i965/compiler: handle conversion to smaller type in the lowering pass for that
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 nir_foreach_variable(var, &nir->outputs) {
71 const int loc = var->data.driver_location;
72 if (outputs[loc].file == BAD_FILE) {
73 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s[loc]);
74 for (unsigned i = 0; i < vec4s[loc]; i++) {
75 outputs[loc + i] = offset(reg, bld, 4 * i);
76 }
77 }
78 }
79 }
80
81 void
82 fs_visitor::nir_setup_uniforms()
83 {
84 /* Only the first compile gets to set up uniforms. */
85 if (push_constant_loc) {
86 assert(pull_constant_loc);
87 return;
88 }
89
90 uniforms = nir->num_uniforms / 4;
91
92 if (stage == MESA_SHADER_COMPUTE) {
93 /* Add a uniform for the thread local id. It must be the last uniform
94 * on the list.
95 */
96 assert(uniforms == prog_data->nr_params);
97 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
98 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
99 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
100 }
101 }
102
103 static bool
104 emit_system_values_block(nir_block *block, fs_visitor *v)
105 {
106 fs_reg *reg;
107
108 nir_foreach_instr(instr, block) {
109 if (instr->type != nir_instr_type_intrinsic)
110 continue;
111
112 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
113 switch (intrin->intrinsic) {
114 case nir_intrinsic_load_vertex_id:
115 case nir_intrinsic_load_base_vertex:
116 unreachable("should be lowered by nir_lower_system_values().");
117
118 case nir_intrinsic_load_vertex_id_zero_base:
119 case nir_intrinsic_load_is_indexed_draw:
120 case nir_intrinsic_load_first_vertex:
121 case nir_intrinsic_load_instance_id:
122 case nir_intrinsic_load_base_instance:
123 case nir_intrinsic_load_draw_id:
124 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
125
126 case nir_intrinsic_load_invocation_id:
127 if (v->stage == MESA_SHADER_TESS_CTRL)
128 break;
129 assert(v->stage == MESA_SHADER_GEOMETRY);
130 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
131 if (reg->file == BAD_FILE) {
132 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
133 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
134 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
135 abld.SHR(iid, g1, brw_imm_ud(27u));
136 *reg = iid;
137 }
138 break;
139
140 case nir_intrinsic_load_sample_pos:
141 assert(v->stage == MESA_SHADER_FRAGMENT);
142 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
143 if (reg->file == BAD_FILE)
144 *reg = *v->emit_samplepos_setup();
145 break;
146
147 case nir_intrinsic_load_sample_id:
148 assert(v->stage == MESA_SHADER_FRAGMENT);
149 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
150 if (reg->file == BAD_FILE)
151 *reg = *v->emit_sampleid_setup();
152 break;
153
154 case nir_intrinsic_load_sample_mask_in:
155 assert(v->stage == MESA_SHADER_FRAGMENT);
156 assert(v->devinfo->gen >= 7);
157 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
158 if (reg->file == BAD_FILE)
159 *reg = *v->emit_samplemaskin_setup();
160 break;
161
162 case nir_intrinsic_load_work_group_id:
163 assert(v->stage == MESA_SHADER_COMPUTE);
164 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
165 if (reg->file == BAD_FILE)
166 *reg = *v->emit_cs_work_group_id_setup();
167 break;
168
169 case nir_intrinsic_load_helper_invocation:
170 assert(v->stage == MESA_SHADER_FRAGMENT);
171 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
172 if (reg->file == BAD_FILE) {
173 const fs_builder abld =
174 v->bld.annotate("gl_HelperInvocation", NULL);
175
176 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
177 * pixel mask is in g1.7 of the thread payload.
178 *
179 * We move the per-channel pixel enable bit to the low bit of each
180 * channel by shifting the byte containing the pixel mask by the
181 * vector immediate 0x76543210UV.
182 *
183 * The region of <1,8,0> reads only 1 byte (the pixel masks for
184 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
185 * masks for 2 and 3) in SIMD16.
186 */
187 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
188 abld.SHR(shifted,
189 stride(byte_offset(retype(brw_vec1_grf(1, 0),
190 BRW_REGISTER_TYPE_UB), 28),
191 1, 8, 0),
192 brw_imm_v(0x76543210));
193
194 /* A set bit in the pixel mask means the channel is enabled, but
195 * that is the opposite of gl_HelperInvocation so we need to invert
196 * the mask.
197 *
198 * The negate source-modifier bit of logical instructions on Gen8+
199 * performs 1's complement negation, so we can use that instead of
200 * a NOT instruction.
201 */
202 fs_reg inverted = negate(shifted);
203 if (v->devinfo->gen < 8) {
204 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
205 abld.NOT(inverted, shifted);
206 }
207
208 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
209 * with 1 and negating.
210 */
211 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
212 abld.AND(anded, inverted, brw_imm_uw(1));
213
214 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
215 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
216 *reg = dst;
217 }
218 break;
219
220 default:
221 break;
222 }
223 }
224
225 return true;
226 }
227
228 void
229 fs_visitor::nir_emit_system_values()
230 {
231 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
232 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
233 nir_system_values[i] = fs_reg();
234 }
235
236 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
237 * never end up using it.
238 */
239 {
240 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
241 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
242 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
243
244 const fs_builder allbld8 = abld.group(8, 0).exec_all();
245 allbld8.MOV(reg, brw_imm_v(0x76543210));
246 if (dispatch_width > 8)
247 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
248 if (dispatch_width > 16) {
249 const fs_builder allbld16 = abld.group(16, 0).exec_all();
250 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
251 }
252 }
253
254 nir_foreach_function(function, nir) {
255 assert(strcmp(function->name, "main") == 0);
256 assert(function->impl);
257 nir_foreach_block(block, function->impl) {
258 emit_system_values_block(block, this);
259 }
260 }
261 }
262
263 /*
264 * Returns a type based on a reference_type (word, float, half-float) and a
265 * given bit_size.
266 *
267 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
268 *
269 * @FIXME: 64-bit return types are always DF on integer types to maintain
270 * compability with uses of DF previously to the introduction of int64
271 * support.
272 */
273 static brw_reg_type
274 brw_reg_type_from_bit_size(const unsigned bit_size,
275 const brw_reg_type reference_type)
276 {
277 switch(reference_type) {
278 case BRW_REGISTER_TYPE_HF:
279 case BRW_REGISTER_TYPE_F:
280 case BRW_REGISTER_TYPE_DF:
281 switch(bit_size) {
282 case 16:
283 return BRW_REGISTER_TYPE_HF;
284 case 32:
285 return BRW_REGISTER_TYPE_F;
286 case 64:
287 return BRW_REGISTER_TYPE_DF;
288 default:
289 unreachable("Invalid bit size");
290 }
291 case BRW_REGISTER_TYPE_W:
292 case BRW_REGISTER_TYPE_D:
293 case BRW_REGISTER_TYPE_Q:
294 switch(bit_size) {
295 case 16:
296 return BRW_REGISTER_TYPE_W;
297 case 32:
298 return BRW_REGISTER_TYPE_D;
299 case 64:
300 return BRW_REGISTER_TYPE_Q;
301 default:
302 unreachable("Invalid bit size");
303 }
304 case BRW_REGISTER_TYPE_UW:
305 case BRW_REGISTER_TYPE_UD:
306 case BRW_REGISTER_TYPE_UQ:
307 switch(bit_size) {
308 case 16:
309 return BRW_REGISTER_TYPE_UW;
310 case 32:
311 return BRW_REGISTER_TYPE_UD;
312 case 64:
313 return BRW_REGISTER_TYPE_UQ;
314 default:
315 unreachable("Invalid bit size");
316 }
317 default:
318 unreachable("Unknown type");
319 }
320 }
321
322 void
323 fs_visitor::nir_emit_impl(nir_function_impl *impl)
324 {
325 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
326 for (unsigned i = 0; i < impl->reg_alloc; i++) {
327 nir_locals[i] = fs_reg();
328 }
329
330 foreach_list_typed(nir_register, reg, node, &impl->registers) {
331 unsigned array_elems =
332 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
333 unsigned size = array_elems * reg->num_components;
334 const brw_reg_type reg_type =
335 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
336 nir_locals[reg->index] = bld.vgrf(reg_type, size);
337 }
338
339 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
340 impl->ssa_alloc);
341
342 nir_emit_cf_list(&impl->body);
343 }
344
345 void
346 fs_visitor::nir_emit_cf_list(exec_list *list)
347 {
348 exec_list_validate(list);
349 foreach_list_typed(nir_cf_node, node, node, list) {
350 switch (node->type) {
351 case nir_cf_node_if:
352 nir_emit_if(nir_cf_node_as_if(node));
353 break;
354
355 case nir_cf_node_loop:
356 nir_emit_loop(nir_cf_node_as_loop(node));
357 break;
358
359 case nir_cf_node_block:
360 nir_emit_block(nir_cf_node_as_block(node));
361 break;
362
363 default:
364 unreachable("Invalid CFG node block");
365 }
366 }
367 }
368
369 void
370 fs_visitor::nir_emit_if(nir_if *if_stmt)
371 {
372 /* first, put the condition into f0 */
373 fs_inst *inst = bld.MOV(bld.null_reg_d(),
374 retype(get_nir_src(if_stmt->condition),
375 BRW_REGISTER_TYPE_D));
376 inst->conditional_mod = BRW_CONDITIONAL_NZ;
377
378 bld.IF(BRW_PREDICATE_NORMAL);
379
380 nir_emit_cf_list(&if_stmt->then_list);
381
382 /* note: if the else is empty, dead CF elimination will remove it */
383 bld.emit(BRW_OPCODE_ELSE);
384
385 nir_emit_cf_list(&if_stmt->else_list);
386
387 bld.emit(BRW_OPCODE_ENDIF);
388 }
389
390 void
391 fs_visitor::nir_emit_loop(nir_loop *loop)
392 {
393 bld.emit(BRW_OPCODE_DO);
394
395 nir_emit_cf_list(&loop->body);
396
397 bld.emit(BRW_OPCODE_WHILE);
398 }
399
400 void
401 fs_visitor::nir_emit_block(nir_block *block)
402 {
403 nir_foreach_instr(instr, block) {
404 nir_emit_instr(instr);
405 }
406 }
407
408 void
409 fs_visitor::nir_emit_instr(nir_instr *instr)
410 {
411 const fs_builder abld = bld.annotate(NULL, instr);
412
413 switch (instr->type) {
414 case nir_instr_type_alu:
415 nir_emit_alu(abld, nir_instr_as_alu(instr));
416 break;
417
418 case nir_instr_type_intrinsic:
419 switch (stage) {
420 case MESA_SHADER_VERTEX:
421 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
422 break;
423 case MESA_SHADER_TESS_CTRL:
424 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
425 break;
426 case MESA_SHADER_TESS_EVAL:
427 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
428 break;
429 case MESA_SHADER_GEOMETRY:
430 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
431 break;
432 case MESA_SHADER_FRAGMENT:
433 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
434 break;
435 case MESA_SHADER_COMPUTE:
436 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
437 break;
438 default:
439 unreachable("unsupported shader stage");
440 }
441 break;
442
443 case nir_instr_type_tex:
444 nir_emit_texture(abld, nir_instr_as_tex(instr));
445 break;
446
447 case nir_instr_type_load_const:
448 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
449 break;
450
451 case nir_instr_type_ssa_undef:
452 /* We create a new VGRF for undefs on every use (by handling
453 * them in get_nir_src()), rather than for each definition.
454 * This helps register coalescing eliminate MOVs from undef.
455 */
456 break;
457
458 case nir_instr_type_jump:
459 nir_emit_jump(abld, nir_instr_as_jump(instr));
460 break;
461
462 default:
463 unreachable("unknown instruction type");
464 }
465 }
466
467 /**
468 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
469 * match instr.
470 */
471 bool
472 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
473 const fs_reg &result)
474 {
475 if (!instr->src[0].src.is_ssa ||
476 !instr->src[0].src.ssa->parent_instr)
477 return false;
478
479 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
480 return false;
481
482 nir_alu_instr *src0 =
483 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
484
485 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
486 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
487 return false;
488
489 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
490 assert(element != NULL);
491
492 /* Element type to extract.*/
493 const brw_reg_type type = brw_int_type(
494 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
495 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
496
497 fs_reg op0 = get_nir_src(src0->src[0].src);
498 op0.type = brw_type_for_nir_type(devinfo,
499 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
500 nir_src_bit_size(src0->src[0].src)));
501 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
502
503 set_saturate(instr->dest.saturate,
504 bld.MOV(result, subscript(op0, type, element->u32[0])));
505 return true;
506 }
507
508 bool
509 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
510 const fs_reg &result)
511 {
512 if (!instr->src[0].src.is_ssa ||
513 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
514 return false;
515
516 nir_intrinsic_instr *src0 =
517 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
518
519 if (src0->intrinsic != nir_intrinsic_load_front_face)
520 return false;
521
522 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
523 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
524 return false;
525
526 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
527 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
528 return false;
529
530 fs_reg tmp = vgrf(glsl_type::int_type);
531
532 if (devinfo->gen >= 6) {
533 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
534 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
535
536 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
537 *
538 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
539 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
540 *
541 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
542 *
543 * This negation looks like it's safe in practice, because bits 0:4 will
544 * surely be TRIANGLES
545 */
546
547 if (value1->f32[0] == -1.0f) {
548 g0.negate = true;
549 }
550
551 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
552 g0, brw_imm_uw(0x3f80));
553 } else {
554 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
555 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
556
557 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
558 *
559 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
560 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
561 *
562 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
563 *
564 * This negation looks like it's safe in practice, because bits 0:4 will
565 * surely be TRIANGLES
566 */
567
568 if (value1->f32[0] == -1.0f) {
569 g1_6.negate = true;
570 }
571
572 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
573 }
574 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
575
576 return true;
577 }
578
579 static void
580 emit_find_msb_using_lzd(const fs_builder &bld,
581 const fs_reg &result,
582 const fs_reg &src,
583 bool is_signed)
584 {
585 fs_inst *inst;
586 fs_reg temp = src;
587
588 if (is_signed) {
589 /* LZD of an absolute value source almost always does the right
590 * thing. There are two problem values:
591 *
592 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
593 * 0. However, findMSB(int(0x80000000)) == 30.
594 *
595 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
596 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
597 *
598 * For a value of zero or negative one, -1 will be returned.
599 *
600 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
601 * findMSB(-(1<<x)) should return x-1.
602 *
603 * For all negative number cases, including 0x80000000 and
604 * 0xffffffff, the correct value is obtained from LZD if instead of
605 * negating the (already negative) value the logical-not is used. A
606 * conditonal logical-not can be achieved in two instructions.
607 */
608 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
609
610 bld.ASR(temp, src, brw_imm_d(31));
611 bld.XOR(temp, temp, src);
612 }
613
614 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
615 retype(temp, BRW_REGISTER_TYPE_UD));
616
617 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
618 * from the LSB side. Subtract the result from 31 to convert the MSB
619 * count into an LSB count. If no bits are set, LZD will return 32.
620 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
621 */
622 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
623 inst->src[0].negate = true;
624 }
625
626 static brw_rnd_mode
627 brw_rnd_mode_from_nir_op (const nir_op op) {
628 switch (op) {
629 case nir_op_f2f16_rtz:
630 return BRW_RND_MODE_RTZ;
631 case nir_op_f2f16_rtne:
632 return BRW_RND_MODE_RTNE;
633 default:
634 unreachable("Operation doesn't support rounding mode");
635 }
636 }
637
638 void
639 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
640 {
641 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
642 fs_inst *inst;
643
644 fs_reg result = get_nir_dest(instr->dest.dest);
645 result.type = brw_type_for_nir_type(devinfo,
646 (nir_alu_type)(nir_op_infos[instr->op].output_type |
647 nir_dest_bit_size(instr->dest.dest)));
648
649 fs_reg op[4];
650 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
651 op[i] = get_nir_src(instr->src[i].src);
652 op[i].type = brw_type_for_nir_type(devinfo,
653 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
654 nir_src_bit_size(instr->src[i].src)));
655 op[i].abs = instr->src[i].abs;
656 op[i].negate = instr->src[i].negate;
657 }
658
659 /* We get a bunch of mov's out of the from_ssa pass and they may still
660 * be vectorized. We'll handle them as a special-case. We'll also
661 * handle vecN here because it's basically the same thing.
662 */
663 switch (instr->op) {
664 case nir_op_imov:
665 case nir_op_fmov:
666 case nir_op_vec2:
667 case nir_op_vec3:
668 case nir_op_vec4: {
669 fs_reg temp = result;
670 bool need_extra_copy = false;
671 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
672 if (!instr->src[i].src.is_ssa &&
673 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
674 need_extra_copy = true;
675 temp = bld.vgrf(result.type, 4);
676 break;
677 }
678 }
679
680 for (unsigned i = 0; i < 4; i++) {
681 if (!(instr->dest.write_mask & (1 << i)))
682 continue;
683
684 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
685 inst = bld.MOV(offset(temp, bld, i),
686 offset(op[0], bld, instr->src[0].swizzle[i]));
687 } else {
688 inst = bld.MOV(offset(temp, bld, i),
689 offset(op[i], bld, instr->src[i].swizzle[0]));
690 }
691 inst->saturate = instr->dest.saturate;
692 }
693
694 /* In this case the source and destination registers were the same,
695 * so we need to insert an extra set of moves in order to deal with
696 * any swizzling.
697 */
698 if (need_extra_copy) {
699 for (unsigned i = 0; i < 4; i++) {
700 if (!(instr->dest.write_mask & (1 << i)))
701 continue;
702
703 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
704 }
705 }
706 return;
707 }
708 default:
709 break;
710 }
711
712 /* At this point, we have dealt with any instruction that operates on
713 * more than a single channel. Therefore, we can just adjust the source
714 * and destination registers for that channel and emit the instruction.
715 */
716 unsigned channel = 0;
717 if (nir_op_infos[instr->op].output_size == 0) {
718 /* Since NIR is doing the scalarizing for us, we should only ever see
719 * vectorized operations with a single channel.
720 */
721 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
722 channel = ffs(instr->dest.write_mask) - 1;
723
724 result = offset(result, bld, channel);
725 }
726
727 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
728 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
729 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
730 }
731
732 switch (instr->op) {
733 case nir_op_i2f32:
734 case nir_op_u2f32:
735 if (optimize_extract_to_float(instr, result))
736 return;
737 inst = bld.MOV(result, op[0]);
738 inst->saturate = instr->dest.saturate;
739 break;
740
741 case nir_op_f2f16_rtne:
742 case nir_op_f2f16_rtz:
743 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
744 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
745 /* fallthrough */
746
747 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
748 * on the HW gen, it is a special hw opcode or just a MOV, and
749 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
750 *
751 * But if we want to use that opcode, we need to provide support on
752 * different optimizations and lowerings. As right now HF support is
753 * only for gen8+, it will be better to use directly the MOV, and use
754 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
755 */
756
757 case nir_op_f2f16_undef:
758 inst = bld.MOV(result, op[0]);
759 inst->saturate = instr->dest.saturate;
760 break;
761
762 case nir_op_f2f64:
763 case nir_op_f2i64:
764 case nir_op_f2u64:
765 case nir_op_i2f64:
766 case nir_op_i2i64:
767 case nir_op_u2f64:
768 case nir_op_u2u64:
769 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
770 *
771 * "When source or destination is 64b (...), regioning in Align1
772 * must follow these rules:
773 *
774 * 1. Source and destination horizontal stride must be aligned to
775 * the same qword.
776 * (...)"
777 *
778 * This means that 32-bit to 64-bit conversions need to have the 32-bit
779 * data elements aligned to 64-bit. This restriction does not apply to
780 * BDW and later.
781 */
782 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
783 nir_src_bit_size(instr->src[0].src) == 32 &&
784 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
785 fs_reg tmp = bld.vgrf(result.type, 1);
786 tmp = subscript(tmp, op[0].type, 0);
787 inst = bld.MOV(tmp, op[0]);
788 inst = bld.MOV(result, tmp);
789 inst->saturate = instr->dest.saturate;
790 break;
791 }
792 /* fallthrough */
793 case nir_op_f2f32:
794 case nir_op_f2i32:
795 case nir_op_f2u32:
796 case nir_op_i2i32:
797 case nir_op_u2u32:
798 case nir_op_i2i16:
799 case nir_op_u2u16:
800 inst = bld.MOV(result, op[0]);
801 inst->saturate = instr->dest.saturate;
802 break;
803
804 case nir_op_fsign: {
805 if (op[0].abs) {
806 /* Straightforward since the source can be assumed to be
807 * non-negative.
808 */
809 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
810 set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
811
812 } else if (type_sz(op[0].type) < 8) {
813 /* AND(val, 0x80000000) gives the sign bit.
814 *
815 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
816 * zero.
817 */
818 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
819
820 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
821 op[0].type = BRW_REGISTER_TYPE_UD;
822 result.type = BRW_REGISTER_TYPE_UD;
823 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
824
825 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
826 inst->predicate = BRW_PREDICATE_NORMAL;
827 if (instr->dest.saturate) {
828 inst = bld.MOV(result, result);
829 inst->saturate = true;
830 }
831 } else {
832 /* For doubles we do the same but we need to consider:
833 *
834 * - 2-src instructions can't operate with 64-bit immediates
835 * - The sign is encoded in the high 32-bit of each DF
836 * - We need to produce a DF result.
837 */
838
839 fs_reg zero = vgrf(glsl_type::double_type);
840 bld.MOV(zero, setup_imm_df(bld, 0.0));
841 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
842
843 bld.MOV(result, zero);
844
845 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
846 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
847 brw_imm_ud(0x80000000u));
848
849 set_predicate(BRW_PREDICATE_NORMAL,
850 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
851
852 if (instr->dest.saturate) {
853 inst = bld.MOV(result, result);
854 inst->saturate = true;
855 }
856 }
857 break;
858 }
859
860 case nir_op_isign: {
861 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
862 * -> non-negative val generates 0x00000000.
863 * Predicated OR sets 1 if val is positive.
864 */
865 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
866 assert(bit_size == 32 || bit_size == 16);
867
868 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
869 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
870 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
871
872 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
873 bld.ASR(result, op[0], shift);
874 inst = bld.OR(result, result, one);
875 inst->predicate = BRW_PREDICATE_NORMAL;
876 break;
877 }
878
879 case nir_op_frcp:
880 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
881 inst->saturate = instr->dest.saturate;
882 break;
883
884 case nir_op_fexp2:
885 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
886 inst->saturate = instr->dest.saturate;
887 break;
888
889 case nir_op_flog2:
890 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
891 inst->saturate = instr->dest.saturate;
892 break;
893
894 case nir_op_fsin:
895 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
896 inst->saturate = instr->dest.saturate;
897 break;
898
899 case nir_op_fcos:
900 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
901 inst->saturate = instr->dest.saturate;
902 break;
903
904 case nir_op_fddx:
905 if (fs_key->high_quality_derivatives) {
906 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
907 } else {
908 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
909 }
910 inst->saturate = instr->dest.saturate;
911 break;
912 case nir_op_fddx_fine:
913 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
914 inst->saturate = instr->dest.saturate;
915 break;
916 case nir_op_fddx_coarse:
917 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
918 inst->saturate = instr->dest.saturate;
919 break;
920 case nir_op_fddy:
921 if (fs_key->high_quality_derivatives) {
922 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
923 } else {
924 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
925 }
926 inst->saturate = instr->dest.saturate;
927 break;
928 case nir_op_fddy_fine:
929 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
930 inst->saturate = instr->dest.saturate;
931 break;
932 case nir_op_fddy_coarse:
933 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936
937 case nir_op_iadd:
938 case nir_op_fadd:
939 inst = bld.ADD(result, op[0], op[1]);
940 inst->saturate = instr->dest.saturate;
941 break;
942
943 case nir_op_fmul:
944 inst = bld.MUL(result, op[0], op[1]);
945 inst->saturate = instr->dest.saturate;
946 break;
947
948 case nir_op_imul:
949 assert(nir_dest_bit_size(instr->dest.dest) < 64);
950 bld.MUL(result, op[0], op[1]);
951 break;
952
953 case nir_op_imul_high:
954 case nir_op_umul_high:
955 assert(nir_dest_bit_size(instr->dest.dest) < 64);
956 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
957 break;
958
959 case nir_op_idiv:
960 case nir_op_udiv:
961 assert(nir_dest_bit_size(instr->dest.dest) < 64);
962 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
963 break;
964
965 case nir_op_uadd_carry:
966 unreachable("Should have been lowered by carry_to_arith().");
967
968 case nir_op_usub_borrow:
969 unreachable("Should have been lowered by borrow_to_arith().");
970
971 case nir_op_umod:
972 case nir_op_irem:
973 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
974 * appears that our hardware just does the right thing for signed
975 * remainder.
976 */
977 assert(nir_dest_bit_size(instr->dest.dest) < 64);
978 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
979 break;
980
981 case nir_op_imod: {
982 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
983 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
984
985 /* Math instructions don't support conditional mod */
986 inst = bld.MOV(bld.null_reg_d(), result);
987 inst->conditional_mod = BRW_CONDITIONAL_NZ;
988
989 /* Now, we need to determine if signs of the sources are different.
990 * When we XOR the sources, the top bit is 0 if they are the same and 1
991 * if they are different. We can then use a conditional modifier to
992 * turn that into a predicate. This leads us to an XOR.l instruction.
993 *
994 * Technically, according to the PRM, you're not allowed to use .l on a
995 * XOR instruction. However, emperical experiments and Curro's reading
996 * of the simulator source both indicate that it's safe.
997 */
998 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
999 inst = bld.XOR(tmp, op[0], op[1]);
1000 inst->predicate = BRW_PREDICATE_NORMAL;
1001 inst->conditional_mod = BRW_CONDITIONAL_L;
1002
1003 /* If the result of the initial remainder operation is non-zero and the
1004 * two sources have different signs, add in a copy of op[1] to get the
1005 * final integer modulus value.
1006 */
1007 inst = bld.ADD(result, result, op[1]);
1008 inst->predicate = BRW_PREDICATE_NORMAL;
1009 break;
1010 }
1011
1012 case nir_op_flt:
1013 case nir_op_fge:
1014 case nir_op_feq:
1015 case nir_op_fne: {
1016 fs_reg dest = result;
1017 if (nir_src_bit_size(instr->src[0].src) > 32) {
1018 dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
1019 }
1020 brw_conditional_mod cond;
1021 switch (instr->op) {
1022 case nir_op_flt:
1023 cond = BRW_CONDITIONAL_L;
1024 break;
1025 case nir_op_fge:
1026 cond = BRW_CONDITIONAL_GE;
1027 break;
1028 case nir_op_feq:
1029 cond = BRW_CONDITIONAL_Z;
1030 break;
1031 case nir_op_fne:
1032 cond = BRW_CONDITIONAL_NZ;
1033 break;
1034 default:
1035 unreachable("bad opcode");
1036 }
1037 bld.CMP(dest, op[0], op[1], cond);
1038 if (nir_src_bit_size(instr->src[0].src) > 32) {
1039 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1040 }
1041 break;
1042 }
1043
1044 case nir_op_ilt:
1045 case nir_op_ult:
1046 case nir_op_ige:
1047 case nir_op_uge:
1048 case nir_op_ieq:
1049 case nir_op_ine: {
1050 fs_reg dest = result;
1051 if (nir_src_bit_size(instr->src[0].src) > 32) {
1052 dest = bld.vgrf(BRW_REGISTER_TYPE_UQ, 1);
1053 }
1054
1055 brw_conditional_mod cond;
1056 switch (instr->op) {
1057 case nir_op_ilt:
1058 case nir_op_ult:
1059 cond = BRW_CONDITIONAL_L;
1060 break;
1061 case nir_op_ige:
1062 case nir_op_uge:
1063 cond = BRW_CONDITIONAL_GE;
1064 break;
1065 case nir_op_ieq:
1066 cond = BRW_CONDITIONAL_Z;
1067 break;
1068 case nir_op_ine:
1069 cond = BRW_CONDITIONAL_NZ;
1070 break;
1071 default:
1072 unreachable("bad opcode");
1073 }
1074 bld.CMP(dest, op[0], op[1], cond);
1075 if (nir_src_bit_size(instr->src[0].src) > 32) {
1076 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1077 }
1078 break;
1079 }
1080
1081 case nir_op_inot:
1082 if (devinfo->gen >= 8) {
1083 op[0] = resolve_source_modifiers(op[0]);
1084 }
1085 bld.NOT(result, op[0]);
1086 break;
1087 case nir_op_ixor:
1088 if (devinfo->gen >= 8) {
1089 op[0] = resolve_source_modifiers(op[0]);
1090 op[1] = resolve_source_modifiers(op[1]);
1091 }
1092 bld.XOR(result, op[0], op[1]);
1093 break;
1094 case nir_op_ior:
1095 if (devinfo->gen >= 8) {
1096 op[0] = resolve_source_modifiers(op[0]);
1097 op[1] = resolve_source_modifiers(op[1]);
1098 }
1099 bld.OR(result, op[0], op[1]);
1100 break;
1101 case nir_op_iand:
1102 if (devinfo->gen >= 8) {
1103 op[0] = resolve_source_modifiers(op[0]);
1104 op[1] = resolve_source_modifiers(op[1]);
1105 }
1106 bld.AND(result, op[0], op[1]);
1107 break;
1108
1109 case nir_op_fdot2:
1110 case nir_op_fdot3:
1111 case nir_op_fdot4:
1112 case nir_op_ball_fequal2:
1113 case nir_op_ball_iequal2:
1114 case nir_op_ball_fequal3:
1115 case nir_op_ball_iequal3:
1116 case nir_op_ball_fequal4:
1117 case nir_op_ball_iequal4:
1118 case nir_op_bany_fnequal2:
1119 case nir_op_bany_inequal2:
1120 case nir_op_bany_fnequal3:
1121 case nir_op_bany_inequal3:
1122 case nir_op_bany_fnequal4:
1123 case nir_op_bany_inequal4:
1124 unreachable("Lowered by nir_lower_alu_reductions");
1125
1126 case nir_op_fnoise1_1:
1127 case nir_op_fnoise1_2:
1128 case nir_op_fnoise1_3:
1129 case nir_op_fnoise1_4:
1130 case nir_op_fnoise2_1:
1131 case nir_op_fnoise2_2:
1132 case nir_op_fnoise2_3:
1133 case nir_op_fnoise2_4:
1134 case nir_op_fnoise3_1:
1135 case nir_op_fnoise3_2:
1136 case nir_op_fnoise3_3:
1137 case nir_op_fnoise3_4:
1138 case nir_op_fnoise4_1:
1139 case nir_op_fnoise4_2:
1140 case nir_op_fnoise4_3:
1141 case nir_op_fnoise4_4:
1142 unreachable("not reached: should be handled by lower_noise");
1143
1144 case nir_op_ldexp:
1145 unreachable("not reached: should be handled by ldexp_to_arith()");
1146
1147 case nir_op_fsqrt:
1148 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1149 inst->saturate = instr->dest.saturate;
1150 break;
1151
1152 case nir_op_frsq:
1153 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1154 inst->saturate = instr->dest.saturate;
1155 break;
1156
1157 case nir_op_b2i:
1158 case nir_op_b2f:
1159 bld.MOV(result, negate(op[0]));
1160 break;
1161
1162 case nir_op_i2b:
1163 case nir_op_f2b:
1164 if (nir_src_bit_size(instr->src[0].src) == 64) {
1165 /* two-argument instructions can't take 64-bit immediates */
1166 fs_reg zero;
1167 fs_reg tmp;
1168
1169 if (instr->op == nir_op_f2b) {
1170 zero = vgrf(glsl_type::double_type);
1171 tmp = vgrf(glsl_type::double_type);
1172 bld.MOV(zero, setup_imm_df(bld, 0.0));
1173 } else {
1174 zero = vgrf(glsl_type::int64_t_type);
1175 tmp = vgrf(glsl_type::int64_t_type);
1176 bld.MOV(zero, brw_imm_q(0));
1177 }
1178
1179 /* A SIMD16 execution needs to be split in two instructions, so use
1180 * a vgrf instead of the flag register as dst so instruction splitting
1181 * works
1182 */
1183 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1184 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1185 } else {
1186 if (instr->op == nir_op_f2b) {
1187 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
1188 } else {
1189 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1190 }
1191 }
1192 break;
1193
1194 case nir_op_ftrunc:
1195 inst = bld.RNDZ(result, op[0]);
1196 inst->saturate = instr->dest.saturate;
1197 break;
1198
1199 case nir_op_fceil: {
1200 op[0].negate = !op[0].negate;
1201 fs_reg temp = vgrf(glsl_type::float_type);
1202 bld.RNDD(temp, op[0]);
1203 temp.negate = true;
1204 inst = bld.MOV(result, temp);
1205 inst->saturate = instr->dest.saturate;
1206 break;
1207 }
1208 case nir_op_ffloor:
1209 inst = bld.RNDD(result, op[0]);
1210 inst->saturate = instr->dest.saturate;
1211 break;
1212 case nir_op_ffract:
1213 inst = bld.FRC(result, op[0]);
1214 inst->saturate = instr->dest.saturate;
1215 break;
1216 case nir_op_fround_even:
1217 inst = bld.RNDE(result, op[0]);
1218 inst->saturate = instr->dest.saturate;
1219 break;
1220
1221 case nir_op_fquantize2f16: {
1222 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1223 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1224 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1225
1226 /* The destination stride must be at least as big as the source stride. */
1227 tmp16.type = BRW_REGISTER_TYPE_W;
1228 tmp16.stride = 2;
1229
1230 /* Check for denormal */
1231 fs_reg abs_src0 = op[0];
1232 abs_src0.abs = true;
1233 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1234 BRW_CONDITIONAL_L);
1235 /* Get the appropriately signed zero */
1236 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1237 retype(op[0], BRW_REGISTER_TYPE_UD),
1238 brw_imm_ud(0x80000000));
1239 /* Do the actual F32 -> F16 -> F32 conversion */
1240 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1241 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1242 /* Select that or zero based on normal status */
1243 inst = bld.SEL(result, zero, tmp32);
1244 inst->predicate = BRW_PREDICATE_NORMAL;
1245 inst->saturate = instr->dest.saturate;
1246 break;
1247 }
1248
1249 case nir_op_imin:
1250 case nir_op_umin:
1251 case nir_op_fmin:
1252 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1253 inst->saturate = instr->dest.saturate;
1254 break;
1255
1256 case nir_op_imax:
1257 case nir_op_umax:
1258 case nir_op_fmax:
1259 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1260 inst->saturate = instr->dest.saturate;
1261 break;
1262
1263 case nir_op_pack_snorm_2x16:
1264 case nir_op_pack_snorm_4x8:
1265 case nir_op_pack_unorm_2x16:
1266 case nir_op_pack_unorm_4x8:
1267 case nir_op_unpack_snorm_2x16:
1268 case nir_op_unpack_snorm_4x8:
1269 case nir_op_unpack_unorm_2x16:
1270 case nir_op_unpack_unorm_4x8:
1271 case nir_op_unpack_half_2x16:
1272 case nir_op_pack_half_2x16:
1273 unreachable("not reached: should be handled by lower_packing_builtins");
1274
1275 case nir_op_unpack_half_2x16_split_x:
1276 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1277 inst->saturate = instr->dest.saturate;
1278 break;
1279 case nir_op_unpack_half_2x16_split_y:
1280 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1281 inst->saturate = instr->dest.saturate;
1282 break;
1283
1284 case nir_op_pack_64_2x32_split:
1285 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1286 break;
1287
1288 case nir_op_unpack_64_2x32_split_x:
1289 case nir_op_unpack_64_2x32_split_y: {
1290 if (instr->op == nir_op_unpack_64_2x32_split_x)
1291 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1292 else
1293 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1294 break;
1295 }
1296
1297 case nir_op_fpow:
1298 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1299 inst->saturate = instr->dest.saturate;
1300 break;
1301
1302 case nir_op_bitfield_reverse:
1303 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1304 bld.BFREV(result, op[0]);
1305 break;
1306
1307 case nir_op_bit_count:
1308 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1309 bld.CBIT(result, op[0]);
1310 break;
1311
1312 case nir_op_ufind_msb: {
1313 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1314 emit_find_msb_using_lzd(bld, result, op[0], false);
1315 break;
1316 }
1317
1318 case nir_op_ifind_msb: {
1319 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1320
1321 if (devinfo->gen < 7) {
1322 emit_find_msb_using_lzd(bld, result, op[0], true);
1323 } else {
1324 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1325
1326 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1327 * count from the LSB side. If FBH didn't return an error
1328 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1329 * count into an LSB count.
1330 */
1331 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1332
1333 inst = bld.ADD(result, result, brw_imm_d(31));
1334 inst->predicate = BRW_PREDICATE_NORMAL;
1335 inst->src[0].negate = true;
1336 }
1337 break;
1338 }
1339
1340 case nir_op_find_lsb:
1341 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1342
1343 if (devinfo->gen < 7) {
1344 fs_reg temp = vgrf(glsl_type::int_type);
1345
1346 /* (x & -x) generates a value that consists of only the LSB of x.
1347 * For all powers of 2, findMSB(y) == findLSB(y).
1348 */
1349 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1350 fs_reg negated_src = src;
1351
1352 /* One must be negated, and the other must be non-negated. It
1353 * doesn't matter which is which.
1354 */
1355 negated_src.negate = true;
1356 src.negate = false;
1357
1358 bld.AND(temp, src, negated_src);
1359 emit_find_msb_using_lzd(bld, result, temp, false);
1360 } else {
1361 bld.FBL(result, op[0]);
1362 }
1363 break;
1364
1365 case nir_op_ubitfield_extract:
1366 case nir_op_ibitfield_extract:
1367 unreachable("should have been lowered");
1368 case nir_op_ubfe:
1369 case nir_op_ibfe:
1370 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1371 bld.BFE(result, op[2], op[1], op[0]);
1372 break;
1373 case nir_op_bfm:
1374 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1375 bld.BFI1(result, op[0], op[1]);
1376 break;
1377 case nir_op_bfi:
1378 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1379 bld.BFI2(result, op[0], op[1], op[2]);
1380 break;
1381
1382 case nir_op_bitfield_insert:
1383 unreachable("not reached: should have been lowered");
1384
1385 case nir_op_ishl:
1386 case nir_op_ishr:
1387 case nir_op_ushr: {
1388 fs_reg shift_count = op[1];
1389
1390 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1391 if (op[1].file == VGRF &&
1392 (result.type == BRW_REGISTER_TYPE_Q ||
1393 result.type == BRW_REGISTER_TYPE_UQ)) {
1394 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1395 BRW_REGISTER_TYPE_UD);
1396 shift_count.stride = 2;
1397 bld.MOV(shift_count, op[1]);
1398 }
1399 }
1400
1401 switch (instr->op) {
1402 case nir_op_ishl:
1403 bld.SHL(result, op[0], shift_count);
1404 break;
1405 case nir_op_ishr:
1406 bld.ASR(result, op[0], shift_count);
1407 break;
1408 case nir_op_ushr:
1409 bld.SHR(result, op[0], shift_count);
1410 break;
1411 default:
1412 unreachable("not reached");
1413 }
1414 break;
1415 }
1416
1417 case nir_op_pack_half_2x16_split:
1418 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1419 break;
1420
1421 case nir_op_ffma:
1422 inst = bld.MAD(result, op[2], op[1], op[0]);
1423 inst->saturate = instr->dest.saturate;
1424 break;
1425
1426 case nir_op_flrp:
1427 inst = bld.LRP(result, op[0], op[1], op[2]);
1428 inst->saturate = instr->dest.saturate;
1429 break;
1430
1431 case nir_op_bcsel:
1432 if (optimize_frontfacing_ternary(instr, result))
1433 return;
1434
1435 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1436 inst = bld.SEL(result, op[1], op[2]);
1437 inst->predicate = BRW_PREDICATE_NORMAL;
1438 break;
1439
1440 case nir_op_extract_u8:
1441 case nir_op_extract_i8: {
1442 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1443 assert(byte != NULL);
1444
1445 /* The PRMs say:
1446 *
1447 * BDW+
1448 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1449 * Use two instructions and a word or DWord intermediate integer type.
1450 */
1451 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1452 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1453
1454 if (instr->op == nir_op_extract_i8) {
1455 /* If we need to sign extend, extract to a word first */
1456 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1457 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1458 bld.MOV(result, w_temp);
1459 } else {
1460 /* Otherwise use an AND with 0xff and a word type */
1461 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1462 }
1463 } else {
1464 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1465 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1466 }
1467 break;
1468 }
1469
1470 case nir_op_extract_u16:
1471 case nir_op_extract_i16: {
1472 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1473 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1474 assert(word != NULL);
1475 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1476 break;
1477 }
1478
1479 default:
1480 unreachable("unhandled instruction");
1481 }
1482
1483 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1484 * to sign extend the low bit to 0/~0
1485 */
1486 if (devinfo->gen <= 5 &&
1487 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1488 fs_reg masked = vgrf(glsl_type::int_type);
1489 bld.AND(masked, result, brw_imm_d(1));
1490 masked.negate = true;
1491 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1492 }
1493 }
1494
1495 void
1496 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1497 nir_load_const_instr *instr)
1498 {
1499 const brw_reg_type reg_type =
1500 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1501 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1502
1503 switch (instr->def.bit_size) {
1504 case 32:
1505 for (unsigned i = 0; i < instr->def.num_components; i++)
1506 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1507 break;
1508
1509 case 64:
1510 assert(devinfo->gen >= 7);
1511 if (devinfo->gen == 7) {
1512 /* We don't get 64-bit integer types until gen8 */
1513 for (unsigned i = 0; i < instr->def.num_components; i++) {
1514 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1515 setup_imm_df(bld, instr->value.f64[i]));
1516 }
1517 } else {
1518 for (unsigned i = 0; i < instr->def.num_components; i++)
1519 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1520 }
1521 break;
1522
1523 default:
1524 unreachable("Invalid bit size");
1525 }
1526
1527 nir_ssa_values[instr->def.index] = reg;
1528 }
1529
1530 fs_reg
1531 fs_visitor::get_nir_src(const nir_src &src)
1532 {
1533 fs_reg reg;
1534 if (src.is_ssa) {
1535 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1536 const brw_reg_type reg_type =
1537 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1538 reg = bld.vgrf(reg_type, src.ssa->num_components);
1539 } else {
1540 reg = nir_ssa_values[src.ssa->index];
1541 }
1542 } else {
1543 /* We don't handle indirects on locals */
1544 assert(src.reg.indirect == NULL);
1545 reg = offset(nir_locals[src.reg.reg->index], bld,
1546 src.reg.base_offset * src.reg.reg->num_components);
1547 }
1548
1549 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1550 /* The only 64-bit type available on gen7 is DF, so use that. */
1551 reg.type = BRW_REGISTER_TYPE_DF;
1552 } else {
1553 /* To avoid floating-point denorm flushing problems, set the type by
1554 * default to an integer type - instructions that need floating point
1555 * semantics will set this to F if they need to
1556 */
1557 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1558 BRW_REGISTER_TYPE_D);
1559 }
1560
1561 return reg;
1562 }
1563
1564 /**
1565 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1566 *
1567 * This function should not be called on any value which may be 64 bits.
1568 * We could theoretically support 64-bit on gen8+ but we choose not to
1569 * because it wouldn't work in general (no gen7 support) and there are
1570 * enough restrictions in 64-bit immediates that you can't take the return
1571 * value and treat it the same as the result of get_nir_src().
1572 */
1573 fs_reg
1574 fs_visitor::get_nir_src_imm(const nir_src &src)
1575 {
1576 nir_const_value *val = nir_src_as_const_value(src);
1577 assert(nir_src_bit_size(src) == 32);
1578 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1579 }
1580
1581 fs_reg
1582 fs_visitor::get_nir_dest(const nir_dest &dest)
1583 {
1584 if (dest.is_ssa) {
1585 const brw_reg_type reg_type =
1586 brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
1587 nir_ssa_values[dest.ssa.index] =
1588 bld.vgrf(reg_type, dest.ssa.num_components);
1589 return nir_ssa_values[dest.ssa.index];
1590 } else {
1591 /* We don't handle indirects on locals */
1592 assert(dest.reg.indirect == NULL);
1593 return offset(nir_locals[dest.reg.reg->index], bld,
1594 dest.reg.base_offset * dest.reg.reg->num_components);
1595 }
1596 }
1597
1598 fs_reg
1599 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1600 {
1601 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1602 BRW_REGISTER_TYPE_UD);
1603 fs_reg indirect;
1604 unsigned indirect_max = 0;
1605
1606 for (const nir_deref *tail = &deref->deref; tail->child;
1607 tail = tail->child) {
1608 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1609 assert(tail->child->deref_type == nir_deref_type_array);
1610 const unsigned size = glsl_get_length(tail->type);
1611 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1612 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1613 image = offset(image, bld, base * element_size);
1614
1615 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1616 fs_reg tmp = vgrf(glsl_type::uint_type);
1617
1618 /* Accessing an invalid surface index with the dataport can result
1619 * in a hang. According to the spec "if the index used to
1620 * select an individual element is negative or greater than or
1621 * equal to the size of the array, the results of the operation
1622 * are undefined but may not lead to termination" -- which is one
1623 * of the possible outcomes of the hang. Clamp the index to
1624 * prevent access outside of the array bounds.
1625 */
1626 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1627 BRW_REGISTER_TYPE_UD),
1628 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1629
1630 indirect_max += element_size * (tail->type->length - 1);
1631
1632 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1633 if (indirect.file == BAD_FILE) {
1634 indirect = tmp;
1635 } else {
1636 bld.ADD(indirect, indirect, tmp);
1637 }
1638 }
1639 }
1640
1641 if (indirect.file == BAD_FILE) {
1642 return image;
1643 } else {
1644 /* Emit a pile of MOVs to load the uniform into a temporary. The
1645 * dead-code elimination pass will get rid of what we don't use.
1646 */
1647 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1648 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1649 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1650 offset(tmp, bld, j), offset(image, bld, j),
1651 indirect, brw_imm_ud((indirect_max + 1) * 4));
1652 }
1653 return tmp;
1654 }
1655 }
1656
1657 void
1658 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1659 unsigned wr_mask)
1660 {
1661 for (unsigned i = 0; i < 4; i++) {
1662 if (!((wr_mask >> i) & 1))
1663 continue;
1664
1665 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1666 new_inst->dst = offset(new_inst->dst, bld, i);
1667 for (unsigned j = 0; j < new_inst->sources; j++)
1668 if (new_inst->src[j].file == VGRF)
1669 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1670
1671 bld.emit(new_inst);
1672 }
1673 }
1674
1675 /**
1676 * Get the matching channel register datatype for an image intrinsic of the
1677 * specified GLSL image type.
1678 */
1679 static brw_reg_type
1680 get_image_base_type(const glsl_type *type)
1681 {
1682 switch ((glsl_base_type)type->sampled_type) {
1683 case GLSL_TYPE_UINT:
1684 return BRW_REGISTER_TYPE_UD;
1685 case GLSL_TYPE_INT:
1686 return BRW_REGISTER_TYPE_D;
1687 case GLSL_TYPE_FLOAT:
1688 return BRW_REGISTER_TYPE_F;
1689 default:
1690 unreachable("Not reached.");
1691 }
1692 }
1693
1694 /**
1695 * Get the appropriate atomic op for an image atomic intrinsic.
1696 */
1697 static unsigned
1698 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1699 {
1700 switch (op) {
1701 case nir_intrinsic_image_var_atomic_add:
1702 return BRW_AOP_ADD;
1703 case nir_intrinsic_image_var_atomic_min:
1704 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1705 BRW_AOP_IMIN : BRW_AOP_UMIN);
1706 case nir_intrinsic_image_var_atomic_max:
1707 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1708 BRW_AOP_IMAX : BRW_AOP_UMAX);
1709 case nir_intrinsic_image_var_atomic_and:
1710 return BRW_AOP_AND;
1711 case nir_intrinsic_image_var_atomic_or:
1712 return BRW_AOP_OR;
1713 case nir_intrinsic_image_var_atomic_xor:
1714 return BRW_AOP_XOR;
1715 case nir_intrinsic_image_var_atomic_exchange:
1716 return BRW_AOP_MOV;
1717 case nir_intrinsic_image_var_atomic_comp_swap:
1718 return BRW_AOP_CMPWR;
1719 default:
1720 unreachable("Not reachable.");
1721 }
1722 }
1723
1724 static fs_inst *
1725 emit_pixel_interpolater_send(const fs_builder &bld,
1726 enum opcode opcode,
1727 const fs_reg &dst,
1728 const fs_reg &src,
1729 const fs_reg &desc,
1730 glsl_interp_mode interpolation)
1731 {
1732 struct brw_wm_prog_data *wm_prog_data =
1733 brw_wm_prog_data(bld.shader->stage_prog_data);
1734 fs_inst *inst;
1735 fs_reg payload;
1736 int mlen;
1737
1738 if (src.file == BAD_FILE) {
1739 /* Dummy payload */
1740 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1741 mlen = 1;
1742 } else {
1743 payload = src;
1744 mlen = 2 * bld.dispatch_width() / 8;
1745 }
1746
1747 inst = bld.emit(opcode, dst, payload, desc);
1748 inst->mlen = mlen;
1749 /* 2 floats per slot returned */
1750 inst->size_written = 2 * dst.component_size(inst->exec_size);
1751 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1752
1753 wm_prog_data->pulls_bary = true;
1754
1755 return inst;
1756 }
1757
1758 /**
1759 * Computes 1 << x, given a D/UD register containing some value x.
1760 */
1761 static fs_reg
1762 intexp2(const fs_builder &bld, const fs_reg &x)
1763 {
1764 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1765
1766 fs_reg result = bld.vgrf(x.type, 1);
1767 fs_reg one = bld.vgrf(x.type, 1);
1768
1769 bld.MOV(one, retype(brw_imm_d(1), one.type));
1770 bld.SHL(result, one, x);
1771 return result;
1772 }
1773
1774 void
1775 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1776 {
1777 assert(stage == MESA_SHADER_GEOMETRY);
1778
1779 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1780
1781 if (gs_compile->control_data_header_size_bits == 0)
1782 return;
1783
1784 /* We can only do EndPrimitive() functionality when the control data
1785 * consists of cut bits. Fortunately, the only time it isn't is when the
1786 * output type is points, in which case EndPrimitive() is a no-op.
1787 */
1788 if (gs_prog_data->control_data_format !=
1789 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1790 return;
1791 }
1792
1793 /* Cut bits use one bit per vertex. */
1794 assert(gs_compile->control_data_bits_per_vertex == 1);
1795
1796 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1797 vertex_count.type = BRW_REGISTER_TYPE_UD;
1798
1799 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1800 * vertex n, 0 otherwise. So all we need to do here is mark bit
1801 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1802 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1803 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1804 *
1805 * Note that if EndPrimitive() is called before emitting any vertices, this
1806 * will cause us to set bit 31 of the control_data_bits register to 1.
1807 * That's fine because:
1808 *
1809 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1810 * output, so the hardware will ignore cut bit 31.
1811 *
1812 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1813 * last vertex, so setting cut bit 31 has no effect (since the primitive
1814 * is automatically ended when the GS terminates).
1815 *
1816 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1817 * control_data_bits register to 0 when the first vertex is emitted.
1818 */
1819
1820 const fs_builder abld = bld.annotate("end primitive");
1821
1822 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1823 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1824 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1825 fs_reg mask = intexp2(abld, prev_count);
1826 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1827 * attention to the lower 5 bits of its second source argument, so on this
1828 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1829 * ((vertex_count - 1) % 32).
1830 */
1831 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1832 }
1833
1834 void
1835 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1836 {
1837 assert(stage == MESA_SHADER_GEOMETRY);
1838 assert(gs_compile->control_data_bits_per_vertex != 0);
1839
1840 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1841
1842 const fs_builder abld = bld.annotate("emit control data bits");
1843 const fs_builder fwa_bld = bld.exec_all();
1844
1845 /* We use a single UD register to accumulate control data bits (32 bits
1846 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1847 * at a time.
1848 *
1849 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1850 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1851 * use the Channel Mask phase to enable/disable which DWord within that
1852 * group to write. (Remember, different SIMD8 channels may have emitted
1853 * different numbers of vertices, so we may need per-slot offsets.)
1854 *
1855 * Channel masking presents an annoying problem: we may have to replicate
1856 * the data up to 4 times:
1857 *
1858 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1859 *
1860 * To avoid penalizing shaders that emit a small number of vertices, we
1861 * can avoid these sometimes: if the size of the control data header is
1862 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1863 * land in the same 128-bit group, so we can skip per-slot offsets.
1864 *
1865 * Similarly, if the control data header is <= 32 bits, there is only one
1866 * DWord, so we can skip channel masks.
1867 */
1868 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1869
1870 fs_reg channel_mask, per_slot_offset;
1871
1872 if (gs_compile->control_data_header_size_bits > 32) {
1873 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1874 channel_mask = vgrf(glsl_type::uint_type);
1875 }
1876
1877 if (gs_compile->control_data_header_size_bits > 128) {
1878 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1879 per_slot_offset = vgrf(glsl_type::uint_type);
1880 }
1881
1882 /* Figure out which DWord we're trying to write to using the formula:
1883 *
1884 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1885 *
1886 * Since bits_per_vertex is a power of two, and is known at compile
1887 * time, this can be optimized to:
1888 *
1889 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1890 */
1891 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1892 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1893 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1894 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1895 unsigned log2_bits_per_vertex =
1896 util_last_bit(gs_compile->control_data_bits_per_vertex);
1897 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1898
1899 if (per_slot_offset.file != BAD_FILE) {
1900 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1901 * the appropriate OWord within the control data header.
1902 */
1903 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1904 }
1905
1906 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1907 * write to the appropriate DWORD within the OWORD.
1908 */
1909 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1910 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1911 channel_mask = intexp2(fwa_bld, channel);
1912 /* Then the channel masks need to be in bits 23:16. */
1913 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1914 }
1915
1916 /* Store the control data bits in the message payload and send it. */
1917 int mlen = 2;
1918 if (channel_mask.file != BAD_FILE)
1919 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1920 if (per_slot_offset.file != BAD_FILE)
1921 mlen++;
1922
1923 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1924 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1925 int i = 0;
1926 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1927 if (per_slot_offset.file != BAD_FILE)
1928 sources[i++] = per_slot_offset;
1929 if (channel_mask.file != BAD_FILE)
1930 sources[i++] = channel_mask;
1931 while (i < mlen) {
1932 sources[i++] = this->control_data_bits;
1933 }
1934
1935 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1936 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1937 inst->mlen = mlen;
1938 /* We need to increment Global Offset by 256-bits to make room for
1939 * Broadwell's extra "Vertex Count" payload at the beginning of the
1940 * URB entry. Since this is an OWord message, Global Offset is counted
1941 * in 128-bit units, so we must set it to 2.
1942 */
1943 if (gs_prog_data->static_vertex_count == -1)
1944 inst->offset = 2;
1945 }
1946
1947 void
1948 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1949 unsigned stream_id)
1950 {
1951 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1952
1953 /* Note: we are calling this *before* increasing vertex_count, so
1954 * this->vertex_count == vertex_count - 1 in the formula above.
1955 */
1956
1957 /* Stream mode uses 2 bits per vertex */
1958 assert(gs_compile->control_data_bits_per_vertex == 2);
1959
1960 /* Must be a valid stream */
1961 assert(stream_id < MAX_VERTEX_STREAMS);
1962
1963 /* Control data bits are initialized to 0 so we don't have to set any
1964 * bits when sending vertices to stream 0.
1965 */
1966 if (stream_id == 0)
1967 return;
1968
1969 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1970
1971 /* reg::sid = stream_id */
1972 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1973 abld.MOV(sid, brw_imm_ud(stream_id));
1974
1975 /* reg:shift_count = 2 * (vertex_count - 1) */
1976 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1977 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1978
1979 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1980 * attention to the lower 5 bits of its second source argument, so on this
1981 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1982 * stream_id << ((2 * (vertex_count - 1)) % 32).
1983 */
1984 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1985 abld.SHL(mask, sid, shift_count);
1986 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1987 }
1988
1989 void
1990 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1991 unsigned stream_id)
1992 {
1993 assert(stage == MESA_SHADER_GEOMETRY);
1994
1995 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1996
1997 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1998 vertex_count.type = BRW_REGISTER_TYPE_UD;
1999
2000 /* Haswell and later hardware ignores the "Render Stream Select" bits
2001 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2002 * and instead sends all primitives down the pipeline for rasterization.
2003 * If the SOL stage is enabled, "Render Stream Select" is honored and
2004 * primitives bound to non-zero streams are discarded after stream output.
2005 *
2006 * Since the only purpose of primives sent to non-zero streams is to
2007 * be recorded by transform feedback, we can simply discard all geometry
2008 * bound to these streams when transform feedback is disabled.
2009 */
2010 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2011 return;
2012
2013 /* If we're outputting 32 control data bits or less, then we can wait
2014 * until the shader is over to output them all. Otherwise we need to
2015 * output them as we go. Now is the time to do it, since we're about to
2016 * output the vertex_count'th vertex, so it's guaranteed that the
2017 * control data bits associated with the (vertex_count - 1)th vertex are
2018 * correct.
2019 */
2020 if (gs_compile->control_data_header_size_bits > 32) {
2021 const fs_builder abld =
2022 bld.annotate("emit vertex: emit control data bits");
2023
2024 /* Only emit control data bits if we've finished accumulating a batch
2025 * of 32 bits. This is the case when:
2026 *
2027 * (vertex_count * bits_per_vertex) % 32 == 0
2028 *
2029 * (in other words, when the last 5 bits of vertex_count *
2030 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2031 * integer n (which is always the case, since bits_per_vertex is
2032 * always 1 or 2), this is equivalent to requiring that the last 5-n
2033 * bits of vertex_count are 0:
2034 *
2035 * vertex_count & (2^(5-n) - 1) == 0
2036 *
2037 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2038 * equivalent to:
2039 *
2040 * vertex_count & (32 / bits_per_vertex - 1) == 0
2041 *
2042 * TODO: If vertex_count is an immediate, we could do some of this math
2043 * at compile time...
2044 */
2045 fs_inst *inst =
2046 abld.AND(bld.null_reg_d(), vertex_count,
2047 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2048 inst->conditional_mod = BRW_CONDITIONAL_Z;
2049
2050 abld.IF(BRW_PREDICATE_NORMAL);
2051 /* If vertex_count is 0, then no control data bits have been
2052 * accumulated yet, so we can skip emitting them.
2053 */
2054 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2055 BRW_CONDITIONAL_NEQ);
2056 abld.IF(BRW_PREDICATE_NORMAL);
2057 emit_gs_control_data_bits(vertex_count);
2058 abld.emit(BRW_OPCODE_ENDIF);
2059
2060 /* Reset control_data_bits to 0 so we can start accumulating a new
2061 * batch.
2062 *
2063 * Note: in the case where vertex_count == 0, this neutralizes the
2064 * effect of any call to EndPrimitive() that the shader may have
2065 * made before outputting its first vertex.
2066 */
2067 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2068 inst->force_writemask_all = true;
2069 abld.emit(BRW_OPCODE_ENDIF);
2070 }
2071
2072 emit_urb_writes(vertex_count);
2073
2074 /* In stream mode we have to set control data bits for all vertices
2075 * unless we have disabled control data bits completely (which we do
2076 * do for GL_POINTS outputs that don't use streams).
2077 */
2078 if (gs_compile->control_data_header_size_bits > 0 &&
2079 gs_prog_data->control_data_format ==
2080 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2081 set_gs_stream_control_data_bits(vertex_count, stream_id);
2082 }
2083 }
2084
2085 void
2086 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2087 const nir_src &vertex_src,
2088 unsigned base_offset,
2089 const nir_src &offset_src,
2090 unsigned num_components,
2091 unsigned first_component)
2092 {
2093 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2094
2095 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2096 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2097 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2098
2099 /* TODO: figure out push input layout for invocations == 1 */
2100 /* TODO: make this work with 64-bit inputs */
2101 if (gs_prog_data->invocations == 1 &&
2102 type_sz(dst.type) <= 4 &&
2103 offset_const != NULL && vertex_const != NULL &&
2104 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2105 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2106 vertex_const->u32[0] * push_reg_count;
2107 for (unsigned i = 0; i < num_components; i++) {
2108 bld.MOV(offset(dst, bld, i),
2109 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2110 }
2111 return;
2112 }
2113
2114 /* Resort to the pull model. Ensure the VUE handles are provided. */
2115 assert(gs_prog_data->base.include_vue_handles);
2116
2117 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2118 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2119
2120 if (gs_prog_data->invocations == 1) {
2121 if (vertex_const) {
2122 /* The vertex index is constant; just select the proper URB handle. */
2123 icp_handle =
2124 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2125 BRW_REGISTER_TYPE_UD);
2126 } else {
2127 /* The vertex index is non-constant. We need to use indirect
2128 * addressing to fetch the proper URB handle.
2129 *
2130 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2131 * indicating that channel <n> should read the handle from
2132 * DWord <n>. We convert that to bytes by multiplying by 4.
2133 *
2134 * Next, we convert the vertex index to bytes by multiplying
2135 * by 32 (shifting by 5), and add the two together. This is
2136 * the final indirect byte offset.
2137 */
2138 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2139 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2140 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2141 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2142
2143 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2144 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2145 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2146 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2147 /* Convert vertex_index to bytes (multiply by 32) */
2148 bld.SHL(vertex_offset_bytes,
2149 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2150 brw_imm_ud(5u));
2151 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2152
2153 /* Use first_icp_handle as the base offset. There is one register
2154 * of URB handles per vertex, so inform the register allocator that
2155 * we might read up to nir->info.gs.vertices_in registers.
2156 */
2157 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2158 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2159 fs_reg(icp_offset_bytes),
2160 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2161 }
2162 } else {
2163 assert(gs_prog_data->invocations > 1);
2164
2165 if (vertex_const) {
2166 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2167 bld.MOV(icp_handle,
2168 retype(brw_vec1_grf(first_icp_handle +
2169 vertex_const->i32[0] / 8,
2170 vertex_const->i32[0] % 8),
2171 BRW_REGISTER_TYPE_UD));
2172 } else {
2173 /* The vertex index is non-constant. We need to use indirect
2174 * addressing to fetch the proper URB handle.
2175 *
2176 */
2177 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2178
2179 /* Convert vertex_index to bytes (multiply by 4) */
2180 bld.SHL(icp_offset_bytes,
2181 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2182 brw_imm_ud(2u));
2183
2184 /* Use first_icp_handle as the base offset. There is one DWord
2185 * of URB handles per vertex, so inform the register allocator that
2186 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2187 */
2188 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2189 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2190 fs_reg(icp_offset_bytes),
2191 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2192 REG_SIZE));
2193 }
2194 }
2195
2196 fs_inst *inst;
2197
2198 fs_reg tmp_dst = dst;
2199 fs_reg indirect_offset = get_nir_src(offset_src);
2200 unsigned num_iterations = 1;
2201 unsigned orig_num_components = num_components;
2202
2203 if (type_sz(dst.type) == 8) {
2204 if (num_components > 2) {
2205 num_iterations = 2;
2206 num_components = 2;
2207 }
2208 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2209 tmp_dst = tmp;
2210 first_component = first_component / 2;
2211 }
2212
2213 for (unsigned iter = 0; iter < num_iterations; iter++) {
2214 if (offset_const) {
2215 /* Constant indexing - use global offset. */
2216 if (first_component != 0) {
2217 unsigned read_components = num_components + first_component;
2218 fs_reg tmp = bld.vgrf(dst.type, read_components);
2219 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2220 inst->size_written = read_components *
2221 tmp.component_size(inst->exec_size);
2222 for (unsigned i = 0; i < num_components; i++) {
2223 bld.MOV(offset(tmp_dst, bld, i),
2224 offset(tmp, bld, i + first_component));
2225 }
2226 } else {
2227 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2228 icp_handle);
2229 inst->size_written = num_components *
2230 tmp_dst.component_size(inst->exec_size);
2231 }
2232 inst->offset = base_offset + offset_const->u32[0];
2233 inst->mlen = 1;
2234 } else {
2235 /* Indirect indexing - use per-slot offsets as well. */
2236 const fs_reg srcs[] = { icp_handle, indirect_offset };
2237 unsigned read_components = num_components + first_component;
2238 fs_reg tmp = bld.vgrf(dst.type, read_components);
2239 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2240 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2241 if (first_component != 0) {
2242 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2243 payload);
2244 inst->size_written = read_components *
2245 tmp.component_size(inst->exec_size);
2246 for (unsigned i = 0; i < num_components; i++) {
2247 bld.MOV(offset(tmp_dst, bld, i),
2248 offset(tmp, bld, i + first_component));
2249 }
2250 } else {
2251 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2252 payload);
2253 inst->size_written = num_components *
2254 tmp_dst.component_size(inst->exec_size);
2255 }
2256 inst->offset = base_offset;
2257 inst->mlen = 2;
2258 }
2259
2260 if (type_sz(dst.type) == 8) {
2261 shuffle_32bit_load_result_to_64bit_data(
2262 bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
2263
2264 for (unsigned c = 0; c < num_components; c++)
2265 bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
2266 }
2267
2268 if (num_iterations > 1) {
2269 num_components = orig_num_components - 2;
2270 if(offset_const) {
2271 base_offset++;
2272 } else {
2273 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2274 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2275 indirect_offset = new_indirect;
2276 }
2277 }
2278 }
2279 }
2280
2281 fs_reg
2282 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2283 {
2284 nir_src *offset_src = nir_get_io_offset_src(instr);
2285 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2286
2287 if (const_value) {
2288 /* The only constant offset we should find is 0. brw_nir.c's
2289 * add_const_offset_to_base() will fold other constant offsets
2290 * into instr->const_index[0].
2291 */
2292 assert(const_value->u32[0] == 0);
2293 return fs_reg();
2294 }
2295
2296 return get_nir_src(*offset_src);
2297 }
2298
2299 static void
2300 do_untyped_vector_read(const fs_builder &bld,
2301 const fs_reg dest,
2302 const fs_reg surf_index,
2303 const fs_reg offset_reg,
2304 unsigned num_components)
2305 {
2306 if (type_sz(dest.type) <= 2) {
2307 assert(dest.stride == 1);
2308 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2309
2310 if (is_const_offset) {
2311 uint32_t start = offset_reg.ud & ~3;
2312 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2313 end = ALIGN(end, 4);
2314 assert (end - start <= 16);
2315
2316 /* At this point we have 16-bit component/s that have constant
2317 * offset aligned to 4-bytes that can be read with untyped_reads.
2318 * untyped_read message requires 32-bit aligned offsets.
2319 */
2320 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2321 unsigned num_components_32bit = (end - start) / 4;
2322
2323 fs_reg read_result =
2324 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2325 1 /* dims */,
2326 num_components_32bit,
2327 BRW_PREDICATE_NONE);
2328 shuffle_32bit_load_result_to_16bit_data(bld,
2329 retype(dest, BRW_REGISTER_TYPE_W),
2330 retype(read_result, BRW_REGISTER_TYPE_D),
2331 first_component, num_components);
2332 } else {
2333 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2334 for (unsigned i = 0; i < num_components; i++) {
2335 if (i == 0) {
2336 bld.MOV(read_offset, offset_reg);
2337 } else {
2338 bld.ADD(read_offset, offset_reg,
2339 brw_imm_ud(i * type_sz(dest.type)));
2340 }
2341 /* Non constant offsets are not guaranteed to be aligned 32-bits
2342 * so they are read using one byte_scattered_read message
2343 * for each component.
2344 */
2345 fs_reg read_result =
2346 emit_byte_scattered_read(bld, surf_index, read_offset,
2347 1 /* dims */, 1,
2348 type_sz(dest.type) * 8 /* bit_size */,
2349 BRW_PREDICATE_NONE);
2350 bld.MOV(offset(dest, bld, i),
2351 subscript (read_result, dest.type, 0));
2352 }
2353 }
2354 } else if (type_sz(dest.type) == 4) {
2355 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2356 1 /* dims */,
2357 num_components,
2358 BRW_PREDICATE_NONE);
2359 read_result.type = dest.type;
2360 for (unsigned i = 0; i < num_components; i++)
2361 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2362 } else if (type_sz(dest.type) == 8) {
2363 /* Reading a dvec, so we need to:
2364 *
2365 * 1. Multiply num_components by 2, to account for the fact that we
2366 * need to read 64-bit components.
2367 * 2. Shuffle the result of the load to form valid 64-bit elements
2368 * 3. Emit a second load (for components z/w) if needed.
2369 */
2370 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2371 bld.MOV(read_offset, offset_reg);
2372
2373 int iters = num_components <= 2 ? 1 : 2;
2374
2375 /* Load the dvec, the first iteration loads components x/y, the second
2376 * iteration, if needed, loads components z/w
2377 */
2378 for (int it = 0; it < iters; it++) {
2379 /* Compute number of components to read in this iteration */
2380 int iter_components = MIN2(2, num_components);
2381 num_components -= iter_components;
2382
2383 /* Read. Since this message reads 32-bit components, we need to
2384 * read twice as many components.
2385 */
2386 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2387 1 /* dims */,
2388 iter_components * 2,
2389 BRW_PREDICATE_NONE);
2390
2391 /* Shuffle the 32-bit load result into valid 64-bit data */
2392 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2393 shuffle_32bit_load_result_to_64bit_data(
2394 bld, packed_result, read_result, iter_components);
2395
2396 /* Move each component to its destination */
2397 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2398 for (int c = 0; c < iter_components; c++) {
2399 bld.MOV(offset(dest, bld, it * 2 + c),
2400 offset(packed_result, bld, c));
2401 }
2402
2403 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2404 }
2405 } else {
2406 unreachable("Unsupported type");
2407 }
2408 }
2409
2410 void
2411 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2412 nir_intrinsic_instr *instr)
2413 {
2414 assert(stage == MESA_SHADER_VERTEX);
2415
2416 fs_reg dest;
2417 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2418 dest = get_nir_dest(instr->dest);
2419
2420 switch (instr->intrinsic) {
2421 case nir_intrinsic_load_vertex_id:
2422 case nir_intrinsic_load_base_vertex:
2423 unreachable("should be lowered by nir_lower_system_values()");
2424
2425 case nir_intrinsic_load_vertex_id_zero_base:
2426 case nir_intrinsic_load_instance_id:
2427 case nir_intrinsic_load_base_instance:
2428 case nir_intrinsic_load_draw_id: {
2429 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2430 fs_reg val = nir_system_values[sv];
2431 assert(val.file != BAD_FILE);
2432 dest.type = val.type;
2433 bld.MOV(dest, val);
2434 break;
2435 }
2436
2437 case nir_intrinsic_load_input: {
2438 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2439 unsigned first_component = nir_intrinsic_component(instr);
2440 unsigned num_components = instr->num_components;
2441
2442 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2443 assert(const_offset && "Indirect input loads not allowed");
2444 src = offset(src, bld, const_offset->u32[0]);
2445
2446 if (type_sz(dest.type) == 8)
2447 first_component /= 2;
2448
2449 for (unsigned j = 0; j < num_components; j++) {
2450 bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
2451 }
2452
2453 if (type_sz(dest.type) == 8) {
2454 shuffle_32bit_load_result_to_64bit_data(bld,
2455 dest,
2456 retype(dest, BRW_REGISTER_TYPE_F),
2457 instr->num_components);
2458 }
2459 break;
2460 }
2461
2462 case nir_intrinsic_load_first_vertex:
2463 case nir_intrinsic_load_is_indexed_draw:
2464 unreachable("lowered by brw_nir_lower_vs_inputs");
2465
2466 default:
2467 nir_emit_intrinsic(bld, instr);
2468 break;
2469 }
2470 }
2471
2472 void
2473 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2474 nir_intrinsic_instr *instr)
2475 {
2476 assert(stage == MESA_SHADER_TESS_CTRL);
2477 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2478 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2479
2480 fs_reg dst;
2481 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2482 dst = get_nir_dest(instr->dest);
2483
2484 switch (instr->intrinsic) {
2485 case nir_intrinsic_load_primitive_id:
2486 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2487 break;
2488 case nir_intrinsic_load_invocation_id:
2489 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2490 break;
2491 case nir_intrinsic_load_patch_vertices_in:
2492 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2493 brw_imm_d(tcs_key->input_vertices));
2494 break;
2495
2496 case nir_intrinsic_barrier: {
2497 if (tcs_prog_data->instances == 1)
2498 break;
2499
2500 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2501 fs_reg m0_2 = component(m0, 2);
2502
2503 const fs_builder chanbld = bld.exec_all().group(1, 0);
2504
2505 /* Zero the message header */
2506 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2507
2508 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2509 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2510 brw_imm_ud(INTEL_MASK(16, 13)));
2511
2512 /* Shift it up to bits 27:24. */
2513 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2514
2515 /* Set the Barrier Count and the enable bit */
2516 chanbld.OR(m0_2, m0_2,
2517 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2518
2519 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2520 break;
2521 }
2522
2523 case nir_intrinsic_load_input:
2524 unreachable("nir_lower_io should never give us these.");
2525 break;
2526
2527 case nir_intrinsic_load_per_vertex_input: {
2528 fs_reg indirect_offset = get_indirect_offset(instr);
2529 unsigned imm_offset = instr->const_index[0];
2530
2531 const nir_src &vertex_src = instr->src[0];
2532 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2533
2534 fs_inst *inst;
2535
2536 fs_reg icp_handle;
2537
2538 if (vertex_const) {
2539 /* Emit a MOV to resolve <0,1,0> regioning. */
2540 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2541 bld.MOV(icp_handle,
2542 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2543 vertex_const->i32[0] & 7),
2544 BRW_REGISTER_TYPE_UD));
2545 } else if (tcs_prog_data->instances == 1 &&
2546 vertex_src.is_ssa &&
2547 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2548 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2549 /* For the common case of only 1 instance, an array index of
2550 * gl_InvocationID means reading g1. Skip all the indirect work.
2551 */
2552 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2553 } else {
2554 /* The vertex index is non-constant. We need to use indirect
2555 * addressing to fetch the proper URB handle.
2556 */
2557 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2558
2559 /* Each ICP handle is a single DWord (4 bytes) */
2560 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2561 bld.SHL(vertex_offset_bytes,
2562 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2563 brw_imm_ud(2u));
2564
2565 /* Start at g1. We might read up to 4 registers. */
2566 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2567 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2568 brw_imm_ud(4 * REG_SIZE));
2569 }
2570
2571 /* We can only read two double components with each URB read, so
2572 * we send two read messages in that case, each one loading up to
2573 * two double components.
2574 */
2575 unsigned num_iterations = 1;
2576 unsigned num_components = instr->num_components;
2577 unsigned first_component = nir_intrinsic_component(instr);
2578 fs_reg orig_dst = dst;
2579 if (type_sz(dst.type) == 8) {
2580 first_component = first_component / 2;
2581 if (instr->num_components > 2) {
2582 num_iterations = 2;
2583 num_components = 2;
2584 }
2585
2586 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2587 dst = tmp;
2588 }
2589
2590 for (unsigned iter = 0; iter < num_iterations; iter++) {
2591 if (indirect_offset.file == BAD_FILE) {
2592 /* Constant indexing - use global offset. */
2593 if (first_component != 0) {
2594 unsigned read_components = num_components + first_component;
2595 fs_reg tmp = bld.vgrf(dst.type, read_components);
2596 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2597 for (unsigned i = 0; i < num_components; i++) {
2598 bld.MOV(offset(dst, bld, i),
2599 offset(tmp, bld, i + first_component));
2600 }
2601 } else {
2602 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2603 }
2604 inst->offset = imm_offset;
2605 inst->mlen = 1;
2606 } else {
2607 /* Indirect indexing - use per-slot offsets as well. */
2608 const fs_reg srcs[] = { icp_handle, indirect_offset };
2609 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2610 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2611 if (first_component != 0) {
2612 unsigned read_components = num_components + first_component;
2613 fs_reg tmp = bld.vgrf(dst.type, read_components);
2614 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2615 payload);
2616 for (unsigned i = 0; i < num_components; i++) {
2617 bld.MOV(offset(dst, bld, i),
2618 offset(tmp, bld, i + first_component));
2619 }
2620 } else {
2621 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2622 payload);
2623 }
2624 inst->offset = imm_offset;
2625 inst->mlen = 2;
2626 }
2627 inst->size_written = (num_components + first_component) *
2628 inst->dst.component_size(inst->exec_size);
2629
2630 /* If we are reading 64-bit data using 32-bit read messages we need
2631 * build proper 64-bit data elements by shuffling the low and high
2632 * 32-bit components around like we do for other things like UBOs
2633 * or SSBOs.
2634 */
2635 if (type_sz(dst.type) == 8) {
2636 shuffle_32bit_load_result_to_64bit_data(
2637 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2638
2639 for (unsigned c = 0; c < num_components; c++) {
2640 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2641 offset(dst, bld, c));
2642 }
2643 }
2644
2645 /* Copy the temporary to the destination to deal with writemasking.
2646 *
2647 * Also attempt to deal with gl_PointSize being in the .w component.
2648 */
2649 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2650 assert(type_sz(dst.type) < 8);
2651 inst->dst = bld.vgrf(dst.type, 4);
2652 inst->size_written = 4 * REG_SIZE;
2653 bld.MOV(dst, offset(inst->dst, bld, 3));
2654 }
2655
2656 /* If we are loading double data and we need a second read message
2657 * adjust the write offset
2658 */
2659 if (num_iterations > 1) {
2660 num_components = instr->num_components - 2;
2661 imm_offset++;
2662 }
2663 }
2664 break;
2665 }
2666
2667 case nir_intrinsic_load_output:
2668 case nir_intrinsic_load_per_vertex_output: {
2669 fs_reg indirect_offset = get_indirect_offset(instr);
2670 unsigned imm_offset = instr->const_index[0];
2671 unsigned first_component = nir_intrinsic_component(instr);
2672
2673 fs_inst *inst;
2674 if (indirect_offset.file == BAD_FILE) {
2675 /* Replicate the patch handle to all enabled channels */
2676 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2677 bld.MOV(patch_handle,
2678 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2679
2680 {
2681 if (first_component != 0) {
2682 unsigned read_components =
2683 instr->num_components + first_component;
2684 fs_reg tmp = bld.vgrf(dst.type, read_components);
2685 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2686 patch_handle);
2687 inst->size_written = read_components * REG_SIZE;
2688 for (unsigned i = 0; i < instr->num_components; i++) {
2689 bld.MOV(offset(dst, bld, i),
2690 offset(tmp, bld, i + first_component));
2691 }
2692 } else {
2693 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2694 patch_handle);
2695 inst->size_written = instr->num_components * REG_SIZE;
2696 }
2697 inst->offset = imm_offset;
2698 inst->mlen = 1;
2699 }
2700 } else {
2701 /* Indirect indexing - use per-slot offsets as well. */
2702 const fs_reg srcs[] = {
2703 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2704 indirect_offset
2705 };
2706 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2707 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2708 if (first_component != 0) {
2709 unsigned read_components =
2710 instr->num_components + first_component;
2711 fs_reg tmp = bld.vgrf(dst.type, read_components);
2712 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2713 payload);
2714 inst->size_written = read_components * REG_SIZE;
2715 for (unsigned i = 0; i < instr->num_components; i++) {
2716 bld.MOV(offset(dst, bld, i),
2717 offset(tmp, bld, i + first_component));
2718 }
2719 } else {
2720 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2721 payload);
2722 inst->size_written = instr->num_components * REG_SIZE;
2723 }
2724 inst->offset = imm_offset;
2725 inst->mlen = 2;
2726 }
2727 break;
2728 }
2729
2730 case nir_intrinsic_store_output:
2731 case nir_intrinsic_store_per_vertex_output: {
2732 fs_reg value = get_nir_src(instr->src[0]);
2733 bool is_64bit = (instr->src[0].is_ssa ?
2734 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2735 fs_reg indirect_offset = get_indirect_offset(instr);
2736 unsigned imm_offset = instr->const_index[0];
2737 unsigned mask = instr->const_index[1];
2738 unsigned header_regs = 0;
2739 fs_reg srcs[7];
2740 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2741
2742 if (indirect_offset.file != BAD_FILE) {
2743 srcs[header_regs++] = indirect_offset;
2744 }
2745
2746 if (mask == 0)
2747 break;
2748
2749 unsigned num_components = util_last_bit(mask);
2750 enum opcode opcode;
2751
2752 /* We can only pack two 64-bit components in a single message, so send
2753 * 2 messages if we have more components
2754 */
2755 unsigned num_iterations = 1;
2756 unsigned iter_components = num_components;
2757 unsigned first_component = nir_intrinsic_component(instr);
2758 if (is_64bit) {
2759 first_component = first_component / 2;
2760 if (instr->num_components > 2) {
2761 num_iterations = 2;
2762 iter_components = 2;
2763 }
2764 }
2765
2766 mask = mask << first_component;
2767
2768 for (unsigned iter = 0; iter < num_iterations; iter++) {
2769 if (!is_64bit && mask != WRITEMASK_XYZW) {
2770 srcs[header_regs++] = brw_imm_ud(mask << 16);
2771 opcode = indirect_offset.file != BAD_FILE ?
2772 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2773 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2774 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2775 /* Expand the 64-bit mask to 32-bit channels. We only handle
2776 * two channels in each iteration, so we only care about X/Y.
2777 */
2778 unsigned mask32 = 0;
2779 if (mask & WRITEMASK_X)
2780 mask32 |= WRITEMASK_XY;
2781 if (mask & WRITEMASK_Y)
2782 mask32 |= WRITEMASK_ZW;
2783
2784 /* If the mask does not include any of the channels X or Y there
2785 * is nothing to do in this iteration. Move on to the next couple
2786 * of 64-bit channels.
2787 */
2788 if (!mask32) {
2789 mask >>= 2;
2790 imm_offset++;
2791 continue;
2792 }
2793
2794 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2795 opcode = indirect_offset.file != BAD_FILE ?
2796 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2797 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2798 } else {
2799 opcode = indirect_offset.file != BAD_FILE ?
2800 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2801 SHADER_OPCODE_URB_WRITE_SIMD8;
2802 }
2803
2804 for (unsigned i = 0; i < iter_components; i++) {
2805 if (!(mask & (1 << (i + first_component))))
2806 continue;
2807
2808 if (!is_64bit) {
2809 srcs[header_regs + i + first_component] = offset(value, bld, i);
2810 } else {
2811 /* We need to shuffle the 64-bit data to match the layout
2812 * expected by our 32-bit URB write messages. We use a temporary
2813 * for that.
2814 */
2815 unsigned channel = iter * 2 + i;
2816 fs_reg dest = shuffle_64bit_data_for_32bit_write(bld,
2817 offset(value, bld, channel), 1);
2818
2819 srcs[header_regs + (i + first_component) * 2] = dest;
2820 srcs[header_regs + (i + first_component) * 2 + 1] =
2821 offset(dest, bld, 1);
2822 }
2823 }
2824
2825 unsigned mlen =
2826 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2827 (is_64bit ? 2 * first_component : first_component);
2828 fs_reg payload =
2829 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2830 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2831
2832 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2833 inst->offset = imm_offset;
2834 inst->mlen = mlen;
2835
2836 /* If this is a 64-bit attribute, select the next two 64-bit channels
2837 * to be handled in the next iteration.
2838 */
2839 if (is_64bit) {
2840 mask >>= 2;
2841 imm_offset++;
2842 }
2843 }
2844 break;
2845 }
2846
2847 default:
2848 nir_emit_intrinsic(bld, instr);
2849 break;
2850 }
2851 }
2852
2853 void
2854 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2855 nir_intrinsic_instr *instr)
2856 {
2857 assert(stage == MESA_SHADER_TESS_EVAL);
2858 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2859
2860 fs_reg dest;
2861 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2862 dest = get_nir_dest(instr->dest);
2863
2864 switch (instr->intrinsic) {
2865 case nir_intrinsic_load_primitive_id:
2866 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2867 break;
2868 case nir_intrinsic_load_tess_coord:
2869 /* gl_TessCoord is part of the payload in g1-3 */
2870 for (unsigned i = 0; i < 3; i++) {
2871 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2872 }
2873 break;
2874
2875 case nir_intrinsic_load_input:
2876 case nir_intrinsic_load_per_vertex_input: {
2877 fs_reg indirect_offset = get_indirect_offset(instr);
2878 unsigned imm_offset = instr->const_index[0];
2879 unsigned first_component = nir_intrinsic_component(instr);
2880
2881 if (type_sz(dest.type) == 8) {
2882 first_component = first_component / 2;
2883 }
2884
2885 fs_inst *inst;
2886 if (indirect_offset.file == BAD_FILE) {
2887 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2888 * which is 16 registers (since each holds 2 vec4 slots).
2889 */
2890 unsigned slot_count = 1;
2891 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2892 slot_count++;
2893
2894 const unsigned max_push_slots = 32;
2895 if (imm_offset + slot_count <= max_push_slots) {
2896 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2897 for (int i = 0; i < instr->num_components; i++) {
2898 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2899 i + first_component;
2900 bld.MOV(offset(dest, bld, i), component(src, comp));
2901 }
2902
2903 tes_prog_data->base.urb_read_length =
2904 MAX2(tes_prog_data->base.urb_read_length,
2905 DIV_ROUND_UP(imm_offset + slot_count, 2));
2906 } else {
2907 /* Replicate the patch handle to all enabled channels */
2908 const fs_reg srcs[] = {
2909 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2910 };
2911 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2912 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2913
2914 if (first_component != 0) {
2915 unsigned read_components =
2916 instr->num_components + first_component;
2917 fs_reg tmp = bld.vgrf(dest.type, read_components);
2918 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2919 patch_handle);
2920 inst->size_written = read_components * REG_SIZE;
2921 for (unsigned i = 0; i < instr->num_components; i++) {
2922 bld.MOV(offset(dest, bld, i),
2923 offset(tmp, bld, i + first_component));
2924 }
2925 } else {
2926 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2927 patch_handle);
2928 inst->size_written = instr->num_components * REG_SIZE;
2929 }
2930 inst->mlen = 1;
2931 inst->offset = imm_offset;
2932 }
2933 } else {
2934 /* Indirect indexing - use per-slot offsets as well. */
2935
2936 /* We can only read two double components with each URB read, so
2937 * we send two read messages in that case, each one loading up to
2938 * two double components.
2939 */
2940 unsigned num_iterations = 1;
2941 unsigned num_components = instr->num_components;
2942 fs_reg orig_dest = dest;
2943 if (type_sz(dest.type) == 8) {
2944 if (instr->num_components > 2) {
2945 num_iterations = 2;
2946 num_components = 2;
2947 }
2948 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2949 dest = tmp;
2950 }
2951
2952 for (unsigned iter = 0; iter < num_iterations; iter++) {
2953 const fs_reg srcs[] = {
2954 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2955 indirect_offset
2956 };
2957 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2958 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2959
2960 if (first_component != 0) {
2961 unsigned read_components =
2962 num_components + first_component;
2963 fs_reg tmp = bld.vgrf(dest.type, read_components);
2964 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2965 payload);
2966 for (unsigned i = 0; i < num_components; i++) {
2967 bld.MOV(offset(dest, bld, i),
2968 offset(tmp, bld, i + first_component));
2969 }
2970 } else {
2971 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2972 payload);
2973 }
2974 inst->mlen = 2;
2975 inst->offset = imm_offset;
2976 inst->size_written = (num_components + first_component) *
2977 inst->dst.component_size(inst->exec_size);
2978
2979 /* If we are reading 64-bit data using 32-bit read messages we need
2980 * build proper 64-bit data elements by shuffling the low and high
2981 * 32-bit components around like we do for other things like UBOs
2982 * or SSBOs.
2983 */
2984 if (type_sz(dest.type) == 8) {
2985 shuffle_32bit_load_result_to_64bit_data(
2986 bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
2987
2988 for (unsigned c = 0; c < num_components; c++) {
2989 bld.MOV(offset(orig_dest, bld, iter * 2 + c),
2990 offset(dest, bld, c));
2991 }
2992 }
2993
2994 /* If we are loading double data and we need a second read message
2995 * adjust the offset
2996 */
2997 if (num_iterations > 1) {
2998 num_components = instr->num_components - 2;
2999 imm_offset++;
3000 }
3001 }
3002 }
3003 break;
3004 }
3005 default:
3006 nir_emit_intrinsic(bld, instr);
3007 break;
3008 }
3009 }
3010
3011 void
3012 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3013 nir_intrinsic_instr *instr)
3014 {
3015 assert(stage == MESA_SHADER_GEOMETRY);
3016 fs_reg indirect_offset;
3017
3018 fs_reg dest;
3019 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3020 dest = get_nir_dest(instr->dest);
3021
3022 switch (instr->intrinsic) {
3023 case nir_intrinsic_load_primitive_id:
3024 assert(stage == MESA_SHADER_GEOMETRY);
3025 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3026 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3027 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3028 break;
3029
3030 case nir_intrinsic_load_input:
3031 unreachable("load_input intrinsics are invalid for the GS stage");
3032
3033 case nir_intrinsic_load_per_vertex_input:
3034 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3035 instr->src[1], instr->num_components,
3036 nir_intrinsic_component(instr));
3037 break;
3038
3039 case nir_intrinsic_emit_vertex_with_counter:
3040 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3041 break;
3042
3043 case nir_intrinsic_end_primitive_with_counter:
3044 emit_gs_end_primitive(instr->src[0]);
3045 break;
3046
3047 case nir_intrinsic_set_vertex_count:
3048 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3049 break;
3050
3051 case nir_intrinsic_load_invocation_id: {
3052 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3053 assert(val.file != BAD_FILE);
3054 dest.type = val.type;
3055 bld.MOV(dest, val);
3056 break;
3057 }
3058
3059 default:
3060 nir_emit_intrinsic(bld, instr);
3061 break;
3062 }
3063 }
3064
3065 /**
3066 * Fetch the current render target layer index.
3067 */
3068 static fs_reg
3069 fetch_render_target_array_index(const fs_builder &bld)
3070 {
3071 if (bld.shader->devinfo->gen >= 6) {
3072 /* The render target array index is provided in the thread payload as
3073 * bits 26:16 of r0.0.
3074 */
3075 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3076 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3077 brw_imm_uw(0x7ff));
3078 return idx;
3079 } else {
3080 /* Pre-SNB we only ever render into the first layer of the framebuffer
3081 * since layered rendering is not implemented.
3082 */
3083 return brw_imm_ud(0);
3084 }
3085 }
3086
3087 /**
3088 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3089 * framebuffer at the current fragment coordinates and sample index.
3090 */
3091 fs_inst *
3092 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3093 unsigned target)
3094 {
3095 const struct gen_device_info *devinfo = bld.shader->devinfo;
3096
3097 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3098 const brw_wm_prog_key *wm_key =
3099 reinterpret_cast<const brw_wm_prog_key *>(key);
3100 assert(!wm_key->coherent_fb_fetch);
3101 const struct brw_wm_prog_data *wm_prog_data =
3102 brw_wm_prog_data(stage_prog_data);
3103
3104 /* Calculate the surface index relative to the start of the texture binding
3105 * table block, since that's what the texturing messages expect.
3106 */
3107 const unsigned surface = target +
3108 wm_prog_data->binding_table.render_target_read_start -
3109 wm_prog_data->base.binding_table.texture_start;
3110
3111 brw_mark_surface_used(
3112 bld.shader->stage_prog_data,
3113 wm_prog_data->binding_table.render_target_read_start + target);
3114
3115 /* Calculate the fragment coordinates. */
3116 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3117 bld.MOV(offset(coords, bld, 0), pixel_x);
3118 bld.MOV(offset(coords, bld, 1), pixel_y);
3119 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3120
3121 /* Calculate the sample index and MCS payload when multisampling. Luckily
3122 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3123 * shouldn't be necessary to recompile based on whether the framebuffer is
3124 * CMS or UMS.
3125 */
3126 if (wm_key->multisample_fbo &&
3127 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3128 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3129
3130 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3131 const fs_reg mcs = wm_key->multisample_fbo ?
3132 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3133
3134 /* Use either a normal or a CMS texel fetch message depending on whether
3135 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3136 * message just in case the framebuffer uses 16x multisampling, it should
3137 * be equivalent to the normal CMS fetch for lower multisampling modes.
3138 */
3139 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3140 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3141 SHADER_OPCODE_TXF_CMS_LOGICAL;
3142
3143 /* Emit the instruction. */
3144 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3145 sample, mcs,
3146 brw_imm_ud(surface), brw_imm_ud(0),
3147 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3148 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3149
3150 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3151 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3152
3153 return inst;
3154 }
3155
3156 /**
3157 * Actual coherent framebuffer read implemented using the native render target
3158 * read message. Requires SKL+.
3159 */
3160 static fs_inst *
3161 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3162 {
3163 assert(bld.shader->devinfo->gen >= 9);
3164 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3165 inst->target = target;
3166 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3167
3168 return inst;
3169 }
3170
3171 static fs_reg
3172 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3173 {
3174 if (n && regs[0].file != BAD_FILE) {
3175 return regs[0];
3176
3177 } else {
3178 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3179
3180 for (unsigned i = 0; i < n; i++)
3181 regs[i] = tmp;
3182
3183 return tmp;
3184 }
3185 }
3186
3187 static fs_reg
3188 alloc_frag_output(fs_visitor *v, unsigned location)
3189 {
3190 assert(v->stage == MESA_SHADER_FRAGMENT);
3191 const brw_wm_prog_key *const key =
3192 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3193 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3194 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3195
3196 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3197 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3198
3199 else if (l == FRAG_RESULT_COLOR)
3200 return alloc_temporary(v->bld, 4, v->outputs,
3201 MAX2(key->nr_color_regions, 1));
3202
3203 else if (l == FRAG_RESULT_DEPTH)
3204 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3205
3206 else if (l == FRAG_RESULT_STENCIL)
3207 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3208
3209 else if (l == FRAG_RESULT_SAMPLE_MASK)
3210 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3211
3212 else if (l >= FRAG_RESULT_DATA0 &&
3213 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3214 return alloc_temporary(v->bld, 4,
3215 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3216
3217 else
3218 unreachable("Invalid location");
3219 }
3220
3221 void
3222 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3223 nir_intrinsic_instr *instr)
3224 {
3225 assert(stage == MESA_SHADER_FRAGMENT);
3226
3227 fs_reg dest;
3228 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3229 dest = get_nir_dest(instr->dest);
3230
3231 switch (instr->intrinsic) {
3232 case nir_intrinsic_load_front_face:
3233 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3234 *emit_frontfacing_interpolation());
3235 break;
3236
3237 case nir_intrinsic_load_sample_pos: {
3238 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3239 assert(sample_pos.file != BAD_FILE);
3240 dest.type = sample_pos.type;
3241 bld.MOV(dest, sample_pos);
3242 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3243 break;
3244 }
3245
3246 case nir_intrinsic_load_layer_id:
3247 dest.type = BRW_REGISTER_TYPE_UD;
3248 bld.MOV(dest, fetch_render_target_array_index(bld));
3249 break;
3250
3251 case nir_intrinsic_load_helper_invocation:
3252 case nir_intrinsic_load_sample_mask_in:
3253 case nir_intrinsic_load_sample_id: {
3254 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3255 fs_reg val = nir_system_values[sv];
3256 assert(val.file != BAD_FILE);
3257 dest.type = val.type;
3258 bld.MOV(dest, val);
3259 break;
3260 }
3261
3262 case nir_intrinsic_store_output: {
3263 const fs_reg src = get_nir_src(instr->src[0]);
3264 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3265 assert(const_offset && "Indirect output stores not allowed");
3266 const unsigned location = nir_intrinsic_base(instr) +
3267 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3268 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3269 src.type);
3270
3271 for (unsigned j = 0; j < instr->num_components; j++)
3272 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3273 offset(src, bld, j));
3274
3275 break;
3276 }
3277
3278 case nir_intrinsic_load_output: {
3279 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3280 BRW_NIR_FRAG_OUTPUT_LOCATION);
3281 assert(l >= FRAG_RESULT_DATA0);
3282 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3283 assert(const_offset && "Indirect output loads not allowed");
3284 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3285 const fs_reg tmp = bld.vgrf(dest.type, 4);
3286
3287 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3288 emit_coherent_fb_read(bld, tmp, target);
3289 else
3290 emit_non_coherent_fb_read(bld, tmp, target);
3291
3292 for (unsigned j = 0; j < instr->num_components; j++) {
3293 bld.MOV(offset(dest, bld, j),
3294 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3295 }
3296
3297 break;
3298 }
3299
3300 case nir_intrinsic_discard:
3301 case nir_intrinsic_discard_if: {
3302 /* We track our discarded pixels in f0.1. By predicating on it, we can
3303 * update just the flag bits that aren't yet discarded. If there's no
3304 * condition, we emit a CMP of g0 != g0, so all currently executing
3305 * channels will get turned off.
3306 */
3307 fs_inst *cmp;
3308 if (instr->intrinsic == nir_intrinsic_discard_if) {
3309 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3310 brw_imm_d(0), BRW_CONDITIONAL_Z);
3311 } else {
3312 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3313 BRW_REGISTER_TYPE_UW));
3314 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3315 }
3316 cmp->predicate = BRW_PREDICATE_NORMAL;
3317 cmp->flag_subreg = 1;
3318
3319 if (devinfo->gen >= 6) {
3320 emit_discard_jump();
3321 }
3322 break;
3323 }
3324
3325 case nir_intrinsic_load_input: {
3326 /* load_input is only used for flat inputs */
3327 unsigned base = nir_intrinsic_base(instr);
3328 unsigned component = nir_intrinsic_component(instr);
3329 unsigned num_components = instr->num_components;
3330 enum brw_reg_type type = dest.type;
3331
3332 /* Special case fields in the VUE header */
3333 if (base == VARYING_SLOT_LAYER)
3334 component = 1;
3335 else if (base == VARYING_SLOT_VIEWPORT)
3336 component = 2;
3337
3338 if (nir_dest_bit_size(instr->dest) == 64) {
3339 /* const_index is in 32-bit type size units that could not be aligned
3340 * with DF. We need to read the double vector as if it was a float
3341 * vector of twice the number of components to fetch the right data.
3342 */
3343 type = BRW_REGISTER_TYPE_F;
3344 num_components *= 2;
3345 }
3346
3347 for (unsigned int i = 0; i < num_components; i++) {
3348 struct brw_reg interp = interp_reg(base, component + i);
3349 interp = suboffset(interp, 3);
3350 bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i),
3351 retype(fs_reg(interp), type));
3352 }
3353
3354 if (nir_dest_bit_size(instr->dest) == 64) {
3355 shuffle_32bit_load_result_to_64bit_data(bld,
3356 dest,
3357 retype(dest, type),
3358 instr->num_components);
3359 }
3360 break;
3361 }
3362
3363 case nir_intrinsic_load_barycentric_pixel:
3364 case nir_intrinsic_load_barycentric_centroid:
3365 case nir_intrinsic_load_barycentric_sample:
3366 /* Do nothing - load_interpolated_input handling will handle it later. */
3367 break;
3368
3369 case nir_intrinsic_load_barycentric_at_sample: {
3370 const glsl_interp_mode interpolation =
3371 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3372
3373 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3374
3375 if (const_sample) {
3376 unsigned msg_data = const_sample->i32[0] << 4;
3377
3378 emit_pixel_interpolater_send(bld,
3379 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3380 dest,
3381 fs_reg(), /* src */
3382 brw_imm_ud(msg_data),
3383 interpolation);
3384 } else {
3385 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3386 BRW_REGISTER_TYPE_UD);
3387
3388 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3389 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3390 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3391 bld.exec_all().group(1, 0)
3392 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3393 emit_pixel_interpolater_send(bld,
3394 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3395 dest,
3396 fs_reg(), /* src */
3397 msg_data,
3398 interpolation);
3399 } else {
3400 /* Make a loop that sends a message to the pixel interpolater
3401 * for the sample number in each live channel. If there are
3402 * multiple channels with the same sample number then these
3403 * will be handled simultaneously with a single interation of
3404 * the loop.
3405 */
3406 bld.emit(BRW_OPCODE_DO);
3407
3408 /* Get the next live sample number into sample_id_reg */
3409 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3410
3411 /* Set the flag register so that we can perform the send
3412 * message on all channels that have the same sample number
3413 */
3414 bld.CMP(bld.null_reg_ud(),
3415 sample_src, sample_id,
3416 BRW_CONDITIONAL_EQ);
3417 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3418 bld.exec_all().group(1, 0)
3419 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3420 fs_inst *inst =
3421 emit_pixel_interpolater_send(bld,
3422 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3423 dest,
3424 fs_reg(), /* src */
3425 msg_data,
3426 interpolation);
3427 set_predicate(BRW_PREDICATE_NORMAL, inst);
3428
3429 /* Continue the loop if there are any live channels left */
3430 set_predicate_inv(BRW_PREDICATE_NORMAL,
3431 true, /* inverse */
3432 bld.emit(BRW_OPCODE_WHILE));
3433 }
3434 }
3435 break;
3436 }
3437
3438 case nir_intrinsic_load_barycentric_at_offset: {
3439 const glsl_interp_mode interpolation =
3440 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3441
3442 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3443
3444 if (const_offset) {
3445 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3446 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3447
3448 emit_pixel_interpolater_send(bld,
3449 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3450 dest,
3451 fs_reg(), /* src */
3452 brw_imm_ud(off_x | (off_y << 4)),
3453 interpolation);
3454 } else {
3455 fs_reg src = vgrf(glsl_type::ivec2_type);
3456 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3457 BRW_REGISTER_TYPE_F);
3458 for (int i = 0; i < 2; i++) {
3459 fs_reg temp = vgrf(glsl_type::float_type);
3460 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3461 fs_reg itemp = vgrf(glsl_type::int_type);
3462 /* float to int */
3463 bld.MOV(itemp, temp);
3464
3465 /* Clamp the upper end of the range to +7/16.
3466 * ARB_gpu_shader5 requires that we support a maximum offset
3467 * of +0.5, which isn't representable in a S0.4 value -- if
3468 * we didn't clamp it, we'd end up with -8/16, which is the
3469 * opposite of what the shader author wanted.
3470 *
3471 * This is legal due to ARB_gpu_shader5's quantization
3472 * rules:
3473 *
3474 * "Not all values of <offset> may be supported; x and y
3475 * offsets may be rounded to fixed-point values with the
3476 * number of fraction bits given by the
3477 * implementation-dependent constant
3478 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3479 */
3480 set_condmod(BRW_CONDITIONAL_L,
3481 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3482 }
3483
3484 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3485 emit_pixel_interpolater_send(bld,
3486 opcode,
3487 dest,
3488 src,
3489 brw_imm_ud(0u),
3490 interpolation);
3491 }
3492 break;
3493 }
3494
3495 case nir_intrinsic_load_interpolated_input: {
3496 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3497 emit_fragcoord_interpolation(dest);
3498 break;
3499 }
3500
3501 assert(instr->src[0].ssa &&
3502 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3503 nir_intrinsic_instr *bary_intrinsic =
3504 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3505 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3506 enum glsl_interp_mode interp_mode =
3507 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3508 fs_reg dst_xy;
3509
3510 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3511 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3512 /* Use the result of the PI message */
3513 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3514 } else {
3515 /* Use the delta_xy values computed from the payload */
3516 enum brw_barycentric_mode bary =
3517 brw_barycentric_mode(interp_mode, bary_intrin);
3518
3519 dst_xy = this->delta_xy[bary];
3520 }
3521
3522 for (unsigned int i = 0; i < instr->num_components; i++) {
3523 fs_reg interp =
3524 fs_reg(interp_reg(nir_intrinsic_base(instr),
3525 nir_intrinsic_component(instr) + i));
3526 interp.type = BRW_REGISTER_TYPE_F;
3527 dest.type = BRW_REGISTER_TYPE_F;
3528
3529 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3530 fs_reg tmp = vgrf(glsl_type::float_type);
3531 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3532 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3533 } else {
3534 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3535 }
3536 }
3537 break;
3538 }
3539
3540 default:
3541 nir_emit_intrinsic(bld, instr);
3542 break;
3543 }
3544 }
3545
3546 void
3547 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3548 nir_intrinsic_instr *instr)
3549 {
3550 assert(stage == MESA_SHADER_COMPUTE);
3551 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3552
3553 fs_reg dest;
3554 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3555 dest = get_nir_dest(instr->dest);
3556
3557 switch (instr->intrinsic) {
3558 case nir_intrinsic_barrier:
3559 emit_barrier();
3560 cs_prog_data->uses_barrier = true;
3561 break;
3562
3563 case nir_intrinsic_load_subgroup_id:
3564 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3565 break;
3566
3567 case nir_intrinsic_load_local_invocation_id:
3568 case nir_intrinsic_load_work_group_id: {
3569 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3570 fs_reg val = nir_system_values[sv];
3571 assert(val.file != BAD_FILE);
3572 dest.type = val.type;
3573 for (unsigned i = 0; i < 3; i++)
3574 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3575 break;
3576 }
3577
3578 case nir_intrinsic_load_num_work_groups: {
3579 const unsigned surface =
3580 cs_prog_data->binding_table.work_groups_start;
3581
3582 cs_prog_data->uses_num_work_groups = true;
3583
3584 fs_reg surf_index = brw_imm_ud(surface);
3585 brw_mark_surface_used(prog_data, surface);
3586
3587 /* Read the 3 GLuint components of gl_NumWorkGroups */
3588 for (unsigned i = 0; i < 3; i++) {
3589 fs_reg read_result =
3590 emit_untyped_read(bld, surf_index,
3591 brw_imm_ud(i << 2),
3592 1 /* dims */, 1 /* size */,
3593 BRW_PREDICATE_NONE);
3594 read_result.type = dest.type;
3595 bld.MOV(dest, read_result);
3596 dest = offset(dest, bld, 1);
3597 }
3598 break;
3599 }
3600
3601 case nir_intrinsic_shared_atomic_add:
3602 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3603 break;
3604 case nir_intrinsic_shared_atomic_imin:
3605 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3606 break;
3607 case nir_intrinsic_shared_atomic_umin:
3608 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3609 break;
3610 case nir_intrinsic_shared_atomic_imax:
3611 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3612 break;
3613 case nir_intrinsic_shared_atomic_umax:
3614 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3615 break;
3616 case nir_intrinsic_shared_atomic_and:
3617 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3618 break;
3619 case nir_intrinsic_shared_atomic_or:
3620 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3621 break;
3622 case nir_intrinsic_shared_atomic_xor:
3623 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3624 break;
3625 case nir_intrinsic_shared_atomic_exchange:
3626 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3627 break;
3628 case nir_intrinsic_shared_atomic_comp_swap:
3629 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3630 break;
3631
3632 case nir_intrinsic_load_shared: {
3633 assert(devinfo->gen >= 7);
3634
3635 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3636
3637 /* Get the offset to read from */
3638 fs_reg offset_reg;
3639 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3640 if (const_offset) {
3641 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3642 } else {
3643 offset_reg = vgrf(glsl_type::uint_type);
3644 bld.ADD(offset_reg,
3645 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3646 brw_imm_ud(instr->const_index[0]));
3647 }
3648
3649 /* Read the vector */
3650 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3651 instr->num_components);
3652 break;
3653 }
3654
3655 case nir_intrinsic_store_shared: {
3656 assert(devinfo->gen >= 7);
3657
3658 /* Block index */
3659 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3660
3661 /* Value */
3662 fs_reg val_reg = get_nir_src(instr->src[0]);
3663
3664 /* Writemask */
3665 unsigned writemask = instr->const_index[1];
3666
3667 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3668 * since the untyped writes below operate in units of 32-bits, which
3669 * means that we need to write twice as many components each time.
3670 * Also, we have to suffle 64-bit data to be in the appropriate layout
3671 * expected by our 32-bit write messages.
3672 */
3673 unsigned type_size = 4;
3674 if (nir_src_bit_size(instr->src[0]) == 64) {
3675 type_size = 8;
3676 val_reg = shuffle_64bit_data_for_32bit_write(bld,
3677 val_reg, instr->num_components);
3678 }
3679
3680 unsigned type_slots = type_size / 4;
3681
3682 /* Combine groups of consecutive enabled channels in one write
3683 * message. We use ffs to find the first enabled channel and then ffs on
3684 * the bit-inverse, down-shifted writemask to determine the length of
3685 * the block of enabled bits.
3686 */
3687 while (writemask) {
3688 unsigned first_component = ffs(writemask) - 1;
3689 unsigned length = ffs(~(writemask >> first_component)) - 1;
3690
3691 /* We can't write more than 2 64-bit components at once. Limit the
3692 * length of the write to what we can do and let the next iteration
3693 * handle the rest
3694 */
3695 if (type_size > 4)
3696 length = MIN2(2, length);
3697
3698 fs_reg offset_reg;
3699 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3700 if (const_offset) {
3701 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3702 type_size * first_component);
3703 } else {
3704 offset_reg = vgrf(glsl_type::uint_type);
3705 bld.ADD(offset_reg,
3706 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3707 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3708 }
3709
3710 emit_untyped_write(bld, surf_index, offset_reg,
3711 offset(val_reg, bld, first_component * type_slots),
3712 1 /* dims */, length * type_slots,
3713 BRW_PREDICATE_NONE);
3714
3715 /* Clear the bits in the writemask that we just wrote, then try
3716 * again to see if more channels are left.
3717 */
3718 writemask &= (15 << (first_component + length));
3719 }
3720
3721 break;
3722 }
3723
3724 default:
3725 nir_emit_intrinsic(bld, instr);
3726 break;
3727 }
3728 }
3729
3730 static fs_reg
3731 brw_nir_reduction_op_identity(const fs_builder &bld,
3732 nir_op op, brw_reg_type type)
3733 {
3734 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3735 switch (type_sz(type)) {
3736 case 2:
3737 assert(type != BRW_REGISTER_TYPE_HF);
3738 return retype(brw_imm_uw(value.u16[0]), type);
3739 case 4:
3740 return retype(brw_imm_ud(value.u32[0]), type);
3741 case 8:
3742 if (type == BRW_REGISTER_TYPE_DF)
3743 return setup_imm_df(bld, value.f64[0]);
3744 else
3745 return retype(brw_imm_u64(value.u64[0]), type);
3746 default:
3747 unreachable("Invalid type size");
3748 }
3749 }
3750
3751 static opcode
3752 brw_op_for_nir_reduction_op(nir_op op)
3753 {
3754 switch (op) {
3755 case nir_op_iadd: return BRW_OPCODE_ADD;
3756 case nir_op_fadd: return BRW_OPCODE_ADD;
3757 case nir_op_imul: return BRW_OPCODE_MUL;
3758 case nir_op_fmul: return BRW_OPCODE_MUL;
3759 case nir_op_imin: return BRW_OPCODE_SEL;
3760 case nir_op_umin: return BRW_OPCODE_SEL;
3761 case nir_op_fmin: return BRW_OPCODE_SEL;
3762 case nir_op_imax: return BRW_OPCODE_SEL;
3763 case nir_op_umax: return BRW_OPCODE_SEL;
3764 case nir_op_fmax: return BRW_OPCODE_SEL;
3765 case nir_op_iand: return BRW_OPCODE_AND;
3766 case nir_op_ior: return BRW_OPCODE_OR;
3767 case nir_op_ixor: return BRW_OPCODE_XOR;
3768 default:
3769 unreachable("Invalid reduction operation");
3770 }
3771 }
3772
3773 static brw_conditional_mod
3774 brw_cond_mod_for_nir_reduction_op(nir_op op)
3775 {
3776 switch (op) {
3777 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3778 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3779 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3780 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3781 case nir_op_imin: return BRW_CONDITIONAL_L;
3782 case nir_op_umin: return BRW_CONDITIONAL_L;
3783 case nir_op_fmin: return BRW_CONDITIONAL_L;
3784 case nir_op_imax: return BRW_CONDITIONAL_GE;
3785 case nir_op_umax: return BRW_CONDITIONAL_GE;
3786 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3787 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3788 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3789 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3790 default:
3791 unreachable("Invalid reduction operation");
3792 }
3793 }
3794
3795 void
3796 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3797 {
3798 fs_reg dest;
3799 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3800 dest = get_nir_dest(instr->dest);
3801
3802 switch (instr->intrinsic) {
3803 case nir_intrinsic_image_var_load:
3804 case nir_intrinsic_image_var_store:
3805 case nir_intrinsic_image_var_atomic_add:
3806 case nir_intrinsic_image_var_atomic_min:
3807 case nir_intrinsic_image_var_atomic_max:
3808 case nir_intrinsic_image_var_atomic_and:
3809 case nir_intrinsic_image_var_atomic_or:
3810 case nir_intrinsic_image_var_atomic_xor:
3811 case nir_intrinsic_image_var_atomic_exchange:
3812 case nir_intrinsic_image_var_atomic_comp_swap: {
3813 using namespace image_access;
3814
3815 if (stage == MESA_SHADER_FRAGMENT &&
3816 instr->intrinsic != nir_intrinsic_image_var_load)
3817 brw_wm_prog_data(prog_data)->has_side_effects = true;
3818
3819 /* Get the referenced image variable and type. */
3820 const nir_variable *var = instr->variables[0]->var;
3821 const glsl_type *type = var->type->without_array();
3822 const brw_reg_type base_type = get_image_base_type(type);
3823
3824 /* Get some metadata from the image intrinsic. */
3825 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3826 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3827 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3828 const unsigned format = var->data.image.format;
3829 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3830
3831 /* Get the arguments of the image intrinsic. */
3832 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3833 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3834 BRW_REGISTER_TYPE_UD);
3835 const fs_reg src0 = (info->num_srcs >= 3 ?
3836 retype(get_nir_src(instr->src[2]), base_type) :
3837 fs_reg());
3838 const fs_reg src1 = (info->num_srcs >= 4 ?
3839 retype(get_nir_src(instr->src[3]), base_type) :
3840 fs_reg());
3841 fs_reg tmp;
3842
3843 /* Emit an image load, store or atomic op. */
3844 if (instr->intrinsic == nir_intrinsic_image_var_load)
3845 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3846
3847 else if (instr->intrinsic == nir_intrinsic_image_var_store)
3848 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3849 var->data.image.write_only ? GL_NONE : format);
3850
3851 else
3852 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3853 surf_dims, arr_dims, dest_components,
3854 get_image_atomic_op(instr->intrinsic, type));
3855
3856 /* Assign the result. */
3857 for (unsigned c = 0; c < dest_components; ++c) {
3858 bld.MOV(offset(retype(dest, base_type), bld, c),
3859 offset(tmp, bld, c));
3860 }
3861 break;
3862 }
3863
3864 case nir_intrinsic_memory_barrier_atomic_counter:
3865 case nir_intrinsic_memory_barrier_buffer:
3866 case nir_intrinsic_memory_barrier_image:
3867 case nir_intrinsic_memory_barrier: {
3868 const fs_builder ubld = bld.group(8, 0);
3869 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3870 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3871 ->size_written = 2 * REG_SIZE;
3872 break;
3873 }
3874
3875 case nir_intrinsic_group_memory_barrier:
3876 case nir_intrinsic_memory_barrier_shared:
3877 /* We treat these workgroup-level barriers as no-ops. This should be
3878 * safe at present and as long as:
3879 *
3880 * - Memory access instructions are not subsequently reordered by the
3881 * compiler back-end.
3882 *
3883 * - All threads from a given compute shader workgroup fit within a
3884 * single subslice and therefore talk to the same HDC shared unit
3885 * what supposedly guarantees ordering and coherency between threads
3886 * from the same workgroup. This may change in the future when we
3887 * start splitting workgroups across multiple subslices.
3888 *
3889 * - The context is not in fault-and-stream mode, which could cause
3890 * memory transactions (including to SLM) prior to the barrier to be
3891 * replayed after the barrier if a pagefault occurs. This shouldn't
3892 * be a problem up to and including SKL because fault-and-stream is
3893 * not usable due to hardware issues, but that's likely to change in
3894 * the future.
3895 */
3896 break;
3897
3898 case nir_intrinsic_shader_clock: {
3899 /* We cannot do anything if there is an event, so ignore it for now */
3900 const fs_reg shader_clock = get_timestamp(bld);
3901 const fs_reg srcs[] = { component(shader_clock, 0),
3902 component(shader_clock, 1) };
3903 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3904 break;
3905 }
3906
3907 case nir_intrinsic_image_var_size: {
3908 /* Get the referenced image variable and type. */
3909 const nir_variable *var = instr->variables[0]->var;
3910 const glsl_type *type = var->type->without_array();
3911
3912 /* Get the size of the image. */
3913 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3914 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3915
3916 /* For 1DArray image types, the array index is stored in the Z component.
3917 * Fix this by swizzling the Z component to the Y component.
3918 */
3919 const bool is_1d_array_image =
3920 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3921 type->sampler_array;
3922
3923 /* For CubeArray images, we should count the number of cubes instead
3924 * of the number of faces. Fix it by dividing the (Z component) by 6.
3925 */
3926 const bool is_cube_array_image =
3927 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3928 type->sampler_array;
3929
3930 /* Copy all the components. */
3931 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3932 if ((int)c >= type->coordinate_components()) {
3933 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3934 brw_imm_d(1));
3935 } else if (c == 1 && is_1d_array_image) {
3936 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3937 offset(size, bld, 2));
3938 } else if (c == 2 && is_cube_array_image) {
3939 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3940 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3941 offset(size, bld, c), brw_imm_d(6));
3942 } else {
3943 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3944 offset(size, bld, c));
3945 }
3946 }
3947
3948 break;
3949 }
3950
3951 case nir_intrinsic_image_var_samples:
3952 /* The driver does not support multi-sampled images. */
3953 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3954 break;
3955
3956 case nir_intrinsic_load_uniform: {
3957 /* Offsets are in bytes but they should always aligned to
3958 * the type size
3959 */
3960 assert(instr->const_index[0] % 4 == 0 ||
3961 instr->const_index[0] % type_sz(dest.type) == 0);
3962
3963 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3964
3965 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3966 if (const_offset) {
3967 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
3968 /* For 16-bit types we add the module of the const_index[0]
3969 * offset to access to not 32-bit aligned element
3970 */
3971 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
3972
3973 for (unsigned j = 0; j < instr->num_components; j++) {
3974 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3975 }
3976 } else {
3977 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3978 BRW_REGISTER_TYPE_UD);
3979
3980 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3981 * go past the end of the uniform. In order to keep the n'th
3982 * component from running past, we subtract off the size of all but
3983 * one component of the vector.
3984 */
3985 assert(instr->const_index[1] >=
3986 instr->num_components * (int) type_sz(dest.type));
3987 unsigned read_size = instr->const_index[1] -
3988 (instr->num_components - 1) * type_sz(dest.type);
3989
3990 bool supports_64bit_indirects =
3991 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
3992
3993 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
3994 for (unsigned j = 0; j < instr->num_components; j++) {
3995 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3996 offset(dest, bld, j), offset(src, bld, j),
3997 indirect, brw_imm_ud(read_size));
3998 }
3999 } else {
4000 const unsigned num_mov_indirects =
4001 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4002 /* We read a little bit less per MOV INDIRECT, as they are now
4003 * 32-bits ones instead of 64-bit. Fix read_size then.
4004 */
4005 const unsigned read_size_32bit = read_size -
4006 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4007 for (unsigned j = 0; j < instr->num_components; j++) {
4008 for (unsigned i = 0; i < num_mov_indirects; i++) {
4009 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4010 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4011 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4012 indirect, brw_imm_ud(read_size_32bit));
4013 }
4014 }
4015 }
4016 }
4017 break;
4018 }
4019
4020 case nir_intrinsic_load_ubo: {
4021 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4022 fs_reg surf_index;
4023
4024 if (const_index) {
4025 const unsigned index = stage_prog_data->binding_table.ubo_start +
4026 const_index->u32[0];
4027 surf_index = brw_imm_ud(index);
4028 brw_mark_surface_used(prog_data, index);
4029 } else {
4030 /* The block index is not a constant. Evaluate the index expression
4031 * per-channel and add the base UBO index; we have to select a value
4032 * from any live channel.
4033 */
4034 surf_index = vgrf(glsl_type::uint_type);
4035 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4036 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4037 surf_index = bld.emit_uniformize(surf_index);
4038
4039 /* Assume this may touch any UBO. It would be nice to provide
4040 * a tighter bound, but the array information is already lowered away.
4041 */
4042 brw_mark_surface_used(prog_data,
4043 stage_prog_data->binding_table.ubo_start +
4044 nir->info.num_ubos - 1);
4045 }
4046
4047 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4048 if (const_offset == NULL) {
4049 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4050 BRW_REGISTER_TYPE_UD);
4051
4052 for (int i = 0; i < instr->num_components; i++)
4053 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4054 base_offset, i * type_sz(dest.type));
4055 } else {
4056 /* Even if we are loading doubles, a pull constant load will load
4057 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4058 * need to load a full dvec4 we will have to emit 2 loads. This is
4059 * similar to demote_pull_constants(), except that in that case we
4060 * see individual accesses to each component of the vector and then
4061 * we let CSE deal with duplicate loads. Here we see a vector access
4062 * and we have to split it if necessary.
4063 */
4064 const unsigned type_size = type_sz(dest.type);
4065
4066 /* See if we've selected this as a push constant candidate */
4067 if (const_index) {
4068 const unsigned ubo_block = const_index->u32[0];
4069 const unsigned offset_256b = const_offset->u32[0] / 32;
4070
4071 fs_reg push_reg;
4072 for (int i = 0; i < 4; i++) {
4073 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4074 if (range->block == ubo_block &&
4075 offset_256b >= range->start &&
4076 offset_256b < range->start + range->length) {
4077
4078 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4079 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4080 break;
4081 }
4082 }
4083
4084 if (push_reg.file != BAD_FILE) {
4085 for (unsigned i = 0; i < instr->num_components; i++) {
4086 bld.MOV(offset(dest, bld, i),
4087 byte_offset(push_reg, i * type_size));
4088 }
4089 break;
4090 }
4091 }
4092
4093 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4094 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4095 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4096
4097 for (unsigned c = 0; c < instr->num_components;) {
4098 const unsigned base = const_offset->u32[0] + c * type_size;
4099 /* Number of usable components in the next block-aligned load. */
4100 const unsigned count = MIN2(instr->num_components - c,
4101 (block_sz - base % block_sz) / type_size);
4102
4103 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4104 packed_consts, surf_index,
4105 brw_imm_ud(base & ~(block_sz - 1)));
4106
4107 const fs_reg consts =
4108 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4109 dest.type);
4110
4111 for (unsigned d = 0; d < count; d++)
4112 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4113
4114 c += count;
4115 }
4116 }
4117 break;
4118 }
4119
4120 case nir_intrinsic_load_ssbo: {
4121 assert(devinfo->gen >= 7);
4122
4123 nir_const_value *const_uniform_block =
4124 nir_src_as_const_value(instr->src[0]);
4125
4126 fs_reg surf_index;
4127 if (const_uniform_block) {
4128 unsigned index = stage_prog_data->binding_table.ssbo_start +
4129 const_uniform_block->u32[0];
4130 surf_index = brw_imm_ud(index);
4131 brw_mark_surface_used(prog_data, index);
4132 } else {
4133 surf_index = vgrf(glsl_type::uint_type);
4134 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4135 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4136
4137 /* Assume this may touch any UBO. It would be nice to provide
4138 * a tighter bound, but the array information is already lowered away.
4139 */
4140 brw_mark_surface_used(prog_data,
4141 stage_prog_data->binding_table.ssbo_start +
4142 nir->info.num_ssbos - 1);
4143 }
4144
4145 fs_reg offset_reg;
4146 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4147 if (const_offset) {
4148 offset_reg = brw_imm_ud(const_offset->u32[0]);
4149 } else {
4150 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4151 }
4152
4153 /* Read the vector */
4154 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4155 instr->num_components);
4156
4157 break;
4158 }
4159
4160 case nir_intrinsic_store_ssbo: {
4161 assert(devinfo->gen >= 7);
4162
4163 if (stage == MESA_SHADER_FRAGMENT)
4164 brw_wm_prog_data(prog_data)->has_side_effects = true;
4165
4166 /* Block index */
4167 fs_reg surf_index;
4168 nir_const_value *const_uniform_block =
4169 nir_src_as_const_value(instr->src[1]);
4170 if (const_uniform_block) {
4171 unsigned index = stage_prog_data->binding_table.ssbo_start +
4172 const_uniform_block->u32[0];
4173 surf_index = brw_imm_ud(index);
4174 brw_mark_surface_used(prog_data, index);
4175 } else {
4176 surf_index = vgrf(glsl_type::uint_type);
4177 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4178 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4179
4180 brw_mark_surface_used(prog_data,
4181 stage_prog_data->binding_table.ssbo_start +
4182 nir->info.num_ssbos - 1);
4183 }
4184
4185 /* Value */
4186 fs_reg val_reg = get_nir_src(instr->src[0]);
4187
4188 /* Writemask */
4189 unsigned writemask = instr->const_index[0];
4190
4191 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4192 * since the untyped writes below operate in units of 32-bits, which
4193 * means that we need to write twice as many components each time.
4194 * Also, we have to suffle 64-bit data to be in the appropriate layout
4195 * expected by our 32-bit write messages.
4196 */
4197 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4198 unsigned type_size = bit_size / 8;
4199
4200 /* Combine groups of consecutive enabled channels in one write
4201 * message. We use ffs to find the first enabled channel and then ffs on
4202 * the bit-inverse, down-shifted writemask to determine the num_components
4203 * of the block of enabled bits.
4204 */
4205 while (writemask) {
4206 unsigned first_component = ffs(writemask) - 1;
4207 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4208 fs_reg write_src = offset(val_reg, bld, first_component);
4209
4210 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4211
4212 if (type_size > 4) {
4213 /* We can't write more than 2 64-bit components at once. Limit
4214 * the num_components of the write to what we can do and let the next
4215 * iteration handle the rest.
4216 */
4217 num_components = MIN2(2, num_components);
4218 write_src = shuffle_64bit_data_for_32bit_write(bld, write_src,
4219 num_components);
4220 } else if (type_size < 4) {
4221 assert(type_size == 2);
4222 /* For 16-bit types we pack two consecutive values into a 32-bit
4223 * word and use an untyped write message. For single values or not
4224 * 32-bit-aligned we need to use byte-scattered writes because
4225 * untyped writes works with 32-bit components with 32-bit
4226 * alignment. byte_scattered_write messages only support one
4227 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4228 * could be enabled we can not guarantee that not constant offsets
4229 * to be 32-bit aligned for 16-bit types. For example an array, of
4230 * 16-bit vec3 with array element stride of 6.
4231 *
4232 * In the case of 32-bit aligned constant offsets if there is
4233 * a 3-components vector we submit one untyped-write message
4234 * of 32-bit (first two components), and one byte-scattered
4235 * write message (the last component).
4236 */
4237
4238 if ( !const_offset || ((const_offset->u32[0] +
4239 type_size * first_component) % 4)) {
4240 /* If we use a .yz writemask we also need to emit 2
4241 * byte-scattered write messages because of y-component not
4242 * being aligned to 32-bit.
4243 */
4244 num_components = 1;
4245 } else if (num_components > 2 && (num_components % 2)) {
4246 /* If there is an odd number of consecutive components we left
4247 * the not paired component for a following emit of length == 1
4248 * with byte_scattered_write.
4249 */
4250 num_components --;
4251 }
4252 /* For num_components == 1 we are also shuffling the component
4253 * because byte scattered writes of 16-bit need values to be dword
4254 * aligned. Shuffling only one component would be the same as
4255 * striding it.
4256 */
4257 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D,
4258 DIV_ROUND_UP(num_components, 2));
4259 shuffle_16bit_data_for_32bit_write(bld, tmp, write_src,
4260 num_components);
4261 write_src = tmp;
4262 }
4263
4264 fs_reg offset_reg;
4265
4266 if (const_offset) {
4267 offset_reg = brw_imm_ud(const_offset->u32[0] +
4268 type_size * first_component);
4269 } else {
4270 offset_reg = vgrf(glsl_type::uint_type);
4271 bld.ADD(offset_reg,
4272 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4273 brw_imm_ud(type_size * first_component));
4274 }
4275
4276 if (type_size < 4 && num_components == 1) {
4277 assert(type_size == 2);
4278 /* Untyped Surface messages have a fixed 32-bit size, so we need
4279 * to rely on byte scattered in order to write 16-bit elements.
4280 * The byte_scattered_write message needs that every written 16-bit
4281 * type to be aligned 32-bits (stride=2).
4282 */
4283 emit_byte_scattered_write(bld, surf_index, offset_reg,
4284 write_src,
4285 1 /* dims */, 1,
4286 bit_size,
4287 BRW_PREDICATE_NONE);
4288 } else {
4289 assert(num_components * type_size <= 16);
4290 assert((num_components * type_size) % 4 == 0);
4291 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4292 offset_reg.ud % 4 == 0);
4293 unsigned num_slots = (num_components * type_size) / 4;
4294
4295 emit_untyped_write(bld, surf_index, offset_reg,
4296 write_src,
4297 1 /* dims */, num_slots,
4298 BRW_PREDICATE_NONE);
4299 }
4300
4301 /* Clear the bits in the writemask that we just wrote, then try
4302 * again to see if more channels are left.
4303 */
4304 writemask &= (15 << (first_component + num_components));
4305 }
4306 break;
4307 }
4308
4309 case nir_intrinsic_store_output: {
4310 fs_reg src = get_nir_src(instr->src[0]);
4311
4312 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4313 assert(const_offset && "Indirect output stores not allowed");
4314
4315 unsigned num_components = instr->num_components;
4316 unsigned first_component = nir_intrinsic_component(instr);
4317 if (nir_src_bit_size(instr->src[0]) == 64) {
4318 src = shuffle_64bit_data_for_32bit_write(bld, src, num_components);
4319 num_components *= 2;
4320 }
4321
4322 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4323 4 * const_offset->u32[0]), src.type);
4324 for (unsigned j = 0; j < num_components; j++) {
4325 bld.MOV(offset(new_dest, bld, j + first_component),
4326 offset(src, bld, j));
4327 }
4328 break;
4329 }
4330
4331 case nir_intrinsic_ssbo_atomic_add:
4332 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4333 break;
4334 case nir_intrinsic_ssbo_atomic_imin:
4335 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4336 break;
4337 case nir_intrinsic_ssbo_atomic_umin:
4338 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4339 break;
4340 case nir_intrinsic_ssbo_atomic_imax:
4341 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4342 break;
4343 case nir_intrinsic_ssbo_atomic_umax:
4344 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4345 break;
4346 case nir_intrinsic_ssbo_atomic_and:
4347 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4348 break;
4349 case nir_intrinsic_ssbo_atomic_or:
4350 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4351 break;
4352 case nir_intrinsic_ssbo_atomic_xor:
4353 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4354 break;
4355 case nir_intrinsic_ssbo_atomic_exchange:
4356 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4357 break;
4358 case nir_intrinsic_ssbo_atomic_comp_swap:
4359 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4360 break;
4361
4362 case nir_intrinsic_get_buffer_size: {
4363 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4364 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4365
4366 /* A resinfo's sampler message is used to get the buffer size. The
4367 * SIMD8's writeback message consists of four registers and SIMD16's
4368 * writeback message consists of 8 destination registers (two per each
4369 * component). Because we are only interested on the first channel of
4370 * the first returned component, where resinfo returns the buffer size
4371 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4372 * the dispatch width.
4373 */
4374 const fs_builder ubld = bld.exec_all().group(8, 0);
4375 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4376 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4377
4378 /* Set LOD = 0 */
4379 ubld.MOV(src_payload, brw_imm_d(0));
4380
4381 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4382 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4383 src_payload, brw_imm_ud(index));
4384 inst->header_size = 0;
4385 inst->mlen = 1;
4386 inst->size_written = 4 * REG_SIZE;
4387
4388 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4389 *
4390 * "Out-of-bounds checking is always performed at a DWord granularity. If
4391 * any part of the DWord is out-of-bounds then the whole DWord is
4392 * considered out-of-bounds."
4393 *
4394 * This implies that types with size smaller than 4-bytes need to be
4395 * padded if they don't complete the last dword of the buffer. But as we
4396 * need to maintain the original size we need to reverse the padding
4397 * calculation to return the correct size to know the number of elements
4398 * of an unsized array. As we stored in the last two bits of the surface
4399 * size the needed padding for the buffer, we calculate here the
4400 * original buffer_size reversing the surface_size calculation:
4401 *
4402 * surface_size = isl_align(buffer_size, 4) +
4403 * (isl_align(buffer_size) - buffer_size)
4404 *
4405 * buffer_size = surface_size & ~3 - surface_size & 3
4406 */
4407
4408 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4409 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4410 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4411
4412 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4413 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4414 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4415
4416 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4417
4418 brw_mark_surface_used(prog_data, index);
4419 break;
4420 }
4421
4422 case nir_intrinsic_load_subgroup_invocation:
4423 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4424 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4425 break;
4426
4427 case nir_intrinsic_load_subgroup_eq_mask:
4428 case nir_intrinsic_load_subgroup_ge_mask:
4429 case nir_intrinsic_load_subgroup_gt_mask:
4430 case nir_intrinsic_load_subgroup_le_mask:
4431 case nir_intrinsic_load_subgroup_lt_mask:
4432 unreachable("not reached");
4433
4434 case nir_intrinsic_vote_any: {
4435 const fs_builder ubld = bld.exec_all().group(1, 0);
4436
4437 /* The any/all predicates do not consider channel enables. To prevent
4438 * dead channels from affecting the result, we initialize the flag with
4439 * with the identity value for the logical operation.
4440 */
4441 if (dispatch_width == 32) {
4442 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4443 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4444 brw_imm_ud(0));
4445 } else {
4446 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4447 }
4448 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4449
4450 /* For some reason, the any/all predicates don't work properly with
4451 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4452 * doesn't read the correct subset of the flag register and you end up
4453 * getting garbage in the second half. Work around this by using a pair
4454 * of 1-wide MOVs and scattering the result.
4455 */
4456 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4457 ubld.MOV(res1, brw_imm_d(0));
4458 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4459 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4460 BRW_PREDICATE_ALIGN1_ANY32H,
4461 ubld.MOV(res1, brw_imm_d(-1)));
4462
4463 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4464 break;
4465 }
4466 case nir_intrinsic_vote_all: {
4467 const fs_builder ubld = bld.exec_all().group(1, 0);
4468
4469 /* The any/all predicates do not consider channel enables. To prevent
4470 * dead channels from affecting the result, we initialize the flag with
4471 * with the identity value for the logical operation.
4472 */
4473 if (dispatch_width == 32) {
4474 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4475 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4476 brw_imm_ud(0xffffffff));
4477 } else {
4478 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4479 }
4480 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4481
4482 /* For some reason, the any/all predicates don't work properly with
4483 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4484 * doesn't read the correct subset of the flag register and you end up
4485 * getting garbage in the second half. Work around this by using a pair
4486 * of 1-wide MOVs and scattering the result.
4487 */
4488 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4489 ubld.MOV(res1, brw_imm_d(0));
4490 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4491 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4492 BRW_PREDICATE_ALIGN1_ALL32H,
4493 ubld.MOV(res1, brw_imm_d(-1)));
4494
4495 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4496 break;
4497 }
4498 case nir_intrinsic_vote_feq:
4499 case nir_intrinsic_vote_ieq: {
4500 fs_reg value = get_nir_src(instr->src[0]);
4501 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4502 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4503 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4504 }
4505
4506 fs_reg uniformized = bld.emit_uniformize(value);
4507 const fs_builder ubld = bld.exec_all().group(1, 0);
4508
4509 /* The any/all predicates do not consider channel enables. To prevent
4510 * dead channels from affecting the result, we initialize the flag with
4511 * with the identity value for the logical operation.
4512 */
4513 if (dispatch_width == 32) {
4514 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4515 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4516 brw_imm_ud(0xffffffff));
4517 } else {
4518 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4519 }
4520 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4521
4522 /* For some reason, the any/all predicates don't work properly with
4523 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4524 * doesn't read the correct subset of the flag register and you end up
4525 * getting garbage in the second half. Work around this by using a pair
4526 * of 1-wide MOVs and scattering the result.
4527 */
4528 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4529 ubld.MOV(res1, brw_imm_d(0));
4530 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4531 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4532 BRW_PREDICATE_ALIGN1_ALL32H,
4533 ubld.MOV(res1, brw_imm_d(-1)));
4534
4535 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4536 break;
4537 }
4538
4539 case nir_intrinsic_ballot: {
4540 const fs_reg value = retype(get_nir_src(instr->src[0]),
4541 BRW_REGISTER_TYPE_UD);
4542 struct brw_reg flag = brw_flag_reg(0, 0);
4543 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4544 * as f0.0. This is a problem for fragment programs as we currently use
4545 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4546 * programs yet so this isn't a problem. When we do, something will
4547 * have to change.
4548 */
4549 if (dispatch_width == 32)
4550 flag.type = BRW_REGISTER_TYPE_UD;
4551
4552 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4553 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4554
4555 if (instr->dest.ssa.bit_size > 32) {
4556 dest.type = BRW_REGISTER_TYPE_UQ;
4557 } else {
4558 dest.type = BRW_REGISTER_TYPE_UD;
4559 }
4560 bld.MOV(dest, flag);
4561 break;
4562 }
4563
4564 case nir_intrinsic_read_invocation: {
4565 const fs_reg value = get_nir_src(instr->src[0]);
4566 const fs_reg invocation = get_nir_src(instr->src[1]);
4567 fs_reg tmp = bld.vgrf(value.type);
4568
4569 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4570 bld.emit_uniformize(invocation));
4571
4572 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4573 break;
4574 }
4575
4576 case nir_intrinsic_read_first_invocation: {
4577 const fs_reg value = get_nir_src(instr->src[0]);
4578 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4579 break;
4580 }
4581
4582 case nir_intrinsic_shuffle: {
4583 const fs_reg value = get_nir_src(instr->src[0]);
4584 const fs_reg index = get_nir_src(instr->src[1]);
4585
4586 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4587 break;
4588 }
4589
4590 case nir_intrinsic_first_invocation: {
4591 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4592 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4593 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4594 fs_reg(component(tmp, 0)));
4595 break;
4596 }
4597
4598 case nir_intrinsic_quad_broadcast: {
4599 const fs_reg value = get_nir_src(instr->src[0]);
4600 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4601 assert(nir_src_bit_size(instr->src[1]) == 32);
4602
4603 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4604 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4605 break;
4606 }
4607
4608 case nir_intrinsic_quad_swap_horizontal: {
4609 const fs_reg value = get_nir_src(instr->src[0]);
4610 const fs_reg tmp = bld.vgrf(value.type);
4611 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4612
4613 const fs_reg src_left = horiz_stride(value, 2);
4614 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4615 const fs_reg tmp_left = horiz_stride(tmp, 2);
4616 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4617
4618 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4619 *
4620 * "When source or destination datatype is 64b or operation is
4621 * integer DWord multiply, regioning in Align1 must follow
4622 * these rules:
4623 *
4624 * [...]
4625 *
4626 * 3. Source and Destination offset must be the same, except
4627 * the case of scalar source."
4628 *
4629 * In order to work around this, we have to emit two 32-bit MOVs instead
4630 * of a single 64-bit MOV to do the shuffle.
4631 */
4632 if (type_sz(value.type) > 4 &&
4633 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4634 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4635 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4636 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4637 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4638 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4639 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4640 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4641 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4642 } else {
4643 ubld.MOV(tmp_left, src_right);
4644 ubld.MOV(tmp_right, src_left);
4645 }
4646 bld.MOV(retype(dest, value.type), tmp);
4647 break;
4648 }
4649
4650 case nir_intrinsic_quad_swap_vertical: {
4651 const fs_reg value = get_nir_src(instr->src[0]);
4652 if (nir_src_bit_size(instr->src[0]) == 32) {
4653 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4654 const fs_reg tmp = bld.vgrf(value.type);
4655 const fs_builder ubld = bld.exec_all();
4656 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4657 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4658 bld.MOV(retype(dest, value.type), tmp);
4659 } else {
4660 /* For larger data types, we have to either emit dispatch_width many
4661 * MOVs or else fall back to doing indirects.
4662 */
4663 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4664 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4665 brw_imm_w(0x2));
4666 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4667 }
4668 break;
4669 }
4670
4671 case nir_intrinsic_quad_swap_diagonal: {
4672 const fs_reg value = get_nir_src(instr->src[0]);
4673 if (nir_src_bit_size(instr->src[0]) == 32) {
4674 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4675 const fs_reg tmp = bld.vgrf(value.type);
4676 const fs_builder ubld = bld.exec_all();
4677 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4678 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4679 bld.MOV(retype(dest, value.type), tmp);
4680 } else {
4681 /* For larger data types, we have to either emit dispatch_width many
4682 * MOVs or else fall back to doing indirects.
4683 */
4684 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4685 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4686 brw_imm_w(0x3));
4687 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4688 }
4689 break;
4690 }
4691
4692 case nir_intrinsic_reduce: {
4693 fs_reg src = get_nir_src(instr->src[0]);
4694 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4695 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4696 if (cluster_size == 0 || cluster_size > dispatch_width)
4697 cluster_size = dispatch_width;
4698
4699 /* Figure out the source type */
4700 src.type = brw_type_for_nir_type(devinfo,
4701 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4702 nir_src_bit_size(instr->src[0])));
4703
4704 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4705 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4706 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4707
4708 /* Set up a register for all of our scratching around and initialize it
4709 * to reduction operation's identity value.
4710 */
4711 fs_reg scan = bld.vgrf(src.type);
4712 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4713
4714 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4715
4716 dest.type = src.type;
4717 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4718 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4719 * the distance between clusters is at least 2 GRFs. In this case,
4720 * we don't need the weird striding of the CLUSTER_BROADCAST
4721 * instruction and can just do regular MOVs.
4722 */
4723 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4724 const unsigned groups =
4725 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4726 const unsigned group_size = dispatch_width / groups;
4727 for (unsigned i = 0; i < groups; i++) {
4728 const unsigned cluster = (i * group_size) / cluster_size;
4729 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4730 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4731 component(scan, comp));
4732 }
4733 } else {
4734 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4735 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4736 }
4737 break;
4738 }
4739
4740 case nir_intrinsic_inclusive_scan:
4741 case nir_intrinsic_exclusive_scan: {
4742 fs_reg src = get_nir_src(instr->src[0]);
4743 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4744
4745 /* Figure out the source type */
4746 src.type = brw_type_for_nir_type(devinfo,
4747 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4748 nir_src_bit_size(instr->src[0])));
4749
4750 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4751 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4752 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4753
4754 /* Set up a register for all of our scratching around and initialize it
4755 * to reduction operation's identity value.
4756 */
4757 fs_reg scan = bld.vgrf(src.type);
4758 const fs_builder allbld = bld.exec_all();
4759 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4760
4761 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4762 /* Exclusive scan is a bit harder because we have to do an annoying
4763 * shift of the contents before we can begin. To make things worse,
4764 * we can't do this with a normal stride; we have to use indirects.
4765 */
4766 fs_reg shifted = bld.vgrf(src.type);
4767 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4768 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4769 brw_imm_w(-1));
4770 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4771 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4772 scan = shifted;
4773 }
4774
4775 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4776
4777 bld.MOV(retype(dest, src.type), scan);
4778 break;
4779 }
4780
4781 default:
4782 unreachable("unknown intrinsic");
4783 }
4784 }
4785
4786 void
4787 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4788 int op, nir_intrinsic_instr *instr)
4789 {
4790 if (stage == MESA_SHADER_FRAGMENT)
4791 brw_wm_prog_data(prog_data)->has_side_effects = true;
4792
4793 fs_reg dest;
4794 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4795 dest = get_nir_dest(instr->dest);
4796
4797 fs_reg surface;
4798 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4799 if (const_surface) {
4800 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4801 const_surface->u32[0];
4802 surface = brw_imm_ud(surf_index);
4803 brw_mark_surface_used(prog_data, surf_index);
4804 } else {
4805 surface = vgrf(glsl_type::uint_type);
4806 bld.ADD(surface, get_nir_src(instr->src[0]),
4807 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4808
4809 /* Assume this may touch any SSBO. This is the same we do for other
4810 * UBO/SSBO accesses with non-constant surface.
4811 */
4812 brw_mark_surface_used(prog_data,
4813 stage_prog_data->binding_table.ssbo_start +
4814 nir->info.num_ssbos - 1);
4815 }
4816
4817 fs_reg offset = get_nir_src(instr->src[1]);
4818 fs_reg data1 = get_nir_src(instr->src[2]);
4819 fs_reg data2;
4820 if (op == BRW_AOP_CMPWR)
4821 data2 = get_nir_src(instr->src[3]);
4822
4823 /* Emit the actual atomic operation */
4824
4825 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4826 data1, data2,
4827 1 /* dims */, 1 /* rsize */,
4828 op,
4829 BRW_PREDICATE_NONE);
4830 dest.type = atomic_result.type;
4831 bld.MOV(dest, atomic_result);
4832 }
4833
4834 void
4835 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4836 int op, nir_intrinsic_instr *instr)
4837 {
4838 fs_reg dest;
4839 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4840 dest = get_nir_dest(instr->dest);
4841
4842 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4843 fs_reg offset;
4844 fs_reg data1 = get_nir_src(instr->src[1]);
4845 fs_reg data2;
4846 if (op == BRW_AOP_CMPWR)
4847 data2 = get_nir_src(instr->src[2]);
4848
4849 /* Get the offset */
4850 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4851 if (const_offset) {
4852 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4853 } else {
4854 offset = vgrf(glsl_type::uint_type);
4855 bld.ADD(offset,
4856 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4857 brw_imm_ud(instr->const_index[0]));
4858 }
4859
4860 /* Emit the actual atomic operation operation */
4861
4862 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4863 data1, data2,
4864 1 /* dims */, 1 /* rsize */,
4865 op,
4866 BRW_PREDICATE_NONE);
4867 dest.type = atomic_result.type;
4868 bld.MOV(dest, atomic_result);
4869 }
4870
4871 void
4872 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4873 {
4874 unsigned texture = instr->texture_index;
4875 unsigned sampler = instr->sampler_index;
4876
4877 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4878
4879 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4880 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4881
4882 int lod_components = 0;
4883
4884 /* The hardware requires a LOD for buffer textures */
4885 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4886 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4887
4888 uint32_t header_bits = 0;
4889 for (unsigned i = 0; i < instr->num_srcs; i++) {
4890 fs_reg src = get_nir_src(instr->src[i].src);
4891 switch (instr->src[i].src_type) {
4892 case nir_tex_src_bias:
4893 srcs[TEX_LOGICAL_SRC_LOD] =
4894 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4895 break;
4896 case nir_tex_src_comparator:
4897 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4898 break;
4899 case nir_tex_src_coord:
4900 switch (instr->op) {
4901 case nir_texop_txf:
4902 case nir_texop_txf_ms:
4903 case nir_texop_txf_ms_mcs:
4904 case nir_texop_samples_identical:
4905 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4906 break;
4907 default:
4908 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4909 break;
4910 }
4911 break;
4912 case nir_tex_src_ddx:
4913 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4914 lod_components = nir_tex_instr_src_size(instr, i);
4915 break;
4916 case nir_tex_src_ddy:
4917 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4918 break;
4919 case nir_tex_src_lod:
4920 switch (instr->op) {
4921 case nir_texop_txs:
4922 srcs[TEX_LOGICAL_SRC_LOD] =
4923 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4924 break;
4925 case nir_texop_txf:
4926 srcs[TEX_LOGICAL_SRC_LOD] =
4927 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4928 break;
4929 default:
4930 srcs[TEX_LOGICAL_SRC_LOD] =
4931 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4932 break;
4933 }
4934 break;
4935 case nir_tex_src_ms_index:
4936 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4937 break;
4938
4939 case nir_tex_src_offset: {
4940 nir_const_value *const_offset =
4941 nir_src_as_const_value(instr->src[i].src);
4942 unsigned offset_bits = 0;
4943 if (const_offset &&
4944 brw_texture_offset(const_offset->i32,
4945 nir_tex_instr_src_size(instr, i),
4946 &offset_bits)) {
4947 header_bits |= offset_bits;
4948 } else {
4949 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
4950 retype(src, BRW_REGISTER_TYPE_D);
4951 }
4952 break;
4953 }
4954
4955 case nir_tex_src_projector:
4956 unreachable("should be lowered");
4957
4958 case nir_tex_src_texture_offset: {
4959 /* Figure out the highest possible texture index and mark it as used */
4960 uint32_t max_used = texture + instr->texture_array_size - 1;
4961 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
4962 max_used += stage_prog_data->binding_table.gather_texture_start;
4963 } else {
4964 max_used += stage_prog_data->binding_table.texture_start;
4965 }
4966 brw_mark_surface_used(prog_data, max_used);
4967
4968 /* Emit code to evaluate the actual indexing expression */
4969 fs_reg tmp = vgrf(glsl_type::uint_type);
4970 bld.ADD(tmp, src, brw_imm_ud(texture));
4971 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4972 break;
4973 }
4974
4975 case nir_tex_src_sampler_offset: {
4976 /* Emit code to evaluate the actual indexing expression */
4977 fs_reg tmp = vgrf(glsl_type::uint_type);
4978 bld.ADD(tmp, src, brw_imm_ud(sampler));
4979 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4980 break;
4981 }
4982
4983 case nir_tex_src_ms_mcs:
4984 assert(instr->op == nir_texop_txf_ms);
4985 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
4986 break;
4987
4988 case nir_tex_src_plane: {
4989 nir_const_value *const_plane =
4990 nir_src_as_const_value(instr->src[i].src);
4991 const uint32_t plane = const_plane->u32[0];
4992 const uint32_t texture_index =
4993 instr->texture_index +
4994 stage_prog_data->binding_table.plane_start[plane] -
4995 stage_prog_data->binding_table.texture_start;
4996
4997 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
4998 break;
4999 }
5000
5001 default:
5002 unreachable("unknown texture source");
5003 }
5004 }
5005
5006 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5007 (instr->op == nir_texop_txf_ms ||
5008 instr->op == nir_texop_samples_identical)) {
5009 if (devinfo->gen >= 7 &&
5010 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5011 srcs[TEX_LOGICAL_SRC_MCS] =
5012 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5013 instr->coord_components,
5014 srcs[TEX_LOGICAL_SRC_SURFACE]);
5015 } else {
5016 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5017 }
5018 }
5019
5020 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5021 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5022
5023 enum opcode opcode;
5024 switch (instr->op) {
5025 case nir_texop_tex:
5026 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5027 SHADER_OPCODE_TXL_LOGICAL);
5028 break;
5029 case nir_texop_txb:
5030 opcode = FS_OPCODE_TXB_LOGICAL;
5031 break;
5032 case nir_texop_txl:
5033 opcode = SHADER_OPCODE_TXL_LOGICAL;
5034 break;
5035 case nir_texop_txd:
5036 opcode = SHADER_OPCODE_TXD_LOGICAL;
5037 break;
5038 case nir_texop_txf:
5039 opcode = SHADER_OPCODE_TXF_LOGICAL;
5040 break;
5041 case nir_texop_txf_ms:
5042 if ((key_tex->msaa_16 & (1 << sampler)))
5043 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5044 else
5045 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5046 break;
5047 case nir_texop_txf_ms_mcs:
5048 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5049 break;
5050 case nir_texop_query_levels:
5051 case nir_texop_txs:
5052 opcode = SHADER_OPCODE_TXS_LOGICAL;
5053 break;
5054 case nir_texop_lod:
5055 opcode = SHADER_OPCODE_LOD_LOGICAL;
5056 break;
5057 case nir_texop_tg4:
5058 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5059 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5060 else
5061 opcode = SHADER_OPCODE_TG4_LOGICAL;
5062 break;
5063 case nir_texop_texture_samples:
5064 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5065 break;
5066 case nir_texop_samples_identical: {
5067 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5068
5069 /* If mcs is an immediate value, it means there is no MCS. In that case
5070 * just return false.
5071 */
5072 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5073 bld.MOV(dst, brw_imm_ud(0u));
5074 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5075 fs_reg tmp = vgrf(glsl_type::uint_type);
5076 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5077 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5078 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5079 } else {
5080 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5081 BRW_CONDITIONAL_EQ);
5082 }
5083 return;
5084 }
5085 default:
5086 unreachable("unknown texture opcode");
5087 }
5088
5089 if (instr->op == nir_texop_tg4) {
5090 if (instr->component == 1 &&
5091 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5092 /* gather4 sampler is broken for green channel on RG32F --
5093 * we must ask for blue instead.
5094 */
5095 header_bits |= 2 << 16;
5096 } else {
5097 header_bits |= instr->component << 16;
5098 }
5099 }
5100
5101 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5102 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5103 inst->offset = header_bits;
5104
5105 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5106 if (devinfo->gen >= 9 &&
5107 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5108 unsigned write_mask = instr->dest.is_ssa ?
5109 nir_ssa_def_components_read(&instr->dest.ssa):
5110 (1 << dest_size) - 1;
5111 assert(write_mask != 0); /* dead code should have been eliminated */
5112 inst->size_written = util_last_bit(write_mask) *
5113 inst->dst.component_size(inst->exec_size);
5114 } else {
5115 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5116 }
5117
5118 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5119 inst->shadow_compare = true;
5120
5121 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5122 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5123
5124 fs_reg nir_dest[4];
5125 for (unsigned i = 0; i < dest_size; i++)
5126 nir_dest[i] = offset(dst, bld, i);
5127
5128 if (instr->op == nir_texop_query_levels) {
5129 /* # levels is in .w */
5130 nir_dest[0] = offset(dst, bld, 3);
5131 } else if (instr->op == nir_texop_txs &&
5132 dest_size >= 3 && devinfo->gen < 7) {
5133 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5134 fs_reg depth = offset(dst, bld, 2);
5135 nir_dest[2] = vgrf(glsl_type::int_type);
5136 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5137 }
5138
5139 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5140 }
5141
5142 void
5143 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5144 {
5145 switch (instr->type) {
5146 case nir_jump_break:
5147 bld.emit(BRW_OPCODE_BREAK);
5148 break;
5149 case nir_jump_continue:
5150 bld.emit(BRW_OPCODE_CONTINUE);
5151 break;
5152 case nir_jump_return:
5153 default:
5154 unreachable("unknown jump");
5155 }
5156 }
5157
5158 /**
5159 * This helper takes the result of a load operation that reads 32-bit elements
5160 * in this format:
5161 *
5162 * x x x x x x x x
5163 * y y y y y y y y
5164 * z z z z z z z z
5165 * w w w w w w w w
5166 *
5167 * and shuffles the data to get this:
5168 *
5169 * x y x y x y x y
5170 * x y x y x y x y
5171 * z w z w z w z w
5172 * z w z w z w z w
5173 *
5174 * Which is exactly what we want if the load is reading 64-bit components
5175 * like doubles, where x represents the low 32-bit of the x double component
5176 * and y represents the high 32-bit of the x double component (likewise with
5177 * z and w for double component y). The parameter @components represents
5178 * the number of 64-bit components present in @src. This would typically be
5179 * 2 at most, since we can only fit 2 double elements in the result of a
5180 * vec4 load.
5181 *
5182 * Notice that @dst and @src can be the same register.
5183 */
5184 void
5185 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
5186 const fs_reg &dst,
5187 const fs_reg &src,
5188 uint32_t components)
5189 {
5190 assert(type_sz(src.type) == 4);
5191 assert(type_sz(dst.type) == 8);
5192
5193 /* A temporary that we will use to shuffle the 32-bit data of each
5194 * component in the vector into valid 64-bit data. We can't write directly
5195 * to dst because dst can be (and would usually be) the same as src
5196 * and in that case the first MOV in the loop below would overwrite the
5197 * data read in the second MOV.
5198 */
5199 fs_reg tmp = bld.vgrf(dst.type);
5200
5201 for (unsigned i = 0; i < components; i++) {
5202 const fs_reg component_i = offset(src, bld, 2 * i);
5203
5204 bld.MOV(subscript(tmp, src.type, 0), component_i);
5205 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
5206
5207 bld.MOV(offset(dst, bld, i), tmp);
5208 }
5209 }
5210
5211 void
5212 shuffle_32bit_load_result_to_16bit_data(const fs_builder &bld,
5213 const fs_reg &dst,
5214 const fs_reg &src,
5215 uint32_t first_component,
5216 uint32_t components)
5217 {
5218 assert(type_sz(src.type) == 4);
5219 assert(type_sz(dst.type) == 2);
5220
5221 /* A temporary is used to un-shuffle the 32-bit data of each component in
5222 * into a valid 16-bit vector. We can't write directly to dst because it
5223 * can be the same register as src and in that case the first MOV in the
5224 * loop below would overwrite the data read in the second MOV.
5225 */
5226 fs_reg tmp = retype(bld.vgrf(src.type), dst.type);
5227
5228 for (unsigned i = 0; i < components; i++) {
5229 const fs_reg component_i =
5230 subscript(offset(src, bld, (first_component + i) / 2), dst.type,
5231 (first_component + i) % 2);
5232
5233 bld.MOV(offset(tmp, bld, i % 2), component_i);
5234
5235 if (i % 2) {
5236 bld.MOV(offset(dst, bld, i -1), offset(tmp, bld, 0));
5237 bld.MOV(offset(dst, bld, i), offset(tmp, bld, 1));
5238 }
5239 }
5240 if (components % 2) {
5241 bld.MOV(offset(dst, bld, components - 1), tmp);
5242 }
5243 }
5244
5245 /**
5246 * This helper does the inverse operation of
5247 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
5248 *
5249 * We need to do this when we are going to use untyped write messsages that
5250 * operate with 32-bit components in order to arrange our 64-bit data to be
5251 * in the expected layout.
5252 *
5253 * Notice that callers of this function, unlike in the case of the inverse
5254 * operation, would typically need to call this with dst and src being
5255 * different registers, since they would otherwise corrupt the original
5256 * 64-bit data they are about to write. Because of this the function checks
5257 * that the src and dst regions involved in the operation do not overlap.
5258 */
5259 fs_reg
5260 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
5261 const fs_reg &src,
5262 uint32_t components)
5263 {
5264 assert(type_sz(src.type) == 8);
5265
5266 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D, 2 * components);
5267
5268 for (unsigned i = 0; i < components; i++) {
5269 const fs_reg component_i = offset(src, bld, i);
5270 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
5271 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
5272 }
5273
5274 return dst;
5275 }
5276
5277 void
5278 shuffle_16bit_data_for_32bit_write(const fs_builder &bld,
5279 const fs_reg &dst,
5280 const fs_reg &src,
5281 uint32_t components)
5282 {
5283 assert(type_sz(src.type) == 2);
5284 assert(type_sz(dst.type) == 4);
5285
5286 /* A temporary is used to shuffle the 16-bit data of each component in the
5287 * 32-bit data vector. We can't write directly to dst because it can be the
5288 * same register as src and in that case the first MOV in the loop below
5289 * would overwrite the data read in the second MOV.
5290 */
5291 fs_reg tmp = bld.vgrf(dst.type);
5292
5293 for (unsigned i = 0; i < components; i++) {
5294 const fs_reg component_i = offset(src, bld, i);
5295 bld.MOV(subscript(tmp, src.type, i % 2), component_i);
5296 if (i % 2) {
5297 bld.MOV(offset(dst, bld, i / 2), tmp);
5298 }
5299 }
5300 if (components % 2) {
5301 bld.MOV(offset(dst, bld, components / 2), tmp);
5302 }
5303 }
5304
5305 fs_reg
5306 setup_imm_df(const fs_builder &bld, double v)
5307 {
5308 const struct gen_device_info *devinfo = bld.shader->devinfo;
5309 assert(devinfo->gen >= 7);
5310
5311 if (devinfo->gen >= 8)
5312 return brw_imm_df(v);
5313
5314 /* gen7.5 does not support DF immediates straighforward but the DIM
5315 * instruction allows to set the 64-bit immediate value.
5316 */
5317 if (devinfo->is_haswell) {
5318 const fs_builder ubld = bld.exec_all().group(1, 0);
5319 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5320 ubld.DIM(dst, brw_imm_df(v));
5321 return component(dst, 0);
5322 }
5323
5324 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5325 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5326 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5327 *
5328 * Alternatively, we could also produce a normal VGRF (without stride 0)
5329 * by writing to all the channels in the VGRF, however, that would hit the
5330 * gen7 bug where we have to split writes that span more than 1 register
5331 * into instructions with a width of 4 (otherwise the write to the second
5332 * register written runs into an execmask hardware bug) which isn't very
5333 * nice.
5334 */
5335 union {
5336 double d;
5337 struct {
5338 uint32_t i1;
5339 uint32_t i2;
5340 };
5341 } di;
5342
5343 di.d = v;
5344
5345 const fs_builder ubld = bld.exec_all().group(1, 0);
5346 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5347 ubld.MOV(tmp, brw_imm_ud(di.i1));
5348 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5349
5350 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5351 }