intel/compiler: drop unnecessary temporary from 32-bit fsign implementation
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "util/u_math.h"
28 #include "util/bitscan.h"
29
30 using namespace brw;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
43 }
44
45 void
46 fs_visitor::nir_setup_outputs()
47 {
48 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
49 return;
50
51 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
52
53 /* Calculate the size of output registers in a separate pass, before
54 * allocating them. With ARB_enhanced_layouts, multiple output variables
55 * may occupy the same slot, but have different type sizes.
56 */
57 nir_foreach_variable(var, &nir->outputs) {
58 const int loc = var->data.driver_location;
59 const unsigned var_vec4s =
60 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
61 : type_size_vec4(var->type, true);
62 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
63 }
64
65 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
66 if (vec4s[loc] == 0) {
67 loc++;
68 continue;
69 }
70
71 unsigned reg_size = vec4s[loc];
72
73 /* Check if there are any ranges that start within this range and extend
74 * past it. If so, include them in this allocation.
75 */
76 for (unsigned i = 1; i < reg_size; i++)
77 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
78
79 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
80 for (unsigned i = 0; i < reg_size; i++)
81 outputs[loc + i] = offset(reg, bld, 4 * i);
82
83 loc += reg_size;
84 }
85 }
86
87 void
88 fs_visitor::nir_setup_uniforms()
89 {
90 /* Only the first compile gets to set up uniforms. */
91 if (push_constant_loc) {
92 assert(pull_constant_loc);
93 return;
94 }
95
96 uniforms = nir->num_uniforms / 4;
97
98 if (stage == MESA_SHADER_COMPUTE) {
99 /* Add a uniform for the thread local id. It must be the last uniform
100 * on the list.
101 */
102 assert(uniforms == prog_data->nr_params);
103 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
104 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
105 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
106 }
107 }
108
109 static bool
110 emit_system_values_block(nir_block *block, fs_visitor *v)
111 {
112 fs_reg *reg;
113
114 nir_foreach_instr(instr, block) {
115 if (instr->type != nir_instr_type_intrinsic)
116 continue;
117
118 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
119 switch (intrin->intrinsic) {
120 case nir_intrinsic_load_vertex_id:
121 case nir_intrinsic_load_base_vertex:
122 unreachable("should be lowered by nir_lower_system_values().");
123
124 case nir_intrinsic_load_vertex_id_zero_base:
125 case nir_intrinsic_load_is_indexed_draw:
126 case nir_intrinsic_load_first_vertex:
127 case nir_intrinsic_load_instance_id:
128 case nir_intrinsic_load_base_instance:
129 case nir_intrinsic_load_draw_id:
130 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
131
132 case nir_intrinsic_load_invocation_id:
133 if (v->stage == MESA_SHADER_TESS_CTRL)
134 break;
135 assert(v->stage == MESA_SHADER_GEOMETRY);
136 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
137 if (reg->file == BAD_FILE) {
138 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
139 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
140 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
141 abld.SHR(iid, g1, brw_imm_ud(27u));
142 *reg = iid;
143 }
144 break;
145
146 case nir_intrinsic_load_sample_pos:
147 assert(v->stage == MESA_SHADER_FRAGMENT);
148 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
149 if (reg->file == BAD_FILE)
150 *reg = *v->emit_samplepos_setup();
151 break;
152
153 case nir_intrinsic_load_sample_id:
154 assert(v->stage == MESA_SHADER_FRAGMENT);
155 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
156 if (reg->file == BAD_FILE)
157 *reg = *v->emit_sampleid_setup();
158 break;
159
160 case nir_intrinsic_load_sample_mask_in:
161 assert(v->stage == MESA_SHADER_FRAGMENT);
162 assert(v->devinfo->gen >= 7);
163 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
164 if (reg->file == BAD_FILE)
165 *reg = *v->emit_samplemaskin_setup();
166 break;
167
168 case nir_intrinsic_load_work_group_id:
169 assert(v->stage == MESA_SHADER_COMPUTE);
170 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
171 if (reg->file == BAD_FILE)
172 *reg = *v->emit_cs_work_group_id_setup();
173 break;
174
175 case nir_intrinsic_load_helper_invocation:
176 assert(v->stage == MESA_SHADER_FRAGMENT);
177 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
178 if (reg->file == BAD_FILE) {
179 const fs_builder abld =
180 v->bld.annotate("gl_HelperInvocation", NULL);
181
182 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
183 * pixel mask is in g1.7 of the thread payload.
184 *
185 * We move the per-channel pixel enable bit to the low bit of each
186 * channel by shifting the byte containing the pixel mask by the
187 * vector immediate 0x76543210UV.
188 *
189 * The region of <1,8,0> reads only 1 byte (the pixel masks for
190 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
191 * masks for 2 and 3) in SIMD16.
192 */
193 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
194
195 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
196 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
197 hbld.SHR(offset(shifted, hbld, i),
198 stride(retype(brw_vec1_grf(1 + i, 7),
199 BRW_REGISTER_TYPE_UB),
200 1, 8, 0),
201 brw_imm_v(0x76543210));
202 }
203
204 /* A set bit in the pixel mask means the channel is enabled, but
205 * that is the opposite of gl_HelperInvocation so we need to invert
206 * the mask.
207 *
208 * The negate source-modifier bit of logical instructions on Gen8+
209 * performs 1's complement negation, so we can use that instead of
210 * a NOT instruction.
211 */
212 fs_reg inverted = negate(shifted);
213 if (v->devinfo->gen < 8) {
214 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
215 abld.NOT(inverted, shifted);
216 }
217
218 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
219 * with 1 and negating.
220 */
221 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
222 abld.AND(anded, inverted, brw_imm_uw(1));
223
224 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
225 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
226 *reg = dst;
227 }
228 break;
229
230 default:
231 break;
232 }
233 }
234
235 return true;
236 }
237
238 void
239 fs_visitor::nir_emit_system_values()
240 {
241 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
242 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
243 nir_system_values[i] = fs_reg();
244 }
245
246 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
247 * never end up using it.
248 */
249 {
250 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
251 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
252 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
253
254 const fs_builder allbld8 = abld.group(8, 0).exec_all();
255 allbld8.MOV(reg, brw_imm_v(0x76543210));
256 if (dispatch_width > 8)
257 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
258 if (dispatch_width > 16) {
259 const fs_builder allbld16 = abld.group(16, 0).exec_all();
260 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
261 }
262 }
263
264 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
265 nir_foreach_block(block, impl)
266 emit_system_values_block(block, this);
267 }
268
269 /*
270 * Returns a type based on a reference_type (word, float, half-float) and a
271 * given bit_size.
272 *
273 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
274 *
275 * @FIXME: 64-bit return types are always DF on integer types to maintain
276 * compability with uses of DF previously to the introduction of int64
277 * support.
278 */
279 static brw_reg_type
280 brw_reg_type_from_bit_size(const unsigned bit_size,
281 const brw_reg_type reference_type)
282 {
283 switch(reference_type) {
284 case BRW_REGISTER_TYPE_HF:
285 case BRW_REGISTER_TYPE_F:
286 case BRW_REGISTER_TYPE_DF:
287 switch(bit_size) {
288 case 16:
289 return BRW_REGISTER_TYPE_HF;
290 case 32:
291 return BRW_REGISTER_TYPE_F;
292 case 64:
293 return BRW_REGISTER_TYPE_DF;
294 default:
295 unreachable("Invalid bit size");
296 }
297 case BRW_REGISTER_TYPE_B:
298 case BRW_REGISTER_TYPE_W:
299 case BRW_REGISTER_TYPE_D:
300 case BRW_REGISTER_TYPE_Q:
301 switch(bit_size) {
302 case 8:
303 return BRW_REGISTER_TYPE_B;
304 case 16:
305 return BRW_REGISTER_TYPE_W;
306 case 32:
307 return BRW_REGISTER_TYPE_D;
308 case 64:
309 return BRW_REGISTER_TYPE_Q;
310 default:
311 unreachable("Invalid bit size");
312 }
313 case BRW_REGISTER_TYPE_UB:
314 case BRW_REGISTER_TYPE_UW:
315 case BRW_REGISTER_TYPE_UD:
316 case BRW_REGISTER_TYPE_UQ:
317 switch(bit_size) {
318 case 8:
319 return BRW_REGISTER_TYPE_UB;
320 case 16:
321 return BRW_REGISTER_TYPE_UW;
322 case 32:
323 return BRW_REGISTER_TYPE_UD;
324 case 64:
325 return BRW_REGISTER_TYPE_UQ;
326 default:
327 unreachable("Invalid bit size");
328 }
329 default:
330 unreachable("Unknown type");
331 }
332 }
333
334 void
335 fs_visitor::nir_emit_impl(nir_function_impl *impl)
336 {
337 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
338 for (unsigned i = 0; i < impl->reg_alloc; i++) {
339 nir_locals[i] = fs_reg();
340 }
341
342 foreach_list_typed(nir_register, reg, node, &impl->registers) {
343 unsigned array_elems =
344 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
345 unsigned size = array_elems * reg->num_components;
346 const brw_reg_type reg_type =
347 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
348 nir_locals[reg->index] = bld.vgrf(reg_type, size);
349 }
350
351 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
352 impl->ssa_alloc);
353
354 nir_emit_cf_list(&impl->body);
355 }
356
357 void
358 fs_visitor::nir_emit_cf_list(exec_list *list)
359 {
360 exec_list_validate(list);
361 foreach_list_typed(nir_cf_node, node, node, list) {
362 switch (node->type) {
363 case nir_cf_node_if:
364 nir_emit_if(nir_cf_node_as_if(node));
365 break;
366
367 case nir_cf_node_loop:
368 nir_emit_loop(nir_cf_node_as_loop(node));
369 break;
370
371 case nir_cf_node_block:
372 nir_emit_block(nir_cf_node_as_block(node));
373 break;
374
375 default:
376 unreachable("Invalid CFG node block");
377 }
378 }
379 }
380
381 void
382 fs_visitor::nir_emit_if(nir_if *if_stmt)
383 {
384 bool invert;
385 fs_reg cond_reg;
386
387 /* If the condition has the form !other_condition, use other_condition as
388 * the source, but invert the predicate on the if instruction.
389 */
390 nir_alu_instr *const cond = nir_src_as_alu_instr(&if_stmt->condition);
391 if (cond != NULL && cond->op == nir_op_inot) {
392 assert(!cond->src[0].negate);
393 assert(!cond->src[0].abs);
394
395 invert = true;
396 cond_reg = get_nir_src(cond->src[0].src);
397 } else {
398 invert = false;
399 cond_reg = get_nir_src(if_stmt->condition);
400 }
401
402 /* first, put the condition into f0 */
403 fs_inst *inst = bld.MOV(bld.null_reg_d(),
404 retype(cond_reg, BRW_REGISTER_TYPE_D));
405 inst->conditional_mod = BRW_CONDITIONAL_NZ;
406
407 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
408
409 nir_emit_cf_list(&if_stmt->then_list);
410
411 /* note: if the else is empty, dead CF elimination will remove it */
412 bld.emit(BRW_OPCODE_ELSE);
413
414 nir_emit_cf_list(&if_stmt->else_list);
415
416 bld.emit(BRW_OPCODE_ENDIF);
417
418 if (devinfo->gen < 7)
419 limit_dispatch_width(16, "Non-uniform control flow unsupported "
420 "in SIMD32 mode.");
421 }
422
423 void
424 fs_visitor::nir_emit_loop(nir_loop *loop)
425 {
426 bld.emit(BRW_OPCODE_DO);
427
428 nir_emit_cf_list(&loop->body);
429
430 bld.emit(BRW_OPCODE_WHILE);
431
432 if (devinfo->gen < 7)
433 limit_dispatch_width(16, "Non-uniform control flow unsupported "
434 "in SIMD32 mode.");
435 }
436
437 void
438 fs_visitor::nir_emit_block(nir_block *block)
439 {
440 nir_foreach_instr(instr, block) {
441 nir_emit_instr(instr);
442 }
443 }
444
445 void
446 fs_visitor::nir_emit_instr(nir_instr *instr)
447 {
448 const fs_builder abld = bld.annotate(NULL, instr);
449
450 switch (instr->type) {
451 case nir_instr_type_alu:
452 nir_emit_alu(abld, nir_instr_as_alu(instr));
453 break;
454
455 case nir_instr_type_deref:
456 /* Derefs can exist for images but they do nothing */
457 break;
458
459 case nir_instr_type_intrinsic:
460 switch (stage) {
461 case MESA_SHADER_VERTEX:
462 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
463 break;
464 case MESA_SHADER_TESS_CTRL:
465 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
466 break;
467 case MESA_SHADER_TESS_EVAL:
468 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
469 break;
470 case MESA_SHADER_GEOMETRY:
471 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
472 break;
473 case MESA_SHADER_FRAGMENT:
474 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
475 break;
476 case MESA_SHADER_COMPUTE:
477 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
478 break;
479 default:
480 unreachable("unsupported shader stage");
481 }
482 break;
483
484 case nir_instr_type_tex:
485 nir_emit_texture(abld, nir_instr_as_tex(instr));
486 break;
487
488 case nir_instr_type_load_const:
489 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
490 break;
491
492 case nir_instr_type_ssa_undef:
493 /* We create a new VGRF for undefs on every use (by handling
494 * them in get_nir_src()), rather than for each definition.
495 * This helps register coalescing eliminate MOVs from undef.
496 */
497 break;
498
499 case nir_instr_type_jump:
500 nir_emit_jump(abld, nir_instr_as_jump(instr));
501 break;
502
503 default:
504 unreachable("unknown instruction type");
505 }
506 }
507
508 /**
509 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
510 * match instr.
511 */
512 bool
513 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
514 const fs_reg &result)
515 {
516 if (!instr->src[0].src.is_ssa ||
517 !instr->src[0].src.ssa->parent_instr)
518 return false;
519
520 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
521 return false;
522
523 nir_alu_instr *src0 =
524 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
525
526 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
527 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
528 return false;
529
530 /* If either opcode has source modifiers, bail.
531 *
532 * TODO: We can potentially handle source modifiers if both of the opcodes
533 * we're combining are signed integers.
534 */
535 if (instr->src[0].abs || instr->src[0].negate ||
536 src0->src[0].abs || src0->src[0].negate)
537 return false;
538
539 unsigned element = nir_src_as_uint(src0->src[1].src);
540
541 /* Element type to extract.*/
542 const brw_reg_type type = brw_int_type(
543 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
544 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
545
546 fs_reg op0 = get_nir_src(src0->src[0].src);
547 op0.type = brw_type_for_nir_type(devinfo,
548 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
549 nir_src_bit_size(src0->src[0].src)));
550 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
551
552 set_saturate(instr->dest.saturate,
553 bld.MOV(result, subscript(op0, type, element)));
554 return true;
555 }
556
557 bool
558 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
559 const fs_reg &result)
560 {
561 if (!instr->src[0].src.is_ssa ||
562 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
563 return false;
564
565 nir_intrinsic_instr *src0 =
566 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
567
568 if (src0->intrinsic != nir_intrinsic_load_front_face)
569 return false;
570
571 if (!nir_src_is_const(instr->src[1].src) ||
572 !nir_src_is_const(instr->src[2].src))
573 return false;
574
575 const float value1 = nir_src_as_float(instr->src[1].src);
576 const float value2 = nir_src_as_float(instr->src[2].src);
577 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
578 return false;
579
580 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
581 assert(value1 == -value2);
582
583 fs_reg tmp = vgrf(glsl_type::int_type);
584
585 if (devinfo->gen >= 6) {
586 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
587 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
588
589 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
590 *
591 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
592 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
593 *
594 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
595 *
596 * This negation looks like it's safe in practice, because bits 0:4 will
597 * surely be TRIANGLES
598 */
599
600 if (value1 == -1.0f) {
601 g0.negate = true;
602 }
603
604 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
605 g0, brw_imm_uw(0x3f80));
606 } else {
607 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
608 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
609
610 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
611 *
612 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
613 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
614 *
615 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
616 *
617 * This negation looks like it's safe in practice, because bits 0:4 will
618 * surely be TRIANGLES
619 */
620
621 if (value1 == -1.0f) {
622 g1_6.negate = true;
623 }
624
625 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
626 }
627 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
628
629 return true;
630 }
631
632 static void
633 emit_find_msb_using_lzd(const fs_builder &bld,
634 const fs_reg &result,
635 const fs_reg &src,
636 bool is_signed)
637 {
638 fs_inst *inst;
639 fs_reg temp = src;
640
641 if (is_signed) {
642 /* LZD of an absolute value source almost always does the right
643 * thing. There are two problem values:
644 *
645 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
646 * 0. However, findMSB(int(0x80000000)) == 30.
647 *
648 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
649 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
650 *
651 * For a value of zero or negative one, -1 will be returned.
652 *
653 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
654 * findMSB(-(1<<x)) should return x-1.
655 *
656 * For all negative number cases, including 0x80000000 and
657 * 0xffffffff, the correct value is obtained from LZD if instead of
658 * negating the (already negative) value the logical-not is used. A
659 * conditonal logical-not can be achieved in two instructions.
660 */
661 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
662
663 bld.ASR(temp, src, brw_imm_d(31));
664 bld.XOR(temp, temp, src);
665 }
666
667 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
668 retype(temp, BRW_REGISTER_TYPE_UD));
669
670 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
671 * from the LSB side. Subtract the result from 31 to convert the MSB
672 * count into an LSB count. If no bits are set, LZD will return 32.
673 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
674 */
675 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
676 inst->src[0].negate = true;
677 }
678
679 static brw_rnd_mode
680 brw_rnd_mode_from_nir_op (const nir_op op) {
681 switch (op) {
682 case nir_op_f2f16_rtz:
683 return BRW_RND_MODE_RTZ;
684 case nir_op_f2f16_rtne:
685 return BRW_RND_MODE_RTNE;
686 default:
687 unreachable("Operation doesn't support rounding mode");
688 }
689 }
690
691 fs_reg
692 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
693 nir_alu_instr *instr,
694 fs_reg *op,
695 bool need_dest)
696 {
697 fs_reg result =
698 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
699
700 result.type = brw_type_for_nir_type(devinfo,
701 (nir_alu_type)(nir_op_infos[instr->op].output_type |
702 nir_dest_bit_size(instr->dest.dest)));
703
704 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
705 op[i] = get_nir_src(instr->src[i].src);
706 op[i].type = brw_type_for_nir_type(devinfo,
707 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
708 nir_src_bit_size(instr->src[i].src)));
709 op[i].abs = instr->src[i].abs;
710 op[i].negate = instr->src[i].negate;
711 }
712
713 /* Move and vecN instrutions may still be vectored. Return the raw,
714 * vectored source and destination so that fs_visitor::nir_emit_alu can
715 * handle it. Other callers should not have to handle these kinds of
716 * instructions.
717 */
718 switch (instr->op) {
719 case nir_op_imov:
720 case nir_op_fmov:
721 case nir_op_vec2:
722 case nir_op_vec3:
723 case nir_op_vec4:
724 return result;
725 default:
726 break;
727 }
728
729 /* At this point, we have dealt with any instruction that operates on
730 * more than a single channel. Therefore, we can just adjust the source
731 * and destination registers for that channel and emit the instruction.
732 */
733 unsigned channel = 0;
734 if (nir_op_infos[instr->op].output_size == 0) {
735 /* Since NIR is doing the scalarizing for us, we should only ever see
736 * vectorized operations with a single channel.
737 */
738 assert(util_bitcount(instr->dest.write_mask) == 1);
739 channel = ffs(instr->dest.write_mask) - 1;
740
741 result = offset(result, bld, channel);
742 }
743
744 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
745 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
746 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
747 }
748
749 return result;
750 }
751
752 void
753 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
754 fs_reg *op)
755 {
756 for (unsigned i = 0; i < 2; i++) {
757 nir_alu_instr *const inot_instr =
758 nir_src_as_alu_instr(&instr->src[i].src);
759
760 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
761 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
762 /* The source of the inot is now the source of instr. */
763 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
764
765 assert(!op[i].negate);
766 op[i].negate = true;
767 } else {
768 op[i] = resolve_source_modifiers(op[i]);
769 }
770 }
771 }
772
773 bool
774 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
775 fs_reg result,
776 nir_alu_instr *instr)
777 {
778 if (devinfo->gen < 6 || devinfo->gen >= 12)
779 return false;
780
781 nir_alu_instr *const inot_instr = nir_src_as_alu_instr(&instr->src[0].src);
782
783 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
784 return false;
785
786 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
787 * of valid size-changing combinations is a bit more complex.
788 *
789 * The source restriction is just because I was lazy about generating the
790 * constant below.
791 */
792 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
793 nir_src_bit_size(inot_instr->src[0].src) != 32)
794 return false;
795
796 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
797 * this is float(1 + a).
798 */
799 fs_reg op;
800
801 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
802
803 /* Ignore the saturate modifier, if there is one. The result of the
804 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
805 */
806 bld.ADD(result, op, brw_imm_d(1));
807
808 return true;
809 }
810
811 void
812 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
813 {
814 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
815 fs_inst *inst;
816
817 fs_reg op[4];
818 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, true);
819
820 switch (instr->op) {
821 case nir_op_imov:
822 case nir_op_fmov:
823 case nir_op_vec2:
824 case nir_op_vec3:
825 case nir_op_vec4: {
826 fs_reg temp = result;
827 bool need_extra_copy = false;
828 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
829 if (!instr->src[i].src.is_ssa &&
830 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
831 need_extra_copy = true;
832 temp = bld.vgrf(result.type, 4);
833 break;
834 }
835 }
836
837 for (unsigned i = 0; i < 4; i++) {
838 if (!(instr->dest.write_mask & (1 << i)))
839 continue;
840
841 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
842 inst = bld.MOV(offset(temp, bld, i),
843 offset(op[0], bld, instr->src[0].swizzle[i]));
844 } else {
845 inst = bld.MOV(offset(temp, bld, i),
846 offset(op[i], bld, instr->src[i].swizzle[0]));
847 }
848 inst->saturate = instr->dest.saturate;
849 }
850
851 /* In this case the source and destination registers were the same,
852 * so we need to insert an extra set of moves in order to deal with
853 * any swizzling.
854 */
855 if (need_extra_copy) {
856 for (unsigned i = 0; i < 4; i++) {
857 if (!(instr->dest.write_mask & (1 << i)))
858 continue;
859
860 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
861 }
862 }
863 return;
864 }
865
866 case nir_op_i2f32:
867 case nir_op_u2f32:
868 if (optimize_extract_to_float(instr, result))
869 return;
870 inst = bld.MOV(result, op[0]);
871 inst->saturate = instr->dest.saturate;
872 break;
873
874 case nir_op_f2f16_rtne:
875 case nir_op_f2f16_rtz:
876 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
877 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
878 /* fallthrough */
879
880 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
881 * on the HW gen, it is a special hw opcode or just a MOV, and
882 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
883 *
884 * But if we want to use that opcode, we need to provide support on
885 * different optimizations and lowerings. As right now HF support is
886 * only for gen8+, it will be better to use directly the MOV, and use
887 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
888 */
889
890 case nir_op_f2f16:
891 case nir_op_i2f16:
892 case nir_op_u2f16:
893 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
894 inst = bld.MOV(result, op[0]);
895 inst->saturate = instr->dest.saturate;
896 break;
897
898 case nir_op_f2f64:
899 case nir_op_f2i64:
900 case nir_op_f2u64:
901 assert(type_sz(op[0].type) > 2); /* brw_nir_lower_conversions */
902 inst = bld.MOV(result, op[0]);
903 inst->saturate = instr->dest.saturate;
904 break;
905
906 case nir_op_b2i8:
907 case nir_op_b2i16:
908 case nir_op_b2i32:
909 case nir_op_b2i64:
910 case nir_op_b2f16:
911 case nir_op_b2f32:
912 case nir_op_b2f64:
913 if (try_emit_b2fi_of_inot(bld, result, instr))
914 break;
915 op[0].type = BRW_REGISTER_TYPE_D;
916 op[0].negate = !op[0].negate;
917 /* fallthrough */
918 case nir_op_i2f64:
919 case nir_op_i2i64:
920 case nir_op_u2f64:
921 case nir_op_u2u64:
922 assert(type_sz(op[0].type) > 1); /* brw_nir_lower_conversions */
923 /* fallthrough */
924 case nir_op_f2f32:
925 case nir_op_f2i32:
926 case nir_op_f2u32:
927 case nir_op_f2i16:
928 case nir_op_f2u16:
929 case nir_op_i2i32:
930 case nir_op_u2u32:
931 case nir_op_i2i16:
932 case nir_op_u2u16:
933 case nir_op_i2i8:
934 case nir_op_u2u8:
935 inst = bld.MOV(result, op[0]);
936 inst->saturate = instr->dest.saturate;
937 break;
938
939 case nir_op_fsign: {
940 assert(!instr->dest.saturate);
941 if (op[0].abs) {
942 /* Straightforward since the source can be assumed to be either
943 * strictly >= 0 or strictly <= 0 depending on the setting of the
944 * negate flag.
945 */
946 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
947
948 inst = (op[0].negate)
949 ? bld.MOV(result, brw_imm_f(-1.0f))
950 : bld.MOV(result, brw_imm_f(1.0f));
951
952 set_predicate(BRW_PREDICATE_NORMAL, inst);
953 } else if (type_sz(op[0].type) == 2) {
954 /* AND(val, 0x8000) gives the sign bit.
955 *
956 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
957 */
958 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
959 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
960
961 op[0].type = BRW_REGISTER_TYPE_UW;
962 result.type = BRW_REGISTER_TYPE_UW;
963 bld.AND(result, op[0], brw_imm_uw(0x8000u));
964
965 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
966 inst->predicate = BRW_PREDICATE_NORMAL;
967 } else if (type_sz(op[0].type) == 4) {
968 /* AND(val, 0x80000000) gives the sign bit.
969 *
970 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
971 * zero.
972 */
973 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
974
975 op[0].type = BRW_REGISTER_TYPE_UD;
976 result.type = BRW_REGISTER_TYPE_UD;
977 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
978
979 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
980 inst->predicate = BRW_PREDICATE_NORMAL;
981 } else {
982 /* For doubles we do the same but we need to consider:
983 *
984 * - 2-src instructions can't operate with 64-bit immediates
985 * - The sign is encoded in the high 32-bit of each DF
986 * - We need to produce a DF result.
987 */
988 assert(type_sz(op[0].type) == 8);
989
990 fs_reg zero = vgrf(glsl_type::double_type);
991 bld.MOV(zero, setup_imm_df(bld, 0.0));
992 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
993
994 bld.MOV(result, zero);
995
996 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
997 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
998 brw_imm_ud(0x80000000u));
999
1000 set_predicate(BRW_PREDICATE_NORMAL,
1001 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
1002 }
1003 break;
1004 }
1005
1006 case nir_op_frcp:
1007 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1008 inst->saturate = instr->dest.saturate;
1009 break;
1010
1011 case nir_op_fexp2:
1012 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1013 inst->saturate = instr->dest.saturate;
1014 break;
1015
1016 case nir_op_flog2:
1017 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1018 inst->saturate = instr->dest.saturate;
1019 break;
1020
1021 case nir_op_fsin:
1022 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1023 inst->saturate = instr->dest.saturate;
1024 break;
1025
1026 case nir_op_fcos:
1027 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1028 inst->saturate = instr->dest.saturate;
1029 break;
1030
1031 case nir_op_fddx:
1032 if (fs_key->high_quality_derivatives) {
1033 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1034 } else {
1035 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1036 }
1037 inst->saturate = instr->dest.saturate;
1038 break;
1039 case nir_op_fddx_fine:
1040 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1041 inst->saturate = instr->dest.saturate;
1042 break;
1043 case nir_op_fddx_coarse:
1044 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1045 inst->saturate = instr->dest.saturate;
1046 break;
1047 case nir_op_fddy:
1048 if (fs_key->high_quality_derivatives) {
1049 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1050 } else {
1051 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1052 }
1053 inst->saturate = instr->dest.saturate;
1054 break;
1055 case nir_op_fddy_fine:
1056 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1057 inst->saturate = instr->dest.saturate;
1058 break;
1059 case nir_op_fddy_coarse:
1060 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1061 inst->saturate = instr->dest.saturate;
1062 break;
1063
1064 case nir_op_iadd:
1065 case nir_op_fadd:
1066 inst = bld.ADD(result, op[0], op[1]);
1067 inst->saturate = instr->dest.saturate;
1068 break;
1069
1070 case nir_op_uadd_sat:
1071 inst = bld.ADD(result, op[0], op[1]);
1072 inst->saturate = true;
1073 break;
1074
1075 case nir_op_fmul:
1076 inst = bld.MUL(result, op[0], op[1]);
1077 inst->saturate = instr->dest.saturate;
1078 break;
1079
1080 case nir_op_imul_2x32_64:
1081 case nir_op_umul_2x32_64:
1082 bld.MUL(result, op[0], op[1]);
1083 break;
1084
1085 case nir_op_imul:
1086 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1087 bld.MUL(result, op[0], op[1]);
1088 break;
1089
1090 case nir_op_imul_high:
1091 case nir_op_umul_high:
1092 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1093 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1094 break;
1095
1096 case nir_op_idiv:
1097 case nir_op_udiv:
1098 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1099 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1100 break;
1101
1102 case nir_op_uadd_carry:
1103 unreachable("Should have been lowered by carry_to_arith().");
1104
1105 case nir_op_usub_borrow:
1106 unreachable("Should have been lowered by borrow_to_arith().");
1107
1108 case nir_op_umod:
1109 case nir_op_irem:
1110 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1111 * appears that our hardware just does the right thing for signed
1112 * remainder.
1113 */
1114 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1115 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1116 break;
1117
1118 case nir_op_imod: {
1119 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1120 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1121
1122 /* Math instructions don't support conditional mod */
1123 inst = bld.MOV(bld.null_reg_d(), result);
1124 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1125
1126 /* Now, we need to determine if signs of the sources are different.
1127 * When we XOR the sources, the top bit is 0 if they are the same and 1
1128 * if they are different. We can then use a conditional modifier to
1129 * turn that into a predicate. This leads us to an XOR.l instruction.
1130 *
1131 * Technically, according to the PRM, you're not allowed to use .l on a
1132 * XOR instruction. However, emperical experiments and Curro's reading
1133 * of the simulator source both indicate that it's safe.
1134 */
1135 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1136 inst = bld.XOR(tmp, op[0], op[1]);
1137 inst->predicate = BRW_PREDICATE_NORMAL;
1138 inst->conditional_mod = BRW_CONDITIONAL_L;
1139
1140 /* If the result of the initial remainder operation is non-zero and the
1141 * two sources have different signs, add in a copy of op[1] to get the
1142 * final integer modulus value.
1143 */
1144 inst = bld.ADD(result, result, op[1]);
1145 inst->predicate = BRW_PREDICATE_NORMAL;
1146 break;
1147 }
1148
1149 case nir_op_flt32:
1150 case nir_op_fge32:
1151 case nir_op_feq32:
1152 case nir_op_fne32: {
1153 fs_reg dest = result;
1154
1155 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1156 if (bit_size != 32)
1157 dest = bld.vgrf(op[0].type, 1);
1158
1159 brw_conditional_mod cond;
1160 switch (instr->op) {
1161 case nir_op_flt32:
1162 cond = BRW_CONDITIONAL_L;
1163 break;
1164 case nir_op_fge32:
1165 cond = BRW_CONDITIONAL_GE;
1166 break;
1167 case nir_op_feq32:
1168 cond = BRW_CONDITIONAL_Z;
1169 break;
1170 case nir_op_fne32:
1171 cond = BRW_CONDITIONAL_NZ;
1172 break;
1173 default:
1174 unreachable("bad opcode");
1175 }
1176
1177 bld.CMP(dest, op[0], op[1], cond);
1178
1179 if (bit_size > 32) {
1180 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1181 } else if(bit_size < 32) {
1182 /* When we convert the result to 32-bit we need to be careful and do
1183 * it as a signed conversion to get sign extension (for 32-bit true)
1184 */
1185 const brw_reg_type src_type =
1186 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1187
1188 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1189 }
1190 break;
1191 }
1192
1193 case nir_op_ilt32:
1194 case nir_op_ult32:
1195 case nir_op_ige32:
1196 case nir_op_uge32:
1197 case nir_op_ieq32:
1198 case nir_op_ine32: {
1199 fs_reg dest = result;
1200
1201 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1202 if (bit_size != 32)
1203 dest = bld.vgrf(op[0].type, 1);
1204
1205 brw_conditional_mod cond;
1206 switch (instr->op) {
1207 case nir_op_ilt32:
1208 case nir_op_ult32:
1209 cond = BRW_CONDITIONAL_L;
1210 break;
1211 case nir_op_ige32:
1212 case nir_op_uge32:
1213 cond = BRW_CONDITIONAL_GE;
1214 break;
1215 case nir_op_ieq32:
1216 cond = BRW_CONDITIONAL_Z;
1217 break;
1218 case nir_op_ine32:
1219 cond = BRW_CONDITIONAL_NZ;
1220 break;
1221 default:
1222 unreachable("bad opcode");
1223 }
1224 bld.CMP(dest, op[0], op[1], cond);
1225
1226 if (bit_size > 32) {
1227 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1228 } else if (bit_size < 32) {
1229 /* When we convert the result to 32-bit we need to be careful and do
1230 * it as a signed conversion to get sign extension (for 32-bit true)
1231 */
1232 const brw_reg_type src_type =
1233 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1234
1235 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1236 }
1237 break;
1238 }
1239
1240 case nir_op_inot:
1241 if (devinfo->gen >= 8) {
1242 nir_alu_instr *const inot_src_instr =
1243 nir_src_as_alu_instr(&instr->src[0].src);
1244
1245 if (inot_src_instr != NULL &&
1246 (inot_src_instr->op == nir_op_ior ||
1247 inot_src_instr->op == nir_op_ixor ||
1248 inot_src_instr->op == nir_op_iand) &&
1249 !inot_src_instr->src[0].abs &&
1250 !inot_src_instr->src[0].negate &&
1251 !inot_src_instr->src[1].abs &&
1252 !inot_src_instr->src[1].negate) {
1253 /* The sources of the source logical instruction are now the
1254 * sources of the instruction that will be generated.
1255 */
1256 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1257 resolve_inot_sources(bld, inot_src_instr, op);
1258
1259 /* Smash all of the sources and destination to be signed. This
1260 * doesn't matter for the operation of the instruction, but cmod
1261 * propagation fails on unsigned sources with negation (due to
1262 * fs_inst::can_do_cmod returning false).
1263 */
1264 result.type =
1265 brw_type_for_nir_type(devinfo,
1266 (nir_alu_type)(nir_type_int |
1267 nir_dest_bit_size(instr->dest.dest)));
1268 op[0].type =
1269 brw_type_for_nir_type(devinfo,
1270 (nir_alu_type)(nir_type_int |
1271 nir_src_bit_size(inot_src_instr->src[0].src)));
1272 op[1].type =
1273 brw_type_for_nir_type(devinfo,
1274 (nir_alu_type)(nir_type_int |
1275 nir_src_bit_size(inot_src_instr->src[1].src)));
1276
1277 /* For XOR, only invert one of the sources. Arbitrarily choose
1278 * the first source.
1279 */
1280 op[0].negate = !op[0].negate;
1281 if (inot_src_instr->op != nir_op_ixor)
1282 op[1].negate = !op[1].negate;
1283
1284 switch (inot_src_instr->op) {
1285 case nir_op_ior:
1286 bld.AND(result, op[0], op[1]);
1287 return;
1288
1289 case nir_op_iand:
1290 bld.OR(result, op[0], op[1]);
1291 return;
1292
1293 case nir_op_ixor:
1294 bld.XOR(result, op[0], op[1]);
1295 return;
1296
1297 default:
1298 unreachable("impossible opcode");
1299 }
1300 }
1301 op[0] = resolve_source_modifiers(op[0]);
1302 }
1303 bld.NOT(result, op[0]);
1304 break;
1305 case nir_op_ixor:
1306 if (devinfo->gen >= 8) {
1307 resolve_inot_sources(bld, instr, op);
1308 }
1309 bld.XOR(result, op[0], op[1]);
1310 break;
1311 case nir_op_ior:
1312 if (devinfo->gen >= 8) {
1313 resolve_inot_sources(bld, instr, op);
1314 }
1315 bld.OR(result, op[0], op[1]);
1316 break;
1317 case nir_op_iand:
1318 if (devinfo->gen >= 8) {
1319 resolve_inot_sources(bld, instr, op);
1320 }
1321 bld.AND(result, op[0], op[1]);
1322 break;
1323
1324 case nir_op_fdot2:
1325 case nir_op_fdot3:
1326 case nir_op_fdot4:
1327 case nir_op_b32all_fequal2:
1328 case nir_op_b32all_iequal2:
1329 case nir_op_b32all_fequal3:
1330 case nir_op_b32all_iequal3:
1331 case nir_op_b32all_fequal4:
1332 case nir_op_b32all_iequal4:
1333 case nir_op_b32any_fnequal2:
1334 case nir_op_b32any_inequal2:
1335 case nir_op_b32any_fnequal3:
1336 case nir_op_b32any_inequal3:
1337 case nir_op_b32any_fnequal4:
1338 case nir_op_b32any_inequal4:
1339 unreachable("Lowered by nir_lower_alu_reductions");
1340
1341 case nir_op_fnoise1_1:
1342 case nir_op_fnoise1_2:
1343 case nir_op_fnoise1_3:
1344 case nir_op_fnoise1_4:
1345 case nir_op_fnoise2_1:
1346 case nir_op_fnoise2_2:
1347 case nir_op_fnoise2_3:
1348 case nir_op_fnoise2_4:
1349 case nir_op_fnoise3_1:
1350 case nir_op_fnoise3_2:
1351 case nir_op_fnoise3_3:
1352 case nir_op_fnoise3_4:
1353 case nir_op_fnoise4_1:
1354 case nir_op_fnoise4_2:
1355 case nir_op_fnoise4_3:
1356 case nir_op_fnoise4_4:
1357 unreachable("not reached: should be handled by lower_noise");
1358
1359 case nir_op_ldexp:
1360 unreachable("not reached: should be handled by ldexp_to_arith()");
1361
1362 case nir_op_fsqrt:
1363 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1364 inst->saturate = instr->dest.saturate;
1365 break;
1366
1367 case nir_op_frsq:
1368 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1369 inst->saturate = instr->dest.saturate;
1370 break;
1371
1372 case nir_op_i2b32:
1373 case nir_op_f2b32: {
1374 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1375 if (bit_size == 64) {
1376 /* two-argument instructions can't take 64-bit immediates */
1377 fs_reg zero;
1378 fs_reg tmp;
1379
1380 if (instr->op == nir_op_f2b32) {
1381 zero = vgrf(glsl_type::double_type);
1382 tmp = vgrf(glsl_type::double_type);
1383 bld.MOV(zero, setup_imm_df(bld, 0.0));
1384 } else {
1385 zero = vgrf(glsl_type::int64_t_type);
1386 tmp = vgrf(glsl_type::int64_t_type);
1387 bld.MOV(zero, brw_imm_q(0));
1388 }
1389
1390 /* A SIMD16 execution needs to be split in two instructions, so use
1391 * a vgrf instead of the flag register as dst so instruction splitting
1392 * works
1393 */
1394 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1395 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1396 } else {
1397 fs_reg zero;
1398 if (bit_size == 32) {
1399 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1400 } else {
1401 assert(bit_size == 16);
1402 zero = instr->op == nir_op_f2b32 ?
1403 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1404 }
1405 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1406 }
1407 break;
1408 }
1409
1410 case nir_op_ftrunc:
1411 inst = bld.RNDZ(result, op[0]);
1412 inst->saturate = instr->dest.saturate;
1413 break;
1414
1415 case nir_op_fceil: {
1416 op[0].negate = !op[0].negate;
1417 fs_reg temp = vgrf(glsl_type::float_type);
1418 bld.RNDD(temp, op[0]);
1419 temp.negate = true;
1420 inst = bld.MOV(result, temp);
1421 inst->saturate = instr->dest.saturate;
1422 break;
1423 }
1424 case nir_op_ffloor:
1425 inst = bld.RNDD(result, op[0]);
1426 inst->saturate = instr->dest.saturate;
1427 break;
1428 case nir_op_ffract:
1429 inst = bld.FRC(result, op[0]);
1430 inst->saturate = instr->dest.saturate;
1431 break;
1432 case nir_op_fround_even:
1433 inst = bld.RNDE(result, op[0]);
1434 inst->saturate = instr->dest.saturate;
1435 break;
1436
1437 case nir_op_fquantize2f16: {
1438 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1439 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1440 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1441
1442 /* The destination stride must be at least as big as the source stride. */
1443 tmp16.type = BRW_REGISTER_TYPE_W;
1444 tmp16.stride = 2;
1445
1446 /* Check for denormal */
1447 fs_reg abs_src0 = op[0];
1448 abs_src0.abs = true;
1449 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1450 BRW_CONDITIONAL_L);
1451 /* Get the appropriately signed zero */
1452 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1453 retype(op[0], BRW_REGISTER_TYPE_UD),
1454 brw_imm_ud(0x80000000));
1455 /* Do the actual F32 -> F16 -> F32 conversion */
1456 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1457 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1458 /* Select that or zero based on normal status */
1459 inst = bld.SEL(result, zero, tmp32);
1460 inst->predicate = BRW_PREDICATE_NORMAL;
1461 inst->saturate = instr->dest.saturate;
1462 break;
1463 }
1464
1465 case nir_op_imin:
1466 case nir_op_umin:
1467 case nir_op_fmin:
1468 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1469 inst->saturate = instr->dest.saturate;
1470 break;
1471
1472 case nir_op_imax:
1473 case nir_op_umax:
1474 case nir_op_fmax:
1475 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1476 inst->saturate = instr->dest.saturate;
1477 break;
1478
1479 case nir_op_pack_snorm_2x16:
1480 case nir_op_pack_snorm_4x8:
1481 case nir_op_pack_unorm_2x16:
1482 case nir_op_pack_unorm_4x8:
1483 case nir_op_unpack_snorm_2x16:
1484 case nir_op_unpack_snorm_4x8:
1485 case nir_op_unpack_unorm_2x16:
1486 case nir_op_unpack_unorm_4x8:
1487 case nir_op_unpack_half_2x16:
1488 case nir_op_pack_half_2x16:
1489 unreachable("not reached: should be handled by lower_packing_builtins");
1490
1491 case nir_op_unpack_half_2x16_split_x:
1492 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1493 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1494 inst->saturate = instr->dest.saturate;
1495 break;
1496 case nir_op_unpack_half_2x16_split_y:
1497 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1498 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1499 inst->saturate = instr->dest.saturate;
1500 break;
1501
1502 case nir_op_pack_64_2x32_split:
1503 case nir_op_pack_32_2x16_split:
1504 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1505 break;
1506
1507 case nir_op_unpack_64_2x32_split_x:
1508 case nir_op_unpack_64_2x32_split_y: {
1509 if (instr->op == nir_op_unpack_64_2x32_split_x)
1510 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1511 else
1512 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1513 break;
1514 }
1515
1516 case nir_op_unpack_32_2x16_split_x:
1517 case nir_op_unpack_32_2x16_split_y: {
1518 if (instr->op == nir_op_unpack_32_2x16_split_x)
1519 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1520 else
1521 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1522 break;
1523 }
1524
1525 case nir_op_fpow:
1526 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1527 inst->saturate = instr->dest.saturate;
1528 break;
1529
1530 case nir_op_bitfield_reverse:
1531 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1532 bld.BFREV(result, op[0]);
1533 break;
1534
1535 case nir_op_bit_count:
1536 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1537 bld.CBIT(result, op[0]);
1538 break;
1539
1540 case nir_op_ufind_msb: {
1541 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1542 emit_find_msb_using_lzd(bld, result, op[0], false);
1543 break;
1544 }
1545
1546 case nir_op_ifind_msb: {
1547 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1548
1549 if (devinfo->gen < 7) {
1550 emit_find_msb_using_lzd(bld, result, op[0], true);
1551 } else {
1552 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1553
1554 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1555 * count from the LSB side. If FBH didn't return an error
1556 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1557 * count into an LSB count.
1558 */
1559 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1560
1561 inst = bld.ADD(result, result, brw_imm_d(31));
1562 inst->predicate = BRW_PREDICATE_NORMAL;
1563 inst->src[0].negate = true;
1564 }
1565 break;
1566 }
1567
1568 case nir_op_find_lsb:
1569 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1570
1571 if (devinfo->gen < 7) {
1572 fs_reg temp = vgrf(glsl_type::int_type);
1573
1574 /* (x & -x) generates a value that consists of only the LSB of x.
1575 * For all powers of 2, findMSB(y) == findLSB(y).
1576 */
1577 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1578 fs_reg negated_src = src;
1579
1580 /* One must be negated, and the other must be non-negated. It
1581 * doesn't matter which is which.
1582 */
1583 negated_src.negate = true;
1584 src.negate = false;
1585
1586 bld.AND(temp, src, negated_src);
1587 emit_find_msb_using_lzd(bld, result, temp, false);
1588 } else {
1589 bld.FBL(result, op[0]);
1590 }
1591 break;
1592
1593 case nir_op_ubitfield_extract:
1594 case nir_op_ibitfield_extract:
1595 unreachable("should have been lowered");
1596 case nir_op_ubfe:
1597 case nir_op_ibfe:
1598 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1599 bld.BFE(result, op[2], op[1], op[0]);
1600 break;
1601 case nir_op_bfm:
1602 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1603 bld.BFI1(result, op[0], op[1]);
1604 break;
1605 case nir_op_bfi:
1606 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1607 bld.BFI2(result, op[0], op[1], op[2]);
1608 break;
1609
1610 case nir_op_bitfield_insert:
1611 unreachable("not reached: should have been lowered");
1612
1613 case nir_op_ishl:
1614 bld.SHL(result, op[0], op[1]);
1615 break;
1616 case nir_op_ishr:
1617 bld.ASR(result, op[0], op[1]);
1618 break;
1619 case nir_op_ushr:
1620 bld.SHR(result, op[0], op[1]);
1621 break;
1622
1623 case nir_op_pack_half_2x16_split:
1624 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1625 break;
1626
1627 case nir_op_ffma:
1628 inst = bld.MAD(result, op[2], op[1], op[0]);
1629 inst->saturate = instr->dest.saturate;
1630 break;
1631
1632 case nir_op_flrp:
1633 inst = bld.LRP(result, op[0], op[1], op[2]);
1634 inst->saturate = instr->dest.saturate;
1635 break;
1636
1637 case nir_op_b32csel:
1638 if (optimize_frontfacing_ternary(instr, result))
1639 return;
1640
1641 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1642 inst = bld.SEL(result, op[1], op[2]);
1643 inst->predicate = BRW_PREDICATE_NORMAL;
1644 break;
1645
1646 case nir_op_extract_u8:
1647 case nir_op_extract_i8: {
1648 unsigned byte = nir_src_as_uint(instr->src[1].src);
1649
1650 /* The PRMs say:
1651 *
1652 * BDW+
1653 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1654 * Use two instructions and a word or DWord intermediate integer type.
1655 */
1656 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1657 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1658
1659 if (instr->op == nir_op_extract_i8) {
1660 /* If we need to sign extend, extract to a word first */
1661 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1662 bld.MOV(w_temp, subscript(op[0], type, byte));
1663 bld.MOV(result, w_temp);
1664 } else if (byte & 1) {
1665 /* Extract the high byte from the word containing the desired byte
1666 * offset.
1667 */
1668 bld.SHR(result,
1669 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1670 brw_imm_uw(8));
1671 } else {
1672 /* Otherwise use an AND with 0xff and a word type */
1673 bld.AND(result,
1674 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1675 brw_imm_uw(0xff));
1676 }
1677 } else {
1678 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1679 bld.MOV(result, subscript(op[0], type, byte));
1680 }
1681 break;
1682 }
1683
1684 case nir_op_extract_u16:
1685 case nir_op_extract_i16: {
1686 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1687 unsigned word = nir_src_as_uint(instr->src[1].src);
1688 bld.MOV(result, subscript(op[0], type, word));
1689 break;
1690 }
1691
1692 default:
1693 unreachable("unhandled instruction");
1694 }
1695
1696 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1697 * to sign extend the low bit to 0/~0
1698 */
1699 if (devinfo->gen <= 5 &&
1700 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1701 fs_reg masked = vgrf(glsl_type::int_type);
1702 bld.AND(masked, result, brw_imm_d(1));
1703 masked.negate = true;
1704 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1705 }
1706 }
1707
1708 void
1709 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1710 nir_load_const_instr *instr)
1711 {
1712 const brw_reg_type reg_type =
1713 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1714 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1715
1716 switch (instr->def.bit_size) {
1717 case 8:
1718 for (unsigned i = 0; i < instr->def.num_components; i++)
1719 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1720 break;
1721
1722 case 16:
1723 for (unsigned i = 0; i < instr->def.num_components; i++)
1724 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1725 break;
1726
1727 case 32:
1728 for (unsigned i = 0; i < instr->def.num_components; i++)
1729 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1730 break;
1731
1732 case 64:
1733 assert(devinfo->gen >= 7);
1734 if (devinfo->gen == 7) {
1735 /* We don't get 64-bit integer types until gen8 */
1736 for (unsigned i = 0; i < instr->def.num_components; i++) {
1737 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1738 setup_imm_df(bld, instr->value[i].f64));
1739 }
1740 } else {
1741 for (unsigned i = 0; i < instr->def.num_components; i++)
1742 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1743 }
1744 break;
1745
1746 default:
1747 unreachable("Invalid bit size");
1748 }
1749
1750 nir_ssa_values[instr->def.index] = reg;
1751 }
1752
1753 fs_reg
1754 fs_visitor::get_nir_src(const nir_src &src)
1755 {
1756 fs_reg reg;
1757 if (src.is_ssa) {
1758 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1759 const brw_reg_type reg_type =
1760 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1761 reg = bld.vgrf(reg_type, src.ssa->num_components);
1762 } else {
1763 reg = nir_ssa_values[src.ssa->index];
1764 }
1765 } else {
1766 /* We don't handle indirects on locals */
1767 assert(src.reg.indirect == NULL);
1768 reg = offset(nir_locals[src.reg.reg->index], bld,
1769 src.reg.base_offset * src.reg.reg->num_components);
1770 }
1771
1772 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1773 /* The only 64-bit type available on gen7 is DF, so use that. */
1774 reg.type = BRW_REGISTER_TYPE_DF;
1775 } else {
1776 /* To avoid floating-point denorm flushing problems, set the type by
1777 * default to an integer type - instructions that need floating point
1778 * semantics will set this to F if they need to
1779 */
1780 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1781 BRW_REGISTER_TYPE_D);
1782 }
1783
1784 return reg;
1785 }
1786
1787 /**
1788 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1789 *
1790 * This function should not be called on any value which may be 64 bits.
1791 * We could theoretically support 64-bit on gen8+ but we choose not to
1792 * because it wouldn't work in general (no gen7 support) and there are
1793 * enough restrictions in 64-bit immediates that you can't take the return
1794 * value and treat it the same as the result of get_nir_src().
1795 */
1796 fs_reg
1797 fs_visitor::get_nir_src_imm(const nir_src &src)
1798 {
1799 assert(nir_src_bit_size(src) == 32);
1800 return nir_src_is_const(src) ?
1801 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1802 }
1803
1804 fs_reg
1805 fs_visitor::get_nir_dest(const nir_dest &dest)
1806 {
1807 if (dest.is_ssa) {
1808 const brw_reg_type reg_type =
1809 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1810 dest.ssa.bit_size == 8 ?
1811 BRW_REGISTER_TYPE_D :
1812 BRW_REGISTER_TYPE_F);
1813 nir_ssa_values[dest.ssa.index] =
1814 bld.vgrf(reg_type, dest.ssa.num_components);
1815 return nir_ssa_values[dest.ssa.index];
1816 } else {
1817 /* We don't handle indirects on locals */
1818 assert(dest.reg.indirect == NULL);
1819 return offset(nir_locals[dest.reg.reg->index], bld,
1820 dest.reg.base_offset * dest.reg.reg->num_components);
1821 }
1822 }
1823
1824 void
1825 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1826 unsigned wr_mask)
1827 {
1828 for (unsigned i = 0; i < 4; i++) {
1829 if (!((wr_mask >> i) & 1))
1830 continue;
1831
1832 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1833 new_inst->dst = offset(new_inst->dst, bld, i);
1834 for (unsigned j = 0; j < new_inst->sources; j++)
1835 if (new_inst->src[j].file == VGRF)
1836 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1837
1838 bld.emit(new_inst);
1839 }
1840 }
1841
1842 static fs_inst *
1843 emit_pixel_interpolater_send(const fs_builder &bld,
1844 enum opcode opcode,
1845 const fs_reg &dst,
1846 const fs_reg &src,
1847 const fs_reg &desc,
1848 glsl_interp_mode interpolation)
1849 {
1850 struct brw_wm_prog_data *wm_prog_data =
1851 brw_wm_prog_data(bld.shader->stage_prog_data);
1852
1853 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1854 /* 2 floats per slot returned */
1855 inst->size_written = 2 * dst.component_size(inst->exec_size);
1856 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1857
1858 wm_prog_data->pulls_bary = true;
1859
1860 return inst;
1861 }
1862
1863 /**
1864 * Computes 1 << x, given a D/UD register containing some value x.
1865 */
1866 static fs_reg
1867 intexp2(const fs_builder &bld, const fs_reg &x)
1868 {
1869 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1870
1871 fs_reg result = bld.vgrf(x.type, 1);
1872 fs_reg one = bld.vgrf(x.type, 1);
1873
1874 bld.MOV(one, retype(brw_imm_d(1), one.type));
1875 bld.SHL(result, one, x);
1876 return result;
1877 }
1878
1879 void
1880 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1881 {
1882 assert(stage == MESA_SHADER_GEOMETRY);
1883
1884 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1885
1886 if (gs_compile->control_data_header_size_bits == 0)
1887 return;
1888
1889 /* We can only do EndPrimitive() functionality when the control data
1890 * consists of cut bits. Fortunately, the only time it isn't is when the
1891 * output type is points, in which case EndPrimitive() is a no-op.
1892 */
1893 if (gs_prog_data->control_data_format !=
1894 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1895 return;
1896 }
1897
1898 /* Cut bits use one bit per vertex. */
1899 assert(gs_compile->control_data_bits_per_vertex == 1);
1900
1901 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1902 vertex_count.type = BRW_REGISTER_TYPE_UD;
1903
1904 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1905 * vertex n, 0 otherwise. So all we need to do here is mark bit
1906 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1907 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1908 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1909 *
1910 * Note that if EndPrimitive() is called before emitting any vertices, this
1911 * will cause us to set bit 31 of the control_data_bits register to 1.
1912 * That's fine because:
1913 *
1914 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1915 * output, so the hardware will ignore cut bit 31.
1916 *
1917 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1918 * last vertex, so setting cut bit 31 has no effect (since the primitive
1919 * is automatically ended when the GS terminates).
1920 *
1921 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1922 * control_data_bits register to 0 when the first vertex is emitted.
1923 */
1924
1925 const fs_builder abld = bld.annotate("end primitive");
1926
1927 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1928 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1929 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1930 fs_reg mask = intexp2(abld, prev_count);
1931 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1932 * attention to the lower 5 bits of its second source argument, so on this
1933 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1934 * ((vertex_count - 1) % 32).
1935 */
1936 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1937 }
1938
1939 void
1940 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1941 {
1942 assert(stage == MESA_SHADER_GEOMETRY);
1943 assert(gs_compile->control_data_bits_per_vertex != 0);
1944
1945 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1946
1947 const fs_builder abld = bld.annotate("emit control data bits");
1948 const fs_builder fwa_bld = bld.exec_all();
1949
1950 /* We use a single UD register to accumulate control data bits (32 bits
1951 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1952 * at a time.
1953 *
1954 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1955 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1956 * use the Channel Mask phase to enable/disable which DWord within that
1957 * group to write. (Remember, different SIMD8 channels may have emitted
1958 * different numbers of vertices, so we may need per-slot offsets.)
1959 *
1960 * Channel masking presents an annoying problem: we may have to replicate
1961 * the data up to 4 times:
1962 *
1963 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1964 *
1965 * To avoid penalizing shaders that emit a small number of vertices, we
1966 * can avoid these sometimes: if the size of the control data header is
1967 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1968 * land in the same 128-bit group, so we can skip per-slot offsets.
1969 *
1970 * Similarly, if the control data header is <= 32 bits, there is only one
1971 * DWord, so we can skip channel masks.
1972 */
1973 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1974
1975 fs_reg channel_mask, per_slot_offset;
1976
1977 if (gs_compile->control_data_header_size_bits > 32) {
1978 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1979 channel_mask = vgrf(glsl_type::uint_type);
1980 }
1981
1982 if (gs_compile->control_data_header_size_bits > 128) {
1983 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1984 per_slot_offset = vgrf(glsl_type::uint_type);
1985 }
1986
1987 /* Figure out which DWord we're trying to write to using the formula:
1988 *
1989 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1990 *
1991 * Since bits_per_vertex is a power of two, and is known at compile
1992 * time, this can be optimized to:
1993 *
1994 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1995 */
1996 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1997 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1998 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1999 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2000 unsigned log2_bits_per_vertex =
2001 util_last_bit(gs_compile->control_data_bits_per_vertex);
2002 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2003
2004 if (per_slot_offset.file != BAD_FILE) {
2005 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2006 * the appropriate OWord within the control data header.
2007 */
2008 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2009 }
2010
2011 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2012 * write to the appropriate DWORD within the OWORD.
2013 */
2014 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2015 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2016 channel_mask = intexp2(fwa_bld, channel);
2017 /* Then the channel masks need to be in bits 23:16. */
2018 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2019 }
2020
2021 /* Store the control data bits in the message payload and send it. */
2022 unsigned mlen = 2;
2023 if (channel_mask.file != BAD_FILE)
2024 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2025 if (per_slot_offset.file != BAD_FILE)
2026 mlen++;
2027
2028 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2029 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2030 unsigned i = 0;
2031 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2032 if (per_slot_offset.file != BAD_FILE)
2033 sources[i++] = per_slot_offset;
2034 if (channel_mask.file != BAD_FILE)
2035 sources[i++] = channel_mask;
2036 while (i < mlen) {
2037 sources[i++] = this->control_data_bits;
2038 }
2039
2040 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2041 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2042 inst->mlen = mlen;
2043 /* We need to increment Global Offset by 256-bits to make room for
2044 * Broadwell's extra "Vertex Count" payload at the beginning of the
2045 * URB entry. Since this is an OWord message, Global Offset is counted
2046 * in 128-bit units, so we must set it to 2.
2047 */
2048 if (gs_prog_data->static_vertex_count == -1)
2049 inst->offset = 2;
2050 }
2051
2052 void
2053 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2054 unsigned stream_id)
2055 {
2056 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2057
2058 /* Note: we are calling this *before* increasing vertex_count, so
2059 * this->vertex_count == vertex_count - 1 in the formula above.
2060 */
2061
2062 /* Stream mode uses 2 bits per vertex */
2063 assert(gs_compile->control_data_bits_per_vertex == 2);
2064
2065 /* Must be a valid stream */
2066 assert(stream_id < MAX_VERTEX_STREAMS);
2067
2068 /* Control data bits are initialized to 0 so we don't have to set any
2069 * bits when sending vertices to stream 0.
2070 */
2071 if (stream_id == 0)
2072 return;
2073
2074 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2075
2076 /* reg::sid = stream_id */
2077 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2078 abld.MOV(sid, brw_imm_ud(stream_id));
2079
2080 /* reg:shift_count = 2 * (vertex_count - 1) */
2081 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2082 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2083
2084 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2085 * attention to the lower 5 bits of its second source argument, so on this
2086 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2087 * stream_id << ((2 * (vertex_count - 1)) % 32).
2088 */
2089 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2090 abld.SHL(mask, sid, shift_count);
2091 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2092 }
2093
2094 void
2095 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2096 unsigned stream_id)
2097 {
2098 assert(stage == MESA_SHADER_GEOMETRY);
2099
2100 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2101
2102 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2103 vertex_count.type = BRW_REGISTER_TYPE_UD;
2104
2105 /* Haswell and later hardware ignores the "Render Stream Select" bits
2106 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2107 * and instead sends all primitives down the pipeline for rasterization.
2108 * If the SOL stage is enabled, "Render Stream Select" is honored and
2109 * primitives bound to non-zero streams are discarded after stream output.
2110 *
2111 * Since the only purpose of primives sent to non-zero streams is to
2112 * be recorded by transform feedback, we can simply discard all geometry
2113 * bound to these streams when transform feedback is disabled.
2114 */
2115 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2116 return;
2117
2118 /* If we're outputting 32 control data bits or less, then we can wait
2119 * until the shader is over to output them all. Otherwise we need to
2120 * output them as we go. Now is the time to do it, since we're about to
2121 * output the vertex_count'th vertex, so it's guaranteed that the
2122 * control data bits associated with the (vertex_count - 1)th vertex are
2123 * correct.
2124 */
2125 if (gs_compile->control_data_header_size_bits > 32) {
2126 const fs_builder abld =
2127 bld.annotate("emit vertex: emit control data bits");
2128
2129 /* Only emit control data bits if we've finished accumulating a batch
2130 * of 32 bits. This is the case when:
2131 *
2132 * (vertex_count * bits_per_vertex) % 32 == 0
2133 *
2134 * (in other words, when the last 5 bits of vertex_count *
2135 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2136 * integer n (which is always the case, since bits_per_vertex is
2137 * always 1 or 2), this is equivalent to requiring that the last 5-n
2138 * bits of vertex_count are 0:
2139 *
2140 * vertex_count & (2^(5-n) - 1) == 0
2141 *
2142 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2143 * equivalent to:
2144 *
2145 * vertex_count & (32 / bits_per_vertex - 1) == 0
2146 *
2147 * TODO: If vertex_count is an immediate, we could do some of this math
2148 * at compile time...
2149 */
2150 fs_inst *inst =
2151 abld.AND(bld.null_reg_d(), vertex_count,
2152 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2153 inst->conditional_mod = BRW_CONDITIONAL_Z;
2154
2155 abld.IF(BRW_PREDICATE_NORMAL);
2156 /* If vertex_count is 0, then no control data bits have been
2157 * accumulated yet, so we can skip emitting them.
2158 */
2159 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2160 BRW_CONDITIONAL_NEQ);
2161 abld.IF(BRW_PREDICATE_NORMAL);
2162 emit_gs_control_data_bits(vertex_count);
2163 abld.emit(BRW_OPCODE_ENDIF);
2164
2165 /* Reset control_data_bits to 0 so we can start accumulating a new
2166 * batch.
2167 *
2168 * Note: in the case where vertex_count == 0, this neutralizes the
2169 * effect of any call to EndPrimitive() that the shader may have
2170 * made before outputting its first vertex.
2171 */
2172 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2173 inst->force_writemask_all = true;
2174 abld.emit(BRW_OPCODE_ENDIF);
2175 }
2176
2177 emit_urb_writes(vertex_count);
2178
2179 /* In stream mode we have to set control data bits for all vertices
2180 * unless we have disabled control data bits completely (which we do
2181 * do for GL_POINTS outputs that don't use streams).
2182 */
2183 if (gs_compile->control_data_header_size_bits > 0 &&
2184 gs_prog_data->control_data_format ==
2185 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2186 set_gs_stream_control_data_bits(vertex_count, stream_id);
2187 }
2188 }
2189
2190 void
2191 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2192 const nir_src &vertex_src,
2193 unsigned base_offset,
2194 const nir_src &offset_src,
2195 unsigned num_components,
2196 unsigned first_component)
2197 {
2198 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2199 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2200
2201 /* TODO: figure out push input layout for invocations == 1 */
2202 /* TODO: make this work with 64-bit inputs */
2203 if (gs_prog_data->invocations == 1 &&
2204 type_sz(dst.type) <= 4 &&
2205 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2206 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2207 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2208 nir_src_as_uint(vertex_src) * push_reg_count;
2209 for (unsigned i = 0; i < num_components; i++) {
2210 bld.MOV(offset(dst, bld, i),
2211 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2212 }
2213 return;
2214 }
2215
2216 /* Resort to the pull model. Ensure the VUE handles are provided. */
2217 assert(gs_prog_data->base.include_vue_handles);
2218
2219 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2220 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2221
2222 if (gs_prog_data->invocations == 1) {
2223 if (nir_src_is_const(vertex_src)) {
2224 /* The vertex index is constant; just select the proper URB handle. */
2225 icp_handle =
2226 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2227 BRW_REGISTER_TYPE_UD);
2228 } else {
2229 /* The vertex index is non-constant. We need to use indirect
2230 * addressing to fetch the proper URB handle.
2231 *
2232 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2233 * indicating that channel <n> should read the handle from
2234 * DWord <n>. We convert that to bytes by multiplying by 4.
2235 *
2236 * Next, we convert the vertex index to bytes by multiplying
2237 * by 32 (shifting by 5), and add the two together. This is
2238 * the final indirect byte offset.
2239 */
2240 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2241 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2242 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2243 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2244
2245 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2246 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2247 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2248 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2249 /* Convert vertex_index to bytes (multiply by 32) */
2250 bld.SHL(vertex_offset_bytes,
2251 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2252 brw_imm_ud(5u));
2253 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2254
2255 /* Use first_icp_handle as the base offset. There is one register
2256 * of URB handles per vertex, so inform the register allocator that
2257 * we might read up to nir->info.gs.vertices_in registers.
2258 */
2259 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2260 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2261 fs_reg(icp_offset_bytes),
2262 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2263 }
2264 } else {
2265 assert(gs_prog_data->invocations > 1);
2266
2267 if (nir_src_is_const(vertex_src)) {
2268 unsigned vertex = nir_src_as_uint(vertex_src);
2269 assert(devinfo->gen >= 9 || vertex <= 5);
2270 bld.MOV(icp_handle,
2271 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2272 BRW_REGISTER_TYPE_UD));
2273 } else {
2274 /* The vertex index is non-constant. We need to use indirect
2275 * addressing to fetch the proper URB handle.
2276 *
2277 */
2278 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2279
2280 /* Convert vertex_index to bytes (multiply by 4) */
2281 bld.SHL(icp_offset_bytes,
2282 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2283 brw_imm_ud(2u));
2284
2285 /* Use first_icp_handle as the base offset. There is one DWord
2286 * of URB handles per vertex, so inform the register allocator that
2287 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2288 */
2289 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2290 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2291 fs_reg(icp_offset_bytes),
2292 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2293 REG_SIZE));
2294 }
2295 }
2296
2297 fs_inst *inst;
2298
2299 fs_reg tmp_dst = dst;
2300 fs_reg indirect_offset = get_nir_src(offset_src);
2301 unsigned num_iterations = 1;
2302 unsigned orig_num_components = num_components;
2303
2304 if (type_sz(dst.type) == 8) {
2305 if (num_components > 2) {
2306 num_iterations = 2;
2307 num_components = 2;
2308 }
2309 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2310 tmp_dst = tmp;
2311 first_component = first_component / 2;
2312 }
2313
2314 for (unsigned iter = 0; iter < num_iterations; iter++) {
2315 if (nir_src_is_const(offset_src)) {
2316 /* Constant indexing - use global offset. */
2317 if (first_component != 0) {
2318 unsigned read_components = num_components + first_component;
2319 fs_reg tmp = bld.vgrf(dst.type, read_components);
2320 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2321 inst->size_written = read_components *
2322 tmp.component_size(inst->exec_size);
2323 for (unsigned i = 0; i < num_components; i++) {
2324 bld.MOV(offset(tmp_dst, bld, i),
2325 offset(tmp, bld, i + first_component));
2326 }
2327 } else {
2328 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2329 icp_handle);
2330 inst->size_written = num_components *
2331 tmp_dst.component_size(inst->exec_size);
2332 }
2333 inst->offset = base_offset + nir_src_as_uint(offset_src);
2334 inst->mlen = 1;
2335 } else {
2336 /* Indirect indexing - use per-slot offsets as well. */
2337 const fs_reg srcs[] = { icp_handle, indirect_offset };
2338 unsigned read_components = num_components + first_component;
2339 fs_reg tmp = bld.vgrf(dst.type, read_components);
2340 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2341 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2342 if (first_component != 0) {
2343 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2344 payload);
2345 inst->size_written = read_components *
2346 tmp.component_size(inst->exec_size);
2347 for (unsigned i = 0; i < num_components; i++) {
2348 bld.MOV(offset(tmp_dst, bld, i),
2349 offset(tmp, bld, i + first_component));
2350 }
2351 } else {
2352 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2353 payload);
2354 inst->size_written = num_components *
2355 tmp_dst.component_size(inst->exec_size);
2356 }
2357 inst->offset = base_offset;
2358 inst->mlen = 2;
2359 }
2360
2361 if (type_sz(dst.type) == 8) {
2362 shuffle_from_32bit_read(bld,
2363 offset(dst, bld, iter * 2),
2364 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2365 0,
2366 num_components);
2367 }
2368
2369 if (num_iterations > 1) {
2370 num_components = orig_num_components - 2;
2371 if(nir_src_is_const(offset_src)) {
2372 base_offset++;
2373 } else {
2374 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2375 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2376 indirect_offset = new_indirect;
2377 }
2378 }
2379 }
2380 }
2381
2382 fs_reg
2383 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2384 {
2385 nir_src *offset_src = nir_get_io_offset_src(instr);
2386
2387 if (nir_src_is_const(*offset_src)) {
2388 /* The only constant offset we should find is 0. brw_nir.c's
2389 * add_const_offset_to_base() will fold other constant offsets
2390 * into instr->const_index[0].
2391 */
2392 assert(nir_src_as_uint(*offset_src) == 0);
2393 return fs_reg();
2394 }
2395
2396 return get_nir_src(*offset_src);
2397 }
2398
2399 void
2400 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2401 nir_intrinsic_instr *instr)
2402 {
2403 assert(stage == MESA_SHADER_VERTEX);
2404
2405 fs_reg dest;
2406 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2407 dest = get_nir_dest(instr->dest);
2408
2409 switch (instr->intrinsic) {
2410 case nir_intrinsic_load_vertex_id:
2411 case nir_intrinsic_load_base_vertex:
2412 unreachable("should be lowered by nir_lower_system_values()");
2413
2414 case nir_intrinsic_load_input: {
2415 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2416 unsigned first_component = nir_intrinsic_component(instr);
2417 unsigned num_components = instr->num_components;
2418
2419 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2420
2421 if (type_sz(dest.type) == 8)
2422 first_component /= 2;
2423
2424 /* For 16-bit support maybe a temporary will be needed to copy from
2425 * the ATTR file.
2426 */
2427 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2428 first_component, num_components);
2429 break;
2430 }
2431
2432 case nir_intrinsic_load_vertex_id_zero_base:
2433 case nir_intrinsic_load_instance_id:
2434 case nir_intrinsic_load_base_instance:
2435 case nir_intrinsic_load_draw_id:
2436 case nir_intrinsic_load_first_vertex:
2437 case nir_intrinsic_load_is_indexed_draw:
2438 unreachable("lowered by brw_nir_lower_vs_inputs");
2439
2440 default:
2441 nir_emit_intrinsic(bld, instr);
2442 break;
2443 }
2444 }
2445
2446 void
2447 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2448 nir_intrinsic_instr *instr)
2449 {
2450 assert(stage == MESA_SHADER_TESS_CTRL);
2451 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2452 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2453
2454 fs_reg dst;
2455 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2456 dst = get_nir_dest(instr->dest);
2457
2458 switch (instr->intrinsic) {
2459 case nir_intrinsic_load_primitive_id:
2460 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2461 break;
2462 case nir_intrinsic_load_invocation_id:
2463 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2464 break;
2465 case nir_intrinsic_load_patch_vertices_in:
2466 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2467 brw_imm_d(tcs_key->input_vertices));
2468 break;
2469
2470 case nir_intrinsic_barrier: {
2471 if (tcs_prog_data->instances == 1)
2472 break;
2473
2474 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2475 fs_reg m0_2 = component(m0, 2);
2476
2477 const fs_builder chanbld = bld.exec_all().group(1, 0);
2478
2479 /* Zero the message header */
2480 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2481
2482 if (devinfo->gen < 11) {
2483 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2484 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2485 brw_imm_ud(INTEL_MASK(16, 13)));
2486
2487 /* Shift it up to bits 27:24. */
2488 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2489 } else {
2490 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2491 brw_imm_ud(INTEL_MASK(30, 24)));
2492 }
2493
2494 /* Set the Barrier Count and the enable bit */
2495 if (devinfo->gen < 11) {
2496 chanbld.OR(m0_2, m0_2,
2497 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2498 } else {
2499 chanbld.OR(m0_2, m0_2,
2500 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2501 }
2502
2503 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2504 break;
2505 }
2506
2507 case nir_intrinsic_load_input:
2508 unreachable("nir_lower_io should never give us these.");
2509 break;
2510
2511 case nir_intrinsic_load_per_vertex_input: {
2512 fs_reg indirect_offset = get_indirect_offset(instr);
2513 unsigned imm_offset = instr->const_index[0];
2514
2515 const nir_src &vertex_src = instr->src[0];
2516
2517 fs_inst *inst;
2518
2519 fs_reg icp_handle;
2520
2521 if (nir_src_is_const(vertex_src)) {
2522 /* Emit a MOV to resolve <0,1,0> regioning. */
2523 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2524 unsigned vertex = nir_src_as_uint(vertex_src);
2525 bld.MOV(icp_handle,
2526 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2527 BRW_REGISTER_TYPE_UD));
2528 } else if (tcs_prog_data->instances == 1 &&
2529 vertex_src.is_ssa &&
2530 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2531 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2532 /* For the common case of only 1 instance, an array index of
2533 * gl_InvocationID means reading g1. Skip all the indirect work.
2534 */
2535 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2536 } else {
2537 /* The vertex index is non-constant. We need to use indirect
2538 * addressing to fetch the proper URB handle.
2539 */
2540 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2541
2542 /* Each ICP handle is a single DWord (4 bytes) */
2543 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2544 bld.SHL(vertex_offset_bytes,
2545 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2546 brw_imm_ud(2u));
2547
2548 /* Start at g1. We might read up to 4 registers. */
2549 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2550 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2551 brw_imm_ud(4 * REG_SIZE));
2552 }
2553
2554 /* We can only read two double components with each URB read, so
2555 * we send two read messages in that case, each one loading up to
2556 * two double components.
2557 */
2558 unsigned num_iterations = 1;
2559 unsigned num_components = instr->num_components;
2560 unsigned first_component = nir_intrinsic_component(instr);
2561 fs_reg orig_dst = dst;
2562 if (type_sz(dst.type) == 8) {
2563 first_component = first_component / 2;
2564 if (instr->num_components > 2) {
2565 num_iterations = 2;
2566 num_components = 2;
2567 }
2568
2569 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2570 dst = tmp;
2571 }
2572
2573 for (unsigned iter = 0; iter < num_iterations; iter++) {
2574 if (indirect_offset.file == BAD_FILE) {
2575 /* Constant indexing - use global offset. */
2576 if (first_component != 0) {
2577 unsigned read_components = num_components + first_component;
2578 fs_reg tmp = bld.vgrf(dst.type, read_components);
2579 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2580 for (unsigned i = 0; i < num_components; i++) {
2581 bld.MOV(offset(dst, bld, i),
2582 offset(tmp, bld, i + first_component));
2583 }
2584 } else {
2585 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2586 }
2587 inst->offset = imm_offset;
2588 inst->mlen = 1;
2589 } else {
2590 /* Indirect indexing - use per-slot offsets as well. */
2591 const fs_reg srcs[] = { icp_handle, indirect_offset };
2592 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2593 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2594 if (first_component != 0) {
2595 unsigned read_components = num_components + first_component;
2596 fs_reg tmp = bld.vgrf(dst.type, read_components);
2597 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2598 payload);
2599 for (unsigned i = 0; i < num_components; i++) {
2600 bld.MOV(offset(dst, bld, i),
2601 offset(tmp, bld, i + first_component));
2602 }
2603 } else {
2604 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2605 payload);
2606 }
2607 inst->offset = imm_offset;
2608 inst->mlen = 2;
2609 }
2610 inst->size_written = (num_components + first_component) *
2611 inst->dst.component_size(inst->exec_size);
2612
2613 /* If we are reading 64-bit data using 32-bit read messages we need
2614 * build proper 64-bit data elements by shuffling the low and high
2615 * 32-bit components around like we do for other things like UBOs
2616 * or SSBOs.
2617 */
2618 if (type_sz(dst.type) == 8) {
2619 shuffle_from_32bit_read(bld,
2620 offset(orig_dst, bld, iter * 2),
2621 retype(dst, BRW_REGISTER_TYPE_D),
2622 0, num_components);
2623 }
2624
2625 /* Copy the temporary to the destination to deal with writemasking.
2626 *
2627 * Also attempt to deal with gl_PointSize being in the .w component.
2628 */
2629 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2630 assert(type_sz(dst.type) < 8);
2631 inst->dst = bld.vgrf(dst.type, 4);
2632 inst->size_written = 4 * REG_SIZE;
2633 bld.MOV(dst, offset(inst->dst, bld, 3));
2634 }
2635
2636 /* If we are loading double data and we need a second read message
2637 * adjust the write offset
2638 */
2639 if (num_iterations > 1) {
2640 num_components = instr->num_components - 2;
2641 imm_offset++;
2642 }
2643 }
2644 break;
2645 }
2646
2647 case nir_intrinsic_load_output:
2648 case nir_intrinsic_load_per_vertex_output: {
2649 fs_reg indirect_offset = get_indirect_offset(instr);
2650 unsigned imm_offset = instr->const_index[0];
2651 unsigned first_component = nir_intrinsic_component(instr);
2652
2653 fs_inst *inst;
2654 if (indirect_offset.file == BAD_FILE) {
2655 /* Replicate the patch handle to all enabled channels */
2656 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2657 bld.MOV(patch_handle,
2658 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2659
2660 {
2661 if (first_component != 0) {
2662 unsigned read_components =
2663 instr->num_components + first_component;
2664 fs_reg tmp = bld.vgrf(dst.type, read_components);
2665 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2666 patch_handle);
2667 inst->size_written = read_components * REG_SIZE;
2668 for (unsigned i = 0; i < instr->num_components; i++) {
2669 bld.MOV(offset(dst, bld, i),
2670 offset(tmp, bld, i + first_component));
2671 }
2672 } else {
2673 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2674 patch_handle);
2675 inst->size_written = instr->num_components * REG_SIZE;
2676 }
2677 inst->offset = imm_offset;
2678 inst->mlen = 1;
2679 }
2680 } else {
2681 /* Indirect indexing - use per-slot offsets as well. */
2682 const fs_reg srcs[] = {
2683 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2684 indirect_offset
2685 };
2686 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2687 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2688 if (first_component != 0) {
2689 unsigned read_components =
2690 instr->num_components + first_component;
2691 fs_reg tmp = bld.vgrf(dst.type, read_components);
2692 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2693 payload);
2694 inst->size_written = read_components * REG_SIZE;
2695 for (unsigned i = 0; i < instr->num_components; i++) {
2696 bld.MOV(offset(dst, bld, i),
2697 offset(tmp, bld, i + first_component));
2698 }
2699 } else {
2700 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2701 payload);
2702 inst->size_written = instr->num_components * REG_SIZE;
2703 }
2704 inst->offset = imm_offset;
2705 inst->mlen = 2;
2706 }
2707 break;
2708 }
2709
2710 case nir_intrinsic_store_output:
2711 case nir_intrinsic_store_per_vertex_output: {
2712 fs_reg value = get_nir_src(instr->src[0]);
2713 bool is_64bit = (instr->src[0].is_ssa ?
2714 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2715 fs_reg indirect_offset = get_indirect_offset(instr);
2716 unsigned imm_offset = instr->const_index[0];
2717 unsigned mask = instr->const_index[1];
2718 unsigned header_regs = 0;
2719 fs_reg srcs[7];
2720 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2721
2722 if (indirect_offset.file != BAD_FILE) {
2723 srcs[header_regs++] = indirect_offset;
2724 }
2725
2726 if (mask == 0)
2727 break;
2728
2729 unsigned num_components = util_last_bit(mask);
2730 enum opcode opcode;
2731
2732 /* We can only pack two 64-bit components in a single message, so send
2733 * 2 messages if we have more components
2734 */
2735 unsigned num_iterations = 1;
2736 unsigned iter_components = num_components;
2737 unsigned first_component = nir_intrinsic_component(instr);
2738 if (is_64bit) {
2739 first_component = first_component / 2;
2740 if (instr->num_components > 2) {
2741 num_iterations = 2;
2742 iter_components = 2;
2743 }
2744 }
2745
2746 mask = mask << first_component;
2747
2748 for (unsigned iter = 0; iter < num_iterations; iter++) {
2749 if (!is_64bit && mask != WRITEMASK_XYZW) {
2750 srcs[header_regs++] = brw_imm_ud(mask << 16);
2751 opcode = indirect_offset.file != BAD_FILE ?
2752 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2753 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2754 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2755 /* Expand the 64-bit mask to 32-bit channels. We only handle
2756 * two channels in each iteration, so we only care about X/Y.
2757 */
2758 unsigned mask32 = 0;
2759 if (mask & WRITEMASK_X)
2760 mask32 |= WRITEMASK_XY;
2761 if (mask & WRITEMASK_Y)
2762 mask32 |= WRITEMASK_ZW;
2763
2764 /* If the mask does not include any of the channels X or Y there
2765 * is nothing to do in this iteration. Move on to the next couple
2766 * of 64-bit channels.
2767 */
2768 if (!mask32) {
2769 mask >>= 2;
2770 imm_offset++;
2771 continue;
2772 }
2773
2774 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2775 opcode = indirect_offset.file != BAD_FILE ?
2776 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2777 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2778 } else {
2779 opcode = indirect_offset.file != BAD_FILE ?
2780 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2781 SHADER_OPCODE_URB_WRITE_SIMD8;
2782 }
2783
2784 for (unsigned i = 0; i < iter_components; i++) {
2785 if (!(mask & (1 << (i + first_component))))
2786 continue;
2787
2788 if (!is_64bit) {
2789 srcs[header_regs + i + first_component] = offset(value, bld, i);
2790 } else {
2791 /* We need to shuffle the 64-bit data to match the layout
2792 * expected by our 32-bit URB write messages. We use a temporary
2793 * for that.
2794 */
2795 unsigned channel = iter * 2 + i;
2796 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2797
2798 srcs[header_regs + (i + first_component) * 2] = dest;
2799 srcs[header_regs + (i + first_component) * 2 + 1] =
2800 offset(dest, bld, 1);
2801 }
2802 }
2803
2804 unsigned mlen =
2805 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2806 (is_64bit ? 2 * first_component : first_component);
2807 fs_reg payload =
2808 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2809 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2810
2811 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2812 inst->offset = imm_offset;
2813 inst->mlen = mlen;
2814
2815 /* If this is a 64-bit attribute, select the next two 64-bit channels
2816 * to be handled in the next iteration.
2817 */
2818 if (is_64bit) {
2819 mask >>= 2;
2820 imm_offset++;
2821 }
2822 }
2823 break;
2824 }
2825
2826 default:
2827 nir_emit_intrinsic(bld, instr);
2828 break;
2829 }
2830 }
2831
2832 void
2833 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2834 nir_intrinsic_instr *instr)
2835 {
2836 assert(stage == MESA_SHADER_TESS_EVAL);
2837 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2838
2839 fs_reg dest;
2840 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2841 dest = get_nir_dest(instr->dest);
2842
2843 switch (instr->intrinsic) {
2844 case nir_intrinsic_load_primitive_id:
2845 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2846 break;
2847 case nir_intrinsic_load_tess_coord:
2848 /* gl_TessCoord is part of the payload in g1-3 */
2849 for (unsigned i = 0; i < 3; i++) {
2850 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2851 }
2852 break;
2853
2854 case nir_intrinsic_load_input:
2855 case nir_intrinsic_load_per_vertex_input: {
2856 fs_reg indirect_offset = get_indirect_offset(instr);
2857 unsigned imm_offset = instr->const_index[0];
2858 unsigned first_component = nir_intrinsic_component(instr);
2859
2860 if (type_sz(dest.type) == 8) {
2861 first_component = first_component / 2;
2862 }
2863
2864 fs_inst *inst;
2865 if (indirect_offset.file == BAD_FILE) {
2866 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2867 * which is 16 registers (since each holds 2 vec4 slots).
2868 */
2869 unsigned slot_count = 1;
2870 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2871 slot_count++;
2872
2873 const unsigned max_push_slots = 32;
2874 if (imm_offset + slot_count <= max_push_slots) {
2875 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2876 for (int i = 0; i < instr->num_components; i++) {
2877 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2878 i + first_component;
2879 bld.MOV(offset(dest, bld, i), component(src, comp));
2880 }
2881
2882 tes_prog_data->base.urb_read_length =
2883 MAX2(tes_prog_data->base.urb_read_length,
2884 DIV_ROUND_UP(imm_offset + slot_count, 2));
2885 } else {
2886 /* Replicate the patch handle to all enabled channels */
2887 const fs_reg srcs[] = {
2888 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2889 };
2890 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2891 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2892
2893 if (first_component != 0) {
2894 unsigned read_components =
2895 instr->num_components + first_component;
2896 fs_reg tmp = bld.vgrf(dest.type, read_components);
2897 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2898 patch_handle);
2899 inst->size_written = read_components * REG_SIZE;
2900 for (unsigned i = 0; i < instr->num_components; i++) {
2901 bld.MOV(offset(dest, bld, i),
2902 offset(tmp, bld, i + first_component));
2903 }
2904 } else {
2905 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2906 patch_handle);
2907 inst->size_written = instr->num_components * REG_SIZE;
2908 }
2909 inst->mlen = 1;
2910 inst->offset = imm_offset;
2911 }
2912 } else {
2913 /* Indirect indexing - use per-slot offsets as well. */
2914
2915 /* We can only read two double components with each URB read, so
2916 * we send two read messages in that case, each one loading up to
2917 * two double components.
2918 */
2919 unsigned num_iterations = 1;
2920 unsigned num_components = instr->num_components;
2921 fs_reg orig_dest = dest;
2922 if (type_sz(dest.type) == 8) {
2923 if (instr->num_components > 2) {
2924 num_iterations = 2;
2925 num_components = 2;
2926 }
2927 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2928 dest = tmp;
2929 }
2930
2931 for (unsigned iter = 0; iter < num_iterations; iter++) {
2932 const fs_reg srcs[] = {
2933 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2934 indirect_offset
2935 };
2936 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2937 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2938
2939 if (first_component != 0) {
2940 unsigned read_components =
2941 num_components + first_component;
2942 fs_reg tmp = bld.vgrf(dest.type, read_components);
2943 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2944 payload);
2945 for (unsigned i = 0; i < num_components; i++) {
2946 bld.MOV(offset(dest, bld, i),
2947 offset(tmp, bld, i + first_component));
2948 }
2949 } else {
2950 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2951 payload);
2952 }
2953 inst->mlen = 2;
2954 inst->offset = imm_offset;
2955 inst->size_written = (num_components + first_component) *
2956 inst->dst.component_size(inst->exec_size);
2957
2958 /* If we are reading 64-bit data using 32-bit read messages we need
2959 * build proper 64-bit data elements by shuffling the low and high
2960 * 32-bit components around like we do for other things like UBOs
2961 * or SSBOs.
2962 */
2963 if (type_sz(dest.type) == 8) {
2964 shuffle_from_32bit_read(bld,
2965 offset(orig_dest, bld, iter * 2),
2966 retype(dest, BRW_REGISTER_TYPE_D),
2967 0, num_components);
2968 }
2969
2970 /* If we are loading double data and we need a second read message
2971 * adjust the offset
2972 */
2973 if (num_iterations > 1) {
2974 num_components = instr->num_components - 2;
2975 imm_offset++;
2976 }
2977 }
2978 }
2979 break;
2980 }
2981 default:
2982 nir_emit_intrinsic(bld, instr);
2983 break;
2984 }
2985 }
2986
2987 void
2988 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2989 nir_intrinsic_instr *instr)
2990 {
2991 assert(stage == MESA_SHADER_GEOMETRY);
2992 fs_reg indirect_offset;
2993
2994 fs_reg dest;
2995 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2996 dest = get_nir_dest(instr->dest);
2997
2998 switch (instr->intrinsic) {
2999 case nir_intrinsic_load_primitive_id:
3000 assert(stage == MESA_SHADER_GEOMETRY);
3001 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3002 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3003 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3004 break;
3005
3006 case nir_intrinsic_load_input:
3007 unreachable("load_input intrinsics are invalid for the GS stage");
3008
3009 case nir_intrinsic_load_per_vertex_input:
3010 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3011 instr->src[1], instr->num_components,
3012 nir_intrinsic_component(instr));
3013 break;
3014
3015 case nir_intrinsic_emit_vertex_with_counter:
3016 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3017 break;
3018
3019 case nir_intrinsic_end_primitive_with_counter:
3020 emit_gs_end_primitive(instr->src[0]);
3021 break;
3022
3023 case nir_intrinsic_set_vertex_count:
3024 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3025 break;
3026
3027 case nir_intrinsic_load_invocation_id: {
3028 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3029 assert(val.file != BAD_FILE);
3030 dest.type = val.type;
3031 bld.MOV(dest, val);
3032 break;
3033 }
3034
3035 default:
3036 nir_emit_intrinsic(bld, instr);
3037 break;
3038 }
3039 }
3040
3041 /**
3042 * Fetch the current render target layer index.
3043 */
3044 static fs_reg
3045 fetch_render_target_array_index(const fs_builder &bld)
3046 {
3047 if (bld.shader->devinfo->gen >= 6) {
3048 /* The render target array index is provided in the thread payload as
3049 * bits 26:16 of r0.0.
3050 */
3051 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3052 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3053 brw_imm_uw(0x7ff));
3054 return idx;
3055 } else {
3056 /* Pre-SNB we only ever render into the first layer of the framebuffer
3057 * since layered rendering is not implemented.
3058 */
3059 return brw_imm_ud(0);
3060 }
3061 }
3062
3063 /**
3064 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3065 * framebuffer at the current fragment coordinates and sample index.
3066 */
3067 fs_inst *
3068 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3069 unsigned target)
3070 {
3071 const struct gen_device_info *devinfo = bld.shader->devinfo;
3072
3073 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3074 const brw_wm_prog_key *wm_key =
3075 reinterpret_cast<const brw_wm_prog_key *>(key);
3076 assert(!wm_key->coherent_fb_fetch);
3077 const struct brw_wm_prog_data *wm_prog_data =
3078 brw_wm_prog_data(stage_prog_data);
3079
3080 /* Calculate the surface index relative to the start of the texture binding
3081 * table block, since that's what the texturing messages expect.
3082 */
3083 const unsigned surface = target +
3084 wm_prog_data->binding_table.render_target_read_start -
3085 wm_prog_data->base.binding_table.texture_start;
3086
3087 /* Calculate the fragment coordinates. */
3088 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3089 bld.MOV(offset(coords, bld, 0), pixel_x);
3090 bld.MOV(offset(coords, bld, 1), pixel_y);
3091 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3092
3093 /* Calculate the sample index and MCS payload when multisampling. Luckily
3094 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3095 * shouldn't be necessary to recompile based on whether the framebuffer is
3096 * CMS or UMS.
3097 */
3098 if (wm_key->multisample_fbo &&
3099 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3100 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3101
3102 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3103 const fs_reg mcs = wm_key->multisample_fbo ?
3104 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3105
3106 /* Use either a normal or a CMS texel fetch message depending on whether
3107 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3108 * message just in case the framebuffer uses 16x multisampling, it should
3109 * be equivalent to the normal CMS fetch for lower multisampling modes.
3110 */
3111 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3112 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3113 SHADER_OPCODE_TXF_CMS_LOGICAL;
3114
3115 /* Emit the instruction. */
3116 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3117 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3118 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3119 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3120 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3121 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3122 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3123 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3124 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3125
3126 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3127 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3128
3129 return inst;
3130 }
3131
3132 /**
3133 * Actual coherent framebuffer read implemented using the native render target
3134 * read message. Requires SKL+.
3135 */
3136 static fs_inst *
3137 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3138 {
3139 assert(bld.shader->devinfo->gen >= 9);
3140 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3141 inst->target = target;
3142 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3143
3144 return inst;
3145 }
3146
3147 static fs_reg
3148 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3149 {
3150 if (n && regs[0].file != BAD_FILE) {
3151 return regs[0];
3152
3153 } else {
3154 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3155
3156 for (unsigned i = 0; i < n; i++)
3157 regs[i] = tmp;
3158
3159 return tmp;
3160 }
3161 }
3162
3163 static fs_reg
3164 alloc_frag_output(fs_visitor *v, unsigned location)
3165 {
3166 assert(v->stage == MESA_SHADER_FRAGMENT);
3167 const brw_wm_prog_key *const key =
3168 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3169 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3170 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3171
3172 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3173 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3174
3175 else if (l == FRAG_RESULT_COLOR)
3176 return alloc_temporary(v->bld, 4, v->outputs,
3177 MAX2(key->nr_color_regions, 1));
3178
3179 else if (l == FRAG_RESULT_DEPTH)
3180 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3181
3182 else if (l == FRAG_RESULT_STENCIL)
3183 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3184
3185 else if (l == FRAG_RESULT_SAMPLE_MASK)
3186 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3187
3188 else if (l >= FRAG_RESULT_DATA0 &&
3189 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3190 return alloc_temporary(v->bld, 4,
3191 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3192
3193 else
3194 unreachable("Invalid location");
3195 }
3196
3197 void
3198 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3199 nir_intrinsic_instr *instr)
3200 {
3201 assert(stage == MESA_SHADER_FRAGMENT);
3202
3203 fs_reg dest;
3204 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3205 dest = get_nir_dest(instr->dest);
3206
3207 switch (instr->intrinsic) {
3208 case nir_intrinsic_load_front_face:
3209 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3210 *emit_frontfacing_interpolation());
3211 break;
3212
3213 case nir_intrinsic_load_sample_pos: {
3214 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3215 assert(sample_pos.file != BAD_FILE);
3216 dest.type = sample_pos.type;
3217 bld.MOV(dest, sample_pos);
3218 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3219 break;
3220 }
3221
3222 case nir_intrinsic_load_layer_id:
3223 dest.type = BRW_REGISTER_TYPE_UD;
3224 bld.MOV(dest, fetch_render_target_array_index(bld));
3225 break;
3226
3227 case nir_intrinsic_load_helper_invocation:
3228 case nir_intrinsic_load_sample_mask_in:
3229 case nir_intrinsic_load_sample_id: {
3230 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3231 fs_reg val = nir_system_values[sv];
3232 assert(val.file != BAD_FILE);
3233 dest.type = val.type;
3234 bld.MOV(dest, val);
3235 break;
3236 }
3237
3238 case nir_intrinsic_store_output: {
3239 const fs_reg src = get_nir_src(instr->src[0]);
3240 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3241 const unsigned location = nir_intrinsic_base(instr) +
3242 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3243 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3244 src.type);
3245
3246 for (unsigned j = 0; j < instr->num_components; j++)
3247 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3248 offset(src, bld, j));
3249
3250 break;
3251 }
3252
3253 case nir_intrinsic_load_output: {
3254 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3255 BRW_NIR_FRAG_OUTPUT_LOCATION);
3256 assert(l >= FRAG_RESULT_DATA0);
3257 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3258 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3259 const fs_reg tmp = bld.vgrf(dest.type, 4);
3260
3261 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3262 emit_coherent_fb_read(bld, tmp, target);
3263 else
3264 emit_non_coherent_fb_read(bld, tmp, target);
3265
3266 for (unsigned j = 0; j < instr->num_components; j++) {
3267 bld.MOV(offset(dest, bld, j),
3268 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3269 }
3270
3271 break;
3272 }
3273
3274 case nir_intrinsic_discard:
3275 case nir_intrinsic_discard_if: {
3276 /* We track our discarded pixels in f0.1. By predicating on it, we can
3277 * update just the flag bits that aren't yet discarded. If there's no
3278 * condition, we emit a CMP of g0 != g0, so all currently executing
3279 * channels will get turned off.
3280 */
3281 fs_inst *cmp;
3282 if (instr->intrinsic == nir_intrinsic_discard_if) {
3283 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3284 brw_imm_d(0), BRW_CONDITIONAL_Z);
3285 } else {
3286 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3287 BRW_REGISTER_TYPE_UW));
3288 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3289 }
3290 cmp->predicate = BRW_PREDICATE_NORMAL;
3291 cmp->flag_subreg = 1;
3292
3293 if (devinfo->gen >= 6) {
3294 emit_discard_jump();
3295 }
3296
3297 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3298 break;
3299 }
3300
3301 case nir_intrinsic_load_input: {
3302 /* load_input is only used for flat inputs */
3303 unsigned base = nir_intrinsic_base(instr);
3304 unsigned comp = nir_intrinsic_component(instr);
3305 unsigned num_components = instr->num_components;
3306 fs_reg orig_dest = dest;
3307 enum brw_reg_type type = dest.type;
3308
3309 /* Special case fields in the VUE header */
3310 if (base == VARYING_SLOT_LAYER)
3311 comp = 1;
3312 else if (base == VARYING_SLOT_VIEWPORT)
3313 comp = 2;
3314
3315 if (nir_dest_bit_size(instr->dest) == 64) {
3316 /* const_index is in 32-bit type size units that could not be aligned
3317 * with DF. We need to read the double vector as if it was a float
3318 * vector of twice the number of components to fetch the right data.
3319 */
3320 type = BRW_REGISTER_TYPE_F;
3321 num_components *= 2;
3322 dest = bld.vgrf(type, num_components);
3323 }
3324
3325 for (unsigned int i = 0; i < num_components; i++) {
3326 bld.MOV(offset(retype(dest, type), bld, i),
3327 retype(component(interp_reg(base, comp + i), 3), type));
3328 }
3329
3330 if (nir_dest_bit_size(instr->dest) == 64) {
3331 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3332 instr->num_components);
3333 }
3334 break;
3335 }
3336
3337 case nir_intrinsic_load_barycentric_pixel:
3338 case nir_intrinsic_load_barycentric_centroid:
3339 case nir_intrinsic_load_barycentric_sample:
3340 /* Do nothing - load_interpolated_input handling will handle it later. */
3341 break;
3342
3343 case nir_intrinsic_load_barycentric_at_sample: {
3344 const glsl_interp_mode interpolation =
3345 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3346
3347 if (nir_src_is_const(instr->src[0])) {
3348 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3349
3350 emit_pixel_interpolater_send(bld,
3351 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3352 dest,
3353 fs_reg(), /* src */
3354 brw_imm_ud(msg_data),
3355 interpolation);
3356 } else {
3357 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3358 BRW_REGISTER_TYPE_UD);
3359
3360 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3361 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3362 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3363 bld.exec_all().group(1, 0)
3364 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3365 emit_pixel_interpolater_send(bld,
3366 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3367 dest,
3368 fs_reg(), /* src */
3369 msg_data,
3370 interpolation);
3371 } else {
3372 /* Make a loop that sends a message to the pixel interpolater
3373 * for the sample number in each live channel. If there are
3374 * multiple channels with the same sample number then these
3375 * will be handled simultaneously with a single interation of
3376 * the loop.
3377 */
3378 bld.emit(BRW_OPCODE_DO);
3379
3380 /* Get the next live sample number into sample_id_reg */
3381 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3382
3383 /* Set the flag register so that we can perform the send
3384 * message on all channels that have the same sample number
3385 */
3386 bld.CMP(bld.null_reg_ud(),
3387 sample_src, sample_id,
3388 BRW_CONDITIONAL_EQ);
3389 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3390 bld.exec_all().group(1, 0)
3391 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3392 fs_inst *inst =
3393 emit_pixel_interpolater_send(bld,
3394 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3395 dest,
3396 fs_reg(), /* src */
3397 component(msg_data, 0),
3398 interpolation);
3399 set_predicate(BRW_PREDICATE_NORMAL, inst);
3400
3401 /* Continue the loop if there are any live channels left */
3402 set_predicate_inv(BRW_PREDICATE_NORMAL,
3403 true, /* inverse */
3404 bld.emit(BRW_OPCODE_WHILE));
3405 }
3406 }
3407 break;
3408 }
3409
3410 case nir_intrinsic_load_barycentric_at_offset: {
3411 const glsl_interp_mode interpolation =
3412 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3413
3414 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3415
3416 if (const_offset) {
3417 assert(nir_src_bit_size(instr->src[0]) == 32);
3418 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3419 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3420
3421 emit_pixel_interpolater_send(bld,
3422 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3423 dest,
3424 fs_reg(), /* src */
3425 brw_imm_ud(off_x | (off_y << 4)),
3426 interpolation);
3427 } else {
3428 fs_reg src = vgrf(glsl_type::ivec2_type);
3429 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3430 BRW_REGISTER_TYPE_F);
3431 for (int i = 0; i < 2; i++) {
3432 fs_reg temp = vgrf(glsl_type::float_type);
3433 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3434 fs_reg itemp = vgrf(glsl_type::int_type);
3435 /* float to int */
3436 bld.MOV(itemp, temp);
3437
3438 /* Clamp the upper end of the range to +7/16.
3439 * ARB_gpu_shader5 requires that we support a maximum offset
3440 * of +0.5, which isn't representable in a S0.4 value -- if
3441 * we didn't clamp it, we'd end up with -8/16, which is the
3442 * opposite of what the shader author wanted.
3443 *
3444 * This is legal due to ARB_gpu_shader5's quantization
3445 * rules:
3446 *
3447 * "Not all values of <offset> may be supported; x and y
3448 * offsets may be rounded to fixed-point values with the
3449 * number of fraction bits given by the
3450 * implementation-dependent constant
3451 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3452 */
3453 set_condmod(BRW_CONDITIONAL_L,
3454 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3455 }
3456
3457 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3458 emit_pixel_interpolater_send(bld,
3459 opcode,
3460 dest,
3461 src,
3462 brw_imm_ud(0u),
3463 interpolation);
3464 }
3465 break;
3466 }
3467
3468 case nir_intrinsic_load_interpolated_input: {
3469 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3470 emit_fragcoord_interpolation(dest);
3471 break;
3472 }
3473
3474 assert(instr->src[0].ssa &&
3475 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3476 nir_intrinsic_instr *bary_intrinsic =
3477 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3478 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3479 enum glsl_interp_mode interp_mode =
3480 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3481 fs_reg dst_xy;
3482
3483 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3484 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3485 /* Use the result of the PI message */
3486 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3487 } else {
3488 /* Use the delta_xy values computed from the payload */
3489 enum brw_barycentric_mode bary =
3490 brw_barycentric_mode(interp_mode, bary_intrin);
3491
3492 dst_xy = this->delta_xy[bary];
3493 }
3494
3495 for (unsigned int i = 0; i < instr->num_components; i++) {
3496 fs_reg interp =
3497 component(interp_reg(nir_intrinsic_base(instr),
3498 nir_intrinsic_component(instr) + i), 0);
3499 interp.type = BRW_REGISTER_TYPE_F;
3500 dest.type = BRW_REGISTER_TYPE_F;
3501
3502 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3503 fs_reg tmp = vgrf(glsl_type::float_type);
3504 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3505 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3506 } else {
3507 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3508 }
3509 }
3510 break;
3511 }
3512
3513 default:
3514 nir_emit_intrinsic(bld, instr);
3515 break;
3516 }
3517 }
3518
3519 static int
3520 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3521 {
3522 if (nir_src_is_const(instr->src[src])) {
3523 int64_t add_val = nir_src_as_int(instr->src[src]);
3524 if (add_val == 1)
3525 return BRW_AOP_INC;
3526 else if (add_val == -1)
3527 return BRW_AOP_DEC;
3528 }
3529
3530 return BRW_AOP_ADD;
3531 }
3532
3533 void
3534 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3535 nir_intrinsic_instr *instr)
3536 {
3537 assert(stage == MESA_SHADER_COMPUTE);
3538 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3539
3540 fs_reg dest;
3541 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3542 dest = get_nir_dest(instr->dest);
3543
3544 switch (instr->intrinsic) {
3545 case nir_intrinsic_barrier:
3546 emit_barrier();
3547 cs_prog_data->uses_barrier = true;
3548 break;
3549
3550 case nir_intrinsic_load_subgroup_id:
3551 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3552 break;
3553
3554 case nir_intrinsic_load_local_invocation_id:
3555 case nir_intrinsic_load_work_group_id: {
3556 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3557 fs_reg val = nir_system_values[sv];
3558 assert(val.file != BAD_FILE);
3559 dest.type = val.type;
3560 for (unsigned i = 0; i < 3; i++)
3561 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3562 break;
3563 }
3564
3565 case nir_intrinsic_load_num_work_groups: {
3566 const unsigned surface =
3567 cs_prog_data->binding_table.work_groups_start;
3568
3569 cs_prog_data->uses_num_work_groups = true;
3570
3571 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3572 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3573 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3574 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3575
3576 /* Read the 3 GLuint components of gl_NumWorkGroups */
3577 for (unsigned i = 0; i < 3; i++) {
3578 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3579 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3580 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3581 }
3582 break;
3583 }
3584
3585 case nir_intrinsic_shared_atomic_add:
3586 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3587 break;
3588 case nir_intrinsic_shared_atomic_imin:
3589 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3590 break;
3591 case nir_intrinsic_shared_atomic_umin:
3592 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3593 break;
3594 case nir_intrinsic_shared_atomic_imax:
3595 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3596 break;
3597 case nir_intrinsic_shared_atomic_umax:
3598 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3599 break;
3600 case nir_intrinsic_shared_atomic_and:
3601 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3602 break;
3603 case nir_intrinsic_shared_atomic_or:
3604 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3605 break;
3606 case nir_intrinsic_shared_atomic_xor:
3607 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3608 break;
3609 case nir_intrinsic_shared_atomic_exchange:
3610 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3611 break;
3612 case nir_intrinsic_shared_atomic_comp_swap:
3613 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3614 break;
3615 case nir_intrinsic_shared_atomic_fmin:
3616 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3617 break;
3618 case nir_intrinsic_shared_atomic_fmax:
3619 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3620 break;
3621 case nir_intrinsic_shared_atomic_fcomp_swap:
3622 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3623 break;
3624
3625 case nir_intrinsic_load_shared: {
3626 assert(devinfo->gen >= 7);
3627 assert(stage == MESA_SHADER_COMPUTE);
3628
3629 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3630 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3631 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3632 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3633 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3634
3635 /* Make dest unsigned because that's what the temporary will be */
3636 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3637
3638 /* Read the vector */
3639 if (nir_intrinsic_align(instr) >= 4) {
3640 assert(nir_dest_bit_size(instr->dest) == 32);
3641 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3642 fs_inst *inst =
3643 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3644 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3645 inst->size_written = instr->num_components * dispatch_width * 4;
3646 } else {
3647 assert(nir_dest_bit_size(instr->dest) <= 32);
3648 assert(nir_dest_num_components(instr->dest) == 1);
3649 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3650
3651 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3652 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3653 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3654 bld.MOV(dest, read_result);
3655 }
3656 break;
3657 }
3658
3659 case nir_intrinsic_store_shared: {
3660 assert(devinfo->gen >= 7);
3661 assert(stage == MESA_SHADER_COMPUTE);
3662
3663 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3664 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3665 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3666 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3667 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3668
3669 fs_reg data = get_nir_src(instr->src[0]);
3670 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3671
3672 assert(nir_intrinsic_write_mask(instr) ==
3673 (1u << instr->num_components) - 1);
3674 if (nir_intrinsic_align(instr) >= 4) {
3675 assert(nir_src_bit_size(instr->src[0]) == 32);
3676 assert(nir_src_num_components(instr->src[0]) <= 4);
3677 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3678 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3679 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3680 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3681 } else {
3682 assert(nir_src_bit_size(instr->src[0]) <= 32);
3683 assert(nir_src_num_components(instr->src[0]) == 1);
3684 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3685
3686 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3687 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3688
3689 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3690 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3691 }
3692 break;
3693 }
3694
3695 default:
3696 nir_emit_intrinsic(bld, instr);
3697 break;
3698 }
3699 }
3700
3701 static fs_reg
3702 brw_nir_reduction_op_identity(const fs_builder &bld,
3703 nir_op op, brw_reg_type type)
3704 {
3705 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3706 switch (type_sz(type)) {
3707 case 2:
3708 assert(type != BRW_REGISTER_TYPE_HF);
3709 return retype(brw_imm_uw(value.u16), type);
3710 case 4:
3711 return retype(brw_imm_ud(value.u32), type);
3712 case 8:
3713 if (type == BRW_REGISTER_TYPE_DF)
3714 return setup_imm_df(bld, value.f64);
3715 else
3716 return retype(brw_imm_u64(value.u64), type);
3717 default:
3718 unreachable("Invalid type size");
3719 }
3720 }
3721
3722 static opcode
3723 brw_op_for_nir_reduction_op(nir_op op)
3724 {
3725 switch (op) {
3726 case nir_op_iadd: return BRW_OPCODE_ADD;
3727 case nir_op_fadd: return BRW_OPCODE_ADD;
3728 case nir_op_imul: return BRW_OPCODE_MUL;
3729 case nir_op_fmul: return BRW_OPCODE_MUL;
3730 case nir_op_imin: return BRW_OPCODE_SEL;
3731 case nir_op_umin: return BRW_OPCODE_SEL;
3732 case nir_op_fmin: return BRW_OPCODE_SEL;
3733 case nir_op_imax: return BRW_OPCODE_SEL;
3734 case nir_op_umax: return BRW_OPCODE_SEL;
3735 case nir_op_fmax: return BRW_OPCODE_SEL;
3736 case nir_op_iand: return BRW_OPCODE_AND;
3737 case nir_op_ior: return BRW_OPCODE_OR;
3738 case nir_op_ixor: return BRW_OPCODE_XOR;
3739 default:
3740 unreachable("Invalid reduction operation");
3741 }
3742 }
3743
3744 static brw_conditional_mod
3745 brw_cond_mod_for_nir_reduction_op(nir_op op)
3746 {
3747 switch (op) {
3748 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3749 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3750 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3751 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3752 case nir_op_imin: return BRW_CONDITIONAL_L;
3753 case nir_op_umin: return BRW_CONDITIONAL_L;
3754 case nir_op_fmin: return BRW_CONDITIONAL_L;
3755 case nir_op_imax: return BRW_CONDITIONAL_GE;
3756 case nir_op_umax: return BRW_CONDITIONAL_GE;
3757 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3758 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3759 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3760 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3761 default:
3762 unreachable("Invalid reduction operation");
3763 }
3764 }
3765
3766 fs_reg
3767 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3768 nir_intrinsic_instr *instr)
3769 {
3770 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3771
3772 if (stage_prog_data->binding_table.image_start > 0) {
3773 if (image.file == BRW_IMMEDIATE_VALUE) {
3774 image.d += stage_prog_data->binding_table.image_start;
3775 } else {
3776 bld.ADD(image, image,
3777 brw_imm_d(stage_prog_data->binding_table.image_start));
3778 }
3779 }
3780
3781 return bld.emit_uniformize(image);
3782 }
3783
3784 fs_reg
3785 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3786 nir_intrinsic_instr *instr)
3787 {
3788 /* SSBO stores are weird in that their index is in src[1] */
3789 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3790
3791 fs_reg surf_index;
3792 if (nir_src_is_const(instr->src[src])) {
3793 unsigned index = stage_prog_data->binding_table.ssbo_start +
3794 nir_src_as_uint(instr->src[src]);
3795 surf_index = brw_imm_ud(index);
3796 } else {
3797 surf_index = vgrf(glsl_type::uint_type);
3798 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3799 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3800 }
3801
3802 return bld.emit_uniformize(surf_index);
3803 }
3804
3805 static unsigned
3806 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3807 {
3808 switch (nir_intrinsic_image_dim(instr)) {
3809 case GLSL_SAMPLER_DIM_1D:
3810 return 1 + nir_intrinsic_image_array(instr);
3811 case GLSL_SAMPLER_DIM_2D:
3812 case GLSL_SAMPLER_DIM_RECT:
3813 return 2 + nir_intrinsic_image_array(instr);
3814 case GLSL_SAMPLER_DIM_3D:
3815 case GLSL_SAMPLER_DIM_CUBE:
3816 return 3;
3817 case GLSL_SAMPLER_DIM_BUF:
3818 return 1;
3819 case GLSL_SAMPLER_DIM_MS:
3820 return 2 + nir_intrinsic_image_array(instr);
3821 default:
3822 unreachable("Invalid image dimension");
3823 }
3824 }
3825
3826 void
3827 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3828 {
3829 fs_reg dest;
3830 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3831 dest = get_nir_dest(instr->dest);
3832
3833 switch (instr->intrinsic) {
3834 case nir_intrinsic_image_load:
3835 case nir_intrinsic_image_store:
3836 case nir_intrinsic_image_atomic_add:
3837 case nir_intrinsic_image_atomic_min:
3838 case nir_intrinsic_image_atomic_max:
3839 case nir_intrinsic_image_atomic_and:
3840 case nir_intrinsic_image_atomic_or:
3841 case nir_intrinsic_image_atomic_xor:
3842 case nir_intrinsic_image_atomic_exchange:
3843 case nir_intrinsic_image_atomic_comp_swap: {
3844 if (stage == MESA_SHADER_FRAGMENT &&
3845 instr->intrinsic != nir_intrinsic_image_load)
3846 brw_wm_prog_data(prog_data)->has_side_effects = true;
3847
3848 /* Get some metadata from the image intrinsic. */
3849 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3850 const GLenum format = nir_intrinsic_format(instr);
3851
3852 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3853 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3854 get_nir_image_intrinsic_image(bld, instr);
3855 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3856 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
3857 brw_imm_ud(image_intrinsic_coord_components(instr));
3858
3859 /* Emit an image load, store or atomic op. */
3860 if (instr->intrinsic == nir_intrinsic_image_load) {
3861 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3862 fs_inst *inst =
3863 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
3864 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3865 inst->size_written = instr->num_components * dispatch_width * 4;
3866 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3867 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3868 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
3869 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
3870 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3871 } else {
3872 int op;
3873 unsigned num_srcs = info->num_srcs;
3874
3875 switch (instr->intrinsic) {
3876 case nir_intrinsic_image_atomic_add:
3877 assert(num_srcs == 4);
3878
3879 op = get_op_for_atomic_add(instr, 3);
3880
3881 if (op != BRW_AOP_ADD)
3882 num_srcs = 3;
3883 break;
3884 case nir_intrinsic_image_atomic_min:
3885 assert(format == GL_R32UI || format == GL_R32I);
3886 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3887 break;
3888 case nir_intrinsic_image_atomic_max:
3889 assert(format == GL_R32UI || format == GL_R32I);
3890 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3891 break;
3892 case nir_intrinsic_image_atomic_and:
3893 op = BRW_AOP_AND;
3894 break;
3895 case nir_intrinsic_image_atomic_or:
3896 op = BRW_AOP_OR;
3897 break;
3898 case nir_intrinsic_image_atomic_xor:
3899 op = BRW_AOP_XOR;
3900 break;
3901 case nir_intrinsic_image_atomic_exchange:
3902 op = BRW_AOP_MOV;
3903 break;
3904 case nir_intrinsic_image_atomic_comp_swap:
3905 op = BRW_AOP_CMPWR;
3906 break;
3907 default:
3908 unreachable("Not reachable.");
3909 }
3910
3911 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
3912
3913 fs_reg data;
3914 if (num_srcs >= 4)
3915 data = get_nir_src(instr->src[3]);
3916 if (num_srcs >= 5) {
3917 fs_reg tmp = bld.vgrf(data.type, 2);
3918 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
3919 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
3920 data = tmp;
3921 }
3922 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3923
3924 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
3925 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3926 }
3927 break;
3928 }
3929
3930 case nir_intrinsic_image_size: {
3931 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3932 * into will handle the binding table index for us in the geneerator.
3933 */
3934 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3935 BRW_REGISTER_TYPE_UD);
3936 image = bld.emit_uniformize(image);
3937
3938 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3939 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
3940 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
3941 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
3942 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
3943
3944 /* Since the image size is always uniform, we can just emit a SIMD8
3945 * query instruction and splat the result out.
3946 */
3947 const fs_builder ubld = bld.exec_all().group(8, 0);
3948
3949 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3950 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
3951 tmp, srcs, ARRAY_SIZE(srcs));
3952 inst->size_written = 4 * REG_SIZE;
3953
3954 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3955 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3956 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3957 offset(retype(dest, tmp.type), bld, c),
3958 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3959 } else {
3960 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3961 component(offset(tmp, ubld, c), 0));
3962 }
3963 }
3964 break;
3965 }
3966
3967 case nir_intrinsic_image_load_raw_intel: {
3968 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3969 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3970 get_nir_image_intrinsic_image(bld, instr);
3971 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3972 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3973 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3974
3975 fs_inst *inst =
3976 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3977 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3978 inst->size_written = instr->num_components * dispatch_width * 4;
3979 break;
3980 }
3981
3982 case nir_intrinsic_image_store_raw_intel: {
3983 if (stage == MESA_SHADER_FRAGMENT)
3984 brw_wm_prog_data(prog_data)->has_side_effects = true;
3985
3986 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3987 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3988 get_nir_image_intrinsic_image(bld, instr);
3989 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3990 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
3991 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3992 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3993
3994 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3995 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3996 break;
3997 }
3998
3999 case nir_intrinsic_group_memory_barrier:
4000 case nir_intrinsic_memory_barrier_shared:
4001 case nir_intrinsic_memory_barrier_atomic_counter:
4002 case nir_intrinsic_memory_barrier_buffer:
4003 case nir_intrinsic_memory_barrier_image:
4004 case nir_intrinsic_memory_barrier: {
4005 const fs_builder ubld = bld.group(8, 0);
4006 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4007 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
4008 ->size_written = 2 * REG_SIZE;
4009 break;
4010 }
4011
4012 case nir_intrinsic_shader_clock: {
4013 /* We cannot do anything if there is an event, so ignore it for now */
4014 const fs_reg shader_clock = get_timestamp(bld);
4015 const fs_reg srcs[] = { component(shader_clock, 0),
4016 component(shader_clock, 1) };
4017 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4018 break;
4019 }
4020
4021 case nir_intrinsic_image_samples:
4022 /* The driver does not support multi-sampled images. */
4023 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4024 break;
4025
4026 case nir_intrinsic_load_uniform: {
4027 /* Offsets are in bytes but they should always aligned to
4028 * the type size
4029 */
4030 assert(instr->const_index[0] % 4 == 0 ||
4031 instr->const_index[0] % type_sz(dest.type) == 0);
4032
4033 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4034
4035 if (nir_src_is_const(instr->src[0])) {
4036 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4037 assert(load_offset % type_sz(dest.type) == 0);
4038 /* For 16-bit types we add the module of the const_index[0]
4039 * offset to access to not 32-bit aligned element
4040 */
4041 src.offset = load_offset + instr->const_index[0] % 4;
4042
4043 for (unsigned j = 0; j < instr->num_components; j++) {
4044 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4045 }
4046 } else {
4047 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4048 BRW_REGISTER_TYPE_UD);
4049
4050 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4051 * go past the end of the uniform. In order to keep the n'th
4052 * component from running past, we subtract off the size of all but
4053 * one component of the vector.
4054 */
4055 assert(instr->const_index[1] >=
4056 instr->num_components * (int) type_sz(dest.type));
4057 unsigned read_size = instr->const_index[1] -
4058 (instr->num_components - 1) * type_sz(dest.type);
4059
4060 bool supports_64bit_indirects =
4061 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4062
4063 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4064 for (unsigned j = 0; j < instr->num_components; j++) {
4065 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4066 offset(dest, bld, j), offset(src, bld, j),
4067 indirect, brw_imm_ud(read_size));
4068 }
4069 } else {
4070 const unsigned num_mov_indirects =
4071 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4072 /* We read a little bit less per MOV INDIRECT, as they are now
4073 * 32-bits ones instead of 64-bit. Fix read_size then.
4074 */
4075 const unsigned read_size_32bit = read_size -
4076 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4077 for (unsigned j = 0; j < instr->num_components; j++) {
4078 for (unsigned i = 0; i < num_mov_indirects; i++) {
4079 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4080 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4081 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4082 indirect, brw_imm_ud(read_size_32bit));
4083 }
4084 }
4085 }
4086 }
4087 break;
4088 }
4089
4090 case nir_intrinsic_load_ubo: {
4091 fs_reg surf_index;
4092 if (nir_src_is_const(instr->src[0])) {
4093 const unsigned index = stage_prog_data->binding_table.ubo_start +
4094 nir_src_as_uint(instr->src[0]);
4095 surf_index = brw_imm_ud(index);
4096 } else {
4097 /* The block index is not a constant. Evaluate the index expression
4098 * per-channel and add the base UBO index; we have to select a value
4099 * from any live channel.
4100 */
4101 surf_index = vgrf(glsl_type::uint_type);
4102 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4103 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4104 surf_index = bld.emit_uniformize(surf_index);
4105 }
4106
4107 if (!nir_src_is_const(instr->src[1])) {
4108 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4109 BRW_REGISTER_TYPE_UD);
4110
4111 for (int i = 0; i < instr->num_components; i++)
4112 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4113 base_offset, i * type_sz(dest.type));
4114 } else {
4115 /* Even if we are loading doubles, a pull constant load will load
4116 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4117 * need to load a full dvec4 we will have to emit 2 loads. This is
4118 * similar to demote_pull_constants(), except that in that case we
4119 * see individual accesses to each component of the vector and then
4120 * we let CSE deal with duplicate loads. Here we see a vector access
4121 * and we have to split it if necessary.
4122 */
4123 const unsigned type_size = type_sz(dest.type);
4124 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4125
4126 /* See if we've selected this as a push constant candidate */
4127 if (nir_src_is_const(instr->src[0])) {
4128 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4129 const unsigned offset_256b = load_offset / 32;
4130
4131 fs_reg push_reg;
4132 for (int i = 0; i < 4; i++) {
4133 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4134 if (range->block == ubo_block &&
4135 offset_256b >= range->start &&
4136 offset_256b < range->start + range->length) {
4137
4138 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4139 push_reg.offset = load_offset - 32 * range->start;
4140 break;
4141 }
4142 }
4143
4144 if (push_reg.file != BAD_FILE) {
4145 for (unsigned i = 0; i < instr->num_components; i++) {
4146 bld.MOV(offset(dest, bld, i),
4147 byte_offset(push_reg, i * type_size));
4148 }
4149 break;
4150 }
4151 }
4152
4153 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4154 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4155 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4156
4157 for (unsigned c = 0; c < instr->num_components;) {
4158 const unsigned base = load_offset + c * type_size;
4159 /* Number of usable components in the next block-aligned load. */
4160 const unsigned count = MIN2(instr->num_components - c,
4161 (block_sz - base % block_sz) / type_size);
4162
4163 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4164 packed_consts, surf_index,
4165 brw_imm_ud(base & ~(block_sz - 1)));
4166
4167 const fs_reg consts =
4168 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4169 dest.type);
4170
4171 for (unsigned d = 0; d < count; d++)
4172 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4173
4174 c += count;
4175 }
4176 }
4177 break;
4178 }
4179
4180 case nir_intrinsic_load_global: {
4181 assert(devinfo->gen >= 8);
4182
4183 if (nir_intrinsic_align(instr) >= 4) {
4184 assert(nir_dest_bit_size(instr->dest) == 32);
4185 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4186 dest,
4187 get_nir_src(instr->src[0]), /* Address */
4188 fs_reg(), /* No source data */
4189 brw_imm_ud(instr->num_components));
4190 inst->size_written = instr->num_components *
4191 inst->dst.component_size(inst->exec_size);
4192 } else {
4193 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4194 assert(bit_size <= 32);
4195 assert(nir_dest_num_components(instr->dest) == 1);
4196 brw_reg_type data_type =
4197 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4198 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4199 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4200 tmp,
4201 get_nir_src(instr->src[0]), /* Address */
4202 fs_reg(), /* No source data */
4203 brw_imm_ud(bit_size));
4204 bld.MOV(retype(dest, data_type), tmp);
4205 }
4206 break;
4207 }
4208
4209 case nir_intrinsic_store_global:
4210 assert(devinfo->gen >= 8);
4211
4212 if (stage == MESA_SHADER_FRAGMENT)
4213 brw_wm_prog_data(prog_data)->has_side_effects = true;
4214
4215 if (nir_intrinsic_align(instr) >= 4) {
4216 assert(nir_src_bit_size(instr->src[0]) == 32);
4217 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4218 fs_reg(),
4219 get_nir_src(instr->src[1]), /* Address */
4220 get_nir_src(instr->src[0]), /* Data */
4221 brw_imm_ud(instr->num_components));
4222 } else {
4223 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4224 assert(bit_size <= 32);
4225 assert(nir_src_num_components(instr->src[0]) == 1);
4226 brw_reg_type data_type =
4227 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4228 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4229 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4230 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4231 fs_reg(),
4232 get_nir_src(instr->src[1]), /* Address */
4233 tmp, /* Data */
4234 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4235 }
4236 break;
4237
4238 case nir_intrinsic_global_atomic_add:
4239 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4240 break;
4241 case nir_intrinsic_global_atomic_imin:
4242 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4243 break;
4244 case nir_intrinsic_global_atomic_umin:
4245 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4246 break;
4247 case nir_intrinsic_global_atomic_imax:
4248 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4249 break;
4250 case nir_intrinsic_global_atomic_umax:
4251 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4252 break;
4253 case nir_intrinsic_global_atomic_and:
4254 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4255 break;
4256 case nir_intrinsic_global_atomic_or:
4257 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4258 break;
4259 case nir_intrinsic_global_atomic_xor:
4260 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4261 break;
4262 case nir_intrinsic_global_atomic_exchange:
4263 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4264 break;
4265 case nir_intrinsic_global_atomic_comp_swap:
4266 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4267 break;
4268 case nir_intrinsic_global_atomic_fmin:
4269 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4270 break;
4271 case nir_intrinsic_global_atomic_fmax:
4272 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4273 break;
4274 case nir_intrinsic_global_atomic_fcomp_swap:
4275 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4276 break;
4277
4278 case nir_intrinsic_load_ssbo: {
4279 assert(devinfo->gen >= 7);
4280
4281 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4282 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4283 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4284 get_nir_ssbo_intrinsic_index(bld, instr);
4285 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4286 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4287
4288 /* Make dest unsigned because that's what the temporary will be */
4289 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4290
4291 /* Read the vector */
4292 if (nir_intrinsic_align(instr) >= 4) {
4293 assert(nir_dest_bit_size(instr->dest) == 32);
4294 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4295 fs_inst *inst =
4296 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4297 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4298 inst->size_written = instr->num_components * dispatch_width * 4;
4299 } else {
4300 assert(nir_dest_bit_size(instr->dest) <= 32);
4301 assert(nir_dest_num_components(instr->dest) == 1);
4302 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4303
4304 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4305 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4306 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4307 bld.MOV(dest, read_result);
4308 }
4309 break;
4310 }
4311
4312 case nir_intrinsic_store_ssbo: {
4313 assert(devinfo->gen >= 7);
4314
4315 if (stage == MESA_SHADER_FRAGMENT)
4316 brw_wm_prog_data(prog_data)->has_side_effects = true;
4317
4318 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4319 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4320 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4321 get_nir_ssbo_intrinsic_index(bld, instr);
4322 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4323 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4324
4325 fs_reg data = get_nir_src(instr->src[0]);
4326 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4327
4328 assert(nir_intrinsic_write_mask(instr) ==
4329 (1u << instr->num_components) - 1);
4330 if (nir_intrinsic_align(instr) >= 4) {
4331 assert(nir_src_bit_size(instr->src[0]) == 32);
4332 assert(nir_src_num_components(instr->src[0]) <= 4);
4333 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4334 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4335 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4336 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4337 } else {
4338 assert(nir_src_bit_size(instr->src[0]) <= 32);
4339 assert(nir_src_num_components(instr->src[0]) == 1);
4340 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4341
4342 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4343 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4344
4345 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4346 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4347 }
4348 break;
4349 }
4350
4351 case nir_intrinsic_store_output: {
4352 fs_reg src = get_nir_src(instr->src[0]);
4353
4354 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4355 unsigned num_components = instr->num_components;
4356 unsigned first_component = nir_intrinsic_component(instr);
4357 if (nir_src_bit_size(instr->src[0]) == 64) {
4358 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4359 num_components *= 2;
4360 }
4361
4362 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4363 4 * store_offset), src.type);
4364 for (unsigned j = 0; j < num_components; j++) {
4365 bld.MOV(offset(new_dest, bld, j + first_component),
4366 offset(src, bld, j));
4367 }
4368 break;
4369 }
4370
4371 case nir_intrinsic_ssbo_atomic_add:
4372 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4373 break;
4374 case nir_intrinsic_ssbo_atomic_imin:
4375 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4376 break;
4377 case nir_intrinsic_ssbo_atomic_umin:
4378 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4379 break;
4380 case nir_intrinsic_ssbo_atomic_imax:
4381 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4382 break;
4383 case nir_intrinsic_ssbo_atomic_umax:
4384 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4385 break;
4386 case nir_intrinsic_ssbo_atomic_and:
4387 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4388 break;
4389 case nir_intrinsic_ssbo_atomic_or:
4390 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4391 break;
4392 case nir_intrinsic_ssbo_atomic_xor:
4393 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4394 break;
4395 case nir_intrinsic_ssbo_atomic_exchange:
4396 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4397 break;
4398 case nir_intrinsic_ssbo_atomic_comp_swap:
4399 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4400 break;
4401 case nir_intrinsic_ssbo_atomic_fmin:
4402 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4403 break;
4404 case nir_intrinsic_ssbo_atomic_fmax:
4405 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4406 break;
4407 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4408 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4409 break;
4410
4411 case nir_intrinsic_get_buffer_size: {
4412 assert(nir_src_num_components(instr->src[0]) == 1);
4413 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4414 nir_src_as_uint(instr->src[0]) : 0;
4415
4416 /* A resinfo's sampler message is used to get the buffer size. The
4417 * SIMD8's writeback message consists of four registers and SIMD16's
4418 * writeback message consists of 8 destination registers (two per each
4419 * component). Because we are only interested on the first channel of
4420 * the first returned component, where resinfo returns the buffer size
4421 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4422 * the dispatch width.
4423 */
4424 const fs_builder ubld = bld.exec_all().group(8, 0);
4425 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4426 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4427
4428 /* Set LOD = 0 */
4429 ubld.MOV(src_payload, brw_imm_d(0));
4430
4431 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4432 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4433 src_payload, brw_imm_ud(index));
4434 inst->header_size = 0;
4435 inst->mlen = 1;
4436 inst->size_written = 4 * REG_SIZE;
4437
4438 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4439 *
4440 * "Out-of-bounds checking is always performed at a DWord granularity. If
4441 * any part of the DWord is out-of-bounds then the whole DWord is
4442 * considered out-of-bounds."
4443 *
4444 * This implies that types with size smaller than 4-bytes need to be
4445 * padded if they don't complete the last dword of the buffer. But as we
4446 * need to maintain the original size we need to reverse the padding
4447 * calculation to return the correct size to know the number of elements
4448 * of an unsized array. As we stored in the last two bits of the surface
4449 * size the needed padding for the buffer, we calculate here the
4450 * original buffer_size reversing the surface_size calculation:
4451 *
4452 * surface_size = isl_align(buffer_size, 4) +
4453 * (isl_align(buffer_size) - buffer_size)
4454 *
4455 * buffer_size = surface_size & ~3 - surface_size & 3
4456 */
4457
4458 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4459 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4460 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4461
4462 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4463 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4464 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4465
4466 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4467 break;
4468 }
4469
4470 case nir_intrinsic_load_subgroup_invocation:
4471 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4472 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4473 break;
4474
4475 case nir_intrinsic_load_subgroup_eq_mask:
4476 case nir_intrinsic_load_subgroup_ge_mask:
4477 case nir_intrinsic_load_subgroup_gt_mask:
4478 case nir_intrinsic_load_subgroup_le_mask:
4479 case nir_intrinsic_load_subgroup_lt_mask:
4480 unreachable("not reached");
4481
4482 case nir_intrinsic_vote_any: {
4483 const fs_builder ubld = bld.exec_all().group(1, 0);
4484
4485 /* The any/all predicates do not consider channel enables. To prevent
4486 * dead channels from affecting the result, we initialize the flag with
4487 * with the identity value for the logical operation.
4488 */
4489 if (dispatch_width == 32) {
4490 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4491 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4492 brw_imm_ud(0));
4493 } else {
4494 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4495 }
4496 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4497
4498 /* For some reason, the any/all predicates don't work properly with
4499 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4500 * doesn't read the correct subset of the flag register and you end up
4501 * getting garbage in the second half. Work around this by using a pair
4502 * of 1-wide MOVs and scattering the result.
4503 */
4504 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4505 ubld.MOV(res1, brw_imm_d(0));
4506 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4507 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4508 BRW_PREDICATE_ALIGN1_ANY32H,
4509 ubld.MOV(res1, brw_imm_d(-1)));
4510
4511 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4512 break;
4513 }
4514 case nir_intrinsic_vote_all: {
4515 const fs_builder ubld = bld.exec_all().group(1, 0);
4516
4517 /* The any/all predicates do not consider channel enables. To prevent
4518 * dead channels from affecting the result, we initialize the flag with
4519 * with the identity value for the logical operation.
4520 */
4521 if (dispatch_width == 32) {
4522 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4523 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4524 brw_imm_ud(0xffffffff));
4525 } else {
4526 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4527 }
4528 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4529
4530 /* For some reason, the any/all predicates don't work properly with
4531 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4532 * doesn't read the correct subset of the flag register and you end up
4533 * getting garbage in the second half. Work around this by using a pair
4534 * of 1-wide MOVs and scattering the result.
4535 */
4536 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4537 ubld.MOV(res1, brw_imm_d(0));
4538 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4539 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4540 BRW_PREDICATE_ALIGN1_ALL32H,
4541 ubld.MOV(res1, brw_imm_d(-1)));
4542
4543 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4544 break;
4545 }
4546 case nir_intrinsic_vote_feq:
4547 case nir_intrinsic_vote_ieq: {
4548 fs_reg value = get_nir_src(instr->src[0]);
4549 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4550 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4551 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4552 }
4553
4554 fs_reg uniformized = bld.emit_uniformize(value);
4555 const fs_builder ubld = bld.exec_all().group(1, 0);
4556
4557 /* The any/all predicates do not consider channel enables. To prevent
4558 * dead channels from affecting the result, we initialize the flag with
4559 * with the identity value for the logical operation.
4560 */
4561 if (dispatch_width == 32) {
4562 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4563 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4564 brw_imm_ud(0xffffffff));
4565 } else {
4566 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4567 }
4568 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4569
4570 /* For some reason, the any/all predicates don't work properly with
4571 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4572 * doesn't read the correct subset of the flag register and you end up
4573 * getting garbage in the second half. Work around this by using a pair
4574 * of 1-wide MOVs and scattering the result.
4575 */
4576 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4577 ubld.MOV(res1, brw_imm_d(0));
4578 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4579 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4580 BRW_PREDICATE_ALIGN1_ALL32H,
4581 ubld.MOV(res1, brw_imm_d(-1)));
4582
4583 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4584 break;
4585 }
4586
4587 case nir_intrinsic_ballot: {
4588 const fs_reg value = retype(get_nir_src(instr->src[0]),
4589 BRW_REGISTER_TYPE_UD);
4590 struct brw_reg flag = brw_flag_reg(0, 0);
4591 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4592 * as f0.0. This is a problem for fragment programs as we currently use
4593 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4594 * programs yet so this isn't a problem. When we do, something will
4595 * have to change.
4596 */
4597 if (dispatch_width == 32)
4598 flag.type = BRW_REGISTER_TYPE_UD;
4599
4600 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4601 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4602
4603 if (instr->dest.ssa.bit_size > 32) {
4604 dest.type = BRW_REGISTER_TYPE_UQ;
4605 } else {
4606 dest.type = BRW_REGISTER_TYPE_UD;
4607 }
4608 bld.MOV(dest, flag);
4609 break;
4610 }
4611
4612 case nir_intrinsic_read_invocation: {
4613 const fs_reg value = get_nir_src(instr->src[0]);
4614 const fs_reg invocation = get_nir_src(instr->src[1]);
4615 fs_reg tmp = bld.vgrf(value.type);
4616
4617 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4618 bld.emit_uniformize(invocation));
4619
4620 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4621 break;
4622 }
4623
4624 case nir_intrinsic_read_first_invocation: {
4625 const fs_reg value = get_nir_src(instr->src[0]);
4626 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4627 break;
4628 }
4629
4630 case nir_intrinsic_shuffle: {
4631 const fs_reg value = get_nir_src(instr->src[0]);
4632 const fs_reg index = get_nir_src(instr->src[1]);
4633
4634 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4635 break;
4636 }
4637
4638 case nir_intrinsic_first_invocation: {
4639 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4640 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4641 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4642 fs_reg(component(tmp, 0)));
4643 break;
4644 }
4645
4646 case nir_intrinsic_quad_broadcast: {
4647 const fs_reg value = get_nir_src(instr->src[0]);
4648 const unsigned index = nir_src_as_uint(instr->src[1]);
4649
4650 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4651 value, brw_imm_ud(index), brw_imm_ud(4));
4652 break;
4653 }
4654
4655 case nir_intrinsic_quad_swap_horizontal: {
4656 const fs_reg value = get_nir_src(instr->src[0]);
4657 const fs_reg tmp = bld.vgrf(value.type);
4658 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4659
4660 const fs_reg src_left = horiz_stride(value, 2);
4661 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4662 const fs_reg tmp_left = horiz_stride(tmp, 2);
4663 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4664
4665 ubld.MOV(tmp_left, src_right);
4666 ubld.MOV(tmp_right, src_left);
4667
4668 bld.MOV(retype(dest, value.type), tmp);
4669 break;
4670 }
4671
4672 case nir_intrinsic_quad_swap_vertical: {
4673 const fs_reg value = get_nir_src(instr->src[0]);
4674 if (nir_src_bit_size(instr->src[0]) == 32) {
4675 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4676 const fs_reg tmp = bld.vgrf(value.type);
4677 const fs_builder ubld = bld.exec_all();
4678 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4679 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4680 bld.MOV(retype(dest, value.type), tmp);
4681 } else {
4682 /* For larger data types, we have to either emit dispatch_width many
4683 * MOVs or else fall back to doing indirects.
4684 */
4685 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4686 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4687 brw_imm_w(0x2));
4688 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4689 }
4690 break;
4691 }
4692
4693 case nir_intrinsic_quad_swap_diagonal: {
4694 const fs_reg value = get_nir_src(instr->src[0]);
4695 if (nir_src_bit_size(instr->src[0]) == 32) {
4696 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4697 const fs_reg tmp = bld.vgrf(value.type);
4698 const fs_builder ubld = bld.exec_all();
4699 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4700 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4701 bld.MOV(retype(dest, value.type), tmp);
4702 } else {
4703 /* For larger data types, we have to either emit dispatch_width many
4704 * MOVs or else fall back to doing indirects.
4705 */
4706 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4707 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4708 brw_imm_w(0x3));
4709 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4710 }
4711 break;
4712 }
4713
4714 case nir_intrinsic_reduce: {
4715 fs_reg src = get_nir_src(instr->src[0]);
4716 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4717 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4718 if (cluster_size == 0 || cluster_size > dispatch_width)
4719 cluster_size = dispatch_width;
4720
4721 /* Figure out the source type */
4722 src.type = brw_type_for_nir_type(devinfo,
4723 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4724 nir_src_bit_size(instr->src[0])));
4725
4726 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4727 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4728 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4729
4730 /* Set up a register for all of our scratching around and initialize it
4731 * to reduction operation's identity value.
4732 */
4733 fs_reg scan = bld.vgrf(src.type);
4734 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4735
4736 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4737
4738 dest.type = src.type;
4739 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4740 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4741 * the distance between clusters is at least 2 GRFs. In this case,
4742 * we don't need the weird striding of the CLUSTER_BROADCAST
4743 * instruction and can just do regular MOVs.
4744 */
4745 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4746 const unsigned groups =
4747 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4748 const unsigned group_size = dispatch_width / groups;
4749 for (unsigned i = 0; i < groups; i++) {
4750 const unsigned cluster = (i * group_size) / cluster_size;
4751 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4752 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4753 component(scan, comp));
4754 }
4755 } else {
4756 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4757 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4758 }
4759 break;
4760 }
4761
4762 case nir_intrinsic_inclusive_scan:
4763 case nir_intrinsic_exclusive_scan: {
4764 fs_reg src = get_nir_src(instr->src[0]);
4765 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4766
4767 /* Figure out the source type */
4768 src.type = brw_type_for_nir_type(devinfo,
4769 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4770 nir_src_bit_size(instr->src[0])));
4771
4772 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4773 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4774 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4775
4776 /* Set up a register for all of our scratching around and initialize it
4777 * to reduction operation's identity value.
4778 */
4779 fs_reg scan = bld.vgrf(src.type);
4780 const fs_builder allbld = bld.exec_all();
4781 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4782
4783 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4784 /* Exclusive scan is a bit harder because we have to do an annoying
4785 * shift of the contents before we can begin. To make things worse,
4786 * we can't do this with a normal stride; we have to use indirects.
4787 */
4788 fs_reg shifted = bld.vgrf(src.type);
4789 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4790 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4791 brw_imm_w(-1));
4792 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4793 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4794 scan = shifted;
4795 }
4796
4797 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4798
4799 bld.MOV(retype(dest, src.type), scan);
4800 break;
4801 }
4802
4803 case nir_intrinsic_begin_invocation_interlock: {
4804 const fs_builder ubld = bld.group(8, 0);
4805 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4806
4807 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4808 REG_SIZE;
4809
4810 break;
4811 }
4812
4813 case nir_intrinsic_end_invocation_interlock: {
4814 /* We don't need to do anything here */
4815 break;
4816 }
4817
4818 default:
4819 unreachable("unknown intrinsic");
4820 }
4821 }
4822
4823 void
4824 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4825 int op, nir_intrinsic_instr *instr)
4826 {
4827 if (stage == MESA_SHADER_FRAGMENT)
4828 brw_wm_prog_data(prog_data)->has_side_effects = true;
4829
4830 fs_reg dest;
4831 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4832 dest = get_nir_dest(instr->dest);
4833
4834 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4835 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4836 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4837 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4838 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4839
4840 fs_reg data;
4841 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4842 data = get_nir_src(instr->src[2]);
4843
4844 if (op == BRW_AOP_CMPWR) {
4845 fs_reg tmp = bld.vgrf(data.type, 2);
4846 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4847 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4848 data = tmp;
4849 }
4850 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4851
4852 /* Emit the actual atomic operation */
4853
4854 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4855 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4856 }
4857
4858 void
4859 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4860 int op, nir_intrinsic_instr *instr)
4861 {
4862 if (stage == MESA_SHADER_FRAGMENT)
4863 brw_wm_prog_data(prog_data)->has_side_effects = true;
4864
4865 fs_reg dest;
4866 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4867 dest = get_nir_dest(instr->dest);
4868
4869 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4870 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4871 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4872 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4873 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4874
4875 fs_reg data = get_nir_src(instr->src[2]);
4876 if (op == BRW_AOP_FCMPWR) {
4877 fs_reg tmp = bld.vgrf(data.type, 2);
4878 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4879 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4880 data = tmp;
4881 }
4882 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4883
4884 /* Emit the actual atomic operation */
4885
4886 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4887 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4888 }
4889
4890 void
4891 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4892 int op, nir_intrinsic_instr *instr)
4893 {
4894 fs_reg dest;
4895 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4896 dest = get_nir_dest(instr->dest);
4897
4898 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4899 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4900 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4901 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4902
4903 fs_reg data;
4904 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4905 data = get_nir_src(instr->src[1]);
4906 if (op == BRW_AOP_CMPWR) {
4907 fs_reg tmp = bld.vgrf(data.type, 2);
4908 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4909 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4910 data = tmp;
4911 }
4912 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4913
4914 /* Get the offset */
4915 if (nir_src_is_const(instr->src[0])) {
4916 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4917 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4918 } else {
4919 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4920 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4921 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4922 brw_imm_ud(instr->const_index[0]));
4923 }
4924
4925 /* Emit the actual atomic operation operation */
4926
4927 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4928 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4929 }
4930
4931 void
4932 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4933 int op, nir_intrinsic_instr *instr)
4934 {
4935 fs_reg dest;
4936 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4937 dest = get_nir_dest(instr->dest);
4938
4939 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4940 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4941 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4942 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4943
4944 fs_reg data = get_nir_src(instr->src[1]);
4945 if (op == BRW_AOP_FCMPWR) {
4946 fs_reg tmp = bld.vgrf(data.type, 2);
4947 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4948 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4949 data = tmp;
4950 }
4951 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4952
4953 /* Get the offset */
4954 if (nir_src_is_const(instr->src[0])) {
4955 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4956 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4957 } else {
4958 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4959 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4960 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4961 brw_imm_ud(instr->const_index[0]));
4962 }
4963
4964 /* Emit the actual atomic operation operation */
4965
4966 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4967 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4968 }
4969
4970 void
4971 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
4972 int op, nir_intrinsic_instr *instr)
4973 {
4974 if (stage == MESA_SHADER_FRAGMENT)
4975 brw_wm_prog_data(prog_data)->has_side_effects = true;
4976
4977 fs_reg dest;
4978 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4979 dest = get_nir_dest(instr->dest);
4980
4981 fs_reg addr = get_nir_src(instr->src[0]);
4982
4983 fs_reg data;
4984 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4985 data = get_nir_src(instr->src[1]);
4986
4987 if (op == BRW_AOP_CMPWR) {
4988 fs_reg tmp = bld.vgrf(data.type, 2);
4989 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4990 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4991 data = tmp;
4992 }
4993
4994 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4995 dest, addr, data, brw_imm_ud(op));
4996 }
4997
4998 void
4999 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5000 int op, nir_intrinsic_instr *instr)
5001 {
5002 if (stage == MESA_SHADER_FRAGMENT)
5003 brw_wm_prog_data(prog_data)->has_side_effects = true;
5004
5005 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5006 fs_reg dest = get_nir_dest(instr->dest);
5007
5008 fs_reg addr = get_nir_src(instr->src[0]);
5009
5010 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5011 fs_reg data = get_nir_src(instr->src[1]);
5012
5013 if (op == BRW_AOP_FCMPWR) {
5014 fs_reg tmp = bld.vgrf(data.type, 2);
5015 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5016 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5017 data = tmp;
5018 }
5019
5020 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5021 dest, addr, data, brw_imm_ud(op));
5022 }
5023
5024 void
5025 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5026 {
5027 unsigned texture = instr->texture_index;
5028 unsigned sampler = instr->sampler_index;
5029
5030 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5031
5032 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5033 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5034
5035 int lod_components = 0;
5036
5037 /* The hardware requires a LOD for buffer textures */
5038 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5039 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5040
5041 uint32_t header_bits = 0;
5042 for (unsigned i = 0; i < instr->num_srcs; i++) {
5043 fs_reg src = get_nir_src(instr->src[i].src);
5044 switch (instr->src[i].src_type) {
5045 case nir_tex_src_bias:
5046 srcs[TEX_LOGICAL_SRC_LOD] =
5047 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5048 break;
5049 case nir_tex_src_comparator:
5050 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5051 break;
5052 case nir_tex_src_coord:
5053 switch (instr->op) {
5054 case nir_texop_txf:
5055 case nir_texop_txf_ms:
5056 case nir_texop_txf_ms_mcs:
5057 case nir_texop_samples_identical:
5058 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5059 break;
5060 default:
5061 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5062 break;
5063 }
5064 break;
5065 case nir_tex_src_ddx:
5066 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5067 lod_components = nir_tex_instr_src_size(instr, i);
5068 break;
5069 case nir_tex_src_ddy:
5070 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5071 break;
5072 case nir_tex_src_lod:
5073 switch (instr->op) {
5074 case nir_texop_txs:
5075 srcs[TEX_LOGICAL_SRC_LOD] =
5076 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5077 break;
5078 case nir_texop_txf:
5079 srcs[TEX_LOGICAL_SRC_LOD] =
5080 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5081 break;
5082 default:
5083 srcs[TEX_LOGICAL_SRC_LOD] =
5084 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5085 break;
5086 }
5087 break;
5088 case nir_tex_src_min_lod:
5089 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5090 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5091 break;
5092 case nir_tex_src_ms_index:
5093 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5094 break;
5095
5096 case nir_tex_src_offset: {
5097 uint32_t offset_bits = 0;
5098 if (brw_texture_offset(instr, i, &offset_bits)) {
5099 header_bits |= offset_bits;
5100 } else {
5101 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5102 retype(src, BRW_REGISTER_TYPE_D);
5103 }
5104 break;
5105 }
5106
5107 case nir_tex_src_projector:
5108 unreachable("should be lowered");
5109
5110 case nir_tex_src_texture_offset: {
5111 /* Emit code to evaluate the actual indexing expression */
5112 fs_reg tmp = vgrf(glsl_type::uint_type);
5113 bld.ADD(tmp, src, brw_imm_ud(texture));
5114 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5115 break;
5116 }
5117
5118 case nir_tex_src_sampler_offset: {
5119 /* Emit code to evaluate the actual indexing expression */
5120 fs_reg tmp = vgrf(glsl_type::uint_type);
5121 bld.ADD(tmp, src, brw_imm_ud(sampler));
5122 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5123 break;
5124 }
5125
5126 case nir_tex_src_ms_mcs:
5127 assert(instr->op == nir_texop_txf_ms);
5128 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5129 break;
5130
5131 case nir_tex_src_plane: {
5132 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5133 const uint32_t texture_index =
5134 instr->texture_index +
5135 stage_prog_data->binding_table.plane_start[plane] -
5136 stage_prog_data->binding_table.texture_start;
5137
5138 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5139 break;
5140 }
5141
5142 default:
5143 unreachable("unknown texture source");
5144 }
5145 }
5146
5147 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5148 (instr->op == nir_texop_txf_ms ||
5149 instr->op == nir_texop_samples_identical)) {
5150 if (devinfo->gen >= 7 &&
5151 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5152 srcs[TEX_LOGICAL_SRC_MCS] =
5153 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5154 instr->coord_components,
5155 srcs[TEX_LOGICAL_SRC_SURFACE]);
5156 } else {
5157 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5158 }
5159 }
5160
5161 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5162 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5163
5164 bool shader_supports_implicit_lod = stage == MESA_SHADER_FRAGMENT ||
5165 (stage == MESA_SHADER_COMPUTE &&
5166 nir->info.cs.derivative_group != DERIVATIVE_GROUP_NONE);
5167
5168 enum opcode opcode;
5169 switch (instr->op) {
5170 case nir_texop_tex:
5171 opcode = shader_supports_implicit_lod ?
5172 SHADER_OPCODE_TEX_LOGICAL : SHADER_OPCODE_TXL_LOGICAL;
5173 break;
5174 case nir_texop_txb:
5175 opcode = FS_OPCODE_TXB_LOGICAL;
5176 break;
5177 case nir_texop_txl:
5178 opcode = SHADER_OPCODE_TXL_LOGICAL;
5179 break;
5180 case nir_texop_txd:
5181 opcode = SHADER_OPCODE_TXD_LOGICAL;
5182 break;
5183 case nir_texop_txf:
5184 opcode = SHADER_OPCODE_TXF_LOGICAL;
5185 break;
5186 case nir_texop_txf_ms:
5187 if ((key_tex->msaa_16 & (1 << sampler)))
5188 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5189 else
5190 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5191 break;
5192 case nir_texop_txf_ms_mcs:
5193 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5194 break;
5195 case nir_texop_query_levels:
5196 case nir_texop_txs:
5197 opcode = SHADER_OPCODE_TXS_LOGICAL;
5198 break;
5199 case nir_texop_lod:
5200 opcode = SHADER_OPCODE_LOD_LOGICAL;
5201 break;
5202 case nir_texop_tg4:
5203 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5204 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5205 else
5206 opcode = SHADER_OPCODE_TG4_LOGICAL;
5207 break;
5208 case nir_texop_texture_samples:
5209 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5210 break;
5211 case nir_texop_samples_identical: {
5212 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5213
5214 /* If mcs is an immediate value, it means there is no MCS. In that case
5215 * just return false.
5216 */
5217 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5218 bld.MOV(dst, brw_imm_ud(0u));
5219 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5220 fs_reg tmp = vgrf(glsl_type::uint_type);
5221 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5222 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5223 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5224 } else {
5225 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5226 BRW_CONDITIONAL_EQ);
5227 }
5228 return;
5229 }
5230 default:
5231 unreachable("unknown texture opcode");
5232 }
5233
5234 if (instr->op == nir_texop_tg4) {
5235 if (instr->component == 1 &&
5236 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5237 /* gather4 sampler is broken for green channel on RG32F --
5238 * we must ask for blue instead.
5239 */
5240 header_bits |= 2 << 16;
5241 } else {
5242 header_bits |= instr->component << 16;
5243 }
5244 }
5245
5246 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5247 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5248 inst->offset = header_bits;
5249
5250 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5251 if (devinfo->gen >= 9 &&
5252 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5253 unsigned write_mask = instr->dest.is_ssa ?
5254 nir_ssa_def_components_read(&instr->dest.ssa):
5255 (1 << dest_size) - 1;
5256 assert(write_mask != 0); /* dead code should have been eliminated */
5257 inst->size_written = util_last_bit(write_mask) *
5258 inst->dst.component_size(inst->exec_size);
5259 } else {
5260 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5261 }
5262
5263 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5264 inst->shadow_compare = true;
5265
5266 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5267 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5268
5269 fs_reg nir_dest[4];
5270 for (unsigned i = 0; i < dest_size; i++)
5271 nir_dest[i] = offset(dst, bld, i);
5272
5273 if (instr->op == nir_texop_query_levels) {
5274 /* # levels is in .w */
5275 nir_dest[0] = offset(dst, bld, 3);
5276 } else if (instr->op == nir_texop_txs &&
5277 dest_size >= 3 && devinfo->gen < 7) {
5278 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5279 fs_reg depth = offset(dst, bld, 2);
5280 nir_dest[2] = vgrf(glsl_type::int_type);
5281 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5282 }
5283
5284 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5285 }
5286
5287 void
5288 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5289 {
5290 switch (instr->type) {
5291 case nir_jump_break:
5292 bld.emit(BRW_OPCODE_BREAK);
5293 break;
5294 case nir_jump_continue:
5295 bld.emit(BRW_OPCODE_CONTINUE);
5296 break;
5297 case nir_jump_return:
5298 default:
5299 unreachable("unknown jump");
5300 }
5301 }
5302
5303 /*
5304 * This helper takes a source register and un/shuffles it into the destination
5305 * register.
5306 *
5307 * If source type size is smaller than destination type size the operation
5308 * needed is a component shuffle. The opposite case would be an unshuffle. If
5309 * source/destination type size is equal a shuffle is done that would be
5310 * equivalent to a simple MOV.
5311 *
5312 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5313 * components .xyz 16-bit vector on SIMD8 would be.
5314 *
5315 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5316 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5317 *
5318 * This helper will return the following 2 32-bit components with the 16-bit
5319 * values shuffled:
5320 *
5321 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5322 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5323 *
5324 * For unshuffle, the example would be the opposite, a 64-bit type source
5325 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5326 * would be:
5327 *
5328 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5329 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5330 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5331 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5332 *
5333 * The returned result would be the following 4 32-bit components unshuffled:
5334 *
5335 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5336 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5337 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5338 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5339 *
5340 * - Source and destination register must not be overlapped.
5341 * - components units are measured in terms of the smaller type between
5342 * source and destination because we are un/shuffling the smaller
5343 * components from/into the bigger ones.
5344 * - first_component parameter allows skipping source components.
5345 */
5346 void
5347 shuffle_src_to_dst(const fs_builder &bld,
5348 const fs_reg &dst,
5349 const fs_reg &src,
5350 uint32_t first_component,
5351 uint32_t components)
5352 {
5353 if (type_sz(src.type) == type_sz(dst.type)) {
5354 assert(!regions_overlap(dst,
5355 type_sz(dst.type) * bld.dispatch_width() * components,
5356 offset(src, bld, first_component),
5357 type_sz(src.type) * bld.dispatch_width() * components));
5358 for (unsigned i = 0; i < components; i++) {
5359 bld.MOV(retype(offset(dst, bld, i), src.type),
5360 offset(src, bld, i + first_component));
5361 }
5362 } else if (type_sz(src.type) < type_sz(dst.type)) {
5363 /* Source is shuffled into destination */
5364 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5365 assert(!regions_overlap(dst,
5366 type_sz(dst.type) * bld.dispatch_width() *
5367 DIV_ROUND_UP(components, size_ratio),
5368 offset(src, bld, first_component),
5369 type_sz(src.type) * bld.dispatch_width() * components));
5370
5371 brw_reg_type shuffle_type =
5372 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5373 BRW_REGISTER_TYPE_D);
5374 for (unsigned i = 0; i < components; i++) {
5375 fs_reg shuffle_component_i =
5376 subscript(offset(dst, bld, i / size_ratio),
5377 shuffle_type, i % size_ratio);
5378 bld.MOV(shuffle_component_i,
5379 retype(offset(src, bld, i + first_component), shuffle_type));
5380 }
5381 } else {
5382 /* Source is unshuffled into destination */
5383 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5384 assert(!regions_overlap(dst,
5385 type_sz(dst.type) * bld.dispatch_width() * components,
5386 offset(src, bld, first_component / size_ratio),
5387 type_sz(src.type) * bld.dispatch_width() *
5388 DIV_ROUND_UP(components + (first_component % size_ratio),
5389 size_ratio)));
5390
5391 brw_reg_type shuffle_type =
5392 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5393 BRW_REGISTER_TYPE_D);
5394 for (unsigned i = 0; i < components; i++) {
5395 fs_reg shuffle_component_i =
5396 subscript(offset(src, bld, (first_component + i) / size_ratio),
5397 shuffle_type, (first_component + i) % size_ratio);
5398 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5399 shuffle_component_i);
5400 }
5401 }
5402 }
5403
5404 void
5405 shuffle_from_32bit_read(const fs_builder &bld,
5406 const fs_reg &dst,
5407 const fs_reg &src,
5408 uint32_t first_component,
5409 uint32_t components)
5410 {
5411 assert(type_sz(src.type) == 4);
5412
5413 /* This function takes components in units of the destination type while
5414 * shuffle_src_to_dst takes components in units of the smallest type
5415 */
5416 if (type_sz(dst.type) > 4) {
5417 assert(type_sz(dst.type) == 8);
5418 first_component *= 2;
5419 components *= 2;
5420 }
5421
5422 shuffle_src_to_dst(bld, dst, src, first_component, components);
5423 }
5424
5425 fs_reg
5426 shuffle_for_32bit_write(const fs_builder &bld,
5427 const fs_reg &src,
5428 uint32_t first_component,
5429 uint32_t components)
5430 {
5431 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5432 DIV_ROUND_UP (components * type_sz(src.type), 4));
5433 /* This function takes components in units of the source type while
5434 * shuffle_src_to_dst takes components in units of the smallest type
5435 */
5436 if (type_sz(src.type) > 4) {
5437 assert(type_sz(src.type) == 8);
5438 first_component *= 2;
5439 components *= 2;
5440 }
5441
5442 shuffle_src_to_dst(bld, dst, src, first_component, components);
5443
5444 return dst;
5445 }
5446
5447 fs_reg
5448 setup_imm_df(const fs_builder &bld, double v)
5449 {
5450 const struct gen_device_info *devinfo = bld.shader->devinfo;
5451 assert(devinfo->gen >= 7);
5452
5453 if (devinfo->gen >= 8)
5454 return brw_imm_df(v);
5455
5456 /* gen7.5 does not support DF immediates straighforward but the DIM
5457 * instruction allows to set the 64-bit immediate value.
5458 */
5459 if (devinfo->is_haswell) {
5460 const fs_builder ubld = bld.exec_all().group(1, 0);
5461 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5462 ubld.DIM(dst, brw_imm_df(v));
5463 return component(dst, 0);
5464 }
5465
5466 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5467 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5468 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5469 *
5470 * Alternatively, we could also produce a normal VGRF (without stride 0)
5471 * by writing to all the channels in the VGRF, however, that would hit the
5472 * gen7 bug where we have to split writes that span more than 1 register
5473 * into instructions with a width of 4 (otherwise the write to the second
5474 * register written runs into an execmask hardware bug) which isn't very
5475 * nice.
5476 */
5477 union {
5478 double d;
5479 struct {
5480 uint32_t i1;
5481 uint32_t i2;
5482 };
5483 } di;
5484
5485 di.d = v;
5486
5487 const fs_builder ubld = bld.exec_all().group(1, 0);
5488 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5489 ubld.MOV(tmp, brw_imm_ud(di.i1));
5490 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5491
5492 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5493 }
5494
5495 fs_reg
5496 setup_imm_b(const fs_builder &bld, int8_t v)
5497 {
5498 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5499 bld.MOV(tmp, brw_imm_w(v));
5500 return tmp;
5501 }
5502
5503 fs_reg
5504 setup_imm_ub(const fs_builder &bld, uint8_t v)
5505 {
5506 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5507 bld.MOV(tmp, brw_imm_uw(v));
5508 return tmp;
5509 }