inst->mlen = 1;
2680 }
2681 } else {
2682 /* Indirect indexing - use per-slot offsets as well. */
2683 const fs_reg srcs[] = {
2684 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2685 indirect_offset
2686 };
2687 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2688 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2689 if (first_component != 0) {
2690 unsigned read_components =
2691 instr->num_components + first_component;
2692 fs_reg tmp = bld.vgrf(dst.type, read_components);
2693 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2694 payload);
2695 inst->size_written = read_components * REG_SIZE;
2696 for (unsigned i = 0; i < instr->num_components; i++) {
2697 bld.MOV(offset(dst, bld, i),
2698 offset(tmp, bld, i + first_component));
2699 }
2700 } else {
2701 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2702 payload);
2703 inst->size_written = instr->num_components * REG_SIZE;
2704 }
2705 inst->offset = imm_offset;
2706 inst->mlen = 2;
2707 }
2708 break;
2709 }
2710
2711 case nir_intrinsic_store_output:
2712 case nir_intrinsic_store_per_vertex_output: {
2713 fs_reg value = get_nir_src(instr->src[0]);
2714 bool is_64bit = (instr->src[0].is_ssa ?
2715 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2716 fs_reg indirect_offset = get_indirect_offset(instr);
2717 unsigned imm_offset = instr->const_index[0];
2718 unsigned mask = instr->const_index[1];
2719 unsigned header_regs = 0;
2720 fs_reg srcs[7];
2721 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2722
2723 if (indirect_offset.file != BAD_FILE) {
2724 srcs[header_regs++] = indirect_offset;
2725 }
2726
2727 if (mask == 0)
2728 break;
2729
2730 unsigned num_components = util_last_bit(mask);
2731 enum opcode opcode;
2732
2733 /* We can only pack two 64-bit components in a single message, so send
2734 * 2 messages if we have more components
2735 */
2736 unsigned num_iterations = 1;
2737 unsigned iter_components = num_components;
2738 unsigned first_component = nir_intrinsic_component(instr);
2739 if (is_64bit) {
2740 first_component = first_component / 2;
2741 if (instr->num_components > 2) {
2742 num_iterations = 2;
2743 iter_components = 2;
2744 }
2745 }
2746
2747 mask = mask << first_component;
2748
2749 for (unsigned iter = 0; iter < num_iterations; iter++) {
2750 if (!is_64bit && mask != WRITEMASK_XYZW) {
2751 srcs[header_regs++] = brw_imm_ud(mask << 16);
2752 opcode = indirect_offset.file != BAD_FILE ?
2753 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2754 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2755 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2756 /* Expand the 64-bit mask to 32-bit channels. We only handle
2757 * two channels in each iteration, so we only care about X/Y.
2758 */
2759 unsigned mask32 = 0;
2760 if (mask & WRITEMASK_X)
2761 mask32 |= WRITEMASK_XY;
2762 if (mask & WRITEMASK_Y)
2763 mask32 |= WRITEMASK_ZW;
2764
2765 /* If the mask does not include any of the channels X or Y there
2766 * is nothing to do in this iteration. Move on to the next couple
2767 * of 64-bit channels.
2768 */
2769 if (!mask32) {
2770 mask >>= 2;
2771 imm_offset++;
2772 continue;
2773 }
2774
2775 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2776 opcode = indirect_offset.file != BAD_FILE ?
2777 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2778 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2779 } else {
2780 opcode = indirect_offset.file != BAD_FILE ?
2781 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2782 SHADER_OPCODE_URB_WRITE_SIMD8;
2783 }
2784
2785 for (unsigned i = 0; i < iter_components; i++) {
2786 if (!(mask & (1 << (i + first_component))))
2787 continue;
2788
2789 if (!is_64bit) {
2790 srcs[header_regs + i + first_component] = offset(value, bld, i);
2791 } else {
2792 /* We need to shuffle the 64-bit data to match the layout
2793 * expected by our 32-bit URB write messages. We use a temporary
2794 * for that.
2795 */
2796 unsigned channel = iter * 2 + i;
2797 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2798
2799 srcs[header_regs + (i + first_component) * 2] = dest;
2800 srcs[header_regs + (i + first_component) * 2 + 1] =
2801 offset(dest, bld, 1);
2802 }
2803 }
2804
2805 unsigned mlen =
2806 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2807 (is_64bit ? 2 * first_component : first_component);
2808 fs_reg payload =
2809 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2810 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2811
2812 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2813 inst->offset = imm_offset;
2814 inst->mlen = mlen;
2815
2816 /* If this is a 64-bit attribute, select the next two 64-bit channels
2817 * to be handled in the next iteration.
2818 */
2819 if (is_64bit) {
2820 mask >>= 2;
2821 imm_offset++;
2822 }
2823 }
2824 break;
2825 }
2826
2827 default:
2828 nir_emit_intrinsic(bld, instr);
2829 break;
2830 }
2831 }
2832
2833 void
2834 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2835 nir_intrinsic_instr *instr)
2836 {
2837 assert(stage == MESA_SHADER_TESS_EVAL);
2838 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2839
2840 fs_reg dest;
2841 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2842 dest = get_nir_dest(instr->dest);
2843
2844 switch (instr->intrinsic) {
2845 case nir_intrinsic_load_primitive_id:
2846 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2847 break;
2848 case nir_intrinsic_load_tess_coord:
2849 /* gl_TessCoord is part of the payload in g1-3 */
2850 for (unsigned i = 0; i < 3; i++) {
2851 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2852 }
2853 break;
2854
2855 case nir_intrinsic_load_input:
2856 case nir_intrinsic_load_per_vertex_input: {
2857 fs_reg indirect_offset = get_indirect_offset(instr);
2858 unsigned imm_offset = instr->const_index[0];
2859 unsigned first_component = nir_intrinsic_component(instr);
2860
2861 if (type_sz(dest.type) == 8) {
2862 first_component = first_component / 2;
2863 }
2864
2865 fs_inst *inst;
2866 if (indirect_offset.file == BAD_FILE) {
2867 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2868 * which is 16 registers (since each holds 2 vec4 slots).
2869 */
2870 unsigned slot_count = 1;
2871 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2872 slot_count++;
2873
2874 const unsigned max_push_slots = 32;
2875 if (imm_offset + slot_count <= max_push_slots) {
2876 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2877 for (int i = 0; i < instr->num_components; i++) {
2878 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2879 i + first_component;
2880 bld.MOV(offset(dest, bld, i), component(src, comp));
2881 }
2882
2883 tes_prog_data->base.urb_read_length =
2884 MAX2(tes_prog_data->base.urb_read_length,
2885 DIV_ROUND_UP(imm_offset + slot_count, 2));
2886 } else {
2887 /* Replicate the patch handle to all enabled channels */
2888 const fs_reg srcs[] = {
2889 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2890 };
2891 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2892 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2893
2894 if (first_component != 0) {
2895 unsigned read_components =
2896 instr->num_components + first_component;
2897 fs_reg tmp = bld.vgrf(dest.type, read_components);
2898 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2899 patch_handle);
2900 inst->size_written = read_components * REG_SIZE;
2901 for (unsigned i = 0; i < instr->num_components; i++) {
2902 bld.MOV(offset(dest, bld, i),
2903 offset(tmp, bld, i + first_component));
2904 }
2905 } else {
2906 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2907 patch_handle);
2908 inst->size_written = instr->num_components * REG_SIZE;
2909 }
2910 inst->mlen = 1;
2911 inst->offset = imm_offset;
2912 }
2913 } else {
2914 /* Indirect indexing - use per-slot offsets as well. */
2915
2916 /* We can only read two double components with each URB read, so
2917 * we send two read messages in that case, each one loading up to
2918 * two double components.
2919 */
2920 unsigned num_iterations = 1;
2921 unsigned num_components = instr->num_components;
2922 fs_reg orig_dest = dest;
2923 if (type_sz(dest.type) == 8) {
2924 if (instr->num_components > 2) {
2925 num_iterations = 2;
2926 num_components = 2;
2927 }
2928 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2929 dest = tmp;
2930 }
2931
2932 for (unsigned iter = 0; iter < num_iterations; iter++) {
2933 const fs_reg srcs[] = {
2934 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2935 indirect_offset
2936 };
2937 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2938 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2939
2940 if (first_component != 0) {
2941 unsigned read_components =
2942 num_components + first_component;
2943 fs_reg tmp = bld.vgrf(dest.type, read_components);
2944 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2945 payload);
2946 for (unsigned i = 0; i < num_components; i++) {
2947 bld.MOV(offset(dest, bld, i),
2948 offset(tmp, bld, i + first_component));
2949 }
2950 } else {
2951 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2952 payload);
2953 }
2954 inst->mlen = 2;
2955 inst->offset = imm_offset;
2956 inst->size_written = (num_components + first_component) *
2957 inst->dst.component_size(inst->exec_size);
2958
2959 /* If we are reading 64-bit data using 32-bit read messages we need
2960 * build proper 64-bit data elements by shuffling the low and high
2961 * 32-bit components around like we do for other things like UBOs
2962 * or SSBOs.
2963 */
2964 if (type_sz(dest.type) == 8) {
2965 shuffle_from_32bit_read(bld,
2966 offset(orig_dest, bld, iter * 2),
2967 retype(dest, BRW_REGISTER_TYPE_D),
2968 0, num_components);
2969 }
2970
2971 /* If we are loading double data and we need a second read message
2972 * adjust the offset
2973 */
2974 if (num_iterations > 1) {
2975 num_components = instr->num_components - 2;
2976 imm_offset++;
2977 }
2978 }
2979 }
2980 break;
2981 }
2982 default:
2983 nir_emit_intrinsic(bld, instr);
2984 break;
2985 }
2986 }
2987
2988 void
2989 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2990 nir_intrinsic_instr *instr)
2991 {
2992 assert(stage == MESA_SHADER_GEOMETRY);
2993 fs_reg indirect_offset;
2994
2995 fs_reg dest;
2996 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2997 dest = get_nir_dest(instr->dest);
2998
2999 switch (instr->intrinsic) {
3000 case nir_intrinsic_load_primitive_id:
3001 assert(stage == MESA_SHADER_GEOMETRY);
3002 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3003 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3004 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3005 break;
3006
3007 case nir_intrinsic_load_input:
3008 unreachable("load_input intrinsics are invalid for the GS stage");
3009
3010 case nir_intrinsic_load_per_vertex_input:
3011 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3012 instr->src[1], instr->num_components,
3013 nir_intrinsic_component(instr));
3014 break;
3015
3016 case nir_intrinsic_emit_vertex_with_counter:
3017 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3018 break;
3019
3020 case nir_intrinsic_end_primitive_with_counter:
3021 emit_gs_end_primitive(instr->src[0]);
3022 break;
3023
3024 case nir_intrinsic_set_vertex_count:
3025 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3026 break;
3027
3028 case nir_intrinsic_load_invocation_id: {
3029 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3030 assert(val.file != BAD_FILE);
3031 dest.type = val.type;
3032 bld.MOV(dest, val);
3033 break;
3034 }
3035
3036 default:
3037 nir_emit_intrinsic(bld, instr);
3038 break;
3039 }
3040 }
3041
3042 /**
3043 * Fetch the current render target layer index.
3044 */
3045 static fs_reg
3046 fetch_render_target_array_index(const fs_builder &bld)
3047 {
3048 if (bld.shader->devinfo->gen >= 6) {
3049 /* The render target array index is provided in the thread payload as
3050 * bits 26:16 of r0.0.
3051 */
3052 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3053 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3054 brw_imm_uw(0x7ff));
3055 return idx;
3056 } else {
3057 /* Pre-SNB we only ever render into the first layer of the framebuffer
3058 * since layered rendering is not implemented.
3059 */
3060 return brw_imm_ud(0);
3061 }
3062 }
3063
3064 /**
3065 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3066 * framebuffer at the current fragment coordinates and sample index.
3067 */
3068 fs_inst *
3069 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3070 unsigned target)
3071 {
3072 const struct gen_device_info *devinfo = bld.shader->devinfo;
3073
3074 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3075 const brw_wm_prog_key *wm_key =
3076 reinterpret_cast<const brw_wm_prog_key *>(key);
3077 assert(!wm_key->coherent_fb_fetch);
3078 const struct brw_wm_prog_data *wm_prog_data =
3079 brw_wm_prog_data(stage_prog_data);
3080
3081 /* Calculate the surface index relative to the start of the texture binding
3082 * table block, since that's what the texturing messages expect.
3083 */
3084 const unsigned surface = target +
3085 wm_prog_data->binding_table.render_target_read_start -
3086 wm_prog_data->base.binding_table.texture_start;
3087
3088 /* Calculate the fragment coordinates. */
3089 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3090 bld.MOV(offset(coords, bld, 0), pixel_x);
3091 bld.MOV(offset(coords, bld, 1), pixel_y);
3092 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3093
3094 /* Calculate the sample index and MCS payload when multisampling. Luckily
3095 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3096 * shouldn't be necessary to recompile based on whether the framebuffer is
3097 * CMS or UMS.
3098 */
3099 if (wm_key->multisample_fbo &&
3100 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3101 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3102
3103 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3104 const fs_reg mcs = wm_key->multisample_fbo ?
3105 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3106
3107 /* Use either a normal or a CMS texel fetch message depending on whether
3108 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3109 * message just in case the framebuffer uses 16x multisampling, it should
3110 * be equivalent to the normal CMS fetch for lower multisampling modes.
3111 */
3112 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3113 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3114 SHADER_OPCODE_TXF_CMS_LOGICAL;
3115
3116 /* Emit the instruction. */
3117 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3118 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3119 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3120 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3121 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3122 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3123 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3124 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3125 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3126
3127 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3128 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3129
3130 return inst;
3131 }
3132
3133 /**
3134 * Actual coherent framebuffer read implemented using the native render target
3135 * read message. Requires SKL+.
3136 */
3137 static fs_inst *
3138 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3139 {
3140 assert(bld.shader->devinfo->gen >= 9);
3141 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3142 inst->target = target;
3143 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3144
3145 return inst;
3146 }
3147
3148 static fs_reg
3149 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3150 {
3151 if (n && regs[0].file != BAD_FILE) {
3152 return regs[0];
3153
3154 } else {
3155 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3156
3157 for (unsigned i = 0; i < n; i++)
3158 regs[i] = tmp;
3159
3160 return tmp;
3161 }
3162 }
3163
3164 static fs_reg
3165 alloc_frag_output(fs_visitor *v, unsigned location)
3166 {
3167 assert(v->stage == MESA_SHADER_FRAGMENT);
3168 const brw_wm_prog_key *const key =
3169 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3170 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3171 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3172
3173 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3174 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3175
3176 else if (l == FRAG_RESULT_COLOR)
3177 return alloc_temporary(v->bld, 4, v->outputs,
3178 MAX2(key->nr_color_regions, 1));
3179
3180 else if (l == FRAG_RESULT_DEPTH)
3181 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3182
3183 else if (l == FRAG_RESULT_STENCIL)
3184 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3185
3186 else if (l == FRAG_RESULT_SAMPLE_MASK)
3187 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3188
3189 else if (l >= FRAG_RESULT_DATA0 &&
3190 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3191 return alloc_temporary(v->bld, 4,
3192 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3193
3194 else
3195 unreachable("Invalid location");
3196 }
3197
3198 void
3199 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3200 nir_intrinsic_instr *instr)
3201 {
3202 assert(stage == MESA_SHADER_FRAGMENT);
3203
3204 fs_reg dest;
3205 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3206 dest = get_nir_dest(instr->dest);
3207
3208 switch (instr->intrinsic) {
3209 case nir_intrinsic_load_front_face:
3210 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3211 *emit_frontfacing_interpolation());
3212 break;
3213
3214 case nir_intrinsic_load_sample_pos: {
3215 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3216 assert(sample_pos.file != BAD_FILE);
3217 dest.type = sample_pos.type;
3218 bld.MOV(dest, sample_pos);
3219 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3220 break;
3221 }
3222
3223 case nir_intrinsic_load_layer_id:
3224 dest.type = BRW_REGISTER_TYPE_UD;
3225 bld.MOV(dest, fetch_render_target_array_index(bld));
3226 break;
3227
3228 case nir_intrinsic_load_helper_invocation:
3229 case nir_intrinsic_load_sample_mask_in:
3230 case nir_intrinsic_load_sample_id: {
3231 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3232 fs_reg val = nir_system_values[sv];
3233 assert(val.file != BAD_FILE);
3234 dest.type = val.type;
3235 bld.MOV(dest, val);
3236 break;
3237 }
3238
3239 case nir_intrinsic_store_output: {
3240 const fs_reg src = get_nir_src(instr->src[0]);
3241 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3242 const unsigned location = nir_intrinsic_base(instr) +
3243 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3244 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3245 src.type);
3246
3247 for (unsigned j = 0; j < instr->num_components; j++)
3248 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3249 offset(src, bld, j));
3250
3251 break;
3252 }
3253
3254 case nir_intrinsic_load_output: {
3255 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3256 BRW_NIR_FRAG_OUTPUT_LOCATION);
3257 assert(l >= FRAG_RESULT_DATA0);
3258 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3259 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3260 const fs_reg tmp = bld.vgrf(dest.type, 4);
3261
3262 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3263 emit_coherent_fb_read(bld, tmp, target);
3264 else
3265 emit_non_coherent_fb_read(bld, tmp, target);
3266
3267 for (unsigned j = 0; j < instr->num_components; j++) {
3268 bld.MOV(offset(dest, bld, j),
3269 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3270 }
3271
3272 break;
3273 }
3274
3275 case nir_intrinsic_discard:
3276 case nir_intrinsic_discard_if: {
3277 /* We track our discarded pixels in f0.1. By predicating on it, we can
3278 * update just the flag bits that aren't yet discarded. If there's no
3279 * condition, we emit a CMP of g0 != g0, so all currently executing
3280 * channels will get turned off.
3281 */
3282 fs_inst *cmp;
3283 if (instr->intrinsic == nir_intrinsic_discard_if) {
3284 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3285 brw_imm_d(0), BRW_CONDITIONAL_Z);
3286 } else {
3287 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3288 BRW_REGISTER_TYPE_UW));
3289 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3290 }
3291 cmp->predicate = BRW_PREDICATE_NORMAL;
3292 cmp->flag_subreg = 1;
3293
3294 if (devinfo->gen >= 6) {
3295 emit_discard_jump();
3296 }
3297
3298 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3299 break;
3300 }
3301
3302 case nir_intrinsic_load_input: {
3303 /* load_input is only used for flat inputs */
3304 unsigned base = nir_intrinsic_base(instr);
3305 unsigned comp = nir_intrinsic_component(instr);
3306 unsigned num_components = instr->num_components;
3307 fs_reg orig_dest = dest;
3308 enum brw_reg_type type = dest.type;
3309
3310 /* Special case fields in the VUE header */
3311 if (base == VARYING_SLOT_LAYER)
3312 comp = 1;
3313 else if (base == VARYING_SLOT_VIEWPORT)
3314 comp = 2;
3315
3316 if (nir_dest_bit_size(instr->dest) == 64) {
3317 /* const_index is in 32-bit type size units that could not be aligned
3318 * with DF. We need to read the double vector as if it was a float
3319 * vector of twice the number of components to fetch the right data.
3320 */
3321 type = BRW_REGISTER_TYPE_F;
3322 num_components *= 2;
3323 dest = bld.vgrf(type, num_components);
3324 }
3325
3326 for (unsigned int i = 0; i < num_components; i++) {
3327 bld.MOV(offset(retype(dest, type), bld, i),
3328 retype(component(interp_reg(base, comp + i), 3), type));
3329 }
3330
3331 if (nir_dest_bit_size(instr->dest) == 64) {
3332 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3333 instr->num_components);
3334 }
3335 break;
3336 }
3337
3338 case nir_intrinsic_load_barycentric_pixel:
3339 case nir_intrinsic_load_barycentric_centroid:
3340 case nir_intrinsic_load_barycentric_sample:
3341 /* Do nothing - load_interpolated_input handling will handle it later. */
3342 break;
3343
3344 case nir_intrinsic_load_barycentric_at_sample: {
3345 const glsl_interp_mode interpolation =
3346 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3347
3348 if (nir_src_is_const(instr->src[0])) {
3349 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3350
3351 emit_pixel_interpolater_send(bld,
3352 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3353 dest,
3354 fs_reg(), /* src */
3355 brw_imm_ud(msg_data),
3356 interpolation);
3357 } else {
3358 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3359 BRW_REGISTER_TYPE_UD);
3360
3361 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3362 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3363 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3364 bld.exec_all().group(1, 0)
3365 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3366 emit_pixel_interpolater_send(bld,
3367 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3368 dest,
3369 fs_reg(), /* src */
3370 msg_data,
3371 interpolation);
3372 } else {
3373 /* Make a loop that sends a message to the pixel interpolater
3374 * for the sample number in each live channel. If there are
3375 * multiple channels with the same sample number then these
3376 * will be handled simultaneously with a single interation of
3377 * the loop.
3378 */
3379 bld.emit(BRW_OPCODE_DO);
3380
3381 /* Get the next live sample number into sample_id_reg */
3382 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3383
3384 /* Set the flag register so that we can perform the send
3385 * message on all channels that have the same sample number
3386 */
3387 bld.CMP(bld.null_reg_ud(),
3388 sample_src, sample_id,
3389 BRW_CONDITIONAL_EQ);
3390 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3391 bld.exec_all().group(1, 0)
3392 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3393 fs_inst *inst =
3394 emit_pixel_interpolater_send(bld,
3395 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3396 dest,
3397 fs_reg(), /* src */
3398 component(msg_data, 0),
3399 interpolation);
3400 set_predicate(BRW_PREDICATE_NORMAL, inst);
3401
3402 /* Continue the loop if there are any live channels left */
3403 set_predicate_inv(BRW_PREDICATE_NORMAL,
3404 true, /* inverse */
3405 bld.emit(BRW_OPCODE_WHILE));
3406 }
3407 }
3408 break;
3409 }
3410
3411 case nir_intrinsic_load_barycentric_at_offset: {
3412 const glsl_interp_mode interpolation =
3413 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3414
3415 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3416
3417 if (const_offset) {
3418 assert(nir_src_bit_size(instr->src[0]) == 32);
3419 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3420 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3421
3422 emit_pixel_interpolater_send(bld,
3423 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3424 dest,
3425 fs_reg(), /* src */
3426 brw_imm_ud(off_x | (off_y << 4)),
3427 interpolation);
3428 } else {
3429 fs_reg src = vgrf(glsl_type::ivec2_type);
3430 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3431 BRW_REGISTER_TYPE_F);
3432 for (int i = 0; i < 2; i++) {
3433 fs_reg temp = vgrf(glsl_type::float_type);
3434 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3435 fs_reg itemp = vgrf(glsl_type::int_type);
3436 /* float to int */
3437 bld.MOV(itemp, temp);
3438
3439 /* Clamp the upper end of the range to +7/16.
3440 * ARB_gpu_shader5 requires that we support a maximum offset
3441 * of +0.5, which isn't representable in a S0.4 value -- if
3442 * we didn't clamp it, we'd end up with -8/16, which is the
3443 * opposite of what the shader author wanted.
3444 *
3445 * This is legal due to ARB_gpu_shader5's quantization
3446 * rules:
3447 *
3448 * "Not all values of <offset> may be supported; x and y
3449 * offsets may be rounded to fixed-point values with the
3450 * number of fraction bits given by the
3451 * implementation-dependent constant
3452 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3453 */
3454 set_condmod(BRW_CONDITIONAL_L,
3455 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3456 }
3457
3458 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3459 emit_pixel_interpolater_send(bld,
3460 opcode,
3461 dest,
3462 src,
3463 brw_imm_ud(0u),
3464 interpolation);
3465 }
3466 break;
3467 }
3468
3469 case nir_intrinsic_load_interpolated_input: {
3470 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3471 emit_fragcoord_interpolation(dest);
3472 break;
3473 }
3474
3475 assert(instr->src[0].ssa &&
3476 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3477 nir_intrinsic_instr *bary_intrinsic =
3478 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3479 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3480 enum glsl_interp_mode interp_mode =
3481 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3482 fs_reg dst_xy;
3483
3484 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3485 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3486 /* Use the result of the PI message */
3487 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3488 } else {
3489 /* Use the delta_xy values computed from the payload */
3490 enum brw_barycentric_mode bary =
3491 brw_barycentric_mode(interp_mode, bary_intrin);
3492
3493 dst_xy = this->delta_xy[bary];
3494 }
3495
3496 for (unsigned int i = 0; i < instr->num_components; i++) {
3497 fs_reg interp =
3498 component(interp_reg(nir_intrinsic_base(instr),
3499 nir_intrinsic_component(instr) + i), 0);
3500 interp.type = BRW_REGISTER_TYPE_F;
3501 dest.type = BRW_REGISTER_TYPE_F;
3502
3503 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3504 fs_reg tmp = vgrf(glsl_type::float_type);
3505 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3506 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3507 } else {
3508 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3509 }
3510 }
3511 break;
3512 }
3513
3514 default:
3515 nir_emit_intrinsic(bld, instr);
3516 break;
3517 }
3518 }
3519
3520 static int
3521 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3522 {
3523 if (nir_src_is_const(instr->src[src])) {
3524 int64_t add_val = nir_src_as_int(instr->src[src]);
3525 if (add_val == 1)
3526 return BRW_AOP_INC;
3527 else if (add_val == -1)
3528 return BRW_AOP_DEC;
3529 }
3530
3531 return BRW_AOP_ADD;
3532 }
3533
3534 void
3535 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3536 nir_intrinsic_instr *instr)
3537 {
3538 assert(stage == MESA_SHADER_COMPUTE);
3539 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3540
3541 fs_reg dest;
3542 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3543 dest = get_nir_dest(instr->dest);
3544
3545 switch (instr->intrinsic) {
3546 case nir_intrinsic_barrier:
3547 emit_barrier();
3548 cs_prog_data->uses_barrier = true;
3549 break;
3550
3551 case nir_intrinsic_load_subgroup_id:
3552 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3553 break;
3554
3555 case nir_intrinsic_load_local_invocation_id:
3556 case nir_intrinsic_load_work_group_id: {
3557 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3558 fs_reg val = nir_system_values[sv];
3559 assert(val.file != BAD_FILE);
3560 dest.type = val.type;
3561 for (unsigned i = 0; i < 3; i++)
3562 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3563 break;
3564 }
3565
3566 case nir_intrinsic_load_num_work_groups: {
3567 const unsigned surface =
3568 cs_prog_data->binding_table.work_groups_start;
3569
3570 cs_prog_data->uses_num_work_groups = true;
3571
3572 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3573 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3574 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3575 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3576
3577 /* Read the 3 GLuint components of gl_NumWorkGroups */
3578 for (unsigned i = 0; i < 3; i++) {
3579 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3580 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3581 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3582 }
3583 break;
3584 }
3585
3586 case nir_intrinsic_shared_atomic_add:
3587 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3588 break;
3589 case nir_intrinsic_shared_atomic_imin:
3590 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3591 break;
3592 case nir_intrinsic_shared_atomic_umin:
3593 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3594 break;
3595 case nir_intrinsic_shared_atomic_imax:
3596 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3597 break;
3598 case nir_intrinsic_shared_atomic_umax:
3599 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3600 break;
3601 case nir_intrinsic_shared_atomic_and:
3602 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3603 break;
3604 case nir_intrinsic_shared_atomic_or:
3605 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3606 break;
3607 case nir_intrinsic_shared_atomic_xor:
3608 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3609 break;
3610 case nir_intrinsic_shared_atomic_exchange:
3611 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3612 break;
3613 case nir_intrinsic_shared_atomic_comp_swap:
3614 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3615 break;
3616 case nir_intrinsic_shared_atomic_fmin:
3617 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3618 break;
3619 case nir_intrinsic_shared_atomic_fmax:
3620 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3621 break;
3622 case nir_intrinsic_shared_atomic_fcomp_swap:
3623 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3624 break;
3625
3626 case nir_intrinsic_load_shared: {
3627 assert(devinfo->gen >= 7);
3628 assert(stage == MESA_SHADER_COMPUTE);
3629
3630 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3631 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3632 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3633 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3634 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3635
3636 /* Make dest unsigned because that's what the temporary will be */
3637 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3638
3639 /* Read the vector */
3640 if (nir_intrinsic_align(instr) >= 4) {
3641 assert(nir_dest_bit_size(instr->dest) == 32);
3642 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3643 fs_inst *inst =
3644 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3645 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3646 inst->size_written = instr->num_components * dispatch_width * 4;
3647 } else {
3648 assert(nir_dest_bit_size(instr->dest) <= 32);
3649 assert(nir_dest_num_components(instr->dest) == 1);
3650 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3651
3652 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3653 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3654 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3655 bld.MOV(dest, read_result);
3656 }
3657 break;
3658 }
3659
3660 case nir_intrinsic_store_shared: {
3661 assert(devinfo->gen >= 7);
3662 assert(stage == MESA_SHADER_COMPUTE);
3663
3664 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3665 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3666 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3667 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3668 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3669
3670 fs_reg data = get_nir_src(instr->src[0]);
3671 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3672
3673 assert(nir_intrinsic_write_mask(instr) ==
3674 (1u << instr->num_components) - 1);
3675 if (nir_intrinsic_align(instr) >= 4) {
3676 assert(nir_src_bit_size(instr->src[0]) == 32);
3677 assert(nir_src_num_components(instr->src[0]) <= 4);
3678 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3679 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3680 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3681 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3682 } else {
3683 assert(nir_src_bit_size(instr->src[0]) <= 32);
3684 assert(nir_src_num_components(instr->src[0]) == 1);
3685 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3686
3687 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3688 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3689
3690 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3691 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3692 }
3693 break;
3694 }
3695
3696 default:
3697 nir_emit_intrinsic(bld, instr);
3698 break;
3699 }
3700 }
3701
3702 static fs_reg
3703 brw_nir_reduction_op_identity(const fs_builder &bld,
3704 nir_op op, brw_reg_type type)
3705 {
3706 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3707 switch (type_sz(type)) {
3708 case 2:
3709 assert(type != BRW_REGISTER_TYPE_HF);
3710 return retype(brw_imm_uw(value.u16), type);
3711 case 4:
3712 return retype(brw_imm_ud(value.u32), type);
3713 case 8:
3714 if (type == BRW_REGISTER_TYPE_DF)
3715 return setup_imm_df(bld, value.f64);
3716 else
3717 return retype(brw_imm_u64(value.u64), type);
3718 default:
3719 unreachable("Invalid type size");
3720 }
3721 }
3722
3723 static opcode
3724 brw_op_for_nir_reduction_op(nir_op op)
3725 {
3726 switch (op) {
3727 case nir_op_iadd: return BRW_OPCODE_ADD;
3728 case nir_op_fadd: return BRW_OPCODE_ADD;
3729 case nir_op_imul: return BRW_OPCODE_MUL;
3730 case nir_op_fmul: return BRW_OPCODE_MUL;
3731 case nir_op_imin: return BRW_OPCODE_SEL;
3732 case nir_op_umin: return BRW_OPCODE_SEL;
3733 case nir_op_fmin: return BRW_OPCODE_SEL;
3734 case nir_op_imax: return BRW_OPCODE_SEL;
3735 case nir_op_umax: return BRW_OPCODE_SEL;
3736 case nir_op_fmax: return BRW_OPCODE_SEL;
3737 case nir_op_iand: return BRW_OPCODE_AND;
3738 case nir_op_ior: return BRW_OPCODE_OR;
3739 case nir_op_ixor: return BRW_OPCODE_XOR;
3740 default:
3741 unreachable("Invalid reduction operation");
3742 }
3743 }
3744
3745 static brw_conditional_mod
3746 brw_cond_mod_for_nir_reduction_op(nir_op op)
3747 {
3748 switch (op) {
3749 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3750 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3751 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3752 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3753 case nir_op_imin: return BRW_CONDITIONAL_L;
3754 case nir_op_umin: return BRW_CONDITIONAL_L;
3755 case nir_op_fmin: return BRW_CONDITIONAL_L;
3756 case nir_op_imax: return BRW_CONDITIONAL_GE;
3757 case nir_op_umax: return BRW_CONDITIONAL_GE;
3758 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3759 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3760 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3761 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3762 default:
3763 unreachable("Invalid reduction operation");
3764 }
3765 }
3766
3767 fs_reg
3768 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3769 nir_intrinsic_instr *instr)
3770 {
3771 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3772
3773 if (stage_prog_data->binding_table.image_start > 0) {
3774 if (image.file == BRW_IMMEDIATE_VALUE) {
3775 image.d += stage_prog_data->binding_table.image_start;
3776 } else {
3777 bld.ADD(image, image,
3778 brw_imm_d(stage_prog_data->binding_table.image_start));
3779 }
3780 }
3781
3782 return bld.emit_uniformize(image);
3783 }
3784
3785 fs_reg
3786 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3787 nir_intrinsic_instr *instr)
3788 {
3789 /* SSBO stores are weird in that their index is in src[1] */
3790 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3791
3792 fs_reg surf_index;
3793 if (nir_src_is_const(instr->src[src])) {
3794 unsigned index = stage_prog_data->binding_table.ssbo_start +
3795 nir_src_as_uint(instr->src[src]);
3796 surf_index = brw_imm_ud(index);
3797 } else {
3798 surf_index = vgrf(glsl_type::uint_type);
3799 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3800 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3801 }
3802
3803 return bld.emit_uniformize(surf_index);
3804 }
3805
3806 static unsigned
3807 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3808 {
3809 switch (nir_intrinsic_image_dim(instr)) {
3810 case GLSL_SAMPLER_DIM_1D:
3811 return 1 + nir_intrinsic_image_array(instr);
3812 case GLSL_SAMPLER_DIM_2D:
3813 case GLSL_SAMPLER_DIM_RECT:
3814 return 2 + nir_intrinsic_image_array(instr);
3815 case GLSL_SAMPLER_DIM_3D:
3816 case GLSL_SAMPLER_DIM_CUBE:
3817 return 3;
3818 case GLSL_SAMPLER_DIM_BUF:
3819 return 1;
3820 case GLSL_SAMPLER_DIM_MS:
3821 return 2 + nir_intrinsic_image_array(instr);
3822 default:
3823 unreachable("Invalid image dimension");
3824 }
3825 }
3826
3827 void
3828 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3829 {
3830 fs_reg dest;
3831 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3832 dest = get_nir_dest(instr->dest);
3833
3834 switch (instr->intrinsic) {
3835 case nir_intrinsic_image_load:
3836 case nir_intrinsic_image_store:
3837 case nir_intrinsic_image_atomic_add:
3838 case nir_intrinsic_image_atomic_min:
3839 case nir_intrinsic_image_atomic_max:
3840 case nir_intrinsic_image_atomic_and:
3841 case nir_intrinsic_image_atomic_or:
3842 case nir_intrinsic_image_atomic_xor:
3843 case nir_intrinsic_image_atomic_exchange:
3844 case nir_intrinsic_image_atomic_comp_swap: {
3845 if (stage == MESA_SHADER_FRAGMENT &&
3846 instr->intrinsic != nir_intrinsic_image_load)
3847 brw_wm_prog_data(prog_data)->has_side_effects = true;
3848
3849 /* Get some metadata from the image intrinsic. */
3850 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3851 const GLenum format = nir_intrinsic_format(instr);
3852
3853 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3854 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3855 get_nir_image_intrinsic_image(bld, instr);
3856 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3857 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
3858 brw_imm_ud(image_intrinsic_coord_components(instr));
3859
3860 /* Emit an image load, store or atomic op. */
3861 if (instr->intrinsic == nir_intrinsic_image_load) {
3862 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3863 fs_inst *inst =
3864 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
3865 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3866 inst->size_written = instr->num_components * dispatch_width * 4;
3867 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3868 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3869 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
3870 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
3871 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3872 } else {
3873 int op;
3874 unsigned num_srcs = info->num_srcs;
3875
3876 switch (instr->intrinsic) {
3877 case nir_intrinsic_image_atomic_add:
3878 assert(num_srcs == 4);
3879
3880 op = get_op_for_atomic_add(instr, 3);
3881
3882 if (op != BRW_AOP_ADD)
3883 num_srcs = 3;
3884 break;
3885 case nir_intrinsic_image_atomic_min:
3886 assert(format == GL_R32UI || format == GL_R32I);
3887 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3888 break;
3889 case nir_intrinsic_image_atomic_max:
3890 assert(format == GL_R32UI || format == GL_R32I);
3891 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3892 break;
3893 case nir_intrinsic_image_atomic_and:
3894 op = BRW_AOP_AND;
3895 break;
3896 case nir_intrinsic_image_atomic_or:
3897 op = BRW_AOP_OR;
3898 break;
3899 case nir_intrinsic_image_atomic_xor:
3900 op = BRW_AOP_XOR;
3901 break;
3902 case nir_intrinsic_image_atomic_exchange:
3903 op = BRW_AOP_MOV;
3904 break;
3905 case nir_intrinsic_image_atomic_comp_swap:
3906 op = BRW_AOP_CMPWR;
3907 break;
3908 default:
3909 unreachable("Not reachable.");
3910 }
3911
3912 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
3913
3914 fs_reg data;
3915 if (num_srcs >= 4)
3916 data = get_nir_src(instr->src[3]);
3917 if (num_srcs >= 5) {
3918 fs_reg tmp = bld.vgrf(data.type, 2);
3919 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
3920 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
3921 data = tmp;
3922 }
3923 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3924
3925 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
3926 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3927 }
3928 break;
3929 }
3930
3931 case nir_intrinsic_image_size: {
3932 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3933 * into will handle the binding table index for us in the geneerator.
3934 */
3935 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3936 BRW_REGISTER_TYPE_UD);
3937 image = bld.emit_uniformize(image);
3938
3939 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3940 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
3941 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
3942 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
3943 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
3944
3945 /* Since the image size is always uniform, we can just emit a SIMD8
3946 * query instruction and splat the result out.
3947 */
3948 const fs_builder ubld = bld.exec_all().group(8, 0);
3949
3950 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3951 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
3952 tmp, srcs, ARRAY_SIZE(srcs));
3953 inst->size_written = 4 * REG_SIZE;
3954
3955 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3956 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3957 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3958 offset(retype(dest, tmp.type), bld, c),
3959 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3960 } else {
3961 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3962 component(offset(tmp, ubld, c), 0));
3963 }
3964 }
3965 break;
3966 }
3967
3968 case nir_intrinsic_image_load_raw_intel: {
3969 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3970 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3971 get_nir_image_intrinsic_image(bld, instr);
3972 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3973 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3974 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3975
3976 fs_inst *inst =
3977 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3978 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3979 inst->size_written = instr->num_components * dispatch_width * 4;
3980 break;
3981 }
3982
3983 case nir_intrinsic_image_store_raw_intel: {
3984 if (stage == MESA_SHADER_FRAGMENT)
3985 brw_wm_prog_data(prog_data)->has_side_effects = true;
3986
3987 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3988 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3989 get_nir_image_intrinsic_image(bld, instr);
3990 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3991 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
3992 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3993 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3994
3995 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3996 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3997 break;
3998 }
3999
4000 case nir_intrinsic_group_memory_barrier:
4001 case nir_intrinsic_memory_barrier_shared:
4002 case nir_intrinsic_memory_barrier_atomic_counter:
4003 case nir_intrinsic_memory_barrier_buffer:
4004 case nir_intrinsic_memory_barrier_image:
4005 case nir_intrinsic_memory_barrier: {
4006 const fs_builder ubld = bld.group(8, 0);
4007 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4008 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
4009 ->size_written = 2 * REG_SIZE;
4010 break;
4011 }
4012
4013 case nir_intrinsic_shader_clock: {
4014 /* We cannot do anything if there is an event, so ignore it for now */
4015 const fs_reg shader_clock = get_timestamp(bld);
4016 const fs_reg srcs[] = { component(shader_clock, 0),
4017 component(shader_clock, 1) };
4018 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4019 break;
4020 }
4021
4022 case nir_intrinsic_image_samples:
4023 /* The driver does not support multi-sampled images. */
4024 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4025 break;
4026
4027 case nir_intrinsic_load_uniform: {
4028 /* Offsets are in bytes but they should always aligned to
4029 * the type size
4030 */
4031 assert(instr->const_index[0] % 4 == 0 ||
4032 instr->const_index[0] % type_sz(dest.type) == 0);
4033
4034 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4035
4036 if (nir_src_is_const(instr->src[0])) {
4037 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4038 assert(load_offset % type_sz(dest.type) == 0);
4039 /* For 16-bit types we add the module of the const_index[0]
4040 * offset to access to not 32-bit aligned element
4041 */
4042 src.offset = load_offset + instr->const_index[0] % 4;
4043
4044 for (unsigned j = 0; j < instr->num_components; j++) {
4045 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4046 }
4047 } else {
4048 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4049 BRW_REGISTER_TYPE_UD);
4050
4051 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4052 * go past the end of the uniform. In order to keep the n'th
4053 * component from running past, we subtract off the size of all but
4054 * one component of the vector.
4055 */
4056 assert(instr->const_index[1] >=
4057 instr->num_components * (int) type_sz(dest.type));
4058 unsigned read_size = instr->const_index[1] -
4059 (instr->num_components - 1) * type_sz(dest.type);
4060
4061 bool supports_64bit_indirects =
4062 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4063
4064 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4065 for (unsigned j = 0; j < instr->num_components; j++) {
4066 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4067 offset(dest, bld, j), offset(src, bld, j),
4068 indirect, brw_imm_ud(read_size));
4069 }
4070 } else {
4071 const unsigned num_mov_indirects =
4072 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4073 /* We read a little bit less per MOV INDIRECT, as they are now
4074 * 32-bits ones instead of 64-bit. Fix read_size then.
4075 */
4076 const unsigned read_size_32bit = read_size -
4077 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4078 for (unsigned j = 0; j < instr->num_components; j++) {
4079 for (unsigned i = 0; i < num_mov_indirects; i++) {
4080 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4081 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4082 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4083 indirect, brw_imm_ud(read_size_32bit));
4084 }
4085 }
4086 }
4087 }
4088 break;
4089 }
4090
4091 case nir_intrinsic_load_ubo: {
4092 fs_reg surf_index;
4093 if (nir_src_is_const(instr->src[0])) {
4094 const unsigned index = stage_prog_data->binding_table.ubo_start +
4095 nir_src_as_uint(instr->src[0]);
4096 surf_index = brw_imm_ud(index);
4097 } else {
4098 /* The block index is not a constant. Evaluate the index expression
4099 * per-channel and add the base UBO index; we have to select a value
4100 * from any live channel.
4101 */
4102 surf_index = vgrf(glsl_type::uint_type);
4103 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4104 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4105 surf_index = bld.emit_uniformize(surf_index);
4106 }
4107
4108 if (!nir_src_is_const(instr->src[1])) {
4109 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4110 BRW_REGISTER_TYPE_UD);
4111
4112 for (int i = 0; i < instr->num_components; i++)
4113 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4114 base_offset, i * type_sz(dest.type));
4115 } else {
4116 /* Even if we are loading doubles, a pull constant load will load
4117 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4118 * need to load a full dvec4 we will have to emit 2 loads. This is
4119 * similar to demote_pull_constants(), except that in that case we
4120 * see individual accesses to each component of the vector and then
4121 * we let CSE deal with duplicate loads. Here we see a vector access
4122 * and we have to split it if necessary.
4123 */
4124 const unsigned type_size = type_sz(dest.type);
4125 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4126
4127 /* See if we've selected this as a push constant candidate */
4128 if (nir_src_is_const(instr->src[0])) {
4129 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4130 const unsigned offset_256b = load_offset / 32;
4131
4132 fs_reg push_reg;
4133 for (int i = 0; i < 4; i++) {
4134 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4135 if (range->block == ubo_block &&
4136 offset_256b >= range->start &&
4137 offset_256b < range->start + range->length) {
4138
4139 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4140 push_reg.offset = load_offset - 32 * range->start;
4141 break;
4142 }
4143 }
4144
4145 if (push_reg.file != BAD_FILE) {
4146 for (unsigned i = 0; i < instr->num_components; i++) {
4147 bld.MOV(offset(dest, bld, i),
4148 byte_offset(push_reg, i * type_size));
4149 }
4150 break;
4151 }
4152 }
4153
4154 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4155 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4156 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4157
4158 for (unsigned c = 0; c < instr->num_components;) {
4159 const unsigned base = load_offset + c * type_size;
4160 /* Number of usable components in the next block-aligned load. */
4161 const unsigned count = MIN2(instr->num_components - c,
4162 (block_sz - base % block_sz) / type_size);
4163
4164 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4165 packed_consts, surf_index,
4166 brw_imm_ud(base & ~(block_sz - 1)));
4167
4168 const fs_reg consts =
4169 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4170 dest.type);
4171
4172 for (unsigned d = 0; d < count; d++)
4173 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4174
4175 c += count;
4176 }
4177 }
4178 break;
4179 }
4180
4181 case nir_intrinsic_load_global: {
4182 assert(devinfo->gen >= 8);
4183
4184 if (nir_intrinsic_align(instr) >= 4) {
4185 assert(nir_dest_bit_size(instr->dest) == 32);
4186 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4187 dest,
4188 get_nir_src(instr->src[0]), /* Address */
4189 fs_reg(), /* No source data */
4190 brw_imm_ud(instr->num_components));
4191 inst->size_written = instr->num_components *
4192 inst->dst.component_size(inst->exec_size);
4193 } else {
4194 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4195 assert(bit_size <= 32);
4196 assert(nir_dest_num_components(instr->dest) == 1);
4197 brw_reg_type data_type =
4198 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4199 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4200 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4201 tmp,
4202 get_nir_src(instr->src[0]), /* Address */
4203 fs_reg(), /* No source data */
4204 brw_imm_ud(bit_size));
4205 bld.MOV(retype(dest, data_type), tmp);
4206 }
4207 break;
4208 }
4209
4210 case nir_intrinsic_store_global:
4211 assert(devinfo->gen >= 8);
4212
4213 if (stage == MESA_SHADER_FRAGMENT)
4214 brw_wm_prog_data(prog_data)->has_side_effects = true;
4215
4216 if (nir_intrinsic_align(instr) >= 4) {
4217 assert(nir_src_bit_size(instr->src[0]) == 32);
4218 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4219 fs_reg(),
4220 get_nir_src(instr->src[1]), /* Address */
4221 get_nir_src(instr->src[0]), /* Data */
4222 brw_imm_ud(instr->num_components));
4223 } else {
4224 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4225 assert(bit_size <= 32);
4226 assert(nir_src_num_components(instr->src[0]) == 1);
4227 brw_reg_type data_type =
4228 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4229 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4230 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4231 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4232 fs_reg(),
4233 get_nir_src(instr->src[1]), /* Address */
4234 tmp, /* Data */
4235 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4236 }
4237 break;
4238
4239 case nir_intrinsic_global_atomic_add:
4240 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4241 break;
4242 case nir_intrinsic_global_atomic_imin:
4243 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4244 break;
4245 case nir_intrinsic_global_atomic_umin:
4246 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4247 break;
4248 case nir_intrinsic_global_atomic_imax:
4249 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4250 break;
4251 case nir_intrinsic_global_atomic_umax:
4252 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4253 break;
4254 case nir_intrinsic_global_atomic_and:
4255 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4256 break;
4257 case nir_intrinsic_global_atomic_or:
4258 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4259 break;
4260 case nir_intrinsic_global_atomic_xor:
4261 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4262 break;
4263 case nir_intrinsic_global_atomic_exchange:
4264 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4265 break;
4266 case nir_intrinsic_global_atomic_comp_swap:
4267 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4268 break;
4269 case nir_intrinsic_global_atomic_fmin:
4270 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4271 break;
4272 case nir_intrinsic_global_atomic_fmax:
4273 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4274 break;
4275 case nir_intrinsic_global_atomic_fcomp_swap:
4276 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4277 break;
4278
4279 case nir_intrinsic_load_ssbo: {
4280 assert(devinfo->gen >= 7);
4281
4282 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4283 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4284 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4285 get_nir_ssbo_intrinsic_index(bld, instr);
4286 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4287 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4288
4289 /* Make dest unsigned because that's what the temporary will be */
4290 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4291
4292 /* Read the vector */
4293 if (nir_intrinsic_align(instr) >= 4) {
4294 assert(nir_dest_bit_size(instr->dest) == 32);
4295 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4296 fs_inst *inst =
4297 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4298 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4299 inst->size_written = instr->num_components * dispatch_width * 4;
4300 } else {
4301 assert(nir_dest_bit_size(instr->dest) <= 32);
4302 assert(nir_dest_num_components(instr->dest) == 1);
4303 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4304
4305 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4306 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4307 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4308 bld.MOV(dest, read_result);
4309 }
4310 break;
4311 }
4312
4313 case nir_intrinsic_store_ssbo: {
4314 assert(devinfo->gen >= 7);
4315
4316 if (stage == MESA_SHADER_FRAGMENT)
4317 brw_wm_prog_data(prog_data)->has_side_effects = true;
4318
4319 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4320 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4321 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4322 get_nir_ssbo_intrinsic_index(bld, instr);
4323 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4324 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4325
4326 fs_reg data = get_nir_src(instr->src[0]);
4327 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4328
4329 assert(nir_intrinsic_write_mask(instr) ==
4330 (1u << instr->num_components) - 1);
4331 if (nir_intrinsic_align(instr) >= 4) {
4332 assert(nir_src_bit_size(instr->src[0]) == 32);
4333 assert(nir_src_num_components(instr->src[0]) <= 4);
4334 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4335 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4336 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4337 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4338 } else {
4339 assert(nir_src_bit_size(instr->src[0]) <= 32);
4340 assert(nir_src_num_components(instr->src[0]) == 1);
4341 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4342
4343 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4344 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4345
4346 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4347 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4348 }
4349 break;
4350 }
4351
4352 case nir_intrinsic_store_output: {
4353 fs_reg src = get_nir_src(instr->src[0]);
4354
4355 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4356 unsigned num_components = instr->num_components;
4357 unsigned first_component = nir_intrinsic_component(instr);
4358 if (nir_src_bit_size(instr->src[0]) == 64) {
4359 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4360 num_components *= 2;
4361 }
4362
4363 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4364 4 * store_offset), src.type);
4365 for (unsigned j = 0; j < num_components; j++) {
4366 bld.MOV(offset(new_dest, bld, j + first_component),
4367 offset(src, bld, j));
4368 }
4369 break;
4370 }
4371
4372 case nir_intrinsic_ssbo_atomic_add:
4373 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4374 break;
4375 case nir_intrinsic_ssbo_atomic_imin:
4376 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4377 break;
4378 case nir_intrinsic_ssbo_atomic_umin:
4379 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4380 break;
4381 case nir_intrinsic_ssbo_atomic_imax:
4382 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4383 break;
4384 case nir_intrinsic_ssbo_atomic_umax:
4385 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4386 break;
4387 case nir_intrinsic_ssbo_atomic_and:
4388 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4389 break;
4390 case nir_intrinsic_ssbo_atomic_or:
4391 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4392 break;
4393 case nir_intrinsic_ssbo_atomic_xor:
4394 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4395 break;
4396 case nir_intrinsic_ssbo_atomic_exchange:
4397 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4398 break;
4399 case nir_intrinsic_ssbo_atomic_comp_swap:
4400 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4401 break;
4402 case nir_intrinsic_ssbo_atomic_fmin:
4403 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4404 break;
4405 case nir_intrinsic_ssbo_atomic_fmax:
4406 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4407 break;
4408 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4409 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4410 break;
4411
4412 case nir_intrinsic_get_buffer_size: {
4413 assert(nir_src_num_components(instr->src[0]) == 1);
4414 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4415 nir_src_as_uint(instr->src[0]) : 0;
4416
4417 /* A resinfo's sampler message is used to get the buffer size. The
4418 * SIMD8's writeback message consists of four registers and SIMD16's
4419 * writeback message consists of 8 destination registers (two per each
4420 * component). Because we are only interested on the first channel of
4421 * the first returned component, where resinfo returns the buffer size
4422 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4423 * the dispatch width.
4424 */
4425 const fs_builder ubld = bld.exec_all().group(8, 0);
4426 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4427 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4428
4429 /* Set LOD = 0 */
4430 ubld.MOV(src_payload, brw_imm_d(0));
4431
4432 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4433 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4434 src_payload, brw_imm_ud(index));
4435 inst->header_size = 0;
4436 inst->mlen = 1;
4437 inst->size_written = 4 * REG_SIZE;
4438
4439 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4440 *
4441 * "Out-of-bounds checking is always performed at a DWord granularity. If
4442 * any part of the DWord is out-of-bounds then the whole DWord is
4443 * considered out-of-bounds."
4444 *
4445 * This implies that types with size smaller than 4-bytes need to be
4446 * padded if they don't complete the last dword of the buffer. But as we
4447 * need to maintain the original size we need to reverse the padding
4448 * calculation to return the correct size to know the number of elements
4449 * of an unsized array. As we stored in the last two bits of the surface
4450 * size the needed padding for the buffer, we calculate here the
4451 * original buffer_size reversing the surface_size calculation:
4452 *
4453 * surface_size = isl_align(buffer_size, 4) +
4454 * (isl_align(buffer_size) - buffer_size)
4455 *
4456 * buffer_size = surface_size & ~3 - surface_size & 3
4457 */
4458
4459 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4460 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4461 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4462
4463 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4464 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4465 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4466
4467 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4468 break;
4469 }
4470
4471 case nir_intrinsic_load_subgroup_invocation:
4472 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4473 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4474 break;
4475
4476 case nir_intrinsic_load_subgroup_eq_mask:
4477 case nir_intrinsic_load_subgroup_ge_mask:
4478 case nir_intrinsic_load_subgroup_gt_mask:
4479 case nir_intrinsic_load_subgroup_le_mask:
4480 case nir_intrinsic_load_subgroup_lt_mask:
4481 unreachable("not reached");
4482
4483 case nir_intrinsic_vote_any: {
4484 const fs_builder ubld = bld.exec_all().group(1, 0);
4485
4486 /* The any/all predicates do not consider channel enables. To prevent
4487 * dead channels from affecting the result, we initialize the flag with
4488 * with the identity value for the logical operation.
4489 */
4490 if (dispatch_width == 32) {
4491 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4492 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4493 brw_imm_ud(0));
4494 } else {
4495 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4496 }
4497 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4498
4499 /* For some reason, the any/all predicates don't work properly with
4500 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4501 * doesn't read the correct subset of the flag register and you end up
4502 * getting garbage in the second half. Work around this by using a pair
4503 * of 1-wide MOVs and scattering the result.
4504 */
4505 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4506 ubld.MOV(res1, brw_imm_d(0));
4507 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4508 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4509 BRW_PREDICATE_ALIGN1_ANY32H,
4510 ubld.MOV(res1, brw_imm_d(-1)));
4511
4512 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4513 break;
4514 }
4515 case nir_intrinsic_vote_all: {
4516 const fs_builder ubld = bld.exec_all().group(1, 0);
4517
4518 /* The any/all predicates do not consider channel enables. To prevent
4519 * dead channels from affecting the result, we initialize the flag with
4520 * with the identity value for the logical operation.
4521 */
4522 if (dispatch_width == 32) {
4523 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4524 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4525 brw_imm_ud(0xffffffff));
4526 } else {
4527 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4528 }
4529 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4530
4531 /* For some reason, the any/all predicates don't work properly with
4532 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4533 * doesn't read the correct subset of the flag register and you end up
4534 * getting garbage in the second half. Work around this by using a pair
4535 * of 1-wide MOVs and scattering the result.
4536 */
4537 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4538 ubld.MOV(res1, brw_imm_d(0));
4539 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4540 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4541 BRW_PREDICATE_ALIGN1_ALL32H,
4542 ubld.MOV(res1, brw_imm_d(-1)));
4543
4544 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4545 break;
4546 }
4547 case nir_intrinsic_vote_feq:
4548 case nir_intrinsic_vote_ieq: {
4549 fs_reg value = get_nir_src(instr->src[0]);
4550 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4551 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4552 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
4553 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4554 }
4555
4556 fs_reg uniformized = bld.emit_uniformize(value);
4557 const fs_builder ubld = bld.exec_all().group(1, 0);
4558
4559 /* The any/all predicates do not consider channel enables. To prevent
4560 * dead channels from affecting the result, we initialize the flag with
4561 * with the identity value for the logical operation.
4562 */
4563 if (dispatch_width == 32) {
4564 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4565 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4566 brw_imm_ud(0xffffffff));
4567 } else {
4568 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4569 }
4570 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4571
4572 /* For some reason, the any/all predicates don't work properly with
4573 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4574 * doesn't read the correct subset of the flag register and you end up
4575 * getting garbage in the second half. Work around this by using a pair
4576 * of 1-wide MOVs and scattering the result.
4577 */
4578 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4579 ubld.MOV(res1, brw_imm_d(0));
4580 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4581 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4582 BRW_PREDICATE_ALIGN1_ALL32H,
4583 ubld.MOV(res1, brw_imm_d(-1)));
4584
4585 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4586 break;
4587 }
4588
4589 case nir_intrinsic_ballot: {
4590 const fs_reg value = retype(get_nir_src(instr->src[0]),
4591 BRW_REGISTER_TYPE_UD);
4592 struct brw_reg flag = brw_flag_reg(0, 0);
4593 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4594 * as f0.0. This is a problem for fragment programs as we currently use
4595 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4596 * programs yet so this isn't a problem. When we do, something will
4597 * have to change.
4598 */
4599 if (dispatch_width == 32)
4600 flag.type = BRW_REGISTER_TYPE_UD;
4601
4602 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4603 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4604
4605 if (instr->dest.ssa.bit_size > 32) {
4606 dest.type = BRW_REGISTER_TYPE_UQ;
4607 } else {
4608 dest.type = BRW_REGISTER_TYPE_UD;
4609 }
4610 bld.MOV(dest, flag);
4611 break;
4612 }
4613
4614 case nir_intrinsic_read_invocation: {
4615 const fs_reg value = get_nir_src(instr->src[0]);
4616 const fs_reg invocation = get_nir_src(instr->src[1]);
4617 fs_reg tmp = bld.vgrf(value.type);
4618
4619 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4620 bld.emit_uniformize(invocation));
4621
4622 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4623 break;
4624 }
4625
4626 case nir_intrinsic_read_first_invocation: {
4627 const fs_reg value = get_nir_src(instr->src[0]);
4628 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4629 break;
4630 }
4631
4632 case nir_intrinsic_shuffle: {
4633 const fs_reg value = get_nir_src(instr->src[0]);
4634 const fs_reg index = get_nir_src(instr->src[1]);
4635
4636 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4637 break;
4638 }
4639
4640 case nir_intrinsic_first_invocation: {
4641 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4642 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4643 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4644 fs_reg(component(tmp, 0)));
4645 break;
4646 }
4647
4648 case nir_intrinsic_quad_broadcast: {
4649 const fs_reg value = get_nir_src(instr->src[0]);
4650 const unsigned index = nir_src_as_uint(instr->src[1]);
4651
4652 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4653 value, brw_imm_ud(index), brw_imm_ud(4));
4654 break;
4655 }
4656
4657 case nir_intrinsic_quad_swap_horizontal: {
4658 const fs_reg value = get_nir_src(instr->src[0]);
4659 const fs_reg tmp = bld.vgrf(value.type);
4660 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4661
4662 const fs_reg src_left = horiz_stride(value, 2);
4663 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4664 const fs_reg tmp_left = horiz_stride(tmp, 2);
4665 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4666
4667 ubld.MOV(tmp_left, src_right);
4668 ubld.MOV(tmp_right, src_left);
4669
4670 bld.MOV(retype(dest, value.type), tmp);
4671 break;
4672 }
4673
4674 case nir_intrinsic_quad_swap_vertical: {
4675 const fs_reg value = get_nir_src(instr->src[0]);
4676 if (nir_src_bit_size(instr->src[0]) == 32) {
4677 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4678 const fs_reg tmp = bld.vgrf(value.type);
4679 const fs_builder ubld = bld.exec_all();
4680 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4681 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4682 bld.MOV(retype(dest, value.type), tmp);
4683 } else {
4684 /* For larger data types, we have to either emit dispatch_width many
4685 * MOVs or else fall back to doing indirects.
4686 */
4687 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4688 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4689 brw_imm_w(0x2));
4690 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4691 }
4692 break;
4693 }
4694
4695 case nir_intrinsic_quad_swap_diagonal: {
4696 const fs_reg value = get_nir_src(instr->src[0]);
4697 if (nir_src_bit_size(instr->src[0]) == 32) {
4698 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4699 const fs_reg tmp = bld.vgrf(value.type);
4700 const fs_builder ubld = bld.exec_all();
4701 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4702 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4703 bld.MOV(retype(dest, value.type), tmp);
4704 } else {
4705 /* For larger data types, we have to either emit dispatch_width many
4706 * MOVs or else fall back to doing indirects.
4707 */
4708 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4709 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4710 brw_imm_w(0x3));
4711 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4712 }
4713 break;
4714 }
4715
4716 case nir_intrinsic_reduce: {
4717 fs_reg src = get_nir_src(instr->src[0]);
4718 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4719 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4720 if (cluster_size == 0 || cluster_size > dispatch_width)
4721 cluster_size = dispatch_width;
4722
4723 /* Figure out the source type */
4724 src.type = brw_type_for_nir_type(devinfo,
4725 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4726 nir_src_bit_size(instr->src[0])));
4727
4728 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4729 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4730 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4731
4732 /* Set up a register for all of our scratching around and initialize it
4733 * to reduction operation's identity value.
4734 */
4735 fs_reg scan = bld.vgrf(src.type);
4736 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4737
4738 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4739
4740 dest.type = src.type;
4741 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4742 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4743 * the distance between clusters is at least 2 GRFs. In this case,
4744 * we don't need the weird striding of the CLUSTER_BROADCAST
4745 * instruction and can just do regular MOVs.
4746 */
4747 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4748 const unsigned groups =
4749 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4750 const unsigned group_size = dispatch_width / groups;
4751 for (unsigned i = 0; i < groups; i++) {
4752 const unsigned cluster = (i * group_size) / cluster_size;
4753 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4754 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4755 component(scan, comp));
4756 }
4757 } else {
4758 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4759 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4760 }
4761 break;
4762 }
4763
4764 case nir_intrinsic_inclusive_scan:
4765 case nir_intrinsic_exclusive_scan: {
4766 fs_reg src = get_nir_src(instr->src[0]);
4767 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4768
4769 /* Figure out the source type */
4770 src.type = brw_type_for_nir_type(devinfo,
4771 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4772 nir_src_bit_size(instr->src[0])));
4773
4774 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4775 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4776 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4777
4778 /* Set up a register for all of our scratching around and initialize it
4779 * to reduction operation's identity value.
4780 */
4781 fs_reg scan = bld.vgrf(src.type);
4782 const fs_builder allbld = bld.exec_all();
4783 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4784
4785 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4786 /* Exclusive scan is a bit harder because we have to do an annoying
4787 * shift of the contents before we can begin. To make things worse,
4788 * we can't do this with a normal stride; we have to use indirects.
4789 */
4790 fs_reg shifted = bld.vgrf(src.type);
4791 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4792 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4793 brw_imm_w(-1));
4794 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4795 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4796 scan = shifted;
4797 }
4798
4799 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4800
4801 bld.MOV(retype(dest, src.type), scan);
4802 break;
4803 }
4804
4805 case nir_intrinsic_begin_invocation_interlock: {
4806 const fs_builder ubld = bld.group(8, 0);
4807 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4808
4809 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4810 REG_SIZE;
4811
4812 break;
4813 }
4814
4815 case nir_intrinsic_end_invocation_interlock: {
4816 /* We don't need to do anything here */
4817 break;
4818 }
4819
4820 default:
4821 unreachable("unknown intrinsic");
4822 }
4823 }
4824
4825 void
4826 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4827 int op, nir_intrinsic_instr *instr)
4828 {
4829 if (stage == MESA_SHADER_FRAGMENT)
4830 brw_wm_prog_data(prog_data)->has_side_effects = true;
4831
4832 fs_reg dest;
4833 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4834 dest = get_nir_dest(instr->dest);
4835
4836 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4837 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4838 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4839 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4840 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4841
4842 fs_reg data;
4843 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4844 data = get_nir_src(instr->src[2]);
4845
4846 if (op == BRW_AOP_CMPWR) {
4847 fs_reg tmp = bld.vgrf(data.type, 2);
4848 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4849 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4850 data = tmp;
4851 }
4852 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4853
4854 /* Emit the actual atomic operation */
4855
4856 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4857 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4858 }
4859
4860 void
4861 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4862 int op, nir_intrinsic_instr *instr)
4863 {
4864 if (stage == MESA_SHADER_FRAGMENT)
4865 brw_wm_prog_data(prog_data)->has_side_effects = true;
4866
4867 fs_reg dest;
4868 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4869 dest = get_nir_dest(instr->dest);
4870
4871 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4872 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4873 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4874 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4875 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4876
4877 fs_reg data = get_nir_src(instr->src[2]);
4878 if (op == BRW_AOP_FCMPWR) {
4879 fs_reg tmp = bld.vgrf(data.type, 2);
4880 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4881 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4882 data = tmp;
4883 }
4884 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4885
4886 /* Emit the actual atomic operation */
4887
4888 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4889 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4890 }
4891
4892 void
4893 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4894 int op, nir_intrinsic_instr *instr)
4895 {
4896 fs_reg dest;
4897 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4898 dest = get_nir_dest(instr->dest);
4899
4900 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4901 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4902 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4903 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4904
4905 fs_reg data;
4906 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4907 data = get_nir_src(instr->src[1]);
4908 if (op == BRW_AOP_CMPWR) {
4909 fs_reg tmp = bld.vgrf(data.type, 2);
4910 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4911 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4912 data = tmp;
4913 }
4914 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4915
4916 /* Get the offset */
4917 if (nir_src_is_const(instr->src[0])) {
4918 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4919 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4920 } else {
4921 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4922 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4923 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4924 brw_imm_ud(instr->const_index[0]));
4925 }
4926
4927 /* Emit the actual atomic operation operation */
4928
4929 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4930 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4931 }
4932
4933 void
4934 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4935 int op, nir_intrinsic_instr *instr)
4936 {
4937 fs_reg dest;
4938 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4939 dest = get_nir_dest(instr->dest);
4940
4941 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4942 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4943 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4944 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4945
4946 fs_reg data = get_nir_src(instr->src[1]);
4947 if (op == BRW_AOP_FCMPWR) {
4948 fs_reg tmp = bld.vgrf(data.type, 2);
4949 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4950 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4951 data = tmp;
4952 }
4953 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4954
4955 /* Get the offset */
4956 if (nir_src_is_const(instr->src[0])) {
4957 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4958 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4959 } else {
4960 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4961 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4962 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4963 brw_imm_ud(instr->const_index[0]));
4964 }
4965
4966 /* Emit the actual atomic operation operation */
4967
4968 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4969 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4970 }
4971
4972 void
4973 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
4974 int op, nir_intrinsic_instr *instr)
4975 {
4976 if (stage == MESA_SHADER_FRAGMENT)
4977 brw_wm_prog_data(prog_data)->has_side_effects = true;
4978
4979 fs_reg dest;
4980 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4981 dest = get_nir_dest(instr->dest);
4982
4983 fs_reg addr = get_nir_src(instr->src[0]);
4984
4985 fs_reg data;
4986 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4987 data = get_nir_src(instr->src[1]);
4988
4989 if (op == BRW_AOP_CMPWR) {
4990 fs_reg tmp = bld.vgrf(data.type, 2);
4991 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4992 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4993 data = tmp;
4994 }
4995
4996 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4997 dest, addr, data, brw_imm_ud(op));
4998 }
4999
5000 void
5001 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5002 int op, nir_intrinsic_instr *instr)
5003 {
5004 if (stage == MESA_SHADER_FRAGMENT)
5005 brw_wm_prog_data(prog_data)->has_side_effects = true;
5006
5007 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5008 fs_reg dest = get_nir_dest(instr->dest);
5009
5010 fs_reg addr = get_nir_src(instr->src[0]);
5011
5012 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5013 fs_reg data = get_nir_src(instr->src[1]);
5014
5015 if (op == BRW_AOP_FCMPWR) {
5016 fs_reg tmp = bld.vgrf(data.type, 2);
5017 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5018 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5019 data = tmp;
5020 }
5021
5022 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5023 dest, addr, data, brw_imm_ud(op));
5024 }
5025
5026 void
5027 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5028 {
5029 unsigned texture = instr->texture_index;
5030 unsigned sampler = instr->sampler_index;
5031
5032 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5033
5034 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5035 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5036
5037 int lod_components = 0;
5038
5039 /* The hardware requires a LOD for buffer textures */
5040 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5041 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5042
5043 uint32_t header_bits = 0;
5044 for (unsigned i = 0; i < instr->num_srcs; i++) {
5045 fs_reg src = get_nir_src(instr->src[i].src);
5046 switch (instr->src[i].src_type) {
5047 case nir_tex_src_bias:
5048 srcs[TEX_LOGICAL_SRC_LOD] =
5049 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5050 break;
5051 case nir_tex_src_comparator:
5052 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5053 break;
5054 case nir_tex_src_coord:
5055 switch (instr->op) {
5056 case nir_texop_txf:
5057 case nir_texop_txf_ms:
5058 case nir_texop_txf_ms_mcs:
5059 case nir_texop_samples_identical:
5060 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5061 break;
5062 default:
5063 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5064 break;
5065 }
5066 break;
5067 case nir_tex_src_ddx:
5068 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5069 lod_components = nir_tex_instr_src_size(instr, i);
5070 break;
5071 case nir_tex_src_ddy:
5072 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5073 break;
5074 case nir_tex_src_lod:
5075 switch (instr->op) {
5076 case nir_texop_txs:
5077 srcs[TEX_LOGICAL_SRC_LOD] =
5078 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5079 break;
5080 case nir_texop_txf:
5081 srcs[TEX_LOGICAL_SRC_LOD] =
5082 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5083 break;
5084 default:
5085 srcs[TEX_LOGICAL_SRC_LOD] =
5086 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5087 break;
5088 }
5089 break;
5090 case nir_tex_src_min_lod:
5091 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5092 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5093 break;
5094 case nir_tex_src_ms_index:
5095 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5096 break;
5097
5098 case nir_tex_src_offset: {
5099 uint32_t offset_bits = 0;
5100 if (brw_texture_offset(instr, i, &offset_bits)) {
5101 header_bits |= offset_bits;
5102 } else {
5103 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5104 retype(src, BRW_REGISTER_TYPE_D);
5105 }
5106 break;
5107 }
5108
5109 case nir_tex_src_projector:
5110 unreachable("should be lowered");
5111
5112 case nir_tex_src_texture_offset: {
5113 /* Emit code to evaluate the actual indexing expression */
5114 fs_reg tmp = vgrf(glsl_type::uint_type);
5115 bld.ADD(tmp, src, brw_imm_ud(texture));
5116 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5117 break;
5118 }
5119
5120 case nir_tex_src_sampler_offset: {
5121 /* Emit code to evaluate the actual indexing expression */
5122 fs_reg tmp = vgrf(glsl_type::uint_type);
5123 bld.ADD(tmp, src, brw_imm_ud(sampler));
5124 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5125 break;
5126 }
5127
5128 case nir_tex_src_ms_mcs:
5129 assert(instr->op == nir_texop_txf_ms);
5130 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5131 break;
5132
5133 case nir_tex_src_plane: {
5134 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5135 const uint32_t texture_index =
5136 instr->texture_index +
5137 stage_prog_data->binding_table.plane_start[plane] -
5138 stage_prog_data->binding_table.texture_start;
5139
5140 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5141 break;
5142 }
5143
5144 default:
5145 unreachable("unknown texture source");
5146 }
5147 }
5148
5149 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5150 (instr->op == nir_texop_txf_ms ||
5151 instr->op == nir_texop_samples_identical)) {
5152 if (devinfo->gen >= 7 &&
5153 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5154 srcs[TEX_LOGICAL_SRC_MCS] =
5155 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5156 instr->coord_components,
5157 srcs[TEX_LOGICAL_SRC_SURFACE]);
5158 } else {
5159 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5160 }
5161 }
5162
5163 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5164 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5165
5166 bool shader_supports_implicit_lod = stage == MESA_SHADER_FRAGMENT ||
5167 (stage == MESA_SHADER_COMPUTE &&
5168 nir->info.cs.derivative_group != DERIVATIVE_GROUP_NONE);
5169
5170 enum opcode opcode;
5171 switch (instr->op) {
5172 case nir_texop_tex:
5173 opcode = shader_supports_implicit_lod ?
5174 SHADER_OPCODE_TEX_LOGICAL : SHADER_OPCODE_TXL_LOGICAL;
5175 break;
5176 case nir_texop_txb:
5177 opcode = FS_OPCODE_TXB_LOGICAL;
5178 break;
5179 case nir_texop_txl:
5180 opcode = SHADER_OPCODE_TXL_LOGICAL;
5181 break;
5182 case nir_texop_txd:
5183 opcode = SHADER_OPCODE_TXD_LOGICAL;
5184 break;
5185 case nir_texop_txf:
5186 opcode = SHADER_OPCODE_TXF_LOGICAL;
5187 break;
5188 case nir_texop_txf_ms:
5189 if ((key_tex->msaa_16 & (1 << sampler)))
5190 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5191 else
5192 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5193 break;
5194 case nir_texop_txf_ms_mcs:
5195 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5196 break;
5197 case nir_texop_query_levels:
5198 case nir_texop_txs:
5199 opcode = SHADER_OPCODE_TXS_LOGICAL;
5200 break;
5201 case nir_texop_lod:
5202 opcode = SHADER_OPCODE_LOD_LOGICAL;
5203 break;
5204 case nir_texop_tg4:
5205 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5206 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5207 else
5208 opcode = SHADER_OPCODE_TG4_LOGICAL;
5209 break;
5210 case nir_texop_texture_samples:
5211 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5212 break;
5213 case nir_texop_samples_identical: {
5214 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5215
5216 /* If mcs is an immediate value, it means there is no MCS. In that case
5217 * just return false.
5218 */
5219 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5220 bld.MOV(dst, brw_imm_ud(0u));
5221 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5222 fs_reg tmp = vgrf(glsl_type::uint_type);
5223 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5224 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5225 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5226 } else {
5227 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5228 BRW_CONDITIONAL_EQ);
5229 }
5230 return;
5231 }
5232 default:
5233 unreachable("unknown texture opcode");
5234 }
5235
5236 if (instr->op == nir_texop_tg4) {
5237 if (instr->component == 1 &&
5238 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5239 /* gather4 sampler is broken for green channel on RG32F --
5240 * we must ask for blue instead.
5241 */
5242 header_bits |= 2 << 16;
5243 } else {
5244 header_bits |= instr->component << 16;
5245 }
5246 }
5247
5248 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5249 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5250 inst->offset = header_bits;
5251
5252 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5253 if (devinfo->gen >= 9 &&
5254 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5255 unsigned write_mask = instr->dest.is_ssa ?
5256 nir_ssa_def_components_read(&instr->dest.ssa):
5257 (1 << dest_size) - 1;
5258 assert(write_mask != 0); /* dead code should have been eliminated */
5259 inst->size_written = util_last_bit(write_mask) *
5260 inst->dst.component_size(inst->exec_size);
5261 } else {
5262 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5263 }
5264
5265 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5266 inst->shadow_compare = true;
5267
5268 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5269 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5270
5271 fs_reg nir_dest[4];
5272 for (unsigned i = 0; i < dest_size; i++)
5273 nir_dest[i] = offset(dst, bld, i);
5274
5275 if (instr->op == nir_texop_query_levels) {
5276 /* # levels is in .w */
5277 nir_dest[0] = offset(dst, bld, 3);
5278 } else if (instr->op == nir_texop_txs &&
5279 dest_size >= 3 && devinfo->gen < 7) {
5280 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5281 fs_reg depth = offset(dst, bld, 2);
5282 nir_dest[2] = vgrf(glsl_type::int_type);
5283 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5284 }
5285
5286 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5287 }
5288
5289 void
5290 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5291 {
5292 switch (instr->type) {
5293 case nir_jump_break:
5294 bld.emit(BRW_OPCODE_BREAK);
5295 break;
5296 case nir_jump_continue:
5297 bld.emit(BRW_OPCODE_CONTINUE);
5298 break;
5299 case nir_jump_return:
5300 default:
5301 unreachable("unknown jump");
5302 }
5303 }
5304
5305 /*
5306 * This helper takes a source register and un/shuffles it into the destination
5307 * register.
5308 *
5309 * If source type size is smaller than destination type size the operation
5310 * needed is a component shuffle. The opposite case would be an unshuffle. If
5311 * source/destination type size is equal a shuffle is done that would be
5312 * equivalent to a simple MOV.
5313 *
5314 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5315 * components .xyz 16-bit vector on SIMD8 would be.
5316 *
5317 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5318 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5319 *
5320 * This helper will return the following 2 32-bit components with the 16-bit
5321 * values shuffled:
5322 *
5323 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5324 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5325 *
5326 * For unshuffle, the example would be the opposite, a 64-bit type source
5327 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5328 * would be:
5329 *
5330 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5331 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5332 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5333 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5334 *
5335 * The returned result would be the following 4 32-bit components unshuffled:
5336 *
5337 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5338 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5339 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5340 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5341 *
5342 * - Source and destination register must not be overlapped.
5343 * - components units are measured in terms of the smaller type between
5344 * source and destination because we are un/shuffling the smaller
5345 * components from/into the bigger ones.
5346 * - first_component parameter allows skipping source components.
5347 */
5348 void
5349 shuffle_src_to_dst(const fs_builder &bld,
5350 const fs_reg &dst,
5351 const fs_reg &src,
5352 uint32_t first_component,
5353 uint32_t components)
5354 {
5355 if (type_sz(src.type) == type_sz(dst.type)) {
5356 assert(!regions_overlap(dst,
5357 type_sz(dst.type) * bld.dispatch_width() * components,
5358 offset(src, bld, first_component),
5359 type_sz(src.type) * bld.dispatch_width() * components));
5360 for (unsigned i = 0; i < components; i++) {
5361 bld.MOV(retype(offset(dst, bld, i), src.type),
5362 offset(src, bld, i + first_component));
5363 }
5364 } else if (type_sz(src.type) < type_sz(dst.type)) {
5365 /* Source is shuffled into destination */
5366 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5367 assert(!regions_overlap(dst,
5368 type_sz(dst.type) * bld.dispatch_width() *
5369 DIV_ROUND_UP(components, size_ratio),
5370 offset(src, bld, first_component),
5371 type_sz(src.type) * bld.dispatch_width() * components));
5372
5373 brw_reg_type shuffle_type =
5374 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5375 BRW_REGISTER_TYPE_D);
5376 for (unsigned i = 0; i < components; i++) {
5377 fs_reg shuffle_component_i =
5378 subscript(offset(dst, bld, i / size_ratio),
5379 shuffle_type, i % size_ratio);
5380 bld.MOV(shuffle_component_i,
5381 retype(offset(src, bld, i + first_component), shuffle_type));
5382 }
5383 } else {
5384 /* Source is unshuffled into destination */
5385 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5386 assert(!regions_overlap(dst,
5387 type_sz(dst.type) * bld.dispatch_width() * components,
5388 offset(src, bld, first_component / size_ratio),
5389 type_sz(src.type) * bld.dispatch_width() *
5390 DIV_ROUND_UP(components + (first_component % size_ratio),
5391 size_ratio)));
5392
5393 brw_reg_type shuffle_type =
5394 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5395 BRW_REGISTER_TYPE_D);
5396 for (unsigned i = 0; i < components; i++) {
5397 fs_reg shuffle_component_i =
5398 subscript(offset(src, bld, (first_component + i) / size_ratio),
5399 shuffle_type, (first_component + i) % size_ratio);
5400 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5401 shuffle_component_i);
5402 }
5403 }
5404 }
5405
5406 void
5407 shuffle_from_32bit_read(const fs_builder &bld,
5408 const fs_reg &dst,
5409 const fs_reg &src,
5410 uint32_t first_component,
5411 uint32_t components)
5412 {
5413 assert(type_sz(src.type) == 4);
5414
5415 /* This function takes components in units of the destination type while
5416 * shuffle_src_to_dst takes components in units of the smallest type
5417 */
5418 if (type_sz(dst.type) > 4) {
5419 assert(type_sz(dst.type) == 8);
5420 first_component *= 2;
5421 components *= 2;
5422 }
5423
5424 shuffle_src_to_dst(bld, dst, src, first_component, components);
5425 }
5426
5427 fs_reg
5428 shuffle_for_32bit_write(const fs_builder &bld,
5429 const fs_reg &src,
5430 uint32_t first_component,
5431 uint32_t components)
5432 {
5433 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5434 DIV_ROUND_UP (components * type_sz(src.type), 4));
5435 /* This function takes components in units of the source type while
5436 * shuffle_src_to_dst takes components in units of the smallest type
5437 */
5438 if (type_sz(src.type) > 4) {
5439 assert(type_sz(src.type) == 8);
5440 first_component *= 2;
5441 components *= 2;
5442 }
5443
5444 shuffle_src_to_dst(bld, dst, src, first_component, components);
5445
5446 return dst;
5447 }
5448
5449 fs_reg
5450 setup_imm_df(const fs_builder &bld, double v)
5451 {
5452 const struct gen_device_info *devinfo = bld.shader->devinfo;
5453 assert(devinfo->gen >= 7);
5454
5455 if (devinfo->gen >= 8)
5456 return brw_imm_df(v);
5457
5458 /* gen7.5 does not support DF immediates straighforward but the DIM
5459 * instruction allows to set the 64-bit immediate value.
5460 */
5461 if (devinfo->is_haswell) {
5462 const fs_builder ubld = bld.exec_all().group(1, 0);
5463 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5464 ubld.DIM(dst, brw_imm_df(v));
5465 return component(dst, 0);
5466 }
5467
5468 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5469 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5470 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5471 *
5472 * Alternatively, we could also produce a normal VGRF (without stride 0)
5473 * by writing to all the channels in the VGRF, however, that would hit the
5474 * gen7 bug where we have to split writes that span more than 1 register
5475 * into instructions with a width of 4 (otherwise the write to the second
5476 * register written runs into an execmask hardware bug) which isn't very
5477 * nice.
5478 */
5479 union {
5480 double d;
5481 struct {
5482 uint32_t i1;
5483 uint32_t i2;
5484 };
5485 } di;
5486
5487 di.d = v;
5488
5489 const fs_builder ubld = bld.exec_all().group(1, 0);
5490 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5491 ubld.MOV(tmp, brw_imm_ud(di.i1));
5492 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5493
5494 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5495 }
5496
5497 fs_reg
5498 setup_imm_b(const fs_builder &bld, int8_t v)
5499 {
5500 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5501 bld.MOV(tmp, brw_imm_w(v));
5502 return tmp;
5503 }
5504
5505 fs_reg
5506 setup_imm_ub(const fs_builder &bld, uint8_t v)
5507 {
5508 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5509 bld.MOV(tmp, brw_imm_uw(v));
5510 return tmp;
5511 }