intel/compiler: implement conversions from 16-bit int/float to bool
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 nir_foreach_variable(var, &nir->outputs) {
71 const int loc = var->data.driver_location;
72 if (outputs[loc].file == BAD_FILE) {
73 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s[loc]);
74 for (unsigned i = 0; i < vec4s[loc]; i++) {
75 outputs[loc + i] = offset(reg, bld, 4 * i);
76 }
77 }
78 }
79 }
80
81 void
82 fs_visitor::nir_setup_uniforms()
83 {
84 /* Only the first compile gets to set up uniforms. */
85 if (push_constant_loc) {
86 assert(pull_constant_loc);
87 return;
88 }
89
90 uniforms = nir->num_uniforms / 4;
91
92 if (stage == MESA_SHADER_COMPUTE) {
93 /* Add a uniform for the thread local id. It must be the last uniform
94 * on the list.
95 */
96 assert(uniforms == prog_data->nr_params);
97 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
98 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
99 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
100 }
101 }
102
103 static bool
104 emit_system_values_block(nir_block *block, fs_visitor *v)
105 {
106 fs_reg *reg;
107
108 nir_foreach_instr(instr, block) {
109 if (instr->type != nir_instr_type_intrinsic)
110 continue;
111
112 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
113 switch (intrin->intrinsic) {
114 case nir_intrinsic_load_vertex_id:
115 case nir_intrinsic_load_base_vertex:
116 unreachable("should be lowered by nir_lower_system_values().");
117
118 case nir_intrinsic_load_vertex_id_zero_base:
119 case nir_intrinsic_load_is_indexed_draw:
120 case nir_intrinsic_load_first_vertex:
121 case nir_intrinsic_load_instance_id:
122 case nir_intrinsic_load_base_instance:
123 case nir_intrinsic_load_draw_id:
124 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
125
126 case nir_intrinsic_load_invocation_id:
127 if (v->stage == MESA_SHADER_TESS_CTRL)
128 break;
129 assert(v->stage == MESA_SHADER_GEOMETRY);
130 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
131 if (reg->file == BAD_FILE) {
132 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
133 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
134 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
135 abld.SHR(iid, g1, brw_imm_ud(27u));
136 *reg = iid;
137 }
138 break;
139
140 case nir_intrinsic_load_sample_pos:
141 assert(v->stage == MESA_SHADER_FRAGMENT);
142 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
143 if (reg->file == BAD_FILE)
144 *reg = *v->emit_samplepos_setup();
145 break;
146
147 case nir_intrinsic_load_sample_id:
148 assert(v->stage == MESA_SHADER_FRAGMENT);
149 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
150 if (reg->file == BAD_FILE)
151 *reg = *v->emit_sampleid_setup();
152 break;
153
154 case nir_intrinsic_load_sample_mask_in:
155 assert(v->stage == MESA_SHADER_FRAGMENT);
156 assert(v->devinfo->gen >= 7);
157 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
158 if (reg->file == BAD_FILE)
159 *reg = *v->emit_samplemaskin_setup();
160 break;
161
162 case nir_intrinsic_load_work_group_id:
163 assert(v->stage == MESA_SHADER_COMPUTE);
164 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
165 if (reg->file == BAD_FILE)
166 *reg = *v->emit_cs_work_group_id_setup();
167 break;
168
169 case nir_intrinsic_load_helper_invocation:
170 assert(v->stage == MESA_SHADER_FRAGMENT);
171 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
172 if (reg->file == BAD_FILE) {
173 const fs_builder abld =
174 v->bld.annotate("gl_HelperInvocation", NULL);
175
176 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
177 * pixel mask is in g1.7 of the thread payload.
178 *
179 * We move the per-channel pixel enable bit to the low bit of each
180 * channel by shifting the byte containing the pixel mask by the
181 * vector immediate 0x76543210UV.
182 *
183 * The region of <1,8,0> reads only 1 byte (the pixel masks for
184 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
185 * masks for 2 and 3) in SIMD16.
186 */
187 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
188 abld.SHR(shifted,
189 stride(byte_offset(retype(brw_vec1_grf(1, 0),
190 BRW_REGISTER_TYPE_UB), 28),
191 1, 8, 0),
192 brw_imm_v(0x76543210));
193
194 /* A set bit in the pixel mask means the channel is enabled, but
195 * that is the opposite of gl_HelperInvocation so we need to invert
196 * the mask.
197 *
198 * The negate source-modifier bit of logical instructions on Gen8+
199 * performs 1's complement negation, so we can use that instead of
200 * a NOT instruction.
201 */
202 fs_reg inverted = negate(shifted);
203 if (v->devinfo->gen < 8) {
204 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
205 abld.NOT(inverted, shifted);
206 }
207
208 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
209 * with 1 and negating.
210 */
211 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
212 abld.AND(anded, inverted, brw_imm_uw(1));
213
214 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
215 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
216 *reg = dst;
217 }
218 break;
219
220 default:
221 break;
222 }
223 }
224
225 return true;
226 }
227
228 void
229 fs_visitor::nir_emit_system_values()
230 {
231 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
232 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
233 nir_system_values[i] = fs_reg();
234 }
235
236 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
237 * never end up using it.
238 */
239 {
240 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
241 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
242 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
243
244 const fs_builder allbld8 = abld.group(8, 0).exec_all();
245 allbld8.MOV(reg, brw_imm_v(0x76543210));
246 if (dispatch_width > 8)
247 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
248 if (dispatch_width > 16) {
249 const fs_builder allbld16 = abld.group(16, 0).exec_all();
250 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
251 }
252 }
253
254 nir_foreach_function(function, nir) {
255 assert(strcmp(function->name, "main") == 0);
256 assert(function->impl);
257 nir_foreach_block(block, function->impl) {
258 emit_system_values_block(block, this);
259 }
260 }
261 }
262
263 /*
264 * Returns a type based on a reference_type (word, float, half-float) and a
265 * given bit_size.
266 *
267 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
268 *
269 * @FIXME: 64-bit return types are always DF on integer types to maintain
270 * compability with uses of DF previously to the introduction of int64
271 * support.
272 */
273 static brw_reg_type
274 brw_reg_type_from_bit_size(const unsigned bit_size,
275 const brw_reg_type reference_type)
276 {
277 switch(reference_type) {
278 case BRW_REGISTER_TYPE_HF:
279 case BRW_REGISTER_TYPE_F:
280 case BRW_REGISTER_TYPE_DF:
281 switch(bit_size) {
282 case 16:
283 return BRW_REGISTER_TYPE_HF;
284 case 32:
285 return BRW_REGISTER_TYPE_F;
286 case 64:
287 return BRW_REGISTER_TYPE_DF;
288 default:
289 unreachable("Invalid bit size");
290 }
291 case BRW_REGISTER_TYPE_W:
292 case BRW_REGISTER_TYPE_D:
293 case BRW_REGISTER_TYPE_Q:
294 switch(bit_size) {
295 case 16:
296 return BRW_REGISTER_TYPE_W;
297 case 32:
298 return BRW_REGISTER_TYPE_D;
299 case 64:
300 return BRW_REGISTER_TYPE_Q;
301 default:
302 unreachable("Invalid bit size");
303 }
304 case BRW_REGISTER_TYPE_UW:
305 case BRW_REGISTER_TYPE_UD:
306 case BRW_REGISTER_TYPE_UQ:
307 switch(bit_size) {
308 case 16:
309 return BRW_REGISTER_TYPE_UW;
310 case 32:
311 return BRW_REGISTER_TYPE_UD;
312 case 64:
313 return BRW_REGISTER_TYPE_UQ;
314 default:
315 unreachable("Invalid bit size");
316 }
317 default:
318 unreachable("Unknown type");
319 }
320 }
321
322 void
323 fs_visitor::nir_emit_impl(nir_function_impl *impl)
324 {
325 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
326 for (unsigned i = 0; i < impl->reg_alloc; i++) {
327 nir_locals[i] = fs_reg();
328 }
329
330 foreach_list_typed(nir_register, reg, node, &impl->registers) {
331 unsigned array_elems =
332 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
333 unsigned size = array_elems * reg->num_components;
334 const brw_reg_type reg_type =
335 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
336 nir_locals[reg->index] = bld.vgrf(reg_type, size);
337 }
338
339 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
340 impl->ssa_alloc);
341
342 nir_emit_cf_list(&impl->body);
343 }
344
345 void
346 fs_visitor::nir_emit_cf_list(exec_list *list)
347 {
348 exec_list_validate(list);
349 foreach_list_typed(nir_cf_node, node, node, list) {
350 switch (node->type) {
351 case nir_cf_node_if:
352 nir_emit_if(nir_cf_node_as_if(node));
353 break;
354
355 case nir_cf_node_loop:
356 nir_emit_loop(nir_cf_node_as_loop(node));
357 break;
358
359 case nir_cf_node_block:
360 nir_emit_block(nir_cf_node_as_block(node));
361 break;
362
363 default:
364 unreachable("Invalid CFG node block");
365 }
366 }
367 }
368
369 void
370 fs_visitor::nir_emit_if(nir_if *if_stmt)
371 {
372 /* first, put the condition into f0 */
373 fs_inst *inst = bld.MOV(bld.null_reg_d(),
374 retype(get_nir_src(if_stmt->condition),
375 BRW_REGISTER_TYPE_D));
376 inst->conditional_mod = BRW_CONDITIONAL_NZ;
377
378 bld.IF(BRW_PREDICATE_NORMAL);
379
380 nir_emit_cf_list(&if_stmt->then_list);
381
382 /* note: if the else is empty, dead CF elimination will remove it */
383 bld.emit(BRW_OPCODE_ELSE);
384
385 nir_emit_cf_list(&if_stmt->else_list);
386
387 bld.emit(BRW_OPCODE_ENDIF);
388 }
389
390 void
391 fs_visitor::nir_emit_loop(nir_loop *loop)
392 {
393 bld.emit(BRW_OPCODE_DO);
394
395 nir_emit_cf_list(&loop->body);
396
397 bld.emit(BRW_OPCODE_WHILE);
398 }
399
400 void
401 fs_visitor::nir_emit_block(nir_block *block)
402 {
403 nir_foreach_instr(instr, block) {
404 nir_emit_instr(instr);
405 }
406 }
407
408 void
409 fs_visitor::nir_emit_instr(nir_instr *instr)
410 {
411 const fs_builder abld = bld.annotate(NULL, instr);
412
413 switch (instr->type) {
414 case nir_instr_type_alu:
415 nir_emit_alu(abld, nir_instr_as_alu(instr));
416 break;
417
418 case nir_instr_type_intrinsic:
419 switch (stage) {
420 case MESA_SHADER_VERTEX:
421 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
422 break;
423 case MESA_SHADER_TESS_CTRL:
424 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
425 break;
426 case MESA_SHADER_TESS_EVAL:
427 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
428 break;
429 case MESA_SHADER_GEOMETRY:
430 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
431 break;
432 case MESA_SHADER_FRAGMENT:
433 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
434 break;
435 case MESA_SHADER_COMPUTE:
436 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
437 break;
438 default:
439 unreachable("unsupported shader stage");
440 }
441 break;
442
443 case nir_instr_type_tex:
444 nir_emit_texture(abld, nir_instr_as_tex(instr));
445 break;
446
447 case nir_instr_type_load_const:
448 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
449 break;
450
451 case nir_instr_type_ssa_undef:
452 /* We create a new VGRF for undefs on every use (by handling
453 * them in get_nir_src()), rather than for each definition.
454 * This helps register coalescing eliminate MOVs from undef.
455 */
456 break;
457
458 case nir_instr_type_jump:
459 nir_emit_jump(abld, nir_instr_as_jump(instr));
460 break;
461
462 default:
463 unreachable("unknown instruction type");
464 }
465 }
466
467 /**
468 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
469 * match instr.
470 */
471 bool
472 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
473 const fs_reg &result)
474 {
475 if (!instr->src[0].src.is_ssa ||
476 !instr->src[0].src.ssa->parent_instr)
477 return false;
478
479 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
480 return false;
481
482 nir_alu_instr *src0 =
483 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
484
485 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
486 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
487 return false;
488
489 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
490 assert(element != NULL);
491
492 /* Element type to extract.*/
493 const brw_reg_type type = brw_int_type(
494 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
495 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
496
497 fs_reg op0 = get_nir_src(src0->src[0].src);
498 op0.type = brw_type_for_nir_type(devinfo,
499 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
500 nir_src_bit_size(src0->src[0].src)));
501 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
502
503 set_saturate(instr->dest.saturate,
504 bld.MOV(result, subscript(op0, type, element->u32[0])));
505 return true;
506 }
507
508 bool
509 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
510 const fs_reg &result)
511 {
512 if (!instr->src[0].src.is_ssa ||
513 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
514 return false;
515
516 nir_intrinsic_instr *src0 =
517 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
518
519 if (src0->intrinsic != nir_intrinsic_load_front_face)
520 return false;
521
522 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
523 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
524 return false;
525
526 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
527 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
528 return false;
529
530 fs_reg tmp = vgrf(glsl_type::int_type);
531
532 if (devinfo->gen >= 6) {
533 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
534 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
535
536 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
537 *
538 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
539 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
540 *
541 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
542 *
543 * This negation looks like it's safe in practice, because bits 0:4 will
544 * surely be TRIANGLES
545 */
546
547 if (value1->f32[0] == -1.0f) {
548 g0.negate = true;
549 }
550
551 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
552 g0, brw_imm_uw(0x3f80));
553 } else {
554 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
555 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
556
557 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
558 *
559 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
560 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
561 *
562 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
563 *
564 * This negation looks like it's safe in practice, because bits 0:4 will
565 * surely be TRIANGLES
566 */
567
568 if (value1->f32[0] == -1.0f) {
569 g1_6.negate = true;
570 }
571
572 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
573 }
574 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
575
576 return true;
577 }
578
579 static void
580 emit_find_msb_using_lzd(const fs_builder &bld,
581 const fs_reg &result,
582 const fs_reg &src,
583 bool is_signed)
584 {
585 fs_inst *inst;
586 fs_reg temp = src;
587
588 if (is_signed) {
589 /* LZD of an absolute value source almost always does the right
590 * thing. There are two problem values:
591 *
592 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
593 * 0. However, findMSB(int(0x80000000)) == 30.
594 *
595 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
596 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
597 *
598 * For a value of zero or negative one, -1 will be returned.
599 *
600 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
601 * findMSB(-(1<<x)) should return x-1.
602 *
603 * For all negative number cases, including 0x80000000 and
604 * 0xffffffff, the correct value is obtained from LZD if instead of
605 * negating the (already negative) value the logical-not is used. A
606 * conditonal logical-not can be achieved in two instructions.
607 */
608 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
609
610 bld.ASR(temp, src, brw_imm_d(31));
611 bld.XOR(temp, temp, src);
612 }
613
614 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
615 retype(temp, BRW_REGISTER_TYPE_UD));
616
617 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
618 * from the LSB side. Subtract the result from 31 to convert the MSB
619 * count into an LSB count. If no bits are set, LZD will return 32.
620 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
621 */
622 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
623 inst->src[0].negate = true;
624 }
625
626 static brw_rnd_mode
627 brw_rnd_mode_from_nir_op (const nir_op op) {
628 switch (op) {
629 case nir_op_f2f16_rtz:
630 return BRW_RND_MODE_RTZ;
631 case nir_op_f2f16_rtne:
632 return BRW_RND_MODE_RTNE;
633 default:
634 unreachable("Operation doesn't support rounding mode");
635 }
636 }
637
638 void
639 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
640 {
641 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
642 fs_inst *inst;
643
644 fs_reg result = get_nir_dest(instr->dest.dest);
645 result.type = brw_type_for_nir_type(devinfo,
646 (nir_alu_type)(nir_op_infos[instr->op].output_type |
647 nir_dest_bit_size(instr->dest.dest)));
648
649 fs_reg op[4];
650 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
651 op[i] = get_nir_src(instr->src[i].src);
652 op[i].type = brw_type_for_nir_type(devinfo,
653 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
654 nir_src_bit_size(instr->src[i].src)));
655 op[i].abs = instr->src[i].abs;
656 op[i].negate = instr->src[i].negate;
657 }
658
659 /* We get a bunch of mov's out of the from_ssa pass and they may still
660 * be vectorized. We'll handle them as a special-case. We'll also
661 * handle vecN here because it's basically the same thing.
662 */
663 switch (instr->op) {
664 case nir_op_imov:
665 case nir_op_fmov:
666 case nir_op_vec2:
667 case nir_op_vec3:
668 case nir_op_vec4: {
669 fs_reg temp = result;
670 bool need_extra_copy = false;
671 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
672 if (!instr->src[i].src.is_ssa &&
673 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
674 need_extra_copy = true;
675 temp = bld.vgrf(result.type, 4);
676 break;
677 }
678 }
679
680 for (unsigned i = 0; i < 4; i++) {
681 if (!(instr->dest.write_mask & (1 << i)))
682 continue;
683
684 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
685 inst = bld.MOV(offset(temp, bld, i),
686 offset(op[0], bld, instr->src[0].swizzle[i]));
687 } else {
688 inst = bld.MOV(offset(temp, bld, i),
689 offset(op[i], bld, instr->src[i].swizzle[0]));
690 }
691 inst->saturate = instr->dest.saturate;
692 }
693
694 /* In this case the source and destination registers were the same,
695 * so we need to insert an extra set of moves in order to deal with
696 * any swizzling.
697 */
698 if (need_extra_copy) {
699 for (unsigned i = 0; i < 4; i++) {
700 if (!(instr->dest.write_mask & (1 << i)))
701 continue;
702
703 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
704 }
705 }
706 return;
707 }
708 default:
709 break;
710 }
711
712 /* At this point, we have dealt with any instruction that operates on
713 * more than a single channel. Therefore, we can just adjust the source
714 * and destination registers for that channel and emit the instruction.
715 */
716 unsigned channel = 0;
717 if (nir_op_infos[instr->op].output_size == 0) {
718 /* Since NIR is doing the scalarizing for us, we should only ever see
719 * vectorized operations with a single channel.
720 */
721 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
722 channel = ffs(instr->dest.write_mask) - 1;
723
724 result = offset(result, bld, channel);
725 }
726
727 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
728 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
729 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
730 }
731
732 switch (instr->op) {
733 case nir_op_i2f32:
734 case nir_op_u2f32:
735 if (optimize_extract_to_float(instr, result))
736 return;
737 inst = bld.MOV(result, op[0]);
738 inst->saturate = instr->dest.saturate;
739 break;
740
741 case nir_op_f2f16_rtne:
742 case nir_op_f2f16_rtz:
743 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
744 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
745 /* fallthrough */
746
747 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
748 * on the HW gen, it is a special hw opcode or just a MOV, and
749 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
750 *
751 * But if we want to use that opcode, we need to provide support on
752 * different optimizations and lowerings. As right now HF support is
753 * only for gen8+, it will be better to use directly the MOV, and use
754 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
755 */
756
757 case nir_op_f2f16_undef:
758 inst = bld.MOV(result, op[0]);
759 inst->saturate = instr->dest.saturate;
760 break;
761
762 case nir_op_f2f64:
763 case nir_op_f2i64:
764 case nir_op_f2u64:
765 case nir_op_i2f64:
766 case nir_op_i2i64:
767 case nir_op_u2f64:
768 case nir_op_u2u64:
769 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
770 *
771 * "When source or destination is 64b (...), regioning in Align1
772 * must follow these rules:
773 *
774 * 1. Source and destination horizontal stride must be aligned to
775 * the same qword.
776 * (...)"
777 *
778 * This means that 32-bit to 64-bit conversions need to have the 32-bit
779 * data elements aligned to 64-bit. This restriction does not apply to
780 * BDW and later.
781 */
782 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
783 nir_src_bit_size(instr->src[0].src) == 32 &&
784 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
785 fs_reg tmp = bld.vgrf(result.type, 1);
786 tmp = subscript(tmp, op[0].type, 0);
787 inst = bld.MOV(tmp, op[0]);
788 inst = bld.MOV(result, tmp);
789 inst->saturate = instr->dest.saturate;
790 break;
791 }
792 /* fallthrough */
793 case nir_op_f2f32:
794 case nir_op_f2i32:
795 case nir_op_f2u32:
796 case nir_op_f2i16:
797 case nir_op_f2u16:
798 case nir_op_i2i32:
799 case nir_op_u2u32:
800 case nir_op_i2i16:
801 case nir_op_u2u16:
802 case nir_op_i2f16:
803 case nir_op_u2f16:
804 inst = bld.MOV(result, op[0]);
805 inst->saturate = instr->dest.saturate;
806 break;
807
808 case nir_op_fsign: {
809 if (op[0].abs) {
810 /* Straightforward since the source can be assumed to be
811 * non-negative.
812 */
813 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
814 set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
815
816 } else if (type_sz(op[0].type) < 8) {
817 /* AND(val, 0x80000000) gives the sign bit.
818 *
819 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
820 * zero.
821 */
822 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
823
824 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
825 op[0].type = BRW_REGISTER_TYPE_UD;
826 result.type = BRW_REGISTER_TYPE_UD;
827 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
828
829 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
830 inst->predicate = BRW_PREDICATE_NORMAL;
831 if (instr->dest.saturate) {
832 inst = bld.MOV(result, result);
833 inst->saturate = true;
834 }
835 } else {
836 /* For doubles we do the same but we need to consider:
837 *
838 * - 2-src instructions can't operate with 64-bit immediates
839 * - The sign is encoded in the high 32-bit of each DF
840 * - We need to produce a DF result.
841 */
842
843 fs_reg zero = vgrf(glsl_type::double_type);
844 bld.MOV(zero, setup_imm_df(bld, 0.0));
845 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
846
847 bld.MOV(result, zero);
848
849 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
850 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
851 brw_imm_ud(0x80000000u));
852
853 set_predicate(BRW_PREDICATE_NORMAL,
854 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
855
856 if (instr->dest.saturate) {
857 inst = bld.MOV(result, result);
858 inst->saturate = true;
859 }
860 }
861 break;
862 }
863
864 case nir_op_isign: {
865 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
866 * -> non-negative val generates 0x00000000.
867 * Predicated OR sets 1 if val is positive.
868 */
869 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
870 assert(bit_size == 32 || bit_size == 16);
871
872 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
873 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
874 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
875
876 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
877 bld.ASR(result, op[0], shift);
878 inst = bld.OR(result, result, one);
879 inst->predicate = BRW_PREDICATE_NORMAL;
880 break;
881 }
882
883 case nir_op_frcp:
884 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
885 inst->saturate = instr->dest.saturate;
886 break;
887
888 case nir_op_fexp2:
889 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
890 inst->saturate = instr->dest.saturate;
891 break;
892
893 case nir_op_flog2:
894 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
895 inst->saturate = instr->dest.saturate;
896 break;
897
898 case nir_op_fsin:
899 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
900 inst->saturate = instr->dest.saturate;
901 break;
902
903 case nir_op_fcos:
904 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
905 inst->saturate = instr->dest.saturate;
906 break;
907
908 case nir_op_fddx:
909 if (fs_key->high_quality_derivatives) {
910 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
911 } else {
912 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
913 }
914 inst->saturate = instr->dest.saturate;
915 break;
916 case nir_op_fddx_fine:
917 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
918 inst->saturate = instr->dest.saturate;
919 break;
920 case nir_op_fddx_coarse:
921 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
922 inst->saturate = instr->dest.saturate;
923 break;
924 case nir_op_fddy:
925 if (fs_key->high_quality_derivatives) {
926 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
927 } else {
928 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
929 }
930 inst->saturate = instr->dest.saturate;
931 break;
932 case nir_op_fddy_fine:
933 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936 case nir_op_fddy_coarse:
937 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
938 inst->saturate = instr->dest.saturate;
939 break;
940
941 case nir_op_iadd:
942 case nir_op_fadd:
943 inst = bld.ADD(result, op[0], op[1]);
944 inst->saturate = instr->dest.saturate;
945 break;
946
947 case nir_op_fmul:
948 inst = bld.MUL(result, op[0], op[1]);
949 inst->saturate = instr->dest.saturate;
950 break;
951
952 case nir_op_imul:
953 assert(nir_dest_bit_size(instr->dest.dest) < 64);
954 bld.MUL(result, op[0], op[1]);
955 break;
956
957 case nir_op_imul_high:
958 case nir_op_umul_high:
959 assert(nir_dest_bit_size(instr->dest.dest) < 64);
960 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
961 break;
962
963 case nir_op_idiv:
964 case nir_op_udiv:
965 assert(nir_dest_bit_size(instr->dest.dest) < 64);
966 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
967 break;
968
969 case nir_op_uadd_carry:
970 unreachable("Should have been lowered by carry_to_arith().");
971
972 case nir_op_usub_borrow:
973 unreachable("Should have been lowered by borrow_to_arith().");
974
975 case nir_op_umod:
976 case nir_op_irem:
977 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
978 * appears that our hardware just does the right thing for signed
979 * remainder.
980 */
981 assert(nir_dest_bit_size(instr->dest.dest) < 64);
982 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
983 break;
984
985 case nir_op_imod: {
986 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
987 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
988
989 /* Math instructions don't support conditional mod */
990 inst = bld.MOV(bld.null_reg_d(), result);
991 inst->conditional_mod = BRW_CONDITIONAL_NZ;
992
993 /* Now, we need to determine if signs of the sources are different.
994 * When we XOR the sources, the top bit is 0 if they are the same and 1
995 * if they are different. We can then use a conditional modifier to
996 * turn that into a predicate. This leads us to an XOR.l instruction.
997 *
998 * Technically, according to the PRM, you're not allowed to use .l on a
999 * XOR instruction. However, emperical experiments and Curro's reading
1000 * of the simulator source both indicate that it's safe.
1001 */
1002 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1003 inst = bld.XOR(tmp, op[0], op[1]);
1004 inst->predicate = BRW_PREDICATE_NORMAL;
1005 inst->conditional_mod = BRW_CONDITIONAL_L;
1006
1007 /* If the result of the initial remainder operation is non-zero and the
1008 * two sources have different signs, add in a copy of op[1] to get the
1009 * final integer modulus value.
1010 */
1011 inst = bld.ADD(result, result, op[1]);
1012 inst->predicate = BRW_PREDICATE_NORMAL;
1013 break;
1014 }
1015
1016 case nir_op_flt:
1017 case nir_op_fge:
1018 case nir_op_feq:
1019 case nir_op_fne: {
1020 fs_reg dest = result;
1021 if (nir_src_bit_size(instr->src[0].src) > 32) {
1022 dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
1023 }
1024 brw_conditional_mod cond;
1025 switch (instr->op) {
1026 case nir_op_flt:
1027 cond = BRW_CONDITIONAL_L;
1028 break;
1029 case nir_op_fge:
1030 cond = BRW_CONDITIONAL_GE;
1031 break;
1032 case nir_op_feq:
1033 cond = BRW_CONDITIONAL_Z;
1034 break;
1035 case nir_op_fne:
1036 cond = BRW_CONDITIONAL_NZ;
1037 break;
1038 default:
1039 unreachable("bad opcode");
1040 }
1041 bld.CMP(dest, op[0], op[1], cond);
1042 if (nir_src_bit_size(instr->src[0].src) > 32) {
1043 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1044 }
1045 break;
1046 }
1047
1048 case nir_op_ilt:
1049 case nir_op_ult:
1050 case nir_op_ige:
1051 case nir_op_uge:
1052 case nir_op_ieq:
1053 case nir_op_ine: {
1054 fs_reg dest = result;
1055 if (nir_src_bit_size(instr->src[0].src) > 32) {
1056 dest = bld.vgrf(BRW_REGISTER_TYPE_UQ, 1);
1057 }
1058
1059 brw_conditional_mod cond;
1060 switch (instr->op) {
1061 case nir_op_ilt:
1062 case nir_op_ult:
1063 cond = BRW_CONDITIONAL_L;
1064 break;
1065 case nir_op_ige:
1066 case nir_op_uge:
1067 cond = BRW_CONDITIONAL_GE;
1068 break;
1069 case nir_op_ieq:
1070 cond = BRW_CONDITIONAL_Z;
1071 break;
1072 case nir_op_ine:
1073 cond = BRW_CONDITIONAL_NZ;
1074 break;
1075 default:
1076 unreachable("bad opcode");
1077 }
1078 bld.CMP(dest, op[0], op[1], cond);
1079 if (nir_src_bit_size(instr->src[0].src) > 32) {
1080 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1081 }
1082 break;
1083 }
1084
1085 case nir_op_inot:
1086 if (devinfo->gen >= 8) {
1087 op[0] = resolve_source_modifiers(op[0]);
1088 }
1089 bld.NOT(result, op[0]);
1090 break;
1091 case nir_op_ixor:
1092 if (devinfo->gen >= 8) {
1093 op[0] = resolve_source_modifiers(op[0]);
1094 op[1] = resolve_source_modifiers(op[1]);
1095 }
1096 bld.XOR(result, op[0], op[1]);
1097 break;
1098 case nir_op_ior:
1099 if (devinfo->gen >= 8) {
1100 op[0] = resolve_source_modifiers(op[0]);
1101 op[1] = resolve_source_modifiers(op[1]);
1102 }
1103 bld.OR(result, op[0], op[1]);
1104 break;
1105 case nir_op_iand:
1106 if (devinfo->gen >= 8) {
1107 op[0] = resolve_source_modifiers(op[0]);
1108 op[1] = resolve_source_modifiers(op[1]);
1109 }
1110 bld.AND(result, op[0], op[1]);
1111 break;
1112
1113 case nir_op_fdot2:
1114 case nir_op_fdot3:
1115 case nir_op_fdot4:
1116 case nir_op_ball_fequal2:
1117 case nir_op_ball_iequal2:
1118 case nir_op_ball_fequal3:
1119 case nir_op_ball_iequal3:
1120 case nir_op_ball_fequal4:
1121 case nir_op_ball_iequal4:
1122 case nir_op_bany_fnequal2:
1123 case nir_op_bany_inequal2:
1124 case nir_op_bany_fnequal3:
1125 case nir_op_bany_inequal3:
1126 case nir_op_bany_fnequal4:
1127 case nir_op_bany_inequal4:
1128 unreachable("Lowered by nir_lower_alu_reductions");
1129
1130 case nir_op_fnoise1_1:
1131 case nir_op_fnoise1_2:
1132 case nir_op_fnoise1_3:
1133 case nir_op_fnoise1_4:
1134 case nir_op_fnoise2_1:
1135 case nir_op_fnoise2_2:
1136 case nir_op_fnoise2_3:
1137 case nir_op_fnoise2_4:
1138 case nir_op_fnoise3_1:
1139 case nir_op_fnoise3_2:
1140 case nir_op_fnoise3_3:
1141 case nir_op_fnoise3_4:
1142 case nir_op_fnoise4_1:
1143 case nir_op_fnoise4_2:
1144 case nir_op_fnoise4_3:
1145 case nir_op_fnoise4_4:
1146 unreachable("not reached: should be handled by lower_noise");
1147
1148 case nir_op_ldexp:
1149 unreachable("not reached: should be handled by ldexp_to_arith()");
1150
1151 case nir_op_fsqrt:
1152 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1153 inst->saturate = instr->dest.saturate;
1154 break;
1155
1156 case nir_op_frsq:
1157 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1158 inst->saturate = instr->dest.saturate;
1159 break;
1160
1161 case nir_op_b2i:
1162 case nir_op_b2f:
1163 bld.MOV(result, negate(op[0]));
1164 break;
1165
1166 case nir_op_i2b:
1167 case nir_op_f2b: {
1168 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1169 if (bit_size == 64) {
1170 /* two-argument instructions can't take 64-bit immediates */
1171 fs_reg zero;
1172 fs_reg tmp;
1173
1174 if (instr->op == nir_op_f2b) {
1175 zero = vgrf(glsl_type::double_type);
1176 tmp = vgrf(glsl_type::double_type);
1177 bld.MOV(zero, setup_imm_df(bld, 0.0));
1178 } else {
1179 zero = vgrf(glsl_type::int64_t_type);
1180 tmp = vgrf(glsl_type::int64_t_type);
1181 bld.MOV(zero, brw_imm_q(0));
1182 }
1183
1184 /* A SIMD16 execution needs to be split in two instructions, so use
1185 * a vgrf instead of the flag register as dst so instruction splitting
1186 * works
1187 */
1188 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1189 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1190 } else {
1191 fs_reg zero;
1192 if (bit_size == 32) {
1193 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1194 } else {
1195 assert(bit_size == 16);
1196 zero = instr->op == nir_op_f2b ?
1197 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1198 }
1199 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1200 }
1201 break;
1202 }
1203
1204 case nir_op_ftrunc:
1205 inst = bld.RNDZ(result, op[0]);
1206 inst->saturate = instr->dest.saturate;
1207 break;
1208
1209 case nir_op_fceil: {
1210 op[0].negate = !op[0].negate;
1211 fs_reg temp = vgrf(glsl_type::float_type);
1212 bld.RNDD(temp, op[0]);
1213 temp.negate = true;
1214 inst = bld.MOV(result, temp);
1215 inst->saturate = instr->dest.saturate;
1216 break;
1217 }
1218 case nir_op_ffloor:
1219 inst = bld.RNDD(result, op[0]);
1220 inst->saturate = instr->dest.saturate;
1221 break;
1222 case nir_op_ffract:
1223 inst = bld.FRC(result, op[0]);
1224 inst->saturate = instr->dest.saturate;
1225 break;
1226 case nir_op_fround_even:
1227 inst = bld.RNDE(result, op[0]);
1228 inst->saturate = instr->dest.saturate;
1229 break;
1230
1231 case nir_op_fquantize2f16: {
1232 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1233 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1234 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1235
1236 /* The destination stride must be at least as big as the source stride. */
1237 tmp16.type = BRW_REGISTER_TYPE_W;
1238 tmp16.stride = 2;
1239
1240 /* Check for denormal */
1241 fs_reg abs_src0 = op[0];
1242 abs_src0.abs = true;
1243 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1244 BRW_CONDITIONAL_L);
1245 /* Get the appropriately signed zero */
1246 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1247 retype(op[0], BRW_REGISTER_TYPE_UD),
1248 brw_imm_ud(0x80000000));
1249 /* Do the actual F32 -> F16 -> F32 conversion */
1250 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1251 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1252 /* Select that or zero based on normal status */
1253 inst = bld.SEL(result, zero, tmp32);
1254 inst->predicate = BRW_PREDICATE_NORMAL;
1255 inst->saturate = instr->dest.saturate;
1256 break;
1257 }
1258
1259 case nir_op_imin:
1260 case nir_op_umin:
1261 case nir_op_fmin:
1262 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1263 inst->saturate = instr->dest.saturate;
1264 break;
1265
1266 case nir_op_imax:
1267 case nir_op_umax:
1268 case nir_op_fmax:
1269 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1270 inst->saturate = instr->dest.saturate;
1271 break;
1272
1273 case nir_op_pack_snorm_2x16:
1274 case nir_op_pack_snorm_4x8:
1275 case nir_op_pack_unorm_2x16:
1276 case nir_op_pack_unorm_4x8:
1277 case nir_op_unpack_snorm_2x16:
1278 case nir_op_unpack_snorm_4x8:
1279 case nir_op_unpack_unorm_2x16:
1280 case nir_op_unpack_unorm_4x8:
1281 case nir_op_unpack_half_2x16:
1282 case nir_op_pack_half_2x16:
1283 unreachable("not reached: should be handled by lower_packing_builtins");
1284
1285 case nir_op_unpack_half_2x16_split_x:
1286 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1287 inst->saturate = instr->dest.saturate;
1288 break;
1289 case nir_op_unpack_half_2x16_split_y:
1290 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1291 inst->saturate = instr->dest.saturate;
1292 break;
1293
1294 case nir_op_pack_64_2x32_split:
1295 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1296 break;
1297
1298 case nir_op_unpack_64_2x32_split_x:
1299 case nir_op_unpack_64_2x32_split_y: {
1300 if (instr->op == nir_op_unpack_64_2x32_split_x)
1301 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1302 else
1303 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1304 break;
1305 }
1306
1307 case nir_op_fpow:
1308 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1309 inst->saturate = instr->dest.saturate;
1310 break;
1311
1312 case nir_op_bitfield_reverse:
1313 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1314 bld.BFREV(result, op[0]);
1315 break;
1316
1317 case nir_op_bit_count:
1318 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1319 bld.CBIT(result, op[0]);
1320 break;
1321
1322 case nir_op_ufind_msb: {
1323 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1324 emit_find_msb_using_lzd(bld, result, op[0], false);
1325 break;
1326 }
1327
1328 case nir_op_ifind_msb: {
1329 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1330
1331 if (devinfo->gen < 7) {
1332 emit_find_msb_using_lzd(bld, result, op[0], true);
1333 } else {
1334 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1335
1336 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1337 * count from the LSB side. If FBH didn't return an error
1338 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1339 * count into an LSB count.
1340 */
1341 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1342
1343 inst = bld.ADD(result, result, brw_imm_d(31));
1344 inst->predicate = BRW_PREDICATE_NORMAL;
1345 inst->src[0].negate = true;
1346 }
1347 break;
1348 }
1349
1350 case nir_op_find_lsb:
1351 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1352
1353 if (devinfo->gen < 7) {
1354 fs_reg temp = vgrf(glsl_type::int_type);
1355
1356 /* (x & -x) generates a value that consists of only the LSB of x.
1357 * For all powers of 2, findMSB(y) == findLSB(y).
1358 */
1359 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1360 fs_reg negated_src = src;
1361
1362 /* One must be negated, and the other must be non-negated. It
1363 * doesn't matter which is which.
1364 */
1365 negated_src.negate = true;
1366 src.negate = false;
1367
1368 bld.AND(temp, src, negated_src);
1369 emit_find_msb_using_lzd(bld, result, temp, false);
1370 } else {
1371 bld.FBL(result, op[0]);
1372 }
1373 break;
1374
1375 case nir_op_ubitfield_extract:
1376 case nir_op_ibitfield_extract:
1377 unreachable("should have been lowered");
1378 case nir_op_ubfe:
1379 case nir_op_ibfe:
1380 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1381 bld.BFE(result, op[2], op[1], op[0]);
1382 break;
1383 case nir_op_bfm:
1384 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1385 bld.BFI1(result, op[0], op[1]);
1386 break;
1387 case nir_op_bfi:
1388 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1389 bld.BFI2(result, op[0], op[1], op[2]);
1390 break;
1391
1392 case nir_op_bitfield_insert:
1393 unreachable("not reached: should have been lowered");
1394
1395 case nir_op_ishl:
1396 case nir_op_ishr:
1397 case nir_op_ushr: {
1398 fs_reg shift_count = op[1];
1399
1400 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1401 if (op[1].file == VGRF &&
1402 (result.type == BRW_REGISTER_TYPE_Q ||
1403 result.type == BRW_REGISTER_TYPE_UQ)) {
1404 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1405 BRW_REGISTER_TYPE_UD);
1406 shift_count.stride = 2;
1407 bld.MOV(shift_count, op[1]);
1408 }
1409 }
1410
1411 switch (instr->op) {
1412 case nir_op_ishl:
1413 bld.SHL(result, op[0], shift_count);
1414 break;
1415 case nir_op_ishr:
1416 bld.ASR(result, op[0], shift_count);
1417 break;
1418 case nir_op_ushr:
1419 bld.SHR(result, op[0], shift_count);
1420 break;
1421 default:
1422 unreachable("not reached");
1423 }
1424 break;
1425 }
1426
1427 case nir_op_pack_half_2x16_split:
1428 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1429 break;
1430
1431 case nir_op_ffma:
1432 inst = bld.MAD(result, op[2], op[1], op[0]);
1433 inst->saturate = instr->dest.saturate;
1434 break;
1435
1436 case nir_op_flrp:
1437 inst = bld.LRP(result, op[0], op[1], op[2]);
1438 inst->saturate = instr->dest.saturate;
1439 break;
1440
1441 case nir_op_bcsel:
1442 if (optimize_frontfacing_ternary(instr, result))
1443 return;
1444
1445 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1446 inst = bld.SEL(result, op[1], op[2]);
1447 inst->predicate = BRW_PREDICATE_NORMAL;
1448 break;
1449
1450 case nir_op_extract_u8:
1451 case nir_op_extract_i8: {
1452 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1453 assert(byte != NULL);
1454
1455 /* The PRMs say:
1456 *
1457 * BDW+
1458 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1459 * Use two instructions and a word or DWord intermediate integer type.
1460 */
1461 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1462 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1463
1464 if (instr->op == nir_op_extract_i8) {
1465 /* If we need to sign extend, extract to a word first */
1466 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1467 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1468 bld.MOV(result, w_temp);
1469 } else {
1470 /* Otherwise use an AND with 0xff and a word type */
1471 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1472 }
1473 } else {
1474 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1475 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1476 }
1477 break;
1478 }
1479
1480 case nir_op_extract_u16:
1481 case nir_op_extract_i16: {
1482 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1483 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1484 assert(word != NULL);
1485 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1486 break;
1487 }
1488
1489 default:
1490 unreachable("unhandled instruction");
1491 }
1492
1493 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1494 * to sign extend the low bit to 0/~0
1495 */
1496 if (devinfo->gen <= 5 &&
1497 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1498 fs_reg masked = vgrf(glsl_type::int_type);
1499 bld.AND(masked, result, brw_imm_d(1));
1500 masked.negate = true;
1501 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1502 }
1503 }
1504
1505 void
1506 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1507 nir_load_const_instr *instr)
1508 {
1509 const brw_reg_type reg_type =
1510 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1511 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1512
1513 switch (instr->def.bit_size) {
1514 case 32:
1515 for (unsigned i = 0; i < instr->def.num_components; i++)
1516 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1517 break;
1518
1519 case 64:
1520 assert(devinfo->gen >= 7);
1521 if (devinfo->gen == 7) {
1522 /* We don't get 64-bit integer types until gen8 */
1523 for (unsigned i = 0; i < instr->def.num_components; i++) {
1524 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1525 setup_imm_df(bld, instr->value.f64[i]));
1526 }
1527 } else {
1528 for (unsigned i = 0; i < instr->def.num_components; i++)
1529 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1530 }
1531 break;
1532
1533 default:
1534 unreachable("Invalid bit size");
1535 }
1536
1537 nir_ssa_values[instr->def.index] = reg;
1538 }
1539
1540 fs_reg
1541 fs_visitor::get_nir_src(const nir_src &src)
1542 {
1543 fs_reg reg;
1544 if (src.is_ssa) {
1545 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1546 const brw_reg_type reg_type =
1547 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1548 reg = bld.vgrf(reg_type, src.ssa->num_components);
1549 } else {
1550 reg = nir_ssa_values[src.ssa->index];
1551 }
1552 } else {
1553 /* We don't handle indirects on locals */
1554 assert(src.reg.indirect == NULL);
1555 reg = offset(nir_locals[src.reg.reg->index], bld,
1556 src.reg.base_offset * src.reg.reg->num_components);
1557 }
1558
1559 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1560 /* The only 64-bit type available on gen7 is DF, so use that. */
1561 reg.type = BRW_REGISTER_TYPE_DF;
1562 } else {
1563 /* To avoid floating-point denorm flushing problems, set the type by
1564 * default to an integer type - instructions that need floating point
1565 * semantics will set this to F if they need to
1566 */
1567 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1568 BRW_REGISTER_TYPE_D);
1569 }
1570
1571 return reg;
1572 }
1573
1574 /**
1575 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1576 *
1577 * This function should not be called on any value which may be 64 bits.
1578 * We could theoretically support 64-bit on gen8+ but we choose not to
1579 * because it wouldn't work in general (no gen7 support) and there are
1580 * enough restrictions in 64-bit immediates that you can't take the return
1581 * value and treat it the same as the result of get_nir_src().
1582 */
1583 fs_reg
1584 fs_visitor::get_nir_src_imm(const nir_src &src)
1585 {
1586 nir_const_value *val = nir_src_as_const_value(src);
1587 assert(nir_src_bit_size(src) == 32);
1588 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1589 }
1590
1591 fs_reg
1592 fs_visitor::get_nir_dest(const nir_dest &dest)
1593 {
1594 if (dest.is_ssa) {
1595 const brw_reg_type reg_type =
1596 brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
1597 nir_ssa_values[dest.ssa.index] =
1598 bld.vgrf(reg_type, dest.ssa.num_components);
1599 return nir_ssa_values[dest.ssa.index];
1600 } else {
1601 /* We don't handle indirects on locals */
1602 assert(dest.reg.indirect == NULL);
1603 return offset(nir_locals[dest.reg.reg->index], bld,
1604 dest.reg.base_offset * dest.reg.reg->num_components);
1605 }
1606 }
1607
1608 fs_reg
1609 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1610 {
1611 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1612 BRW_REGISTER_TYPE_UD);
1613 fs_reg indirect;
1614 unsigned indirect_max = 0;
1615
1616 for (const nir_deref *tail = &deref->deref; tail->child;
1617 tail = tail->child) {
1618 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1619 assert(tail->child->deref_type == nir_deref_type_array);
1620 const unsigned size = glsl_get_length(tail->type);
1621 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1622 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1623 image = offset(image, bld, base * element_size);
1624
1625 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1626 fs_reg tmp = vgrf(glsl_type::uint_type);
1627
1628 /* Accessing an invalid surface index with the dataport can result
1629 * in a hang. According to the spec "if the index used to
1630 * select an individual element is negative or greater than or
1631 * equal to the size of the array, the results of the operation
1632 * are undefined but may not lead to termination" -- which is one
1633 * of the possible outcomes of the hang. Clamp the index to
1634 * prevent access outside of the array bounds.
1635 */
1636 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1637 BRW_REGISTER_TYPE_UD),
1638 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1639
1640 indirect_max += element_size * (tail->type->length - 1);
1641
1642 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1643 if (indirect.file == BAD_FILE) {
1644 indirect = tmp;
1645 } else {
1646 bld.ADD(indirect, indirect, tmp);
1647 }
1648 }
1649 }
1650
1651 if (indirect.file == BAD_FILE) {
1652 return image;
1653 } else {
1654 /* Emit a pile of MOVs to load the uniform into a temporary. The
1655 * dead-code elimination pass will get rid of what we don't use.
1656 */
1657 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1658 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1659 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1660 offset(tmp, bld, j), offset(image, bld, j),
1661 indirect, brw_imm_ud((indirect_max + 1) * 4));
1662 }
1663 return tmp;
1664 }
1665 }
1666
1667 void
1668 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1669 unsigned wr_mask)
1670 {
1671 for (unsigned i = 0; i < 4; i++) {
1672 if (!((wr_mask >> i) & 1))
1673 continue;
1674
1675 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1676 new_inst->dst = offset(new_inst->dst, bld, i);
1677 for (unsigned j = 0; j < new_inst->sources; j++)
1678 if (new_inst->src[j].file == VGRF)
1679 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1680
1681 bld.emit(new_inst);
1682 }
1683 }
1684
1685 /**
1686 * Get the matching channel register datatype for an image intrinsic of the
1687 * specified GLSL image type.
1688 */
1689 static brw_reg_type
1690 get_image_base_type(const glsl_type *type)
1691 {
1692 switch ((glsl_base_type)type->sampled_type) {
1693 case GLSL_TYPE_UINT:
1694 return BRW_REGISTER_TYPE_UD;
1695 case GLSL_TYPE_INT:
1696 return BRW_REGISTER_TYPE_D;
1697 case GLSL_TYPE_FLOAT:
1698 return BRW_REGISTER_TYPE_F;
1699 default:
1700 unreachable("Not reached.");
1701 }
1702 }
1703
1704 /**
1705 * Get the appropriate atomic op for an image atomic intrinsic.
1706 */
1707 static unsigned
1708 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1709 {
1710 switch (op) {
1711 case nir_intrinsic_image_var_atomic_add:
1712 return BRW_AOP_ADD;
1713 case nir_intrinsic_image_var_atomic_min:
1714 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1715 BRW_AOP_IMIN : BRW_AOP_UMIN);
1716 case nir_intrinsic_image_var_atomic_max:
1717 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1718 BRW_AOP_IMAX : BRW_AOP_UMAX);
1719 case nir_intrinsic_image_var_atomic_and:
1720 return BRW_AOP_AND;
1721 case nir_intrinsic_image_var_atomic_or:
1722 return BRW_AOP_OR;
1723 case nir_intrinsic_image_var_atomic_xor:
1724 return BRW_AOP_XOR;
1725 case nir_intrinsic_image_var_atomic_exchange:
1726 return BRW_AOP_MOV;
1727 case nir_intrinsic_image_var_atomic_comp_swap:
1728 return BRW_AOP_CMPWR;
1729 default:
1730 unreachable("Not reachable.");
1731 }
1732 }
1733
1734 static fs_inst *
1735 emit_pixel_interpolater_send(const fs_builder &bld,
1736 enum opcode opcode,
1737 const fs_reg &dst,
1738 const fs_reg &src,
1739 const fs_reg &desc,
1740 glsl_interp_mode interpolation)
1741 {
1742 struct brw_wm_prog_data *wm_prog_data =
1743 brw_wm_prog_data(bld.shader->stage_prog_data);
1744 fs_inst *inst;
1745 fs_reg payload;
1746 int mlen;
1747
1748 if (src.file == BAD_FILE) {
1749 /* Dummy payload */
1750 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1751 mlen = 1;
1752 } else {
1753 payload = src;
1754 mlen = 2 * bld.dispatch_width() / 8;
1755 }
1756
1757 inst = bld.emit(opcode, dst, payload, desc);
1758 inst->mlen = mlen;
1759 /* 2 floats per slot returned */
1760 inst->size_written = 2 * dst.component_size(inst->exec_size);
1761 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1762
1763 wm_prog_data->pulls_bary = true;
1764
1765 return inst;
1766 }
1767
1768 /**
1769 * Computes 1 << x, given a D/UD register containing some value x.
1770 */
1771 static fs_reg
1772 intexp2(const fs_builder &bld, const fs_reg &x)
1773 {
1774 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1775
1776 fs_reg result = bld.vgrf(x.type, 1);
1777 fs_reg one = bld.vgrf(x.type, 1);
1778
1779 bld.MOV(one, retype(brw_imm_d(1), one.type));
1780 bld.SHL(result, one, x);
1781 return result;
1782 }
1783
1784 void
1785 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1786 {
1787 assert(stage == MESA_SHADER_GEOMETRY);
1788
1789 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1790
1791 if (gs_compile->control_data_header_size_bits == 0)
1792 return;
1793
1794 /* We can only do EndPrimitive() functionality when the control data
1795 * consists of cut bits. Fortunately, the only time it isn't is when the
1796 * output type is points, in which case EndPrimitive() is a no-op.
1797 */
1798 if (gs_prog_data->control_data_format !=
1799 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1800 return;
1801 }
1802
1803 /* Cut bits use one bit per vertex. */
1804 assert(gs_compile->control_data_bits_per_vertex == 1);
1805
1806 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1807 vertex_count.type = BRW_REGISTER_TYPE_UD;
1808
1809 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1810 * vertex n, 0 otherwise. So all we need to do here is mark bit
1811 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1812 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1813 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1814 *
1815 * Note that if EndPrimitive() is called before emitting any vertices, this
1816 * will cause us to set bit 31 of the control_data_bits register to 1.
1817 * That's fine because:
1818 *
1819 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1820 * output, so the hardware will ignore cut bit 31.
1821 *
1822 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1823 * last vertex, so setting cut bit 31 has no effect (since the primitive
1824 * is automatically ended when the GS terminates).
1825 *
1826 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1827 * control_data_bits register to 0 when the first vertex is emitted.
1828 */
1829
1830 const fs_builder abld = bld.annotate("end primitive");
1831
1832 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1833 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1834 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1835 fs_reg mask = intexp2(abld, prev_count);
1836 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1837 * attention to the lower 5 bits of its second source argument, so on this
1838 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1839 * ((vertex_count - 1) % 32).
1840 */
1841 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1842 }
1843
1844 void
1845 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1846 {
1847 assert(stage == MESA_SHADER_GEOMETRY);
1848 assert(gs_compile->control_data_bits_per_vertex != 0);
1849
1850 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1851
1852 const fs_builder abld = bld.annotate("emit control data bits");
1853 const fs_builder fwa_bld = bld.exec_all();
1854
1855 /* We use a single UD register to accumulate control data bits (32 bits
1856 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1857 * at a time.
1858 *
1859 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1860 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1861 * use the Channel Mask phase to enable/disable which DWord within that
1862 * group to write. (Remember, different SIMD8 channels may have emitted
1863 * different numbers of vertices, so we may need per-slot offsets.)
1864 *
1865 * Channel masking presents an annoying problem: we may have to replicate
1866 * the data up to 4 times:
1867 *
1868 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1869 *
1870 * To avoid penalizing shaders that emit a small number of vertices, we
1871 * can avoid these sometimes: if the size of the control data header is
1872 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1873 * land in the same 128-bit group, so we can skip per-slot offsets.
1874 *
1875 * Similarly, if the control data header is <= 32 bits, there is only one
1876 * DWord, so we can skip channel masks.
1877 */
1878 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1879
1880 fs_reg channel_mask, per_slot_offset;
1881
1882 if (gs_compile->control_data_header_size_bits > 32) {
1883 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1884 channel_mask = vgrf(glsl_type::uint_type);
1885 }
1886
1887 if (gs_compile->control_data_header_size_bits > 128) {
1888 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1889 per_slot_offset = vgrf(glsl_type::uint_type);
1890 }
1891
1892 /* Figure out which DWord we're trying to write to using the formula:
1893 *
1894 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1895 *
1896 * Since bits_per_vertex is a power of two, and is known at compile
1897 * time, this can be optimized to:
1898 *
1899 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1900 */
1901 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1902 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1903 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1904 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1905 unsigned log2_bits_per_vertex =
1906 util_last_bit(gs_compile->control_data_bits_per_vertex);
1907 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1908
1909 if (per_slot_offset.file != BAD_FILE) {
1910 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1911 * the appropriate OWord within the control data header.
1912 */
1913 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1914 }
1915
1916 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1917 * write to the appropriate DWORD within the OWORD.
1918 */
1919 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1920 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1921 channel_mask = intexp2(fwa_bld, channel);
1922 /* Then the channel masks need to be in bits 23:16. */
1923 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1924 }
1925
1926 /* Store the control data bits in the message payload and send it. */
1927 int mlen = 2;
1928 if (channel_mask.file != BAD_FILE)
1929 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1930 if (per_slot_offset.file != BAD_FILE)
1931 mlen++;
1932
1933 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1934 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1935 int i = 0;
1936 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1937 if (per_slot_offset.file != BAD_FILE)
1938 sources[i++] = per_slot_offset;
1939 if (channel_mask.file != BAD_FILE)
1940 sources[i++] = channel_mask;
1941 while (i < mlen) {
1942 sources[i++] = this->control_data_bits;
1943 }
1944
1945 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1946 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1947 inst->mlen = mlen;
1948 /* We need to increment Global Offset by 256-bits to make room for
1949 * Broadwell's extra "Vertex Count" payload at the beginning of the
1950 * URB entry. Since this is an OWord message, Global Offset is counted
1951 * in 128-bit units, so we must set it to 2.
1952 */
1953 if (gs_prog_data->static_vertex_count == -1)
1954 inst->offset = 2;
1955 }
1956
1957 void
1958 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1959 unsigned stream_id)
1960 {
1961 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1962
1963 /* Note: we are calling this *before* increasing vertex_count, so
1964 * this->vertex_count == vertex_count - 1 in the formula above.
1965 */
1966
1967 /* Stream mode uses 2 bits per vertex */
1968 assert(gs_compile->control_data_bits_per_vertex == 2);
1969
1970 /* Must be a valid stream */
1971 assert(stream_id < MAX_VERTEX_STREAMS);
1972
1973 /* Control data bits are initialized to 0 so we don't have to set any
1974 * bits when sending vertices to stream 0.
1975 */
1976 if (stream_id == 0)
1977 return;
1978
1979 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1980
1981 /* reg::sid = stream_id */
1982 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1983 abld.MOV(sid, brw_imm_ud(stream_id));
1984
1985 /* reg:shift_count = 2 * (vertex_count - 1) */
1986 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1987 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1988
1989 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1990 * attention to the lower 5 bits of its second source argument, so on this
1991 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1992 * stream_id << ((2 * (vertex_count - 1)) % 32).
1993 */
1994 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1995 abld.SHL(mask, sid, shift_count);
1996 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1997 }
1998
1999 void
2000 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2001 unsigned stream_id)
2002 {
2003 assert(stage == MESA_SHADER_GEOMETRY);
2004
2005 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2006
2007 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2008 vertex_count.type = BRW_REGISTER_TYPE_UD;
2009
2010 /* Haswell and later hardware ignores the "Render Stream Select" bits
2011 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2012 * and instead sends all primitives down the pipeline for rasterization.
2013 * If the SOL stage is enabled, "Render Stream Select" is honored and
2014 * primitives bound to non-zero streams are discarded after stream output.
2015 *
2016 * Since the only purpose of primives sent to non-zero streams is to
2017 * be recorded by transform feedback, we can simply discard all geometry
2018 * bound to these streams when transform feedback is disabled.
2019 */
2020 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2021 return;
2022
2023 /* If we're outputting 32 control data bits or less, then we can wait
2024 * until the shader is over to output them all. Otherwise we need to
2025 * output them as we go. Now is the time to do it, since we're about to
2026 * output the vertex_count'th vertex, so it's guaranteed that the
2027 * control data bits associated with the (vertex_count - 1)th vertex are
2028 * correct.
2029 */
2030 if (gs_compile->control_data_header_size_bits > 32) {
2031 const fs_builder abld =
2032 bld.annotate("emit vertex: emit control data bits");
2033
2034 /* Only emit control data bits if we've finished accumulating a batch
2035 * of 32 bits. This is the case when:
2036 *
2037 * (vertex_count * bits_per_vertex) % 32 == 0
2038 *
2039 * (in other words, when the last 5 bits of vertex_count *
2040 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2041 * integer n (which is always the case, since bits_per_vertex is
2042 * always 1 or 2), this is equivalent to requiring that the last 5-n
2043 * bits of vertex_count are 0:
2044 *
2045 * vertex_count & (2^(5-n) - 1) == 0
2046 *
2047 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2048 * equivalent to:
2049 *
2050 * vertex_count & (32 / bits_per_vertex - 1) == 0
2051 *
2052 * TODO: If vertex_count is an immediate, we could do some of this math
2053 * at compile time...
2054 */
2055 fs_inst *inst =
2056 abld.AND(bld.null_reg_d(), vertex_count,
2057 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2058 inst->conditional_mod = BRW_CONDITIONAL_Z;
2059
2060 abld.IF(BRW_PREDICATE_NORMAL);
2061 /* If vertex_count is 0, then no control data bits have been
2062 * accumulated yet, so we can skip emitting them.
2063 */
2064 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2065 BRW_CONDITIONAL_NEQ);
2066 abld.IF(BRW_PREDICATE_NORMAL);
2067 emit_gs_control_data_bits(vertex_count);
2068 abld.emit(BRW_OPCODE_ENDIF);
2069
2070 /* Reset control_data_bits to 0 so we can start accumulating a new
2071 * batch.
2072 *
2073 * Note: in the case where vertex_count == 0, this neutralizes the
2074 * effect of any call to EndPrimitive() that the shader may have
2075 * made before outputting its first vertex.
2076 */
2077 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2078 inst->force_writemask_all = true;
2079 abld.emit(BRW_OPCODE_ENDIF);
2080 }
2081
2082 emit_urb_writes(vertex_count);
2083
2084 /* In stream mode we have to set control data bits for all vertices
2085 * unless we have disabled control data bits completely (which we do
2086 * do for GL_POINTS outputs that don't use streams).
2087 */
2088 if (gs_compile->control_data_header_size_bits > 0 &&
2089 gs_prog_data->control_data_format ==
2090 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2091 set_gs_stream_control_data_bits(vertex_count, stream_id);
2092 }
2093 }
2094
2095 void
2096 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2097 const nir_src &vertex_src,
2098 unsigned base_offset,
2099 const nir_src &offset_src,
2100 unsigned num_components,
2101 unsigned first_component)
2102 {
2103 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2104
2105 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2106 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2107 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2108
2109 /* TODO: figure out push input layout for invocations == 1 */
2110 /* TODO: make this work with 64-bit inputs */
2111 if (gs_prog_data->invocations == 1 &&
2112 type_sz(dst.type) <= 4 &&
2113 offset_const != NULL && vertex_const != NULL &&
2114 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2115 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2116 vertex_const->u32[0] * push_reg_count;
2117 for (unsigned i = 0; i < num_components; i++) {
2118 bld.MOV(offset(dst, bld, i),
2119 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2120 }
2121 return;
2122 }
2123
2124 /* Resort to the pull model. Ensure the VUE handles are provided. */
2125 assert(gs_prog_data->base.include_vue_handles);
2126
2127 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2128 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2129
2130 if (gs_prog_data->invocations == 1) {
2131 if (vertex_const) {
2132 /* The vertex index is constant; just select the proper URB handle. */
2133 icp_handle =
2134 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2135 BRW_REGISTER_TYPE_UD);
2136 } else {
2137 /* The vertex index is non-constant. We need to use indirect
2138 * addressing to fetch the proper URB handle.
2139 *
2140 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2141 * indicating that channel <n> should read the handle from
2142 * DWord <n>. We convert that to bytes by multiplying by 4.
2143 *
2144 * Next, we convert the vertex index to bytes by multiplying
2145 * by 32 (shifting by 5), and add the two together. This is
2146 * the final indirect byte offset.
2147 */
2148 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2149 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2150 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2151 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2152
2153 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2154 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2155 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2156 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2157 /* Convert vertex_index to bytes (multiply by 32) */
2158 bld.SHL(vertex_offset_bytes,
2159 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2160 brw_imm_ud(5u));
2161 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2162
2163 /* Use first_icp_handle as the base offset. There is one register
2164 * of URB handles per vertex, so inform the register allocator that
2165 * we might read up to nir->info.gs.vertices_in registers.
2166 */
2167 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2168 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2169 fs_reg(icp_offset_bytes),
2170 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2171 }
2172 } else {
2173 assert(gs_prog_data->invocations > 1);
2174
2175 if (vertex_const) {
2176 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2177 bld.MOV(icp_handle,
2178 retype(brw_vec1_grf(first_icp_handle +
2179 vertex_const->i32[0] / 8,
2180 vertex_const->i32[0] % 8),
2181 BRW_REGISTER_TYPE_UD));
2182 } else {
2183 /* The vertex index is non-constant. We need to use indirect
2184 * addressing to fetch the proper URB handle.
2185 *
2186 */
2187 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2188
2189 /* Convert vertex_index to bytes (multiply by 4) */
2190 bld.SHL(icp_offset_bytes,
2191 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2192 brw_imm_ud(2u));
2193
2194 /* Use first_icp_handle as the base offset. There is one DWord
2195 * of URB handles per vertex, so inform the register allocator that
2196 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2197 */
2198 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2199 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2200 fs_reg(icp_offset_bytes),
2201 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2202 REG_SIZE));
2203 }
2204 }
2205
2206 fs_inst *inst;
2207
2208 fs_reg tmp_dst = dst;
2209 fs_reg indirect_offset = get_nir_src(offset_src);
2210 unsigned num_iterations = 1;
2211 unsigned orig_num_components = num_components;
2212
2213 if (type_sz(dst.type) == 8) {
2214 if (num_components > 2) {
2215 num_iterations = 2;
2216 num_components = 2;
2217 }
2218 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2219 tmp_dst = tmp;
2220 first_component = first_component / 2;
2221 }
2222
2223 for (unsigned iter = 0; iter < num_iterations; iter++) {
2224 if (offset_const) {
2225 /* Constant indexing - use global offset. */
2226 if (first_component != 0) {
2227 unsigned read_components = num_components + first_component;
2228 fs_reg tmp = bld.vgrf(dst.type, read_components);
2229 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2230 inst->size_written = read_components *
2231 tmp.component_size(inst->exec_size);
2232 for (unsigned i = 0; i < num_components; i++) {
2233 bld.MOV(offset(tmp_dst, bld, i),
2234 offset(tmp, bld, i + first_component));
2235 }
2236 } else {
2237 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2238 icp_handle);
2239 inst->size_written = num_components *
2240 tmp_dst.component_size(inst->exec_size);
2241 }
2242 inst->offset = base_offset + offset_const->u32[0];
2243 inst->mlen = 1;
2244 } else {
2245 /* Indirect indexing - use per-slot offsets as well. */
2246 const fs_reg srcs[] = { icp_handle, indirect_offset };
2247 unsigned read_components = num_components + first_component;
2248 fs_reg tmp = bld.vgrf(dst.type, read_components);
2249 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2250 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2251 if (first_component != 0) {
2252 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2253 payload);
2254 inst->size_written = read_components *
2255 tmp.component_size(inst->exec_size);
2256 for (unsigned i = 0; i < num_components; i++) {
2257 bld.MOV(offset(tmp_dst, bld, i),
2258 offset(tmp, bld, i + first_component));
2259 }
2260 } else {
2261 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2262 payload);
2263 inst->size_written = num_components *
2264 tmp_dst.component_size(inst->exec_size);
2265 }
2266 inst->offset = base_offset;
2267 inst->mlen = 2;
2268 }
2269
2270 if (type_sz(dst.type) == 8) {
2271 shuffle_32bit_load_result_to_64bit_data(
2272 bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
2273
2274 for (unsigned c = 0; c < num_components; c++)
2275 bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
2276 }
2277
2278 if (num_iterations > 1) {
2279 num_components = orig_num_components - 2;
2280 if(offset_const) {
2281 base_offset++;
2282 } else {
2283 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2284 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2285 indirect_offset = new_indirect;
2286 }
2287 }
2288 }
2289 }
2290
2291 fs_reg
2292 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2293 {
2294 nir_src *offset_src = nir_get_io_offset_src(instr);
2295 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2296
2297 if (const_value) {
2298 /* The only constant offset we should find is 0. brw_nir.c's
2299 * add_const_offset_to_base() will fold other constant offsets
2300 * into instr->const_index[0].
2301 */
2302 assert(const_value->u32[0] == 0);
2303 return fs_reg();
2304 }
2305
2306 return get_nir_src(*offset_src);
2307 }
2308
2309 static void
2310 do_untyped_vector_read(const fs_builder &bld,
2311 const fs_reg dest,
2312 const fs_reg surf_index,
2313 const fs_reg offset_reg,
2314 unsigned num_components)
2315 {
2316 if (type_sz(dest.type) <= 2) {
2317 assert(dest.stride == 1);
2318 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2319
2320 if (is_const_offset) {
2321 uint32_t start = offset_reg.ud & ~3;
2322 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2323 end = ALIGN(end, 4);
2324 assert (end - start <= 16);
2325
2326 /* At this point we have 16-bit component/s that have constant
2327 * offset aligned to 4-bytes that can be read with untyped_reads.
2328 * untyped_read message requires 32-bit aligned offsets.
2329 */
2330 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2331 unsigned num_components_32bit = (end - start) / 4;
2332
2333 fs_reg read_result =
2334 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2335 1 /* dims */,
2336 num_components_32bit,
2337 BRW_PREDICATE_NONE);
2338 shuffle_32bit_load_result_to_16bit_data(bld,
2339 retype(dest, BRW_REGISTER_TYPE_W),
2340 retype(read_result, BRW_REGISTER_TYPE_D),
2341 first_component, num_components);
2342 } else {
2343 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2344 for (unsigned i = 0; i < num_components; i++) {
2345 if (i == 0) {
2346 bld.MOV(read_offset, offset_reg);
2347 } else {
2348 bld.ADD(read_offset, offset_reg,
2349 brw_imm_ud(i * type_sz(dest.type)));
2350 }
2351 /* Non constant offsets are not guaranteed to be aligned 32-bits
2352 * so they are read using one byte_scattered_read message
2353 * for each component.
2354 */
2355 fs_reg read_result =
2356 emit_byte_scattered_read(bld, surf_index, read_offset,
2357 1 /* dims */, 1,
2358 type_sz(dest.type) * 8 /* bit_size */,
2359 BRW_PREDICATE_NONE);
2360 bld.MOV(offset(dest, bld, i),
2361 subscript (read_result, dest.type, 0));
2362 }
2363 }
2364 } else if (type_sz(dest.type) == 4) {
2365 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2366 1 /* dims */,
2367 num_components,
2368 BRW_PREDICATE_NONE);
2369 read_result.type = dest.type;
2370 for (unsigned i = 0; i < num_components; i++)
2371 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2372 } else if (type_sz(dest.type) == 8) {
2373 /* Reading a dvec, so we need to:
2374 *
2375 * 1. Multiply num_components by 2, to account for the fact that we
2376 * need to read 64-bit components.
2377 * 2. Shuffle the result of the load to form valid 64-bit elements
2378 * 3. Emit a second load (for components z/w) if needed.
2379 */
2380 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2381 bld.MOV(read_offset, offset_reg);
2382
2383 int iters = num_components <= 2 ? 1 : 2;
2384
2385 /* Load the dvec, the first iteration loads components x/y, the second
2386 * iteration, if needed, loads components z/w
2387 */
2388 for (int it = 0; it < iters; it++) {
2389 /* Compute number of components to read in this iteration */
2390 int iter_components = MIN2(2, num_components);
2391 num_components -= iter_components;
2392
2393 /* Read. Since this message reads 32-bit components, we need to
2394 * read twice as many components.
2395 */
2396 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2397 1 /* dims */,
2398 iter_components * 2,
2399 BRW_PREDICATE_NONE);
2400
2401 /* Shuffle the 32-bit load result into valid 64-bit data */
2402 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2403 shuffle_32bit_load_result_to_64bit_data(
2404 bld, packed_result, read_result, iter_components);
2405
2406 /* Move each component to its destination */
2407 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2408 for (int c = 0; c < iter_components; c++) {
2409 bld.MOV(offset(dest, bld, it * 2 + c),
2410 offset(packed_result, bld, c));
2411 }
2412
2413 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2414 }
2415 } else {
2416 unreachable("Unsupported type");
2417 }
2418 }
2419
2420 void
2421 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2422 nir_intrinsic_instr *instr)
2423 {
2424 assert(stage == MESA_SHADER_VERTEX);
2425
2426 fs_reg dest;
2427 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2428 dest = get_nir_dest(instr->dest);
2429
2430 switch (instr->intrinsic) {
2431 case nir_intrinsic_load_vertex_id:
2432 case nir_intrinsic_load_base_vertex:
2433 unreachable("should be lowered by nir_lower_system_values()");
2434
2435 case nir_intrinsic_load_vertex_id_zero_base:
2436 case nir_intrinsic_load_instance_id:
2437 case nir_intrinsic_load_base_instance:
2438 case nir_intrinsic_load_draw_id: {
2439 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2440 fs_reg val = nir_system_values[sv];
2441 assert(val.file != BAD_FILE);
2442 dest.type = val.type;
2443 bld.MOV(dest, val);
2444 break;
2445 }
2446
2447 case nir_intrinsic_load_input: {
2448 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2449 unsigned first_component = nir_intrinsic_component(instr);
2450 unsigned num_components = instr->num_components;
2451
2452 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2453 assert(const_offset && "Indirect input loads not allowed");
2454 src = offset(src, bld, const_offset->u32[0]);
2455
2456 if (type_sz(dest.type) == 8)
2457 first_component /= 2;
2458
2459 for (unsigned j = 0; j < num_components; j++) {
2460 bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
2461 }
2462
2463 if (type_sz(dest.type) == 8) {
2464 shuffle_32bit_load_result_to_64bit_data(bld,
2465 dest,
2466 retype(dest, BRW_REGISTER_TYPE_F),
2467 instr->num_components);
2468 }
2469 break;
2470 }
2471
2472 case nir_intrinsic_load_first_vertex:
2473 case nir_intrinsic_load_is_indexed_draw:
2474 unreachable("lowered by brw_nir_lower_vs_inputs");
2475
2476 default:
2477 nir_emit_intrinsic(bld, instr);
2478 break;
2479 }
2480 }
2481
2482 void
2483 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2484 nir_intrinsic_instr *instr)
2485 {
2486 assert(stage == MESA_SHADER_TESS_CTRL);
2487 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2488 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2489
2490 fs_reg dst;
2491 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2492 dst = get_nir_dest(instr->dest);
2493
2494 switch (instr->intrinsic) {
2495 case nir_intrinsic_load_primitive_id:
2496 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2497 break;
2498 case nir_intrinsic_load_invocation_id:
2499 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2500 break;
2501 case nir_intrinsic_load_patch_vertices_in:
2502 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2503 brw_imm_d(tcs_key->input_vertices));
2504 break;
2505
2506 case nir_intrinsic_barrier: {
2507 if (tcs_prog_data->instances == 1)
2508 break;
2509
2510 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2511 fs_reg m0_2 = component(m0, 2);
2512
2513 const fs_builder chanbld = bld.exec_all().group(1, 0);
2514
2515 /* Zero the message header */
2516 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2517
2518 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2519 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2520 brw_imm_ud(INTEL_MASK(16, 13)));
2521
2522 /* Shift it up to bits 27:24. */
2523 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2524
2525 /* Set the Barrier Count and the enable bit */
2526 chanbld.OR(m0_2, m0_2,
2527 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2528
2529 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2530 break;
2531 }
2532
2533 case nir_intrinsic_load_input:
2534 unreachable("nir_lower_io should never give us these.");
2535 break;
2536
2537 case nir_intrinsic_load_per_vertex_input: {
2538 fs_reg indirect_offset = get_indirect_offset(instr);
2539 unsigned imm_offset = instr->const_index[0];
2540
2541 const nir_src &vertex_src = instr->src[0];
2542 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2543
2544 fs_inst *inst;
2545
2546 fs_reg icp_handle;
2547
2548 if (vertex_const) {
2549 /* Emit a MOV to resolve <0,1,0> regioning. */
2550 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2551 bld.MOV(icp_handle,
2552 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2553 vertex_const->i32[0] & 7),
2554 BRW_REGISTER_TYPE_UD));
2555 } else if (tcs_prog_data->instances == 1 &&
2556 vertex_src.is_ssa &&
2557 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2558 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2559 /* For the common case of only 1 instance, an array index of
2560 * gl_InvocationID means reading g1. Skip all the indirect work.
2561 */
2562 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2563 } else {
2564 /* The vertex index is non-constant. We need to use indirect
2565 * addressing to fetch the proper URB handle.
2566 */
2567 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2568
2569 /* Each ICP handle is a single DWord (4 bytes) */
2570 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2571 bld.SHL(vertex_offset_bytes,
2572 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2573 brw_imm_ud(2u));
2574
2575 /* Start at g1. We might read up to 4 registers. */
2576 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2577 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2578 brw_imm_ud(4 * REG_SIZE));
2579 }
2580
2581 /* We can only read two double components with each URB read, so
2582 * we send two read messages in that case, each one loading up to
2583 * two double components.
2584 */
2585 unsigned num_iterations = 1;
2586 unsigned num_components = instr->num_components;
2587 unsigned first_component = nir_intrinsic_component(instr);
2588 fs_reg orig_dst = dst;
2589 if (type_sz(dst.type) == 8) {
2590 first_component = first_component / 2;
2591 if (instr->num_components > 2) {
2592 num_iterations = 2;
2593 num_components = 2;
2594 }
2595
2596 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2597 dst = tmp;
2598 }
2599
2600 for (unsigned iter = 0; iter < num_iterations; iter++) {
2601 if (indirect_offset.file == BAD_FILE) {
2602 /* Constant indexing - use global offset. */
2603 if (first_component != 0) {
2604 unsigned read_components = num_components + first_component;
2605 fs_reg tmp = bld.vgrf(dst.type, read_components);
2606 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2607 for (unsigned i = 0; i < num_components; i++) {
2608 bld.MOV(offset(dst, bld, i),
2609 offset(tmp, bld, i + first_component));
2610 }
2611 } else {
2612 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2613 }
2614 inst->offset = imm_offset;
2615 inst->mlen = 1;
2616 } else {
2617 /* Indirect indexing - use per-slot offsets as well. */
2618 const fs_reg srcs[] = { icp_handle, indirect_offset };
2619 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2620 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2621 if (first_component != 0) {
2622 unsigned read_components = num_components + first_component;
2623 fs_reg tmp = bld.vgrf(dst.type, read_components);
2624 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2625 payload);
2626 for (unsigned i = 0; i < num_components; i++) {
2627 bld.MOV(offset(dst, bld, i),
2628 offset(tmp, bld, i + first_component));
2629 }
2630 } else {
2631 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2632 payload);
2633 }
2634 inst->offset = imm_offset;
2635 inst->mlen = 2;
2636 }
2637 inst->size_written = (num_components + first_component) *
2638 inst->dst.component_size(inst->exec_size);
2639
2640 /* If we are reading 64-bit data using 32-bit read messages we need
2641 * build proper 64-bit data elements by shuffling the low and high
2642 * 32-bit components around like we do for other things like UBOs
2643 * or SSBOs.
2644 */
2645 if (type_sz(dst.type) == 8) {
2646 shuffle_32bit_load_result_to_64bit_data(
2647 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2648
2649 for (unsigned c = 0; c < num_components; c++) {
2650 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2651 offset(dst, bld, c));
2652 }
2653 }
2654
2655 /* Copy the temporary to the destination to deal with writemasking.
2656 *
2657 * Also attempt to deal with gl_PointSize being in the .w component.
2658 */
2659 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2660 assert(type_sz(dst.type) < 8);
2661 inst->dst = bld.vgrf(dst.type, 4);
2662 inst->size_written = 4 * REG_SIZE;
2663 bld.MOV(dst, offset(inst->dst, bld, 3));
2664 }
2665
2666 /* If we are loading double data and we need a second read message
2667 * adjust the write offset
2668 */
2669 if (num_iterations > 1) {
2670 num_components = instr->num_components - 2;
2671 imm_offset++;
2672 }
2673 }
2674 break;
2675 }
2676
2677 case nir_intrinsic_load_output:
2678 case nir_intrinsic_load_per_vertex_output: {
2679 fs_reg indirect_offset = get_indirect_offset(instr);
2680 unsigned imm_offset = instr->const_index[0];
2681 unsigned first_component = nir_intrinsic_component(instr);
2682
2683 fs_inst *inst;
2684 if (indirect_offset.file == BAD_FILE) {
2685 /* Replicate the patch handle to all enabled channels */
2686 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2687 bld.MOV(patch_handle,
2688 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2689
2690 {
2691 if (first_component != 0) {
2692 unsigned read_components =
2693 instr->num_components + first_component;
2694 fs_reg tmp = bld.vgrf(dst.type, read_components);
2695 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2696 patch_handle);
2697 inst->size_written = read_components * REG_SIZE;
2698 for (unsigned i = 0; i < instr->num_components; i++) {
2699 bld.MOV(offset(dst, bld, i),
2700 offset(tmp, bld, i + first_component));
2701 }
2702 } else {
2703 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2704 patch_handle);
2705 inst->size_written = instr->num_components * REG_SIZE;
2706 }
2707 inst->offset = imm_offset;
2708 inst->mlen = 1;
2709 }
2710 } else {
2711 /* Indirect indexing - use per-slot offsets as well. */
2712 const fs_reg srcs[] = {
2713 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2714 indirect_offset
2715 };
2716 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2717 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2718 if (first_component != 0) {
2719 unsigned read_components =
2720 instr->num_components + first_component;
2721 fs_reg tmp = bld.vgrf(dst.type, read_components);
2722 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2723 payload);
2724 inst->size_written = read_components * REG_SIZE;
2725 for (unsigned i = 0; i < instr->num_components; i++) {
2726 bld.MOV(offset(dst, bld, i),
2727 offset(tmp, bld, i + first_component));
2728 }
2729 } else {
2730 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2731 payload);
2732 inst->size_written = instr->num_components * REG_SIZE;
2733 }
2734 inst->offset = imm_offset;
2735 inst->mlen = 2;
2736 }
2737 break;
2738 }
2739
2740 case nir_intrinsic_store_output:
2741 case nir_intrinsic_store_per_vertex_output: {
2742 fs_reg value = get_nir_src(instr->src[0]);
2743 bool is_64bit = (instr->src[0].is_ssa ?
2744 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2745 fs_reg indirect_offset = get_indirect_offset(instr);
2746 unsigned imm_offset = instr->const_index[0];
2747 unsigned mask = instr->const_index[1];
2748 unsigned header_regs = 0;
2749 fs_reg srcs[7];
2750 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2751
2752 if (indirect_offset.file != BAD_FILE) {
2753 srcs[header_regs++] = indirect_offset;
2754 }
2755
2756 if (mask == 0)
2757 break;
2758
2759 unsigned num_components = util_last_bit(mask);
2760 enum opcode opcode;
2761
2762 /* We can only pack two 64-bit components in a single message, so send
2763 * 2 messages if we have more components
2764 */
2765 unsigned num_iterations = 1;
2766 unsigned iter_components = num_components;
2767 unsigned first_component = nir_intrinsic_component(instr);
2768 if (is_64bit) {
2769 first_component = first_component / 2;
2770 if (instr->num_components > 2) {
2771 num_iterations = 2;
2772 iter_components = 2;
2773 }
2774 }
2775
2776 mask = mask << first_component;
2777
2778 for (unsigned iter = 0; iter < num_iterations; iter++) {
2779 if (!is_64bit && mask != WRITEMASK_XYZW) {
2780 srcs[header_regs++] = brw_imm_ud(mask << 16);
2781 opcode = indirect_offset.file != BAD_FILE ?
2782 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2783 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2784 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2785 /* Expand the 64-bit mask to 32-bit channels. We only handle
2786 * two channels in each iteration, so we only care about X/Y.
2787 */
2788 unsigned mask32 = 0;
2789 if (mask & WRITEMASK_X)
2790 mask32 |= WRITEMASK_XY;
2791 if (mask & WRITEMASK_Y)
2792 mask32 |= WRITEMASK_ZW;
2793
2794 /* If the mask does not include any of the channels X or Y there
2795 * is nothing to do in this iteration. Move on to the next couple
2796 * of 64-bit channels.
2797 */
2798 if (!mask32) {
2799 mask >>= 2;
2800 imm_offset++;
2801 continue;
2802 }
2803
2804 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2805 opcode = indirect_offset.file != BAD_FILE ?
2806 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2807 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2808 } else {
2809 opcode = indirect_offset.file != BAD_FILE ?
2810 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2811 SHADER_OPCODE_URB_WRITE_SIMD8;
2812 }
2813
2814 for (unsigned i = 0; i < iter_components; i++) {
2815 if (!(mask & (1 << (i + first_component))))
2816 continue;
2817
2818 if (!is_64bit) {
2819 srcs[header_regs + i + first_component] = offset(value, bld, i);
2820 } else {
2821 /* We need to shuffle the 64-bit data to match the layout
2822 * expected by our 32-bit URB write messages. We use a temporary
2823 * for that.
2824 */
2825 unsigned channel = iter * 2 + i;
2826 fs_reg dest = shuffle_64bit_data_for_32bit_write(bld,
2827 offset(value, bld, channel), 1);
2828
2829 srcs[header_regs + (i + first_component) * 2] = dest;
2830 srcs[header_regs + (i + first_component) * 2 + 1] =
2831 offset(dest, bld, 1);
2832 }
2833 }
2834
2835 unsigned mlen =
2836 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2837 (is_64bit ? 2 * first_component : first_component);
2838 fs_reg payload =
2839 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2840 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2841
2842 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2843 inst->offset = imm_offset;
2844 inst->mlen = mlen;
2845
2846 /* If this is a 64-bit attribute, select the next two 64-bit channels
2847 * to be handled in the next iteration.
2848 */
2849 if (is_64bit) {
2850 mask >>= 2;
2851 imm_offset++;
2852 }
2853 }
2854 break;
2855 }
2856
2857 default:
2858 nir_emit_intrinsic(bld, instr);
2859 break;
2860 }
2861 }
2862
2863 void
2864 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2865 nir_intrinsic_instr *instr)
2866 {
2867 assert(stage == MESA_SHADER_TESS_EVAL);
2868 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2869
2870 fs_reg dest;
2871 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2872 dest = get_nir_dest(instr->dest);
2873
2874 switch (instr->intrinsic) {
2875 case nir_intrinsic_load_primitive_id:
2876 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2877 break;
2878 case nir_intrinsic_load_tess_coord:
2879 /* gl_TessCoord is part of the payload in g1-3 */
2880 for (unsigned i = 0; i < 3; i++) {
2881 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2882 }
2883 break;
2884
2885 case nir_intrinsic_load_input:
2886 case nir_intrinsic_load_per_vertex_input: {
2887 fs_reg indirect_offset = get_indirect_offset(instr);
2888 unsigned imm_offset = instr->const_index[0];
2889 unsigned first_component = nir_intrinsic_component(instr);
2890
2891 if (type_sz(dest.type) == 8) {
2892 first_component = first_component / 2;
2893 }
2894
2895 fs_inst *inst;
2896 if (indirect_offset.file == BAD_FILE) {
2897 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2898 * which is 16 registers (since each holds 2 vec4 slots).
2899 */
2900 unsigned slot_count = 1;
2901 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2902 slot_count++;
2903
2904 const unsigned max_push_slots = 32;
2905 if (imm_offset + slot_count <= max_push_slots) {
2906 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2907 for (int i = 0; i < instr->num_components; i++) {
2908 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2909 i + first_component;
2910 bld.MOV(offset(dest, bld, i), component(src, comp));
2911 }
2912
2913 tes_prog_data->base.urb_read_length =
2914 MAX2(tes_prog_data->base.urb_read_length,
2915 DIV_ROUND_UP(imm_offset + slot_count, 2));
2916 } else {
2917 /* Replicate the patch handle to all enabled channels */
2918 const fs_reg srcs[] = {
2919 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2920 };
2921 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2922 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2923
2924 if (first_component != 0) {
2925 unsigned read_components =
2926 instr->num_components + first_component;
2927 fs_reg tmp = bld.vgrf(dest.type, read_components);
2928 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2929 patch_handle);
2930 inst->size_written = read_components * REG_SIZE;
2931 for (unsigned i = 0; i < instr->num_components; i++) {
2932 bld.MOV(offset(dest, bld, i),
2933 offset(tmp, bld, i + first_component));
2934 }
2935 } else {
2936 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2937 patch_handle);
2938 inst->size_written = instr->num_components * REG_SIZE;
2939 }
2940 inst->mlen = 1;
2941 inst->offset = imm_offset;
2942 }
2943 } else {
2944 /* Indirect indexing - use per-slot offsets as well. */
2945
2946 /* We can only read two double components with each URB read, so
2947 * we send two read messages in that case, each one loading up to
2948 * two double components.
2949 */
2950 unsigned num_iterations = 1;
2951 unsigned num_components = instr->num_components;
2952 fs_reg orig_dest = dest;
2953 if (type_sz(dest.type) == 8) {
2954 if (instr->num_components > 2) {
2955 num_iterations = 2;
2956 num_components = 2;
2957 }
2958 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2959 dest = tmp;
2960 }
2961
2962 for (unsigned iter = 0; iter < num_iterations; iter++) {
2963 const fs_reg srcs[] = {
2964 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2965 indirect_offset
2966 };
2967 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2968 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2969
2970 if (first_component != 0) {
2971 unsigned read_components =
2972 num_components + first_component;
2973 fs_reg tmp = bld.vgrf(dest.type, read_components);
2974 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2975 payload);
2976 for (unsigned i = 0; i < num_components; i++) {
2977 bld.MOV(offset(dest, bld, i),
2978 offset(tmp, bld, i + first_component));
2979 }
2980 } else {
2981 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2982 payload);
2983 }
2984 inst->mlen = 2;
2985 inst->offset = imm_offset;
2986 inst->size_written = (num_components + first_component) *
2987 inst->dst.component_size(inst->exec_size);
2988
2989 /* If we are reading 64-bit data using 32-bit read messages we need
2990 * build proper 64-bit data elements by shuffling the low and high
2991 * 32-bit components around like we do for other things like UBOs
2992 * or SSBOs.
2993 */
2994 if (type_sz(dest.type) == 8) {
2995 shuffle_32bit_load_result_to_64bit_data(
2996 bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
2997
2998 for (unsigned c = 0; c < num_components; c++) {
2999 bld.MOV(offset(orig_dest, bld, iter * 2 + c),
3000 offset(dest, bld, c));
3001 }
3002 }
3003
3004 /* If we are loading double data and we need a second read message
3005 * adjust the offset
3006 */
3007 if (num_iterations > 1) {
3008 num_components = instr->num_components - 2;
3009 imm_offset++;
3010 }
3011 }
3012 }
3013 break;
3014 }
3015 default:
3016 nir_emit_intrinsic(bld, instr);
3017 break;
3018 }
3019 }
3020
3021 void
3022 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3023 nir_intrinsic_instr *instr)
3024 {
3025 assert(stage == MESA_SHADER_GEOMETRY);
3026 fs_reg indirect_offset;
3027
3028 fs_reg dest;
3029 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3030 dest = get_nir_dest(instr->dest);
3031
3032 switch (instr->intrinsic) {
3033 case nir_intrinsic_load_primitive_id:
3034 assert(stage == MESA_SHADER_GEOMETRY);
3035 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3036 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3037 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3038 break;
3039
3040 case nir_intrinsic_load_input:
3041 unreachable("load_input intrinsics are invalid for the GS stage");
3042
3043 case nir_intrinsic_load_per_vertex_input:
3044 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3045 instr->src[1], instr->num_components,
3046 nir_intrinsic_component(instr));
3047 break;
3048
3049 case nir_intrinsic_emit_vertex_with_counter:
3050 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3051 break;
3052
3053 case nir_intrinsic_end_primitive_with_counter:
3054 emit_gs_end_primitive(instr->src[0]);
3055 break;
3056
3057 case nir_intrinsic_set_vertex_count:
3058 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3059 break;
3060
3061 case nir_intrinsic_load_invocation_id: {
3062 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3063 assert(val.file != BAD_FILE);
3064 dest.type = val.type;
3065 bld.MOV(dest, val);
3066 break;
3067 }
3068
3069 default:
3070 nir_emit_intrinsic(bld, instr);
3071 break;
3072 }
3073 }
3074
3075 /**
3076 * Fetch the current render target layer index.
3077 */
3078 static fs_reg
3079 fetch_render_target_array_index(const fs_builder &bld)
3080 {
3081 if (bld.shader->devinfo->gen >= 6) {
3082 /* The render target array index is provided in the thread payload as
3083 * bits 26:16 of r0.0.
3084 */
3085 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3086 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3087 brw_imm_uw(0x7ff));
3088 return idx;
3089 } else {
3090 /* Pre-SNB we only ever render into the first layer of the framebuffer
3091 * since layered rendering is not implemented.
3092 */
3093 return brw_imm_ud(0);
3094 }
3095 }
3096
3097 /**
3098 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3099 * framebuffer at the current fragment coordinates and sample index.
3100 */
3101 fs_inst *
3102 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3103 unsigned target)
3104 {
3105 const struct gen_device_info *devinfo = bld.shader->devinfo;
3106
3107 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3108 const brw_wm_prog_key *wm_key =
3109 reinterpret_cast<const brw_wm_prog_key *>(key);
3110 assert(!wm_key->coherent_fb_fetch);
3111 const struct brw_wm_prog_data *wm_prog_data =
3112 brw_wm_prog_data(stage_prog_data);
3113
3114 /* Calculate the surface index relative to the start of the texture binding
3115 * table block, since that's what the texturing messages expect.
3116 */
3117 const unsigned surface = target +
3118 wm_prog_data->binding_table.render_target_read_start -
3119 wm_prog_data->base.binding_table.texture_start;
3120
3121 brw_mark_surface_used(
3122 bld.shader->stage_prog_data,
3123 wm_prog_data->binding_table.render_target_read_start + target);
3124
3125 /* Calculate the fragment coordinates. */
3126 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3127 bld.MOV(offset(coords, bld, 0), pixel_x);
3128 bld.MOV(offset(coords, bld, 1), pixel_y);
3129 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3130
3131 /* Calculate the sample index and MCS payload when multisampling. Luckily
3132 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3133 * shouldn't be necessary to recompile based on whether the framebuffer is
3134 * CMS or UMS.
3135 */
3136 if (wm_key->multisample_fbo &&
3137 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3138 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3139
3140 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3141 const fs_reg mcs = wm_key->multisample_fbo ?
3142 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3143
3144 /* Use either a normal or a CMS texel fetch message depending on whether
3145 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3146 * message just in case the framebuffer uses 16x multisampling, it should
3147 * be equivalent to the normal CMS fetch for lower multisampling modes.
3148 */
3149 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3150 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3151 SHADER_OPCODE_TXF_CMS_LOGICAL;
3152
3153 /* Emit the instruction. */
3154 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3155 sample, mcs,
3156 brw_imm_ud(surface), brw_imm_ud(0),
3157 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3158 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3159
3160 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3161 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3162
3163 return inst;
3164 }
3165
3166 /**
3167 * Actual coherent framebuffer read implemented using the native render target
3168 * read message. Requires SKL+.
3169 */
3170 static fs_inst *
3171 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3172 {
3173 assert(bld.shader->devinfo->gen >= 9);
3174 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3175 inst->target = target;
3176 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3177
3178 return inst;
3179 }
3180
3181 static fs_reg
3182 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3183 {
3184 if (n && regs[0].file != BAD_FILE) {
3185 return regs[0];
3186
3187 } else {
3188 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3189
3190 for (unsigned i = 0; i < n; i++)
3191 regs[i] = tmp;
3192
3193 return tmp;
3194 }
3195 }
3196
3197 static fs_reg
3198 alloc_frag_output(fs_visitor *v, unsigned location)
3199 {
3200 assert(v->stage == MESA_SHADER_FRAGMENT);
3201 const brw_wm_prog_key *const key =
3202 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3203 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3204 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3205
3206 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3207 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3208
3209 else if (l == FRAG_RESULT_COLOR)
3210 return alloc_temporary(v->bld, 4, v->outputs,
3211 MAX2(key->nr_color_regions, 1));
3212
3213 else if (l == FRAG_RESULT_DEPTH)
3214 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3215
3216 else if (l == FRAG_RESULT_STENCIL)
3217 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3218
3219 else if (l == FRAG_RESULT_SAMPLE_MASK)
3220 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3221
3222 else if (l >= FRAG_RESULT_DATA0 &&
3223 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3224 return alloc_temporary(v->bld, 4,
3225 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3226
3227 else
3228 unreachable("Invalid location");
3229 }
3230
3231 void
3232 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3233 nir_intrinsic_instr *instr)
3234 {
3235 assert(stage == MESA_SHADER_FRAGMENT);
3236
3237 fs_reg dest;
3238 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3239 dest = get_nir_dest(instr->dest);
3240
3241 switch (instr->intrinsic) {
3242 case nir_intrinsic_load_front_face:
3243 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3244 *emit_frontfacing_interpolation());
3245 break;
3246
3247 case nir_intrinsic_load_sample_pos: {
3248 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3249 assert(sample_pos.file != BAD_FILE);
3250 dest.type = sample_pos.type;
3251 bld.MOV(dest, sample_pos);
3252 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3253 break;
3254 }
3255
3256 case nir_intrinsic_load_layer_id:
3257 dest.type = BRW_REGISTER_TYPE_UD;
3258 bld.MOV(dest, fetch_render_target_array_index(bld));
3259 break;
3260
3261 case nir_intrinsic_load_helper_invocation:
3262 case nir_intrinsic_load_sample_mask_in:
3263 case nir_intrinsic_load_sample_id: {
3264 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3265 fs_reg val = nir_system_values[sv];
3266 assert(val.file != BAD_FILE);
3267 dest.type = val.type;
3268 bld.MOV(dest, val);
3269 break;
3270 }
3271
3272 case nir_intrinsic_store_output: {
3273 const fs_reg src = get_nir_src(instr->src[0]);
3274 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3275 assert(const_offset && "Indirect output stores not allowed");
3276 const unsigned location = nir_intrinsic_base(instr) +
3277 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3278 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3279 src.type);
3280
3281 for (unsigned j = 0; j < instr->num_components; j++)
3282 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3283 offset(src, bld, j));
3284
3285 break;
3286 }
3287
3288 case nir_intrinsic_load_output: {
3289 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3290 BRW_NIR_FRAG_OUTPUT_LOCATION);
3291 assert(l >= FRAG_RESULT_DATA0);
3292 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3293 assert(const_offset && "Indirect output loads not allowed");
3294 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3295 const fs_reg tmp = bld.vgrf(dest.type, 4);
3296
3297 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3298 emit_coherent_fb_read(bld, tmp, target);
3299 else
3300 emit_non_coherent_fb_read(bld, tmp, target);
3301
3302 for (unsigned j = 0; j < instr->num_components; j++) {
3303 bld.MOV(offset(dest, bld, j),
3304 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3305 }
3306
3307 break;
3308 }
3309
3310 case nir_intrinsic_discard:
3311 case nir_intrinsic_discard_if: {
3312 /* We track our discarded pixels in f0.1. By predicating on it, we can
3313 * update just the flag bits that aren't yet discarded. If there's no
3314 * condition, we emit a CMP of g0 != g0, so all currently executing
3315 * channels will get turned off.
3316 */
3317 fs_inst *cmp;
3318 if (instr->intrinsic == nir_intrinsic_discard_if) {
3319 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3320 brw_imm_d(0), BRW_CONDITIONAL_Z);
3321 } else {
3322 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3323 BRW_REGISTER_TYPE_UW));
3324 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3325 }
3326 cmp->predicate = BRW_PREDICATE_NORMAL;
3327 cmp->flag_subreg = 1;
3328
3329 if (devinfo->gen >= 6) {
3330 emit_discard_jump();
3331 }
3332 break;
3333 }
3334
3335 case nir_intrinsic_load_input: {
3336 /* load_input is only used for flat inputs */
3337 unsigned base = nir_intrinsic_base(instr);
3338 unsigned component = nir_intrinsic_component(instr);
3339 unsigned num_components = instr->num_components;
3340 enum brw_reg_type type = dest.type;
3341
3342 /* Special case fields in the VUE header */
3343 if (base == VARYING_SLOT_LAYER)
3344 component = 1;
3345 else if (base == VARYING_SLOT_VIEWPORT)
3346 component = 2;
3347
3348 if (nir_dest_bit_size(instr->dest) == 64) {
3349 /* const_index is in 32-bit type size units that could not be aligned
3350 * with DF. We need to read the double vector as if it was a float
3351 * vector of twice the number of components to fetch the right data.
3352 */
3353 type = BRW_REGISTER_TYPE_F;
3354 num_components *= 2;
3355 }
3356
3357 for (unsigned int i = 0; i < num_components; i++) {
3358 struct brw_reg interp = interp_reg(base, component + i);
3359 interp = suboffset(interp, 3);
3360 bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i),
3361 retype(fs_reg(interp), type));
3362 }
3363
3364 if (nir_dest_bit_size(instr->dest) == 64) {
3365 shuffle_32bit_load_result_to_64bit_data(bld,
3366 dest,
3367 retype(dest, type),
3368 instr->num_components);
3369 }
3370 break;
3371 }
3372
3373 case nir_intrinsic_load_barycentric_pixel:
3374 case nir_intrinsic_load_barycentric_centroid:
3375 case nir_intrinsic_load_barycentric_sample:
3376 /* Do nothing - load_interpolated_input handling will handle it later. */
3377 break;
3378
3379 case nir_intrinsic_load_barycentric_at_sample: {
3380 const glsl_interp_mode interpolation =
3381 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3382
3383 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3384
3385 if (const_sample) {
3386 unsigned msg_data = const_sample->i32[0] << 4;
3387
3388 emit_pixel_interpolater_send(bld,
3389 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3390 dest,
3391 fs_reg(), /* src */
3392 brw_imm_ud(msg_data),
3393 interpolation);
3394 } else {
3395 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3396 BRW_REGISTER_TYPE_UD);
3397
3398 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3399 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3400 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3401 bld.exec_all().group(1, 0)
3402 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3403 emit_pixel_interpolater_send(bld,
3404 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3405 dest,
3406 fs_reg(), /* src */
3407 msg_data,
3408 interpolation);
3409 } else {
3410 /* Make a loop that sends a message to the pixel interpolater
3411 * for the sample number in each live channel. If there are
3412 * multiple channels with the same sample number then these
3413 * will be handled simultaneously with a single interation of
3414 * the loop.
3415 */
3416 bld.emit(BRW_OPCODE_DO);
3417
3418 /* Get the next live sample number into sample_id_reg */
3419 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3420
3421 /* Set the flag register so that we can perform the send
3422 * message on all channels that have the same sample number
3423 */
3424 bld.CMP(bld.null_reg_ud(),
3425 sample_src, sample_id,
3426 BRW_CONDITIONAL_EQ);
3427 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3428 bld.exec_all().group(1, 0)
3429 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3430 fs_inst *inst =
3431 emit_pixel_interpolater_send(bld,
3432 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3433 dest,
3434 fs_reg(), /* src */
3435 msg_data,
3436 interpolation);
3437 set_predicate(BRW_PREDICATE_NORMAL, inst);
3438
3439 /* Continue the loop if there are any live channels left */
3440 set_predicate_inv(BRW_PREDICATE_NORMAL,
3441 true, /* inverse */
3442 bld.emit(BRW_OPCODE_WHILE));
3443 }
3444 }
3445 break;
3446 }
3447
3448 case nir_intrinsic_load_barycentric_at_offset: {
3449 const glsl_interp_mode interpolation =
3450 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3451
3452 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3453
3454 if (const_offset) {
3455 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3456 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3457
3458 emit_pixel_interpolater_send(bld,
3459 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3460 dest,
3461 fs_reg(), /* src */
3462 brw_imm_ud(off_x | (off_y << 4)),
3463 interpolation);
3464 } else {
3465 fs_reg src = vgrf(glsl_type::ivec2_type);
3466 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3467 BRW_REGISTER_TYPE_F);
3468 for (int i = 0; i < 2; i++) {
3469 fs_reg temp = vgrf(glsl_type::float_type);
3470 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3471 fs_reg itemp = vgrf(glsl_type::int_type);
3472 /* float to int */
3473 bld.MOV(itemp, temp);
3474
3475 /* Clamp the upper end of the range to +7/16.
3476 * ARB_gpu_shader5 requires that we support a maximum offset
3477 * of +0.5, which isn't representable in a S0.4 value -- if
3478 * we didn't clamp it, we'd end up with -8/16, which is the
3479 * opposite of what the shader author wanted.
3480 *
3481 * This is legal due to ARB_gpu_shader5's quantization
3482 * rules:
3483 *
3484 * "Not all values of <offset> may be supported; x and y
3485 * offsets may be rounded to fixed-point values with the
3486 * number of fraction bits given by the
3487 * implementation-dependent constant
3488 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3489 */
3490 set_condmod(BRW_CONDITIONAL_L,
3491 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3492 }
3493
3494 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3495 emit_pixel_interpolater_send(bld,
3496 opcode,
3497 dest,
3498 src,
3499 brw_imm_ud(0u),
3500 interpolation);
3501 }
3502 break;
3503 }
3504
3505 case nir_intrinsic_load_interpolated_input: {
3506 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3507 emit_fragcoord_interpolation(dest);
3508 break;
3509 }
3510
3511 assert(instr->src[0].ssa &&
3512 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3513 nir_intrinsic_instr *bary_intrinsic =
3514 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3515 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3516 enum glsl_interp_mode interp_mode =
3517 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3518 fs_reg dst_xy;
3519
3520 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3521 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3522 /* Use the result of the PI message */
3523 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3524 } else {
3525 /* Use the delta_xy values computed from the payload */
3526 enum brw_barycentric_mode bary =
3527 brw_barycentric_mode(interp_mode, bary_intrin);
3528
3529 dst_xy = this->delta_xy[bary];
3530 }
3531
3532 for (unsigned int i = 0; i < instr->num_components; i++) {
3533 fs_reg interp =
3534 fs_reg(interp_reg(nir_intrinsic_base(instr),
3535 nir_intrinsic_component(instr) + i));
3536 interp.type = BRW_REGISTER_TYPE_F;
3537 dest.type = BRW_REGISTER_TYPE_F;
3538
3539 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3540 fs_reg tmp = vgrf(glsl_type::float_type);
3541 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3542 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3543 } else {
3544 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3545 }
3546 }
3547 break;
3548 }
3549
3550 default:
3551 nir_emit_intrinsic(bld, instr);
3552 break;
3553 }
3554 }
3555
3556 void
3557 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3558 nir_intrinsic_instr *instr)
3559 {
3560 assert(stage == MESA_SHADER_COMPUTE);
3561 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3562
3563 fs_reg dest;
3564 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3565 dest = get_nir_dest(instr->dest);
3566
3567 switch (instr->intrinsic) {
3568 case nir_intrinsic_barrier:
3569 emit_barrier();
3570 cs_prog_data->uses_barrier = true;
3571 break;
3572
3573 case nir_intrinsic_load_subgroup_id:
3574 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3575 break;
3576
3577 case nir_intrinsic_load_local_invocation_id:
3578 case nir_intrinsic_load_work_group_id: {
3579 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3580 fs_reg val = nir_system_values[sv];
3581 assert(val.file != BAD_FILE);
3582 dest.type = val.type;
3583 for (unsigned i = 0; i < 3; i++)
3584 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3585 break;
3586 }
3587
3588 case nir_intrinsic_load_num_work_groups: {
3589 const unsigned surface =
3590 cs_prog_data->binding_table.work_groups_start;
3591
3592 cs_prog_data->uses_num_work_groups = true;
3593
3594 fs_reg surf_index = brw_imm_ud(surface);
3595 brw_mark_surface_used(prog_data, surface);
3596
3597 /* Read the 3 GLuint components of gl_NumWorkGroups */
3598 for (unsigned i = 0; i < 3; i++) {
3599 fs_reg read_result =
3600 emit_untyped_read(bld, surf_index,
3601 brw_imm_ud(i << 2),
3602 1 /* dims */, 1 /* size */,
3603 BRW_PREDICATE_NONE);
3604 read_result.type = dest.type;
3605 bld.MOV(dest, read_result);
3606 dest = offset(dest, bld, 1);
3607 }
3608 break;
3609 }
3610
3611 case nir_intrinsic_shared_atomic_add:
3612 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3613 break;
3614 case nir_intrinsic_shared_atomic_imin:
3615 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3616 break;
3617 case nir_intrinsic_shared_atomic_umin:
3618 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3619 break;
3620 case nir_intrinsic_shared_atomic_imax:
3621 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3622 break;
3623 case nir_intrinsic_shared_atomic_umax:
3624 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3625 break;
3626 case nir_intrinsic_shared_atomic_and:
3627 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3628 break;
3629 case nir_intrinsic_shared_atomic_or:
3630 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3631 break;
3632 case nir_intrinsic_shared_atomic_xor:
3633 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3634 break;
3635 case nir_intrinsic_shared_atomic_exchange:
3636 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3637 break;
3638 case nir_intrinsic_shared_atomic_comp_swap:
3639 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3640 break;
3641
3642 case nir_intrinsic_load_shared: {
3643 assert(devinfo->gen >= 7);
3644
3645 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3646
3647 /* Get the offset to read from */
3648 fs_reg offset_reg;
3649 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3650 if (const_offset) {
3651 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3652 } else {
3653 offset_reg = vgrf(glsl_type::uint_type);
3654 bld.ADD(offset_reg,
3655 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3656 brw_imm_ud(instr->const_index[0]));
3657 }
3658
3659 /* Read the vector */
3660 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3661 instr->num_components);
3662 break;
3663 }
3664
3665 case nir_intrinsic_store_shared: {
3666 assert(devinfo->gen >= 7);
3667
3668 /* Block index */
3669 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3670
3671 /* Value */
3672 fs_reg val_reg = get_nir_src(instr->src[0]);
3673
3674 /* Writemask */
3675 unsigned writemask = instr->const_index[1];
3676
3677 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3678 * since the untyped writes below operate in units of 32-bits, which
3679 * means that we need to write twice as many components each time.
3680 * Also, we have to suffle 64-bit data to be in the appropriate layout
3681 * expected by our 32-bit write messages.
3682 */
3683 unsigned type_size = 4;
3684 if (nir_src_bit_size(instr->src[0]) == 64) {
3685 type_size = 8;
3686 val_reg = shuffle_64bit_data_for_32bit_write(bld,
3687 val_reg, instr->num_components);
3688 }
3689
3690 unsigned type_slots = type_size / 4;
3691
3692 /* Combine groups of consecutive enabled channels in one write
3693 * message. We use ffs to find the first enabled channel and then ffs on
3694 * the bit-inverse, down-shifted writemask to determine the length of
3695 * the block of enabled bits.
3696 */
3697 while (writemask) {
3698 unsigned first_component = ffs(writemask) - 1;
3699 unsigned length = ffs(~(writemask >> first_component)) - 1;
3700
3701 /* We can't write more than 2 64-bit components at once. Limit the
3702 * length of the write to what we can do and let the next iteration
3703 * handle the rest
3704 */
3705 if (type_size > 4)
3706 length = MIN2(2, length);
3707
3708 fs_reg offset_reg;
3709 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3710 if (const_offset) {
3711 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3712 type_size * first_component);
3713 } else {
3714 offset_reg = vgrf(glsl_type::uint_type);
3715 bld.ADD(offset_reg,
3716 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3717 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3718 }
3719
3720 emit_untyped_write(bld, surf_index, offset_reg,
3721 offset(val_reg, bld, first_component * type_slots),
3722 1 /* dims */, length * type_slots,
3723 BRW_PREDICATE_NONE);
3724
3725 /* Clear the bits in the writemask that we just wrote, then try
3726 * again to see if more channels are left.
3727 */
3728 writemask &= (15 << (first_component + length));
3729 }
3730
3731 break;
3732 }
3733
3734 default:
3735 nir_emit_intrinsic(bld, instr);
3736 break;
3737 }
3738 }
3739
3740 static fs_reg
3741 brw_nir_reduction_op_identity(const fs_builder &bld,
3742 nir_op op, brw_reg_type type)
3743 {
3744 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3745 switch (type_sz(type)) {
3746 case 2:
3747 assert(type != BRW_REGISTER_TYPE_HF);
3748 return retype(brw_imm_uw(value.u16[0]), type);
3749 case 4:
3750 return retype(brw_imm_ud(value.u32[0]), type);
3751 case 8:
3752 if (type == BRW_REGISTER_TYPE_DF)
3753 return setup_imm_df(bld, value.f64[0]);
3754 else
3755 return retype(brw_imm_u64(value.u64[0]), type);
3756 default:
3757 unreachable("Invalid type size");
3758 }
3759 }
3760
3761 static opcode
3762 brw_op_for_nir_reduction_op(nir_op op)
3763 {
3764 switch (op) {
3765 case nir_op_iadd: return BRW_OPCODE_ADD;
3766 case nir_op_fadd: return BRW_OPCODE_ADD;
3767 case nir_op_imul: return BRW_OPCODE_MUL;
3768 case nir_op_fmul: return BRW_OPCODE_MUL;
3769 case nir_op_imin: return BRW_OPCODE_SEL;
3770 case nir_op_umin: return BRW_OPCODE_SEL;
3771 case nir_op_fmin: return BRW_OPCODE_SEL;
3772 case nir_op_imax: return BRW_OPCODE_SEL;
3773 case nir_op_umax: return BRW_OPCODE_SEL;
3774 case nir_op_fmax: return BRW_OPCODE_SEL;
3775 case nir_op_iand: return BRW_OPCODE_AND;
3776 case nir_op_ior: return BRW_OPCODE_OR;
3777 case nir_op_ixor: return BRW_OPCODE_XOR;
3778 default:
3779 unreachable("Invalid reduction operation");
3780 }
3781 }
3782
3783 static brw_conditional_mod
3784 brw_cond_mod_for_nir_reduction_op(nir_op op)
3785 {
3786 switch (op) {
3787 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3788 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3789 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3790 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3791 case nir_op_imin: return BRW_CONDITIONAL_L;
3792 case nir_op_umin: return BRW_CONDITIONAL_L;
3793 case nir_op_fmin: return BRW_CONDITIONAL_L;
3794 case nir_op_imax: return BRW_CONDITIONAL_GE;
3795 case nir_op_umax: return BRW_CONDITIONAL_GE;
3796 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3797 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3798 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3799 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3800 default:
3801 unreachable("Invalid reduction operation");
3802 }
3803 }
3804
3805 void
3806 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3807 {
3808 fs_reg dest;
3809 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3810 dest = get_nir_dest(instr->dest);
3811
3812 switch (instr->intrinsic) {
3813 case nir_intrinsic_image_var_load:
3814 case nir_intrinsic_image_var_store:
3815 case nir_intrinsic_image_var_atomic_add:
3816 case nir_intrinsic_image_var_atomic_min:
3817 case nir_intrinsic_image_var_atomic_max:
3818 case nir_intrinsic_image_var_atomic_and:
3819 case nir_intrinsic_image_var_atomic_or:
3820 case nir_intrinsic_image_var_atomic_xor:
3821 case nir_intrinsic_image_var_atomic_exchange:
3822 case nir_intrinsic_image_var_atomic_comp_swap: {
3823 using namespace image_access;
3824
3825 if (stage == MESA_SHADER_FRAGMENT &&
3826 instr->intrinsic != nir_intrinsic_image_var_load)
3827 brw_wm_prog_data(prog_data)->has_side_effects = true;
3828
3829 /* Get the referenced image variable and type. */
3830 const nir_variable *var = instr->variables[0]->var;
3831 const glsl_type *type = var->type->without_array();
3832 const brw_reg_type base_type = get_image_base_type(type);
3833
3834 /* Get some metadata from the image intrinsic. */
3835 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3836 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3837 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3838 const unsigned format = var->data.image.format;
3839 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3840
3841 /* Get the arguments of the image intrinsic. */
3842 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3843 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3844 BRW_REGISTER_TYPE_UD);
3845 const fs_reg src0 = (info->num_srcs >= 3 ?
3846 retype(get_nir_src(instr->src[2]), base_type) :
3847 fs_reg());
3848 const fs_reg src1 = (info->num_srcs >= 4 ?
3849 retype(get_nir_src(instr->src[3]), base_type) :
3850 fs_reg());
3851 fs_reg tmp;
3852
3853 /* Emit an image load, store or atomic op. */
3854 if (instr->intrinsic == nir_intrinsic_image_var_load)
3855 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3856
3857 else if (instr->intrinsic == nir_intrinsic_image_var_store)
3858 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3859 var->data.image.write_only ? GL_NONE : format);
3860
3861 else
3862 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3863 surf_dims, arr_dims, dest_components,
3864 get_image_atomic_op(instr->intrinsic, type));
3865
3866 /* Assign the result. */
3867 for (unsigned c = 0; c < dest_components; ++c) {
3868 bld.MOV(offset(retype(dest, base_type), bld, c),
3869 offset(tmp, bld, c));
3870 }
3871 break;
3872 }
3873
3874 case nir_intrinsic_memory_barrier_atomic_counter:
3875 case nir_intrinsic_memory_barrier_buffer:
3876 case nir_intrinsic_memory_barrier_image:
3877 case nir_intrinsic_memory_barrier: {
3878 const fs_builder ubld = bld.group(8, 0);
3879 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3880 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3881 ->size_written = 2 * REG_SIZE;
3882 break;
3883 }
3884
3885 case nir_intrinsic_group_memory_barrier:
3886 case nir_intrinsic_memory_barrier_shared:
3887 /* We treat these workgroup-level barriers as no-ops. This should be
3888 * safe at present and as long as:
3889 *
3890 * - Memory access instructions are not subsequently reordered by the
3891 * compiler back-end.
3892 *
3893 * - All threads from a given compute shader workgroup fit within a
3894 * single subslice and therefore talk to the same HDC shared unit
3895 * what supposedly guarantees ordering and coherency between threads
3896 * from the same workgroup. This may change in the future when we
3897 * start splitting workgroups across multiple subslices.
3898 *
3899 * - The context is not in fault-and-stream mode, which could cause
3900 * memory transactions (including to SLM) prior to the barrier to be
3901 * replayed after the barrier if a pagefault occurs. This shouldn't
3902 * be a problem up to and including SKL because fault-and-stream is
3903 * not usable due to hardware issues, but that's likely to change in
3904 * the future.
3905 */
3906 break;
3907
3908 case nir_intrinsic_shader_clock: {
3909 /* We cannot do anything if there is an event, so ignore it for now */
3910 const fs_reg shader_clock = get_timestamp(bld);
3911 const fs_reg srcs[] = { component(shader_clock, 0),
3912 component(shader_clock, 1) };
3913 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3914 break;
3915 }
3916
3917 case nir_intrinsic_image_var_size: {
3918 /* Get the referenced image variable and type. */
3919 const nir_variable *var = instr->variables[0]->var;
3920 const glsl_type *type = var->type->without_array();
3921
3922 /* Get the size of the image. */
3923 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3924 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3925
3926 /* For 1DArray image types, the array index is stored in the Z component.
3927 * Fix this by swizzling the Z component to the Y component.
3928 */
3929 const bool is_1d_array_image =
3930 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3931 type->sampler_array;
3932
3933 /* For CubeArray images, we should count the number of cubes instead
3934 * of the number of faces. Fix it by dividing the (Z component) by 6.
3935 */
3936 const bool is_cube_array_image =
3937 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3938 type->sampler_array;
3939
3940 /* Copy all the components. */
3941 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3942 if ((int)c >= type->coordinate_components()) {
3943 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3944 brw_imm_d(1));
3945 } else if (c == 1 && is_1d_array_image) {
3946 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3947 offset(size, bld, 2));
3948 } else if (c == 2 && is_cube_array_image) {
3949 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3950 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3951 offset(size, bld, c), brw_imm_d(6));
3952 } else {
3953 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3954 offset(size, bld, c));
3955 }
3956 }
3957
3958 break;
3959 }
3960
3961 case nir_intrinsic_image_var_samples:
3962 /* The driver does not support multi-sampled images. */
3963 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3964 break;
3965
3966 case nir_intrinsic_load_uniform: {
3967 /* Offsets are in bytes but they should always aligned to
3968 * the type size
3969 */
3970 assert(instr->const_index[0] % 4 == 0 ||
3971 instr->const_index[0] % type_sz(dest.type) == 0);
3972
3973 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3974
3975 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3976 if (const_offset) {
3977 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
3978 /* For 16-bit types we add the module of the const_index[0]
3979 * offset to access to not 32-bit aligned element
3980 */
3981 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
3982
3983 for (unsigned j = 0; j < instr->num_components; j++) {
3984 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3985 }
3986 } else {
3987 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3988 BRW_REGISTER_TYPE_UD);
3989
3990 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3991 * go past the end of the uniform. In order to keep the n'th
3992 * component from running past, we subtract off the size of all but
3993 * one component of the vector.
3994 */
3995 assert(instr->const_index[1] >=
3996 instr->num_components * (int) type_sz(dest.type));
3997 unsigned read_size = instr->const_index[1] -
3998 (instr->num_components - 1) * type_sz(dest.type);
3999
4000 bool supports_64bit_indirects =
4001 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4002
4003 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4004 for (unsigned j = 0; j < instr->num_components; j++) {
4005 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4006 offset(dest, bld, j), offset(src, bld, j),
4007 indirect, brw_imm_ud(read_size));
4008 }
4009 } else {
4010 const unsigned num_mov_indirects =
4011 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4012 /* We read a little bit less per MOV INDIRECT, as they are now
4013 * 32-bits ones instead of 64-bit. Fix read_size then.
4014 */
4015 const unsigned read_size_32bit = read_size -
4016 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4017 for (unsigned j = 0; j < instr->num_components; j++) {
4018 for (unsigned i = 0; i < num_mov_indirects; i++) {
4019 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4020 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4021 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4022 indirect, brw_imm_ud(read_size_32bit));
4023 }
4024 }
4025 }
4026 }
4027 break;
4028 }
4029
4030 case nir_intrinsic_load_ubo: {
4031 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4032 fs_reg surf_index;
4033
4034 if (const_index) {
4035 const unsigned index = stage_prog_data->binding_table.ubo_start +
4036 const_index->u32[0];
4037 surf_index = brw_imm_ud(index);
4038 brw_mark_surface_used(prog_data, index);
4039 } else {
4040 /* The block index is not a constant. Evaluate the index expression
4041 * per-channel and add the base UBO index; we have to select a value
4042 * from any live channel.
4043 */
4044 surf_index = vgrf(glsl_type::uint_type);
4045 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4046 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4047 surf_index = bld.emit_uniformize(surf_index);
4048
4049 /* Assume this may touch any UBO. It would be nice to provide
4050 * a tighter bound, but the array information is already lowered away.
4051 */
4052 brw_mark_surface_used(prog_data,
4053 stage_prog_data->binding_table.ubo_start +
4054 nir->info.num_ubos - 1);
4055 }
4056
4057 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4058 if (const_offset == NULL) {
4059 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4060 BRW_REGISTER_TYPE_UD);
4061
4062 for (int i = 0; i < instr->num_components; i++)
4063 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4064 base_offset, i * type_sz(dest.type));
4065 } else {
4066 /* Even if we are loading doubles, a pull constant load will load
4067 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4068 * need to load a full dvec4 we will have to emit 2 loads. This is
4069 * similar to demote_pull_constants(), except that in that case we
4070 * see individual accesses to each component of the vector and then
4071 * we let CSE deal with duplicate loads. Here we see a vector access
4072 * and we have to split it if necessary.
4073 */
4074 const unsigned type_size = type_sz(dest.type);
4075
4076 /* See if we've selected this as a push constant candidate */
4077 if (const_index) {
4078 const unsigned ubo_block = const_index->u32[0];
4079 const unsigned offset_256b = const_offset->u32[0] / 32;
4080
4081 fs_reg push_reg;
4082 for (int i = 0; i < 4; i++) {
4083 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4084 if (range->block == ubo_block &&
4085 offset_256b >= range->start &&
4086 offset_256b < range->start + range->length) {
4087
4088 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4089 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4090 break;
4091 }
4092 }
4093
4094 if (push_reg.file != BAD_FILE) {
4095 for (unsigned i = 0; i < instr->num_components; i++) {
4096 bld.MOV(offset(dest, bld, i),
4097 byte_offset(push_reg, i * type_size));
4098 }
4099 break;
4100 }
4101 }
4102
4103 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4104 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4105 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4106
4107 for (unsigned c = 0; c < instr->num_components;) {
4108 const unsigned base = const_offset->u32[0] + c * type_size;
4109 /* Number of usable components in the next block-aligned load. */
4110 const unsigned count = MIN2(instr->num_components - c,
4111 (block_sz - base % block_sz) / type_size);
4112
4113 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4114 packed_consts, surf_index,
4115 brw_imm_ud(base & ~(block_sz - 1)));
4116
4117 const fs_reg consts =
4118 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4119 dest.type);
4120
4121 for (unsigned d = 0; d < count; d++)
4122 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4123
4124 c += count;
4125 }
4126 }
4127 break;
4128 }
4129
4130 case nir_intrinsic_load_ssbo: {
4131 assert(devinfo->gen >= 7);
4132
4133 nir_const_value *const_uniform_block =
4134 nir_src_as_const_value(instr->src[0]);
4135
4136 fs_reg surf_index;
4137 if (const_uniform_block) {
4138 unsigned index = stage_prog_data->binding_table.ssbo_start +
4139 const_uniform_block->u32[0];
4140 surf_index = brw_imm_ud(index);
4141 brw_mark_surface_used(prog_data, index);
4142 } else {
4143 surf_index = vgrf(glsl_type::uint_type);
4144 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4145 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4146
4147 /* Assume this may touch any UBO. It would be nice to provide
4148 * a tighter bound, but the array information is already lowered away.
4149 */
4150 brw_mark_surface_used(prog_data,
4151 stage_prog_data->binding_table.ssbo_start +
4152 nir->info.num_ssbos - 1);
4153 }
4154
4155 fs_reg offset_reg;
4156 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4157 if (const_offset) {
4158 offset_reg = brw_imm_ud(const_offset->u32[0]);
4159 } else {
4160 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4161 }
4162
4163 /* Read the vector */
4164 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4165 instr->num_components);
4166
4167 break;
4168 }
4169
4170 case nir_intrinsic_store_ssbo: {
4171 assert(devinfo->gen >= 7);
4172
4173 if (stage == MESA_SHADER_FRAGMENT)
4174 brw_wm_prog_data(prog_data)->has_side_effects = true;
4175
4176 /* Block index */
4177 fs_reg surf_index;
4178 nir_const_value *const_uniform_block =
4179 nir_src_as_const_value(instr->src[1]);
4180 if (const_uniform_block) {
4181 unsigned index = stage_prog_data->binding_table.ssbo_start +
4182 const_uniform_block->u32[0];
4183 surf_index = brw_imm_ud(index);
4184 brw_mark_surface_used(prog_data, index);
4185 } else {
4186 surf_index = vgrf(glsl_type::uint_type);
4187 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4188 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4189
4190 brw_mark_surface_used(prog_data,
4191 stage_prog_data->binding_table.ssbo_start +
4192 nir->info.num_ssbos - 1);
4193 }
4194
4195 /* Value */
4196 fs_reg val_reg = get_nir_src(instr->src[0]);
4197
4198 /* Writemask */
4199 unsigned writemask = instr->const_index[0];
4200
4201 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4202 * since the untyped writes below operate in units of 32-bits, which
4203 * means that we need to write twice as many components each time.
4204 * Also, we have to suffle 64-bit data to be in the appropriate layout
4205 * expected by our 32-bit write messages.
4206 */
4207 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4208 unsigned type_size = bit_size / 8;
4209
4210 /* Combine groups of consecutive enabled channels in one write
4211 * message. We use ffs to find the first enabled channel and then ffs on
4212 * the bit-inverse, down-shifted writemask to determine the num_components
4213 * of the block of enabled bits.
4214 */
4215 while (writemask) {
4216 unsigned first_component = ffs(writemask) - 1;
4217 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4218 fs_reg write_src = offset(val_reg, bld, first_component);
4219
4220 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4221
4222 if (type_size > 4) {
4223 /* We can't write more than 2 64-bit components at once. Limit
4224 * the num_components of the write to what we can do and let the next
4225 * iteration handle the rest.
4226 */
4227 num_components = MIN2(2, num_components);
4228 write_src = shuffle_64bit_data_for_32bit_write(bld, write_src,
4229 num_components);
4230 } else if (type_size < 4) {
4231 assert(type_size == 2);
4232 /* For 16-bit types we pack two consecutive values into a 32-bit
4233 * word and use an untyped write message. For single values or not
4234 * 32-bit-aligned we need to use byte-scattered writes because
4235 * untyped writes works with 32-bit components with 32-bit
4236 * alignment. byte_scattered_write messages only support one
4237 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4238 * could be enabled we can not guarantee that not constant offsets
4239 * to be 32-bit aligned for 16-bit types. For example an array, of
4240 * 16-bit vec3 with array element stride of 6.
4241 *
4242 * In the case of 32-bit aligned constant offsets if there is
4243 * a 3-components vector we submit one untyped-write message
4244 * of 32-bit (first two components), and one byte-scattered
4245 * write message (the last component).
4246 */
4247
4248 if ( !const_offset || ((const_offset->u32[0] +
4249 type_size * first_component) % 4)) {
4250 /* If we use a .yz writemask we also need to emit 2
4251 * byte-scattered write messages because of y-component not
4252 * being aligned to 32-bit.
4253 */
4254 num_components = 1;
4255 } else if (num_components > 2 && (num_components % 2)) {
4256 /* If there is an odd number of consecutive components we left
4257 * the not paired component for a following emit of length == 1
4258 * with byte_scattered_write.
4259 */
4260 num_components --;
4261 }
4262 /* For num_components == 1 we are also shuffling the component
4263 * because byte scattered writes of 16-bit need values to be dword
4264 * aligned. Shuffling only one component would be the same as
4265 * striding it.
4266 */
4267 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D,
4268 DIV_ROUND_UP(num_components, 2));
4269 shuffle_16bit_data_for_32bit_write(bld, tmp, write_src,
4270 num_components);
4271 write_src = tmp;
4272 }
4273
4274 fs_reg offset_reg;
4275
4276 if (const_offset) {
4277 offset_reg = brw_imm_ud(const_offset->u32[0] +
4278 type_size * first_component);
4279 } else {
4280 offset_reg = vgrf(glsl_type::uint_type);
4281 bld.ADD(offset_reg,
4282 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4283 brw_imm_ud(type_size * first_component));
4284 }
4285
4286 if (type_size < 4 && num_components == 1) {
4287 assert(type_size == 2);
4288 /* Untyped Surface messages have a fixed 32-bit size, so we need
4289 * to rely on byte scattered in order to write 16-bit elements.
4290 * The byte_scattered_write message needs that every written 16-bit
4291 * type to be aligned 32-bits (stride=2).
4292 */
4293 emit_byte_scattered_write(bld, surf_index, offset_reg,
4294 write_src,
4295 1 /* dims */, 1,
4296 bit_size,
4297 BRW_PREDICATE_NONE);
4298 } else {
4299 assert(num_components * type_size <= 16);
4300 assert((num_components * type_size) % 4 == 0);
4301 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4302 offset_reg.ud % 4 == 0);
4303 unsigned num_slots = (num_components * type_size) / 4;
4304
4305 emit_untyped_write(bld, surf_index, offset_reg,
4306 write_src,
4307 1 /* dims */, num_slots,
4308 BRW_PREDICATE_NONE);
4309 }
4310
4311 /* Clear the bits in the writemask that we just wrote, then try
4312 * again to see if more channels are left.
4313 */
4314 writemask &= (15 << (first_component + num_components));
4315 }
4316 break;
4317 }
4318
4319 case nir_intrinsic_store_output: {
4320 fs_reg src = get_nir_src(instr->src[0]);
4321
4322 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4323 assert(const_offset && "Indirect output stores not allowed");
4324
4325 unsigned num_components = instr->num_components;
4326 unsigned first_component = nir_intrinsic_component(instr);
4327 if (nir_src_bit_size(instr->src[0]) == 64) {
4328 src = shuffle_64bit_data_for_32bit_write(bld, src, num_components);
4329 num_components *= 2;
4330 }
4331
4332 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4333 4 * const_offset->u32[0]), src.type);
4334 for (unsigned j = 0; j < num_components; j++) {
4335 bld.MOV(offset(new_dest, bld, j + first_component),
4336 offset(src, bld, j));
4337 }
4338 break;
4339 }
4340
4341 case nir_intrinsic_ssbo_atomic_add:
4342 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4343 break;
4344 case nir_intrinsic_ssbo_atomic_imin:
4345 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4346 break;
4347 case nir_intrinsic_ssbo_atomic_umin:
4348 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4349 break;
4350 case nir_intrinsic_ssbo_atomic_imax:
4351 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4352 break;
4353 case nir_intrinsic_ssbo_atomic_umax:
4354 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4355 break;
4356 case nir_intrinsic_ssbo_atomic_and:
4357 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4358 break;
4359 case nir_intrinsic_ssbo_atomic_or:
4360 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4361 break;
4362 case nir_intrinsic_ssbo_atomic_xor:
4363 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4364 break;
4365 case nir_intrinsic_ssbo_atomic_exchange:
4366 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4367 break;
4368 case nir_intrinsic_ssbo_atomic_comp_swap:
4369 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4370 break;
4371
4372 case nir_intrinsic_get_buffer_size: {
4373 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4374 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4375
4376 /* A resinfo's sampler message is used to get the buffer size. The
4377 * SIMD8's writeback message consists of four registers and SIMD16's
4378 * writeback message consists of 8 destination registers (two per each
4379 * component). Because we are only interested on the first channel of
4380 * the first returned component, where resinfo returns the buffer size
4381 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4382 * the dispatch width.
4383 */
4384 const fs_builder ubld = bld.exec_all().group(8, 0);
4385 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4386 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4387
4388 /* Set LOD = 0 */
4389 ubld.MOV(src_payload, brw_imm_d(0));
4390
4391 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4392 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4393 src_payload, brw_imm_ud(index));
4394 inst->header_size = 0;
4395 inst->mlen = 1;
4396 inst->size_written = 4 * REG_SIZE;
4397
4398 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4399 *
4400 * "Out-of-bounds checking is always performed at a DWord granularity. If
4401 * any part of the DWord is out-of-bounds then the whole DWord is
4402 * considered out-of-bounds."
4403 *
4404 * This implies that types with size smaller than 4-bytes need to be
4405 * padded if they don't complete the last dword of the buffer. But as we
4406 * need to maintain the original size we need to reverse the padding
4407 * calculation to return the correct size to know the number of elements
4408 * of an unsized array. As we stored in the last two bits of the surface
4409 * size the needed padding for the buffer, we calculate here the
4410 * original buffer_size reversing the surface_size calculation:
4411 *
4412 * surface_size = isl_align(buffer_size, 4) +
4413 * (isl_align(buffer_size) - buffer_size)
4414 *
4415 * buffer_size = surface_size & ~3 - surface_size & 3
4416 */
4417
4418 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4419 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4420 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4421
4422 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4423 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4424 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4425
4426 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4427
4428 brw_mark_surface_used(prog_data, index);
4429 break;
4430 }
4431
4432 case nir_intrinsic_load_subgroup_invocation:
4433 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4434 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4435 break;
4436
4437 case nir_intrinsic_load_subgroup_eq_mask:
4438 case nir_intrinsic_load_subgroup_ge_mask:
4439 case nir_intrinsic_load_subgroup_gt_mask:
4440 case nir_intrinsic_load_subgroup_le_mask:
4441 case nir_intrinsic_load_subgroup_lt_mask:
4442 unreachable("not reached");
4443
4444 case nir_intrinsic_vote_any: {
4445 const fs_builder ubld = bld.exec_all().group(1, 0);
4446
4447 /* The any/all predicates do not consider channel enables. To prevent
4448 * dead channels from affecting the result, we initialize the flag with
4449 * with the identity value for the logical operation.
4450 */
4451 if (dispatch_width == 32) {
4452 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4453 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4454 brw_imm_ud(0));
4455 } else {
4456 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4457 }
4458 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4459
4460 /* For some reason, the any/all predicates don't work properly with
4461 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4462 * doesn't read the correct subset of the flag register and you end up
4463 * getting garbage in the second half. Work around this by using a pair
4464 * of 1-wide MOVs and scattering the result.
4465 */
4466 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4467 ubld.MOV(res1, brw_imm_d(0));
4468 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4469 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4470 BRW_PREDICATE_ALIGN1_ANY32H,
4471 ubld.MOV(res1, brw_imm_d(-1)));
4472
4473 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4474 break;
4475 }
4476 case nir_intrinsic_vote_all: {
4477 const fs_builder ubld = bld.exec_all().group(1, 0);
4478
4479 /* The any/all predicates do not consider channel enables. To prevent
4480 * dead channels from affecting the result, we initialize the flag with
4481 * with the identity value for the logical operation.
4482 */
4483 if (dispatch_width == 32) {
4484 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4485 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4486 brw_imm_ud(0xffffffff));
4487 } else {
4488 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4489 }
4490 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4491
4492 /* For some reason, the any/all predicates don't work properly with
4493 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4494 * doesn't read the correct subset of the flag register and you end up
4495 * getting garbage in the second half. Work around this by using a pair
4496 * of 1-wide MOVs and scattering the result.
4497 */
4498 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4499 ubld.MOV(res1, brw_imm_d(0));
4500 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4501 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4502 BRW_PREDICATE_ALIGN1_ALL32H,
4503 ubld.MOV(res1, brw_imm_d(-1)));
4504
4505 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4506 break;
4507 }
4508 case nir_intrinsic_vote_feq:
4509 case nir_intrinsic_vote_ieq: {
4510 fs_reg value = get_nir_src(instr->src[0]);
4511 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4512 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4513 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4514 }
4515
4516 fs_reg uniformized = bld.emit_uniformize(value);
4517 const fs_builder ubld = bld.exec_all().group(1, 0);
4518
4519 /* The any/all predicates do not consider channel enables. To prevent
4520 * dead channels from affecting the result, we initialize the flag with
4521 * with the identity value for the logical operation.
4522 */
4523 if (dispatch_width == 32) {
4524 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4525 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4526 brw_imm_ud(0xffffffff));
4527 } else {
4528 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4529 }
4530 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4531
4532 /* For some reason, the any/all predicates don't work properly with
4533 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4534 * doesn't read the correct subset of the flag register and you end up
4535 * getting garbage in the second half. Work around this by using a pair
4536 * of 1-wide MOVs and scattering the result.
4537 */
4538 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4539 ubld.MOV(res1, brw_imm_d(0));
4540 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4541 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4542 BRW_PREDICATE_ALIGN1_ALL32H,
4543 ubld.MOV(res1, brw_imm_d(-1)));
4544
4545 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4546 break;
4547 }
4548
4549 case nir_intrinsic_ballot: {
4550 const fs_reg value = retype(get_nir_src(instr->src[0]),
4551 BRW_REGISTER_TYPE_UD);
4552 struct brw_reg flag = brw_flag_reg(0, 0);
4553 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4554 * as f0.0. This is a problem for fragment programs as we currently use
4555 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4556 * programs yet so this isn't a problem. When we do, something will
4557 * have to change.
4558 */
4559 if (dispatch_width == 32)
4560 flag.type = BRW_REGISTER_TYPE_UD;
4561
4562 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4563 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4564
4565 if (instr->dest.ssa.bit_size > 32) {
4566 dest.type = BRW_REGISTER_TYPE_UQ;
4567 } else {
4568 dest.type = BRW_REGISTER_TYPE_UD;
4569 }
4570 bld.MOV(dest, flag);
4571 break;
4572 }
4573
4574 case nir_intrinsic_read_invocation: {
4575 const fs_reg value = get_nir_src(instr->src[0]);
4576 const fs_reg invocation = get_nir_src(instr->src[1]);
4577 fs_reg tmp = bld.vgrf(value.type);
4578
4579 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4580 bld.emit_uniformize(invocation));
4581
4582 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4583 break;
4584 }
4585
4586 case nir_intrinsic_read_first_invocation: {
4587 const fs_reg value = get_nir_src(instr->src[0]);
4588 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4589 break;
4590 }
4591
4592 case nir_intrinsic_shuffle: {
4593 const fs_reg value = get_nir_src(instr->src[0]);
4594 const fs_reg index = get_nir_src(instr->src[1]);
4595
4596 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4597 break;
4598 }
4599
4600 case nir_intrinsic_first_invocation: {
4601 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4602 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4603 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4604 fs_reg(component(tmp, 0)));
4605 break;
4606 }
4607
4608 case nir_intrinsic_quad_broadcast: {
4609 const fs_reg value = get_nir_src(instr->src[0]);
4610 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4611 assert(nir_src_bit_size(instr->src[1]) == 32);
4612
4613 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4614 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4615 break;
4616 }
4617
4618 case nir_intrinsic_quad_swap_horizontal: {
4619 const fs_reg value = get_nir_src(instr->src[0]);
4620 const fs_reg tmp = bld.vgrf(value.type);
4621 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4622
4623 const fs_reg src_left = horiz_stride(value, 2);
4624 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4625 const fs_reg tmp_left = horiz_stride(tmp, 2);
4626 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4627
4628 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4629 *
4630 * "When source or destination datatype is 64b or operation is
4631 * integer DWord multiply, regioning in Align1 must follow
4632 * these rules:
4633 *
4634 * [...]
4635 *
4636 * 3. Source and Destination offset must be the same, except
4637 * the case of scalar source."
4638 *
4639 * In order to work around this, we have to emit two 32-bit MOVs instead
4640 * of a single 64-bit MOV to do the shuffle.
4641 */
4642 if (type_sz(value.type) > 4 &&
4643 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4644 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4645 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4646 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4647 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4648 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4649 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4650 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4651 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4652 } else {
4653 ubld.MOV(tmp_left, src_right);
4654 ubld.MOV(tmp_right, src_left);
4655 }
4656 bld.MOV(retype(dest, value.type), tmp);
4657 break;
4658 }
4659
4660 case nir_intrinsic_quad_swap_vertical: {
4661 const fs_reg value = get_nir_src(instr->src[0]);
4662 if (nir_src_bit_size(instr->src[0]) == 32) {
4663 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4664 const fs_reg tmp = bld.vgrf(value.type);
4665 const fs_builder ubld = bld.exec_all();
4666 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4667 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4668 bld.MOV(retype(dest, value.type), tmp);
4669 } else {
4670 /* For larger data types, we have to either emit dispatch_width many
4671 * MOVs or else fall back to doing indirects.
4672 */
4673 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4674 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4675 brw_imm_w(0x2));
4676 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4677 }
4678 break;
4679 }
4680
4681 case nir_intrinsic_quad_swap_diagonal: {
4682 const fs_reg value = get_nir_src(instr->src[0]);
4683 if (nir_src_bit_size(instr->src[0]) == 32) {
4684 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4685 const fs_reg tmp = bld.vgrf(value.type);
4686 const fs_builder ubld = bld.exec_all();
4687 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4688 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4689 bld.MOV(retype(dest, value.type), tmp);
4690 } else {
4691 /* For larger data types, we have to either emit dispatch_width many
4692 * MOVs or else fall back to doing indirects.
4693 */
4694 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4695 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4696 brw_imm_w(0x3));
4697 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4698 }
4699 break;
4700 }
4701
4702 case nir_intrinsic_reduce: {
4703 fs_reg src = get_nir_src(instr->src[0]);
4704 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4705 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4706 if (cluster_size == 0 || cluster_size > dispatch_width)
4707 cluster_size = dispatch_width;
4708
4709 /* Figure out the source type */
4710 src.type = brw_type_for_nir_type(devinfo,
4711 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4712 nir_src_bit_size(instr->src[0])));
4713
4714 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4715 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4716 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4717
4718 /* Set up a register for all of our scratching around and initialize it
4719 * to reduction operation's identity value.
4720 */
4721 fs_reg scan = bld.vgrf(src.type);
4722 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4723
4724 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4725
4726 dest.type = src.type;
4727 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4728 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4729 * the distance between clusters is at least 2 GRFs. In this case,
4730 * we don't need the weird striding of the CLUSTER_BROADCAST
4731 * instruction and can just do regular MOVs.
4732 */
4733 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4734 const unsigned groups =
4735 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4736 const unsigned group_size = dispatch_width / groups;
4737 for (unsigned i = 0; i < groups; i++) {
4738 const unsigned cluster = (i * group_size) / cluster_size;
4739 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4740 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4741 component(scan, comp));
4742 }
4743 } else {
4744 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4745 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4746 }
4747 break;
4748 }
4749
4750 case nir_intrinsic_inclusive_scan:
4751 case nir_intrinsic_exclusive_scan: {
4752 fs_reg src = get_nir_src(instr->src[0]);
4753 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4754
4755 /* Figure out the source type */
4756 src.type = brw_type_for_nir_type(devinfo,
4757 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4758 nir_src_bit_size(instr->src[0])));
4759
4760 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4761 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4762 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4763
4764 /* Set up a register for all of our scratching around and initialize it
4765 * to reduction operation's identity value.
4766 */
4767 fs_reg scan = bld.vgrf(src.type);
4768 const fs_builder allbld = bld.exec_all();
4769 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4770
4771 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4772 /* Exclusive scan is a bit harder because we have to do an annoying
4773 * shift of the contents before we can begin. To make things worse,
4774 * we can't do this with a normal stride; we have to use indirects.
4775 */
4776 fs_reg shifted = bld.vgrf(src.type);
4777 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4778 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4779 brw_imm_w(-1));
4780 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4781 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4782 scan = shifted;
4783 }
4784
4785 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4786
4787 bld.MOV(retype(dest, src.type), scan);
4788 break;
4789 }
4790
4791 default:
4792 unreachable("unknown intrinsic");
4793 }
4794 }
4795
4796 void
4797 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4798 int op, nir_intrinsic_instr *instr)
4799 {
4800 if (stage == MESA_SHADER_FRAGMENT)
4801 brw_wm_prog_data(prog_data)->has_side_effects = true;
4802
4803 fs_reg dest;
4804 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4805 dest = get_nir_dest(instr->dest);
4806
4807 fs_reg surface;
4808 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4809 if (const_surface) {
4810 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4811 const_surface->u32[0];
4812 surface = brw_imm_ud(surf_index);
4813 brw_mark_surface_used(prog_data, surf_index);
4814 } else {
4815 surface = vgrf(glsl_type::uint_type);
4816 bld.ADD(surface, get_nir_src(instr->src[0]),
4817 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4818
4819 /* Assume this may touch any SSBO. This is the same we do for other
4820 * UBO/SSBO accesses with non-constant surface.
4821 */
4822 brw_mark_surface_used(prog_data,
4823 stage_prog_data->binding_table.ssbo_start +
4824 nir->info.num_ssbos - 1);
4825 }
4826
4827 fs_reg offset = get_nir_src(instr->src[1]);
4828 fs_reg data1 = get_nir_src(instr->src[2]);
4829 fs_reg data2;
4830 if (op == BRW_AOP_CMPWR)
4831 data2 = get_nir_src(instr->src[3]);
4832
4833 /* Emit the actual atomic operation */
4834
4835 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4836 data1, data2,
4837 1 /* dims */, 1 /* rsize */,
4838 op,
4839 BRW_PREDICATE_NONE);
4840 dest.type = atomic_result.type;
4841 bld.MOV(dest, atomic_result);
4842 }
4843
4844 void
4845 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4846 int op, nir_intrinsic_instr *instr)
4847 {
4848 fs_reg dest;
4849 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4850 dest = get_nir_dest(instr->dest);
4851
4852 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4853 fs_reg offset;
4854 fs_reg data1 = get_nir_src(instr->src[1]);
4855 fs_reg data2;
4856 if (op == BRW_AOP_CMPWR)
4857 data2 = get_nir_src(instr->src[2]);
4858
4859 /* Get the offset */
4860 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4861 if (const_offset) {
4862 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4863 } else {
4864 offset = vgrf(glsl_type::uint_type);
4865 bld.ADD(offset,
4866 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4867 brw_imm_ud(instr->const_index[0]));
4868 }
4869
4870 /* Emit the actual atomic operation operation */
4871
4872 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4873 data1, data2,
4874 1 /* dims */, 1 /* rsize */,
4875 op,
4876 BRW_PREDICATE_NONE);
4877 dest.type = atomic_result.type;
4878 bld.MOV(dest, atomic_result);
4879 }
4880
4881 void
4882 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4883 {
4884 unsigned texture = instr->texture_index;
4885 unsigned sampler = instr->sampler_index;
4886
4887 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4888
4889 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4890 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4891
4892 int lod_components = 0;
4893
4894 /* The hardware requires a LOD for buffer textures */
4895 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4896 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4897
4898 uint32_t header_bits = 0;
4899 for (unsigned i = 0; i < instr->num_srcs; i++) {
4900 fs_reg src = get_nir_src(instr->src[i].src);
4901 switch (instr->src[i].src_type) {
4902 case nir_tex_src_bias:
4903 srcs[TEX_LOGICAL_SRC_LOD] =
4904 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4905 break;
4906 case nir_tex_src_comparator:
4907 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4908 break;
4909 case nir_tex_src_coord:
4910 switch (instr->op) {
4911 case nir_texop_txf:
4912 case nir_texop_txf_ms:
4913 case nir_texop_txf_ms_mcs:
4914 case nir_texop_samples_identical:
4915 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4916 break;
4917 default:
4918 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4919 break;
4920 }
4921 break;
4922 case nir_tex_src_ddx:
4923 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4924 lod_components = nir_tex_instr_src_size(instr, i);
4925 break;
4926 case nir_tex_src_ddy:
4927 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4928 break;
4929 case nir_tex_src_lod:
4930 switch (instr->op) {
4931 case nir_texop_txs:
4932 srcs[TEX_LOGICAL_SRC_LOD] =
4933 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4934 break;
4935 case nir_texop_txf:
4936 srcs[TEX_LOGICAL_SRC_LOD] =
4937 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4938 break;
4939 default:
4940 srcs[TEX_LOGICAL_SRC_LOD] =
4941 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4942 break;
4943 }
4944 break;
4945 case nir_tex_src_ms_index:
4946 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4947 break;
4948
4949 case nir_tex_src_offset: {
4950 nir_const_value *const_offset =
4951 nir_src_as_const_value(instr->src[i].src);
4952 unsigned offset_bits = 0;
4953 if (const_offset &&
4954 brw_texture_offset(const_offset->i32,
4955 nir_tex_instr_src_size(instr, i),
4956 &offset_bits)) {
4957 header_bits |= offset_bits;
4958 } else {
4959 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
4960 retype(src, BRW_REGISTER_TYPE_D);
4961 }
4962 break;
4963 }
4964
4965 case nir_tex_src_projector:
4966 unreachable("should be lowered");
4967
4968 case nir_tex_src_texture_offset: {
4969 /* Figure out the highest possible texture index and mark it as used */
4970 uint32_t max_used = texture + instr->texture_array_size - 1;
4971 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
4972 max_used += stage_prog_data->binding_table.gather_texture_start;
4973 } else {
4974 max_used += stage_prog_data->binding_table.texture_start;
4975 }
4976 brw_mark_surface_used(prog_data, max_used);
4977
4978 /* Emit code to evaluate the actual indexing expression */
4979 fs_reg tmp = vgrf(glsl_type::uint_type);
4980 bld.ADD(tmp, src, brw_imm_ud(texture));
4981 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4982 break;
4983 }
4984
4985 case nir_tex_src_sampler_offset: {
4986 /* Emit code to evaluate the actual indexing expression */
4987 fs_reg tmp = vgrf(glsl_type::uint_type);
4988 bld.ADD(tmp, src, brw_imm_ud(sampler));
4989 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4990 break;
4991 }
4992
4993 case nir_tex_src_ms_mcs:
4994 assert(instr->op == nir_texop_txf_ms);
4995 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
4996 break;
4997
4998 case nir_tex_src_plane: {
4999 nir_const_value *const_plane =
5000 nir_src_as_const_value(instr->src[i].src);
5001 const uint32_t plane = const_plane->u32[0];
5002 const uint32_t texture_index =
5003 instr->texture_index +
5004 stage_prog_data->binding_table.plane_start[plane] -
5005 stage_prog_data->binding_table.texture_start;
5006
5007 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5008 break;
5009 }
5010
5011 default:
5012 unreachable("unknown texture source");
5013 }
5014 }
5015
5016 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5017 (instr->op == nir_texop_txf_ms ||
5018 instr->op == nir_texop_samples_identical)) {
5019 if (devinfo->gen >= 7 &&
5020 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5021 srcs[TEX_LOGICAL_SRC_MCS] =
5022 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5023 instr->coord_components,
5024 srcs[TEX_LOGICAL_SRC_SURFACE]);
5025 } else {
5026 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5027 }
5028 }
5029
5030 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5031 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5032
5033 enum opcode opcode;
5034 switch (instr->op) {
5035 case nir_texop_tex:
5036 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5037 SHADER_OPCODE_TXL_LOGICAL);
5038 break;
5039 case nir_texop_txb:
5040 opcode = FS_OPCODE_TXB_LOGICAL;
5041 break;
5042 case nir_texop_txl:
5043 opcode = SHADER_OPCODE_TXL_LOGICAL;
5044 break;
5045 case nir_texop_txd:
5046 opcode = SHADER_OPCODE_TXD_LOGICAL;
5047 break;
5048 case nir_texop_txf:
5049 opcode = SHADER_OPCODE_TXF_LOGICAL;
5050 break;
5051 case nir_texop_txf_ms:
5052 if ((key_tex->msaa_16 & (1 << sampler)))
5053 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5054 else
5055 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5056 break;
5057 case nir_texop_txf_ms_mcs:
5058 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5059 break;
5060 case nir_texop_query_levels:
5061 case nir_texop_txs:
5062 opcode = SHADER_OPCODE_TXS_LOGICAL;
5063 break;
5064 case nir_texop_lod:
5065 opcode = SHADER_OPCODE_LOD_LOGICAL;
5066 break;
5067 case nir_texop_tg4:
5068 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5069 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5070 else
5071 opcode = SHADER_OPCODE_TG4_LOGICAL;
5072 break;
5073 case nir_texop_texture_samples:
5074 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5075 break;
5076 case nir_texop_samples_identical: {
5077 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5078
5079 /* If mcs is an immediate value, it means there is no MCS. In that case
5080 * just return false.
5081 */
5082 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5083 bld.MOV(dst, brw_imm_ud(0u));
5084 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5085 fs_reg tmp = vgrf(glsl_type::uint_type);
5086 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5087 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5088 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5089 } else {
5090 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5091 BRW_CONDITIONAL_EQ);
5092 }
5093 return;
5094 }
5095 default:
5096 unreachable("unknown texture opcode");
5097 }
5098
5099 if (instr->op == nir_texop_tg4) {
5100 if (instr->component == 1 &&
5101 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5102 /* gather4 sampler is broken for green channel on RG32F --
5103 * we must ask for blue instead.
5104 */
5105 header_bits |= 2 << 16;
5106 } else {
5107 header_bits |= instr->component << 16;
5108 }
5109 }
5110
5111 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5112 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5113 inst->offset = header_bits;
5114
5115 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5116 if (devinfo->gen >= 9 &&
5117 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5118 unsigned write_mask = instr->dest.is_ssa ?
5119 nir_ssa_def_components_read(&instr->dest.ssa):
5120 (1 << dest_size) - 1;
5121 assert(write_mask != 0); /* dead code should have been eliminated */
5122 inst->size_written = util_last_bit(write_mask) *
5123 inst->dst.component_size(inst->exec_size);
5124 } else {
5125 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5126 }
5127
5128 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5129 inst->shadow_compare = true;
5130
5131 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5132 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5133
5134 fs_reg nir_dest[4];
5135 for (unsigned i = 0; i < dest_size; i++)
5136 nir_dest[i] = offset(dst, bld, i);
5137
5138 if (instr->op == nir_texop_query_levels) {
5139 /* # levels is in .w */
5140 nir_dest[0] = offset(dst, bld, 3);
5141 } else if (instr->op == nir_texop_txs &&
5142 dest_size >= 3 && devinfo->gen < 7) {
5143 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5144 fs_reg depth = offset(dst, bld, 2);
5145 nir_dest[2] = vgrf(glsl_type::int_type);
5146 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5147 }
5148
5149 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5150 }
5151
5152 void
5153 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5154 {
5155 switch (instr->type) {
5156 case nir_jump_break:
5157 bld.emit(BRW_OPCODE_BREAK);
5158 break;
5159 case nir_jump_continue:
5160 bld.emit(BRW_OPCODE_CONTINUE);
5161 break;
5162 case nir_jump_return:
5163 default:
5164 unreachable("unknown jump");
5165 }
5166 }
5167
5168 /**
5169 * This helper takes the result of a load operation that reads 32-bit elements
5170 * in this format:
5171 *
5172 * x x x x x x x x
5173 * y y y y y y y y
5174 * z z z z z z z z
5175 * w w w w w w w w
5176 *
5177 * and shuffles the data to get this:
5178 *
5179 * x y x y x y x y
5180 * x y x y x y x y
5181 * z w z w z w z w
5182 * z w z w z w z w
5183 *
5184 * Which is exactly what we want if the load is reading 64-bit components
5185 * like doubles, where x represents the low 32-bit of the x double component
5186 * and y represents the high 32-bit of the x double component (likewise with
5187 * z and w for double component y). The parameter @components represents
5188 * the number of 64-bit components present in @src. This would typically be
5189 * 2 at most, since we can only fit 2 double elements in the result of a
5190 * vec4 load.
5191 *
5192 * Notice that @dst and @src can be the same register.
5193 */
5194 void
5195 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
5196 const fs_reg &dst,
5197 const fs_reg &src,
5198 uint32_t components)
5199 {
5200 assert(type_sz(src.type) == 4);
5201 assert(type_sz(dst.type) == 8);
5202
5203 /* A temporary that we will use to shuffle the 32-bit data of each
5204 * component in the vector into valid 64-bit data. We can't write directly
5205 * to dst because dst can be (and would usually be) the same as src
5206 * and in that case the first MOV in the loop below would overwrite the
5207 * data read in the second MOV.
5208 */
5209 fs_reg tmp = bld.vgrf(dst.type);
5210
5211 for (unsigned i = 0; i < components; i++) {
5212 const fs_reg component_i = offset(src, bld, 2 * i);
5213
5214 bld.MOV(subscript(tmp, src.type, 0), component_i);
5215 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
5216
5217 bld.MOV(offset(dst, bld, i), tmp);
5218 }
5219 }
5220
5221 void
5222 shuffle_32bit_load_result_to_16bit_data(const fs_builder &bld,
5223 const fs_reg &dst,
5224 const fs_reg &src,
5225 uint32_t first_component,
5226 uint32_t components)
5227 {
5228 assert(type_sz(src.type) == 4);
5229 assert(type_sz(dst.type) == 2);
5230
5231 /* A temporary is used to un-shuffle the 32-bit data of each component in
5232 * into a valid 16-bit vector. We can't write directly to dst because it
5233 * can be the same register as src and in that case the first MOV in the
5234 * loop below would overwrite the data read in the second MOV.
5235 */
5236 fs_reg tmp = retype(bld.vgrf(src.type), dst.type);
5237
5238 for (unsigned i = 0; i < components; i++) {
5239 const fs_reg component_i =
5240 subscript(offset(src, bld, (first_component + i) / 2), dst.type,
5241 (first_component + i) % 2);
5242
5243 bld.MOV(offset(tmp, bld, i % 2), component_i);
5244
5245 if (i % 2) {
5246 bld.MOV(offset(dst, bld, i -1), offset(tmp, bld, 0));
5247 bld.MOV(offset(dst, bld, i), offset(tmp, bld, 1));
5248 }
5249 }
5250 if (components % 2) {
5251 bld.MOV(offset(dst, bld, components - 1), tmp);
5252 }
5253 }
5254
5255 /**
5256 * This helper does the inverse operation of
5257 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
5258 *
5259 * We need to do this when we are going to use untyped write messsages that
5260 * operate with 32-bit components in order to arrange our 64-bit data to be
5261 * in the expected layout.
5262 *
5263 * Notice that callers of this function, unlike in the case of the inverse
5264 * operation, would typically need to call this with dst and src being
5265 * different registers, since they would otherwise corrupt the original
5266 * 64-bit data they are about to write. Because of this the function checks
5267 * that the src and dst regions involved in the operation do not overlap.
5268 */
5269 fs_reg
5270 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
5271 const fs_reg &src,
5272 uint32_t components)
5273 {
5274 assert(type_sz(src.type) == 8);
5275
5276 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D, 2 * components);
5277
5278 for (unsigned i = 0; i < components; i++) {
5279 const fs_reg component_i = offset(src, bld, i);
5280 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
5281 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
5282 }
5283
5284 return dst;
5285 }
5286
5287 void
5288 shuffle_16bit_data_for_32bit_write(const fs_builder &bld,
5289 const fs_reg &dst,
5290 const fs_reg &src,
5291 uint32_t components)
5292 {
5293 assert(type_sz(src.type) == 2);
5294 assert(type_sz(dst.type) == 4);
5295
5296 /* A temporary is used to shuffle the 16-bit data of each component in the
5297 * 32-bit data vector. We can't write directly to dst because it can be the
5298 * same register as src and in that case the first MOV in the loop below
5299 * would overwrite the data read in the second MOV.
5300 */
5301 fs_reg tmp = bld.vgrf(dst.type);
5302
5303 for (unsigned i = 0; i < components; i++) {
5304 const fs_reg component_i = offset(src, bld, i);
5305 bld.MOV(subscript(tmp, src.type, i % 2), component_i);
5306 if (i % 2) {
5307 bld.MOV(offset(dst, bld, i / 2), tmp);
5308 }
5309 }
5310 if (components % 2) {
5311 bld.MOV(offset(dst, bld, components / 2), tmp);
5312 }
5313 }
5314
5315 fs_reg
5316 setup_imm_df(const fs_builder &bld, double v)
5317 {
5318 const struct gen_device_info *devinfo = bld.shader->devinfo;
5319 assert(devinfo->gen >= 7);
5320
5321 if (devinfo->gen >= 8)
5322 return brw_imm_df(v);
5323
5324 /* gen7.5 does not support DF immediates straighforward but the DIM
5325 * instruction allows to set the 64-bit immediate value.
5326 */
5327 if (devinfo->is_haswell) {
5328 const fs_builder ubld = bld.exec_all().group(1, 0);
5329 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5330 ubld.DIM(dst, brw_imm_df(v));
5331 return component(dst, 0);
5332 }
5333
5334 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5335 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5336 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5337 *
5338 * Alternatively, we could also produce a normal VGRF (without stride 0)
5339 * by writing to all the channels in the VGRF, however, that would hit the
5340 * gen7 bug where we have to split writes that span more than 1 register
5341 * into instructions with a width of 4 (otherwise the write to the second
5342 * register written runs into an execmask hardware bug) which isn't very
5343 * nice.
5344 */
5345 union {
5346 double d;
5347 struct {
5348 uint32_t i1;
5349 uint32_t i2;
5350 };
5351 } di;
5352
5353 di.d = v;
5354
5355 const fs_builder ubld = bld.exec_all().group(1, 0);
5356 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5357 ubld.MOV(tmp, brw_imm_ud(di.i1));
5358 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5359
5360 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5361 }