intel: Handle firstvertex in an identical way to BaseVertex
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 nir_foreach_variable(var, &nir->outputs) {
71 const int loc = var->data.driver_location;
72 if (outputs[loc].file == BAD_FILE) {
73 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s[loc]);
74 for (unsigned i = 0; i < vec4s[loc]; i++) {
75 outputs[loc + i] = offset(reg, bld, 4 * i);
76 }
77 }
78 }
79 }
80
81 void
82 fs_visitor::nir_setup_uniforms()
83 {
84 /* Only the first compile gets to set up uniforms. */
85 if (push_constant_loc) {
86 assert(pull_constant_loc);
87 return;
88 }
89
90 uniforms = nir->num_uniforms / 4;
91
92 if (stage == MESA_SHADER_COMPUTE) {
93 /* Add a uniform for the thread local id. It must be the last uniform
94 * on the list.
95 */
96 assert(uniforms == prog_data->nr_params);
97 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
98 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
99 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
100 }
101 }
102
103 static bool
104 emit_system_values_block(nir_block *block, fs_visitor *v)
105 {
106 fs_reg *reg;
107
108 nir_foreach_instr(instr, block) {
109 if (instr->type != nir_instr_type_intrinsic)
110 continue;
111
112 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
113 switch (intrin->intrinsic) {
114 case nir_intrinsic_load_vertex_id:
115 unreachable("should be lowered by lower_vertex_id().");
116
117 case nir_intrinsic_load_vertex_id_zero_base:
118 case nir_intrinsic_load_base_vertex:
119 case nir_intrinsic_load_first_vertex:
120 case nir_intrinsic_load_instance_id:
121 case nir_intrinsic_load_base_instance:
122 case nir_intrinsic_load_draw_id:
123 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
124
125 case nir_intrinsic_load_invocation_id:
126 if (v->stage == MESA_SHADER_TESS_CTRL)
127 break;
128 assert(v->stage == MESA_SHADER_GEOMETRY);
129 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
130 if (reg->file == BAD_FILE) {
131 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
132 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
133 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
134 abld.SHR(iid, g1, brw_imm_ud(27u));
135 *reg = iid;
136 }
137 break;
138
139 case nir_intrinsic_load_sample_pos:
140 assert(v->stage == MESA_SHADER_FRAGMENT);
141 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
142 if (reg->file == BAD_FILE)
143 *reg = *v->emit_samplepos_setup();
144 break;
145
146 case nir_intrinsic_load_sample_id:
147 assert(v->stage == MESA_SHADER_FRAGMENT);
148 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
149 if (reg->file == BAD_FILE)
150 *reg = *v->emit_sampleid_setup();
151 break;
152
153 case nir_intrinsic_load_sample_mask_in:
154 assert(v->stage == MESA_SHADER_FRAGMENT);
155 assert(v->devinfo->gen >= 7);
156 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
157 if (reg->file == BAD_FILE)
158 *reg = *v->emit_samplemaskin_setup();
159 break;
160
161 case nir_intrinsic_load_work_group_id:
162 assert(v->stage == MESA_SHADER_COMPUTE);
163 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
164 if (reg->file == BAD_FILE)
165 *reg = *v->emit_cs_work_group_id_setup();
166 break;
167
168 case nir_intrinsic_load_helper_invocation:
169 assert(v->stage == MESA_SHADER_FRAGMENT);
170 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
171 if (reg->file == BAD_FILE) {
172 const fs_builder abld =
173 v->bld.annotate("gl_HelperInvocation", NULL);
174
175 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
176 * pixel mask is in g1.7 of the thread payload.
177 *
178 * We move the per-channel pixel enable bit to the low bit of each
179 * channel by shifting the byte containing the pixel mask by the
180 * vector immediate 0x76543210UV.
181 *
182 * The region of <1,8,0> reads only 1 byte (the pixel masks for
183 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
184 * masks for 2 and 3) in SIMD16.
185 */
186 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
187 abld.SHR(shifted,
188 stride(byte_offset(retype(brw_vec1_grf(1, 0),
189 BRW_REGISTER_TYPE_UB), 28),
190 1, 8, 0),
191 brw_imm_v(0x76543210));
192
193 /* A set bit in the pixel mask means the channel is enabled, but
194 * that is the opposite of gl_HelperInvocation so we need to invert
195 * the mask.
196 *
197 * The negate source-modifier bit of logical instructions on Gen8+
198 * performs 1's complement negation, so we can use that instead of
199 * a NOT instruction.
200 */
201 fs_reg inverted = negate(shifted);
202 if (v->devinfo->gen < 8) {
203 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
204 abld.NOT(inverted, shifted);
205 }
206
207 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
208 * with 1 and negating.
209 */
210 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
211 abld.AND(anded, inverted, brw_imm_uw(1));
212
213 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
214 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
215 *reg = dst;
216 }
217 break;
218
219 default:
220 break;
221 }
222 }
223
224 return true;
225 }
226
227 void
228 fs_visitor::nir_emit_system_values()
229 {
230 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
231 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
232 nir_system_values[i] = fs_reg();
233 }
234
235 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
236 * never end up using it.
237 */
238 {
239 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
240 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
241 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
242
243 const fs_builder allbld8 = abld.group(8, 0).exec_all();
244 allbld8.MOV(reg, brw_imm_v(0x76543210));
245 if (dispatch_width > 8)
246 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
247 if (dispatch_width > 16) {
248 const fs_builder allbld16 = abld.group(16, 0).exec_all();
249 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
250 }
251 }
252
253 nir_foreach_function(function, nir) {
254 assert(strcmp(function->name, "main") == 0);
255 assert(function->impl);
256 nir_foreach_block(block, function->impl) {
257 emit_system_values_block(block, this);
258 }
259 }
260 }
261
262 /*
263 * Returns a type based on a reference_type (word, float, half-float) and a
264 * given bit_size.
265 *
266 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
267 *
268 * @FIXME: 64-bit return types are always DF on integer types to maintain
269 * compability with uses of DF previously to the introduction of int64
270 * support.
271 */
272 static brw_reg_type
273 brw_reg_type_from_bit_size(const unsigned bit_size,
274 const brw_reg_type reference_type)
275 {
276 switch(reference_type) {
277 case BRW_REGISTER_TYPE_HF:
278 case BRW_REGISTER_TYPE_F:
279 case BRW_REGISTER_TYPE_DF:
280 switch(bit_size) {
281 case 16:
282 return BRW_REGISTER_TYPE_HF;
283 case 32:
284 return BRW_REGISTER_TYPE_F;
285 case 64:
286 return BRW_REGISTER_TYPE_DF;
287 default:
288 unreachable("Invalid bit size");
289 }
290 case BRW_REGISTER_TYPE_W:
291 case BRW_REGISTER_TYPE_D:
292 case BRW_REGISTER_TYPE_Q:
293 switch(bit_size) {
294 case 16:
295 return BRW_REGISTER_TYPE_W;
296 case 32:
297 return BRW_REGISTER_TYPE_D;
298 case 64:
299 return BRW_REGISTER_TYPE_Q;
300 default:
301 unreachable("Invalid bit size");
302 }
303 case BRW_REGISTER_TYPE_UW:
304 case BRW_REGISTER_TYPE_UD:
305 case BRW_REGISTER_TYPE_UQ:
306 switch(bit_size) {
307 case 16:
308 return BRW_REGISTER_TYPE_UW;
309 case 32:
310 return BRW_REGISTER_TYPE_UD;
311 case 64:
312 return BRW_REGISTER_TYPE_UQ;
313 default:
314 unreachable("Invalid bit size");
315 }
316 default:
317 unreachable("Unknown type");
318 }
319 }
320
321 void
322 fs_visitor::nir_emit_impl(nir_function_impl *impl)
323 {
324 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
325 for (unsigned i = 0; i < impl->reg_alloc; i++) {
326 nir_locals[i] = fs_reg();
327 }
328
329 foreach_list_typed(nir_register, reg, node, &impl->registers) {
330 unsigned array_elems =
331 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
332 unsigned size = array_elems * reg->num_components;
333 const brw_reg_type reg_type =
334 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
335 nir_locals[reg->index] = bld.vgrf(reg_type, size);
336 }
337
338 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
339 impl->ssa_alloc);
340
341 nir_emit_cf_list(&impl->body);
342 }
343
344 void
345 fs_visitor::nir_emit_cf_list(exec_list *list)
346 {
347 exec_list_validate(list);
348 foreach_list_typed(nir_cf_node, node, node, list) {
349 switch (node->type) {
350 case nir_cf_node_if:
351 nir_emit_if(nir_cf_node_as_if(node));
352 break;
353
354 case nir_cf_node_loop:
355 nir_emit_loop(nir_cf_node_as_loop(node));
356 break;
357
358 case nir_cf_node_block:
359 nir_emit_block(nir_cf_node_as_block(node));
360 break;
361
362 default:
363 unreachable("Invalid CFG node block");
364 }
365 }
366 }
367
368 void
369 fs_visitor::nir_emit_if(nir_if *if_stmt)
370 {
371 /* first, put the condition into f0 */
372 fs_inst *inst = bld.MOV(bld.null_reg_d(),
373 retype(get_nir_src(if_stmt->condition),
374 BRW_REGISTER_TYPE_D));
375 inst->conditional_mod = BRW_CONDITIONAL_NZ;
376
377 bld.IF(BRW_PREDICATE_NORMAL);
378
379 nir_emit_cf_list(&if_stmt->then_list);
380
381 /* note: if the else is empty, dead CF elimination will remove it */
382 bld.emit(BRW_OPCODE_ELSE);
383
384 nir_emit_cf_list(&if_stmt->else_list);
385
386 bld.emit(BRW_OPCODE_ENDIF);
387 }
388
389 void
390 fs_visitor::nir_emit_loop(nir_loop *loop)
391 {
392 bld.emit(BRW_OPCODE_DO);
393
394 nir_emit_cf_list(&loop->body);
395
396 bld.emit(BRW_OPCODE_WHILE);
397 }
398
399 void
400 fs_visitor::nir_emit_block(nir_block *block)
401 {
402 nir_foreach_instr(instr, block) {
403 nir_emit_instr(instr);
404 }
405 }
406
407 void
408 fs_visitor::nir_emit_instr(nir_instr *instr)
409 {
410 const fs_builder abld = bld.annotate(NULL, instr);
411
412 switch (instr->type) {
413 case nir_instr_type_alu:
414 nir_emit_alu(abld, nir_instr_as_alu(instr));
415 break;
416
417 case nir_instr_type_intrinsic:
418 switch (stage) {
419 case MESA_SHADER_VERTEX:
420 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
421 break;
422 case MESA_SHADER_TESS_CTRL:
423 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
424 break;
425 case MESA_SHADER_TESS_EVAL:
426 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
427 break;
428 case MESA_SHADER_GEOMETRY:
429 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
430 break;
431 case MESA_SHADER_FRAGMENT:
432 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
433 break;
434 case MESA_SHADER_COMPUTE:
435 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
436 break;
437 default:
438 unreachable("unsupported shader stage");
439 }
440 break;
441
442 case nir_instr_type_tex:
443 nir_emit_texture(abld, nir_instr_as_tex(instr));
444 break;
445
446 case nir_instr_type_load_const:
447 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
448 break;
449
450 case nir_instr_type_ssa_undef:
451 /* We create a new VGRF for undefs on every use (by handling
452 * them in get_nir_src()), rather than for each definition.
453 * This helps register coalescing eliminate MOVs from undef.
454 */
455 break;
456
457 case nir_instr_type_jump:
458 nir_emit_jump(abld, nir_instr_as_jump(instr));
459 break;
460
461 default:
462 unreachable("unknown instruction type");
463 }
464 }
465
466 /**
467 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
468 * match instr.
469 */
470 bool
471 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
472 const fs_reg &result)
473 {
474 if (!instr->src[0].src.is_ssa ||
475 !instr->src[0].src.ssa->parent_instr)
476 return false;
477
478 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
479 return false;
480
481 nir_alu_instr *src0 =
482 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
483
484 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
485 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
486 return false;
487
488 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
489 assert(element != NULL);
490
491 /* Element type to extract.*/
492 const brw_reg_type type = brw_int_type(
493 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
494 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
495
496 fs_reg op0 = get_nir_src(src0->src[0].src);
497 op0.type = brw_type_for_nir_type(devinfo,
498 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
499 nir_src_bit_size(src0->src[0].src)));
500 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
501
502 set_saturate(instr->dest.saturate,
503 bld.MOV(result, subscript(op0, type, element->u32[0])));
504 return true;
505 }
506
507 bool
508 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
509 const fs_reg &result)
510 {
511 if (!instr->src[0].src.is_ssa ||
512 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
513 return false;
514
515 nir_intrinsic_instr *src0 =
516 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
517
518 if (src0->intrinsic != nir_intrinsic_load_front_face)
519 return false;
520
521 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
522 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
523 return false;
524
525 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
526 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
527 return false;
528
529 fs_reg tmp = vgrf(glsl_type::int_type);
530
531 if (devinfo->gen >= 6) {
532 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
533 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
534
535 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
536 *
537 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
538 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
539 *
540 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
541 *
542 * This negation looks like it's safe in practice, because bits 0:4 will
543 * surely be TRIANGLES
544 */
545
546 if (value1->f32[0] == -1.0f) {
547 g0.negate = true;
548 }
549
550 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
551 g0, brw_imm_uw(0x3f80));
552 } else {
553 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
554 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
555
556 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
557 *
558 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
559 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
560 *
561 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
562 *
563 * This negation looks like it's safe in practice, because bits 0:4 will
564 * surely be TRIANGLES
565 */
566
567 if (value1->f32[0] == -1.0f) {
568 g1_6.negate = true;
569 }
570
571 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
572 }
573 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
574
575 return true;
576 }
577
578 static void
579 emit_find_msb_using_lzd(const fs_builder &bld,
580 const fs_reg &result,
581 const fs_reg &src,
582 bool is_signed)
583 {
584 fs_inst *inst;
585 fs_reg temp = src;
586
587 if (is_signed) {
588 /* LZD of an absolute value source almost always does the right
589 * thing. There are two problem values:
590 *
591 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
592 * 0. However, findMSB(int(0x80000000)) == 30.
593 *
594 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
595 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
596 *
597 * For a value of zero or negative one, -1 will be returned.
598 *
599 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
600 * findMSB(-(1<<x)) should return x-1.
601 *
602 * For all negative number cases, including 0x80000000 and
603 * 0xffffffff, the correct value is obtained from LZD if instead of
604 * negating the (already negative) value the logical-not is used. A
605 * conditonal logical-not can be achieved in two instructions.
606 */
607 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
608
609 bld.ASR(temp, src, brw_imm_d(31));
610 bld.XOR(temp, temp, src);
611 }
612
613 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
614 retype(temp, BRW_REGISTER_TYPE_UD));
615
616 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
617 * from the LSB side. Subtract the result from 31 to convert the MSB
618 * count into an LSB count. If no bits are set, LZD will return 32.
619 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
620 */
621 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
622 inst->src[0].negate = true;
623 }
624
625 static brw_rnd_mode
626 brw_rnd_mode_from_nir_op (const nir_op op) {
627 switch (op) {
628 case nir_op_f2f16_rtz:
629 return BRW_RND_MODE_RTZ;
630 case nir_op_f2f16_rtne:
631 return BRW_RND_MODE_RTNE;
632 default:
633 unreachable("Operation doesn't support rounding mode");
634 }
635 }
636
637 void
638 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
639 {
640 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
641 fs_inst *inst;
642
643 fs_reg result = get_nir_dest(instr->dest.dest);
644 result.type = brw_type_for_nir_type(devinfo,
645 (nir_alu_type)(nir_op_infos[instr->op].output_type |
646 nir_dest_bit_size(instr->dest.dest)));
647
648 fs_reg op[4];
649 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
650 op[i] = get_nir_src(instr->src[i].src);
651 op[i].type = brw_type_for_nir_type(devinfo,
652 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
653 nir_src_bit_size(instr->src[i].src)));
654 op[i].abs = instr->src[i].abs;
655 op[i].negate = instr->src[i].negate;
656 }
657
658 /* We get a bunch of mov's out of the from_ssa pass and they may still
659 * be vectorized. We'll handle them as a special-case. We'll also
660 * handle vecN here because it's basically the same thing.
661 */
662 switch (instr->op) {
663 case nir_op_imov:
664 case nir_op_fmov:
665 case nir_op_vec2:
666 case nir_op_vec3:
667 case nir_op_vec4: {
668 fs_reg temp = result;
669 bool need_extra_copy = false;
670 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
671 if (!instr->src[i].src.is_ssa &&
672 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
673 need_extra_copy = true;
674 temp = bld.vgrf(result.type, 4);
675 break;
676 }
677 }
678
679 for (unsigned i = 0; i < 4; i++) {
680 if (!(instr->dest.write_mask & (1 << i)))
681 continue;
682
683 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
684 inst = bld.MOV(offset(temp, bld, i),
685 offset(op[0], bld, instr->src[0].swizzle[i]));
686 } else {
687 inst = bld.MOV(offset(temp, bld, i),
688 offset(op[i], bld, instr->src[i].swizzle[0]));
689 }
690 inst->saturate = instr->dest.saturate;
691 }
692
693 /* In this case the source and destination registers were the same,
694 * so we need to insert an extra set of moves in order to deal with
695 * any swizzling.
696 */
697 if (need_extra_copy) {
698 for (unsigned i = 0; i < 4; i++) {
699 if (!(instr->dest.write_mask & (1 << i)))
700 continue;
701
702 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
703 }
704 }
705 return;
706 }
707 default:
708 break;
709 }
710
711 /* At this point, we have dealt with any instruction that operates on
712 * more than a single channel. Therefore, we can just adjust the source
713 * and destination registers for that channel and emit the instruction.
714 */
715 unsigned channel = 0;
716 if (nir_op_infos[instr->op].output_size == 0) {
717 /* Since NIR is doing the scalarizing for us, we should only ever see
718 * vectorized operations with a single channel.
719 */
720 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
721 channel = ffs(instr->dest.write_mask) - 1;
722
723 result = offset(result, bld, channel);
724 }
725
726 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
727 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
728 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
729 }
730
731 switch (instr->op) {
732 case nir_op_i2f32:
733 case nir_op_u2f32:
734 if (optimize_extract_to_float(instr, result))
735 return;
736 inst = bld.MOV(result, op[0]);
737 inst->saturate = instr->dest.saturate;
738 break;
739
740 case nir_op_f2f16_rtne:
741 case nir_op_f2f16_rtz:
742 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
743 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
744 /* fallthrough */
745
746 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
747 * on the HW gen, it is a special hw opcode or just a MOV, and
748 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
749 *
750 * But if we want to use that opcode, we need to provide support on
751 * different optimizations and lowerings. As right now HF support is
752 * only for gen8+, it will be better to use directly the MOV, and use
753 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
754 */
755
756 case nir_op_f2f16_undef:
757 case nir_op_i2i16:
758 case nir_op_u2u16: {
759 /* TODO: Fixing aligment rules for conversions from 32-bits to
760 * 16-bit types should be moved to lower_conversions
761 */
762 fs_reg tmp = bld.vgrf(op[0].type, 1);
763 tmp = subscript(tmp, result.type, 0);
764 inst = bld.MOV(tmp, op[0]);
765 inst->saturate = instr->dest.saturate;
766 inst = bld.MOV(result, tmp);
767 inst->saturate = instr->dest.saturate;
768 break;
769 }
770
771 case nir_op_f2f64:
772 case nir_op_f2i64:
773 case nir_op_f2u64:
774 case nir_op_i2f64:
775 case nir_op_i2i64:
776 case nir_op_u2f64:
777 case nir_op_u2u64:
778 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
779 *
780 * "When source or destination is 64b (...), regioning in Align1
781 * must follow these rules:
782 *
783 * 1. Source and destination horizontal stride must be aligned to
784 * the same qword.
785 * (...)"
786 *
787 * This means that 32-bit to 64-bit conversions need to have the 32-bit
788 * data elements aligned to 64-bit. This restriction does not apply to
789 * BDW and later.
790 */
791 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
792 nir_src_bit_size(instr->src[0].src) == 32 &&
793 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
794 fs_reg tmp = bld.vgrf(result.type, 1);
795 tmp = subscript(tmp, op[0].type, 0);
796 inst = bld.MOV(tmp, op[0]);
797 inst = bld.MOV(result, tmp);
798 inst->saturate = instr->dest.saturate;
799 break;
800 }
801 /* fallthrough */
802 case nir_op_f2f32:
803 case nir_op_f2i32:
804 case nir_op_f2u32:
805 case nir_op_i2i32:
806 case nir_op_u2u32:
807 inst = bld.MOV(result, op[0]);
808 inst->saturate = instr->dest.saturate;
809 break;
810
811 case nir_op_fsign: {
812 if (op[0].abs) {
813 /* Straightforward since the source can be assumed to be
814 * non-negative.
815 */
816 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
817 set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
818
819 } else if (type_sz(op[0].type) < 8) {
820 /* AND(val, 0x80000000) gives the sign bit.
821 *
822 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
823 * zero.
824 */
825 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
826
827 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
828 op[0].type = BRW_REGISTER_TYPE_UD;
829 result.type = BRW_REGISTER_TYPE_UD;
830 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
831
832 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
833 inst->predicate = BRW_PREDICATE_NORMAL;
834 if (instr->dest.saturate) {
835 inst = bld.MOV(result, result);
836 inst->saturate = true;
837 }
838 } else {
839 /* For doubles we do the same but we need to consider:
840 *
841 * - 2-src instructions can't operate with 64-bit immediates
842 * - The sign is encoded in the high 32-bit of each DF
843 * - We need to produce a DF result.
844 */
845
846 fs_reg zero = vgrf(glsl_type::double_type);
847 bld.MOV(zero, setup_imm_df(bld, 0.0));
848 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
849
850 bld.MOV(result, zero);
851
852 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
853 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
854 brw_imm_ud(0x80000000u));
855
856 set_predicate(BRW_PREDICATE_NORMAL,
857 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
858
859 if (instr->dest.saturate) {
860 inst = bld.MOV(result, result);
861 inst->saturate = true;
862 }
863 }
864 break;
865 }
866
867 case nir_op_isign:
868 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
869 * -> non-negative val generates 0x00000000.
870 * Predicated OR sets 1 if val is positive.
871 */
872 assert(nir_dest_bit_size(instr->dest.dest) < 64);
873 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
874 bld.ASR(result, op[0], brw_imm_d(31));
875 inst = bld.OR(result, result, brw_imm_d(1));
876 inst->predicate = BRW_PREDICATE_NORMAL;
877 break;
878
879 case nir_op_frcp:
880 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
881 inst->saturate = instr->dest.saturate;
882 break;
883
884 case nir_op_fexp2:
885 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
886 inst->saturate = instr->dest.saturate;
887 break;
888
889 case nir_op_flog2:
890 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
891 inst->saturate = instr->dest.saturate;
892 break;
893
894 case nir_op_fsin:
895 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
896 inst->saturate = instr->dest.saturate;
897 break;
898
899 case nir_op_fcos:
900 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
901 inst->saturate = instr->dest.saturate;
902 break;
903
904 case nir_op_fddx:
905 if (fs_key->high_quality_derivatives) {
906 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
907 } else {
908 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
909 }
910 inst->saturate = instr->dest.saturate;
911 break;
912 case nir_op_fddx_fine:
913 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
914 inst->saturate = instr->dest.saturate;
915 break;
916 case nir_op_fddx_coarse:
917 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
918 inst->saturate = instr->dest.saturate;
919 break;
920 case nir_op_fddy:
921 if (fs_key->high_quality_derivatives) {
922 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
923 } else {
924 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
925 }
926 inst->saturate = instr->dest.saturate;
927 break;
928 case nir_op_fddy_fine:
929 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
930 inst->saturate = instr->dest.saturate;
931 break;
932 case nir_op_fddy_coarse:
933 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936
937 case nir_op_iadd:
938 case nir_op_fadd:
939 inst = bld.ADD(result, op[0], op[1]);
940 inst->saturate = instr->dest.saturate;
941 break;
942
943 case nir_op_fmul:
944 inst = bld.MUL(result, op[0], op[1]);
945 inst->saturate = instr->dest.saturate;
946 break;
947
948 case nir_op_imul:
949 assert(nir_dest_bit_size(instr->dest.dest) < 64);
950 bld.MUL(result, op[0], op[1]);
951 break;
952
953 case nir_op_imul_high:
954 case nir_op_umul_high:
955 assert(nir_dest_bit_size(instr->dest.dest) < 64);
956 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
957 break;
958
959 case nir_op_idiv:
960 case nir_op_udiv:
961 assert(nir_dest_bit_size(instr->dest.dest) < 64);
962 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
963 break;
964
965 case nir_op_uadd_carry:
966 unreachable("Should have been lowered by carry_to_arith().");
967
968 case nir_op_usub_borrow:
969 unreachable("Should have been lowered by borrow_to_arith().");
970
971 case nir_op_umod:
972 case nir_op_irem:
973 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
974 * appears that our hardware just does the right thing for signed
975 * remainder.
976 */
977 assert(nir_dest_bit_size(instr->dest.dest) < 64);
978 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
979 break;
980
981 case nir_op_imod: {
982 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
983 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
984
985 /* Math instructions don't support conditional mod */
986 inst = bld.MOV(bld.null_reg_d(), result);
987 inst->conditional_mod = BRW_CONDITIONAL_NZ;
988
989 /* Now, we need to determine if signs of the sources are different.
990 * When we XOR the sources, the top bit is 0 if they are the same and 1
991 * if they are different. We can then use a conditional modifier to
992 * turn that into a predicate. This leads us to an XOR.l instruction.
993 *
994 * Technically, according to the PRM, you're not allowed to use .l on a
995 * XOR instruction. However, emperical experiments and Curro's reading
996 * of the simulator source both indicate that it's safe.
997 */
998 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
999 inst = bld.XOR(tmp, op[0], op[1]);
1000 inst->predicate = BRW_PREDICATE_NORMAL;
1001 inst->conditional_mod = BRW_CONDITIONAL_L;
1002
1003 /* If the result of the initial remainder operation is non-zero and the
1004 * two sources have different signs, add in a copy of op[1] to get the
1005 * final integer modulus value.
1006 */
1007 inst = bld.ADD(result, result, op[1]);
1008 inst->predicate = BRW_PREDICATE_NORMAL;
1009 break;
1010 }
1011
1012 case nir_op_flt:
1013 case nir_op_fge:
1014 case nir_op_feq:
1015 case nir_op_fne: {
1016 fs_reg dest = result;
1017 if (nir_src_bit_size(instr->src[0].src) > 32) {
1018 dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
1019 }
1020 brw_conditional_mod cond;
1021 switch (instr->op) {
1022 case nir_op_flt:
1023 cond = BRW_CONDITIONAL_L;
1024 break;
1025 case nir_op_fge:
1026 cond = BRW_CONDITIONAL_GE;
1027 break;
1028 case nir_op_feq:
1029 cond = BRW_CONDITIONAL_Z;
1030 break;
1031 case nir_op_fne:
1032 cond = BRW_CONDITIONAL_NZ;
1033 break;
1034 default:
1035 unreachable("bad opcode");
1036 }
1037 bld.CMP(dest, op[0], op[1], cond);
1038 if (nir_src_bit_size(instr->src[0].src) > 32) {
1039 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1040 }
1041 break;
1042 }
1043
1044 case nir_op_ilt:
1045 case nir_op_ult:
1046 case nir_op_ige:
1047 case nir_op_uge:
1048 case nir_op_ieq:
1049 case nir_op_ine: {
1050 fs_reg dest = result;
1051 if (nir_src_bit_size(instr->src[0].src) > 32) {
1052 dest = bld.vgrf(BRW_REGISTER_TYPE_UQ, 1);
1053 }
1054
1055 brw_conditional_mod cond;
1056 switch (instr->op) {
1057 case nir_op_ilt:
1058 case nir_op_ult:
1059 cond = BRW_CONDITIONAL_L;
1060 break;
1061 case nir_op_ige:
1062 case nir_op_uge:
1063 cond = BRW_CONDITIONAL_GE;
1064 break;
1065 case nir_op_ieq:
1066 cond = BRW_CONDITIONAL_Z;
1067 break;
1068 case nir_op_ine:
1069 cond = BRW_CONDITIONAL_NZ;
1070 break;
1071 default:
1072 unreachable("bad opcode");
1073 }
1074 bld.CMP(dest, op[0], op[1], cond);
1075 if (nir_src_bit_size(instr->src[0].src) > 32) {
1076 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1077 }
1078 break;
1079 }
1080
1081 case nir_op_inot:
1082 if (devinfo->gen >= 8) {
1083 op[0] = resolve_source_modifiers(op[0]);
1084 }
1085 bld.NOT(result, op[0]);
1086 break;
1087 case nir_op_ixor:
1088 if (devinfo->gen >= 8) {
1089 op[0] = resolve_source_modifiers(op[0]);
1090 op[1] = resolve_source_modifiers(op[1]);
1091 }
1092 bld.XOR(result, op[0], op[1]);
1093 break;
1094 case nir_op_ior:
1095 if (devinfo->gen >= 8) {
1096 op[0] = resolve_source_modifiers(op[0]);
1097 op[1] = resolve_source_modifiers(op[1]);
1098 }
1099 bld.OR(result, op[0], op[1]);
1100 break;
1101 case nir_op_iand:
1102 if (devinfo->gen >= 8) {
1103 op[0] = resolve_source_modifiers(op[0]);
1104 op[1] = resolve_source_modifiers(op[1]);
1105 }
1106 bld.AND(result, op[0], op[1]);
1107 break;
1108
1109 case nir_op_fdot2:
1110 case nir_op_fdot3:
1111 case nir_op_fdot4:
1112 case nir_op_ball_fequal2:
1113 case nir_op_ball_iequal2:
1114 case nir_op_ball_fequal3:
1115 case nir_op_ball_iequal3:
1116 case nir_op_ball_fequal4:
1117 case nir_op_ball_iequal4:
1118 case nir_op_bany_fnequal2:
1119 case nir_op_bany_inequal2:
1120 case nir_op_bany_fnequal3:
1121 case nir_op_bany_inequal3:
1122 case nir_op_bany_fnequal4:
1123 case nir_op_bany_inequal4:
1124 unreachable("Lowered by nir_lower_alu_reductions");
1125
1126 case nir_op_fnoise1_1:
1127 case nir_op_fnoise1_2:
1128 case nir_op_fnoise1_3:
1129 case nir_op_fnoise1_4:
1130 case nir_op_fnoise2_1:
1131 case nir_op_fnoise2_2:
1132 case nir_op_fnoise2_3:
1133 case nir_op_fnoise2_4:
1134 case nir_op_fnoise3_1:
1135 case nir_op_fnoise3_2:
1136 case nir_op_fnoise3_3:
1137 case nir_op_fnoise3_4:
1138 case nir_op_fnoise4_1:
1139 case nir_op_fnoise4_2:
1140 case nir_op_fnoise4_3:
1141 case nir_op_fnoise4_4:
1142 unreachable("not reached: should be handled by lower_noise");
1143
1144 case nir_op_ldexp:
1145 unreachable("not reached: should be handled by ldexp_to_arith()");
1146
1147 case nir_op_fsqrt:
1148 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1149 inst->saturate = instr->dest.saturate;
1150 break;
1151
1152 case nir_op_frsq:
1153 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1154 inst->saturate = instr->dest.saturate;
1155 break;
1156
1157 case nir_op_b2i:
1158 case nir_op_b2f:
1159 bld.MOV(result, negate(op[0]));
1160 break;
1161
1162 case nir_op_i2b:
1163 case nir_op_f2b:
1164 if (nir_src_bit_size(instr->src[0].src) == 64) {
1165 /* two-argument instructions can't take 64-bit immediates */
1166 fs_reg zero;
1167 fs_reg tmp;
1168
1169 if (instr->op == nir_op_f2b) {
1170 zero = vgrf(glsl_type::double_type);
1171 tmp = vgrf(glsl_type::double_type);
1172 bld.MOV(zero, setup_imm_df(bld, 0.0));
1173 } else {
1174 zero = vgrf(glsl_type::int64_t_type);
1175 tmp = vgrf(glsl_type::int64_t_type);
1176 bld.MOV(zero, brw_imm_q(0));
1177 }
1178
1179 /* A SIMD16 execution needs to be split in two instructions, so use
1180 * a vgrf instead of the flag register as dst so instruction splitting
1181 * works
1182 */
1183 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1184 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1185 } else {
1186 if (instr->op == nir_op_f2b) {
1187 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
1188 } else {
1189 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1190 }
1191 }
1192 break;
1193
1194 case nir_op_ftrunc:
1195 inst = bld.RNDZ(result, op[0]);
1196 inst->saturate = instr->dest.saturate;
1197 break;
1198
1199 case nir_op_fceil: {
1200 op[0].negate = !op[0].negate;
1201 fs_reg temp = vgrf(glsl_type::float_type);
1202 bld.RNDD(temp, op[0]);
1203 temp.negate = true;
1204 inst = bld.MOV(result, temp);
1205 inst->saturate = instr->dest.saturate;
1206 break;
1207 }
1208 case nir_op_ffloor:
1209 inst = bld.RNDD(result, op[0]);
1210 inst->saturate = instr->dest.saturate;
1211 break;
1212 case nir_op_ffract:
1213 inst = bld.FRC(result, op[0]);
1214 inst->saturate = instr->dest.saturate;
1215 break;
1216 case nir_op_fround_even:
1217 inst = bld.RNDE(result, op[0]);
1218 inst->saturate = instr->dest.saturate;
1219 break;
1220
1221 case nir_op_fquantize2f16: {
1222 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1223 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1224 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1225
1226 /* The destination stride must be at least as big as the source stride. */
1227 tmp16.type = BRW_REGISTER_TYPE_W;
1228 tmp16.stride = 2;
1229
1230 /* Check for denormal */
1231 fs_reg abs_src0 = op[0];
1232 abs_src0.abs = true;
1233 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1234 BRW_CONDITIONAL_L);
1235 /* Get the appropriately signed zero */
1236 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1237 retype(op[0], BRW_REGISTER_TYPE_UD),
1238 brw_imm_ud(0x80000000));
1239 /* Do the actual F32 -> F16 -> F32 conversion */
1240 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1241 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1242 /* Select that or zero based on normal status */
1243 inst = bld.SEL(result, zero, tmp32);
1244 inst->predicate = BRW_PREDICATE_NORMAL;
1245 inst->saturate = instr->dest.saturate;
1246 break;
1247 }
1248
1249 case nir_op_imin:
1250 case nir_op_umin:
1251 case nir_op_fmin:
1252 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1253 inst->saturate = instr->dest.saturate;
1254 break;
1255
1256 case nir_op_imax:
1257 case nir_op_umax:
1258 case nir_op_fmax:
1259 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1260 inst->saturate = instr->dest.saturate;
1261 break;
1262
1263 case nir_op_pack_snorm_2x16:
1264 case nir_op_pack_snorm_4x8:
1265 case nir_op_pack_unorm_2x16:
1266 case nir_op_pack_unorm_4x8:
1267 case nir_op_unpack_snorm_2x16:
1268 case nir_op_unpack_snorm_4x8:
1269 case nir_op_unpack_unorm_2x16:
1270 case nir_op_unpack_unorm_4x8:
1271 case nir_op_unpack_half_2x16:
1272 case nir_op_pack_half_2x16:
1273 unreachable("not reached: should be handled by lower_packing_builtins");
1274
1275 case nir_op_unpack_half_2x16_split_x:
1276 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1277 inst->saturate = instr->dest.saturate;
1278 break;
1279 case nir_op_unpack_half_2x16_split_y:
1280 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1281 inst->saturate = instr->dest.saturate;
1282 break;
1283
1284 case nir_op_pack_64_2x32_split:
1285 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1286 break;
1287
1288 case nir_op_unpack_64_2x32_split_x:
1289 case nir_op_unpack_64_2x32_split_y: {
1290 if (instr->op == nir_op_unpack_64_2x32_split_x)
1291 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1292 else
1293 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1294 break;
1295 }
1296
1297 case nir_op_fpow:
1298 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1299 inst->saturate = instr->dest.saturate;
1300 break;
1301
1302 case nir_op_bitfield_reverse:
1303 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1304 bld.BFREV(result, op[0]);
1305 break;
1306
1307 case nir_op_bit_count:
1308 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1309 bld.CBIT(result, op[0]);
1310 break;
1311
1312 case nir_op_ufind_msb: {
1313 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1314 emit_find_msb_using_lzd(bld, result, op[0], false);
1315 break;
1316 }
1317
1318 case nir_op_ifind_msb: {
1319 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1320
1321 if (devinfo->gen < 7) {
1322 emit_find_msb_using_lzd(bld, result, op[0], true);
1323 } else {
1324 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1325
1326 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1327 * count from the LSB side. If FBH didn't return an error
1328 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1329 * count into an LSB count.
1330 */
1331 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1332
1333 inst = bld.ADD(result, result, brw_imm_d(31));
1334 inst->predicate = BRW_PREDICATE_NORMAL;
1335 inst->src[0].negate = true;
1336 }
1337 break;
1338 }
1339
1340 case nir_op_find_lsb:
1341 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1342
1343 if (devinfo->gen < 7) {
1344 fs_reg temp = vgrf(glsl_type::int_type);
1345
1346 /* (x & -x) generates a value that consists of only the LSB of x.
1347 * For all powers of 2, findMSB(y) == findLSB(y).
1348 */
1349 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1350 fs_reg negated_src = src;
1351
1352 /* One must be negated, and the other must be non-negated. It
1353 * doesn't matter which is which.
1354 */
1355 negated_src.negate = true;
1356 src.negate = false;
1357
1358 bld.AND(temp, src, negated_src);
1359 emit_find_msb_using_lzd(bld, result, temp, false);
1360 } else {
1361 bld.FBL(result, op[0]);
1362 }
1363 break;
1364
1365 case nir_op_ubitfield_extract:
1366 case nir_op_ibitfield_extract:
1367 unreachable("should have been lowered");
1368 case nir_op_ubfe:
1369 case nir_op_ibfe:
1370 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1371 bld.BFE(result, op[2], op[1], op[0]);
1372 break;
1373 case nir_op_bfm:
1374 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1375 bld.BFI1(result, op[0], op[1]);
1376 break;
1377 case nir_op_bfi:
1378 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1379 bld.BFI2(result, op[0], op[1], op[2]);
1380 break;
1381
1382 case nir_op_bitfield_insert:
1383 unreachable("not reached: should have been lowered");
1384
1385 case nir_op_ishl:
1386 case nir_op_ishr:
1387 case nir_op_ushr: {
1388 fs_reg shift_count = op[1];
1389
1390 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1391 if (op[1].file == VGRF &&
1392 (result.type == BRW_REGISTER_TYPE_Q ||
1393 result.type == BRW_REGISTER_TYPE_UQ)) {
1394 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1395 BRW_REGISTER_TYPE_UD);
1396 shift_count.stride = 2;
1397 bld.MOV(shift_count, op[1]);
1398 }
1399 }
1400
1401 switch (instr->op) {
1402 case nir_op_ishl:
1403 bld.SHL(result, op[0], shift_count);
1404 break;
1405 case nir_op_ishr:
1406 bld.ASR(result, op[0], shift_count);
1407 break;
1408 case nir_op_ushr:
1409 bld.SHR(result, op[0], shift_count);
1410 break;
1411 default:
1412 unreachable("not reached");
1413 }
1414 break;
1415 }
1416
1417 case nir_op_pack_half_2x16_split:
1418 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1419 break;
1420
1421 case nir_op_ffma:
1422 inst = bld.MAD(result, op[2], op[1], op[0]);
1423 inst->saturate = instr->dest.saturate;
1424 break;
1425
1426 case nir_op_flrp:
1427 inst = bld.LRP(result, op[0], op[1], op[2]);
1428 inst->saturate = instr->dest.saturate;
1429 break;
1430
1431 case nir_op_bcsel:
1432 if (optimize_frontfacing_ternary(instr, result))
1433 return;
1434
1435 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1436 inst = bld.SEL(result, op[1], op[2]);
1437 inst->predicate = BRW_PREDICATE_NORMAL;
1438 break;
1439
1440 case nir_op_extract_u8:
1441 case nir_op_extract_i8: {
1442 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1443 assert(byte != NULL);
1444
1445 /* The PRMs say:
1446 *
1447 * BDW+
1448 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1449 * Use two instructions and a word or DWord intermediate integer type.
1450 */
1451 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1452 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1453
1454 if (instr->op == nir_op_extract_i8) {
1455 /* If we need to sign extend, extract to a word first */
1456 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1457 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1458 bld.MOV(result, w_temp);
1459 } else {
1460 /* Otherwise use an AND with 0xff and a word type */
1461 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1462 }
1463 } else {
1464 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1465 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1466 }
1467 break;
1468 }
1469
1470 case nir_op_extract_u16:
1471 case nir_op_extract_i16: {
1472 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1473 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1474 assert(word != NULL);
1475 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1476 break;
1477 }
1478
1479 default:
1480 unreachable("unhandled instruction");
1481 }
1482
1483 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1484 * to sign extend the low bit to 0/~0
1485 */
1486 if (devinfo->gen <= 5 &&
1487 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1488 fs_reg masked = vgrf(glsl_type::int_type);
1489 bld.AND(masked, result, brw_imm_d(1));
1490 masked.negate = true;
1491 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1492 }
1493 }
1494
1495 void
1496 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1497 nir_load_const_instr *instr)
1498 {
1499 const brw_reg_type reg_type =
1500 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1501 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1502
1503 switch (instr->def.bit_size) {
1504 case 32:
1505 for (unsigned i = 0; i < instr->def.num_components; i++)
1506 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1507 break;
1508
1509 case 64:
1510 assert(devinfo->gen >= 7);
1511 if (devinfo->gen == 7) {
1512 /* We don't get 64-bit integer types until gen8 */
1513 for (unsigned i = 0; i < instr->def.num_components; i++) {
1514 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1515 setup_imm_df(bld, instr->value.f64[i]));
1516 }
1517 } else {
1518 for (unsigned i = 0; i < instr->def.num_components; i++)
1519 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1520 }
1521 break;
1522
1523 default:
1524 unreachable("Invalid bit size");
1525 }
1526
1527 nir_ssa_values[instr->def.index] = reg;
1528 }
1529
1530 fs_reg
1531 fs_visitor::get_nir_src(const nir_src &src)
1532 {
1533 fs_reg reg;
1534 if (src.is_ssa) {
1535 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1536 const brw_reg_type reg_type =
1537 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1538 reg = bld.vgrf(reg_type, src.ssa->num_components);
1539 } else {
1540 reg = nir_ssa_values[src.ssa->index];
1541 }
1542 } else {
1543 /* We don't handle indirects on locals */
1544 assert(src.reg.indirect == NULL);
1545 reg = offset(nir_locals[src.reg.reg->index], bld,
1546 src.reg.base_offset * src.reg.reg->num_components);
1547 }
1548
1549 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1550 /* The only 64-bit type available on gen7 is DF, so use that. */
1551 reg.type = BRW_REGISTER_TYPE_DF;
1552 } else {
1553 /* To avoid floating-point denorm flushing problems, set the type by
1554 * default to an integer type - instructions that need floating point
1555 * semantics will set this to F if they need to
1556 */
1557 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1558 BRW_REGISTER_TYPE_D);
1559 }
1560
1561 return reg;
1562 }
1563
1564 /**
1565 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1566 *
1567 * This function should not be called on any value which may be 64 bits.
1568 * We could theoretically support 64-bit on gen8+ but we choose not to
1569 * because it wouldn't work in general (no gen7 support) and there are
1570 * enough restrictions in 64-bit immediates that you can't take the return
1571 * value and treat it the same as the result of get_nir_src().
1572 */
1573 fs_reg
1574 fs_visitor::get_nir_src_imm(const nir_src &src)
1575 {
1576 nir_const_value *val = nir_src_as_const_value(src);
1577 assert(nir_src_bit_size(src) == 32);
1578 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1579 }
1580
1581 fs_reg
1582 fs_visitor::get_nir_dest(const nir_dest &dest)
1583 {
1584 if (dest.is_ssa) {
1585 const brw_reg_type reg_type =
1586 brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
1587 nir_ssa_values[dest.ssa.index] =
1588 bld.vgrf(reg_type, dest.ssa.num_components);
1589 return nir_ssa_values[dest.ssa.index];
1590 } else {
1591 /* We don't handle indirects on locals */
1592 assert(dest.reg.indirect == NULL);
1593 return offset(nir_locals[dest.reg.reg->index], bld,
1594 dest.reg.base_offset * dest.reg.reg->num_components);
1595 }
1596 }
1597
1598 fs_reg
1599 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1600 {
1601 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1602 BRW_REGISTER_TYPE_UD);
1603 fs_reg indirect;
1604 unsigned indirect_max = 0;
1605
1606 for (const nir_deref *tail = &deref->deref; tail->child;
1607 tail = tail->child) {
1608 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1609 assert(tail->child->deref_type == nir_deref_type_array);
1610 const unsigned size = glsl_get_length(tail->type);
1611 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1612 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1613 image = offset(image, bld, base * element_size);
1614
1615 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1616 fs_reg tmp = vgrf(glsl_type::uint_type);
1617
1618 /* Accessing an invalid surface index with the dataport can result
1619 * in a hang. According to the spec "if the index used to
1620 * select an individual element is negative or greater than or
1621 * equal to the size of the array, the results of the operation
1622 * are undefined but may not lead to termination" -- which is one
1623 * of the possible outcomes of the hang. Clamp the index to
1624 * prevent access outside of the array bounds.
1625 */
1626 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1627 BRW_REGISTER_TYPE_UD),
1628 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1629
1630 indirect_max += element_size * (tail->type->length - 1);
1631
1632 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1633 if (indirect.file == BAD_FILE) {
1634 indirect = tmp;
1635 } else {
1636 bld.ADD(indirect, indirect, tmp);
1637 }
1638 }
1639 }
1640
1641 if (indirect.file == BAD_FILE) {
1642 return image;
1643 } else {
1644 /* Emit a pile of MOVs to load the uniform into a temporary. The
1645 * dead-code elimination pass will get rid of what we don't use.
1646 */
1647 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1648 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1649 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1650 offset(tmp, bld, j), offset(image, bld, j),
1651 indirect, brw_imm_ud((indirect_max + 1) * 4));
1652 }
1653 return tmp;
1654 }
1655 }
1656
1657 void
1658 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1659 unsigned wr_mask)
1660 {
1661 for (unsigned i = 0; i < 4; i++) {
1662 if (!((wr_mask >> i) & 1))
1663 continue;
1664
1665 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1666 new_inst->dst = offset(new_inst->dst, bld, i);
1667 for (unsigned j = 0; j < new_inst->sources; j++)
1668 if (new_inst->src[j].file == VGRF)
1669 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1670
1671 bld.emit(new_inst);
1672 }
1673 }
1674
1675 /**
1676 * Get the matching channel register datatype for an image intrinsic of the
1677 * specified GLSL image type.
1678 */
1679 static brw_reg_type
1680 get_image_base_type(const glsl_type *type)
1681 {
1682 switch ((glsl_base_type)type->sampled_type) {
1683 case GLSL_TYPE_UINT:
1684 return BRW_REGISTER_TYPE_UD;
1685 case GLSL_TYPE_INT:
1686 return BRW_REGISTER_TYPE_D;
1687 case GLSL_TYPE_FLOAT:
1688 return BRW_REGISTER_TYPE_F;
1689 default:
1690 unreachable("Not reached.");
1691 }
1692 }
1693
1694 /**
1695 * Get the appropriate atomic op for an image atomic intrinsic.
1696 */
1697 static unsigned
1698 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1699 {
1700 switch (op) {
1701 case nir_intrinsic_image_var_atomic_add:
1702 return BRW_AOP_ADD;
1703 case nir_intrinsic_image_var_atomic_min:
1704 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1705 BRW_AOP_IMIN : BRW_AOP_UMIN);
1706 case nir_intrinsic_image_var_atomic_max:
1707 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1708 BRW_AOP_IMAX : BRW_AOP_UMAX);
1709 case nir_intrinsic_image_var_atomic_and:
1710 return BRW_AOP_AND;
1711 case nir_intrinsic_image_var_atomic_or:
1712 return BRW_AOP_OR;
1713 case nir_intrinsic_image_var_atomic_xor:
1714 return BRW_AOP_XOR;
1715 case nir_intrinsic_image_var_atomic_exchange:
1716 return BRW_AOP_MOV;
1717 case nir_intrinsic_image_var_atomic_comp_swap:
1718 return BRW_AOP_CMPWR;
1719 default:
1720 unreachable("Not reachable.");
1721 }
1722 }
1723
1724 static fs_inst *
1725 emit_pixel_interpolater_send(const fs_builder &bld,
1726 enum opcode opcode,
1727 const fs_reg &dst,
1728 const fs_reg &src,
1729 const fs_reg &desc,
1730 glsl_interp_mode interpolation)
1731 {
1732 struct brw_wm_prog_data *wm_prog_data =
1733 brw_wm_prog_data(bld.shader->stage_prog_data);
1734 fs_inst *inst;
1735 fs_reg payload;
1736 int mlen;
1737
1738 if (src.file == BAD_FILE) {
1739 /* Dummy payload */
1740 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1741 mlen = 1;
1742 } else {
1743 payload = src;
1744 mlen = 2 * bld.dispatch_width() / 8;
1745 }
1746
1747 inst = bld.emit(opcode, dst, payload, desc);
1748 inst->mlen = mlen;
1749 /* 2 floats per slot returned */
1750 inst->size_written = 2 * dst.component_size(inst->exec_size);
1751 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1752
1753 wm_prog_data->pulls_bary = true;
1754
1755 return inst;
1756 }
1757
1758 /**
1759 * Computes 1 << x, given a D/UD register containing some value x.
1760 */
1761 static fs_reg
1762 intexp2(const fs_builder &bld, const fs_reg &x)
1763 {
1764 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1765
1766 fs_reg result = bld.vgrf(x.type, 1);
1767 fs_reg one = bld.vgrf(x.type, 1);
1768
1769 bld.MOV(one, retype(brw_imm_d(1), one.type));
1770 bld.SHL(result, one, x);
1771 return result;
1772 }
1773
1774 void
1775 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1776 {
1777 assert(stage == MESA_SHADER_GEOMETRY);
1778
1779 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1780
1781 if (gs_compile->control_data_header_size_bits == 0)
1782 return;
1783
1784 /* We can only do EndPrimitive() functionality when the control data
1785 * consists of cut bits. Fortunately, the only time it isn't is when the
1786 * output type is points, in which case EndPrimitive() is a no-op.
1787 */
1788 if (gs_prog_data->control_data_format !=
1789 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1790 return;
1791 }
1792
1793 /* Cut bits use one bit per vertex. */
1794 assert(gs_compile->control_data_bits_per_vertex == 1);
1795
1796 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1797 vertex_count.type = BRW_REGISTER_TYPE_UD;
1798
1799 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1800 * vertex n, 0 otherwise. So all we need to do here is mark bit
1801 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1802 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1803 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1804 *
1805 * Note that if EndPrimitive() is called before emitting any vertices, this
1806 * will cause us to set bit 31 of the control_data_bits register to 1.
1807 * That's fine because:
1808 *
1809 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1810 * output, so the hardware will ignore cut bit 31.
1811 *
1812 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1813 * last vertex, so setting cut bit 31 has no effect (since the primitive
1814 * is automatically ended when the GS terminates).
1815 *
1816 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1817 * control_data_bits register to 0 when the first vertex is emitted.
1818 */
1819
1820 const fs_builder abld = bld.annotate("end primitive");
1821
1822 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1823 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1824 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1825 fs_reg mask = intexp2(abld, prev_count);
1826 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1827 * attention to the lower 5 bits of its second source argument, so on this
1828 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1829 * ((vertex_count - 1) % 32).
1830 */
1831 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1832 }
1833
1834 void
1835 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1836 {
1837 assert(stage == MESA_SHADER_GEOMETRY);
1838 assert(gs_compile->control_data_bits_per_vertex != 0);
1839
1840 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1841
1842 const fs_builder abld = bld.annotate("emit control data bits");
1843 const fs_builder fwa_bld = bld.exec_all();
1844
1845 /* We use a single UD register to accumulate control data bits (32 bits
1846 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1847 * at a time.
1848 *
1849 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1850 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1851 * use the Channel Mask phase to enable/disable which DWord within that
1852 * group to write. (Remember, different SIMD8 channels may have emitted
1853 * different numbers of vertices, so we may need per-slot offsets.)
1854 *
1855 * Channel masking presents an annoying problem: we may have to replicate
1856 * the data up to 4 times:
1857 *
1858 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1859 *
1860 * To avoid penalizing shaders that emit a small number of vertices, we
1861 * can avoid these sometimes: if the size of the control data header is
1862 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1863 * land in the same 128-bit group, so we can skip per-slot offsets.
1864 *
1865 * Similarly, if the control data header is <= 32 bits, there is only one
1866 * DWord, so we can skip channel masks.
1867 */
1868 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1869
1870 fs_reg channel_mask, per_slot_offset;
1871
1872 if (gs_compile->control_data_header_size_bits > 32) {
1873 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1874 channel_mask = vgrf(glsl_type::uint_type);
1875 }
1876
1877 if (gs_compile->control_data_header_size_bits > 128) {
1878 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1879 per_slot_offset = vgrf(glsl_type::uint_type);
1880 }
1881
1882 /* Figure out which DWord we're trying to write to using the formula:
1883 *
1884 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1885 *
1886 * Since bits_per_vertex is a power of two, and is known at compile
1887 * time, this can be optimized to:
1888 *
1889 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1890 */
1891 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1892 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1893 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1894 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1895 unsigned log2_bits_per_vertex =
1896 util_last_bit(gs_compile->control_data_bits_per_vertex);
1897 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1898
1899 if (per_slot_offset.file != BAD_FILE) {
1900 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1901 * the appropriate OWord within the control data header.
1902 */
1903 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1904 }
1905
1906 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1907 * write to the appropriate DWORD within the OWORD.
1908 */
1909 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1910 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1911 channel_mask = intexp2(fwa_bld, channel);
1912 /* Then the channel masks need to be in bits 23:16. */
1913 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1914 }
1915
1916 /* Store the control data bits in the message payload and send it. */
1917 int mlen = 2;
1918 if (channel_mask.file != BAD_FILE)
1919 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1920 if (per_slot_offset.file != BAD_FILE)
1921 mlen++;
1922
1923 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1924 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1925 int i = 0;
1926 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1927 if (per_slot_offset.file != BAD_FILE)
1928 sources[i++] = per_slot_offset;
1929 if (channel_mask.file != BAD_FILE)
1930 sources[i++] = channel_mask;
1931 while (i < mlen) {
1932 sources[i++] = this->control_data_bits;
1933 }
1934
1935 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1936 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1937 inst->mlen = mlen;
1938 /* We need to increment Global Offset by 256-bits to make room for
1939 * Broadwell's extra "Vertex Count" payload at the beginning of the
1940 * URB entry. Since this is an OWord message, Global Offset is counted
1941 * in 128-bit units, so we must set it to 2.
1942 */
1943 if (gs_prog_data->static_vertex_count == -1)
1944 inst->offset = 2;
1945 }
1946
1947 void
1948 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1949 unsigned stream_id)
1950 {
1951 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1952
1953 /* Note: we are calling this *before* increasing vertex_count, so
1954 * this->vertex_count == vertex_count - 1 in the formula above.
1955 */
1956
1957 /* Stream mode uses 2 bits per vertex */
1958 assert(gs_compile->control_data_bits_per_vertex == 2);
1959
1960 /* Must be a valid stream */
1961 assert(stream_id < MAX_VERTEX_STREAMS);
1962
1963 /* Control data bits are initialized to 0 so we don't have to set any
1964 * bits when sending vertices to stream 0.
1965 */
1966 if (stream_id == 0)
1967 return;
1968
1969 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1970
1971 /* reg::sid = stream_id */
1972 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1973 abld.MOV(sid, brw_imm_ud(stream_id));
1974
1975 /* reg:shift_count = 2 * (vertex_count - 1) */
1976 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1977 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1978
1979 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1980 * attention to the lower 5 bits of its second source argument, so on this
1981 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1982 * stream_id << ((2 * (vertex_count - 1)) % 32).
1983 */
1984 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1985 abld.SHL(mask, sid, shift_count);
1986 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1987 }
1988
1989 void
1990 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1991 unsigned stream_id)
1992 {
1993 assert(stage == MESA_SHADER_GEOMETRY);
1994
1995 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1996
1997 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1998 vertex_count.type = BRW_REGISTER_TYPE_UD;
1999
2000 /* Haswell and later hardware ignores the "Render Stream Select" bits
2001 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2002 * and instead sends all primitives down the pipeline for rasterization.
2003 * If the SOL stage is enabled, "Render Stream Select" is honored and
2004 * primitives bound to non-zero streams are discarded after stream output.
2005 *
2006 * Since the only purpose of primives sent to non-zero streams is to
2007 * be recorded by transform feedback, we can simply discard all geometry
2008 * bound to these streams when transform feedback is disabled.
2009 */
2010 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2011 return;
2012
2013 /* If we're outputting 32 control data bits or less, then we can wait
2014 * until the shader is over to output them all. Otherwise we need to
2015 * output them as we go. Now is the time to do it, since we're about to
2016 * output the vertex_count'th vertex, so it's guaranteed that the
2017 * control data bits associated with the (vertex_count - 1)th vertex are
2018 * correct.
2019 */
2020 if (gs_compile->control_data_header_size_bits > 32) {
2021 const fs_builder abld =
2022 bld.annotate("emit vertex: emit control data bits");
2023
2024 /* Only emit control data bits if we've finished accumulating a batch
2025 * of 32 bits. This is the case when:
2026 *
2027 * (vertex_count * bits_per_vertex) % 32 == 0
2028 *
2029 * (in other words, when the last 5 bits of vertex_count *
2030 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2031 * integer n (which is always the case, since bits_per_vertex is
2032 * always 1 or 2), this is equivalent to requiring that the last 5-n
2033 * bits of vertex_count are 0:
2034 *
2035 * vertex_count & (2^(5-n) - 1) == 0
2036 *
2037 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2038 * equivalent to:
2039 *
2040 * vertex_count & (32 / bits_per_vertex - 1) == 0
2041 *
2042 * TODO: If vertex_count is an immediate, we could do some of this math
2043 * at compile time...
2044 */
2045 fs_inst *inst =
2046 abld.AND(bld.null_reg_d(), vertex_count,
2047 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2048 inst->conditional_mod = BRW_CONDITIONAL_Z;
2049
2050 abld.IF(BRW_PREDICATE_NORMAL);
2051 /* If vertex_count is 0, then no control data bits have been
2052 * accumulated yet, so we can skip emitting them.
2053 */
2054 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2055 BRW_CONDITIONAL_NEQ);
2056 abld.IF(BRW_PREDICATE_NORMAL);
2057 emit_gs_control_data_bits(vertex_count);
2058 abld.emit(BRW_OPCODE_ENDIF);
2059
2060 /* Reset control_data_bits to 0 so we can start accumulating a new
2061 * batch.
2062 *
2063 * Note: in the case where vertex_count == 0, this neutralizes the
2064 * effect of any call to EndPrimitive() that the shader may have
2065 * made before outputting its first vertex.
2066 */
2067 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2068 inst->force_writemask_all = true;
2069 abld.emit(BRW_OPCODE_ENDIF);
2070 }
2071
2072 emit_urb_writes(vertex_count);
2073
2074 /* In stream mode we have to set control data bits for all vertices
2075 * unless we have disabled control data bits completely (which we do
2076 * do for GL_POINTS outputs that don't use streams).
2077 */
2078 if (gs_compile->control_data_header_size_bits > 0 &&
2079 gs_prog_data->control_data_format ==
2080 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2081 set_gs_stream_control_data_bits(vertex_count, stream_id);
2082 }
2083 }
2084
2085 void
2086 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2087 const nir_src &vertex_src,
2088 unsigned base_offset,
2089 const nir_src &offset_src,
2090 unsigned num_components,
2091 unsigned first_component)
2092 {
2093 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2094
2095 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2096 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2097 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2098
2099 /* TODO: figure out push input layout for invocations == 1 */
2100 /* TODO: make this work with 64-bit inputs */
2101 if (gs_prog_data->invocations == 1 &&
2102 type_sz(dst.type) <= 4 &&
2103 offset_const != NULL && vertex_const != NULL &&
2104 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2105 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2106 vertex_const->u32[0] * push_reg_count;
2107 for (unsigned i = 0; i < num_components; i++) {
2108 bld.MOV(offset(dst, bld, i),
2109 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2110 }
2111 return;
2112 }
2113
2114 /* Resort to the pull model. Ensure the VUE handles are provided. */
2115 assert(gs_prog_data->base.include_vue_handles);
2116
2117 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2118 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2119
2120 if (gs_prog_data->invocations == 1) {
2121 if (vertex_const) {
2122 /* The vertex index is constant; just select the proper URB handle. */
2123 icp_handle =
2124 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2125 BRW_REGISTER_TYPE_UD);
2126 } else {
2127 /* The vertex index is non-constant. We need to use indirect
2128 * addressing to fetch the proper URB handle.
2129 *
2130 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2131 * indicating that channel <n> should read the handle from
2132 * DWord <n>. We convert that to bytes by multiplying by 4.
2133 *
2134 * Next, we convert the vertex index to bytes by multiplying
2135 * by 32 (shifting by 5), and add the two together. This is
2136 * the final indirect byte offset.
2137 */
2138 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2139 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2140 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2141 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2142
2143 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2144 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2145 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2146 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2147 /* Convert vertex_index to bytes (multiply by 32) */
2148 bld.SHL(vertex_offset_bytes,
2149 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2150 brw_imm_ud(5u));
2151 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2152
2153 /* Use first_icp_handle as the base offset. There is one register
2154 * of URB handles per vertex, so inform the register allocator that
2155 * we might read up to nir->info.gs.vertices_in registers.
2156 */
2157 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2158 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2159 fs_reg(icp_offset_bytes),
2160 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2161 }
2162 } else {
2163 assert(gs_prog_data->invocations > 1);
2164
2165 if (vertex_const) {
2166 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2167 bld.MOV(icp_handle,
2168 retype(brw_vec1_grf(first_icp_handle +
2169 vertex_const->i32[0] / 8,
2170 vertex_const->i32[0] % 8),
2171 BRW_REGISTER_TYPE_UD));
2172 } else {
2173 /* The vertex index is non-constant. We need to use indirect
2174 * addressing to fetch the proper URB handle.
2175 *
2176 */
2177 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2178
2179 /* Convert vertex_index to bytes (multiply by 4) */
2180 bld.SHL(icp_offset_bytes,
2181 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2182 brw_imm_ud(2u));
2183
2184 /* Use first_icp_handle as the base offset. There is one DWord
2185 * of URB handles per vertex, so inform the register allocator that
2186 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2187 */
2188 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2189 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2190 fs_reg(icp_offset_bytes),
2191 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2192 REG_SIZE));
2193 }
2194 }
2195
2196 fs_inst *inst;
2197
2198 fs_reg tmp_dst = dst;
2199 fs_reg indirect_offset = get_nir_src(offset_src);
2200 unsigned num_iterations = 1;
2201 unsigned orig_num_components = num_components;
2202
2203 if (type_sz(dst.type) == 8) {
2204 if (num_components > 2) {
2205 num_iterations = 2;
2206 num_components = 2;
2207 }
2208 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2209 tmp_dst = tmp;
2210 first_component = first_component / 2;
2211 }
2212
2213 for (unsigned iter = 0; iter < num_iterations; iter++) {
2214 if (offset_const) {
2215 /* Constant indexing - use global offset. */
2216 if (first_component != 0) {
2217 unsigned read_components = num_components + first_component;
2218 fs_reg tmp = bld.vgrf(dst.type, read_components);
2219 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2220 inst->size_written = read_components *
2221 tmp.component_size(inst->exec_size);
2222 for (unsigned i = 0; i < num_components; i++) {
2223 bld.MOV(offset(tmp_dst, bld, i),
2224 offset(tmp, bld, i + first_component));
2225 }
2226 } else {
2227 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2228 icp_handle);
2229 inst->size_written = num_components *
2230 tmp_dst.component_size(inst->exec_size);
2231 }
2232 inst->offset = base_offset + offset_const->u32[0];
2233 inst->mlen = 1;
2234 } else {
2235 /* Indirect indexing - use per-slot offsets as well. */
2236 const fs_reg srcs[] = { icp_handle, indirect_offset };
2237 unsigned read_components = num_components + first_component;
2238 fs_reg tmp = bld.vgrf(dst.type, read_components);
2239 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2240 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2241 if (first_component != 0) {
2242 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2243 payload);
2244 inst->size_written = read_components *
2245 tmp.component_size(inst->exec_size);
2246 for (unsigned i = 0; i < num_components; i++) {
2247 bld.MOV(offset(tmp_dst, bld, i),
2248 offset(tmp, bld, i + first_component));
2249 }
2250 } else {
2251 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2252 payload);
2253 inst->size_written = num_components *
2254 tmp_dst.component_size(inst->exec_size);
2255 }
2256 inst->offset = base_offset;
2257 inst->mlen = 2;
2258 }
2259
2260 if (type_sz(dst.type) == 8) {
2261 shuffle_32bit_load_result_to_64bit_data(
2262 bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
2263
2264 for (unsigned c = 0; c < num_components; c++)
2265 bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
2266 }
2267
2268 if (num_iterations > 1) {
2269 num_components = orig_num_components - 2;
2270 if(offset_const) {
2271 base_offset++;
2272 } else {
2273 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2274 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2275 indirect_offset = new_indirect;
2276 }
2277 }
2278 }
2279 }
2280
2281 fs_reg
2282 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2283 {
2284 nir_src *offset_src = nir_get_io_offset_src(instr);
2285 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2286
2287 if (const_value) {
2288 /* The only constant offset we should find is 0. brw_nir.c's
2289 * add_const_offset_to_base() will fold other constant offsets
2290 * into instr->const_index[0].
2291 */
2292 assert(const_value->u32[0] == 0);
2293 return fs_reg();
2294 }
2295
2296 return get_nir_src(*offset_src);
2297 }
2298
2299 static void
2300 do_untyped_vector_read(const fs_builder &bld,
2301 const fs_reg dest,
2302 const fs_reg surf_index,
2303 const fs_reg offset_reg,
2304 unsigned num_components)
2305 {
2306 if (type_sz(dest.type) <= 2) {
2307 assert(dest.stride == 1);
2308 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2309
2310 if (is_const_offset) {
2311 uint32_t start = offset_reg.ud & ~3;
2312 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2313 end = ALIGN(end, 4);
2314 assert (end - start <= 16);
2315
2316 /* At this point we have 16-bit component/s that have constant
2317 * offset aligned to 4-bytes that can be read with untyped_reads.
2318 * untyped_read message requires 32-bit aligned offsets.
2319 */
2320 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2321 unsigned num_components_32bit = (end - start) / 4;
2322
2323 fs_reg read_result =
2324 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2325 1 /* dims */,
2326 num_components_32bit,
2327 BRW_PREDICATE_NONE);
2328 shuffle_32bit_load_result_to_16bit_data(bld,
2329 retype(dest, BRW_REGISTER_TYPE_W),
2330 retype(read_result, BRW_REGISTER_TYPE_D),
2331 first_component, num_components);
2332 } else {
2333 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2334 for (unsigned i = 0; i < num_components; i++) {
2335 if (i == 0) {
2336 bld.MOV(read_offset, offset_reg);
2337 } else {
2338 bld.ADD(read_offset, offset_reg,
2339 brw_imm_ud(i * type_sz(dest.type)));
2340 }
2341 /* Non constant offsets are not guaranteed to be aligned 32-bits
2342 * so they are read using one byte_scattered_read message
2343 * for each component.
2344 */
2345 fs_reg read_result =
2346 emit_byte_scattered_read(bld, surf_index, read_offset,
2347 1 /* dims */, 1,
2348 type_sz(dest.type) * 8 /* bit_size */,
2349 BRW_PREDICATE_NONE);
2350 bld.MOV(offset(dest, bld, i),
2351 subscript (read_result, dest.type, 0));
2352 }
2353 }
2354 } else if (type_sz(dest.type) == 4) {
2355 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2356 1 /* dims */,
2357 num_components,
2358 BRW_PREDICATE_NONE);
2359 read_result.type = dest.type;
2360 for (unsigned i = 0; i < num_components; i++)
2361 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2362 } else if (type_sz(dest.type) == 8) {
2363 /* Reading a dvec, so we need to:
2364 *
2365 * 1. Multiply num_components by 2, to account for the fact that we
2366 * need to read 64-bit components.
2367 * 2. Shuffle the result of the load to form valid 64-bit elements
2368 * 3. Emit a second load (for components z/w) if needed.
2369 */
2370 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2371 bld.MOV(read_offset, offset_reg);
2372
2373 int iters = num_components <= 2 ? 1 : 2;
2374
2375 /* Load the dvec, the first iteration loads components x/y, the second
2376 * iteration, if needed, loads components z/w
2377 */
2378 for (int it = 0; it < iters; it++) {
2379 /* Compute number of components to read in this iteration */
2380 int iter_components = MIN2(2, num_components);
2381 num_components -= iter_components;
2382
2383 /* Read. Since this message reads 32-bit components, we need to
2384 * read twice as many components.
2385 */
2386 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2387 1 /* dims */,
2388 iter_components * 2,
2389 BRW_PREDICATE_NONE);
2390
2391 /* Shuffle the 32-bit load result into valid 64-bit data */
2392 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2393 shuffle_32bit_load_result_to_64bit_data(
2394 bld, packed_result, read_result, iter_components);
2395
2396 /* Move each component to its destination */
2397 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2398 for (int c = 0; c < iter_components; c++) {
2399 bld.MOV(offset(dest, bld, it * 2 + c),
2400 offset(packed_result, bld, c));
2401 }
2402
2403 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2404 }
2405 } else {
2406 unreachable("Unsupported type");
2407 }
2408 }
2409
2410 void
2411 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2412 nir_intrinsic_instr *instr)
2413 {
2414 assert(stage == MESA_SHADER_VERTEX);
2415
2416 fs_reg dest;
2417 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2418 dest = get_nir_dest(instr->dest);
2419
2420 switch (instr->intrinsic) {
2421 case nir_intrinsic_load_vertex_id:
2422 unreachable("should be lowered by lower_vertex_id()");
2423
2424 case nir_intrinsic_load_vertex_id_zero_base:
2425 case nir_intrinsic_load_base_vertex:
2426 case nir_intrinsic_load_instance_id:
2427 case nir_intrinsic_load_base_instance:
2428 case nir_intrinsic_load_draw_id: {
2429 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2430 fs_reg val = nir_system_values[sv];
2431 assert(val.file != BAD_FILE);
2432 dest.type = val.type;
2433 bld.MOV(dest, val);
2434 break;
2435 }
2436
2437 case nir_intrinsic_load_input: {
2438 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2439 unsigned first_component = nir_intrinsic_component(instr);
2440 unsigned num_components = instr->num_components;
2441
2442 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2443 assert(const_offset && "Indirect input loads not allowed");
2444 src = offset(src, bld, const_offset->u32[0]);
2445
2446 if (type_sz(dest.type) == 8)
2447 first_component /= 2;
2448
2449 for (unsigned j = 0; j < num_components; j++) {
2450 bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
2451 }
2452
2453 if (type_sz(dest.type) == 8) {
2454 shuffle_32bit_load_result_to_64bit_data(bld,
2455 dest,
2456 retype(dest, BRW_REGISTER_TYPE_F),
2457 instr->num_components);
2458 }
2459 break;
2460 }
2461
2462 case nir_intrinsic_load_first_vertex:
2463 unreachable("lowered by brw_nir_lower_vs_inputs");
2464
2465 default:
2466 nir_emit_intrinsic(bld, instr);
2467 break;
2468 }
2469 }
2470
2471 void
2472 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2473 nir_intrinsic_instr *instr)
2474 {
2475 assert(stage == MESA_SHADER_TESS_CTRL);
2476 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2477 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2478
2479 fs_reg dst;
2480 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2481 dst = get_nir_dest(instr->dest);
2482
2483 switch (instr->intrinsic) {
2484 case nir_intrinsic_load_primitive_id:
2485 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2486 break;
2487 case nir_intrinsic_load_invocation_id:
2488 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2489 break;
2490 case nir_intrinsic_load_patch_vertices_in:
2491 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2492 brw_imm_d(tcs_key->input_vertices));
2493 break;
2494
2495 case nir_intrinsic_barrier: {
2496 if (tcs_prog_data->instances == 1)
2497 break;
2498
2499 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2500 fs_reg m0_2 = component(m0, 2);
2501
2502 const fs_builder chanbld = bld.exec_all().group(1, 0);
2503
2504 /* Zero the message header */
2505 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2506
2507 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2508 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2509 brw_imm_ud(INTEL_MASK(16, 13)));
2510
2511 /* Shift it up to bits 27:24. */
2512 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2513
2514 /* Set the Barrier Count and the enable bit */
2515 chanbld.OR(m0_2, m0_2,
2516 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2517
2518 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2519 break;
2520 }
2521
2522 case nir_intrinsic_load_input:
2523 unreachable("nir_lower_io should never give us these.");
2524 break;
2525
2526 case nir_intrinsic_load_per_vertex_input: {
2527 fs_reg indirect_offset = get_indirect_offset(instr);
2528 unsigned imm_offset = instr->const_index[0];
2529
2530 const nir_src &vertex_src = instr->src[0];
2531 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2532
2533 fs_inst *inst;
2534
2535 fs_reg icp_handle;
2536
2537 if (vertex_const) {
2538 /* Emit a MOV to resolve <0,1,0> regioning. */
2539 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2540 bld.MOV(icp_handle,
2541 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2542 vertex_const->i32[0] & 7),
2543 BRW_REGISTER_TYPE_UD));
2544 } else if (tcs_prog_data->instances == 1 &&
2545 vertex_src.is_ssa &&
2546 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2547 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2548 /* For the common case of only 1 instance, an array index of
2549 * gl_InvocationID means reading g1. Skip all the indirect work.
2550 */
2551 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2552 } else {
2553 /* The vertex index is non-constant. We need to use indirect
2554 * addressing to fetch the proper URB handle.
2555 */
2556 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2557
2558 /* Each ICP handle is a single DWord (4 bytes) */
2559 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2560 bld.SHL(vertex_offset_bytes,
2561 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2562 brw_imm_ud(2u));
2563
2564 /* Start at g1. We might read up to 4 registers. */
2565 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2566 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2567 brw_imm_ud(4 * REG_SIZE));
2568 }
2569
2570 /* We can only read two double components with each URB read, so
2571 * we send two read messages in that case, each one loading up to
2572 * two double components.
2573 */
2574 unsigned num_iterations = 1;
2575 unsigned num_components = instr->num_components;
2576 unsigned first_component = nir_intrinsic_component(instr);
2577 fs_reg orig_dst = dst;
2578 if (type_sz(dst.type) == 8) {
2579 first_component = first_component / 2;
2580 if (instr->num_components > 2) {
2581 num_iterations = 2;
2582 num_components = 2;
2583 }
2584
2585 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2586 dst = tmp;
2587 }
2588
2589 for (unsigned iter = 0; iter < num_iterations; iter++) {
2590 if (indirect_offset.file == BAD_FILE) {
2591 /* Constant indexing - use global offset. */
2592 if (first_component != 0) {
2593 unsigned read_components = num_components + first_component;
2594 fs_reg tmp = bld.vgrf(dst.type, read_components);
2595 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2596 for (unsigned i = 0; i < num_components; i++) {
2597 bld.MOV(offset(dst, bld, i),
2598 offset(tmp, bld, i + first_component));
2599 }
2600 } else {
2601 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2602 }
2603 inst->offset = imm_offset;
2604 inst->mlen = 1;
2605 } else {
2606 /* Indirect indexing - use per-slot offsets as well. */
2607 const fs_reg srcs[] = { icp_handle, indirect_offset };
2608 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2609 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2610 if (first_component != 0) {
2611 unsigned read_components = num_components + first_component;
2612 fs_reg tmp = bld.vgrf(dst.type, read_components);
2613 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2614 payload);
2615 for (unsigned i = 0; i < num_components; i++) {
2616 bld.MOV(offset(dst, bld, i),
2617 offset(tmp, bld, i + first_component));
2618 }
2619 } else {
2620 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2621 payload);
2622 }
2623 inst->offset = imm_offset;
2624 inst->mlen = 2;
2625 }
2626 inst->size_written = (num_components + first_component) *
2627 inst->dst.component_size(inst->exec_size);
2628
2629 /* If we are reading 64-bit data using 32-bit read messages we need
2630 * build proper 64-bit data elements by shuffling the low and high
2631 * 32-bit components around like we do for other things like UBOs
2632 * or SSBOs.
2633 */
2634 if (type_sz(dst.type) == 8) {
2635 shuffle_32bit_load_result_to_64bit_data(
2636 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2637
2638 for (unsigned c = 0; c < num_components; c++) {
2639 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2640 offset(dst, bld, c));
2641 }
2642 }
2643
2644 /* Copy the temporary to the destination to deal with writemasking.
2645 *
2646 * Also attempt to deal with gl_PointSize being in the .w component.
2647 */
2648 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2649 assert(type_sz(dst.type) < 8);
2650 inst->dst = bld.vgrf(dst.type, 4);
2651 inst->size_written = 4 * REG_SIZE;
2652 bld.MOV(dst, offset(inst->dst, bld, 3));
2653 }
2654
2655 /* If we are loading double data and we need a second read message
2656 * adjust the write offset
2657 */
2658 if (num_iterations > 1) {
2659 num_components = instr->num_components - 2;
2660 imm_offset++;
2661 }
2662 }
2663 break;
2664 }
2665
2666 case nir_intrinsic_load_output:
2667 case nir_intrinsic_load_per_vertex_output: {
2668 fs_reg indirect_offset = get_indirect_offset(instr);
2669 unsigned imm_offset = instr->const_index[0];
2670 unsigned first_component = nir_intrinsic_component(instr);
2671
2672 fs_inst *inst;
2673 if (indirect_offset.file == BAD_FILE) {
2674 /* Replicate the patch handle to all enabled channels */
2675 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2676 bld.MOV(patch_handle,
2677 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2678
2679 {
2680 if (first_component != 0) {
2681 unsigned read_components =
2682 instr->num_components + first_component;
2683 fs_reg tmp = bld.vgrf(dst.type, read_components);
2684 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2685 patch_handle);
2686 inst->size_written = read_components * REG_SIZE;
2687 for (unsigned i = 0; i < instr->num_components; i++) {
2688 bld.MOV(offset(dst, bld, i),
2689 offset(tmp, bld, i + first_component));
2690 }
2691 } else {
2692 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2693 patch_handle);
2694 inst->size_written = instr->num_components * REG_SIZE;
2695 }
2696 inst->offset = imm_offset;
2697 inst->mlen = 1;
2698 }
2699 } else {
2700 /* Indirect indexing - use per-slot offsets as well. */
2701 const fs_reg srcs[] = {
2702 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2703 indirect_offset
2704 };
2705 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2706 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2707 if (first_component != 0) {
2708 unsigned read_components =
2709 instr->num_components + first_component;
2710 fs_reg tmp = bld.vgrf(dst.type, read_components);
2711 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2712 payload);
2713 inst->size_written = read_components * REG_SIZE;
2714 for (unsigned i = 0; i < instr->num_components; i++) {
2715 bld.MOV(offset(dst, bld, i),
2716 offset(tmp, bld, i + first_component));
2717 }
2718 } else {
2719 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2720 payload);
2721 inst->size_written = instr->num_components * REG_SIZE;
2722 }
2723 inst->offset = imm_offset;
2724 inst->mlen = 2;
2725 }
2726 break;
2727 }
2728
2729 case nir_intrinsic_store_output:
2730 case nir_intrinsic_store_per_vertex_output: {
2731 fs_reg value = get_nir_src(instr->src[0]);
2732 bool is_64bit = (instr->src[0].is_ssa ?
2733 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2734 fs_reg indirect_offset = get_indirect_offset(instr);
2735 unsigned imm_offset = instr->const_index[0];
2736 unsigned mask = instr->const_index[1];
2737 unsigned header_regs = 0;
2738 fs_reg srcs[7];
2739 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2740
2741 if (indirect_offset.file != BAD_FILE) {
2742 srcs[header_regs++] = indirect_offset;
2743 }
2744
2745 if (mask == 0)
2746 break;
2747
2748 unsigned num_components = util_last_bit(mask);
2749 enum opcode opcode;
2750
2751 /* We can only pack two 64-bit components in a single message, so send
2752 * 2 messages if we have more components
2753 */
2754 unsigned num_iterations = 1;
2755 unsigned iter_components = num_components;
2756 unsigned first_component = nir_intrinsic_component(instr);
2757 if (is_64bit) {
2758 first_component = first_component / 2;
2759 if (instr->num_components > 2) {
2760 num_iterations = 2;
2761 iter_components = 2;
2762 }
2763 }
2764
2765 mask = mask << first_component;
2766
2767 for (unsigned iter = 0; iter < num_iterations; iter++) {
2768 if (!is_64bit && mask != WRITEMASK_XYZW) {
2769 srcs[header_regs++] = brw_imm_ud(mask << 16);
2770 opcode = indirect_offset.file != BAD_FILE ?
2771 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2772 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2773 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2774 /* Expand the 64-bit mask to 32-bit channels. We only handle
2775 * two channels in each iteration, so we only care about X/Y.
2776 */
2777 unsigned mask32 = 0;
2778 if (mask & WRITEMASK_X)
2779 mask32 |= WRITEMASK_XY;
2780 if (mask & WRITEMASK_Y)
2781 mask32 |= WRITEMASK_ZW;
2782
2783 /* If the mask does not include any of the channels X or Y there
2784 * is nothing to do in this iteration. Move on to the next couple
2785 * of 64-bit channels.
2786 */
2787 if (!mask32) {
2788 mask >>= 2;
2789 imm_offset++;
2790 continue;
2791 }
2792
2793 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2794 opcode = indirect_offset.file != BAD_FILE ?
2795 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2796 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2797 } else {
2798 opcode = indirect_offset.file != BAD_FILE ?
2799 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2800 SHADER_OPCODE_URB_WRITE_SIMD8;
2801 }
2802
2803 for (unsigned i = 0; i < iter_components; i++) {
2804 if (!(mask & (1 << (i + first_component))))
2805 continue;
2806
2807 if (!is_64bit) {
2808 srcs[header_regs + i + first_component] = offset(value, bld, i);
2809 } else {
2810 /* We need to shuffle the 64-bit data to match the layout
2811 * expected by our 32-bit URB write messages. We use a temporary
2812 * for that.
2813 */
2814 unsigned channel = iter * 2 + i;
2815 fs_reg dest = shuffle_64bit_data_for_32bit_write(bld,
2816 offset(value, bld, channel), 1);
2817
2818 srcs[header_regs + (i + first_component) * 2] = dest;
2819 srcs[header_regs + (i + first_component) * 2 + 1] =
2820 offset(dest, bld, 1);
2821 }
2822 }
2823
2824 unsigned mlen =
2825 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2826 (is_64bit ? 2 * first_component : first_component);
2827 fs_reg payload =
2828 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2829 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2830
2831 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2832 inst->offset = imm_offset;
2833 inst->mlen = mlen;
2834
2835 /* If this is a 64-bit attribute, select the next two 64-bit channels
2836 * to be handled in the next iteration.
2837 */
2838 if (is_64bit) {
2839 mask >>= 2;
2840 imm_offset++;
2841 }
2842 }
2843 break;
2844 }
2845
2846 default:
2847 nir_emit_intrinsic(bld, instr);
2848 break;
2849 }
2850 }
2851
2852 void
2853 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2854 nir_intrinsic_instr *instr)
2855 {
2856 assert(stage == MESA_SHADER_TESS_EVAL);
2857 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2858
2859 fs_reg dest;
2860 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2861 dest = get_nir_dest(instr->dest);
2862
2863 switch (instr->intrinsic) {
2864 case nir_intrinsic_load_primitive_id:
2865 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2866 break;
2867 case nir_intrinsic_load_tess_coord:
2868 /* gl_TessCoord is part of the payload in g1-3 */
2869 for (unsigned i = 0; i < 3; i++) {
2870 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2871 }
2872 break;
2873
2874 case nir_intrinsic_load_input:
2875 case nir_intrinsic_load_per_vertex_input: {
2876 fs_reg indirect_offset = get_indirect_offset(instr);
2877 unsigned imm_offset = instr->const_index[0];
2878 unsigned first_component = nir_intrinsic_component(instr);
2879
2880 if (type_sz(dest.type) == 8) {
2881 first_component = first_component / 2;
2882 }
2883
2884 fs_inst *inst;
2885 if (indirect_offset.file == BAD_FILE) {
2886 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2887 * which is 16 registers (since each holds 2 vec4 slots).
2888 */
2889 unsigned slot_count = 1;
2890 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2891 slot_count++;
2892
2893 const unsigned max_push_slots = 32;
2894 if (imm_offset + slot_count <= max_push_slots) {
2895 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2896 for (int i = 0; i < instr->num_components; i++) {
2897 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2898 i + first_component;
2899 bld.MOV(offset(dest, bld, i), component(src, comp));
2900 }
2901
2902 tes_prog_data->base.urb_read_length =
2903 MAX2(tes_prog_data->base.urb_read_length,
2904 DIV_ROUND_UP(imm_offset + slot_count, 2));
2905 } else {
2906 /* Replicate the patch handle to all enabled channels */
2907 const fs_reg srcs[] = {
2908 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2909 };
2910 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2911 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2912
2913 if (first_component != 0) {
2914 unsigned read_components =
2915 instr->num_components + first_component;
2916 fs_reg tmp = bld.vgrf(dest.type, read_components);
2917 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2918 patch_handle);
2919 inst->size_written = read_components * REG_SIZE;
2920 for (unsigned i = 0; i < instr->num_components; i++) {
2921 bld.MOV(offset(dest, bld, i),
2922 offset(tmp, bld, i + first_component));
2923 }
2924 } else {
2925 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2926 patch_handle);
2927 inst->size_written = instr->num_components * REG_SIZE;
2928 }
2929 inst->mlen = 1;
2930 inst->offset = imm_offset;
2931 }
2932 } else {
2933 /* Indirect indexing - use per-slot offsets as well. */
2934
2935 /* We can only read two double components with each URB read, so
2936 * we send two read messages in that case, each one loading up to
2937 * two double components.
2938 */
2939 unsigned num_iterations = 1;
2940 unsigned num_components = instr->num_components;
2941 fs_reg orig_dest = dest;
2942 if (type_sz(dest.type) == 8) {
2943 if (instr->num_components > 2) {
2944 num_iterations = 2;
2945 num_components = 2;
2946 }
2947 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2948 dest = tmp;
2949 }
2950
2951 for (unsigned iter = 0; iter < num_iterations; iter++) {
2952 const fs_reg srcs[] = {
2953 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2954 indirect_offset
2955 };
2956 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2957 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2958
2959 if (first_component != 0) {
2960 unsigned read_components =
2961 num_components + first_component;
2962 fs_reg tmp = bld.vgrf(dest.type, read_components);
2963 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2964 payload);
2965 for (unsigned i = 0; i < num_components; i++) {
2966 bld.MOV(offset(dest, bld, i),
2967 offset(tmp, bld, i + first_component));
2968 }
2969 } else {
2970 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2971 payload);
2972 }
2973 inst->mlen = 2;
2974 inst->offset = imm_offset;
2975 inst->size_written = (num_components + first_component) *
2976 inst->dst.component_size(inst->exec_size);
2977
2978 /* If we are reading 64-bit data using 32-bit read messages we need
2979 * build proper 64-bit data elements by shuffling the low and high
2980 * 32-bit components around like we do for other things like UBOs
2981 * or SSBOs.
2982 */
2983 if (type_sz(dest.type) == 8) {
2984 shuffle_32bit_load_result_to_64bit_data(
2985 bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
2986
2987 for (unsigned c = 0; c < num_components; c++) {
2988 bld.MOV(offset(orig_dest, bld, iter * 2 + c),
2989 offset(dest, bld, c));
2990 }
2991 }
2992
2993 /* If we are loading double data and we need a second read message
2994 * adjust the offset
2995 */
2996 if (num_iterations > 1) {
2997 num_components = instr->num_components - 2;
2998 imm_offset++;
2999 }
3000 }
3001 }
3002 break;
3003 }
3004 default:
3005 nir_emit_intrinsic(bld, instr);
3006 break;
3007 }
3008 }
3009
3010 void
3011 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3012 nir_intrinsic_instr *instr)
3013 {
3014 assert(stage == MESA_SHADER_GEOMETRY);
3015 fs_reg indirect_offset;
3016
3017 fs_reg dest;
3018 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3019 dest = get_nir_dest(instr->dest);
3020
3021 switch (instr->intrinsic) {
3022 case nir_intrinsic_load_primitive_id:
3023 assert(stage == MESA_SHADER_GEOMETRY);
3024 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3025 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3026 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3027 break;
3028
3029 case nir_intrinsic_load_input:
3030 unreachable("load_input intrinsics are invalid for the GS stage");
3031
3032 case nir_intrinsic_load_per_vertex_input:
3033 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3034 instr->src[1], instr->num_components,
3035 nir_intrinsic_component(instr));
3036 break;
3037
3038 case nir_intrinsic_emit_vertex_with_counter:
3039 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3040 break;
3041
3042 case nir_intrinsic_end_primitive_with_counter:
3043 emit_gs_end_primitive(instr->src[0]);
3044 break;
3045
3046 case nir_intrinsic_set_vertex_count:
3047 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3048 break;
3049
3050 case nir_intrinsic_load_invocation_id: {
3051 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3052 assert(val.file != BAD_FILE);
3053 dest.type = val.type;
3054 bld.MOV(dest, val);
3055 break;
3056 }
3057
3058 default:
3059 nir_emit_intrinsic(bld, instr);
3060 break;
3061 }
3062 }
3063
3064 /**
3065 * Fetch the current render target layer index.
3066 */
3067 static fs_reg
3068 fetch_render_target_array_index(const fs_builder &bld)
3069 {
3070 if (bld.shader->devinfo->gen >= 6) {
3071 /* The render target array index is provided in the thread payload as
3072 * bits 26:16 of r0.0.
3073 */
3074 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3075 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3076 brw_imm_uw(0x7ff));
3077 return idx;
3078 } else {
3079 /* Pre-SNB we only ever render into the first layer of the framebuffer
3080 * since layered rendering is not implemented.
3081 */
3082 return brw_imm_ud(0);
3083 }
3084 }
3085
3086 /**
3087 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3088 * framebuffer at the current fragment coordinates and sample index.
3089 */
3090 fs_inst *
3091 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3092 unsigned target)
3093 {
3094 const struct gen_device_info *devinfo = bld.shader->devinfo;
3095
3096 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3097 const brw_wm_prog_key *wm_key =
3098 reinterpret_cast<const brw_wm_prog_key *>(key);
3099 assert(!wm_key->coherent_fb_fetch);
3100 const struct brw_wm_prog_data *wm_prog_data =
3101 brw_wm_prog_data(stage_prog_data);
3102
3103 /* Calculate the surface index relative to the start of the texture binding
3104 * table block, since that's what the texturing messages expect.
3105 */
3106 const unsigned surface = target +
3107 wm_prog_data->binding_table.render_target_read_start -
3108 wm_prog_data->base.binding_table.texture_start;
3109
3110 brw_mark_surface_used(
3111 bld.shader->stage_prog_data,
3112 wm_prog_data->binding_table.render_target_read_start + target);
3113
3114 /* Calculate the fragment coordinates. */
3115 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3116 bld.MOV(offset(coords, bld, 0), pixel_x);
3117 bld.MOV(offset(coords, bld, 1), pixel_y);
3118 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3119
3120 /* Calculate the sample index and MCS payload when multisampling. Luckily
3121 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3122 * shouldn't be necessary to recompile based on whether the framebuffer is
3123 * CMS or UMS.
3124 */
3125 if (wm_key->multisample_fbo &&
3126 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3127 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3128
3129 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3130 const fs_reg mcs = wm_key->multisample_fbo ?
3131 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3132
3133 /* Use either a normal or a CMS texel fetch message depending on whether
3134 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3135 * message just in case the framebuffer uses 16x multisampling, it should
3136 * be equivalent to the normal CMS fetch for lower multisampling modes.
3137 */
3138 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3139 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3140 SHADER_OPCODE_TXF_CMS_LOGICAL;
3141
3142 /* Emit the instruction. */
3143 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3144 sample, mcs,
3145 brw_imm_ud(surface), brw_imm_ud(0),
3146 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3147 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3148
3149 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3150 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3151
3152 return inst;
3153 }
3154
3155 /**
3156 * Actual coherent framebuffer read implemented using the native render target
3157 * read message. Requires SKL+.
3158 */
3159 static fs_inst *
3160 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3161 {
3162 assert(bld.shader->devinfo->gen >= 9);
3163 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3164 inst->target = target;
3165 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3166
3167 return inst;
3168 }
3169
3170 static fs_reg
3171 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3172 {
3173 if (n && regs[0].file != BAD_FILE) {
3174 return regs[0];
3175
3176 } else {
3177 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3178
3179 for (unsigned i = 0; i < n; i++)
3180 regs[i] = tmp;
3181
3182 return tmp;
3183 }
3184 }
3185
3186 static fs_reg
3187 alloc_frag_output(fs_visitor *v, unsigned location)
3188 {
3189 assert(v->stage == MESA_SHADER_FRAGMENT);
3190 const brw_wm_prog_key *const key =
3191 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3192 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3193 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3194
3195 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3196 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3197
3198 else if (l == FRAG_RESULT_COLOR)
3199 return alloc_temporary(v->bld, 4, v->outputs,
3200 MAX2(key->nr_color_regions, 1));
3201
3202 else if (l == FRAG_RESULT_DEPTH)
3203 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3204
3205 else if (l == FRAG_RESULT_STENCIL)
3206 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3207
3208 else if (l == FRAG_RESULT_SAMPLE_MASK)
3209 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3210
3211 else if (l >= FRAG_RESULT_DATA0 &&
3212 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3213 return alloc_temporary(v->bld, 4,
3214 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3215
3216 else
3217 unreachable("Invalid location");
3218 }
3219
3220 void
3221 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3222 nir_intrinsic_instr *instr)
3223 {
3224 assert(stage == MESA_SHADER_FRAGMENT);
3225
3226 fs_reg dest;
3227 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3228 dest = get_nir_dest(instr->dest);
3229
3230 switch (instr->intrinsic) {
3231 case nir_intrinsic_load_front_face:
3232 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3233 *emit_frontfacing_interpolation());
3234 break;
3235
3236 case nir_intrinsic_load_sample_pos: {
3237 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3238 assert(sample_pos.file != BAD_FILE);
3239 dest.type = sample_pos.type;
3240 bld.MOV(dest, sample_pos);
3241 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3242 break;
3243 }
3244
3245 case nir_intrinsic_load_layer_id:
3246 dest.type = BRW_REGISTER_TYPE_UD;
3247 bld.MOV(dest, fetch_render_target_array_index(bld));
3248 break;
3249
3250 case nir_intrinsic_load_helper_invocation:
3251 case nir_intrinsic_load_sample_mask_in:
3252 case nir_intrinsic_load_sample_id: {
3253 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3254 fs_reg val = nir_system_values[sv];
3255 assert(val.file != BAD_FILE);
3256 dest.type = val.type;
3257 bld.MOV(dest, val);
3258 break;
3259 }
3260
3261 case nir_intrinsic_store_output: {
3262 const fs_reg src = get_nir_src(instr->src[0]);
3263 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3264 assert(const_offset && "Indirect output stores not allowed");
3265 const unsigned location = nir_intrinsic_base(instr) +
3266 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3267 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3268 src.type);
3269
3270 for (unsigned j = 0; j < instr->num_components; j++)
3271 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3272 offset(src, bld, j));
3273
3274 break;
3275 }
3276
3277 case nir_intrinsic_load_output: {
3278 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3279 BRW_NIR_FRAG_OUTPUT_LOCATION);
3280 assert(l >= FRAG_RESULT_DATA0);
3281 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3282 assert(const_offset && "Indirect output loads not allowed");
3283 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3284 const fs_reg tmp = bld.vgrf(dest.type, 4);
3285
3286 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3287 emit_coherent_fb_read(bld, tmp, target);
3288 else
3289 emit_non_coherent_fb_read(bld, tmp, target);
3290
3291 for (unsigned j = 0; j < instr->num_components; j++) {
3292 bld.MOV(offset(dest, bld, j),
3293 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3294 }
3295
3296 break;
3297 }
3298
3299 case nir_intrinsic_discard:
3300 case nir_intrinsic_discard_if: {
3301 /* We track our discarded pixels in f0.1. By predicating on it, we can
3302 * update just the flag bits that aren't yet discarded. If there's no
3303 * condition, we emit a CMP of g0 != g0, so all currently executing
3304 * channels will get turned off.
3305 */
3306 fs_inst *cmp;
3307 if (instr->intrinsic == nir_intrinsic_discard_if) {
3308 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3309 brw_imm_d(0), BRW_CONDITIONAL_Z);
3310 } else {
3311 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3312 BRW_REGISTER_TYPE_UW));
3313 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3314 }
3315 cmp->predicate = BRW_PREDICATE_NORMAL;
3316 cmp->flag_subreg = 1;
3317
3318 if (devinfo->gen >= 6) {
3319 emit_discard_jump();
3320 }
3321 break;
3322 }
3323
3324 case nir_intrinsic_load_input: {
3325 /* load_input is only used for flat inputs */
3326 unsigned base = nir_intrinsic_base(instr);
3327 unsigned component = nir_intrinsic_component(instr);
3328 unsigned num_components = instr->num_components;
3329 enum brw_reg_type type = dest.type;
3330
3331 /* Special case fields in the VUE header */
3332 if (base == VARYING_SLOT_LAYER)
3333 component = 1;
3334 else if (base == VARYING_SLOT_VIEWPORT)
3335 component = 2;
3336
3337 if (nir_dest_bit_size(instr->dest) == 64) {
3338 /* const_index is in 32-bit type size units that could not be aligned
3339 * with DF. We need to read the double vector as if it was a float
3340 * vector of twice the number of components to fetch the right data.
3341 */
3342 type = BRW_REGISTER_TYPE_F;
3343 num_components *= 2;
3344 }
3345
3346 for (unsigned int i = 0; i < num_components; i++) {
3347 struct brw_reg interp = interp_reg(base, component + i);
3348 interp = suboffset(interp, 3);
3349 bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i),
3350 retype(fs_reg(interp), type));
3351 }
3352
3353 if (nir_dest_bit_size(instr->dest) == 64) {
3354 shuffle_32bit_load_result_to_64bit_data(bld,
3355 dest,
3356 retype(dest, type),
3357 instr->num_components);
3358 }
3359 break;
3360 }
3361
3362 case nir_intrinsic_load_barycentric_pixel:
3363 case nir_intrinsic_load_barycentric_centroid:
3364 case nir_intrinsic_load_barycentric_sample:
3365 /* Do nothing - load_interpolated_input handling will handle it later. */
3366 break;
3367
3368 case nir_intrinsic_load_barycentric_at_sample: {
3369 const glsl_interp_mode interpolation =
3370 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3371
3372 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3373
3374 if (const_sample) {
3375 unsigned msg_data = const_sample->i32[0] << 4;
3376
3377 emit_pixel_interpolater_send(bld,
3378 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3379 dest,
3380 fs_reg(), /* src */
3381 brw_imm_ud(msg_data),
3382 interpolation);
3383 } else {
3384 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3385 BRW_REGISTER_TYPE_UD);
3386
3387 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3388 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3389 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3390 bld.exec_all().group(1, 0)
3391 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3392 emit_pixel_interpolater_send(bld,
3393 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3394 dest,
3395 fs_reg(), /* src */
3396 msg_data,
3397 interpolation);
3398 } else {
3399 /* Make a loop that sends a message to the pixel interpolater
3400 * for the sample number in each live channel. If there are
3401 * multiple channels with the same sample number then these
3402 * will be handled simultaneously with a single interation of
3403 * the loop.
3404 */
3405 bld.emit(BRW_OPCODE_DO);
3406
3407 /* Get the next live sample number into sample_id_reg */
3408 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3409
3410 /* Set the flag register so that we can perform the send
3411 * message on all channels that have the same sample number
3412 */
3413 bld.CMP(bld.null_reg_ud(),
3414 sample_src, sample_id,
3415 BRW_CONDITIONAL_EQ);
3416 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3417 bld.exec_all().group(1, 0)
3418 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3419 fs_inst *inst =
3420 emit_pixel_interpolater_send(bld,
3421 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3422 dest,
3423 fs_reg(), /* src */
3424 msg_data,
3425 interpolation);
3426 set_predicate(BRW_PREDICATE_NORMAL, inst);
3427
3428 /* Continue the loop if there are any live channels left */
3429 set_predicate_inv(BRW_PREDICATE_NORMAL,
3430 true, /* inverse */
3431 bld.emit(BRW_OPCODE_WHILE));
3432 }
3433 }
3434 break;
3435 }
3436
3437 case nir_intrinsic_load_barycentric_at_offset: {
3438 const glsl_interp_mode interpolation =
3439 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3440
3441 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3442
3443 if (const_offset) {
3444 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3445 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3446
3447 emit_pixel_interpolater_send(bld,
3448 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3449 dest,
3450 fs_reg(), /* src */
3451 brw_imm_ud(off_x | (off_y << 4)),
3452 interpolation);
3453 } else {
3454 fs_reg src = vgrf(glsl_type::ivec2_type);
3455 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3456 BRW_REGISTER_TYPE_F);
3457 for (int i = 0; i < 2; i++) {
3458 fs_reg temp = vgrf(glsl_type::float_type);
3459 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3460 fs_reg itemp = vgrf(glsl_type::int_type);
3461 /* float to int */
3462 bld.MOV(itemp, temp);
3463
3464 /* Clamp the upper end of the range to +7/16.
3465 * ARB_gpu_shader5 requires that we support a maximum offset
3466 * of +0.5, which isn't representable in a S0.4 value -- if
3467 * we didn't clamp it, we'd end up with -8/16, which is the
3468 * opposite of what the shader author wanted.
3469 *
3470 * This is legal due to ARB_gpu_shader5's quantization
3471 * rules:
3472 *
3473 * "Not all values of <offset> may be supported; x and y
3474 * offsets may be rounded to fixed-point values with the
3475 * number of fraction bits given by the
3476 * implementation-dependent constant
3477 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3478 */
3479 set_condmod(BRW_CONDITIONAL_L,
3480 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3481 }
3482
3483 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3484 emit_pixel_interpolater_send(bld,
3485 opcode,
3486 dest,
3487 src,
3488 brw_imm_ud(0u),
3489 interpolation);
3490 }
3491 break;
3492 }
3493
3494 case nir_intrinsic_load_interpolated_input: {
3495 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3496 emit_fragcoord_interpolation(dest);
3497 break;
3498 }
3499
3500 assert(instr->src[0].ssa &&
3501 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3502 nir_intrinsic_instr *bary_intrinsic =
3503 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3504 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3505 enum glsl_interp_mode interp_mode =
3506 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3507 fs_reg dst_xy;
3508
3509 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3510 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3511 /* Use the result of the PI message */
3512 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3513 } else {
3514 /* Use the delta_xy values computed from the payload */
3515 enum brw_barycentric_mode bary =
3516 brw_barycentric_mode(interp_mode, bary_intrin);
3517
3518 dst_xy = this->delta_xy[bary];
3519 }
3520
3521 for (unsigned int i = 0; i < instr->num_components; i++) {
3522 fs_reg interp =
3523 fs_reg(interp_reg(nir_intrinsic_base(instr),
3524 nir_intrinsic_component(instr) + i));
3525 interp.type = BRW_REGISTER_TYPE_F;
3526 dest.type = BRW_REGISTER_TYPE_F;
3527
3528 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3529 fs_reg tmp = vgrf(glsl_type::float_type);
3530 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3531 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3532 } else {
3533 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3534 }
3535 }
3536 break;
3537 }
3538
3539 default:
3540 nir_emit_intrinsic(bld, instr);
3541 break;
3542 }
3543 }
3544
3545 void
3546 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3547 nir_intrinsic_instr *instr)
3548 {
3549 assert(stage == MESA_SHADER_COMPUTE);
3550 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3551
3552 fs_reg dest;
3553 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3554 dest = get_nir_dest(instr->dest);
3555
3556 switch (instr->intrinsic) {
3557 case nir_intrinsic_barrier:
3558 emit_barrier();
3559 cs_prog_data->uses_barrier = true;
3560 break;
3561
3562 case nir_intrinsic_load_subgroup_id:
3563 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3564 break;
3565
3566 case nir_intrinsic_load_local_invocation_id:
3567 case nir_intrinsic_load_work_group_id: {
3568 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3569 fs_reg val = nir_system_values[sv];
3570 assert(val.file != BAD_FILE);
3571 dest.type = val.type;
3572 for (unsigned i = 0; i < 3; i++)
3573 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3574 break;
3575 }
3576
3577 case nir_intrinsic_load_num_work_groups: {
3578 const unsigned surface =
3579 cs_prog_data->binding_table.work_groups_start;
3580
3581 cs_prog_data->uses_num_work_groups = true;
3582
3583 fs_reg surf_index = brw_imm_ud(surface);
3584 brw_mark_surface_used(prog_data, surface);
3585
3586 /* Read the 3 GLuint components of gl_NumWorkGroups */
3587 for (unsigned i = 0; i < 3; i++) {
3588 fs_reg read_result =
3589 emit_untyped_read(bld, surf_index,
3590 brw_imm_ud(i << 2),
3591 1 /* dims */, 1 /* size */,
3592 BRW_PREDICATE_NONE);
3593 read_result.type = dest.type;
3594 bld.MOV(dest, read_result);
3595 dest = offset(dest, bld, 1);
3596 }
3597 break;
3598 }
3599
3600 case nir_intrinsic_shared_atomic_add:
3601 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3602 break;
3603 case nir_intrinsic_shared_atomic_imin:
3604 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3605 break;
3606 case nir_intrinsic_shared_atomic_umin:
3607 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3608 break;
3609 case nir_intrinsic_shared_atomic_imax:
3610 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3611 break;
3612 case nir_intrinsic_shared_atomic_umax:
3613 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3614 break;
3615 case nir_intrinsic_shared_atomic_and:
3616 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3617 break;
3618 case nir_intrinsic_shared_atomic_or:
3619 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3620 break;
3621 case nir_intrinsic_shared_atomic_xor:
3622 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3623 break;
3624 case nir_intrinsic_shared_atomic_exchange:
3625 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3626 break;
3627 case nir_intrinsic_shared_atomic_comp_swap:
3628 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3629 break;
3630
3631 case nir_intrinsic_load_shared: {
3632 assert(devinfo->gen >= 7);
3633
3634 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3635
3636 /* Get the offset to read from */
3637 fs_reg offset_reg;
3638 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3639 if (const_offset) {
3640 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3641 } else {
3642 offset_reg = vgrf(glsl_type::uint_type);
3643 bld.ADD(offset_reg,
3644 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3645 brw_imm_ud(instr->const_index[0]));
3646 }
3647
3648 /* Read the vector */
3649 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3650 instr->num_components);
3651 break;
3652 }
3653
3654 case nir_intrinsic_store_shared: {
3655 assert(devinfo->gen >= 7);
3656
3657 /* Block index */
3658 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3659
3660 /* Value */
3661 fs_reg val_reg = get_nir_src(instr->src[0]);
3662
3663 /* Writemask */
3664 unsigned writemask = instr->const_index[1];
3665
3666 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3667 * since the untyped writes below operate in units of 32-bits, which
3668 * means that we need to write twice as many components each time.
3669 * Also, we have to suffle 64-bit data to be in the appropriate layout
3670 * expected by our 32-bit write messages.
3671 */
3672 unsigned type_size = 4;
3673 if (nir_src_bit_size(instr->src[0]) == 64) {
3674 type_size = 8;
3675 val_reg = shuffle_64bit_data_for_32bit_write(bld,
3676 val_reg, instr->num_components);
3677 }
3678
3679 unsigned type_slots = type_size / 4;
3680
3681 /* Combine groups of consecutive enabled channels in one write
3682 * message. We use ffs to find the first enabled channel and then ffs on
3683 * the bit-inverse, down-shifted writemask to determine the length of
3684 * the block of enabled bits.
3685 */
3686 while (writemask) {
3687 unsigned first_component = ffs(writemask) - 1;
3688 unsigned length = ffs(~(writemask >> first_component)) - 1;
3689
3690 /* We can't write more than 2 64-bit components at once. Limit the
3691 * length of the write to what we can do and let the next iteration
3692 * handle the rest
3693 */
3694 if (type_size > 4)
3695 length = MIN2(2, length);
3696
3697 fs_reg offset_reg;
3698 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3699 if (const_offset) {
3700 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3701 type_size * first_component);
3702 } else {
3703 offset_reg = vgrf(glsl_type::uint_type);
3704 bld.ADD(offset_reg,
3705 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3706 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3707 }
3708
3709 emit_untyped_write(bld, surf_index, offset_reg,
3710 offset(val_reg, bld, first_component * type_slots),
3711 1 /* dims */, length * type_slots,
3712 BRW_PREDICATE_NONE);
3713
3714 /* Clear the bits in the writemask that we just wrote, then try
3715 * again to see if more channels are left.
3716 */
3717 writemask &= (15 << (first_component + length));
3718 }
3719
3720 break;
3721 }
3722
3723 default:
3724 nir_emit_intrinsic(bld, instr);
3725 break;
3726 }
3727 }
3728
3729 static fs_reg
3730 brw_nir_reduction_op_identity(const fs_builder &bld,
3731 nir_op op, brw_reg_type type)
3732 {
3733 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3734 switch (type_sz(type)) {
3735 case 2:
3736 assert(type != BRW_REGISTER_TYPE_HF);
3737 return retype(brw_imm_uw(value.u16[0]), type);
3738 case 4:
3739 return retype(brw_imm_ud(value.u32[0]), type);
3740 case 8:
3741 if (type == BRW_REGISTER_TYPE_DF)
3742 return setup_imm_df(bld, value.f64[0]);
3743 else
3744 return retype(brw_imm_u64(value.u64[0]), type);
3745 default:
3746 unreachable("Invalid type size");
3747 }
3748 }
3749
3750 static opcode
3751 brw_op_for_nir_reduction_op(nir_op op)
3752 {
3753 switch (op) {
3754 case nir_op_iadd: return BRW_OPCODE_ADD;
3755 case nir_op_fadd: return BRW_OPCODE_ADD;
3756 case nir_op_imul: return BRW_OPCODE_MUL;
3757 case nir_op_fmul: return BRW_OPCODE_MUL;
3758 case nir_op_imin: return BRW_OPCODE_SEL;
3759 case nir_op_umin: return BRW_OPCODE_SEL;
3760 case nir_op_fmin: return BRW_OPCODE_SEL;
3761 case nir_op_imax: return BRW_OPCODE_SEL;
3762 case nir_op_umax: return BRW_OPCODE_SEL;
3763 case nir_op_fmax: return BRW_OPCODE_SEL;
3764 case nir_op_iand: return BRW_OPCODE_AND;
3765 case nir_op_ior: return BRW_OPCODE_OR;
3766 case nir_op_ixor: return BRW_OPCODE_XOR;
3767 default:
3768 unreachable("Invalid reduction operation");
3769 }
3770 }
3771
3772 static brw_conditional_mod
3773 brw_cond_mod_for_nir_reduction_op(nir_op op)
3774 {
3775 switch (op) {
3776 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3777 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3778 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3779 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3780 case nir_op_imin: return BRW_CONDITIONAL_L;
3781 case nir_op_umin: return BRW_CONDITIONAL_L;
3782 case nir_op_fmin: return BRW_CONDITIONAL_L;
3783 case nir_op_imax: return BRW_CONDITIONAL_GE;
3784 case nir_op_umax: return BRW_CONDITIONAL_GE;
3785 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3786 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3787 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3788 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3789 default:
3790 unreachable("Invalid reduction operation");
3791 }
3792 }
3793
3794 void
3795 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3796 {
3797 fs_reg dest;
3798 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3799 dest = get_nir_dest(instr->dest);
3800
3801 switch (instr->intrinsic) {
3802 case nir_intrinsic_image_var_load:
3803 case nir_intrinsic_image_var_store:
3804 case nir_intrinsic_image_var_atomic_add:
3805 case nir_intrinsic_image_var_atomic_min:
3806 case nir_intrinsic_image_var_atomic_max:
3807 case nir_intrinsic_image_var_atomic_and:
3808 case nir_intrinsic_image_var_atomic_or:
3809 case nir_intrinsic_image_var_atomic_xor:
3810 case nir_intrinsic_image_var_atomic_exchange:
3811 case nir_intrinsic_image_var_atomic_comp_swap: {
3812 using namespace image_access;
3813
3814 if (stage == MESA_SHADER_FRAGMENT &&
3815 instr->intrinsic != nir_intrinsic_image_var_load)
3816 brw_wm_prog_data(prog_data)->has_side_effects = true;
3817
3818 /* Get the referenced image variable and type. */
3819 const nir_variable *var = instr->variables[0]->var;
3820 const glsl_type *type = var->type->without_array();
3821 const brw_reg_type base_type = get_image_base_type(type);
3822
3823 /* Get some metadata from the image intrinsic. */
3824 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3825 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3826 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3827 const unsigned format = var->data.image.format;
3828 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3829
3830 /* Get the arguments of the image intrinsic. */
3831 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3832 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3833 BRW_REGISTER_TYPE_UD);
3834 const fs_reg src0 = (info->num_srcs >= 3 ?
3835 retype(get_nir_src(instr->src[2]), base_type) :
3836 fs_reg());
3837 const fs_reg src1 = (info->num_srcs >= 4 ?
3838 retype(get_nir_src(instr->src[3]), base_type) :
3839 fs_reg());
3840 fs_reg tmp;
3841
3842 /* Emit an image load, store or atomic op. */
3843 if (instr->intrinsic == nir_intrinsic_image_var_load)
3844 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3845
3846 else if (instr->intrinsic == nir_intrinsic_image_var_store)
3847 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3848 var->data.image.write_only ? GL_NONE : format);
3849
3850 else
3851 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3852 surf_dims, arr_dims, dest_components,
3853 get_image_atomic_op(instr->intrinsic, type));
3854
3855 /* Assign the result. */
3856 for (unsigned c = 0; c < dest_components; ++c) {
3857 bld.MOV(offset(retype(dest, base_type), bld, c),
3858 offset(tmp, bld, c));
3859 }
3860 break;
3861 }
3862
3863 case nir_intrinsic_memory_barrier_atomic_counter:
3864 case nir_intrinsic_memory_barrier_buffer:
3865 case nir_intrinsic_memory_barrier_image:
3866 case nir_intrinsic_memory_barrier: {
3867 const fs_builder ubld = bld.group(8, 0);
3868 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3869 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3870 ->size_written = 2 * REG_SIZE;
3871 break;
3872 }
3873
3874 case nir_intrinsic_group_memory_barrier:
3875 case nir_intrinsic_memory_barrier_shared:
3876 /* We treat these workgroup-level barriers as no-ops. This should be
3877 * safe at present and as long as:
3878 *
3879 * - Memory access instructions are not subsequently reordered by the
3880 * compiler back-end.
3881 *
3882 * - All threads from a given compute shader workgroup fit within a
3883 * single subslice and therefore talk to the same HDC shared unit
3884 * what supposedly guarantees ordering and coherency between threads
3885 * from the same workgroup. This may change in the future when we
3886 * start splitting workgroups across multiple subslices.
3887 *
3888 * - The context is not in fault-and-stream mode, which could cause
3889 * memory transactions (including to SLM) prior to the barrier to be
3890 * replayed after the barrier if a pagefault occurs. This shouldn't
3891 * be a problem up to and including SKL because fault-and-stream is
3892 * not usable due to hardware issues, but that's likely to change in
3893 * the future.
3894 */
3895 break;
3896
3897 case nir_intrinsic_shader_clock: {
3898 /* We cannot do anything if there is an event, so ignore it for now */
3899 const fs_reg shader_clock = get_timestamp(bld);
3900 const fs_reg srcs[] = { component(shader_clock, 0),
3901 component(shader_clock, 1) };
3902 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3903 break;
3904 }
3905
3906 case nir_intrinsic_image_var_size: {
3907 /* Get the referenced image variable and type. */
3908 const nir_variable *var = instr->variables[0]->var;
3909 const glsl_type *type = var->type->without_array();
3910
3911 /* Get the size of the image. */
3912 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3913 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3914
3915 /* For 1DArray image types, the array index is stored in the Z component.
3916 * Fix this by swizzling the Z component to the Y component.
3917 */
3918 const bool is_1d_array_image =
3919 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3920 type->sampler_array;
3921
3922 /* For CubeArray images, we should count the number of cubes instead
3923 * of the number of faces. Fix it by dividing the (Z component) by 6.
3924 */
3925 const bool is_cube_array_image =
3926 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3927 type->sampler_array;
3928
3929 /* Copy all the components. */
3930 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3931 if ((int)c >= type->coordinate_components()) {
3932 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3933 brw_imm_d(1));
3934 } else if (c == 1 && is_1d_array_image) {
3935 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3936 offset(size, bld, 2));
3937 } else if (c == 2 && is_cube_array_image) {
3938 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3939 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3940 offset(size, bld, c), brw_imm_d(6));
3941 } else {
3942 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3943 offset(size, bld, c));
3944 }
3945 }
3946
3947 break;
3948 }
3949
3950 case nir_intrinsic_image_var_samples:
3951 /* The driver does not support multi-sampled images. */
3952 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3953 break;
3954
3955 case nir_intrinsic_load_uniform: {
3956 /* Offsets are in bytes but they should always aligned to
3957 * the type size
3958 */
3959 assert(instr->const_index[0] % 4 == 0 ||
3960 instr->const_index[0] % type_sz(dest.type) == 0);
3961
3962 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3963
3964 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3965 if (const_offset) {
3966 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
3967 /* For 16-bit types we add the module of the const_index[0]
3968 * offset to access to not 32-bit aligned element
3969 */
3970 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
3971
3972 for (unsigned j = 0; j < instr->num_components; j++) {
3973 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3974 }
3975 } else {
3976 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3977 BRW_REGISTER_TYPE_UD);
3978
3979 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3980 * go past the end of the uniform. In order to keep the n'th
3981 * component from running past, we subtract off the size of all but
3982 * one component of the vector.
3983 */
3984 assert(instr->const_index[1] >=
3985 instr->num_components * (int) type_sz(dest.type));
3986 unsigned read_size = instr->const_index[1] -
3987 (instr->num_components - 1) * type_sz(dest.type);
3988
3989 bool supports_64bit_indirects =
3990 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
3991
3992 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
3993 for (unsigned j = 0; j < instr->num_components; j++) {
3994 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3995 offset(dest, bld, j), offset(src, bld, j),
3996 indirect, brw_imm_ud(read_size));
3997 }
3998 } else {
3999 const unsigned num_mov_indirects =
4000 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4001 /* We read a little bit less per MOV INDIRECT, as they are now
4002 * 32-bits ones instead of 64-bit. Fix read_size then.
4003 */
4004 const unsigned read_size_32bit = read_size -
4005 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4006 for (unsigned j = 0; j < instr->num_components; j++) {
4007 for (unsigned i = 0; i < num_mov_indirects; i++) {
4008 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4009 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4010 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4011 indirect, brw_imm_ud(read_size_32bit));
4012 }
4013 }
4014 }
4015 }
4016 break;
4017 }
4018
4019 case nir_intrinsic_load_ubo: {
4020 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4021 fs_reg surf_index;
4022
4023 if (const_index) {
4024 const unsigned index = stage_prog_data->binding_table.ubo_start +
4025 const_index->u32[0];
4026 surf_index = brw_imm_ud(index);
4027 brw_mark_surface_used(prog_data, index);
4028 } else {
4029 /* The block index is not a constant. Evaluate the index expression
4030 * per-channel and add the base UBO index; we have to select a value
4031 * from any live channel.
4032 */
4033 surf_index = vgrf(glsl_type::uint_type);
4034 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4035 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4036 surf_index = bld.emit_uniformize(surf_index);
4037
4038 /* Assume this may touch any UBO. It would be nice to provide
4039 * a tighter bound, but the array information is already lowered away.
4040 */
4041 brw_mark_surface_used(prog_data,
4042 stage_prog_data->binding_table.ubo_start +
4043 nir->info.num_ubos - 1);
4044 }
4045
4046 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4047 if (const_offset == NULL) {
4048 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4049 BRW_REGISTER_TYPE_UD);
4050
4051 for (int i = 0; i < instr->num_components; i++)
4052 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4053 base_offset, i * type_sz(dest.type));
4054 } else {
4055 /* Even if we are loading doubles, a pull constant load will load
4056 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4057 * need to load a full dvec4 we will have to emit 2 loads. This is
4058 * similar to demote_pull_constants(), except that in that case we
4059 * see individual accesses to each component of the vector and then
4060 * we let CSE deal with duplicate loads. Here we see a vector access
4061 * and we have to split it if necessary.
4062 */
4063 const unsigned type_size = type_sz(dest.type);
4064
4065 /* See if we've selected this as a push constant candidate */
4066 if (const_index) {
4067 const unsigned ubo_block = const_index->u32[0];
4068 const unsigned offset_256b = const_offset->u32[0] / 32;
4069
4070 fs_reg push_reg;
4071 for (int i = 0; i < 4; i++) {
4072 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4073 if (range->block == ubo_block &&
4074 offset_256b >= range->start &&
4075 offset_256b < range->start + range->length) {
4076
4077 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4078 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4079 break;
4080 }
4081 }
4082
4083 if (push_reg.file != BAD_FILE) {
4084 for (unsigned i = 0; i < instr->num_components; i++) {
4085 bld.MOV(offset(dest, bld, i),
4086 byte_offset(push_reg, i * type_size));
4087 }
4088 break;
4089 }
4090 }
4091
4092 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4093 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4094 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4095
4096 for (unsigned c = 0; c < instr->num_components;) {
4097 const unsigned base = const_offset->u32[0] + c * type_size;
4098 /* Number of usable components in the next block-aligned load. */
4099 const unsigned count = MIN2(instr->num_components - c,
4100 (block_sz - base % block_sz) / type_size);
4101
4102 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4103 packed_consts, surf_index,
4104 brw_imm_ud(base & ~(block_sz - 1)));
4105
4106 const fs_reg consts =
4107 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4108 dest.type);
4109
4110 for (unsigned d = 0; d < count; d++)
4111 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4112
4113 c += count;
4114 }
4115 }
4116 break;
4117 }
4118
4119 case nir_intrinsic_load_ssbo: {
4120 assert(devinfo->gen >= 7);
4121
4122 nir_const_value *const_uniform_block =
4123 nir_src_as_const_value(instr->src[0]);
4124
4125 fs_reg surf_index;
4126 if (const_uniform_block) {
4127 unsigned index = stage_prog_data->binding_table.ssbo_start +
4128 const_uniform_block->u32[0];
4129 surf_index = brw_imm_ud(index);
4130 brw_mark_surface_used(prog_data, index);
4131 } else {
4132 surf_index = vgrf(glsl_type::uint_type);
4133 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4134 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4135
4136 /* Assume this may touch any UBO. It would be nice to provide
4137 * a tighter bound, but the array information is already lowered away.
4138 */
4139 brw_mark_surface_used(prog_data,
4140 stage_prog_data->binding_table.ssbo_start +
4141 nir->info.num_ssbos - 1);
4142 }
4143
4144 fs_reg offset_reg;
4145 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4146 if (const_offset) {
4147 offset_reg = brw_imm_ud(const_offset->u32[0]);
4148 } else {
4149 offset_reg = get_nir_src(instr->src[1]);
4150 }
4151
4152 /* Read the vector */
4153 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4154 instr->num_components);
4155
4156 break;
4157 }
4158
4159 case nir_intrinsic_store_ssbo: {
4160 assert(devinfo->gen >= 7);
4161
4162 if (stage == MESA_SHADER_FRAGMENT)
4163 brw_wm_prog_data(prog_data)->has_side_effects = true;
4164
4165 /* Block index */
4166 fs_reg surf_index;
4167 nir_const_value *const_uniform_block =
4168 nir_src_as_const_value(instr->src[1]);
4169 if (const_uniform_block) {
4170 unsigned index = stage_prog_data->binding_table.ssbo_start +
4171 const_uniform_block->u32[0];
4172 surf_index = brw_imm_ud(index);
4173 brw_mark_surface_used(prog_data, index);
4174 } else {
4175 surf_index = vgrf(glsl_type::uint_type);
4176 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4177 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4178
4179 brw_mark_surface_used(prog_data,
4180 stage_prog_data->binding_table.ssbo_start +
4181 nir->info.num_ssbos - 1);
4182 }
4183
4184 /* Value */
4185 fs_reg val_reg = get_nir_src(instr->src[0]);
4186
4187 /* Writemask */
4188 unsigned writemask = instr->const_index[0];
4189
4190 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4191 * since the untyped writes below operate in units of 32-bits, which
4192 * means that we need to write twice as many components each time.
4193 * Also, we have to suffle 64-bit data to be in the appropriate layout
4194 * expected by our 32-bit write messages.
4195 */
4196 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4197 unsigned type_size = bit_size / 8;
4198
4199 /* Combine groups of consecutive enabled channels in one write
4200 * message. We use ffs to find the first enabled channel and then ffs on
4201 * the bit-inverse, down-shifted writemask to determine the num_components
4202 * of the block of enabled bits.
4203 */
4204 while (writemask) {
4205 unsigned first_component = ffs(writemask) - 1;
4206 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4207 fs_reg write_src = offset(val_reg, bld, first_component);
4208
4209 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4210
4211 if (type_size > 4) {
4212 /* We can't write more than 2 64-bit components at once. Limit
4213 * the num_components of the write to what we can do and let the next
4214 * iteration handle the rest.
4215 */
4216 num_components = MIN2(2, num_components);
4217 write_src = shuffle_64bit_data_for_32bit_write(bld, write_src,
4218 num_components);
4219 } else if (type_size < 4) {
4220 assert(type_size == 2);
4221 /* For 16-bit types we pack two consecutive values into a 32-bit
4222 * word and use an untyped write message. For single values or not
4223 * 32-bit-aligned we need to use byte-scattered writes because
4224 * untyped writes works with 32-bit components with 32-bit
4225 * alignment. byte_scattered_write messages only support one
4226 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4227 * could be enabled we can not guarantee that not constant offsets
4228 * to be 32-bit aligned for 16-bit types. For example an array, of
4229 * 16-bit vec3 with array element stride of 6.
4230 *
4231 * In the case of 32-bit aligned constant offsets if there is
4232 * a 3-components vector we submit one untyped-write message
4233 * of 32-bit (first two components), and one byte-scattered
4234 * write message (the last component).
4235 */
4236
4237 if ( !const_offset || ((const_offset->u32[0] +
4238 type_size * first_component) % 4)) {
4239 /* If we use a .yz writemask we also need to emit 2
4240 * byte-scattered write messages because of y-component not
4241 * being aligned to 32-bit.
4242 */
4243 num_components = 1;
4244 } else if (num_components > 2 && (num_components % 2)) {
4245 /* If there is an odd number of consecutive components we left
4246 * the not paired component for a following emit of length == 1
4247 * with byte_scattered_write.
4248 */
4249 num_components --;
4250 }
4251 /* For num_components == 1 we are also shuffling the component
4252 * because byte scattered writes of 16-bit need values to be dword
4253 * aligned. Shuffling only one component would be the same as
4254 * striding it.
4255 */
4256 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D,
4257 DIV_ROUND_UP(num_components, 2));
4258 shuffle_16bit_data_for_32bit_write(bld, tmp, write_src,
4259 num_components);
4260 write_src = tmp;
4261 }
4262
4263 fs_reg offset_reg;
4264
4265 if (const_offset) {
4266 offset_reg = brw_imm_ud(const_offset->u32[0] +
4267 type_size * first_component);
4268 } else {
4269 offset_reg = vgrf(glsl_type::uint_type);
4270 bld.ADD(offset_reg,
4271 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4272 brw_imm_ud(type_size * first_component));
4273 }
4274
4275 if (type_size < 4 && num_components == 1) {
4276 assert(type_size == 2);
4277 /* Untyped Surface messages have a fixed 32-bit size, so we need
4278 * to rely on byte scattered in order to write 16-bit elements.
4279 * The byte_scattered_write message needs that every written 16-bit
4280 * type to be aligned 32-bits (stride=2).
4281 */
4282 emit_byte_scattered_write(bld, surf_index, offset_reg,
4283 write_src,
4284 1 /* dims */, 1,
4285 bit_size,
4286 BRW_PREDICATE_NONE);
4287 } else {
4288 assert(num_components * type_size <= 16);
4289 assert((num_components * type_size) % 4 == 0);
4290 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4291 offset_reg.ud % 4 == 0);
4292 unsigned num_slots = (num_components * type_size) / 4;
4293
4294 emit_untyped_write(bld, surf_index, offset_reg,
4295 write_src,
4296 1 /* dims */, num_slots,
4297 BRW_PREDICATE_NONE);
4298 }
4299
4300 /* Clear the bits in the writemask that we just wrote, then try
4301 * again to see if more channels are left.
4302 */
4303 writemask &= (15 << (first_component + num_components));
4304 }
4305 break;
4306 }
4307
4308 case nir_intrinsic_store_output: {
4309 fs_reg src = get_nir_src(instr->src[0]);
4310
4311 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4312 assert(const_offset && "Indirect output stores not allowed");
4313
4314 unsigned num_components = instr->num_components;
4315 unsigned first_component = nir_intrinsic_component(instr);
4316 if (nir_src_bit_size(instr->src[0]) == 64) {
4317 src = shuffle_64bit_data_for_32bit_write(bld, src, num_components);
4318 num_components *= 2;
4319 }
4320
4321 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4322 4 * const_offset->u32[0]), src.type);
4323 for (unsigned j = 0; j < num_components; j++) {
4324 bld.MOV(offset(new_dest, bld, j + first_component),
4325 offset(src, bld, j));
4326 }
4327 break;
4328 }
4329
4330 case nir_intrinsic_ssbo_atomic_add:
4331 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4332 break;
4333 case nir_intrinsic_ssbo_atomic_imin:
4334 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4335 break;
4336 case nir_intrinsic_ssbo_atomic_umin:
4337 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4338 break;
4339 case nir_intrinsic_ssbo_atomic_imax:
4340 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4341 break;
4342 case nir_intrinsic_ssbo_atomic_umax:
4343 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4344 break;
4345 case nir_intrinsic_ssbo_atomic_and:
4346 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4347 break;
4348 case nir_intrinsic_ssbo_atomic_or:
4349 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4350 break;
4351 case nir_intrinsic_ssbo_atomic_xor:
4352 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4353 break;
4354 case nir_intrinsic_ssbo_atomic_exchange:
4355 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4356 break;
4357 case nir_intrinsic_ssbo_atomic_comp_swap:
4358 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4359 break;
4360
4361 case nir_intrinsic_get_buffer_size: {
4362 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4363 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4364
4365 /* A resinfo's sampler message is used to get the buffer size. The
4366 * SIMD8's writeback message consists of four registers and SIMD16's
4367 * writeback message consists of 8 destination registers (two per each
4368 * component). Because we are only interested on the first channel of
4369 * the first returned component, where resinfo returns the buffer size
4370 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4371 * the dispatch width.
4372 */
4373 const fs_builder ubld = bld.exec_all().group(8, 0);
4374 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4375 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4376
4377 /* Set LOD = 0 */
4378 ubld.MOV(src_payload, brw_imm_d(0));
4379
4380 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4381 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4382 src_payload, brw_imm_ud(index));
4383 inst->header_size = 0;
4384 inst->mlen = 1;
4385 inst->size_written = 4 * REG_SIZE;
4386
4387 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4388 *
4389 * "Out-of-bounds checking is always performed at a DWord granularity. If
4390 * any part of the DWord is out-of-bounds then the whole DWord is
4391 * considered out-of-bounds."
4392 *
4393 * This implies that types with size smaller than 4-bytes need to be
4394 * padded if they don't complete the last dword of the buffer. But as we
4395 * need to maintain the original size we need to reverse the padding
4396 * calculation to return the correct size to know the number of elements
4397 * of an unsized array. As we stored in the last two bits of the surface
4398 * size the needed padding for the buffer, we calculate here the
4399 * original buffer_size reversing the surface_size calculation:
4400 *
4401 * surface_size = isl_align(buffer_size, 4) +
4402 * (isl_align(buffer_size) - buffer_size)
4403 *
4404 * buffer_size = surface_size & ~3 - surface_size & 3
4405 */
4406
4407 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4408 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4409 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4410
4411 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4412 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4413 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4414
4415 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4416
4417 brw_mark_surface_used(prog_data, index);
4418 break;
4419 }
4420
4421 case nir_intrinsic_load_subgroup_invocation:
4422 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4423 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4424 break;
4425
4426 case nir_intrinsic_load_subgroup_eq_mask:
4427 case nir_intrinsic_load_subgroup_ge_mask:
4428 case nir_intrinsic_load_subgroup_gt_mask:
4429 case nir_intrinsic_load_subgroup_le_mask:
4430 case nir_intrinsic_load_subgroup_lt_mask:
4431 unreachable("not reached");
4432
4433 case nir_intrinsic_vote_any: {
4434 const fs_builder ubld = bld.exec_all().group(1, 0);
4435
4436 /* The any/all predicates do not consider channel enables. To prevent
4437 * dead channels from affecting the result, we initialize the flag with
4438 * with the identity value for the logical operation.
4439 */
4440 if (dispatch_width == 32) {
4441 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4442 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4443 brw_imm_ud(0));
4444 } else {
4445 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4446 }
4447 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4448
4449 /* For some reason, the any/all predicates don't work properly with
4450 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4451 * doesn't read the correct subset of the flag register and you end up
4452 * getting garbage in the second half. Work around this by using a pair
4453 * of 1-wide MOVs and scattering the result.
4454 */
4455 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4456 ubld.MOV(res1, brw_imm_d(0));
4457 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4458 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4459 BRW_PREDICATE_ALIGN1_ANY32H,
4460 ubld.MOV(res1, brw_imm_d(-1)));
4461
4462 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4463 break;
4464 }
4465 case nir_intrinsic_vote_all: {
4466 const fs_builder ubld = bld.exec_all().group(1, 0);
4467
4468 /* The any/all predicates do not consider channel enables. To prevent
4469 * dead channels from affecting the result, we initialize the flag with
4470 * with the identity value for the logical operation.
4471 */
4472 if (dispatch_width == 32) {
4473 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4474 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4475 brw_imm_ud(0xffffffff));
4476 } else {
4477 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4478 }
4479 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4480
4481 /* For some reason, the any/all predicates don't work properly with
4482 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4483 * doesn't read the correct subset of the flag register and you end up
4484 * getting garbage in the second half. Work around this by using a pair
4485 * of 1-wide MOVs and scattering the result.
4486 */
4487 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4488 ubld.MOV(res1, brw_imm_d(0));
4489 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4490 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4491 BRW_PREDICATE_ALIGN1_ALL32H,
4492 ubld.MOV(res1, brw_imm_d(-1)));
4493
4494 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4495 break;
4496 }
4497 case nir_intrinsic_vote_feq:
4498 case nir_intrinsic_vote_ieq: {
4499 fs_reg value = get_nir_src(instr->src[0]);
4500 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4501 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4502 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4503 }
4504
4505 fs_reg uniformized = bld.emit_uniformize(value);
4506 const fs_builder ubld = bld.exec_all().group(1, 0);
4507
4508 /* The any/all predicates do not consider channel enables. To prevent
4509 * dead channels from affecting the result, we initialize the flag with
4510 * with the identity value for the logical operation.
4511 */
4512 if (dispatch_width == 32) {
4513 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4514 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4515 brw_imm_ud(0xffffffff));
4516 } else {
4517 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4518 }
4519 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4520
4521 /* For some reason, the any/all predicates don't work properly with
4522 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4523 * doesn't read the correct subset of the flag register and you end up
4524 * getting garbage in the second half. Work around this by using a pair
4525 * of 1-wide MOVs and scattering the result.
4526 */
4527 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4528 ubld.MOV(res1, brw_imm_d(0));
4529 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4530 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4531 BRW_PREDICATE_ALIGN1_ALL32H,
4532 ubld.MOV(res1, brw_imm_d(-1)));
4533
4534 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4535 break;
4536 }
4537
4538 case nir_intrinsic_ballot: {
4539 const fs_reg value = retype(get_nir_src(instr->src[0]),
4540 BRW_REGISTER_TYPE_UD);
4541 struct brw_reg flag = brw_flag_reg(0, 0);
4542 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4543 * as f0.0. This is a problem for fragment programs as we currently use
4544 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4545 * programs yet so this isn't a problem. When we do, something will
4546 * have to change.
4547 */
4548 if (dispatch_width == 32)
4549 flag.type = BRW_REGISTER_TYPE_UD;
4550
4551 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4552 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4553
4554 if (instr->dest.ssa.bit_size > 32) {
4555 dest.type = BRW_REGISTER_TYPE_UQ;
4556 } else {
4557 dest.type = BRW_REGISTER_TYPE_UD;
4558 }
4559 bld.MOV(dest, flag);
4560 break;
4561 }
4562
4563 case nir_intrinsic_read_invocation: {
4564 const fs_reg value = get_nir_src(instr->src[0]);
4565 const fs_reg invocation = get_nir_src(instr->src[1]);
4566 fs_reg tmp = bld.vgrf(value.type);
4567
4568 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4569 bld.emit_uniformize(invocation));
4570
4571 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4572 break;
4573 }
4574
4575 case nir_intrinsic_read_first_invocation: {
4576 const fs_reg value = get_nir_src(instr->src[0]);
4577 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4578 break;
4579 }
4580
4581 case nir_intrinsic_shuffle: {
4582 const fs_reg value = get_nir_src(instr->src[0]);
4583 const fs_reg index = get_nir_src(instr->src[1]);
4584
4585 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4586 break;
4587 }
4588
4589 case nir_intrinsic_first_invocation: {
4590 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4591 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4592 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4593 fs_reg(component(tmp, 0)));
4594 break;
4595 }
4596
4597 case nir_intrinsic_quad_broadcast: {
4598 const fs_reg value = get_nir_src(instr->src[0]);
4599 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4600 assert(nir_src_bit_size(instr->src[1]) == 32);
4601
4602 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4603 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4604 break;
4605 }
4606
4607 case nir_intrinsic_quad_swap_horizontal: {
4608 const fs_reg value = get_nir_src(instr->src[0]);
4609 const fs_reg tmp = bld.vgrf(value.type);
4610 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4611
4612 const fs_reg src_left = horiz_stride(value, 2);
4613 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4614 const fs_reg tmp_left = horiz_stride(tmp, 2);
4615 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4616
4617 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4618 *
4619 * "When source or destination datatype is 64b or operation is
4620 * integer DWord multiply, regioning in Align1 must follow
4621 * these rules:
4622 *
4623 * [...]
4624 *
4625 * 3. Source and Destination offset must be the same, except
4626 * the case of scalar source."
4627 *
4628 * In order to work around this, we have to emit two 32-bit MOVs instead
4629 * of a single 64-bit MOV to do the shuffle.
4630 */
4631 if (type_sz(value.type) > 4 &&
4632 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4633 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4634 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4635 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4636 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4637 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4638 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4639 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4640 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4641 } else {
4642 ubld.MOV(tmp_left, src_right);
4643 ubld.MOV(tmp_right, src_left);
4644 }
4645 bld.MOV(retype(dest, value.type), tmp);
4646 break;
4647 }
4648
4649 case nir_intrinsic_quad_swap_vertical: {
4650 const fs_reg value = get_nir_src(instr->src[0]);
4651 if (nir_src_bit_size(instr->src[0]) == 32) {
4652 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4653 const fs_reg tmp = bld.vgrf(value.type);
4654 const fs_builder ubld = bld.exec_all();
4655 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4656 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4657 bld.MOV(retype(dest, value.type), tmp);
4658 } else {
4659 /* For larger data types, we have to either emit dispatch_width many
4660 * MOVs or else fall back to doing indirects.
4661 */
4662 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4663 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4664 brw_imm_w(0x2));
4665 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4666 }
4667 break;
4668 }
4669
4670 case nir_intrinsic_quad_swap_diagonal: {
4671 const fs_reg value = get_nir_src(instr->src[0]);
4672 if (nir_src_bit_size(instr->src[0]) == 32) {
4673 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4674 const fs_reg tmp = bld.vgrf(value.type);
4675 const fs_builder ubld = bld.exec_all();
4676 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4677 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4678 bld.MOV(retype(dest, value.type), tmp);
4679 } else {
4680 /* For larger data types, we have to either emit dispatch_width many
4681 * MOVs or else fall back to doing indirects.
4682 */
4683 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4684 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4685 brw_imm_w(0x3));
4686 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4687 }
4688 break;
4689 }
4690
4691 case nir_intrinsic_reduce: {
4692 fs_reg src = get_nir_src(instr->src[0]);
4693 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4694 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4695 if (cluster_size == 0 || cluster_size > dispatch_width)
4696 cluster_size = dispatch_width;
4697
4698 /* Figure out the source type */
4699 src.type = brw_type_for_nir_type(devinfo,
4700 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4701 nir_src_bit_size(instr->src[0])));
4702
4703 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4704 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4705 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4706
4707 /* Set up a register for all of our scratching around and initialize it
4708 * to reduction operation's identity value.
4709 */
4710 fs_reg scan = bld.vgrf(src.type);
4711 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4712
4713 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4714
4715 dest.type = src.type;
4716 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4717 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4718 * the distance between clusters is at least 2 GRFs. In this case,
4719 * we don't need the weird striding of the CLUSTER_BROADCAST
4720 * instruction and can just do regular MOVs.
4721 */
4722 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4723 const unsigned groups =
4724 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4725 const unsigned group_size = dispatch_width / groups;
4726 for (unsigned i = 0; i < groups; i++) {
4727 const unsigned cluster = (i * group_size) / cluster_size;
4728 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4729 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4730 component(scan, comp));
4731 }
4732 } else {
4733 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4734 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4735 }
4736 break;
4737 }
4738
4739 case nir_intrinsic_inclusive_scan:
4740 case nir_intrinsic_exclusive_scan: {
4741 fs_reg src = get_nir_src(instr->src[0]);
4742 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4743
4744 /* Figure out the source type */
4745 src.type = brw_type_for_nir_type(devinfo,
4746 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4747 nir_src_bit_size(instr->src[0])));
4748
4749 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4750 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4751 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4752
4753 /* Set up a register for all of our scratching around and initialize it
4754 * to reduction operation's identity value.
4755 */
4756 fs_reg scan = bld.vgrf(src.type);
4757 const fs_builder allbld = bld.exec_all();
4758 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4759
4760 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4761 /* Exclusive scan is a bit harder because we have to do an annoying
4762 * shift of the contents before we can begin. To make things worse,
4763 * we can't do this with a normal stride; we have to use indirects.
4764 */
4765 fs_reg shifted = bld.vgrf(src.type);
4766 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4767 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4768 brw_imm_w(-1));
4769 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4770 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4771 scan = shifted;
4772 }
4773
4774 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4775
4776 bld.MOV(retype(dest, src.type), scan);
4777 break;
4778 }
4779
4780 default:
4781 unreachable("unknown intrinsic");
4782 }
4783 }
4784
4785 void
4786 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4787 int op, nir_intrinsic_instr *instr)
4788 {
4789 if (stage == MESA_SHADER_FRAGMENT)
4790 brw_wm_prog_data(prog_data)->has_side_effects = true;
4791
4792 fs_reg dest;
4793 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4794 dest = get_nir_dest(instr->dest);
4795
4796 fs_reg surface;
4797 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4798 if (const_surface) {
4799 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4800 const_surface->u32[0];
4801 surface = brw_imm_ud(surf_index);
4802 brw_mark_surface_used(prog_data, surf_index);
4803 } else {
4804 surface = vgrf(glsl_type::uint_type);
4805 bld.ADD(surface, get_nir_src(instr->src[0]),
4806 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4807
4808 /* Assume this may touch any SSBO. This is the same we do for other
4809 * UBO/SSBO accesses with non-constant surface.
4810 */
4811 brw_mark_surface_used(prog_data,
4812 stage_prog_data->binding_table.ssbo_start +
4813 nir->info.num_ssbos - 1);
4814 }
4815
4816 fs_reg offset = get_nir_src(instr->src[1]);
4817 fs_reg data1 = get_nir_src(instr->src[2]);
4818 fs_reg data2;
4819 if (op == BRW_AOP_CMPWR)
4820 data2 = get_nir_src(instr->src[3]);
4821
4822 /* Emit the actual atomic operation */
4823
4824 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4825 data1, data2,
4826 1 /* dims */, 1 /* rsize */,
4827 op,
4828 BRW_PREDICATE_NONE);
4829 dest.type = atomic_result.type;
4830 bld.MOV(dest, atomic_result);
4831 }
4832
4833 void
4834 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4835 int op, nir_intrinsic_instr *instr)
4836 {
4837 fs_reg dest;
4838 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4839 dest = get_nir_dest(instr->dest);
4840
4841 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4842 fs_reg offset;
4843 fs_reg data1 = get_nir_src(instr->src[1]);
4844 fs_reg data2;
4845 if (op == BRW_AOP_CMPWR)
4846 data2 = get_nir_src(instr->src[2]);
4847
4848 /* Get the offset */
4849 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4850 if (const_offset) {
4851 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4852 } else {
4853 offset = vgrf(glsl_type::uint_type);
4854 bld.ADD(offset,
4855 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4856 brw_imm_ud(instr->const_index[0]));
4857 }
4858
4859 /* Emit the actual atomic operation operation */
4860
4861 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4862 data1, data2,
4863 1 /* dims */, 1 /* rsize */,
4864 op,
4865 BRW_PREDICATE_NONE);
4866 dest.type = atomic_result.type;
4867 bld.MOV(dest, atomic_result);
4868 }
4869
4870 void
4871 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4872 {
4873 unsigned texture = instr->texture_index;
4874 unsigned sampler = instr->sampler_index;
4875
4876 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4877
4878 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4879 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4880
4881 int lod_components = 0;
4882
4883 /* The hardware requires a LOD for buffer textures */
4884 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4885 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4886
4887 uint32_t header_bits = 0;
4888 for (unsigned i = 0; i < instr->num_srcs; i++) {
4889 fs_reg src = get_nir_src(instr->src[i].src);
4890 switch (instr->src[i].src_type) {
4891 case nir_tex_src_bias:
4892 srcs[TEX_LOGICAL_SRC_LOD] =
4893 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4894 break;
4895 case nir_tex_src_comparator:
4896 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4897 break;
4898 case nir_tex_src_coord:
4899 switch (instr->op) {
4900 case nir_texop_txf:
4901 case nir_texop_txf_ms:
4902 case nir_texop_txf_ms_mcs:
4903 case nir_texop_samples_identical:
4904 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4905 break;
4906 default:
4907 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4908 break;
4909 }
4910 break;
4911 case nir_tex_src_ddx:
4912 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4913 lod_components = nir_tex_instr_src_size(instr, i);
4914 break;
4915 case nir_tex_src_ddy:
4916 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4917 break;
4918 case nir_tex_src_lod:
4919 switch (instr->op) {
4920 case nir_texop_txs:
4921 srcs[TEX_LOGICAL_SRC_LOD] =
4922 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4923 break;
4924 case nir_texop_txf:
4925 srcs[TEX_LOGICAL_SRC_LOD] =
4926 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4927 break;
4928 default:
4929 srcs[TEX_LOGICAL_SRC_LOD] =
4930 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4931 break;
4932 }
4933 break;
4934 case nir_tex_src_ms_index:
4935 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4936 break;
4937
4938 case nir_tex_src_offset: {
4939 nir_const_value *const_offset =
4940 nir_src_as_const_value(instr->src[i].src);
4941 unsigned offset_bits = 0;
4942 if (const_offset &&
4943 brw_texture_offset(const_offset->i32,
4944 nir_tex_instr_src_size(instr, i),
4945 &offset_bits)) {
4946 header_bits |= offset_bits;
4947 } else {
4948 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
4949 retype(src, BRW_REGISTER_TYPE_D);
4950 }
4951 break;
4952 }
4953
4954 case nir_tex_src_projector:
4955 unreachable("should be lowered");
4956
4957 case nir_tex_src_texture_offset: {
4958 /* Figure out the highest possible texture index and mark it as used */
4959 uint32_t max_used = texture + instr->texture_array_size - 1;
4960 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
4961 max_used += stage_prog_data->binding_table.gather_texture_start;
4962 } else {
4963 max_used += stage_prog_data->binding_table.texture_start;
4964 }
4965 brw_mark_surface_used(prog_data, max_used);
4966
4967 /* Emit code to evaluate the actual indexing expression */
4968 fs_reg tmp = vgrf(glsl_type::uint_type);
4969 bld.ADD(tmp, src, brw_imm_ud(texture));
4970 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4971 break;
4972 }
4973
4974 case nir_tex_src_sampler_offset: {
4975 /* Emit code to evaluate the actual indexing expression */
4976 fs_reg tmp = vgrf(glsl_type::uint_type);
4977 bld.ADD(tmp, src, brw_imm_ud(sampler));
4978 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4979 break;
4980 }
4981
4982 case nir_tex_src_ms_mcs:
4983 assert(instr->op == nir_texop_txf_ms);
4984 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
4985 break;
4986
4987 case nir_tex_src_plane: {
4988 nir_const_value *const_plane =
4989 nir_src_as_const_value(instr->src[i].src);
4990 const uint32_t plane = const_plane->u32[0];
4991 const uint32_t texture_index =
4992 instr->texture_index +
4993 stage_prog_data->binding_table.plane_start[plane] -
4994 stage_prog_data->binding_table.texture_start;
4995
4996 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
4997 break;
4998 }
4999
5000 default:
5001 unreachable("unknown texture source");
5002 }
5003 }
5004
5005 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5006 (instr->op == nir_texop_txf_ms ||
5007 instr->op == nir_texop_samples_identical)) {
5008 if (devinfo->gen >= 7 &&
5009 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5010 srcs[TEX_LOGICAL_SRC_MCS] =
5011 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5012 instr->coord_components,
5013 srcs[TEX_LOGICAL_SRC_SURFACE]);
5014 } else {
5015 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5016 }
5017 }
5018
5019 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5020 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5021
5022 enum opcode opcode;
5023 switch (instr->op) {
5024 case nir_texop_tex:
5025 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5026 SHADER_OPCODE_TXL_LOGICAL);
5027 break;
5028 case nir_texop_txb:
5029 opcode = FS_OPCODE_TXB_LOGICAL;
5030 break;
5031 case nir_texop_txl:
5032 opcode = SHADER_OPCODE_TXL_LOGICAL;
5033 break;
5034 case nir_texop_txd:
5035 opcode = SHADER_OPCODE_TXD_LOGICAL;
5036 break;
5037 case nir_texop_txf:
5038 opcode = SHADER_OPCODE_TXF_LOGICAL;
5039 break;
5040 case nir_texop_txf_ms:
5041 if ((key_tex->msaa_16 & (1 << sampler)))
5042 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5043 else
5044 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5045 break;
5046 case nir_texop_txf_ms_mcs:
5047 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5048 break;
5049 case nir_texop_query_levels:
5050 case nir_texop_txs:
5051 opcode = SHADER_OPCODE_TXS_LOGICAL;
5052 break;
5053 case nir_texop_lod:
5054 opcode = SHADER_OPCODE_LOD_LOGICAL;
5055 break;
5056 case nir_texop_tg4:
5057 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5058 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5059 else
5060 opcode = SHADER_OPCODE_TG4_LOGICAL;
5061 break;
5062 case nir_texop_texture_samples:
5063 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5064 break;
5065 case nir_texop_samples_identical: {
5066 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5067
5068 /* If mcs is an immediate value, it means there is no MCS. In that case
5069 * just return false.
5070 */
5071 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5072 bld.MOV(dst, brw_imm_ud(0u));
5073 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5074 fs_reg tmp = vgrf(glsl_type::uint_type);
5075 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5076 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5077 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5078 } else {
5079 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5080 BRW_CONDITIONAL_EQ);
5081 }
5082 return;
5083 }
5084 default:
5085 unreachable("unknown texture opcode");
5086 }
5087
5088 if (instr->op == nir_texop_tg4) {
5089 if (instr->component == 1 &&
5090 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5091 /* gather4 sampler is broken for green channel on RG32F --
5092 * we must ask for blue instead.
5093 */
5094 header_bits |= 2 << 16;
5095 } else {
5096 header_bits |= instr->component << 16;
5097 }
5098 }
5099
5100 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5101 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5102 inst->offset = header_bits;
5103
5104 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5105 if (devinfo->gen >= 9 &&
5106 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5107 unsigned write_mask = instr->dest.is_ssa ?
5108 nir_ssa_def_components_read(&instr->dest.ssa):
5109 (1 << dest_size) - 1;
5110 assert(write_mask != 0); /* dead code should have been eliminated */
5111 inst->size_written = util_last_bit(write_mask) *
5112 inst->dst.component_size(inst->exec_size);
5113 } else {
5114 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5115 }
5116
5117 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5118 inst->shadow_compare = true;
5119
5120 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5121 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5122
5123 fs_reg nir_dest[4];
5124 for (unsigned i = 0; i < dest_size; i++)
5125 nir_dest[i] = offset(dst, bld, i);
5126
5127 if (instr->op == nir_texop_query_levels) {
5128 /* # levels is in .w */
5129 nir_dest[0] = offset(dst, bld, 3);
5130 } else if (instr->op == nir_texop_txs &&
5131 dest_size >= 3 && devinfo->gen < 7) {
5132 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5133 fs_reg depth = offset(dst, bld, 2);
5134 nir_dest[2] = vgrf(glsl_type::int_type);
5135 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5136 }
5137
5138 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5139 }
5140
5141 void
5142 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5143 {
5144 switch (instr->type) {
5145 case nir_jump_break:
5146 bld.emit(BRW_OPCODE_BREAK);
5147 break;
5148 case nir_jump_continue:
5149 bld.emit(BRW_OPCODE_CONTINUE);
5150 break;
5151 case nir_jump_return:
5152 default:
5153 unreachable("unknown jump");
5154 }
5155 }
5156
5157 /**
5158 * This helper takes the result of a load operation that reads 32-bit elements
5159 * in this format:
5160 *
5161 * x x x x x x x x
5162 * y y y y y y y y
5163 * z z z z z z z z
5164 * w w w w w w w w
5165 *
5166 * and shuffles the data to get this:
5167 *
5168 * x y x y x y x y
5169 * x y x y x y x y
5170 * z w z w z w z w
5171 * z w z w z w z w
5172 *
5173 * Which is exactly what we want if the load is reading 64-bit components
5174 * like doubles, where x represents the low 32-bit of the x double component
5175 * and y represents the high 32-bit of the x double component (likewise with
5176 * z and w for double component y). The parameter @components represents
5177 * the number of 64-bit components present in @src. This would typically be
5178 * 2 at most, since we can only fit 2 double elements in the result of a
5179 * vec4 load.
5180 *
5181 * Notice that @dst and @src can be the same register.
5182 */
5183 void
5184 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
5185 const fs_reg &dst,
5186 const fs_reg &src,
5187 uint32_t components)
5188 {
5189 assert(type_sz(src.type) == 4);
5190 assert(type_sz(dst.type) == 8);
5191
5192 /* A temporary that we will use to shuffle the 32-bit data of each
5193 * component in the vector into valid 64-bit data. We can't write directly
5194 * to dst because dst can be (and would usually be) the same as src
5195 * and in that case the first MOV in the loop below would overwrite the
5196 * data read in the second MOV.
5197 */
5198 fs_reg tmp = bld.vgrf(dst.type);
5199
5200 for (unsigned i = 0; i < components; i++) {
5201 const fs_reg component_i = offset(src, bld, 2 * i);
5202
5203 bld.MOV(subscript(tmp, src.type, 0), component_i);
5204 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
5205
5206 bld.MOV(offset(dst, bld, i), tmp);
5207 }
5208 }
5209
5210 void
5211 shuffle_32bit_load_result_to_16bit_data(const fs_builder &bld,
5212 const fs_reg &dst,
5213 const fs_reg &src,
5214 uint32_t first_component,
5215 uint32_t components)
5216 {
5217 assert(type_sz(src.type) == 4);
5218 assert(type_sz(dst.type) == 2);
5219
5220 /* A temporary is used to un-shuffle the 32-bit data of each component in
5221 * into a valid 16-bit vector. We can't write directly to dst because it
5222 * can be the same register as src and in that case the first MOV in the
5223 * loop below would overwrite the data read in the second MOV.
5224 */
5225 fs_reg tmp = retype(bld.vgrf(src.type), dst.type);
5226
5227 for (unsigned i = 0; i < components; i++) {
5228 const fs_reg component_i =
5229 subscript(offset(src, bld, (first_component + i) / 2), dst.type,
5230 (first_component + i) % 2);
5231
5232 bld.MOV(offset(tmp, bld, i % 2), component_i);
5233
5234 if (i % 2) {
5235 bld.MOV(offset(dst, bld, i -1), offset(tmp, bld, 0));
5236 bld.MOV(offset(dst, bld, i), offset(tmp, bld, 1));
5237 }
5238 }
5239 if (components % 2) {
5240 bld.MOV(offset(dst, bld, components - 1), tmp);
5241 }
5242 }
5243
5244 /**
5245 * This helper does the inverse operation of
5246 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
5247 *
5248 * We need to do this when we are going to use untyped write messsages that
5249 * operate with 32-bit components in order to arrange our 64-bit data to be
5250 * in the expected layout.
5251 *
5252 * Notice that callers of this function, unlike in the case of the inverse
5253 * operation, would typically need to call this with dst and src being
5254 * different registers, since they would otherwise corrupt the original
5255 * 64-bit data they are about to write. Because of this the function checks
5256 * that the src and dst regions involved in the operation do not overlap.
5257 */
5258 fs_reg
5259 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
5260 const fs_reg &src,
5261 uint32_t components)
5262 {
5263 assert(type_sz(src.type) == 8);
5264
5265 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D, 2 * components);
5266
5267 for (unsigned i = 0; i < components; i++) {
5268 const fs_reg component_i = offset(src, bld, i);
5269 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
5270 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
5271 }
5272
5273 return dst;
5274 }
5275
5276 void
5277 shuffle_16bit_data_for_32bit_write(const fs_builder &bld,
5278 const fs_reg &dst,
5279 const fs_reg &src,
5280 uint32_t components)
5281 {
5282 assert(type_sz(src.type) == 2);
5283 assert(type_sz(dst.type) == 4);
5284
5285 /* A temporary is used to shuffle the 16-bit data of each component in the
5286 * 32-bit data vector. We can't write directly to dst because it can be the
5287 * same register as src and in that case the first MOV in the loop below
5288 * would overwrite the data read in the second MOV.
5289 */
5290 fs_reg tmp = bld.vgrf(dst.type);
5291
5292 for (unsigned i = 0; i < components; i++) {
5293 const fs_reg component_i = offset(src, bld, i);
5294 bld.MOV(subscript(tmp, src.type, i % 2), component_i);
5295 if (i % 2) {
5296 bld.MOV(offset(dst, bld, i / 2), tmp);
5297 }
5298 }
5299 if (components % 2) {
5300 bld.MOV(offset(dst, bld, components / 2), tmp);
5301 }
5302 }
5303
5304 fs_reg
5305 setup_imm_df(const fs_builder &bld, double v)
5306 {
5307 const struct gen_device_info *devinfo = bld.shader->devinfo;
5308 assert(devinfo->gen >= 7);
5309
5310 if (devinfo->gen >= 8)
5311 return brw_imm_df(v);
5312
5313 /* gen7.5 does not support DF immediates straighforward but the DIM
5314 * instruction allows to set the 64-bit immediate value.
5315 */
5316 if (devinfo->is_haswell) {
5317 const fs_builder ubld = bld.exec_all().group(1, 0);
5318 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5319 ubld.DIM(dst, brw_imm_df(v));
5320 return component(dst, 0);
5321 }
5322
5323 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5324 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5325 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5326 *
5327 * Alternatively, we could also produce a normal VGRF (without stride 0)
5328 * by writing to all the channels in the VGRF, however, that would hit the
5329 * gen7 bug where we have to split writes that span more than 1 register
5330 * into instructions with a width of 4 (otherwise the write to the second
5331 * register written runs into an execmask hardware bug) which isn't very
5332 * nice.
5333 */
5334 union {
5335 double d;
5336 struct {
5337 uint32_t i1;
5338 uint32_t i2;
5339 };
5340 } di;
5341
5342 di.d = v;
5343
5344 const fs_builder ubld = bld.exec_all().group(1, 0);
5345 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5346 ubld.MOV(tmp, brw_imm_ud(di.i1));
5347 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5348
5349 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5350 }