intel/compiler: handle 16-bit to 64-bit conversions in BSW platforms
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 nir_foreach_variable(var, &nir->outputs) {
71 const int loc = var->data.driver_location;
72 if (outputs[loc].file == BAD_FILE) {
73 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s[loc]);
74 for (unsigned i = 0; i < vec4s[loc]; i++) {
75 outputs[loc + i] = offset(reg, bld, 4 * i);
76 }
77 }
78 }
79 }
80
81 void
82 fs_visitor::nir_setup_uniforms()
83 {
84 /* Only the first compile gets to set up uniforms. */
85 if (push_constant_loc) {
86 assert(pull_constant_loc);
87 return;
88 }
89
90 uniforms = nir->num_uniforms / 4;
91
92 if (stage == MESA_SHADER_COMPUTE) {
93 /* Add a uniform for the thread local id. It must be the last uniform
94 * on the list.
95 */
96 assert(uniforms == prog_data->nr_params);
97 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
98 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
99 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
100 }
101 }
102
103 static bool
104 emit_system_values_block(nir_block *block, fs_visitor *v)
105 {
106 fs_reg *reg;
107
108 nir_foreach_instr(instr, block) {
109 if (instr->type != nir_instr_type_intrinsic)
110 continue;
111
112 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
113 switch (intrin->intrinsic) {
114 case nir_intrinsic_load_vertex_id:
115 case nir_intrinsic_load_base_vertex:
116 unreachable("should be lowered by nir_lower_system_values().");
117
118 case nir_intrinsic_load_vertex_id_zero_base:
119 case nir_intrinsic_load_is_indexed_draw:
120 case nir_intrinsic_load_first_vertex:
121 case nir_intrinsic_load_instance_id:
122 case nir_intrinsic_load_base_instance:
123 case nir_intrinsic_load_draw_id:
124 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
125
126 case nir_intrinsic_load_invocation_id:
127 if (v->stage == MESA_SHADER_TESS_CTRL)
128 break;
129 assert(v->stage == MESA_SHADER_GEOMETRY);
130 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
131 if (reg->file == BAD_FILE) {
132 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
133 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
134 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
135 abld.SHR(iid, g1, brw_imm_ud(27u));
136 *reg = iid;
137 }
138 break;
139
140 case nir_intrinsic_load_sample_pos:
141 assert(v->stage == MESA_SHADER_FRAGMENT);
142 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
143 if (reg->file == BAD_FILE)
144 *reg = *v->emit_samplepos_setup();
145 break;
146
147 case nir_intrinsic_load_sample_id:
148 assert(v->stage == MESA_SHADER_FRAGMENT);
149 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
150 if (reg->file == BAD_FILE)
151 *reg = *v->emit_sampleid_setup();
152 break;
153
154 case nir_intrinsic_load_sample_mask_in:
155 assert(v->stage == MESA_SHADER_FRAGMENT);
156 assert(v->devinfo->gen >= 7);
157 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
158 if (reg->file == BAD_FILE)
159 *reg = *v->emit_samplemaskin_setup();
160 break;
161
162 case nir_intrinsic_load_work_group_id:
163 assert(v->stage == MESA_SHADER_COMPUTE);
164 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
165 if (reg->file == BAD_FILE)
166 *reg = *v->emit_cs_work_group_id_setup();
167 break;
168
169 case nir_intrinsic_load_helper_invocation:
170 assert(v->stage == MESA_SHADER_FRAGMENT);
171 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
172 if (reg->file == BAD_FILE) {
173 const fs_builder abld =
174 v->bld.annotate("gl_HelperInvocation", NULL);
175
176 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
177 * pixel mask is in g1.7 of the thread payload.
178 *
179 * We move the per-channel pixel enable bit to the low bit of each
180 * channel by shifting the byte containing the pixel mask by the
181 * vector immediate 0x76543210UV.
182 *
183 * The region of <1,8,0> reads only 1 byte (the pixel masks for
184 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
185 * masks for 2 and 3) in SIMD16.
186 */
187 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
188 abld.SHR(shifted,
189 stride(byte_offset(retype(brw_vec1_grf(1, 0),
190 BRW_REGISTER_TYPE_UB), 28),
191 1, 8, 0),
192 brw_imm_v(0x76543210));
193
194 /* A set bit in the pixel mask means the channel is enabled, but
195 * that is the opposite of gl_HelperInvocation so we need to invert
196 * the mask.
197 *
198 * The negate source-modifier bit of logical instructions on Gen8+
199 * performs 1's complement negation, so we can use that instead of
200 * a NOT instruction.
201 */
202 fs_reg inverted = negate(shifted);
203 if (v->devinfo->gen < 8) {
204 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
205 abld.NOT(inverted, shifted);
206 }
207
208 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
209 * with 1 and negating.
210 */
211 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
212 abld.AND(anded, inverted, brw_imm_uw(1));
213
214 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
215 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
216 *reg = dst;
217 }
218 break;
219
220 default:
221 break;
222 }
223 }
224
225 return true;
226 }
227
228 void
229 fs_visitor::nir_emit_system_values()
230 {
231 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
232 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
233 nir_system_values[i] = fs_reg();
234 }
235
236 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
237 * never end up using it.
238 */
239 {
240 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
241 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
242 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
243
244 const fs_builder allbld8 = abld.group(8, 0).exec_all();
245 allbld8.MOV(reg, brw_imm_v(0x76543210));
246 if (dispatch_width > 8)
247 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
248 if (dispatch_width > 16) {
249 const fs_builder allbld16 = abld.group(16, 0).exec_all();
250 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
251 }
252 }
253
254 nir_foreach_function(function, nir) {
255 assert(strcmp(function->name, "main") == 0);
256 assert(function->impl);
257 nir_foreach_block(block, function->impl) {
258 emit_system_values_block(block, this);
259 }
260 }
261 }
262
263 /*
264 * Returns a type based on a reference_type (word, float, half-float) and a
265 * given bit_size.
266 *
267 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
268 *
269 * @FIXME: 64-bit return types are always DF on integer types to maintain
270 * compability with uses of DF previously to the introduction of int64
271 * support.
272 */
273 static brw_reg_type
274 brw_reg_type_from_bit_size(const unsigned bit_size,
275 const brw_reg_type reference_type)
276 {
277 switch(reference_type) {
278 case BRW_REGISTER_TYPE_HF:
279 case BRW_REGISTER_TYPE_F:
280 case BRW_REGISTER_TYPE_DF:
281 switch(bit_size) {
282 case 16:
283 return BRW_REGISTER_TYPE_HF;
284 case 32:
285 return BRW_REGISTER_TYPE_F;
286 case 64:
287 return BRW_REGISTER_TYPE_DF;
288 default:
289 unreachable("Invalid bit size");
290 }
291 case BRW_REGISTER_TYPE_W:
292 case BRW_REGISTER_TYPE_D:
293 case BRW_REGISTER_TYPE_Q:
294 switch(bit_size) {
295 case 16:
296 return BRW_REGISTER_TYPE_W;
297 case 32:
298 return BRW_REGISTER_TYPE_D;
299 case 64:
300 return BRW_REGISTER_TYPE_Q;
301 default:
302 unreachable("Invalid bit size");
303 }
304 case BRW_REGISTER_TYPE_UW:
305 case BRW_REGISTER_TYPE_UD:
306 case BRW_REGISTER_TYPE_UQ:
307 switch(bit_size) {
308 case 16:
309 return BRW_REGISTER_TYPE_UW;
310 case 32:
311 return BRW_REGISTER_TYPE_UD;
312 case 64:
313 return BRW_REGISTER_TYPE_UQ;
314 default:
315 unreachable("Invalid bit size");
316 }
317 default:
318 unreachable("Unknown type");
319 }
320 }
321
322 void
323 fs_visitor::nir_emit_impl(nir_function_impl *impl)
324 {
325 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
326 for (unsigned i = 0; i < impl->reg_alloc; i++) {
327 nir_locals[i] = fs_reg();
328 }
329
330 foreach_list_typed(nir_register, reg, node, &impl->registers) {
331 unsigned array_elems =
332 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
333 unsigned size = array_elems * reg->num_components;
334 const brw_reg_type reg_type =
335 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
336 nir_locals[reg->index] = bld.vgrf(reg_type, size);
337 }
338
339 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
340 impl->ssa_alloc);
341
342 nir_emit_cf_list(&impl->body);
343 }
344
345 void
346 fs_visitor::nir_emit_cf_list(exec_list *list)
347 {
348 exec_list_validate(list);
349 foreach_list_typed(nir_cf_node, node, node, list) {
350 switch (node->type) {
351 case nir_cf_node_if:
352 nir_emit_if(nir_cf_node_as_if(node));
353 break;
354
355 case nir_cf_node_loop:
356 nir_emit_loop(nir_cf_node_as_loop(node));
357 break;
358
359 case nir_cf_node_block:
360 nir_emit_block(nir_cf_node_as_block(node));
361 break;
362
363 default:
364 unreachable("Invalid CFG node block");
365 }
366 }
367 }
368
369 void
370 fs_visitor::nir_emit_if(nir_if *if_stmt)
371 {
372 /* first, put the condition into f0 */
373 fs_inst *inst = bld.MOV(bld.null_reg_d(),
374 retype(get_nir_src(if_stmt->condition),
375 BRW_REGISTER_TYPE_D));
376 inst->conditional_mod = BRW_CONDITIONAL_NZ;
377
378 bld.IF(BRW_PREDICATE_NORMAL);
379
380 nir_emit_cf_list(&if_stmt->then_list);
381
382 /* note: if the else is empty, dead CF elimination will remove it */
383 bld.emit(BRW_OPCODE_ELSE);
384
385 nir_emit_cf_list(&if_stmt->else_list);
386
387 bld.emit(BRW_OPCODE_ENDIF);
388 }
389
390 void
391 fs_visitor::nir_emit_loop(nir_loop *loop)
392 {
393 bld.emit(BRW_OPCODE_DO);
394
395 nir_emit_cf_list(&loop->body);
396
397 bld.emit(BRW_OPCODE_WHILE);
398 }
399
400 void
401 fs_visitor::nir_emit_block(nir_block *block)
402 {
403 nir_foreach_instr(instr, block) {
404 nir_emit_instr(instr);
405 }
406 }
407
408 void
409 fs_visitor::nir_emit_instr(nir_instr *instr)
410 {
411 const fs_builder abld = bld.annotate(NULL, instr);
412
413 switch (instr->type) {
414 case nir_instr_type_alu:
415 nir_emit_alu(abld, nir_instr_as_alu(instr));
416 break;
417
418 case nir_instr_type_intrinsic:
419 switch (stage) {
420 case MESA_SHADER_VERTEX:
421 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
422 break;
423 case MESA_SHADER_TESS_CTRL:
424 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
425 break;
426 case MESA_SHADER_TESS_EVAL:
427 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
428 break;
429 case MESA_SHADER_GEOMETRY:
430 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
431 break;
432 case MESA_SHADER_FRAGMENT:
433 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
434 break;
435 case MESA_SHADER_COMPUTE:
436 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
437 break;
438 default:
439 unreachable("unsupported shader stage");
440 }
441 break;
442
443 case nir_instr_type_tex:
444 nir_emit_texture(abld, nir_instr_as_tex(instr));
445 break;
446
447 case nir_instr_type_load_const:
448 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
449 break;
450
451 case nir_instr_type_ssa_undef:
452 /* We create a new VGRF for undefs on every use (by handling
453 * them in get_nir_src()), rather than for each definition.
454 * This helps register coalescing eliminate MOVs from undef.
455 */
456 break;
457
458 case nir_instr_type_jump:
459 nir_emit_jump(abld, nir_instr_as_jump(instr));
460 break;
461
462 default:
463 unreachable("unknown instruction type");
464 }
465 }
466
467 /**
468 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
469 * match instr.
470 */
471 bool
472 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
473 const fs_reg &result)
474 {
475 if (!instr->src[0].src.is_ssa ||
476 !instr->src[0].src.ssa->parent_instr)
477 return false;
478
479 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
480 return false;
481
482 nir_alu_instr *src0 =
483 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
484
485 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
486 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
487 return false;
488
489 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
490 assert(element != NULL);
491
492 /* Element type to extract.*/
493 const brw_reg_type type = brw_int_type(
494 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
495 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
496
497 fs_reg op0 = get_nir_src(src0->src[0].src);
498 op0.type = brw_type_for_nir_type(devinfo,
499 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
500 nir_src_bit_size(src0->src[0].src)));
501 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
502
503 set_saturate(instr->dest.saturate,
504 bld.MOV(result, subscript(op0, type, element->u32[0])));
505 return true;
506 }
507
508 bool
509 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
510 const fs_reg &result)
511 {
512 if (!instr->src[0].src.is_ssa ||
513 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
514 return false;
515
516 nir_intrinsic_instr *src0 =
517 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
518
519 if (src0->intrinsic != nir_intrinsic_load_front_face)
520 return false;
521
522 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
523 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
524 return false;
525
526 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
527 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
528 return false;
529
530 fs_reg tmp = vgrf(glsl_type::int_type);
531
532 if (devinfo->gen >= 6) {
533 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
534 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
535
536 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
537 *
538 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
539 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
540 *
541 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
542 *
543 * This negation looks like it's safe in practice, because bits 0:4 will
544 * surely be TRIANGLES
545 */
546
547 if (value1->f32[0] == -1.0f) {
548 g0.negate = true;
549 }
550
551 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
552 g0, brw_imm_uw(0x3f80));
553 } else {
554 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
555 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
556
557 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
558 *
559 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
560 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
561 *
562 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
563 *
564 * This negation looks like it's safe in practice, because bits 0:4 will
565 * surely be TRIANGLES
566 */
567
568 if (value1->f32[0] == -1.0f) {
569 g1_6.negate = true;
570 }
571
572 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
573 }
574 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
575
576 return true;
577 }
578
579 static void
580 emit_find_msb_using_lzd(const fs_builder &bld,
581 const fs_reg &result,
582 const fs_reg &src,
583 bool is_signed)
584 {
585 fs_inst *inst;
586 fs_reg temp = src;
587
588 if (is_signed) {
589 /* LZD of an absolute value source almost always does the right
590 * thing. There are two problem values:
591 *
592 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
593 * 0. However, findMSB(int(0x80000000)) == 30.
594 *
595 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
596 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
597 *
598 * For a value of zero or negative one, -1 will be returned.
599 *
600 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
601 * findMSB(-(1<<x)) should return x-1.
602 *
603 * For all negative number cases, including 0x80000000 and
604 * 0xffffffff, the correct value is obtained from LZD if instead of
605 * negating the (already negative) value the logical-not is used. A
606 * conditonal logical-not can be achieved in two instructions.
607 */
608 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
609
610 bld.ASR(temp, src, brw_imm_d(31));
611 bld.XOR(temp, temp, src);
612 }
613
614 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
615 retype(temp, BRW_REGISTER_TYPE_UD));
616
617 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
618 * from the LSB side. Subtract the result from 31 to convert the MSB
619 * count into an LSB count. If no bits are set, LZD will return 32.
620 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
621 */
622 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
623 inst->src[0].negate = true;
624 }
625
626 static brw_rnd_mode
627 brw_rnd_mode_from_nir_op (const nir_op op) {
628 switch (op) {
629 case nir_op_f2f16_rtz:
630 return BRW_RND_MODE_RTZ;
631 case nir_op_f2f16_rtne:
632 return BRW_RND_MODE_RTNE;
633 default:
634 unreachable("Operation doesn't support rounding mode");
635 }
636 }
637
638 void
639 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
640 {
641 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
642 fs_inst *inst;
643
644 fs_reg result = get_nir_dest(instr->dest.dest);
645 result.type = brw_type_for_nir_type(devinfo,
646 (nir_alu_type)(nir_op_infos[instr->op].output_type |
647 nir_dest_bit_size(instr->dest.dest)));
648
649 fs_reg op[4];
650 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
651 op[i] = get_nir_src(instr->src[i].src);
652 op[i].type = brw_type_for_nir_type(devinfo,
653 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
654 nir_src_bit_size(instr->src[i].src)));
655 op[i].abs = instr->src[i].abs;
656 op[i].negate = instr->src[i].negate;
657 }
658
659 /* We get a bunch of mov's out of the from_ssa pass and they may still
660 * be vectorized. We'll handle them as a special-case. We'll also
661 * handle vecN here because it's basically the same thing.
662 */
663 switch (instr->op) {
664 case nir_op_imov:
665 case nir_op_fmov:
666 case nir_op_vec2:
667 case nir_op_vec3:
668 case nir_op_vec4: {
669 fs_reg temp = result;
670 bool need_extra_copy = false;
671 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
672 if (!instr->src[i].src.is_ssa &&
673 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
674 need_extra_copy = true;
675 temp = bld.vgrf(result.type, 4);
676 break;
677 }
678 }
679
680 for (unsigned i = 0; i < 4; i++) {
681 if (!(instr->dest.write_mask & (1 << i)))
682 continue;
683
684 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
685 inst = bld.MOV(offset(temp, bld, i),
686 offset(op[0], bld, instr->src[0].swizzle[i]));
687 } else {
688 inst = bld.MOV(offset(temp, bld, i),
689 offset(op[i], bld, instr->src[i].swizzle[0]));
690 }
691 inst->saturate = instr->dest.saturate;
692 }
693
694 /* In this case the source and destination registers were the same,
695 * so we need to insert an extra set of moves in order to deal with
696 * any swizzling.
697 */
698 if (need_extra_copy) {
699 for (unsigned i = 0; i < 4; i++) {
700 if (!(instr->dest.write_mask & (1 << i)))
701 continue;
702
703 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
704 }
705 }
706 return;
707 }
708 default:
709 break;
710 }
711
712 /* At this point, we have dealt with any instruction that operates on
713 * more than a single channel. Therefore, we can just adjust the source
714 * and destination registers for that channel and emit the instruction.
715 */
716 unsigned channel = 0;
717 if (nir_op_infos[instr->op].output_size == 0) {
718 /* Since NIR is doing the scalarizing for us, we should only ever see
719 * vectorized operations with a single channel.
720 */
721 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
722 channel = ffs(instr->dest.write_mask) - 1;
723
724 result = offset(result, bld, channel);
725 }
726
727 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
728 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
729 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
730 }
731
732 switch (instr->op) {
733 case nir_op_i2f32:
734 case nir_op_u2f32:
735 if (optimize_extract_to_float(instr, result))
736 return;
737 inst = bld.MOV(result, op[0]);
738 inst->saturate = instr->dest.saturate;
739 break;
740
741 case nir_op_f2f16_rtne:
742 case nir_op_f2f16_rtz:
743 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
744 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
745 /* fallthrough */
746
747 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
748 * on the HW gen, it is a special hw opcode or just a MOV, and
749 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
750 *
751 * But if we want to use that opcode, we need to provide support on
752 * different optimizations and lowerings. As right now HF support is
753 * only for gen8+, it will be better to use directly the MOV, and use
754 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
755 */
756
757 case nir_op_f2f16_undef:
758 case nir_op_i2i16:
759 case nir_op_u2u16: {
760 /* TODO: Fixing aligment rules for conversions from 32-bits to
761 * 16-bit types should be moved to lower_conversions
762 */
763 fs_reg tmp = bld.vgrf(op[0].type, 1);
764 tmp = subscript(tmp, result.type, 0);
765 inst = bld.MOV(tmp, op[0]);
766 inst->saturate = instr->dest.saturate;
767 inst = bld.MOV(result, tmp);
768 inst->saturate = instr->dest.saturate;
769 break;
770 }
771
772 case nir_op_f2f64:
773 case nir_op_f2i64:
774 case nir_op_f2u64:
775 case nir_op_i2f64:
776 case nir_op_i2i64:
777 case nir_op_u2f64:
778 case nir_op_u2u64:
779 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
780 *
781 * "When source or destination is 64b (...), regioning in Align1
782 * must follow these rules:
783 *
784 * 1. Source and destination horizontal stride must be aligned to
785 * the same qword.
786 * (...)"
787 *
788 * This means that conversions from bit-sizes smaller than 64-bit to
789 * 64-bit need to have the source data elements aligned to 64-bit.
790 * This restriction does not apply to BDW and later.
791 */
792 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
793 nir_src_bit_size(instr->src[0].src) < 64 &&
794 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
795 fs_reg tmp = bld.vgrf(result.type, 1);
796 tmp = subscript(tmp, op[0].type, 0);
797 inst = bld.MOV(tmp, op[0]);
798 inst = bld.MOV(result, tmp);
799 inst->saturate = instr->dest.saturate;
800 break;
801 }
802 /* fallthrough */
803 case nir_op_f2f32:
804 case nir_op_f2i32:
805 case nir_op_f2u32:
806 case nir_op_f2i16:
807 case nir_op_f2u16:
808 case nir_op_i2i32:
809 case nir_op_u2u32:
810 case nir_op_i2f16:
811 case nir_op_u2f16:
812 inst = bld.MOV(result, op[0]);
813 inst->saturate = instr->dest.saturate;
814 break;
815
816 case nir_op_fsign: {
817 if (op[0].abs) {
818 /* Straightforward since the source can be assumed to be
819 * non-negative.
820 */
821 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
822 set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
823
824 } else if (type_sz(op[0].type) < 8) {
825 /* AND(val, 0x80000000) gives the sign bit.
826 *
827 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
828 * zero.
829 */
830 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
831
832 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
833 op[0].type = BRW_REGISTER_TYPE_UD;
834 result.type = BRW_REGISTER_TYPE_UD;
835 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
836
837 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
838 inst->predicate = BRW_PREDICATE_NORMAL;
839 if (instr->dest.saturate) {
840 inst = bld.MOV(result, result);
841 inst->saturate = true;
842 }
843 } else {
844 /* For doubles we do the same but we need to consider:
845 *
846 * - 2-src instructions can't operate with 64-bit immediates
847 * - The sign is encoded in the high 32-bit of each DF
848 * - We need to produce a DF result.
849 */
850
851 fs_reg zero = vgrf(glsl_type::double_type);
852 bld.MOV(zero, setup_imm_df(bld, 0.0));
853 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
854
855 bld.MOV(result, zero);
856
857 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
858 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
859 brw_imm_ud(0x80000000u));
860
861 set_predicate(BRW_PREDICATE_NORMAL,
862 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
863
864 if (instr->dest.saturate) {
865 inst = bld.MOV(result, result);
866 inst->saturate = true;
867 }
868 }
869 break;
870 }
871
872 case nir_op_isign: {
873 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
874 * -> non-negative val generates 0x00000000.
875 * Predicated OR sets 1 if val is positive.
876 */
877 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
878 assert(bit_size == 32 || bit_size == 16);
879
880 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
881 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
882 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
883
884 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
885 bld.ASR(result, op[0], shift);
886 inst = bld.OR(result, result, one);
887 inst->predicate = BRW_PREDICATE_NORMAL;
888 break;
889 }
890
891 case nir_op_frcp:
892 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
893 inst->saturate = instr->dest.saturate;
894 break;
895
896 case nir_op_fexp2:
897 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
898 inst->saturate = instr->dest.saturate;
899 break;
900
901 case nir_op_flog2:
902 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
903 inst->saturate = instr->dest.saturate;
904 break;
905
906 case nir_op_fsin:
907 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
908 inst->saturate = instr->dest.saturate;
909 break;
910
911 case nir_op_fcos:
912 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
913 inst->saturate = instr->dest.saturate;
914 break;
915
916 case nir_op_fddx:
917 if (fs_key->high_quality_derivatives) {
918 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
919 } else {
920 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
921 }
922 inst->saturate = instr->dest.saturate;
923 break;
924 case nir_op_fddx_fine:
925 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
926 inst->saturate = instr->dest.saturate;
927 break;
928 case nir_op_fddx_coarse:
929 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
930 inst->saturate = instr->dest.saturate;
931 break;
932 case nir_op_fddy:
933 if (fs_key->high_quality_derivatives) {
934 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
935 } else {
936 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
937 }
938 inst->saturate = instr->dest.saturate;
939 break;
940 case nir_op_fddy_fine:
941 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
942 inst->saturate = instr->dest.saturate;
943 break;
944 case nir_op_fddy_coarse:
945 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
946 inst->saturate = instr->dest.saturate;
947 break;
948
949 case nir_op_iadd:
950 case nir_op_fadd:
951 inst = bld.ADD(result, op[0], op[1]);
952 inst->saturate = instr->dest.saturate;
953 break;
954
955 case nir_op_fmul:
956 inst = bld.MUL(result, op[0], op[1]);
957 inst->saturate = instr->dest.saturate;
958 break;
959
960 case nir_op_imul:
961 assert(nir_dest_bit_size(instr->dest.dest) < 64);
962 bld.MUL(result, op[0], op[1]);
963 break;
964
965 case nir_op_imul_high:
966 case nir_op_umul_high:
967 assert(nir_dest_bit_size(instr->dest.dest) < 64);
968 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
969 break;
970
971 case nir_op_idiv:
972 case nir_op_udiv:
973 assert(nir_dest_bit_size(instr->dest.dest) < 64);
974 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
975 break;
976
977 case nir_op_uadd_carry:
978 unreachable("Should have been lowered by carry_to_arith().");
979
980 case nir_op_usub_borrow:
981 unreachable("Should have been lowered by borrow_to_arith().");
982
983 case nir_op_umod:
984 case nir_op_irem:
985 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
986 * appears that our hardware just does the right thing for signed
987 * remainder.
988 */
989 assert(nir_dest_bit_size(instr->dest.dest) < 64);
990 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
991 break;
992
993 case nir_op_imod: {
994 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
995 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
996
997 /* Math instructions don't support conditional mod */
998 inst = bld.MOV(bld.null_reg_d(), result);
999 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1000
1001 /* Now, we need to determine if signs of the sources are different.
1002 * When we XOR the sources, the top bit is 0 if they are the same and 1
1003 * if they are different. We can then use a conditional modifier to
1004 * turn that into a predicate. This leads us to an XOR.l instruction.
1005 *
1006 * Technically, according to the PRM, you're not allowed to use .l on a
1007 * XOR instruction. However, emperical experiments and Curro's reading
1008 * of the simulator source both indicate that it's safe.
1009 */
1010 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1011 inst = bld.XOR(tmp, op[0], op[1]);
1012 inst->predicate = BRW_PREDICATE_NORMAL;
1013 inst->conditional_mod = BRW_CONDITIONAL_L;
1014
1015 /* If the result of the initial remainder operation is non-zero and the
1016 * two sources have different signs, add in a copy of op[1] to get the
1017 * final integer modulus value.
1018 */
1019 inst = bld.ADD(result, result, op[1]);
1020 inst->predicate = BRW_PREDICATE_NORMAL;
1021 break;
1022 }
1023
1024 case nir_op_flt:
1025 case nir_op_fge:
1026 case nir_op_feq:
1027 case nir_op_fne: {
1028 fs_reg dest = result;
1029
1030 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1031 if (bit_size != 32)
1032 dest = bld.vgrf(op[0].type, 1);
1033
1034 brw_conditional_mod cond;
1035 switch (instr->op) {
1036 case nir_op_flt:
1037 cond = BRW_CONDITIONAL_L;
1038 break;
1039 case nir_op_fge:
1040 cond = BRW_CONDITIONAL_GE;
1041 break;
1042 case nir_op_feq:
1043 cond = BRW_CONDITIONAL_Z;
1044 break;
1045 case nir_op_fne:
1046 cond = BRW_CONDITIONAL_NZ;
1047 break;
1048 default:
1049 unreachable("bad opcode");
1050 }
1051
1052 bld.CMP(dest, op[0], op[1], cond);
1053
1054 if (bit_size > 32) {
1055 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1056 } else if(bit_size < 32) {
1057 /* When we convert the result to 32-bit we need to be careful and do
1058 * it as a signed conversion to get sign extension (for 32-bit true)
1059 */
1060 const brw_reg_type src_type =
1061 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1062
1063 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1064 }
1065 break;
1066 }
1067
1068 case nir_op_ilt:
1069 case nir_op_ult:
1070 case nir_op_ige:
1071 case nir_op_uge:
1072 case nir_op_ieq:
1073 case nir_op_ine: {
1074 fs_reg dest = result;
1075
1076 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1077 if (bit_size != 32)
1078 dest = bld.vgrf(op[0].type, 1);
1079
1080 brw_conditional_mod cond;
1081 switch (instr->op) {
1082 case nir_op_ilt:
1083 case nir_op_ult:
1084 cond = BRW_CONDITIONAL_L;
1085 break;
1086 case nir_op_ige:
1087 case nir_op_uge:
1088 cond = BRW_CONDITIONAL_GE;
1089 break;
1090 case nir_op_ieq:
1091 cond = BRW_CONDITIONAL_Z;
1092 break;
1093 case nir_op_ine:
1094 cond = BRW_CONDITIONAL_NZ;
1095 break;
1096 default:
1097 unreachable("bad opcode");
1098 }
1099 bld.CMP(dest, op[0], op[1], cond);
1100
1101 if (bit_size > 32) {
1102 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1103 } else if (bit_size < 32) {
1104 /* When we convert the result to 32-bit we need to be careful and do
1105 * it as a signed conversion to get sign extension (for 32-bit true)
1106 */
1107 const brw_reg_type src_type =
1108 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1109
1110 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1111 }
1112 break;
1113 }
1114
1115 case nir_op_inot:
1116 if (devinfo->gen >= 8) {
1117 op[0] = resolve_source_modifiers(op[0]);
1118 }
1119 bld.NOT(result, op[0]);
1120 break;
1121 case nir_op_ixor:
1122 if (devinfo->gen >= 8) {
1123 op[0] = resolve_source_modifiers(op[0]);
1124 op[1] = resolve_source_modifiers(op[1]);
1125 }
1126 bld.XOR(result, op[0], op[1]);
1127 break;
1128 case nir_op_ior:
1129 if (devinfo->gen >= 8) {
1130 op[0] = resolve_source_modifiers(op[0]);
1131 op[1] = resolve_source_modifiers(op[1]);
1132 }
1133 bld.OR(result, op[0], op[1]);
1134 break;
1135 case nir_op_iand:
1136 if (devinfo->gen >= 8) {
1137 op[0] = resolve_source_modifiers(op[0]);
1138 op[1] = resolve_source_modifiers(op[1]);
1139 }
1140 bld.AND(result, op[0], op[1]);
1141 break;
1142
1143 case nir_op_fdot2:
1144 case nir_op_fdot3:
1145 case nir_op_fdot4:
1146 case nir_op_ball_fequal2:
1147 case nir_op_ball_iequal2:
1148 case nir_op_ball_fequal3:
1149 case nir_op_ball_iequal3:
1150 case nir_op_ball_fequal4:
1151 case nir_op_ball_iequal4:
1152 case nir_op_bany_fnequal2:
1153 case nir_op_bany_inequal2:
1154 case nir_op_bany_fnequal3:
1155 case nir_op_bany_inequal3:
1156 case nir_op_bany_fnequal4:
1157 case nir_op_bany_inequal4:
1158 unreachable("Lowered by nir_lower_alu_reductions");
1159
1160 case nir_op_fnoise1_1:
1161 case nir_op_fnoise1_2:
1162 case nir_op_fnoise1_3:
1163 case nir_op_fnoise1_4:
1164 case nir_op_fnoise2_1:
1165 case nir_op_fnoise2_2:
1166 case nir_op_fnoise2_3:
1167 case nir_op_fnoise2_4:
1168 case nir_op_fnoise3_1:
1169 case nir_op_fnoise3_2:
1170 case nir_op_fnoise3_3:
1171 case nir_op_fnoise3_4:
1172 case nir_op_fnoise4_1:
1173 case nir_op_fnoise4_2:
1174 case nir_op_fnoise4_3:
1175 case nir_op_fnoise4_4:
1176 unreachable("not reached: should be handled by lower_noise");
1177
1178 case nir_op_ldexp:
1179 unreachable("not reached: should be handled by ldexp_to_arith()");
1180
1181 case nir_op_fsqrt:
1182 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1183 inst->saturate = instr->dest.saturate;
1184 break;
1185
1186 case nir_op_frsq:
1187 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1188 inst->saturate = instr->dest.saturate;
1189 break;
1190
1191 case nir_op_b2i:
1192 case nir_op_b2f:
1193 bld.MOV(result, negate(op[0]));
1194 break;
1195
1196 case nir_op_i2b:
1197 case nir_op_f2b: {
1198 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1199 if (bit_size == 64) {
1200 /* two-argument instructions can't take 64-bit immediates */
1201 fs_reg zero;
1202 fs_reg tmp;
1203
1204 if (instr->op == nir_op_f2b) {
1205 zero = vgrf(glsl_type::double_type);
1206 tmp = vgrf(glsl_type::double_type);
1207 bld.MOV(zero, setup_imm_df(bld, 0.0));
1208 } else {
1209 zero = vgrf(glsl_type::int64_t_type);
1210 tmp = vgrf(glsl_type::int64_t_type);
1211 bld.MOV(zero, brw_imm_q(0));
1212 }
1213
1214 /* A SIMD16 execution needs to be split in two instructions, so use
1215 * a vgrf instead of the flag register as dst so instruction splitting
1216 * works
1217 */
1218 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1219 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1220 } else {
1221 fs_reg zero;
1222 if (bit_size == 32) {
1223 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1224 } else {
1225 assert(bit_size == 16);
1226 zero = instr->op == nir_op_f2b ?
1227 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1228 }
1229 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1230 }
1231 break;
1232 }
1233
1234 case nir_op_ftrunc:
1235 inst = bld.RNDZ(result, op[0]);
1236 inst->saturate = instr->dest.saturate;
1237 break;
1238
1239 case nir_op_fceil: {
1240 op[0].negate = !op[0].negate;
1241 fs_reg temp = vgrf(glsl_type::float_type);
1242 bld.RNDD(temp, op[0]);
1243 temp.negate = true;
1244 inst = bld.MOV(result, temp);
1245 inst->saturate = instr->dest.saturate;
1246 break;
1247 }
1248 case nir_op_ffloor:
1249 inst = bld.RNDD(result, op[0]);
1250 inst->saturate = instr->dest.saturate;
1251 break;
1252 case nir_op_ffract:
1253 inst = bld.FRC(result, op[0]);
1254 inst->saturate = instr->dest.saturate;
1255 break;
1256 case nir_op_fround_even:
1257 inst = bld.RNDE(result, op[0]);
1258 inst->saturate = instr->dest.saturate;
1259 break;
1260
1261 case nir_op_fquantize2f16: {
1262 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1263 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1264 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1265
1266 /* The destination stride must be at least as big as the source stride. */
1267 tmp16.type = BRW_REGISTER_TYPE_W;
1268 tmp16.stride = 2;
1269
1270 /* Check for denormal */
1271 fs_reg abs_src0 = op[0];
1272 abs_src0.abs = true;
1273 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1274 BRW_CONDITIONAL_L);
1275 /* Get the appropriately signed zero */
1276 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1277 retype(op[0], BRW_REGISTER_TYPE_UD),
1278 brw_imm_ud(0x80000000));
1279 /* Do the actual F32 -> F16 -> F32 conversion */
1280 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1281 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1282 /* Select that or zero based on normal status */
1283 inst = bld.SEL(result, zero, tmp32);
1284 inst->predicate = BRW_PREDICATE_NORMAL;
1285 inst->saturate = instr->dest.saturate;
1286 break;
1287 }
1288
1289 case nir_op_imin:
1290 case nir_op_umin:
1291 case nir_op_fmin:
1292 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1293 inst->saturate = instr->dest.saturate;
1294 break;
1295
1296 case nir_op_imax:
1297 case nir_op_umax:
1298 case nir_op_fmax:
1299 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1300 inst->saturate = instr->dest.saturate;
1301 break;
1302
1303 case nir_op_pack_snorm_2x16:
1304 case nir_op_pack_snorm_4x8:
1305 case nir_op_pack_unorm_2x16:
1306 case nir_op_pack_unorm_4x8:
1307 case nir_op_unpack_snorm_2x16:
1308 case nir_op_unpack_snorm_4x8:
1309 case nir_op_unpack_unorm_2x16:
1310 case nir_op_unpack_unorm_4x8:
1311 case nir_op_unpack_half_2x16:
1312 case nir_op_pack_half_2x16:
1313 unreachable("not reached: should be handled by lower_packing_builtins");
1314
1315 case nir_op_unpack_half_2x16_split_x:
1316 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1317 inst->saturate = instr->dest.saturate;
1318 break;
1319 case nir_op_unpack_half_2x16_split_y:
1320 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1321 inst->saturate = instr->dest.saturate;
1322 break;
1323
1324 case nir_op_pack_64_2x32_split:
1325 case nir_op_pack_32_2x16_split:
1326 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1327 break;
1328
1329 case nir_op_unpack_64_2x32_split_x:
1330 case nir_op_unpack_64_2x32_split_y: {
1331 if (instr->op == nir_op_unpack_64_2x32_split_x)
1332 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1333 else
1334 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1335 break;
1336 }
1337
1338 case nir_op_unpack_32_2x16_split_x:
1339 case nir_op_unpack_32_2x16_split_y: {
1340 if (instr->op == nir_op_unpack_32_2x16_split_x)
1341 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1342 else
1343 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1344 break;
1345 }
1346
1347 case nir_op_fpow:
1348 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1349 inst->saturate = instr->dest.saturate;
1350 break;
1351
1352 case nir_op_bitfield_reverse:
1353 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1354 bld.BFREV(result, op[0]);
1355 break;
1356
1357 case nir_op_bit_count:
1358 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1359 bld.CBIT(result, op[0]);
1360 break;
1361
1362 case nir_op_ufind_msb: {
1363 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1364 emit_find_msb_using_lzd(bld, result, op[0], false);
1365 break;
1366 }
1367
1368 case nir_op_ifind_msb: {
1369 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1370
1371 if (devinfo->gen < 7) {
1372 emit_find_msb_using_lzd(bld, result, op[0], true);
1373 } else {
1374 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1375
1376 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1377 * count from the LSB side. If FBH didn't return an error
1378 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1379 * count into an LSB count.
1380 */
1381 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1382
1383 inst = bld.ADD(result, result, brw_imm_d(31));
1384 inst->predicate = BRW_PREDICATE_NORMAL;
1385 inst->src[0].negate = true;
1386 }
1387 break;
1388 }
1389
1390 case nir_op_find_lsb:
1391 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1392
1393 if (devinfo->gen < 7) {
1394 fs_reg temp = vgrf(glsl_type::int_type);
1395
1396 /* (x & -x) generates a value that consists of only the LSB of x.
1397 * For all powers of 2, findMSB(y) == findLSB(y).
1398 */
1399 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1400 fs_reg negated_src = src;
1401
1402 /* One must be negated, and the other must be non-negated. It
1403 * doesn't matter which is which.
1404 */
1405 negated_src.negate = true;
1406 src.negate = false;
1407
1408 bld.AND(temp, src, negated_src);
1409 emit_find_msb_using_lzd(bld, result, temp, false);
1410 } else {
1411 bld.FBL(result, op[0]);
1412 }
1413 break;
1414
1415 case nir_op_ubitfield_extract:
1416 case nir_op_ibitfield_extract:
1417 unreachable("should have been lowered");
1418 case nir_op_ubfe:
1419 case nir_op_ibfe:
1420 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1421 bld.BFE(result, op[2], op[1], op[0]);
1422 break;
1423 case nir_op_bfm:
1424 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1425 bld.BFI1(result, op[0], op[1]);
1426 break;
1427 case nir_op_bfi:
1428 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1429 bld.BFI2(result, op[0], op[1], op[2]);
1430 break;
1431
1432 case nir_op_bitfield_insert:
1433 unreachable("not reached: should have been lowered");
1434
1435 case nir_op_ishl:
1436 case nir_op_ishr:
1437 case nir_op_ushr: {
1438 fs_reg shift_count = op[1];
1439
1440 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1441 if (op[1].file == VGRF &&
1442 (result.type == BRW_REGISTER_TYPE_Q ||
1443 result.type == BRW_REGISTER_TYPE_UQ)) {
1444 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1445 BRW_REGISTER_TYPE_UD);
1446 shift_count.stride = 2;
1447 bld.MOV(shift_count, op[1]);
1448 }
1449 }
1450
1451 switch (instr->op) {
1452 case nir_op_ishl:
1453 bld.SHL(result, op[0], shift_count);
1454 break;
1455 case nir_op_ishr:
1456 bld.ASR(result, op[0], shift_count);
1457 break;
1458 case nir_op_ushr:
1459 bld.SHR(result, op[0], shift_count);
1460 break;
1461 default:
1462 unreachable("not reached");
1463 }
1464 break;
1465 }
1466
1467 case nir_op_pack_half_2x16_split:
1468 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1469 break;
1470
1471 case nir_op_ffma:
1472 inst = bld.MAD(result, op[2], op[1], op[0]);
1473 inst->saturate = instr->dest.saturate;
1474 break;
1475
1476 case nir_op_flrp:
1477 inst = bld.LRP(result, op[0], op[1], op[2]);
1478 inst->saturate = instr->dest.saturate;
1479 break;
1480
1481 case nir_op_bcsel:
1482 if (optimize_frontfacing_ternary(instr, result))
1483 return;
1484
1485 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1486 inst = bld.SEL(result, op[1], op[2]);
1487 inst->predicate = BRW_PREDICATE_NORMAL;
1488 break;
1489
1490 case nir_op_extract_u8:
1491 case nir_op_extract_i8: {
1492 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1493 assert(byte != NULL);
1494
1495 /* The PRMs say:
1496 *
1497 * BDW+
1498 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1499 * Use two instructions and a word or DWord intermediate integer type.
1500 */
1501 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1502 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1503
1504 if (instr->op == nir_op_extract_i8) {
1505 /* If we need to sign extend, extract to a word first */
1506 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1507 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1508 bld.MOV(result, w_temp);
1509 } else {
1510 /* Otherwise use an AND with 0xff and a word type */
1511 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1512 }
1513 } else {
1514 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1515 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1516 }
1517 break;
1518 }
1519
1520 case nir_op_extract_u16:
1521 case nir_op_extract_i16: {
1522 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1523 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1524 assert(word != NULL);
1525 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1526 break;
1527 }
1528
1529 default:
1530 unreachable("unhandled instruction");
1531 }
1532
1533 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1534 * to sign extend the low bit to 0/~0
1535 */
1536 if (devinfo->gen <= 5 &&
1537 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1538 fs_reg masked = vgrf(glsl_type::int_type);
1539 bld.AND(masked, result, brw_imm_d(1));
1540 masked.negate = true;
1541 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1542 }
1543 }
1544
1545 void
1546 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1547 nir_load_const_instr *instr)
1548 {
1549 const brw_reg_type reg_type =
1550 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1551 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1552
1553 switch (instr->def.bit_size) {
1554 case 16:
1555 for (unsigned i = 0; i < instr->def.num_components; i++)
1556 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1557 break;
1558
1559 case 32:
1560 for (unsigned i = 0; i < instr->def.num_components; i++)
1561 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1562 break;
1563
1564 case 64:
1565 assert(devinfo->gen >= 7);
1566 if (devinfo->gen == 7) {
1567 /* We don't get 64-bit integer types until gen8 */
1568 for (unsigned i = 0; i < instr->def.num_components; i++) {
1569 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1570 setup_imm_df(bld, instr->value.f64[i]));
1571 }
1572 } else {
1573 for (unsigned i = 0; i < instr->def.num_components; i++)
1574 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1575 }
1576 break;
1577
1578 default:
1579 unreachable("Invalid bit size");
1580 }
1581
1582 nir_ssa_values[instr->def.index] = reg;
1583 }
1584
1585 fs_reg
1586 fs_visitor::get_nir_src(const nir_src &src)
1587 {
1588 fs_reg reg;
1589 if (src.is_ssa) {
1590 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1591 const brw_reg_type reg_type =
1592 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1593 reg = bld.vgrf(reg_type, src.ssa->num_components);
1594 } else {
1595 reg = nir_ssa_values[src.ssa->index];
1596 }
1597 } else {
1598 /* We don't handle indirects on locals */
1599 assert(src.reg.indirect == NULL);
1600 reg = offset(nir_locals[src.reg.reg->index], bld,
1601 src.reg.base_offset * src.reg.reg->num_components);
1602 }
1603
1604 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1605 /* The only 64-bit type available on gen7 is DF, so use that. */
1606 reg.type = BRW_REGISTER_TYPE_DF;
1607 } else {
1608 /* To avoid floating-point denorm flushing problems, set the type by
1609 * default to an integer type - instructions that need floating point
1610 * semantics will set this to F if they need to
1611 */
1612 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1613 BRW_REGISTER_TYPE_D);
1614 }
1615
1616 return reg;
1617 }
1618
1619 /**
1620 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1621 *
1622 * This function should not be called on any value which may be 64 bits.
1623 * We could theoretically support 64-bit on gen8+ but we choose not to
1624 * because it wouldn't work in general (no gen7 support) and there are
1625 * enough restrictions in 64-bit immediates that you can't take the return
1626 * value and treat it the same as the result of get_nir_src().
1627 */
1628 fs_reg
1629 fs_visitor::get_nir_src_imm(const nir_src &src)
1630 {
1631 nir_const_value *val = nir_src_as_const_value(src);
1632 assert(nir_src_bit_size(src) == 32);
1633 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1634 }
1635
1636 fs_reg
1637 fs_visitor::get_nir_dest(const nir_dest &dest)
1638 {
1639 if (dest.is_ssa) {
1640 const brw_reg_type reg_type =
1641 brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
1642 nir_ssa_values[dest.ssa.index] =
1643 bld.vgrf(reg_type, dest.ssa.num_components);
1644 return nir_ssa_values[dest.ssa.index];
1645 } else {
1646 /* We don't handle indirects on locals */
1647 assert(dest.reg.indirect == NULL);
1648 return offset(nir_locals[dest.reg.reg->index], bld,
1649 dest.reg.base_offset * dest.reg.reg->num_components);
1650 }
1651 }
1652
1653 fs_reg
1654 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1655 {
1656 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1657 BRW_REGISTER_TYPE_UD);
1658 fs_reg indirect;
1659 unsigned indirect_max = 0;
1660
1661 for (const nir_deref *tail = &deref->deref; tail->child;
1662 tail = tail->child) {
1663 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1664 assert(tail->child->deref_type == nir_deref_type_array);
1665 const unsigned size = glsl_get_length(tail->type);
1666 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1667 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1668 image = offset(image, bld, base * element_size);
1669
1670 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1671 fs_reg tmp = vgrf(glsl_type::uint_type);
1672
1673 /* Accessing an invalid surface index with the dataport can result
1674 * in a hang. According to the spec "if the index used to
1675 * select an individual element is negative or greater than or
1676 * equal to the size of the array, the results of the operation
1677 * are undefined but may not lead to termination" -- which is one
1678 * of the possible outcomes of the hang. Clamp the index to
1679 * prevent access outside of the array bounds.
1680 */
1681 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1682 BRW_REGISTER_TYPE_UD),
1683 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1684
1685 indirect_max += element_size * (tail->type->length - 1);
1686
1687 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1688 if (indirect.file == BAD_FILE) {
1689 indirect = tmp;
1690 } else {
1691 bld.ADD(indirect, indirect, tmp);
1692 }
1693 }
1694 }
1695
1696 if (indirect.file == BAD_FILE) {
1697 return image;
1698 } else {
1699 /* Emit a pile of MOVs to load the uniform into a temporary. The
1700 * dead-code elimination pass will get rid of what we don't use.
1701 */
1702 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1703 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1704 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1705 offset(tmp, bld, j), offset(image, bld, j),
1706 indirect, brw_imm_ud((indirect_max + 1) * 4));
1707 }
1708 return tmp;
1709 }
1710 }
1711
1712 void
1713 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1714 unsigned wr_mask)
1715 {
1716 for (unsigned i = 0; i < 4; i++) {
1717 if (!((wr_mask >> i) & 1))
1718 continue;
1719
1720 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1721 new_inst->dst = offset(new_inst->dst, bld, i);
1722 for (unsigned j = 0; j < new_inst->sources; j++)
1723 if (new_inst->src[j].file == VGRF)
1724 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1725
1726 bld.emit(new_inst);
1727 }
1728 }
1729
1730 /**
1731 * Get the matching channel register datatype for an image intrinsic of the
1732 * specified GLSL image type.
1733 */
1734 static brw_reg_type
1735 get_image_base_type(const glsl_type *type)
1736 {
1737 switch ((glsl_base_type)type->sampled_type) {
1738 case GLSL_TYPE_UINT:
1739 return BRW_REGISTER_TYPE_UD;
1740 case GLSL_TYPE_INT:
1741 return BRW_REGISTER_TYPE_D;
1742 case GLSL_TYPE_FLOAT:
1743 return BRW_REGISTER_TYPE_F;
1744 default:
1745 unreachable("Not reached.");
1746 }
1747 }
1748
1749 /**
1750 * Get the appropriate atomic op for an image atomic intrinsic.
1751 */
1752 static unsigned
1753 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1754 {
1755 switch (op) {
1756 case nir_intrinsic_image_var_atomic_add:
1757 return BRW_AOP_ADD;
1758 case nir_intrinsic_image_var_atomic_min:
1759 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1760 BRW_AOP_IMIN : BRW_AOP_UMIN);
1761 case nir_intrinsic_image_var_atomic_max:
1762 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1763 BRW_AOP_IMAX : BRW_AOP_UMAX);
1764 case nir_intrinsic_image_var_atomic_and:
1765 return BRW_AOP_AND;
1766 case nir_intrinsic_image_var_atomic_or:
1767 return BRW_AOP_OR;
1768 case nir_intrinsic_image_var_atomic_xor:
1769 return BRW_AOP_XOR;
1770 case nir_intrinsic_image_var_atomic_exchange:
1771 return BRW_AOP_MOV;
1772 case nir_intrinsic_image_var_atomic_comp_swap:
1773 return BRW_AOP_CMPWR;
1774 default:
1775 unreachable("Not reachable.");
1776 }
1777 }
1778
1779 static fs_inst *
1780 emit_pixel_interpolater_send(const fs_builder &bld,
1781 enum opcode opcode,
1782 const fs_reg &dst,
1783 const fs_reg &src,
1784 const fs_reg &desc,
1785 glsl_interp_mode interpolation)
1786 {
1787 struct brw_wm_prog_data *wm_prog_data =
1788 brw_wm_prog_data(bld.shader->stage_prog_data);
1789 fs_inst *inst;
1790 fs_reg payload;
1791 int mlen;
1792
1793 if (src.file == BAD_FILE) {
1794 /* Dummy payload */
1795 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1796 mlen = 1;
1797 } else {
1798 payload = src;
1799 mlen = 2 * bld.dispatch_width() / 8;
1800 }
1801
1802 inst = bld.emit(opcode, dst, payload, desc);
1803 inst->mlen = mlen;
1804 /* 2 floats per slot returned */
1805 inst->size_written = 2 * dst.component_size(inst->exec_size);
1806 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1807
1808 wm_prog_data->pulls_bary = true;
1809
1810 return inst;
1811 }
1812
1813 /**
1814 * Computes 1 << x, given a D/UD register containing some value x.
1815 */
1816 static fs_reg
1817 intexp2(const fs_builder &bld, const fs_reg &x)
1818 {
1819 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1820
1821 fs_reg result = bld.vgrf(x.type, 1);
1822 fs_reg one = bld.vgrf(x.type, 1);
1823
1824 bld.MOV(one, retype(brw_imm_d(1), one.type));
1825 bld.SHL(result, one, x);
1826 return result;
1827 }
1828
1829 void
1830 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1831 {
1832 assert(stage == MESA_SHADER_GEOMETRY);
1833
1834 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1835
1836 if (gs_compile->control_data_header_size_bits == 0)
1837 return;
1838
1839 /* We can only do EndPrimitive() functionality when the control data
1840 * consists of cut bits. Fortunately, the only time it isn't is when the
1841 * output type is points, in which case EndPrimitive() is a no-op.
1842 */
1843 if (gs_prog_data->control_data_format !=
1844 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1845 return;
1846 }
1847
1848 /* Cut bits use one bit per vertex. */
1849 assert(gs_compile->control_data_bits_per_vertex == 1);
1850
1851 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1852 vertex_count.type = BRW_REGISTER_TYPE_UD;
1853
1854 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1855 * vertex n, 0 otherwise. So all we need to do here is mark bit
1856 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1857 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1858 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1859 *
1860 * Note that if EndPrimitive() is called before emitting any vertices, this
1861 * will cause us to set bit 31 of the control_data_bits register to 1.
1862 * That's fine because:
1863 *
1864 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1865 * output, so the hardware will ignore cut bit 31.
1866 *
1867 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1868 * last vertex, so setting cut bit 31 has no effect (since the primitive
1869 * is automatically ended when the GS terminates).
1870 *
1871 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1872 * control_data_bits register to 0 when the first vertex is emitted.
1873 */
1874
1875 const fs_builder abld = bld.annotate("end primitive");
1876
1877 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1878 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1879 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1880 fs_reg mask = intexp2(abld, prev_count);
1881 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1882 * attention to the lower 5 bits of its second source argument, so on this
1883 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1884 * ((vertex_count - 1) % 32).
1885 */
1886 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1887 }
1888
1889 void
1890 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1891 {
1892 assert(stage == MESA_SHADER_GEOMETRY);
1893 assert(gs_compile->control_data_bits_per_vertex != 0);
1894
1895 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1896
1897 const fs_builder abld = bld.annotate("emit control data bits");
1898 const fs_builder fwa_bld = bld.exec_all();
1899
1900 /* We use a single UD register to accumulate control data bits (32 bits
1901 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1902 * at a time.
1903 *
1904 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1905 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1906 * use the Channel Mask phase to enable/disable which DWord within that
1907 * group to write. (Remember, different SIMD8 channels may have emitted
1908 * different numbers of vertices, so we may need per-slot offsets.)
1909 *
1910 * Channel masking presents an annoying problem: we may have to replicate
1911 * the data up to 4 times:
1912 *
1913 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1914 *
1915 * To avoid penalizing shaders that emit a small number of vertices, we
1916 * can avoid these sometimes: if the size of the control data header is
1917 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1918 * land in the same 128-bit group, so we can skip per-slot offsets.
1919 *
1920 * Similarly, if the control data header is <= 32 bits, there is only one
1921 * DWord, so we can skip channel masks.
1922 */
1923 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1924
1925 fs_reg channel_mask, per_slot_offset;
1926
1927 if (gs_compile->control_data_header_size_bits > 32) {
1928 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1929 channel_mask = vgrf(glsl_type::uint_type);
1930 }
1931
1932 if (gs_compile->control_data_header_size_bits > 128) {
1933 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1934 per_slot_offset = vgrf(glsl_type::uint_type);
1935 }
1936
1937 /* Figure out which DWord we're trying to write to using the formula:
1938 *
1939 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1940 *
1941 * Since bits_per_vertex is a power of two, and is known at compile
1942 * time, this can be optimized to:
1943 *
1944 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1945 */
1946 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1947 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1948 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1949 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1950 unsigned log2_bits_per_vertex =
1951 util_last_bit(gs_compile->control_data_bits_per_vertex);
1952 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1953
1954 if (per_slot_offset.file != BAD_FILE) {
1955 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1956 * the appropriate OWord within the control data header.
1957 */
1958 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1959 }
1960
1961 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1962 * write to the appropriate DWORD within the OWORD.
1963 */
1964 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1965 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1966 channel_mask = intexp2(fwa_bld, channel);
1967 /* Then the channel masks need to be in bits 23:16. */
1968 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1969 }
1970
1971 /* Store the control data bits in the message payload and send it. */
1972 int mlen = 2;
1973 if (channel_mask.file != BAD_FILE)
1974 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1975 if (per_slot_offset.file != BAD_FILE)
1976 mlen++;
1977
1978 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1979 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1980 int i = 0;
1981 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1982 if (per_slot_offset.file != BAD_FILE)
1983 sources[i++] = per_slot_offset;
1984 if (channel_mask.file != BAD_FILE)
1985 sources[i++] = channel_mask;
1986 while (i < mlen) {
1987 sources[i++] = this->control_data_bits;
1988 }
1989
1990 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1991 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1992 inst->mlen = mlen;
1993 /* We need to increment Global Offset by 256-bits to make room for
1994 * Broadwell's extra "Vertex Count" payload at the beginning of the
1995 * URB entry. Since this is an OWord message, Global Offset is counted
1996 * in 128-bit units, so we must set it to 2.
1997 */
1998 if (gs_prog_data->static_vertex_count == -1)
1999 inst->offset = 2;
2000 }
2001
2002 void
2003 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2004 unsigned stream_id)
2005 {
2006 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2007
2008 /* Note: we are calling this *before* increasing vertex_count, so
2009 * this->vertex_count == vertex_count - 1 in the formula above.
2010 */
2011
2012 /* Stream mode uses 2 bits per vertex */
2013 assert(gs_compile->control_data_bits_per_vertex == 2);
2014
2015 /* Must be a valid stream */
2016 assert(stream_id < MAX_VERTEX_STREAMS);
2017
2018 /* Control data bits are initialized to 0 so we don't have to set any
2019 * bits when sending vertices to stream 0.
2020 */
2021 if (stream_id == 0)
2022 return;
2023
2024 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2025
2026 /* reg::sid = stream_id */
2027 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2028 abld.MOV(sid, brw_imm_ud(stream_id));
2029
2030 /* reg:shift_count = 2 * (vertex_count - 1) */
2031 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2032 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2033
2034 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2035 * attention to the lower 5 bits of its second source argument, so on this
2036 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2037 * stream_id << ((2 * (vertex_count - 1)) % 32).
2038 */
2039 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2040 abld.SHL(mask, sid, shift_count);
2041 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2042 }
2043
2044 void
2045 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2046 unsigned stream_id)
2047 {
2048 assert(stage == MESA_SHADER_GEOMETRY);
2049
2050 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2051
2052 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2053 vertex_count.type = BRW_REGISTER_TYPE_UD;
2054
2055 /* Haswell and later hardware ignores the "Render Stream Select" bits
2056 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2057 * and instead sends all primitives down the pipeline for rasterization.
2058 * If the SOL stage is enabled, "Render Stream Select" is honored and
2059 * primitives bound to non-zero streams are discarded after stream output.
2060 *
2061 * Since the only purpose of primives sent to non-zero streams is to
2062 * be recorded by transform feedback, we can simply discard all geometry
2063 * bound to these streams when transform feedback is disabled.
2064 */
2065 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2066 return;
2067
2068 /* If we're outputting 32 control data bits or less, then we can wait
2069 * until the shader is over to output them all. Otherwise we need to
2070 * output them as we go. Now is the time to do it, since we're about to
2071 * output the vertex_count'th vertex, so it's guaranteed that the
2072 * control data bits associated with the (vertex_count - 1)th vertex are
2073 * correct.
2074 */
2075 if (gs_compile->control_data_header_size_bits > 32) {
2076 const fs_builder abld =
2077 bld.annotate("emit vertex: emit control data bits");
2078
2079 /* Only emit control data bits if we've finished accumulating a batch
2080 * of 32 bits. This is the case when:
2081 *
2082 * (vertex_count * bits_per_vertex) % 32 == 0
2083 *
2084 * (in other words, when the last 5 bits of vertex_count *
2085 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2086 * integer n (which is always the case, since bits_per_vertex is
2087 * always 1 or 2), this is equivalent to requiring that the last 5-n
2088 * bits of vertex_count are 0:
2089 *
2090 * vertex_count & (2^(5-n) - 1) == 0
2091 *
2092 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2093 * equivalent to:
2094 *
2095 * vertex_count & (32 / bits_per_vertex - 1) == 0
2096 *
2097 * TODO: If vertex_count is an immediate, we could do some of this math
2098 * at compile time...
2099 */
2100 fs_inst *inst =
2101 abld.AND(bld.null_reg_d(), vertex_count,
2102 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2103 inst->conditional_mod = BRW_CONDITIONAL_Z;
2104
2105 abld.IF(BRW_PREDICATE_NORMAL);
2106 /* If vertex_count is 0, then no control data bits have been
2107 * accumulated yet, so we can skip emitting them.
2108 */
2109 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2110 BRW_CONDITIONAL_NEQ);
2111 abld.IF(BRW_PREDICATE_NORMAL);
2112 emit_gs_control_data_bits(vertex_count);
2113 abld.emit(BRW_OPCODE_ENDIF);
2114
2115 /* Reset control_data_bits to 0 so we can start accumulating a new
2116 * batch.
2117 *
2118 * Note: in the case where vertex_count == 0, this neutralizes the
2119 * effect of any call to EndPrimitive() that the shader may have
2120 * made before outputting its first vertex.
2121 */
2122 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2123 inst->force_writemask_all = true;
2124 abld.emit(BRW_OPCODE_ENDIF);
2125 }
2126
2127 emit_urb_writes(vertex_count);
2128
2129 /* In stream mode we have to set control data bits for all vertices
2130 * unless we have disabled control data bits completely (which we do
2131 * do for GL_POINTS outputs that don't use streams).
2132 */
2133 if (gs_compile->control_data_header_size_bits > 0 &&
2134 gs_prog_data->control_data_format ==
2135 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2136 set_gs_stream_control_data_bits(vertex_count, stream_id);
2137 }
2138 }
2139
2140 void
2141 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2142 const nir_src &vertex_src,
2143 unsigned base_offset,
2144 const nir_src &offset_src,
2145 unsigned num_components,
2146 unsigned first_component)
2147 {
2148 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2149
2150 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2151 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2152 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2153
2154 /* TODO: figure out push input layout for invocations == 1 */
2155 /* TODO: make this work with 64-bit inputs */
2156 if (gs_prog_data->invocations == 1 &&
2157 type_sz(dst.type) <= 4 &&
2158 offset_const != NULL && vertex_const != NULL &&
2159 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2160 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2161 vertex_const->u32[0] * push_reg_count;
2162 for (unsigned i = 0; i < num_components; i++) {
2163 bld.MOV(offset(dst, bld, i),
2164 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2165 }
2166 return;
2167 }
2168
2169 /* Resort to the pull model. Ensure the VUE handles are provided. */
2170 assert(gs_prog_data->base.include_vue_handles);
2171
2172 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2173 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2174
2175 if (gs_prog_data->invocations == 1) {
2176 if (vertex_const) {
2177 /* The vertex index is constant; just select the proper URB handle. */
2178 icp_handle =
2179 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2180 BRW_REGISTER_TYPE_UD);
2181 } else {
2182 /* The vertex index is non-constant. We need to use indirect
2183 * addressing to fetch the proper URB handle.
2184 *
2185 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2186 * indicating that channel <n> should read the handle from
2187 * DWord <n>. We convert that to bytes by multiplying by 4.
2188 *
2189 * Next, we convert the vertex index to bytes by multiplying
2190 * by 32 (shifting by 5), and add the two together. This is
2191 * the final indirect byte offset.
2192 */
2193 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2194 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2195 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2196 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2197
2198 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2199 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2200 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2201 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2202 /* Convert vertex_index to bytes (multiply by 32) */
2203 bld.SHL(vertex_offset_bytes,
2204 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2205 brw_imm_ud(5u));
2206 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2207
2208 /* Use first_icp_handle as the base offset. There is one register
2209 * of URB handles per vertex, so inform the register allocator that
2210 * we might read up to nir->info.gs.vertices_in registers.
2211 */
2212 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2213 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2214 fs_reg(icp_offset_bytes),
2215 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2216 }
2217 } else {
2218 assert(gs_prog_data->invocations > 1);
2219
2220 if (vertex_const) {
2221 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2222 bld.MOV(icp_handle,
2223 retype(brw_vec1_grf(first_icp_handle +
2224 vertex_const->i32[0] / 8,
2225 vertex_const->i32[0] % 8),
2226 BRW_REGISTER_TYPE_UD));
2227 } else {
2228 /* The vertex index is non-constant. We need to use indirect
2229 * addressing to fetch the proper URB handle.
2230 *
2231 */
2232 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2233
2234 /* Convert vertex_index to bytes (multiply by 4) */
2235 bld.SHL(icp_offset_bytes,
2236 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2237 brw_imm_ud(2u));
2238
2239 /* Use first_icp_handle as the base offset. There is one DWord
2240 * of URB handles per vertex, so inform the register allocator that
2241 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2242 */
2243 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2244 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2245 fs_reg(icp_offset_bytes),
2246 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2247 REG_SIZE));
2248 }
2249 }
2250
2251 fs_inst *inst;
2252
2253 fs_reg tmp_dst = dst;
2254 fs_reg indirect_offset = get_nir_src(offset_src);
2255 unsigned num_iterations = 1;
2256 unsigned orig_num_components = num_components;
2257
2258 if (type_sz(dst.type) == 8) {
2259 if (num_components > 2) {
2260 num_iterations = 2;
2261 num_components = 2;
2262 }
2263 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2264 tmp_dst = tmp;
2265 first_component = first_component / 2;
2266 }
2267
2268 for (unsigned iter = 0; iter < num_iterations; iter++) {
2269 if (offset_const) {
2270 /* Constant indexing - use global offset. */
2271 if (first_component != 0) {
2272 unsigned read_components = num_components + first_component;
2273 fs_reg tmp = bld.vgrf(dst.type, read_components);
2274 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2275 inst->size_written = read_components *
2276 tmp.component_size(inst->exec_size);
2277 for (unsigned i = 0; i < num_components; i++) {
2278 bld.MOV(offset(tmp_dst, bld, i),
2279 offset(tmp, bld, i + first_component));
2280 }
2281 } else {
2282 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2283 icp_handle);
2284 inst->size_written = num_components *
2285 tmp_dst.component_size(inst->exec_size);
2286 }
2287 inst->offset = base_offset + offset_const->u32[0];
2288 inst->mlen = 1;
2289 } else {
2290 /* Indirect indexing - use per-slot offsets as well. */
2291 const fs_reg srcs[] = { icp_handle, indirect_offset };
2292 unsigned read_components = num_components + first_component;
2293 fs_reg tmp = bld.vgrf(dst.type, read_components);
2294 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2295 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2296 if (first_component != 0) {
2297 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2298 payload);
2299 inst->size_written = read_components *
2300 tmp.component_size(inst->exec_size);
2301 for (unsigned i = 0; i < num_components; i++) {
2302 bld.MOV(offset(tmp_dst, bld, i),
2303 offset(tmp, bld, i + first_component));
2304 }
2305 } else {
2306 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2307 payload);
2308 inst->size_written = num_components *
2309 tmp_dst.component_size(inst->exec_size);
2310 }
2311 inst->offset = base_offset;
2312 inst->mlen = 2;
2313 }
2314
2315 if (type_sz(dst.type) == 8) {
2316 shuffle_32bit_load_result_to_64bit_data(
2317 bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
2318
2319 for (unsigned c = 0; c < num_components; c++)
2320 bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
2321 }
2322
2323 if (num_iterations > 1) {
2324 num_components = orig_num_components - 2;
2325 if(offset_const) {
2326 base_offset++;
2327 } else {
2328 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2329 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2330 indirect_offset = new_indirect;
2331 }
2332 }
2333 }
2334 }
2335
2336 fs_reg
2337 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2338 {
2339 nir_src *offset_src = nir_get_io_offset_src(instr);
2340 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2341
2342 if (const_value) {
2343 /* The only constant offset we should find is 0. brw_nir.c's
2344 * add_const_offset_to_base() will fold other constant offsets
2345 * into instr->const_index[0].
2346 */
2347 assert(const_value->u32[0] == 0);
2348 return fs_reg();
2349 }
2350
2351 return get_nir_src(*offset_src);
2352 }
2353
2354 static void
2355 do_untyped_vector_read(const fs_builder &bld,
2356 const fs_reg dest,
2357 const fs_reg surf_index,
2358 const fs_reg offset_reg,
2359 unsigned num_components)
2360 {
2361 if (type_sz(dest.type) <= 2) {
2362 assert(dest.stride == 1);
2363 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2364
2365 if (is_const_offset) {
2366 uint32_t start = offset_reg.ud & ~3;
2367 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2368 end = ALIGN(end, 4);
2369 assert (end - start <= 16);
2370
2371 /* At this point we have 16-bit component/s that have constant
2372 * offset aligned to 4-bytes that can be read with untyped_reads.
2373 * untyped_read message requires 32-bit aligned offsets.
2374 */
2375 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2376 unsigned num_components_32bit = (end - start) / 4;
2377
2378 fs_reg read_result =
2379 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2380 1 /* dims */,
2381 num_components_32bit,
2382 BRW_PREDICATE_NONE);
2383 shuffle_32bit_load_result_to_16bit_data(bld,
2384 retype(dest, BRW_REGISTER_TYPE_W),
2385 retype(read_result, BRW_REGISTER_TYPE_D),
2386 first_component, num_components);
2387 } else {
2388 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2389 for (unsigned i = 0; i < num_components; i++) {
2390 if (i == 0) {
2391 bld.MOV(read_offset, offset_reg);
2392 } else {
2393 bld.ADD(read_offset, offset_reg,
2394 brw_imm_ud(i * type_sz(dest.type)));
2395 }
2396 /* Non constant offsets are not guaranteed to be aligned 32-bits
2397 * so they are read using one byte_scattered_read message
2398 * for each component.
2399 */
2400 fs_reg read_result =
2401 emit_byte_scattered_read(bld, surf_index, read_offset,
2402 1 /* dims */, 1,
2403 type_sz(dest.type) * 8 /* bit_size */,
2404 BRW_PREDICATE_NONE);
2405 bld.MOV(offset(dest, bld, i),
2406 subscript (read_result, dest.type, 0));
2407 }
2408 }
2409 } else if (type_sz(dest.type) == 4) {
2410 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2411 1 /* dims */,
2412 num_components,
2413 BRW_PREDICATE_NONE);
2414 read_result.type = dest.type;
2415 for (unsigned i = 0; i < num_components; i++)
2416 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2417 } else if (type_sz(dest.type) == 8) {
2418 /* Reading a dvec, so we need to:
2419 *
2420 * 1. Multiply num_components by 2, to account for the fact that we
2421 * need to read 64-bit components.
2422 * 2. Shuffle the result of the load to form valid 64-bit elements
2423 * 3. Emit a second load (for components z/w) if needed.
2424 */
2425 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2426 bld.MOV(read_offset, offset_reg);
2427
2428 int iters = num_components <= 2 ? 1 : 2;
2429
2430 /* Load the dvec, the first iteration loads components x/y, the second
2431 * iteration, if needed, loads components z/w
2432 */
2433 for (int it = 0; it < iters; it++) {
2434 /* Compute number of components to read in this iteration */
2435 int iter_components = MIN2(2, num_components);
2436 num_components -= iter_components;
2437
2438 /* Read. Since this message reads 32-bit components, we need to
2439 * read twice as many components.
2440 */
2441 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2442 1 /* dims */,
2443 iter_components * 2,
2444 BRW_PREDICATE_NONE);
2445
2446 /* Shuffle the 32-bit load result into valid 64-bit data */
2447 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2448 shuffle_32bit_load_result_to_64bit_data(
2449 bld, packed_result, read_result, iter_components);
2450
2451 /* Move each component to its destination */
2452 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2453 for (int c = 0; c < iter_components; c++) {
2454 bld.MOV(offset(dest, bld, it * 2 + c),
2455 offset(packed_result, bld, c));
2456 }
2457
2458 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2459 }
2460 } else {
2461 unreachable("Unsupported type");
2462 }
2463 }
2464
2465 void
2466 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2467 nir_intrinsic_instr *instr)
2468 {
2469 assert(stage == MESA_SHADER_VERTEX);
2470
2471 fs_reg dest;
2472 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2473 dest = get_nir_dest(instr->dest);
2474
2475 switch (instr->intrinsic) {
2476 case nir_intrinsic_load_vertex_id:
2477 case nir_intrinsic_load_base_vertex:
2478 unreachable("should be lowered by nir_lower_system_values()");
2479
2480 case nir_intrinsic_load_vertex_id_zero_base:
2481 case nir_intrinsic_load_instance_id:
2482 case nir_intrinsic_load_base_instance:
2483 case nir_intrinsic_load_draw_id: {
2484 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2485 fs_reg val = nir_system_values[sv];
2486 assert(val.file != BAD_FILE);
2487 dest.type = val.type;
2488 bld.MOV(dest, val);
2489 break;
2490 }
2491
2492 case nir_intrinsic_load_input: {
2493 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2494 unsigned first_component = nir_intrinsic_component(instr);
2495 unsigned num_components = instr->num_components;
2496
2497 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2498 assert(const_offset && "Indirect input loads not allowed");
2499 src = offset(src, bld, const_offset->u32[0]);
2500
2501 if (type_sz(dest.type) == 8)
2502 first_component /= 2;
2503
2504 for (unsigned j = 0; j < num_components; j++) {
2505 bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
2506 }
2507
2508 if (type_sz(dest.type) == 8) {
2509 shuffle_32bit_load_result_to_64bit_data(bld,
2510 dest,
2511 retype(dest, BRW_REGISTER_TYPE_F),
2512 instr->num_components);
2513 }
2514 break;
2515 }
2516
2517 case nir_intrinsic_load_first_vertex:
2518 case nir_intrinsic_load_is_indexed_draw:
2519 unreachable("lowered by brw_nir_lower_vs_inputs");
2520
2521 default:
2522 nir_emit_intrinsic(bld, instr);
2523 break;
2524 }
2525 }
2526
2527 void
2528 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2529 nir_intrinsic_instr *instr)
2530 {
2531 assert(stage == MESA_SHADER_TESS_CTRL);
2532 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2533 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2534
2535 fs_reg dst;
2536 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2537 dst = get_nir_dest(instr->dest);
2538
2539 switch (instr->intrinsic) {
2540 case nir_intrinsic_load_primitive_id:
2541 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2542 break;
2543 case nir_intrinsic_load_invocation_id:
2544 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2545 break;
2546 case nir_intrinsic_load_patch_vertices_in:
2547 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2548 brw_imm_d(tcs_key->input_vertices));
2549 break;
2550
2551 case nir_intrinsic_barrier: {
2552 if (tcs_prog_data->instances == 1)
2553 break;
2554
2555 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2556 fs_reg m0_2 = component(m0, 2);
2557
2558 const fs_builder chanbld = bld.exec_all().group(1, 0);
2559
2560 /* Zero the message header */
2561 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2562
2563 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2564 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2565 brw_imm_ud(INTEL_MASK(16, 13)));
2566
2567 /* Shift it up to bits 27:24. */
2568 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2569
2570 /* Set the Barrier Count and the enable bit */
2571 chanbld.OR(m0_2, m0_2,
2572 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2573
2574 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2575 break;
2576 }
2577
2578 case nir_intrinsic_load_input:
2579 unreachable("nir_lower_io should never give us these.");
2580 break;
2581
2582 case nir_intrinsic_load_per_vertex_input: {
2583 fs_reg indirect_offset = get_indirect_offset(instr);
2584 unsigned imm_offset = instr->const_index[0];
2585
2586 const nir_src &vertex_src = instr->src[0];
2587 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2588
2589 fs_inst *inst;
2590
2591 fs_reg icp_handle;
2592
2593 if (vertex_const) {
2594 /* Emit a MOV to resolve <0,1,0> regioning. */
2595 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2596 bld.MOV(icp_handle,
2597 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2598 vertex_const->i32[0] & 7),
2599 BRW_REGISTER_TYPE_UD));
2600 } else if (tcs_prog_data->instances == 1 &&
2601 vertex_src.is_ssa &&
2602 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2603 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2604 /* For the common case of only 1 instance, an array index of
2605 * gl_InvocationID means reading g1. Skip all the indirect work.
2606 */
2607 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2608 } else {
2609 /* The vertex index is non-constant. We need to use indirect
2610 * addressing to fetch the proper URB handle.
2611 */
2612 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2613
2614 /* Each ICP handle is a single DWord (4 bytes) */
2615 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2616 bld.SHL(vertex_offset_bytes,
2617 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2618 brw_imm_ud(2u));
2619
2620 /* Start at g1. We might read up to 4 registers. */
2621 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2622 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2623 brw_imm_ud(4 * REG_SIZE));
2624 }
2625
2626 /* We can only read two double components with each URB read, so
2627 * we send two read messages in that case, each one loading up to
2628 * two double components.
2629 */
2630 unsigned num_iterations = 1;
2631 unsigned num_components = instr->num_components;
2632 unsigned first_component = nir_intrinsic_component(instr);
2633 fs_reg orig_dst = dst;
2634 if (type_sz(dst.type) == 8) {
2635 first_component = first_component / 2;
2636 if (instr->num_components > 2) {
2637 num_iterations = 2;
2638 num_components = 2;
2639 }
2640
2641 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2642 dst = tmp;
2643 }
2644
2645 for (unsigned iter = 0; iter < num_iterations; iter++) {
2646 if (indirect_offset.file == BAD_FILE) {
2647 /* Constant indexing - use global offset. */
2648 if (first_component != 0) {
2649 unsigned read_components = num_components + first_component;
2650 fs_reg tmp = bld.vgrf(dst.type, read_components);
2651 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2652 for (unsigned i = 0; i < num_components; i++) {
2653 bld.MOV(offset(dst, bld, i),
2654 offset(tmp, bld, i + first_component));
2655 }
2656 } else {
2657 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2658 }
2659 inst->offset = imm_offset;
2660 inst->mlen = 1;
2661 } else {
2662 /* Indirect indexing - use per-slot offsets as well. */
2663 const fs_reg srcs[] = { icp_handle, indirect_offset };
2664 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2665 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2666 if (first_component != 0) {
2667 unsigned read_components = num_components + first_component;
2668 fs_reg tmp = bld.vgrf(dst.type, read_components);
2669 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2670 payload);
2671 for (unsigned i = 0; i < num_components; i++) {
2672 bld.MOV(offset(dst, bld, i),
2673 offset(tmp, bld, i + first_component));
2674 }
2675 } else {
2676 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2677 payload);
2678 }
2679 inst->offset = imm_offset;
2680 inst->mlen = 2;
2681 }
2682 inst->size_written = (num_components + first_component) *
2683 inst->dst.component_size(inst->exec_size);
2684
2685 /* If we are reading 64-bit data using 32-bit read messages we need
2686 * build proper 64-bit data elements by shuffling the low and high
2687 * 32-bit components around like we do for other things like UBOs
2688 * or SSBOs.
2689 */
2690 if (type_sz(dst.type) == 8) {
2691 shuffle_32bit_load_result_to_64bit_data(
2692 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2693
2694 for (unsigned c = 0; c < num_components; c++) {
2695 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2696 offset(dst, bld, c));
2697 }
2698 }
2699
2700 /* Copy the temporary to the destination to deal with writemasking.
2701 *
2702 * Also attempt to deal with gl_PointSize being in the .w component.
2703 */
2704 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2705 assert(type_sz(dst.type) < 8);
2706 inst->dst = bld.vgrf(dst.type, 4);
2707 inst->size_written = 4 * REG_SIZE;
2708 bld.MOV(dst, offset(inst->dst, bld, 3));
2709 }
2710
2711 /* If we are loading double data and we need a second read message
2712 * adjust the write offset
2713 */
2714 if (num_iterations > 1) {
2715 num_components = instr->num_components - 2;
2716 imm_offset++;
2717 }
2718 }
2719 break;
2720 }
2721
2722 case nir_intrinsic_load_output:
2723 case nir_intrinsic_load_per_vertex_output: {
2724 fs_reg indirect_offset = get_indirect_offset(instr);
2725 unsigned imm_offset = instr->const_index[0];
2726 unsigned first_component = nir_intrinsic_component(instr);
2727
2728 fs_inst *inst;
2729 if (indirect_offset.file == BAD_FILE) {
2730 /* Replicate the patch handle to all enabled channels */
2731 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2732 bld.MOV(patch_handle,
2733 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2734
2735 {
2736 if (first_component != 0) {
2737 unsigned read_components =
2738 instr->num_components + first_component;
2739 fs_reg tmp = bld.vgrf(dst.type, read_components);
2740 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2741 patch_handle);
2742 inst->size_written = read_components * REG_SIZE;
2743 for (unsigned i = 0; i < instr->num_components; i++) {
2744 bld.MOV(offset(dst, bld, i),
2745 offset(tmp, bld, i + first_component));
2746 }
2747 } else {
2748 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2749 patch_handle);
2750 inst->size_written = instr->num_components * REG_SIZE;
2751 }
2752 inst->offset = imm_offset;
2753 inst->mlen = 1;
2754 }
2755 } else {
2756 /* Indirect indexing - use per-slot offsets as well. */
2757 const fs_reg srcs[] = {
2758 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2759 indirect_offset
2760 };
2761 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2762 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2763 if (first_component != 0) {
2764 unsigned read_components =
2765 instr->num_components + first_component;
2766 fs_reg tmp = bld.vgrf(dst.type, read_components);
2767 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2768 payload);
2769 inst->size_written = read_components * REG_SIZE;
2770 for (unsigned i = 0; i < instr->num_components; i++) {
2771 bld.MOV(offset(dst, bld, i),
2772 offset(tmp, bld, i + first_component));
2773 }
2774 } else {
2775 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2776 payload);
2777 inst->size_written = instr->num_components * REG_SIZE;
2778 }
2779 inst->offset = imm_offset;
2780 inst->mlen = 2;
2781 }
2782 break;
2783 }
2784
2785 case nir_intrinsic_store_output:
2786 case nir_intrinsic_store_per_vertex_output: {
2787 fs_reg value = get_nir_src(instr->src[0]);
2788 bool is_64bit = (instr->src[0].is_ssa ?
2789 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2790 fs_reg indirect_offset = get_indirect_offset(instr);
2791 unsigned imm_offset = instr->const_index[0];
2792 unsigned mask = instr->const_index[1];
2793 unsigned header_regs = 0;
2794 fs_reg srcs[7];
2795 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2796
2797 if (indirect_offset.file != BAD_FILE) {
2798 srcs[header_regs++] = indirect_offset;
2799 }
2800
2801 if (mask == 0)
2802 break;
2803
2804 unsigned num_components = util_last_bit(mask);
2805 enum opcode opcode;
2806
2807 /* We can only pack two 64-bit components in a single message, so send
2808 * 2 messages if we have more components
2809 */
2810 unsigned num_iterations = 1;
2811 unsigned iter_components = num_components;
2812 unsigned first_component = nir_intrinsic_component(instr);
2813 if (is_64bit) {
2814 first_component = first_component / 2;
2815 if (instr->num_components > 2) {
2816 num_iterations = 2;
2817 iter_components = 2;
2818 }
2819 }
2820
2821 mask = mask << first_component;
2822
2823 for (unsigned iter = 0; iter < num_iterations; iter++) {
2824 if (!is_64bit && mask != WRITEMASK_XYZW) {
2825 srcs[header_regs++] = brw_imm_ud(mask << 16);
2826 opcode = indirect_offset.file != BAD_FILE ?
2827 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2828 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2829 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2830 /* Expand the 64-bit mask to 32-bit channels. We only handle
2831 * two channels in each iteration, so we only care about X/Y.
2832 */
2833 unsigned mask32 = 0;
2834 if (mask & WRITEMASK_X)
2835 mask32 |= WRITEMASK_XY;
2836 if (mask & WRITEMASK_Y)
2837 mask32 |= WRITEMASK_ZW;
2838
2839 /* If the mask does not include any of the channels X or Y there
2840 * is nothing to do in this iteration. Move on to the next couple
2841 * of 64-bit channels.
2842 */
2843 if (!mask32) {
2844 mask >>= 2;
2845 imm_offset++;
2846 continue;
2847 }
2848
2849 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2850 opcode = indirect_offset.file != BAD_FILE ?
2851 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2852 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2853 } else {
2854 opcode = indirect_offset.file != BAD_FILE ?
2855 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2856 SHADER_OPCODE_URB_WRITE_SIMD8;
2857 }
2858
2859 for (unsigned i = 0; i < iter_components; i++) {
2860 if (!(mask & (1 << (i + first_component))))
2861 continue;
2862
2863 if (!is_64bit) {
2864 srcs[header_regs + i + first_component] = offset(value, bld, i);
2865 } else {
2866 /* We need to shuffle the 64-bit data to match the layout
2867 * expected by our 32-bit URB write messages. We use a temporary
2868 * for that.
2869 */
2870 unsigned channel = iter * 2 + i;
2871 fs_reg dest = shuffle_64bit_data_for_32bit_write(bld,
2872 offset(value, bld, channel), 1);
2873
2874 srcs[header_regs + (i + first_component) * 2] = dest;
2875 srcs[header_regs + (i + first_component) * 2 + 1] =
2876 offset(dest, bld, 1);
2877 }
2878 }
2879
2880 unsigned mlen =
2881 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2882 (is_64bit ? 2 * first_component : first_component);
2883 fs_reg payload =
2884 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2885 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2886
2887 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2888 inst->offset = imm_offset;
2889 inst->mlen = mlen;
2890
2891 /* If this is a 64-bit attribute, select the next two 64-bit channels
2892 * to be handled in the next iteration.
2893 */
2894 if (is_64bit) {
2895 mask >>= 2;
2896 imm_offset++;
2897 }
2898 }
2899 break;
2900 }
2901
2902 default:
2903 nir_emit_intrinsic(bld, instr);
2904 break;
2905 }
2906 }
2907
2908 void
2909 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2910 nir_intrinsic_instr *instr)
2911 {
2912 assert(stage == MESA_SHADER_TESS_EVAL);
2913 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2914
2915 fs_reg dest;
2916 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2917 dest = get_nir_dest(instr->dest);
2918
2919 switch (instr->intrinsic) {
2920 case nir_intrinsic_load_primitive_id:
2921 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2922 break;
2923 case nir_intrinsic_load_tess_coord:
2924 /* gl_TessCoord is part of the payload in g1-3 */
2925 for (unsigned i = 0; i < 3; i++) {
2926 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2927 }
2928 break;
2929
2930 case nir_intrinsic_load_input:
2931 case nir_intrinsic_load_per_vertex_input: {
2932 fs_reg indirect_offset = get_indirect_offset(instr);
2933 unsigned imm_offset = instr->const_index[0];
2934 unsigned first_component = nir_intrinsic_component(instr);
2935
2936 if (type_sz(dest.type) == 8) {
2937 first_component = first_component / 2;
2938 }
2939
2940 fs_inst *inst;
2941 if (indirect_offset.file == BAD_FILE) {
2942 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2943 * which is 16 registers (since each holds 2 vec4 slots).
2944 */
2945 unsigned slot_count = 1;
2946 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2947 slot_count++;
2948
2949 const unsigned max_push_slots = 32;
2950 if (imm_offset + slot_count <= max_push_slots) {
2951 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2952 for (int i = 0; i < instr->num_components; i++) {
2953 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2954 i + first_component;
2955 bld.MOV(offset(dest, bld, i), component(src, comp));
2956 }
2957
2958 tes_prog_data->base.urb_read_length =
2959 MAX2(tes_prog_data->base.urb_read_length,
2960 DIV_ROUND_UP(imm_offset + slot_count, 2));
2961 } else {
2962 /* Replicate the patch handle to all enabled channels */
2963 const fs_reg srcs[] = {
2964 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2965 };
2966 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2967 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2968
2969 if (first_component != 0) {
2970 unsigned read_components =
2971 instr->num_components + first_component;
2972 fs_reg tmp = bld.vgrf(dest.type, read_components);
2973 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2974 patch_handle);
2975 inst->size_written = read_components * REG_SIZE;
2976 for (unsigned i = 0; i < instr->num_components; i++) {
2977 bld.MOV(offset(dest, bld, i),
2978 offset(tmp, bld, i + first_component));
2979 }
2980 } else {
2981 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2982 patch_handle);
2983 inst->size_written = instr->num_components * REG_SIZE;
2984 }
2985 inst->mlen = 1;
2986 inst->offset = imm_offset;
2987 }
2988 } else {
2989 /* Indirect indexing - use per-slot offsets as well. */
2990
2991 /* We can only read two double components with each URB read, so
2992 * we send two read messages in that case, each one loading up to
2993 * two double components.
2994 */
2995 unsigned num_iterations = 1;
2996 unsigned num_components = instr->num_components;
2997 fs_reg orig_dest = dest;
2998 if (type_sz(dest.type) == 8) {
2999 if (instr->num_components > 2) {
3000 num_iterations = 2;
3001 num_components = 2;
3002 }
3003 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
3004 dest = tmp;
3005 }
3006
3007 for (unsigned iter = 0; iter < num_iterations; iter++) {
3008 const fs_reg srcs[] = {
3009 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3010 indirect_offset
3011 };
3012 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3013 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3014
3015 if (first_component != 0) {
3016 unsigned read_components =
3017 num_components + first_component;
3018 fs_reg tmp = bld.vgrf(dest.type, read_components);
3019 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3020 payload);
3021 for (unsigned i = 0; i < num_components; i++) {
3022 bld.MOV(offset(dest, bld, i),
3023 offset(tmp, bld, i + first_component));
3024 }
3025 } else {
3026 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3027 payload);
3028 }
3029 inst->mlen = 2;
3030 inst->offset = imm_offset;
3031 inst->size_written = (num_components + first_component) *
3032 inst->dst.component_size(inst->exec_size);
3033
3034 /* If we are reading 64-bit data using 32-bit read messages we need
3035 * build proper 64-bit data elements by shuffling the low and high
3036 * 32-bit components around like we do for other things like UBOs
3037 * or SSBOs.
3038 */
3039 if (type_sz(dest.type) == 8) {
3040 shuffle_32bit_load_result_to_64bit_data(
3041 bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
3042
3043 for (unsigned c = 0; c < num_components; c++) {
3044 bld.MOV(offset(orig_dest, bld, iter * 2 + c),
3045 offset(dest, bld, c));
3046 }
3047 }
3048
3049 /* If we are loading double data and we need a second read message
3050 * adjust the offset
3051 */
3052 if (num_iterations > 1) {
3053 num_components = instr->num_components - 2;
3054 imm_offset++;
3055 }
3056 }
3057 }
3058 break;
3059 }
3060 default:
3061 nir_emit_intrinsic(bld, instr);
3062 break;
3063 }
3064 }
3065
3066 void
3067 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3068 nir_intrinsic_instr *instr)
3069 {
3070 assert(stage == MESA_SHADER_GEOMETRY);
3071 fs_reg indirect_offset;
3072
3073 fs_reg dest;
3074 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3075 dest = get_nir_dest(instr->dest);
3076
3077 switch (instr->intrinsic) {
3078 case nir_intrinsic_load_primitive_id:
3079 assert(stage == MESA_SHADER_GEOMETRY);
3080 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3081 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3082 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3083 break;
3084
3085 case nir_intrinsic_load_input:
3086 unreachable("load_input intrinsics are invalid for the GS stage");
3087
3088 case nir_intrinsic_load_per_vertex_input:
3089 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3090 instr->src[1], instr->num_components,
3091 nir_intrinsic_component(instr));
3092 break;
3093
3094 case nir_intrinsic_emit_vertex_with_counter:
3095 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3096 break;
3097
3098 case nir_intrinsic_end_primitive_with_counter:
3099 emit_gs_end_primitive(instr->src[0]);
3100 break;
3101
3102 case nir_intrinsic_set_vertex_count:
3103 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3104 break;
3105
3106 case nir_intrinsic_load_invocation_id: {
3107 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3108 assert(val.file != BAD_FILE);
3109 dest.type = val.type;
3110 bld.MOV(dest, val);
3111 break;
3112 }
3113
3114 default:
3115 nir_emit_intrinsic(bld, instr);
3116 break;
3117 }
3118 }
3119
3120 /**
3121 * Fetch the current render target layer index.
3122 */
3123 static fs_reg
3124 fetch_render_target_array_index(const fs_builder &bld)
3125 {
3126 if (bld.shader->devinfo->gen >= 6) {
3127 /* The render target array index is provided in the thread payload as
3128 * bits 26:16 of r0.0.
3129 */
3130 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3131 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3132 brw_imm_uw(0x7ff));
3133 return idx;
3134 } else {
3135 /* Pre-SNB we only ever render into the first layer of the framebuffer
3136 * since layered rendering is not implemented.
3137 */
3138 return brw_imm_ud(0);
3139 }
3140 }
3141
3142 /**
3143 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3144 * framebuffer at the current fragment coordinates and sample index.
3145 */
3146 fs_inst *
3147 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3148 unsigned target)
3149 {
3150 const struct gen_device_info *devinfo = bld.shader->devinfo;
3151
3152 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3153 const brw_wm_prog_key *wm_key =
3154 reinterpret_cast<const brw_wm_prog_key *>(key);
3155 assert(!wm_key->coherent_fb_fetch);
3156 const struct brw_wm_prog_data *wm_prog_data =
3157 brw_wm_prog_data(stage_prog_data);
3158
3159 /* Calculate the surface index relative to the start of the texture binding
3160 * table block, since that's what the texturing messages expect.
3161 */
3162 const unsigned surface = target +
3163 wm_prog_data->binding_table.render_target_read_start -
3164 wm_prog_data->base.binding_table.texture_start;
3165
3166 brw_mark_surface_used(
3167 bld.shader->stage_prog_data,
3168 wm_prog_data->binding_table.render_target_read_start + target);
3169
3170 /* Calculate the fragment coordinates. */
3171 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3172 bld.MOV(offset(coords, bld, 0), pixel_x);
3173 bld.MOV(offset(coords, bld, 1), pixel_y);
3174 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3175
3176 /* Calculate the sample index and MCS payload when multisampling. Luckily
3177 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3178 * shouldn't be necessary to recompile based on whether the framebuffer is
3179 * CMS or UMS.
3180 */
3181 if (wm_key->multisample_fbo &&
3182 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3183 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3184
3185 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3186 const fs_reg mcs = wm_key->multisample_fbo ?
3187 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3188
3189 /* Use either a normal or a CMS texel fetch message depending on whether
3190 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3191 * message just in case the framebuffer uses 16x multisampling, it should
3192 * be equivalent to the normal CMS fetch for lower multisampling modes.
3193 */
3194 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3195 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3196 SHADER_OPCODE_TXF_CMS_LOGICAL;
3197
3198 /* Emit the instruction. */
3199 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3200 sample, mcs,
3201 brw_imm_ud(surface), brw_imm_ud(0),
3202 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3203 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3204
3205 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3206 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3207
3208 return inst;
3209 }
3210
3211 /**
3212 * Actual coherent framebuffer read implemented using the native render target
3213 * read message. Requires SKL+.
3214 */
3215 static fs_inst *
3216 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3217 {
3218 assert(bld.shader->devinfo->gen >= 9);
3219 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3220 inst->target = target;
3221 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3222
3223 return inst;
3224 }
3225
3226 static fs_reg
3227 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3228 {
3229 if (n && regs[0].file != BAD_FILE) {
3230 return regs[0];
3231
3232 } else {
3233 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3234
3235 for (unsigned i = 0; i < n; i++)
3236 regs[i] = tmp;
3237
3238 return tmp;
3239 }
3240 }
3241
3242 static fs_reg
3243 alloc_frag_output(fs_visitor *v, unsigned location)
3244 {
3245 assert(v->stage == MESA_SHADER_FRAGMENT);
3246 const brw_wm_prog_key *const key =
3247 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3248 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3249 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3250
3251 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3252 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3253
3254 else if (l == FRAG_RESULT_COLOR)
3255 return alloc_temporary(v->bld, 4, v->outputs,
3256 MAX2(key->nr_color_regions, 1));
3257
3258 else if (l == FRAG_RESULT_DEPTH)
3259 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3260
3261 else if (l == FRAG_RESULT_STENCIL)
3262 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3263
3264 else if (l == FRAG_RESULT_SAMPLE_MASK)
3265 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3266
3267 else if (l >= FRAG_RESULT_DATA0 &&
3268 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3269 return alloc_temporary(v->bld, 4,
3270 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3271
3272 else
3273 unreachable("Invalid location");
3274 }
3275
3276 void
3277 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3278 nir_intrinsic_instr *instr)
3279 {
3280 assert(stage == MESA_SHADER_FRAGMENT);
3281
3282 fs_reg dest;
3283 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3284 dest = get_nir_dest(instr->dest);
3285
3286 switch (instr->intrinsic) {
3287 case nir_intrinsic_load_front_face:
3288 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3289 *emit_frontfacing_interpolation());
3290 break;
3291
3292 case nir_intrinsic_load_sample_pos: {
3293 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3294 assert(sample_pos.file != BAD_FILE);
3295 dest.type = sample_pos.type;
3296 bld.MOV(dest, sample_pos);
3297 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3298 break;
3299 }
3300
3301 case nir_intrinsic_load_layer_id:
3302 dest.type = BRW_REGISTER_TYPE_UD;
3303 bld.MOV(dest, fetch_render_target_array_index(bld));
3304 break;
3305
3306 case nir_intrinsic_load_helper_invocation:
3307 case nir_intrinsic_load_sample_mask_in:
3308 case nir_intrinsic_load_sample_id: {
3309 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3310 fs_reg val = nir_system_values[sv];
3311 assert(val.file != BAD_FILE);
3312 dest.type = val.type;
3313 bld.MOV(dest, val);
3314 break;
3315 }
3316
3317 case nir_intrinsic_store_output: {
3318 const fs_reg src = get_nir_src(instr->src[0]);
3319 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3320 assert(const_offset && "Indirect output stores not allowed");
3321 const unsigned location = nir_intrinsic_base(instr) +
3322 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3323 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3324 src.type);
3325
3326 for (unsigned j = 0; j < instr->num_components; j++)
3327 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3328 offset(src, bld, j));
3329
3330 break;
3331 }
3332
3333 case nir_intrinsic_load_output: {
3334 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3335 BRW_NIR_FRAG_OUTPUT_LOCATION);
3336 assert(l >= FRAG_RESULT_DATA0);
3337 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3338 assert(const_offset && "Indirect output loads not allowed");
3339 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3340 const fs_reg tmp = bld.vgrf(dest.type, 4);
3341
3342 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3343 emit_coherent_fb_read(bld, tmp, target);
3344 else
3345 emit_non_coherent_fb_read(bld, tmp, target);
3346
3347 for (unsigned j = 0; j < instr->num_components; j++) {
3348 bld.MOV(offset(dest, bld, j),
3349 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3350 }
3351
3352 break;
3353 }
3354
3355 case nir_intrinsic_discard:
3356 case nir_intrinsic_discard_if: {
3357 /* We track our discarded pixels in f0.1. By predicating on it, we can
3358 * update just the flag bits that aren't yet discarded. If there's no
3359 * condition, we emit a CMP of g0 != g0, so all currently executing
3360 * channels will get turned off.
3361 */
3362 fs_inst *cmp;
3363 if (instr->intrinsic == nir_intrinsic_discard_if) {
3364 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3365 brw_imm_d(0), BRW_CONDITIONAL_Z);
3366 } else {
3367 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3368 BRW_REGISTER_TYPE_UW));
3369 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3370 }
3371 cmp->predicate = BRW_PREDICATE_NORMAL;
3372 cmp->flag_subreg = 1;
3373
3374 if (devinfo->gen >= 6) {
3375 emit_discard_jump();
3376 }
3377 break;
3378 }
3379
3380 case nir_intrinsic_load_input: {
3381 /* load_input is only used for flat inputs */
3382 unsigned base = nir_intrinsic_base(instr);
3383 unsigned component = nir_intrinsic_component(instr);
3384 unsigned num_components = instr->num_components;
3385 enum brw_reg_type type = dest.type;
3386
3387 /* Special case fields in the VUE header */
3388 if (base == VARYING_SLOT_LAYER)
3389 component = 1;
3390 else if (base == VARYING_SLOT_VIEWPORT)
3391 component = 2;
3392
3393 if (nir_dest_bit_size(instr->dest) == 64) {
3394 /* const_index is in 32-bit type size units that could not be aligned
3395 * with DF. We need to read the double vector as if it was a float
3396 * vector of twice the number of components to fetch the right data.
3397 */
3398 type = BRW_REGISTER_TYPE_F;
3399 num_components *= 2;
3400 }
3401
3402 for (unsigned int i = 0; i < num_components; i++) {
3403 struct brw_reg interp = interp_reg(base, component + i);
3404 interp = suboffset(interp, 3);
3405 bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i),
3406 retype(fs_reg(interp), type));
3407 }
3408
3409 if (nir_dest_bit_size(instr->dest) == 64) {
3410 shuffle_32bit_load_result_to_64bit_data(bld,
3411 dest,
3412 retype(dest, type),
3413 instr->num_components);
3414 }
3415 break;
3416 }
3417
3418 case nir_intrinsic_load_barycentric_pixel:
3419 case nir_intrinsic_load_barycentric_centroid:
3420 case nir_intrinsic_load_barycentric_sample:
3421 /* Do nothing - load_interpolated_input handling will handle it later. */
3422 break;
3423
3424 case nir_intrinsic_load_barycentric_at_sample: {
3425 const glsl_interp_mode interpolation =
3426 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3427
3428 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3429
3430 if (const_sample) {
3431 unsigned msg_data = const_sample->i32[0] << 4;
3432
3433 emit_pixel_interpolater_send(bld,
3434 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3435 dest,
3436 fs_reg(), /* src */
3437 brw_imm_ud(msg_data),
3438 interpolation);
3439 } else {
3440 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3441 BRW_REGISTER_TYPE_UD);
3442
3443 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3444 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3445 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3446 bld.exec_all().group(1, 0)
3447 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3448 emit_pixel_interpolater_send(bld,
3449 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3450 dest,
3451 fs_reg(), /* src */
3452 msg_data,
3453 interpolation);
3454 } else {
3455 /* Make a loop that sends a message to the pixel interpolater
3456 * for the sample number in each live channel. If there are
3457 * multiple channels with the same sample number then these
3458 * will be handled simultaneously with a single interation of
3459 * the loop.
3460 */
3461 bld.emit(BRW_OPCODE_DO);
3462
3463 /* Get the next live sample number into sample_id_reg */
3464 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3465
3466 /* Set the flag register so that we can perform the send
3467 * message on all channels that have the same sample number
3468 */
3469 bld.CMP(bld.null_reg_ud(),
3470 sample_src, sample_id,
3471 BRW_CONDITIONAL_EQ);
3472 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3473 bld.exec_all().group(1, 0)
3474 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3475 fs_inst *inst =
3476 emit_pixel_interpolater_send(bld,
3477 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3478 dest,
3479 fs_reg(), /* src */
3480 msg_data,
3481 interpolation);
3482 set_predicate(BRW_PREDICATE_NORMAL, inst);
3483
3484 /* Continue the loop if there are any live channels left */
3485 set_predicate_inv(BRW_PREDICATE_NORMAL,
3486 true, /* inverse */
3487 bld.emit(BRW_OPCODE_WHILE));
3488 }
3489 }
3490 break;
3491 }
3492
3493 case nir_intrinsic_load_barycentric_at_offset: {
3494 const glsl_interp_mode interpolation =
3495 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3496
3497 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3498
3499 if (const_offset) {
3500 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3501 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3502
3503 emit_pixel_interpolater_send(bld,
3504 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3505 dest,
3506 fs_reg(), /* src */
3507 brw_imm_ud(off_x | (off_y << 4)),
3508 interpolation);
3509 } else {
3510 fs_reg src = vgrf(glsl_type::ivec2_type);
3511 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3512 BRW_REGISTER_TYPE_F);
3513 for (int i = 0; i < 2; i++) {
3514 fs_reg temp = vgrf(glsl_type::float_type);
3515 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3516 fs_reg itemp = vgrf(glsl_type::int_type);
3517 /* float to int */
3518 bld.MOV(itemp, temp);
3519
3520 /* Clamp the upper end of the range to +7/16.
3521 * ARB_gpu_shader5 requires that we support a maximum offset
3522 * of +0.5, which isn't representable in a S0.4 value -- if
3523 * we didn't clamp it, we'd end up with -8/16, which is the
3524 * opposite of what the shader author wanted.
3525 *
3526 * This is legal due to ARB_gpu_shader5's quantization
3527 * rules:
3528 *
3529 * "Not all values of <offset> may be supported; x and y
3530 * offsets may be rounded to fixed-point values with the
3531 * number of fraction bits given by the
3532 * implementation-dependent constant
3533 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3534 */
3535 set_condmod(BRW_CONDITIONAL_L,
3536 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3537 }
3538
3539 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3540 emit_pixel_interpolater_send(bld,
3541 opcode,
3542 dest,
3543 src,
3544 brw_imm_ud(0u),
3545 interpolation);
3546 }
3547 break;
3548 }
3549
3550 case nir_intrinsic_load_interpolated_input: {
3551 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3552 emit_fragcoord_interpolation(dest);
3553 break;
3554 }
3555
3556 assert(instr->src[0].ssa &&
3557 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3558 nir_intrinsic_instr *bary_intrinsic =
3559 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3560 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3561 enum glsl_interp_mode interp_mode =
3562 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3563 fs_reg dst_xy;
3564
3565 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3566 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3567 /* Use the result of the PI message */
3568 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3569 } else {
3570 /* Use the delta_xy values computed from the payload */
3571 enum brw_barycentric_mode bary =
3572 brw_barycentric_mode(interp_mode, bary_intrin);
3573
3574 dst_xy = this->delta_xy[bary];
3575 }
3576
3577 for (unsigned int i = 0; i < instr->num_components; i++) {
3578 fs_reg interp =
3579 fs_reg(interp_reg(nir_intrinsic_base(instr),
3580 nir_intrinsic_component(instr) + i));
3581 interp.type = BRW_REGISTER_TYPE_F;
3582 dest.type = BRW_REGISTER_TYPE_F;
3583
3584 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3585 fs_reg tmp = vgrf(glsl_type::float_type);
3586 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3587 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3588 } else {
3589 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3590 }
3591 }
3592 break;
3593 }
3594
3595 default:
3596 nir_emit_intrinsic(bld, instr);
3597 break;
3598 }
3599 }
3600
3601 void
3602 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3603 nir_intrinsic_instr *instr)
3604 {
3605 assert(stage == MESA_SHADER_COMPUTE);
3606 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3607
3608 fs_reg dest;
3609 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3610 dest = get_nir_dest(instr->dest);
3611
3612 switch (instr->intrinsic) {
3613 case nir_intrinsic_barrier:
3614 emit_barrier();
3615 cs_prog_data->uses_barrier = true;
3616 break;
3617
3618 case nir_intrinsic_load_subgroup_id:
3619 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3620 break;
3621
3622 case nir_intrinsic_load_local_invocation_id:
3623 case nir_intrinsic_load_work_group_id: {
3624 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3625 fs_reg val = nir_system_values[sv];
3626 assert(val.file != BAD_FILE);
3627 dest.type = val.type;
3628 for (unsigned i = 0; i < 3; i++)
3629 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3630 break;
3631 }
3632
3633 case nir_intrinsic_load_num_work_groups: {
3634 const unsigned surface =
3635 cs_prog_data->binding_table.work_groups_start;
3636
3637 cs_prog_data->uses_num_work_groups = true;
3638
3639 fs_reg surf_index = brw_imm_ud(surface);
3640 brw_mark_surface_used(prog_data, surface);
3641
3642 /* Read the 3 GLuint components of gl_NumWorkGroups */
3643 for (unsigned i = 0; i < 3; i++) {
3644 fs_reg read_result =
3645 emit_untyped_read(bld, surf_index,
3646 brw_imm_ud(i << 2),
3647 1 /* dims */, 1 /* size */,
3648 BRW_PREDICATE_NONE);
3649 read_result.type = dest.type;
3650 bld.MOV(dest, read_result);
3651 dest = offset(dest, bld, 1);
3652 }
3653 break;
3654 }
3655
3656 case nir_intrinsic_shared_atomic_add:
3657 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3658 break;
3659 case nir_intrinsic_shared_atomic_imin:
3660 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3661 break;
3662 case nir_intrinsic_shared_atomic_umin:
3663 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3664 break;
3665 case nir_intrinsic_shared_atomic_imax:
3666 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3667 break;
3668 case nir_intrinsic_shared_atomic_umax:
3669 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3670 break;
3671 case nir_intrinsic_shared_atomic_and:
3672 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3673 break;
3674 case nir_intrinsic_shared_atomic_or:
3675 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3676 break;
3677 case nir_intrinsic_shared_atomic_xor:
3678 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3679 break;
3680 case nir_intrinsic_shared_atomic_exchange:
3681 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3682 break;
3683 case nir_intrinsic_shared_atomic_comp_swap:
3684 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3685 break;
3686
3687 case nir_intrinsic_load_shared: {
3688 assert(devinfo->gen >= 7);
3689
3690 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3691
3692 /* Get the offset to read from */
3693 fs_reg offset_reg;
3694 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3695 if (const_offset) {
3696 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3697 } else {
3698 offset_reg = vgrf(glsl_type::uint_type);
3699 bld.ADD(offset_reg,
3700 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3701 brw_imm_ud(instr->const_index[0]));
3702 }
3703
3704 /* Read the vector */
3705 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3706 instr->num_components);
3707 break;
3708 }
3709
3710 case nir_intrinsic_store_shared: {
3711 assert(devinfo->gen >= 7);
3712
3713 /* Block index */
3714 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3715
3716 /* Value */
3717 fs_reg val_reg = get_nir_src(instr->src[0]);
3718
3719 /* Writemask */
3720 unsigned writemask = instr->const_index[1];
3721
3722 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3723 * since the untyped writes below operate in units of 32-bits, which
3724 * means that we need to write twice as many components each time.
3725 * Also, we have to suffle 64-bit data to be in the appropriate layout
3726 * expected by our 32-bit write messages.
3727 */
3728 unsigned type_size = 4;
3729 if (nir_src_bit_size(instr->src[0]) == 64) {
3730 type_size = 8;
3731 val_reg = shuffle_64bit_data_for_32bit_write(bld,
3732 val_reg, instr->num_components);
3733 }
3734
3735 unsigned type_slots = type_size / 4;
3736
3737 /* Combine groups of consecutive enabled channels in one write
3738 * message. We use ffs to find the first enabled channel and then ffs on
3739 * the bit-inverse, down-shifted writemask to determine the length of
3740 * the block of enabled bits.
3741 */
3742 while (writemask) {
3743 unsigned first_component = ffs(writemask) - 1;
3744 unsigned length = ffs(~(writemask >> first_component)) - 1;
3745
3746 /* We can't write more than 2 64-bit components at once. Limit the
3747 * length of the write to what we can do and let the next iteration
3748 * handle the rest
3749 */
3750 if (type_size > 4)
3751 length = MIN2(2, length);
3752
3753 fs_reg offset_reg;
3754 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3755 if (const_offset) {
3756 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3757 type_size * first_component);
3758 } else {
3759 offset_reg = vgrf(glsl_type::uint_type);
3760 bld.ADD(offset_reg,
3761 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3762 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3763 }
3764
3765 emit_untyped_write(bld, surf_index, offset_reg,
3766 offset(val_reg, bld, first_component * type_slots),
3767 1 /* dims */, length * type_slots,
3768 BRW_PREDICATE_NONE);
3769
3770 /* Clear the bits in the writemask that we just wrote, then try
3771 * again to see if more channels are left.
3772 */
3773 writemask &= (15 << (first_component + length));
3774 }
3775
3776 break;
3777 }
3778
3779 default:
3780 nir_emit_intrinsic(bld, instr);
3781 break;
3782 }
3783 }
3784
3785 static fs_reg
3786 brw_nir_reduction_op_identity(const fs_builder &bld,
3787 nir_op op, brw_reg_type type)
3788 {
3789 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3790 switch (type_sz(type)) {
3791 case 2:
3792 assert(type != BRW_REGISTER_TYPE_HF);
3793 return retype(brw_imm_uw(value.u16[0]), type);
3794 case 4:
3795 return retype(brw_imm_ud(value.u32[0]), type);
3796 case 8:
3797 if (type == BRW_REGISTER_TYPE_DF)
3798 return setup_imm_df(bld, value.f64[0]);
3799 else
3800 return retype(brw_imm_u64(value.u64[0]), type);
3801 default:
3802 unreachable("Invalid type size");
3803 }
3804 }
3805
3806 static opcode
3807 brw_op_for_nir_reduction_op(nir_op op)
3808 {
3809 switch (op) {
3810 case nir_op_iadd: return BRW_OPCODE_ADD;
3811 case nir_op_fadd: return BRW_OPCODE_ADD;
3812 case nir_op_imul: return BRW_OPCODE_MUL;
3813 case nir_op_fmul: return BRW_OPCODE_MUL;
3814 case nir_op_imin: return BRW_OPCODE_SEL;
3815 case nir_op_umin: return BRW_OPCODE_SEL;
3816 case nir_op_fmin: return BRW_OPCODE_SEL;
3817 case nir_op_imax: return BRW_OPCODE_SEL;
3818 case nir_op_umax: return BRW_OPCODE_SEL;
3819 case nir_op_fmax: return BRW_OPCODE_SEL;
3820 case nir_op_iand: return BRW_OPCODE_AND;
3821 case nir_op_ior: return BRW_OPCODE_OR;
3822 case nir_op_ixor: return BRW_OPCODE_XOR;
3823 default:
3824 unreachable("Invalid reduction operation");
3825 }
3826 }
3827
3828 static brw_conditional_mod
3829 brw_cond_mod_for_nir_reduction_op(nir_op op)
3830 {
3831 switch (op) {
3832 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3833 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3834 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3835 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3836 case nir_op_imin: return BRW_CONDITIONAL_L;
3837 case nir_op_umin: return BRW_CONDITIONAL_L;
3838 case nir_op_fmin: return BRW_CONDITIONAL_L;
3839 case nir_op_imax: return BRW_CONDITIONAL_GE;
3840 case nir_op_umax: return BRW_CONDITIONAL_GE;
3841 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3842 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3843 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3844 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3845 default:
3846 unreachable("Invalid reduction operation");
3847 }
3848 }
3849
3850 void
3851 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3852 {
3853 fs_reg dest;
3854 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3855 dest = get_nir_dest(instr->dest);
3856
3857 switch (instr->intrinsic) {
3858 case nir_intrinsic_image_var_load:
3859 case nir_intrinsic_image_var_store:
3860 case nir_intrinsic_image_var_atomic_add:
3861 case nir_intrinsic_image_var_atomic_min:
3862 case nir_intrinsic_image_var_atomic_max:
3863 case nir_intrinsic_image_var_atomic_and:
3864 case nir_intrinsic_image_var_atomic_or:
3865 case nir_intrinsic_image_var_atomic_xor:
3866 case nir_intrinsic_image_var_atomic_exchange:
3867 case nir_intrinsic_image_var_atomic_comp_swap: {
3868 using namespace image_access;
3869
3870 if (stage == MESA_SHADER_FRAGMENT &&
3871 instr->intrinsic != nir_intrinsic_image_var_load)
3872 brw_wm_prog_data(prog_data)->has_side_effects = true;
3873
3874 /* Get the referenced image variable and type. */
3875 const nir_variable *var = instr->variables[0]->var;
3876 const glsl_type *type = var->type->without_array();
3877 const brw_reg_type base_type = get_image_base_type(type);
3878
3879 /* Get some metadata from the image intrinsic. */
3880 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3881 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3882 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3883 const unsigned format = var->data.image.format;
3884 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3885
3886 /* Get the arguments of the image intrinsic. */
3887 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3888 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3889 BRW_REGISTER_TYPE_UD);
3890 const fs_reg src0 = (info->num_srcs >= 3 ?
3891 retype(get_nir_src(instr->src[2]), base_type) :
3892 fs_reg());
3893 const fs_reg src1 = (info->num_srcs >= 4 ?
3894 retype(get_nir_src(instr->src[3]), base_type) :
3895 fs_reg());
3896 fs_reg tmp;
3897
3898 /* Emit an image load, store or atomic op. */
3899 if (instr->intrinsic == nir_intrinsic_image_var_load)
3900 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3901
3902 else if (instr->intrinsic == nir_intrinsic_image_var_store)
3903 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3904 var->data.image.write_only ? GL_NONE : format);
3905
3906 else
3907 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3908 surf_dims, arr_dims, dest_components,
3909 get_image_atomic_op(instr->intrinsic, type));
3910
3911 /* Assign the result. */
3912 for (unsigned c = 0; c < dest_components; ++c) {
3913 bld.MOV(offset(retype(dest, base_type), bld, c),
3914 offset(tmp, bld, c));
3915 }
3916 break;
3917 }
3918
3919 case nir_intrinsic_memory_barrier_atomic_counter:
3920 case nir_intrinsic_memory_barrier_buffer:
3921 case nir_intrinsic_memory_barrier_image:
3922 case nir_intrinsic_memory_barrier: {
3923 const fs_builder ubld = bld.group(8, 0);
3924 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3925 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3926 ->size_written = 2 * REG_SIZE;
3927 break;
3928 }
3929
3930 case nir_intrinsic_group_memory_barrier:
3931 case nir_intrinsic_memory_barrier_shared:
3932 /* We treat these workgroup-level barriers as no-ops. This should be
3933 * safe at present and as long as:
3934 *
3935 * - Memory access instructions are not subsequently reordered by the
3936 * compiler back-end.
3937 *
3938 * - All threads from a given compute shader workgroup fit within a
3939 * single subslice and therefore talk to the same HDC shared unit
3940 * what supposedly guarantees ordering and coherency between threads
3941 * from the same workgroup. This may change in the future when we
3942 * start splitting workgroups across multiple subslices.
3943 *
3944 * - The context is not in fault-and-stream mode, which could cause
3945 * memory transactions (including to SLM) prior to the barrier to be
3946 * replayed after the barrier if a pagefault occurs. This shouldn't
3947 * be a problem up to and including SKL because fault-and-stream is
3948 * not usable due to hardware issues, but that's likely to change in
3949 * the future.
3950 */
3951 break;
3952
3953 case nir_intrinsic_shader_clock: {
3954 /* We cannot do anything if there is an event, so ignore it for now */
3955 const fs_reg shader_clock = get_timestamp(bld);
3956 const fs_reg srcs[] = { component(shader_clock, 0),
3957 component(shader_clock, 1) };
3958 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3959 break;
3960 }
3961
3962 case nir_intrinsic_image_var_size: {
3963 /* Get the referenced image variable and type. */
3964 const nir_variable *var = instr->variables[0]->var;
3965 const glsl_type *type = var->type->without_array();
3966
3967 /* Get the size of the image. */
3968 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3969 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3970
3971 /* For 1DArray image types, the array index is stored in the Z component.
3972 * Fix this by swizzling the Z component to the Y component.
3973 */
3974 const bool is_1d_array_image =
3975 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3976 type->sampler_array;
3977
3978 /* For CubeArray images, we should count the number of cubes instead
3979 * of the number of faces. Fix it by dividing the (Z component) by 6.
3980 */
3981 const bool is_cube_array_image =
3982 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3983 type->sampler_array;
3984
3985 /* Copy all the components. */
3986 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3987 if ((int)c >= type->coordinate_components()) {
3988 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3989 brw_imm_d(1));
3990 } else if (c == 1 && is_1d_array_image) {
3991 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3992 offset(size, bld, 2));
3993 } else if (c == 2 && is_cube_array_image) {
3994 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3995 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3996 offset(size, bld, c), brw_imm_d(6));
3997 } else {
3998 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3999 offset(size, bld, c));
4000 }
4001 }
4002
4003 break;
4004 }
4005
4006 case nir_intrinsic_image_var_samples:
4007 /* The driver does not support multi-sampled images. */
4008 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4009 break;
4010
4011 case nir_intrinsic_load_uniform: {
4012 /* Offsets are in bytes but they should always aligned to
4013 * the type size
4014 */
4015 assert(instr->const_index[0] % 4 == 0 ||
4016 instr->const_index[0] % type_sz(dest.type) == 0);
4017
4018 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4019
4020 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4021 if (const_offset) {
4022 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
4023 /* For 16-bit types we add the module of the const_index[0]
4024 * offset to access to not 32-bit aligned element
4025 */
4026 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
4027
4028 for (unsigned j = 0; j < instr->num_components; j++) {
4029 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4030 }
4031 } else {
4032 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4033 BRW_REGISTER_TYPE_UD);
4034
4035 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4036 * go past the end of the uniform. In order to keep the n'th
4037 * component from running past, we subtract off the size of all but
4038 * one component of the vector.
4039 */
4040 assert(instr->const_index[1] >=
4041 instr->num_components * (int) type_sz(dest.type));
4042 unsigned read_size = instr->const_index[1] -
4043 (instr->num_components - 1) * type_sz(dest.type);
4044
4045 bool supports_64bit_indirects =
4046 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4047
4048 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4049 for (unsigned j = 0; j < instr->num_components; j++) {
4050 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4051 offset(dest, bld, j), offset(src, bld, j),
4052 indirect, brw_imm_ud(read_size));
4053 }
4054 } else {
4055 const unsigned num_mov_indirects =
4056 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4057 /* We read a little bit less per MOV INDIRECT, as they are now
4058 * 32-bits ones instead of 64-bit. Fix read_size then.
4059 */
4060 const unsigned read_size_32bit = read_size -
4061 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4062 for (unsigned j = 0; j < instr->num_components; j++) {
4063 for (unsigned i = 0; i < num_mov_indirects; i++) {
4064 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4065 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4066 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4067 indirect, brw_imm_ud(read_size_32bit));
4068 }
4069 }
4070 }
4071 }
4072 break;
4073 }
4074
4075 case nir_intrinsic_load_ubo: {
4076 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4077 fs_reg surf_index;
4078
4079 if (const_index) {
4080 const unsigned index = stage_prog_data->binding_table.ubo_start +
4081 const_index->u32[0];
4082 surf_index = brw_imm_ud(index);
4083 brw_mark_surface_used(prog_data, index);
4084 } else {
4085 /* The block index is not a constant. Evaluate the index expression
4086 * per-channel and add the base UBO index; we have to select a value
4087 * from any live channel.
4088 */
4089 surf_index = vgrf(glsl_type::uint_type);
4090 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4091 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4092 surf_index = bld.emit_uniformize(surf_index);
4093
4094 /* Assume this may touch any UBO. It would be nice to provide
4095 * a tighter bound, but the array information is already lowered away.
4096 */
4097 brw_mark_surface_used(prog_data,
4098 stage_prog_data->binding_table.ubo_start +
4099 nir->info.num_ubos - 1);
4100 }
4101
4102 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4103 if (const_offset == NULL) {
4104 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4105 BRW_REGISTER_TYPE_UD);
4106
4107 for (int i = 0; i < instr->num_components; i++)
4108 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4109 base_offset, i * type_sz(dest.type));
4110 } else {
4111 /* Even if we are loading doubles, a pull constant load will load
4112 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4113 * need to load a full dvec4 we will have to emit 2 loads. This is
4114 * similar to demote_pull_constants(), except that in that case we
4115 * see individual accesses to each component of the vector and then
4116 * we let CSE deal with duplicate loads. Here we see a vector access
4117 * and we have to split it if necessary.
4118 */
4119 const unsigned type_size = type_sz(dest.type);
4120
4121 /* See if we've selected this as a push constant candidate */
4122 if (const_index) {
4123 const unsigned ubo_block = const_index->u32[0];
4124 const unsigned offset_256b = const_offset->u32[0] / 32;
4125
4126 fs_reg push_reg;
4127 for (int i = 0; i < 4; i++) {
4128 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4129 if (range->block == ubo_block &&
4130 offset_256b >= range->start &&
4131 offset_256b < range->start + range->length) {
4132
4133 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4134 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4135 break;
4136 }
4137 }
4138
4139 if (push_reg.file != BAD_FILE) {
4140 for (unsigned i = 0; i < instr->num_components; i++) {
4141 bld.MOV(offset(dest, bld, i),
4142 byte_offset(push_reg, i * type_size));
4143 }
4144 break;
4145 }
4146 }
4147
4148 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4149 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4150 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4151
4152 for (unsigned c = 0; c < instr->num_components;) {
4153 const unsigned base = const_offset->u32[0] + c * type_size;
4154 /* Number of usable components in the next block-aligned load. */
4155 const unsigned count = MIN2(instr->num_components - c,
4156 (block_sz - base % block_sz) / type_size);
4157
4158 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4159 packed_consts, surf_index,
4160 brw_imm_ud(base & ~(block_sz - 1)));
4161
4162 const fs_reg consts =
4163 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4164 dest.type);
4165
4166 for (unsigned d = 0; d < count; d++)
4167 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4168
4169 c += count;
4170 }
4171 }
4172 break;
4173 }
4174
4175 case nir_intrinsic_load_ssbo: {
4176 assert(devinfo->gen >= 7);
4177
4178 nir_const_value *const_uniform_block =
4179 nir_src_as_const_value(instr->src[0]);
4180
4181 fs_reg surf_index;
4182 if (const_uniform_block) {
4183 unsigned index = stage_prog_data->binding_table.ssbo_start +
4184 const_uniform_block->u32[0];
4185 surf_index = brw_imm_ud(index);
4186 brw_mark_surface_used(prog_data, index);
4187 } else {
4188 surf_index = vgrf(glsl_type::uint_type);
4189 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4190 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4191
4192 /* Assume this may touch any UBO. It would be nice to provide
4193 * a tighter bound, but the array information is already lowered away.
4194 */
4195 brw_mark_surface_used(prog_data,
4196 stage_prog_data->binding_table.ssbo_start +
4197 nir->info.num_ssbos - 1);
4198 }
4199
4200 fs_reg offset_reg;
4201 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4202 if (const_offset) {
4203 offset_reg = brw_imm_ud(const_offset->u32[0]);
4204 } else {
4205 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4206 }
4207
4208 /* Read the vector */
4209 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4210 instr->num_components);
4211
4212 break;
4213 }
4214
4215 case nir_intrinsic_store_ssbo: {
4216 assert(devinfo->gen >= 7);
4217
4218 if (stage == MESA_SHADER_FRAGMENT)
4219 brw_wm_prog_data(prog_data)->has_side_effects = true;
4220
4221 /* Block index */
4222 fs_reg surf_index;
4223 nir_const_value *const_uniform_block =
4224 nir_src_as_const_value(instr->src[1]);
4225 if (const_uniform_block) {
4226 unsigned index = stage_prog_data->binding_table.ssbo_start +
4227 const_uniform_block->u32[0];
4228 surf_index = brw_imm_ud(index);
4229 brw_mark_surface_used(prog_data, index);
4230 } else {
4231 surf_index = vgrf(glsl_type::uint_type);
4232 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4233 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4234
4235 brw_mark_surface_used(prog_data,
4236 stage_prog_data->binding_table.ssbo_start +
4237 nir->info.num_ssbos - 1);
4238 }
4239
4240 /* Value */
4241 fs_reg val_reg = get_nir_src(instr->src[0]);
4242
4243 /* Writemask */
4244 unsigned writemask = instr->const_index[0];
4245
4246 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4247 * since the untyped writes below operate in units of 32-bits, which
4248 * means that we need to write twice as many components each time.
4249 * Also, we have to suffle 64-bit data to be in the appropriate layout
4250 * expected by our 32-bit write messages.
4251 */
4252 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4253 unsigned type_size = bit_size / 8;
4254
4255 /* Combine groups of consecutive enabled channels in one write
4256 * message. We use ffs to find the first enabled channel and then ffs on
4257 * the bit-inverse, down-shifted writemask to determine the num_components
4258 * of the block of enabled bits.
4259 */
4260 while (writemask) {
4261 unsigned first_component = ffs(writemask) - 1;
4262 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4263 fs_reg write_src = offset(val_reg, bld, first_component);
4264
4265 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4266
4267 if (type_size > 4) {
4268 /* We can't write more than 2 64-bit components at once. Limit
4269 * the num_components of the write to what we can do and let the next
4270 * iteration handle the rest.
4271 */
4272 num_components = MIN2(2, num_components);
4273 write_src = shuffle_64bit_data_for_32bit_write(bld, write_src,
4274 num_components);
4275 } else if (type_size < 4) {
4276 assert(type_size == 2);
4277 /* For 16-bit types we pack two consecutive values into a 32-bit
4278 * word and use an untyped write message. For single values or not
4279 * 32-bit-aligned we need to use byte-scattered writes because
4280 * untyped writes works with 32-bit components with 32-bit
4281 * alignment. byte_scattered_write messages only support one
4282 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4283 * could be enabled we can not guarantee that not constant offsets
4284 * to be 32-bit aligned for 16-bit types. For example an array, of
4285 * 16-bit vec3 with array element stride of 6.
4286 *
4287 * In the case of 32-bit aligned constant offsets if there is
4288 * a 3-components vector we submit one untyped-write message
4289 * of 32-bit (first two components), and one byte-scattered
4290 * write message (the last component).
4291 */
4292
4293 if ( !const_offset || ((const_offset->u32[0] +
4294 type_size * first_component) % 4)) {
4295 /* If we use a .yz writemask we also need to emit 2
4296 * byte-scattered write messages because of y-component not
4297 * being aligned to 32-bit.
4298 */
4299 num_components = 1;
4300 } else if (num_components > 2 && (num_components % 2)) {
4301 /* If there is an odd number of consecutive components we left
4302 * the not paired component for a following emit of length == 1
4303 * with byte_scattered_write.
4304 */
4305 num_components --;
4306 }
4307 /* For num_components == 1 we are also shuffling the component
4308 * because byte scattered writes of 16-bit need values to be dword
4309 * aligned. Shuffling only one component would be the same as
4310 * striding it.
4311 */
4312 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D,
4313 DIV_ROUND_UP(num_components, 2));
4314 shuffle_16bit_data_for_32bit_write(bld, tmp, write_src,
4315 num_components);
4316 write_src = tmp;
4317 }
4318
4319 fs_reg offset_reg;
4320
4321 if (const_offset) {
4322 offset_reg = brw_imm_ud(const_offset->u32[0] +
4323 type_size * first_component);
4324 } else {
4325 offset_reg = vgrf(glsl_type::uint_type);
4326 bld.ADD(offset_reg,
4327 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4328 brw_imm_ud(type_size * first_component));
4329 }
4330
4331 if (type_size < 4 && num_components == 1) {
4332 assert(type_size == 2);
4333 /* Untyped Surface messages have a fixed 32-bit size, so we need
4334 * to rely on byte scattered in order to write 16-bit elements.
4335 * The byte_scattered_write message needs that every written 16-bit
4336 * type to be aligned 32-bits (stride=2).
4337 */
4338 emit_byte_scattered_write(bld, surf_index, offset_reg,
4339 write_src,
4340 1 /* dims */, 1,
4341 bit_size,
4342 BRW_PREDICATE_NONE);
4343 } else {
4344 assert(num_components * type_size <= 16);
4345 assert((num_components * type_size) % 4 == 0);
4346 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4347 offset_reg.ud % 4 == 0);
4348 unsigned num_slots = (num_components * type_size) / 4;
4349
4350 emit_untyped_write(bld, surf_index, offset_reg,
4351 write_src,
4352 1 /* dims */, num_slots,
4353 BRW_PREDICATE_NONE);
4354 }
4355
4356 /* Clear the bits in the writemask that we just wrote, then try
4357 * again to see if more channels are left.
4358 */
4359 writemask &= (15 << (first_component + num_components));
4360 }
4361 break;
4362 }
4363
4364 case nir_intrinsic_store_output: {
4365 fs_reg src = get_nir_src(instr->src[0]);
4366
4367 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4368 assert(const_offset && "Indirect output stores not allowed");
4369
4370 unsigned num_components = instr->num_components;
4371 unsigned first_component = nir_intrinsic_component(instr);
4372 if (nir_src_bit_size(instr->src[0]) == 64) {
4373 src = shuffle_64bit_data_for_32bit_write(bld, src, num_components);
4374 num_components *= 2;
4375 }
4376
4377 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4378 4 * const_offset->u32[0]), src.type);
4379 for (unsigned j = 0; j < num_components; j++) {
4380 bld.MOV(offset(new_dest, bld, j + first_component),
4381 offset(src, bld, j));
4382 }
4383 break;
4384 }
4385
4386 case nir_intrinsic_ssbo_atomic_add:
4387 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4388 break;
4389 case nir_intrinsic_ssbo_atomic_imin:
4390 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4391 break;
4392 case nir_intrinsic_ssbo_atomic_umin:
4393 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4394 break;
4395 case nir_intrinsic_ssbo_atomic_imax:
4396 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4397 break;
4398 case nir_intrinsic_ssbo_atomic_umax:
4399 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4400 break;
4401 case nir_intrinsic_ssbo_atomic_and:
4402 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4403 break;
4404 case nir_intrinsic_ssbo_atomic_or:
4405 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4406 break;
4407 case nir_intrinsic_ssbo_atomic_xor:
4408 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4409 break;
4410 case nir_intrinsic_ssbo_atomic_exchange:
4411 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4412 break;
4413 case nir_intrinsic_ssbo_atomic_comp_swap:
4414 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4415 break;
4416
4417 case nir_intrinsic_get_buffer_size: {
4418 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4419 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4420
4421 /* A resinfo's sampler message is used to get the buffer size. The
4422 * SIMD8's writeback message consists of four registers and SIMD16's
4423 * writeback message consists of 8 destination registers (two per each
4424 * component). Because we are only interested on the first channel of
4425 * the first returned component, where resinfo returns the buffer size
4426 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4427 * the dispatch width.
4428 */
4429 const fs_builder ubld = bld.exec_all().group(8, 0);
4430 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4431 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4432
4433 /* Set LOD = 0 */
4434 ubld.MOV(src_payload, brw_imm_d(0));
4435
4436 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4437 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4438 src_payload, brw_imm_ud(index));
4439 inst->header_size = 0;
4440 inst->mlen = 1;
4441 inst->size_written = 4 * REG_SIZE;
4442
4443 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4444 *
4445 * "Out-of-bounds checking is always performed at a DWord granularity. If
4446 * any part of the DWord is out-of-bounds then the whole DWord is
4447 * considered out-of-bounds."
4448 *
4449 * This implies that types with size smaller than 4-bytes need to be
4450 * padded if they don't complete the last dword of the buffer. But as we
4451 * need to maintain the original size we need to reverse the padding
4452 * calculation to return the correct size to know the number of elements
4453 * of an unsized array. As we stored in the last two bits of the surface
4454 * size the needed padding for the buffer, we calculate here the
4455 * original buffer_size reversing the surface_size calculation:
4456 *
4457 * surface_size = isl_align(buffer_size, 4) +
4458 * (isl_align(buffer_size) - buffer_size)
4459 *
4460 * buffer_size = surface_size & ~3 - surface_size & 3
4461 */
4462
4463 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4464 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4465 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4466
4467 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4468 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4469 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4470
4471 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4472
4473 brw_mark_surface_used(prog_data, index);
4474 break;
4475 }
4476
4477 case nir_intrinsic_load_subgroup_invocation:
4478 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4479 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4480 break;
4481
4482 case nir_intrinsic_load_subgroup_eq_mask:
4483 case nir_intrinsic_load_subgroup_ge_mask:
4484 case nir_intrinsic_load_subgroup_gt_mask:
4485 case nir_intrinsic_load_subgroup_le_mask:
4486 case nir_intrinsic_load_subgroup_lt_mask:
4487 unreachable("not reached");
4488
4489 case nir_intrinsic_vote_any: {
4490 const fs_builder ubld = bld.exec_all().group(1, 0);
4491
4492 /* The any/all predicates do not consider channel enables. To prevent
4493 * dead channels from affecting the result, we initialize the flag with
4494 * with the identity value for the logical operation.
4495 */
4496 if (dispatch_width == 32) {
4497 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4498 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4499 brw_imm_ud(0));
4500 } else {
4501 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4502 }
4503 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4504
4505 /* For some reason, the any/all predicates don't work properly with
4506 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4507 * doesn't read the correct subset of the flag register and you end up
4508 * getting garbage in the second half. Work around this by using a pair
4509 * of 1-wide MOVs and scattering the result.
4510 */
4511 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4512 ubld.MOV(res1, brw_imm_d(0));
4513 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4514 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4515 BRW_PREDICATE_ALIGN1_ANY32H,
4516 ubld.MOV(res1, brw_imm_d(-1)));
4517
4518 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4519 break;
4520 }
4521 case nir_intrinsic_vote_all: {
4522 const fs_builder ubld = bld.exec_all().group(1, 0);
4523
4524 /* The any/all predicates do not consider channel enables. To prevent
4525 * dead channels from affecting the result, we initialize the flag with
4526 * with the identity value for the logical operation.
4527 */
4528 if (dispatch_width == 32) {
4529 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4530 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4531 brw_imm_ud(0xffffffff));
4532 } else {
4533 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4534 }
4535 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4536
4537 /* For some reason, the any/all predicates don't work properly with
4538 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4539 * doesn't read the correct subset of the flag register and you end up
4540 * getting garbage in the second half. Work around this by using a pair
4541 * of 1-wide MOVs and scattering the result.
4542 */
4543 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4544 ubld.MOV(res1, brw_imm_d(0));
4545 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4546 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4547 BRW_PREDICATE_ALIGN1_ALL32H,
4548 ubld.MOV(res1, brw_imm_d(-1)));
4549
4550 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4551 break;
4552 }
4553 case nir_intrinsic_vote_feq:
4554 case nir_intrinsic_vote_ieq: {
4555 fs_reg value = get_nir_src(instr->src[0]);
4556 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4557 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4558 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4559 }
4560
4561 fs_reg uniformized = bld.emit_uniformize(value);
4562 const fs_builder ubld = bld.exec_all().group(1, 0);
4563
4564 /* The any/all predicates do not consider channel enables. To prevent
4565 * dead channels from affecting the result, we initialize the flag with
4566 * with the identity value for the logical operation.
4567 */
4568 if (dispatch_width == 32) {
4569 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4570 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4571 brw_imm_ud(0xffffffff));
4572 } else {
4573 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4574 }
4575 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4576
4577 /* For some reason, the any/all predicates don't work properly with
4578 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4579 * doesn't read the correct subset of the flag register and you end up
4580 * getting garbage in the second half. Work around this by using a pair
4581 * of 1-wide MOVs and scattering the result.
4582 */
4583 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4584 ubld.MOV(res1, brw_imm_d(0));
4585 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4586 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4587 BRW_PREDICATE_ALIGN1_ALL32H,
4588 ubld.MOV(res1, brw_imm_d(-1)));
4589
4590 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4591 break;
4592 }
4593
4594 case nir_intrinsic_ballot: {
4595 const fs_reg value = retype(get_nir_src(instr->src[0]),
4596 BRW_REGISTER_TYPE_UD);
4597 struct brw_reg flag = brw_flag_reg(0, 0);
4598 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4599 * as f0.0. This is a problem for fragment programs as we currently use
4600 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4601 * programs yet so this isn't a problem. When we do, something will
4602 * have to change.
4603 */
4604 if (dispatch_width == 32)
4605 flag.type = BRW_REGISTER_TYPE_UD;
4606
4607 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4608 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4609
4610 if (instr->dest.ssa.bit_size > 32) {
4611 dest.type = BRW_REGISTER_TYPE_UQ;
4612 } else {
4613 dest.type = BRW_REGISTER_TYPE_UD;
4614 }
4615 bld.MOV(dest, flag);
4616 break;
4617 }
4618
4619 case nir_intrinsic_read_invocation: {
4620 const fs_reg value = get_nir_src(instr->src[0]);
4621 const fs_reg invocation = get_nir_src(instr->src[1]);
4622 fs_reg tmp = bld.vgrf(value.type);
4623
4624 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4625 bld.emit_uniformize(invocation));
4626
4627 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4628 break;
4629 }
4630
4631 case nir_intrinsic_read_first_invocation: {
4632 const fs_reg value = get_nir_src(instr->src[0]);
4633 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4634 break;
4635 }
4636
4637 case nir_intrinsic_shuffle: {
4638 const fs_reg value = get_nir_src(instr->src[0]);
4639 const fs_reg index = get_nir_src(instr->src[1]);
4640
4641 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4642 break;
4643 }
4644
4645 case nir_intrinsic_first_invocation: {
4646 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4647 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4648 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4649 fs_reg(component(tmp, 0)));
4650 break;
4651 }
4652
4653 case nir_intrinsic_quad_broadcast: {
4654 const fs_reg value = get_nir_src(instr->src[0]);
4655 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4656 assert(nir_src_bit_size(instr->src[1]) == 32);
4657
4658 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4659 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4660 break;
4661 }
4662
4663 case nir_intrinsic_quad_swap_horizontal: {
4664 const fs_reg value = get_nir_src(instr->src[0]);
4665 const fs_reg tmp = bld.vgrf(value.type);
4666 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4667
4668 const fs_reg src_left = horiz_stride(value, 2);
4669 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4670 const fs_reg tmp_left = horiz_stride(tmp, 2);
4671 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4672
4673 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4674 *
4675 * "When source or destination datatype is 64b or operation is
4676 * integer DWord multiply, regioning in Align1 must follow
4677 * these rules:
4678 *
4679 * [...]
4680 *
4681 * 3. Source and Destination offset must be the same, except
4682 * the case of scalar source."
4683 *
4684 * In order to work around this, we have to emit two 32-bit MOVs instead
4685 * of a single 64-bit MOV to do the shuffle.
4686 */
4687 if (type_sz(value.type) > 4 &&
4688 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4689 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4690 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4691 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4692 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4693 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4694 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4695 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4696 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4697 } else {
4698 ubld.MOV(tmp_left, src_right);
4699 ubld.MOV(tmp_right, src_left);
4700 }
4701 bld.MOV(retype(dest, value.type), tmp);
4702 break;
4703 }
4704
4705 case nir_intrinsic_quad_swap_vertical: {
4706 const fs_reg value = get_nir_src(instr->src[0]);
4707 if (nir_src_bit_size(instr->src[0]) == 32) {
4708 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4709 const fs_reg tmp = bld.vgrf(value.type);
4710 const fs_builder ubld = bld.exec_all();
4711 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4712 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4713 bld.MOV(retype(dest, value.type), tmp);
4714 } else {
4715 /* For larger data types, we have to either emit dispatch_width many
4716 * MOVs or else fall back to doing indirects.
4717 */
4718 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4719 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4720 brw_imm_w(0x2));
4721 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4722 }
4723 break;
4724 }
4725
4726 case nir_intrinsic_quad_swap_diagonal: {
4727 const fs_reg value = get_nir_src(instr->src[0]);
4728 if (nir_src_bit_size(instr->src[0]) == 32) {
4729 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4730 const fs_reg tmp = bld.vgrf(value.type);
4731 const fs_builder ubld = bld.exec_all();
4732 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4733 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4734 bld.MOV(retype(dest, value.type), tmp);
4735 } else {
4736 /* For larger data types, we have to either emit dispatch_width many
4737 * MOVs or else fall back to doing indirects.
4738 */
4739 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4740 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4741 brw_imm_w(0x3));
4742 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4743 }
4744 break;
4745 }
4746
4747 case nir_intrinsic_reduce: {
4748 fs_reg src = get_nir_src(instr->src[0]);
4749 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4750 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4751 if (cluster_size == 0 || cluster_size > dispatch_width)
4752 cluster_size = dispatch_width;
4753
4754 /* Figure out the source type */
4755 src.type = brw_type_for_nir_type(devinfo,
4756 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4757 nir_src_bit_size(instr->src[0])));
4758
4759 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4760 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4761 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4762
4763 /* Set up a register for all of our scratching around and initialize it
4764 * to reduction operation's identity value.
4765 */
4766 fs_reg scan = bld.vgrf(src.type);
4767 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4768
4769 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4770
4771 dest.type = src.type;
4772 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4773 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4774 * the distance between clusters is at least 2 GRFs. In this case,
4775 * we don't need the weird striding of the CLUSTER_BROADCAST
4776 * instruction and can just do regular MOVs.
4777 */
4778 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4779 const unsigned groups =
4780 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4781 const unsigned group_size = dispatch_width / groups;
4782 for (unsigned i = 0; i < groups; i++) {
4783 const unsigned cluster = (i * group_size) / cluster_size;
4784 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4785 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4786 component(scan, comp));
4787 }
4788 } else {
4789 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4790 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4791 }
4792 break;
4793 }
4794
4795 case nir_intrinsic_inclusive_scan:
4796 case nir_intrinsic_exclusive_scan: {
4797 fs_reg src = get_nir_src(instr->src[0]);
4798 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4799
4800 /* Figure out the source type */
4801 src.type = brw_type_for_nir_type(devinfo,
4802 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4803 nir_src_bit_size(instr->src[0])));
4804
4805 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4806 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4807 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4808
4809 /* Set up a register for all of our scratching around and initialize it
4810 * to reduction operation's identity value.
4811 */
4812 fs_reg scan = bld.vgrf(src.type);
4813 const fs_builder allbld = bld.exec_all();
4814 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4815
4816 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4817 /* Exclusive scan is a bit harder because we have to do an annoying
4818 * shift of the contents before we can begin. To make things worse,
4819 * we can't do this with a normal stride; we have to use indirects.
4820 */
4821 fs_reg shifted = bld.vgrf(src.type);
4822 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4823 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4824 brw_imm_w(-1));
4825 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4826 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4827 scan = shifted;
4828 }
4829
4830 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4831
4832 bld.MOV(retype(dest, src.type), scan);
4833 break;
4834 }
4835
4836 default:
4837 unreachable("unknown intrinsic");
4838 }
4839 }
4840
4841 void
4842 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4843 int op, nir_intrinsic_instr *instr)
4844 {
4845 if (stage == MESA_SHADER_FRAGMENT)
4846 brw_wm_prog_data(prog_data)->has_side_effects = true;
4847
4848 fs_reg dest;
4849 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4850 dest = get_nir_dest(instr->dest);
4851
4852 fs_reg surface;
4853 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4854 if (const_surface) {
4855 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4856 const_surface->u32[0];
4857 surface = brw_imm_ud(surf_index);
4858 brw_mark_surface_used(prog_data, surf_index);
4859 } else {
4860 surface = vgrf(glsl_type::uint_type);
4861 bld.ADD(surface, get_nir_src(instr->src[0]),
4862 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4863
4864 /* Assume this may touch any SSBO. This is the same we do for other
4865 * UBO/SSBO accesses with non-constant surface.
4866 */
4867 brw_mark_surface_used(prog_data,
4868 stage_prog_data->binding_table.ssbo_start +
4869 nir->info.num_ssbos - 1);
4870 }
4871
4872 fs_reg offset = get_nir_src(instr->src[1]);
4873 fs_reg data1 = get_nir_src(instr->src[2]);
4874 fs_reg data2;
4875 if (op == BRW_AOP_CMPWR)
4876 data2 = get_nir_src(instr->src[3]);
4877
4878 /* Emit the actual atomic operation */
4879
4880 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4881 data1, data2,
4882 1 /* dims */, 1 /* rsize */,
4883 op,
4884 BRW_PREDICATE_NONE);
4885 dest.type = atomic_result.type;
4886 bld.MOV(dest, atomic_result);
4887 }
4888
4889 void
4890 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4891 int op, nir_intrinsic_instr *instr)
4892 {
4893 fs_reg dest;
4894 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4895 dest = get_nir_dest(instr->dest);
4896
4897 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4898 fs_reg offset;
4899 fs_reg data1 = get_nir_src(instr->src[1]);
4900 fs_reg data2;
4901 if (op == BRW_AOP_CMPWR)
4902 data2 = get_nir_src(instr->src[2]);
4903
4904 /* Get the offset */
4905 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4906 if (const_offset) {
4907 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4908 } else {
4909 offset = vgrf(glsl_type::uint_type);
4910 bld.ADD(offset,
4911 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4912 brw_imm_ud(instr->const_index[0]));
4913 }
4914
4915 /* Emit the actual atomic operation operation */
4916
4917 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4918 data1, data2,
4919 1 /* dims */, 1 /* rsize */,
4920 op,
4921 BRW_PREDICATE_NONE);
4922 dest.type = atomic_result.type;
4923 bld.MOV(dest, atomic_result);
4924 }
4925
4926 void
4927 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4928 {
4929 unsigned texture = instr->texture_index;
4930 unsigned sampler = instr->sampler_index;
4931
4932 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4933
4934 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4935 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4936
4937 int lod_components = 0;
4938
4939 /* The hardware requires a LOD for buffer textures */
4940 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4941 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4942
4943 uint32_t header_bits = 0;
4944 for (unsigned i = 0; i < instr->num_srcs; i++) {
4945 fs_reg src = get_nir_src(instr->src[i].src);
4946 switch (instr->src[i].src_type) {
4947 case nir_tex_src_bias:
4948 srcs[TEX_LOGICAL_SRC_LOD] =
4949 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4950 break;
4951 case nir_tex_src_comparator:
4952 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4953 break;
4954 case nir_tex_src_coord:
4955 switch (instr->op) {
4956 case nir_texop_txf:
4957 case nir_texop_txf_ms:
4958 case nir_texop_txf_ms_mcs:
4959 case nir_texop_samples_identical:
4960 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4961 break;
4962 default:
4963 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4964 break;
4965 }
4966 break;
4967 case nir_tex_src_ddx:
4968 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4969 lod_components = nir_tex_instr_src_size(instr, i);
4970 break;
4971 case nir_tex_src_ddy:
4972 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4973 break;
4974 case nir_tex_src_lod:
4975 switch (instr->op) {
4976 case nir_texop_txs:
4977 srcs[TEX_LOGICAL_SRC_LOD] =
4978 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4979 break;
4980 case nir_texop_txf:
4981 srcs[TEX_LOGICAL_SRC_LOD] =
4982 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4983 break;
4984 default:
4985 srcs[TEX_LOGICAL_SRC_LOD] =
4986 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4987 break;
4988 }
4989 break;
4990 case nir_tex_src_ms_index:
4991 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4992 break;
4993
4994 case nir_tex_src_offset: {
4995 nir_const_value *const_offset =
4996 nir_src_as_const_value(instr->src[i].src);
4997 unsigned offset_bits = 0;
4998 if (const_offset &&
4999 brw_texture_offset(const_offset->i32,
5000 nir_tex_instr_src_size(instr, i),
5001 &offset_bits)) {
5002 header_bits |= offset_bits;
5003 } else {
5004 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5005 retype(src, BRW_REGISTER_TYPE_D);
5006 }
5007 break;
5008 }
5009
5010 case nir_tex_src_projector:
5011 unreachable("should be lowered");
5012
5013 case nir_tex_src_texture_offset: {
5014 /* Figure out the highest possible texture index and mark it as used */
5015 uint32_t max_used = texture + instr->texture_array_size - 1;
5016 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5017 max_used += stage_prog_data->binding_table.gather_texture_start;
5018 } else {
5019 max_used += stage_prog_data->binding_table.texture_start;
5020 }
5021 brw_mark_surface_used(prog_data, max_used);
5022
5023 /* Emit code to evaluate the actual indexing expression */
5024 fs_reg tmp = vgrf(glsl_type::uint_type);
5025 bld.ADD(tmp, src, brw_imm_ud(texture));
5026 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5027 break;
5028 }
5029
5030 case nir_tex_src_sampler_offset: {
5031 /* Emit code to evaluate the actual indexing expression */
5032 fs_reg tmp = vgrf(glsl_type::uint_type);
5033 bld.ADD(tmp, src, brw_imm_ud(sampler));
5034 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5035 break;
5036 }
5037
5038 case nir_tex_src_ms_mcs:
5039 assert(instr->op == nir_texop_txf_ms);
5040 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5041 break;
5042
5043 case nir_tex_src_plane: {
5044 nir_const_value *const_plane =
5045 nir_src_as_const_value(instr->src[i].src);
5046 const uint32_t plane = const_plane->u32[0];
5047 const uint32_t texture_index =
5048 instr->texture_index +
5049 stage_prog_data->binding_table.plane_start[plane] -
5050 stage_prog_data->binding_table.texture_start;
5051
5052 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5053 break;
5054 }
5055
5056 default:
5057 unreachable("unknown texture source");
5058 }
5059 }
5060
5061 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5062 (instr->op == nir_texop_txf_ms ||
5063 instr->op == nir_texop_samples_identical)) {
5064 if (devinfo->gen >= 7 &&
5065 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5066 srcs[TEX_LOGICAL_SRC_MCS] =
5067 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5068 instr->coord_components,
5069 srcs[TEX_LOGICAL_SRC_SURFACE]);
5070 } else {
5071 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5072 }
5073 }
5074
5075 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5076 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5077
5078 enum opcode opcode;
5079 switch (instr->op) {
5080 case nir_texop_tex:
5081 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5082 SHADER_OPCODE_TXL_LOGICAL);
5083 break;
5084 case nir_texop_txb:
5085 opcode = FS_OPCODE_TXB_LOGICAL;
5086 break;
5087 case nir_texop_txl:
5088 opcode = SHADER_OPCODE_TXL_LOGICAL;
5089 break;
5090 case nir_texop_txd:
5091 opcode = SHADER_OPCODE_TXD_LOGICAL;
5092 break;
5093 case nir_texop_txf:
5094 opcode = SHADER_OPCODE_TXF_LOGICAL;
5095 break;
5096 case nir_texop_txf_ms:
5097 if ((key_tex->msaa_16 & (1 << sampler)))
5098 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5099 else
5100 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5101 break;
5102 case nir_texop_txf_ms_mcs:
5103 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5104 break;
5105 case nir_texop_query_levels:
5106 case nir_texop_txs:
5107 opcode = SHADER_OPCODE_TXS_LOGICAL;
5108 break;
5109 case nir_texop_lod:
5110 opcode = SHADER_OPCODE_LOD_LOGICAL;
5111 break;
5112 case nir_texop_tg4:
5113 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5114 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5115 else
5116 opcode = SHADER_OPCODE_TG4_LOGICAL;
5117 break;
5118 case nir_texop_texture_samples:
5119 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5120 break;
5121 case nir_texop_samples_identical: {
5122 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5123
5124 /* If mcs is an immediate value, it means there is no MCS. In that case
5125 * just return false.
5126 */
5127 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5128 bld.MOV(dst, brw_imm_ud(0u));
5129 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5130 fs_reg tmp = vgrf(glsl_type::uint_type);
5131 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5132 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5133 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5134 } else {
5135 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5136 BRW_CONDITIONAL_EQ);
5137 }
5138 return;
5139 }
5140 default:
5141 unreachable("unknown texture opcode");
5142 }
5143
5144 if (instr->op == nir_texop_tg4) {
5145 if (instr->component == 1 &&
5146 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5147 /* gather4 sampler is broken for green channel on RG32F --
5148 * we must ask for blue instead.
5149 */
5150 header_bits |= 2 << 16;
5151 } else {
5152 header_bits |= instr->component << 16;
5153 }
5154 }
5155
5156 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5157 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5158 inst->offset = header_bits;
5159
5160 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5161 if (devinfo->gen >= 9 &&
5162 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5163 unsigned write_mask = instr->dest.is_ssa ?
5164 nir_ssa_def_components_read(&instr->dest.ssa):
5165 (1 << dest_size) - 1;
5166 assert(write_mask != 0); /* dead code should have been eliminated */
5167 inst->size_written = util_last_bit(write_mask) *
5168 inst->dst.component_size(inst->exec_size);
5169 } else {
5170 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5171 }
5172
5173 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5174 inst->shadow_compare = true;
5175
5176 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5177 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5178
5179 fs_reg nir_dest[4];
5180 for (unsigned i = 0; i < dest_size; i++)
5181 nir_dest[i] = offset(dst, bld, i);
5182
5183 if (instr->op == nir_texop_query_levels) {
5184 /* # levels is in .w */
5185 nir_dest[0] = offset(dst, bld, 3);
5186 } else if (instr->op == nir_texop_txs &&
5187 dest_size >= 3 && devinfo->gen < 7) {
5188 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5189 fs_reg depth = offset(dst, bld, 2);
5190 nir_dest[2] = vgrf(glsl_type::int_type);
5191 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5192 }
5193
5194 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5195 }
5196
5197 void
5198 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5199 {
5200 switch (instr->type) {
5201 case nir_jump_break:
5202 bld.emit(BRW_OPCODE_BREAK);
5203 break;
5204 case nir_jump_continue:
5205 bld.emit(BRW_OPCODE_CONTINUE);
5206 break;
5207 case nir_jump_return:
5208 default:
5209 unreachable("unknown jump");
5210 }
5211 }
5212
5213 /**
5214 * This helper takes the result of a load operation that reads 32-bit elements
5215 * in this format:
5216 *
5217 * x x x x x x x x
5218 * y y y y y y y y
5219 * z z z z z z z z
5220 * w w w w w w w w
5221 *
5222 * and shuffles the data to get this:
5223 *
5224 * x y x y x y x y
5225 * x y x y x y x y
5226 * z w z w z w z w
5227 * z w z w z w z w
5228 *
5229 * Which is exactly what we want if the load is reading 64-bit components
5230 * like doubles, where x represents the low 32-bit of the x double component
5231 * and y represents the high 32-bit of the x double component (likewise with
5232 * z and w for double component y). The parameter @components represents
5233 * the number of 64-bit components present in @src. This would typically be
5234 * 2 at most, since we can only fit 2 double elements in the result of a
5235 * vec4 load.
5236 *
5237 * Notice that @dst and @src can be the same register.
5238 */
5239 void
5240 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
5241 const fs_reg &dst,
5242 const fs_reg &src,
5243 uint32_t components)
5244 {
5245 assert(type_sz(src.type) == 4);
5246 assert(type_sz(dst.type) == 8);
5247
5248 /* A temporary that we will use to shuffle the 32-bit data of each
5249 * component in the vector into valid 64-bit data. We can't write directly
5250 * to dst because dst can be (and would usually be) the same as src
5251 * and in that case the first MOV in the loop below would overwrite the
5252 * data read in the second MOV.
5253 */
5254 fs_reg tmp = bld.vgrf(dst.type);
5255
5256 for (unsigned i = 0; i < components; i++) {
5257 const fs_reg component_i = offset(src, bld, 2 * i);
5258
5259 bld.MOV(subscript(tmp, src.type, 0), component_i);
5260 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
5261
5262 bld.MOV(offset(dst, bld, i), tmp);
5263 }
5264 }
5265
5266 void
5267 shuffle_32bit_load_result_to_16bit_data(const fs_builder &bld,
5268 const fs_reg &dst,
5269 const fs_reg &src,
5270 uint32_t first_component,
5271 uint32_t components)
5272 {
5273 assert(type_sz(src.type) == 4);
5274 assert(type_sz(dst.type) == 2);
5275
5276 /* A temporary is used to un-shuffle the 32-bit data of each component in
5277 * into a valid 16-bit vector. We can't write directly to dst because it
5278 * can be the same register as src and in that case the first MOV in the
5279 * loop below would overwrite the data read in the second MOV.
5280 */
5281 fs_reg tmp = retype(bld.vgrf(src.type), dst.type);
5282
5283 for (unsigned i = 0; i < components; i++) {
5284 const fs_reg component_i =
5285 subscript(offset(src, bld, (first_component + i) / 2), dst.type,
5286 (first_component + i) % 2);
5287
5288 bld.MOV(offset(tmp, bld, i % 2), component_i);
5289
5290 if (i % 2) {
5291 bld.MOV(offset(dst, bld, i -1), offset(tmp, bld, 0));
5292 bld.MOV(offset(dst, bld, i), offset(tmp, bld, 1));
5293 }
5294 }
5295 if (components % 2) {
5296 bld.MOV(offset(dst, bld, components - 1), tmp);
5297 }
5298 }
5299
5300 /**
5301 * This helper does the inverse operation of
5302 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
5303 *
5304 * We need to do this when we are going to use untyped write messsages that
5305 * operate with 32-bit components in order to arrange our 64-bit data to be
5306 * in the expected layout.
5307 *
5308 * Notice that callers of this function, unlike in the case of the inverse
5309 * operation, would typically need to call this with dst and src being
5310 * different registers, since they would otherwise corrupt the original
5311 * 64-bit data they are about to write. Because of this the function checks
5312 * that the src and dst regions involved in the operation do not overlap.
5313 */
5314 fs_reg
5315 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
5316 const fs_reg &src,
5317 uint32_t components)
5318 {
5319 assert(type_sz(src.type) == 8);
5320
5321 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D, 2 * components);
5322
5323 for (unsigned i = 0; i < components; i++) {
5324 const fs_reg component_i = offset(src, bld, i);
5325 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
5326 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
5327 }
5328
5329 return dst;
5330 }
5331
5332 void
5333 shuffle_16bit_data_for_32bit_write(const fs_builder &bld,
5334 const fs_reg &dst,
5335 const fs_reg &src,
5336 uint32_t components)
5337 {
5338 assert(type_sz(src.type) == 2);
5339 assert(type_sz(dst.type) == 4);
5340
5341 /* A temporary is used to shuffle the 16-bit data of each component in the
5342 * 32-bit data vector. We can't write directly to dst because it can be the
5343 * same register as src and in that case the first MOV in the loop below
5344 * would overwrite the data read in the second MOV.
5345 */
5346 fs_reg tmp = bld.vgrf(dst.type);
5347
5348 for (unsigned i = 0; i < components; i++) {
5349 const fs_reg component_i = offset(src, bld, i);
5350 bld.MOV(subscript(tmp, src.type, i % 2), component_i);
5351 if (i % 2) {
5352 bld.MOV(offset(dst, bld, i / 2), tmp);
5353 }
5354 }
5355 if (components % 2) {
5356 bld.MOV(offset(dst, bld, components / 2), tmp);
5357 }
5358 }
5359
5360 fs_reg
5361 setup_imm_df(const fs_builder &bld, double v)
5362 {
5363 const struct gen_device_info *devinfo = bld.shader->devinfo;
5364 assert(devinfo->gen >= 7);
5365
5366 if (devinfo->gen >= 8)
5367 return brw_imm_df(v);
5368
5369 /* gen7.5 does not support DF immediates straighforward but the DIM
5370 * instruction allows to set the 64-bit immediate value.
5371 */
5372 if (devinfo->is_haswell) {
5373 const fs_builder ubld = bld.exec_all().group(1, 0);
5374 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5375 ubld.DIM(dst, brw_imm_df(v));
5376 return component(dst, 0);
5377 }
5378
5379 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5380 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5381 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5382 *
5383 * Alternatively, we could also produce a normal VGRF (without stride 0)
5384 * by writing to all the channels in the VGRF, however, that would hit the
5385 * gen7 bug where we have to split writes that span more than 1 register
5386 * into instructions with a width of 4 (otherwise the write to the second
5387 * register written runs into an execmask hardware bug) which isn't very
5388 * nice.
5389 */
5390 union {
5391 double d;
5392 struct {
5393 uint32_t i1;
5394 uint32_t i2;
5395 };
5396 } di;
5397
5398 di.d = v;
5399
5400 const fs_builder ubld = bld.exec_all().group(1, 0);
5401 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5402 ubld.MOV(tmp, brw_imm_ud(di.i1));
5403 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5404
5405 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5406 }