i965/fs: Emit BRW_AOP_INC or BRW_AOP_DEC for imageAtomicAdd of +1 or -1
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
71 if (vec4s[loc] == 0) {
72 loc++;
73 continue;
74 }
75
76 unsigned reg_size = vec4s[loc];
77
78 /* Check if there are any ranges that start within this range and extend
79 * past it. If so, include them in this allocation.
80 */
81 for (unsigned i = 1; i < reg_size; i++)
82 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
83
84 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
85 for (unsigned i = 0; i < reg_size; i++)
86 outputs[loc + i] = offset(reg, bld, 4 * i);
87
88 loc += reg_size;
89 }
90 }
91
92 void
93 fs_visitor::nir_setup_uniforms()
94 {
95 /* Only the first compile gets to set up uniforms. */
96 if (push_constant_loc) {
97 assert(pull_constant_loc);
98 return;
99 }
100
101 uniforms = nir->num_uniforms / 4;
102
103 if (stage == MESA_SHADER_COMPUTE) {
104 /* Add a uniform for the thread local id. It must be the last uniform
105 * on the list.
106 */
107 assert(uniforms == prog_data->nr_params);
108 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
109 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
110 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
111 }
112 }
113
114 static bool
115 emit_system_values_block(nir_block *block, fs_visitor *v)
116 {
117 fs_reg *reg;
118
119 nir_foreach_instr(instr, block) {
120 if (instr->type != nir_instr_type_intrinsic)
121 continue;
122
123 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
124 switch (intrin->intrinsic) {
125 case nir_intrinsic_load_vertex_id:
126 case nir_intrinsic_load_base_vertex:
127 unreachable("should be lowered by nir_lower_system_values().");
128
129 case nir_intrinsic_load_vertex_id_zero_base:
130 case nir_intrinsic_load_is_indexed_draw:
131 case nir_intrinsic_load_first_vertex:
132 case nir_intrinsic_load_instance_id:
133 case nir_intrinsic_load_base_instance:
134 case nir_intrinsic_load_draw_id:
135 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
136
137 case nir_intrinsic_load_invocation_id:
138 if (v->stage == MESA_SHADER_TESS_CTRL)
139 break;
140 assert(v->stage == MESA_SHADER_GEOMETRY);
141 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
142 if (reg->file == BAD_FILE) {
143 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
144 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
145 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
146 abld.SHR(iid, g1, brw_imm_ud(27u));
147 *reg = iid;
148 }
149 break;
150
151 case nir_intrinsic_load_sample_pos:
152 assert(v->stage == MESA_SHADER_FRAGMENT);
153 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
154 if (reg->file == BAD_FILE)
155 *reg = *v->emit_samplepos_setup();
156 break;
157
158 case nir_intrinsic_load_sample_id:
159 assert(v->stage == MESA_SHADER_FRAGMENT);
160 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
161 if (reg->file == BAD_FILE)
162 *reg = *v->emit_sampleid_setup();
163 break;
164
165 case nir_intrinsic_load_sample_mask_in:
166 assert(v->stage == MESA_SHADER_FRAGMENT);
167 assert(v->devinfo->gen >= 7);
168 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
169 if (reg->file == BAD_FILE)
170 *reg = *v->emit_samplemaskin_setup();
171 break;
172
173 case nir_intrinsic_load_work_group_id:
174 assert(v->stage == MESA_SHADER_COMPUTE);
175 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
176 if (reg->file == BAD_FILE)
177 *reg = *v->emit_cs_work_group_id_setup();
178 break;
179
180 case nir_intrinsic_load_helper_invocation:
181 assert(v->stage == MESA_SHADER_FRAGMENT);
182 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
183 if (reg->file == BAD_FILE) {
184 const fs_builder abld =
185 v->bld.annotate("gl_HelperInvocation", NULL);
186
187 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
188 * pixel mask is in g1.7 of the thread payload.
189 *
190 * We move the per-channel pixel enable bit to the low bit of each
191 * channel by shifting the byte containing the pixel mask by the
192 * vector immediate 0x76543210UV.
193 *
194 * The region of <1,8,0> reads only 1 byte (the pixel masks for
195 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
196 * masks for 2 and 3) in SIMD16.
197 */
198 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
199
200 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
201 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
202 hbld.SHR(offset(shifted, hbld, i),
203 stride(retype(brw_vec1_grf(1 + i, 7),
204 BRW_REGISTER_TYPE_UB),
205 1, 8, 0),
206 brw_imm_v(0x76543210));
207 }
208
209 /* A set bit in the pixel mask means the channel is enabled, but
210 * that is the opposite of gl_HelperInvocation so we need to invert
211 * the mask.
212 *
213 * The negate source-modifier bit of logical instructions on Gen8+
214 * performs 1's complement negation, so we can use that instead of
215 * a NOT instruction.
216 */
217 fs_reg inverted = negate(shifted);
218 if (v->devinfo->gen < 8) {
219 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
220 abld.NOT(inverted, shifted);
221 }
222
223 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
224 * with 1 and negating.
225 */
226 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
227 abld.AND(anded, inverted, brw_imm_uw(1));
228
229 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
230 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
231 *reg = dst;
232 }
233 break;
234
235 default:
236 break;
237 }
238 }
239
240 return true;
241 }
242
243 void
244 fs_visitor::nir_emit_system_values()
245 {
246 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
247 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
248 nir_system_values[i] = fs_reg();
249 }
250
251 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
252 * never end up using it.
253 */
254 {
255 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
256 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
257 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
258
259 const fs_builder allbld8 = abld.group(8, 0).exec_all();
260 allbld8.MOV(reg, brw_imm_v(0x76543210));
261 if (dispatch_width > 8)
262 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
263 if (dispatch_width > 16) {
264 const fs_builder allbld16 = abld.group(16, 0).exec_all();
265 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
266 }
267 }
268
269 nir_foreach_function(function, nir) {
270 assert(strcmp(function->name, "main") == 0);
271 assert(function->impl);
272 nir_foreach_block(block, function->impl) {
273 emit_system_values_block(block, this);
274 }
275 }
276 }
277
278 /*
279 * Returns a type based on a reference_type (word, float, half-float) and a
280 * given bit_size.
281 *
282 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
283 *
284 * @FIXME: 64-bit return types are always DF on integer types to maintain
285 * compability with uses of DF previously to the introduction of int64
286 * support.
287 */
288 static brw_reg_type
289 brw_reg_type_from_bit_size(const unsigned bit_size,
290 const brw_reg_type reference_type)
291 {
292 switch(reference_type) {
293 case BRW_REGISTER_TYPE_HF:
294 case BRW_REGISTER_TYPE_F:
295 case BRW_REGISTER_TYPE_DF:
296 switch(bit_size) {
297 case 16:
298 return BRW_REGISTER_TYPE_HF;
299 case 32:
300 return BRW_REGISTER_TYPE_F;
301 case 64:
302 return BRW_REGISTER_TYPE_DF;
303 default:
304 unreachable("Invalid bit size");
305 }
306 case BRW_REGISTER_TYPE_B:
307 case BRW_REGISTER_TYPE_W:
308 case BRW_REGISTER_TYPE_D:
309 case BRW_REGISTER_TYPE_Q:
310 switch(bit_size) {
311 case 8:
312 return BRW_REGISTER_TYPE_B;
313 case 16:
314 return BRW_REGISTER_TYPE_W;
315 case 32:
316 return BRW_REGISTER_TYPE_D;
317 case 64:
318 return BRW_REGISTER_TYPE_Q;
319 default:
320 unreachable("Invalid bit size");
321 }
322 case BRW_REGISTER_TYPE_UB:
323 case BRW_REGISTER_TYPE_UW:
324 case BRW_REGISTER_TYPE_UD:
325 case BRW_REGISTER_TYPE_UQ:
326 switch(bit_size) {
327 case 8:
328 return BRW_REGISTER_TYPE_UB;
329 case 16:
330 return BRW_REGISTER_TYPE_UW;
331 case 32:
332 return BRW_REGISTER_TYPE_UD;
333 case 64:
334 return BRW_REGISTER_TYPE_UQ;
335 default:
336 unreachable("Invalid bit size");
337 }
338 default:
339 unreachable("Unknown type");
340 }
341 }
342
343 void
344 fs_visitor::nir_emit_impl(nir_function_impl *impl)
345 {
346 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
347 for (unsigned i = 0; i < impl->reg_alloc; i++) {
348 nir_locals[i] = fs_reg();
349 }
350
351 foreach_list_typed(nir_register, reg, node, &impl->registers) {
352 unsigned array_elems =
353 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
354 unsigned size = array_elems * reg->num_components;
355 const brw_reg_type reg_type =
356 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
357 nir_locals[reg->index] = bld.vgrf(reg_type, size);
358 }
359
360 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
361 impl->ssa_alloc);
362
363 nir_emit_cf_list(&impl->body);
364 }
365
366 void
367 fs_visitor::nir_emit_cf_list(exec_list *list)
368 {
369 exec_list_validate(list);
370 foreach_list_typed(nir_cf_node, node, node, list) {
371 switch (node->type) {
372 case nir_cf_node_if:
373 nir_emit_if(nir_cf_node_as_if(node));
374 break;
375
376 case nir_cf_node_loop:
377 nir_emit_loop(nir_cf_node_as_loop(node));
378 break;
379
380 case nir_cf_node_block:
381 nir_emit_block(nir_cf_node_as_block(node));
382 break;
383
384 default:
385 unreachable("Invalid CFG node block");
386 }
387 }
388 }
389
390 void
391 fs_visitor::nir_emit_if(nir_if *if_stmt)
392 {
393 /* first, put the condition into f0 */
394 fs_inst *inst = bld.MOV(bld.null_reg_d(),
395 retype(get_nir_src(if_stmt->condition),
396 BRW_REGISTER_TYPE_D));
397 inst->conditional_mod = BRW_CONDITIONAL_NZ;
398
399 bld.IF(BRW_PREDICATE_NORMAL);
400
401 nir_emit_cf_list(&if_stmt->then_list);
402
403 /* note: if the else is empty, dead CF elimination will remove it */
404 bld.emit(BRW_OPCODE_ELSE);
405
406 nir_emit_cf_list(&if_stmt->else_list);
407
408 bld.emit(BRW_OPCODE_ENDIF);
409
410 if (devinfo->gen < 7)
411 limit_dispatch_width(16, "Non-uniform control flow unsupported "
412 "in SIMD32 mode.");
413 }
414
415 void
416 fs_visitor::nir_emit_loop(nir_loop *loop)
417 {
418 bld.emit(BRW_OPCODE_DO);
419
420 nir_emit_cf_list(&loop->body);
421
422 bld.emit(BRW_OPCODE_WHILE);
423
424 if (devinfo->gen < 7)
425 limit_dispatch_width(16, "Non-uniform control flow unsupported "
426 "in SIMD32 mode.");
427 }
428
429 void
430 fs_visitor::nir_emit_block(nir_block *block)
431 {
432 nir_foreach_instr(instr, block) {
433 nir_emit_instr(instr);
434 }
435 }
436
437 void
438 fs_visitor::nir_emit_instr(nir_instr *instr)
439 {
440 const fs_builder abld = bld.annotate(NULL, instr);
441
442 switch (instr->type) {
443 case nir_instr_type_alu:
444 nir_emit_alu(abld, nir_instr_as_alu(instr));
445 break;
446
447 case nir_instr_type_deref:
448 /* Derefs can exist for images but they do nothing */
449 break;
450
451 case nir_instr_type_intrinsic:
452 switch (stage) {
453 case MESA_SHADER_VERTEX:
454 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456 case MESA_SHADER_TESS_CTRL:
457 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
458 break;
459 case MESA_SHADER_TESS_EVAL:
460 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462 case MESA_SHADER_GEOMETRY:
463 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 case MESA_SHADER_FRAGMENT:
466 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_COMPUTE:
469 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 default:
472 unreachable("unsupported shader stage");
473 }
474 break;
475
476 case nir_instr_type_tex:
477 nir_emit_texture(abld, nir_instr_as_tex(instr));
478 break;
479
480 case nir_instr_type_load_const:
481 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
482 break;
483
484 case nir_instr_type_ssa_undef:
485 /* We create a new VGRF for undefs on every use (by handling
486 * them in get_nir_src()), rather than for each definition.
487 * This helps register coalescing eliminate MOVs from undef.
488 */
489 break;
490
491 case nir_instr_type_jump:
492 nir_emit_jump(abld, nir_instr_as_jump(instr));
493 break;
494
495 default:
496 unreachable("unknown instruction type");
497 }
498 }
499
500 /**
501 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
502 * match instr.
503 */
504 bool
505 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
506 const fs_reg &result)
507 {
508 if (!instr->src[0].src.is_ssa ||
509 !instr->src[0].src.ssa->parent_instr)
510 return false;
511
512 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
513 return false;
514
515 nir_alu_instr *src0 =
516 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
517
518 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
519 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
520 return false;
521
522 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
523 assert(element != NULL);
524
525 /* Element type to extract.*/
526 const brw_reg_type type = brw_int_type(
527 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
528 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
529
530 fs_reg op0 = get_nir_src(src0->src[0].src);
531 op0.type = brw_type_for_nir_type(devinfo,
532 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
533 nir_src_bit_size(src0->src[0].src)));
534 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
535
536 set_saturate(instr->dest.saturate,
537 bld.MOV(result, subscript(op0, type, element->u32[0])));
538 return true;
539 }
540
541 bool
542 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
543 const fs_reg &result)
544 {
545 if (!instr->src[0].src.is_ssa ||
546 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
547 return false;
548
549 nir_intrinsic_instr *src0 =
550 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
551
552 if (src0->intrinsic != nir_intrinsic_load_front_face)
553 return false;
554
555 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
556 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
557 return false;
558
559 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
560 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
561 return false;
562
563 fs_reg tmp = vgrf(glsl_type::int_type);
564
565 if (devinfo->gen >= 6) {
566 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
567 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
568
569 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
570 *
571 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
572 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
573 *
574 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
575 *
576 * This negation looks like it's safe in practice, because bits 0:4 will
577 * surely be TRIANGLES
578 */
579
580 if (value1->f32[0] == -1.0f) {
581 g0.negate = true;
582 }
583
584 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
585 g0, brw_imm_uw(0x3f80));
586 } else {
587 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
588 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
589
590 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
591 *
592 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
593 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
594 *
595 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
596 *
597 * This negation looks like it's safe in practice, because bits 0:4 will
598 * surely be TRIANGLES
599 */
600
601 if (value1->f32[0] == -1.0f) {
602 g1_6.negate = true;
603 }
604
605 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
606 }
607 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
608
609 return true;
610 }
611
612 static void
613 emit_find_msb_using_lzd(const fs_builder &bld,
614 const fs_reg &result,
615 const fs_reg &src,
616 bool is_signed)
617 {
618 fs_inst *inst;
619 fs_reg temp = src;
620
621 if (is_signed) {
622 /* LZD of an absolute value source almost always does the right
623 * thing. There are two problem values:
624 *
625 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
626 * 0. However, findMSB(int(0x80000000)) == 30.
627 *
628 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
629 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
630 *
631 * For a value of zero or negative one, -1 will be returned.
632 *
633 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
634 * findMSB(-(1<<x)) should return x-1.
635 *
636 * For all negative number cases, including 0x80000000 and
637 * 0xffffffff, the correct value is obtained from LZD if instead of
638 * negating the (already negative) value the logical-not is used. A
639 * conditonal logical-not can be achieved in two instructions.
640 */
641 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
642
643 bld.ASR(temp, src, brw_imm_d(31));
644 bld.XOR(temp, temp, src);
645 }
646
647 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
648 retype(temp, BRW_REGISTER_TYPE_UD));
649
650 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
651 * from the LSB side. Subtract the result from 31 to convert the MSB
652 * count into an LSB count. If no bits are set, LZD will return 32.
653 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
654 */
655 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
656 inst->src[0].negate = true;
657 }
658
659 static brw_rnd_mode
660 brw_rnd_mode_from_nir_op (const nir_op op) {
661 switch (op) {
662 case nir_op_f2f16_rtz:
663 return BRW_RND_MODE_RTZ;
664 case nir_op_f2f16_rtne:
665 return BRW_RND_MODE_RTNE;
666 default:
667 unreachable("Operation doesn't support rounding mode");
668 }
669 }
670
671 void
672 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
673 {
674 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
675 fs_inst *inst;
676
677 fs_reg result = get_nir_dest(instr->dest.dest);
678 result.type = brw_type_for_nir_type(devinfo,
679 (nir_alu_type)(nir_op_infos[instr->op].output_type |
680 nir_dest_bit_size(instr->dest.dest)));
681
682 fs_reg op[4];
683 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
684 op[i] = get_nir_src(instr->src[i].src);
685 op[i].type = brw_type_for_nir_type(devinfo,
686 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
687 nir_src_bit_size(instr->src[i].src)));
688 op[i].abs = instr->src[i].abs;
689 op[i].negate = instr->src[i].negate;
690 }
691
692 /* We get a bunch of mov's out of the from_ssa pass and they may still
693 * be vectorized. We'll handle them as a special-case. We'll also
694 * handle vecN here because it's basically the same thing.
695 */
696 switch (instr->op) {
697 case nir_op_imov:
698 case nir_op_fmov:
699 case nir_op_vec2:
700 case nir_op_vec3:
701 case nir_op_vec4: {
702 fs_reg temp = result;
703 bool need_extra_copy = false;
704 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
705 if (!instr->src[i].src.is_ssa &&
706 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
707 need_extra_copy = true;
708 temp = bld.vgrf(result.type, 4);
709 break;
710 }
711 }
712
713 for (unsigned i = 0; i < 4; i++) {
714 if (!(instr->dest.write_mask & (1 << i)))
715 continue;
716
717 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
718 inst = bld.MOV(offset(temp, bld, i),
719 offset(op[0], bld, instr->src[0].swizzle[i]));
720 } else {
721 inst = bld.MOV(offset(temp, bld, i),
722 offset(op[i], bld, instr->src[i].swizzle[0]));
723 }
724 inst->saturate = instr->dest.saturate;
725 }
726
727 /* In this case the source and destination registers were the same,
728 * so we need to insert an extra set of moves in order to deal with
729 * any swizzling.
730 */
731 if (need_extra_copy) {
732 for (unsigned i = 0; i < 4; i++) {
733 if (!(instr->dest.write_mask & (1 << i)))
734 continue;
735
736 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
737 }
738 }
739 return;
740 }
741 default:
742 break;
743 }
744
745 /* At this point, we have dealt with any instruction that operates on
746 * more than a single channel. Therefore, we can just adjust the source
747 * and destination registers for that channel and emit the instruction.
748 */
749 unsigned channel = 0;
750 if (nir_op_infos[instr->op].output_size == 0) {
751 /* Since NIR is doing the scalarizing for us, we should only ever see
752 * vectorized operations with a single channel.
753 */
754 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
755 channel = ffs(instr->dest.write_mask) - 1;
756
757 result = offset(result, bld, channel);
758 }
759
760 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
761 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
762 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
763 }
764
765 switch (instr->op) {
766 case nir_op_i2f32:
767 case nir_op_u2f32:
768 if (optimize_extract_to_float(instr, result))
769 return;
770 inst = bld.MOV(result, op[0]);
771 inst->saturate = instr->dest.saturate;
772 break;
773
774 case nir_op_f2f16_rtne:
775 case nir_op_f2f16_rtz:
776 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
777 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
778 /* fallthrough */
779
780 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
781 * on the HW gen, it is a special hw opcode or just a MOV, and
782 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
783 *
784 * But if we want to use that opcode, we need to provide support on
785 * different optimizations and lowerings. As right now HF support is
786 * only for gen8+, it will be better to use directly the MOV, and use
787 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
788 */
789
790 case nir_op_f2f16:
791 inst = bld.MOV(result, op[0]);
792 inst->saturate = instr->dest.saturate;
793 break;
794
795 case nir_op_f2f64:
796 case nir_op_f2i64:
797 case nir_op_f2u64:
798 case nir_op_i2f64:
799 case nir_op_i2i64:
800 case nir_op_u2f64:
801 case nir_op_u2u64:
802 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
803 *
804 * "When source or destination is 64b (...), regioning in Align1
805 * must follow these rules:
806 *
807 * 1. Source and destination horizontal stride must be aligned to
808 * the same qword.
809 * (...)"
810 *
811 * This means that conversions from bit-sizes smaller than 64-bit to
812 * 64-bit need to have the source data elements aligned to 64-bit.
813 * This restriction does not apply to BDW and later.
814 */
815 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
816 nir_src_bit_size(instr->src[0].src) < 64 &&
817 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
818 fs_reg tmp = bld.vgrf(result.type, 1);
819 tmp = subscript(tmp, op[0].type, 0);
820 inst = bld.MOV(tmp, op[0]);
821 inst = bld.MOV(result, tmp);
822 inst->saturate = instr->dest.saturate;
823 break;
824 }
825 /* fallthrough */
826 case nir_op_f2f32:
827 case nir_op_f2i32:
828 case nir_op_f2u32:
829 case nir_op_f2i16:
830 case nir_op_f2u16:
831 case nir_op_i2i32:
832 case nir_op_u2u32:
833 case nir_op_i2i16:
834 case nir_op_u2u16:
835 case nir_op_i2f16:
836 case nir_op_u2f16:
837 case nir_op_i2i8:
838 case nir_op_u2u8:
839 inst = bld.MOV(result, op[0]);
840 inst->saturate = instr->dest.saturate;
841 break;
842
843 case nir_op_fsign: {
844 if (op[0].abs) {
845 /* Straightforward since the source can be assumed to be either
846 * strictly >= 0 or strictly <= 0 depending on the setting of the
847 * negate flag.
848 */
849 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
850
851 inst = (op[0].negate)
852 ? bld.MOV(result, brw_imm_f(-1.0f))
853 : bld.MOV(result, brw_imm_f(1.0f));
854
855 set_predicate(BRW_PREDICATE_NORMAL, inst);
856
857 if (instr->dest.saturate)
858 inst->saturate = true;
859
860 } else if (type_sz(op[0].type) < 8) {
861 /* AND(val, 0x80000000) gives the sign bit.
862 *
863 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
864 * zero.
865 */
866 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
867
868 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
869 op[0].type = BRW_REGISTER_TYPE_UD;
870 result.type = BRW_REGISTER_TYPE_UD;
871 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
872
873 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
874 inst->predicate = BRW_PREDICATE_NORMAL;
875 if (instr->dest.saturate) {
876 inst = bld.MOV(result, result);
877 inst->saturate = true;
878 }
879 } else {
880 /* For doubles we do the same but we need to consider:
881 *
882 * - 2-src instructions can't operate with 64-bit immediates
883 * - The sign is encoded in the high 32-bit of each DF
884 * - We need to produce a DF result.
885 */
886
887 fs_reg zero = vgrf(glsl_type::double_type);
888 bld.MOV(zero, setup_imm_df(bld, 0.0));
889 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
890
891 bld.MOV(result, zero);
892
893 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
894 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
895 brw_imm_ud(0x80000000u));
896
897 set_predicate(BRW_PREDICATE_NORMAL,
898 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
899
900 if (instr->dest.saturate) {
901 inst = bld.MOV(result, result);
902 inst->saturate = true;
903 }
904 }
905 break;
906 }
907
908 case nir_op_isign: {
909 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
910 * -> non-negative val generates 0x00000000.
911 * Predicated OR sets 1 if val is positive.
912 */
913 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
914 assert(bit_size == 32 || bit_size == 16);
915
916 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
917 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
918 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
919
920 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
921 bld.ASR(result, op[0], shift);
922 inst = bld.OR(result, result, one);
923 inst->predicate = BRW_PREDICATE_NORMAL;
924 break;
925 }
926
927 case nir_op_frcp:
928 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
929 inst->saturate = instr->dest.saturate;
930 break;
931
932 case nir_op_fexp2:
933 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936
937 case nir_op_flog2:
938 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
939 inst->saturate = instr->dest.saturate;
940 break;
941
942 case nir_op_fsin:
943 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
944 inst->saturate = instr->dest.saturate;
945 break;
946
947 case nir_op_fcos:
948 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
949 inst->saturate = instr->dest.saturate;
950 break;
951
952 case nir_op_fddx:
953 if (fs_key->high_quality_derivatives) {
954 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
955 } else {
956 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
957 }
958 inst->saturate = instr->dest.saturate;
959 break;
960 case nir_op_fddx_fine:
961 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
962 inst->saturate = instr->dest.saturate;
963 break;
964 case nir_op_fddx_coarse:
965 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
966 inst->saturate = instr->dest.saturate;
967 break;
968 case nir_op_fddy:
969 if (fs_key->high_quality_derivatives) {
970 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
971 } else {
972 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
973 }
974 inst->saturate = instr->dest.saturate;
975 break;
976 case nir_op_fddy_fine:
977 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
978 inst->saturate = instr->dest.saturate;
979 break;
980 case nir_op_fddy_coarse:
981 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
982 inst->saturate = instr->dest.saturate;
983 break;
984
985 case nir_op_iadd:
986 case nir_op_fadd:
987 inst = bld.ADD(result, op[0], op[1]);
988 inst->saturate = instr->dest.saturate;
989 break;
990
991 case nir_op_fmul:
992 inst = bld.MUL(result, op[0], op[1]);
993 inst->saturate = instr->dest.saturate;
994 break;
995
996 case nir_op_imul:
997 assert(nir_dest_bit_size(instr->dest.dest) < 64);
998 bld.MUL(result, op[0], op[1]);
999 break;
1000
1001 case nir_op_imul_high:
1002 case nir_op_umul_high:
1003 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1004 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1005 break;
1006
1007 case nir_op_idiv:
1008 case nir_op_udiv:
1009 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1010 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1011 break;
1012
1013 case nir_op_uadd_carry:
1014 unreachable("Should have been lowered by carry_to_arith().");
1015
1016 case nir_op_usub_borrow:
1017 unreachable("Should have been lowered by borrow_to_arith().");
1018
1019 case nir_op_umod:
1020 case nir_op_irem:
1021 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1022 * appears that our hardware just does the right thing for signed
1023 * remainder.
1024 */
1025 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1026 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1027 break;
1028
1029 case nir_op_imod: {
1030 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1031 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1032
1033 /* Math instructions don't support conditional mod */
1034 inst = bld.MOV(bld.null_reg_d(), result);
1035 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1036
1037 /* Now, we need to determine if signs of the sources are different.
1038 * When we XOR the sources, the top bit is 0 if they are the same and 1
1039 * if they are different. We can then use a conditional modifier to
1040 * turn that into a predicate. This leads us to an XOR.l instruction.
1041 *
1042 * Technically, according to the PRM, you're not allowed to use .l on a
1043 * XOR instruction. However, emperical experiments and Curro's reading
1044 * of the simulator source both indicate that it's safe.
1045 */
1046 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1047 inst = bld.XOR(tmp, op[0], op[1]);
1048 inst->predicate = BRW_PREDICATE_NORMAL;
1049 inst->conditional_mod = BRW_CONDITIONAL_L;
1050
1051 /* If the result of the initial remainder operation is non-zero and the
1052 * two sources have different signs, add in a copy of op[1] to get the
1053 * final integer modulus value.
1054 */
1055 inst = bld.ADD(result, result, op[1]);
1056 inst->predicate = BRW_PREDICATE_NORMAL;
1057 break;
1058 }
1059
1060 case nir_op_flt:
1061 case nir_op_fge:
1062 case nir_op_feq:
1063 case nir_op_fne: {
1064 fs_reg dest = result;
1065
1066 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1067 if (bit_size != 32)
1068 dest = bld.vgrf(op[0].type, 1);
1069
1070 brw_conditional_mod cond;
1071 switch (instr->op) {
1072 case nir_op_flt:
1073 cond = BRW_CONDITIONAL_L;
1074 break;
1075 case nir_op_fge:
1076 cond = BRW_CONDITIONAL_GE;
1077 break;
1078 case nir_op_feq:
1079 cond = BRW_CONDITIONAL_Z;
1080 break;
1081 case nir_op_fne:
1082 cond = BRW_CONDITIONAL_NZ;
1083 break;
1084 default:
1085 unreachable("bad opcode");
1086 }
1087
1088 bld.CMP(dest, op[0], op[1], cond);
1089
1090 if (bit_size > 32) {
1091 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1092 } else if(bit_size < 32) {
1093 /* When we convert the result to 32-bit we need to be careful and do
1094 * it as a signed conversion to get sign extension (for 32-bit true)
1095 */
1096 const brw_reg_type src_type =
1097 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1098
1099 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1100 }
1101 break;
1102 }
1103
1104 case nir_op_ilt:
1105 case nir_op_ult:
1106 case nir_op_ige:
1107 case nir_op_uge:
1108 case nir_op_ieq:
1109 case nir_op_ine: {
1110 fs_reg dest = result;
1111
1112 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1113 if (bit_size != 32)
1114 dest = bld.vgrf(op[0].type, 1);
1115
1116 brw_conditional_mod cond;
1117 switch (instr->op) {
1118 case nir_op_ilt:
1119 case nir_op_ult:
1120 cond = BRW_CONDITIONAL_L;
1121 break;
1122 case nir_op_ige:
1123 case nir_op_uge:
1124 cond = BRW_CONDITIONAL_GE;
1125 break;
1126 case nir_op_ieq:
1127 cond = BRW_CONDITIONAL_Z;
1128 break;
1129 case nir_op_ine:
1130 cond = BRW_CONDITIONAL_NZ;
1131 break;
1132 default:
1133 unreachable("bad opcode");
1134 }
1135 bld.CMP(dest, op[0], op[1], cond);
1136
1137 if (bit_size > 32) {
1138 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1139 } else if (bit_size < 32) {
1140 /* When we convert the result to 32-bit we need to be careful and do
1141 * it as a signed conversion to get sign extension (for 32-bit true)
1142 */
1143 const brw_reg_type src_type =
1144 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1145
1146 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1147 }
1148 break;
1149 }
1150
1151 case nir_op_inot:
1152 if (devinfo->gen >= 8) {
1153 op[0] = resolve_source_modifiers(op[0]);
1154 }
1155 bld.NOT(result, op[0]);
1156 break;
1157 case nir_op_ixor:
1158 if (devinfo->gen >= 8) {
1159 op[0] = resolve_source_modifiers(op[0]);
1160 op[1] = resolve_source_modifiers(op[1]);
1161 }
1162 bld.XOR(result, op[0], op[1]);
1163 break;
1164 case nir_op_ior:
1165 if (devinfo->gen >= 8) {
1166 op[0] = resolve_source_modifiers(op[0]);
1167 op[1] = resolve_source_modifiers(op[1]);
1168 }
1169 bld.OR(result, op[0], op[1]);
1170 break;
1171 case nir_op_iand:
1172 if (devinfo->gen >= 8) {
1173 op[0] = resolve_source_modifiers(op[0]);
1174 op[1] = resolve_source_modifiers(op[1]);
1175 }
1176 bld.AND(result, op[0], op[1]);
1177 break;
1178
1179 case nir_op_fdot2:
1180 case nir_op_fdot3:
1181 case nir_op_fdot4:
1182 case nir_op_ball_fequal2:
1183 case nir_op_ball_iequal2:
1184 case nir_op_ball_fequal3:
1185 case nir_op_ball_iequal3:
1186 case nir_op_ball_fequal4:
1187 case nir_op_ball_iequal4:
1188 case nir_op_bany_fnequal2:
1189 case nir_op_bany_inequal2:
1190 case nir_op_bany_fnequal3:
1191 case nir_op_bany_inequal3:
1192 case nir_op_bany_fnequal4:
1193 case nir_op_bany_inequal4:
1194 unreachable("Lowered by nir_lower_alu_reductions");
1195
1196 case nir_op_fnoise1_1:
1197 case nir_op_fnoise1_2:
1198 case nir_op_fnoise1_3:
1199 case nir_op_fnoise1_4:
1200 case nir_op_fnoise2_1:
1201 case nir_op_fnoise2_2:
1202 case nir_op_fnoise2_3:
1203 case nir_op_fnoise2_4:
1204 case nir_op_fnoise3_1:
1205 case nir_op_fnoise3_2:
1206 case nir_op_fnoise3_3:
1207 case nir_op_fnoise3_4:
1208 case nir_op_fnoise4_1:
1209 case nir_op_fnoise4_2:
1210 case nir_op_fnoise4_3:
1211 case nir_op_fnoise4_4:
1212 unreachable("not reached: should be handled by lower_noise");
1213
1214 case nir_op_ldexp:
1215 unreachable("not reached: should be handled by ldexp_to_arith()");
1216
1217 case nir_op_fsqrt:
1218 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1219 inst->saturate = instr->dest.saturate;
1220 break;
1221
1222 case nir_op_frsq:
1223 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1224 inst->saturate = instr->dest.saturate;
1225 break;
1226
1227 case nir_op_b2i:
1228 case nir_op_b2f:
1229 bld.MOV(result, negate(op[0]));
1230 break;
1231
1232 case nir_op_i2b:
1233 case nir_op_f2b: {
1234 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1235 if (bit_size == 64) {
1236 /* two-argument instructions can't take 64-bit immediates */
1237 fs_reg zero;
1238 fs_reg tmp;
1239
1240 if (instr->op == nir_op_f2b) {
1241 zero = vgrf(glsl_type::double_type);
1242 tmp = vgrf(glsl_type::double_type);
1243 bld.MOV(zero, setup_imm_df(bld, 0.0));
1244 } else {
1245 zero = vgrf(glsl_type::int64_t_type);
1246 tmp = vgrf(glsl_type::int64_t_type);
1247 bld.MOV(zero, brw_imm_q(0));
1248 }
1249
1250 /* A SIMD16 execution needs to be split in two instructions, so use
1251 * a vgrf instead of the flag register as dst so instruction splitting
1252 * works
1253 */
1254 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1255 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1256 } else {
1257 fs_reg zero;
1258 if (bit_size == 32) {
1259 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1260 } else {
1261 assert(bit_size == 16);
1262 zero = instr->op == nir_op_f2b ?
1263 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1264 }
1265 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1266 }
1267 break;
1268 }
1269
1270 case nir_op_ftrunc:
1271 inst = bld.RNDZ(result, op[0]);
1272 inst->saturate = instr->dest.saturate;
1273 break;
1274
1275 case nir_op_fceil: {
1276 op[0].negate = !op[0].negate;
1277 fs_reg temp = vgrf(glsl_type::float_type);
1278 bld.RNDD(temp, op[0]);
1279 temp.negate = true;
1280 inst = bld.MOV(result, temp);
1281 inst->saturate = instr->dest.saturate;
1282 break;
1283 }
1284 case nir_op_ffloor:
1285 inst = bld.RNDD(result, op[0]);
1286 inst->saturate = instr->dest.saturate;
1287 break;
1288 case nir_op_ffract:
1289 inst = bld.FRC(result, op[0]);
1290 inst->saturate = instr->dest.saturate;
1291 break;
1292 case nir_op_fround_even:
1293 inst = bld.RNDE(result, op[0]);
1294 inst->saturate = instr->dest.saturate;
1295 break;
1296
1297 case nir_op_fquantize2f16: {
1298 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1299 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1300 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1301
1302 /* The destination stride must be at least as big as the source stride. */
1303 tmp16.type = BRW_REGISTER_TYPE_W;
1304 tmp16.stride = 2;
1305
1306 /* Check for denormal */
1307 fs_reg abs_src0 = op[0];
1308 abs_src0.abs = true;
1309 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1310 BRW_CONDITIONAL_L);
1311 /* Get the appropriately signed zero */
1312 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1313 retype(op[0], BRW_REGISTER_TYPE_UD),
1314 brw_imm_ud(0x80000000));
1315 /* Do the actual F32 -> F16 -> F32 conversion */
1316 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1317 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1318 /* Select that or zero based on normal status */
1319 inst = bld.SEL(result, zero, tmp32);
1320 inst->predicate = BRW_PREDICATE_NORMAL;
1321 inst->saturate = instr->dest.saturate;
1322 break;
1323 }
1324
1325 case nir_op_imin:
1326 case nir_op_umin:
1327 case nir_op_fmin:
1328 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1329 inst->saturate = instr->dest.saturate;
1330 break;
1331
1332 case nir_op_imax:
1333 case nir_op_umax:
1334 case nir_op_fmax:
1335 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1336 inst->saturate = instr->dest.saturate;
1337 break;
1338
1339 case nir_op_pack_snorm_2x16:
1340 case nir_op_pack_snorm_4x8:
1341 case nir_op_pack_unorm_2x16:
1342 case nir_op_pack_unorm_4x8:
1343 case nir_op_unpack_snorm_2x16:
1344 case nir_op_unpack_snorm_4x8:
1345 case nir_op_unpack_unorm_2x16:
1346 case nir_op_unpack_unorm_4x8:
1347 case nir_op_unpack_half_2x16:
1348 case nir_op_pack_half_2x16:
1349 unreachable("not reached: should be handled by lower_packing_builtins");
1350
1351 case nir_op_unpack_half_2x16_split_x:
1352 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1353 inst->saturate = instr->dest.saturate;
1354 break;
1355 case nir_op_unpack_half_2x16_split_y:
1356 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1357 inst->saturate = instr->dest.saturate;
1358 break;
1359
1360 case nir_op_pack_64_2x32_split:
1361 case nir_op_pack_32_2x16_split:
1362 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1363 break;
1364
1365 case nir_op_unpack_64_2x32_split_x:
1366 case nir_op_unpack_64_2x32_split_y: {
1367 if (instr->op == nir_op_unpack_64_2x32_split_x)
1368 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1369 else
1370 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1371 break;
1372 }
1373
1374 case nir_op_unpack_32_2x16_split_x:
1375 case nir_op_unpack_32_2x16_split_y: {
1376 if (instr->op == nir_op_unpack_32_2x16_split_x)
1377 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1378 else
1379 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1380 break;
1381 }
1382
1383 case nir_op_fpow:
1384 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1385 inst->saturate = instr->dest.saturate;
1386 break;
1387
1388 case nir_op_bitfield_reverse:
1389 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1390 bld.BFREV(result, op[0]);
1391 break;
1392
1393 case nir_op_bit_count:
1394 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1395 bld.CBIT(result, op[0]);
1396 break;
1397
1398 case nir_op_ufind_msb: {
1399 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1400 emit_find_msb_using_lzd(bld, result, op[0], false);
1401 break;
1402 }
1403
1404 case nir_op_ifind_msb: {
1405 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1406
1407 if (devinfo->gen < 7) {
1408 emit_find_msb_using_lzd(bld, result, op[0], true);
1409 } else {
1410 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1411
1412 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1413 * count from the LSB side. If FBH didn't return an error
1414 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1415 * count into an LSB count.
1416 */
1417 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1418
1419 inst = bld.ADD(result, result, brw_imm_d(31));
1420 inst->predicate = BRW_PREDICATE_NORMAL;
1421 inst->src[0].negate = true;
1422 }
1423 break;
1424 }
1425
1426 case nir_op_find_lsb:
1427 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1428
1429 if (devinfo->gen < 7) {
1430 fs_reg temp = vgrf(glsl_type::int_type);
1431
1432 /* (x & -x) generates a value that consists of only the LSB of x.
1433 * For all powers of 2, findMSB(y) == findLSB(y).
1434 */
1435 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1436 fs_reg negated_src = src;
1437
1438 /* One must be negated, and the other must be non-negated. It
1439 * doesn't matter which is which.
1440 */
1441 negated_src.negate = true;
1442 src.negate = false;
1443
1444 bld.AND(temp, src, negated_src);
1445 emit_find_msb_using_lzd(bld, result, temp, false);
1446 } else {
1447 bld.FBL(result, op[0]);
1448 }
1449 break;
1450
1451 case nir_op_ubitfield_extract:
1452 case nir_op_ibitfield_extract:
1453 unreachable("should have been lowered");
1454 case nir_op_ubfe:
1455 case nir_op_ibfe:
1456 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1457 bld.BFE(result, op[2], op[1], op[0]);
1458 break;
1459 case nir_op_bfm:
1460 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1461 bld.BFI1(result, op[0], op[1]);
1462 break;
1463 case nir_op_bfi:
1464 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1465 bld.BFI2(result, op[0], op[1], op[2]);
1466 break;
1467
1468 case nir_op_bitfield_insert:
1469 unreachable("not reached: should have been lowered");
1470
1471 case nir_op_ishl:
1472 case nir_op_ishr:
1473 case nir_op_ushr: {
1474 fs_reg shift_count = op[1];
1475
1476 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1477 if (op[1].file == VGRF &&
1478 (result.type == BRW_REGISTER_TYPE_Q ||
1479 result.type == BRW_REGISTER_TYPE_UQ)) {
1480 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1481 BRW_REGISTER_TYPE_UD);
1482 shift_count.stride = 2;
1483 bld.MOV(shift_count, op[1]);
1484 }
1485 }
1486
1487 switch (instr->op) {
1488 case nir_op_ishl:
1489 bld.SHL(result, op[0], shift_count);
1490 break;
1491 case nir_op_ishr:
1492 bld.ASR(result, op[0], shift_count);
1493 break;
1494 case nir_op_ushr:
1495 bld.SHR(result, op[0], shift_count);
1496 break;
1497 default:
1498 unreachable("not reached");
1499 }
1500 break;
1501 }
1502
1503 case nir_op_pack_half_2x16_split:
1504 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1505 break;
1506
1507 case nir_op_ffma:
1508 inst = bld.MAD(result, op[2], op[1], op[0]);
1509 inst->saturate = instr->dest.saturate;
1510 break;
1511
1512 case nir_op_flrp:
1513 inst = bld.LRP(result, op[0], op[1], op[2]);
1514 inst->saturate = instr->dest.saturate;
1515 break;
1516
1517 case nir_op_bcsel:
1518 if (optimize_frontfacing_ternary(instr, result))
1519 return;
1520
1521 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1522 inst = bld.SEL(result, op[1], op[2]);
1523 inst->predicate = BRW_PREDICATE_NORMAL;
1524 break;
1525
1526 case nir_op_extract_u8:
1527 case nir_op_extract_i8: {
1528 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1529 assert(byte != NULL);
1530
1531 /* The PRMs say:
1532 *
1533 * BDW+
1534 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1535 * Use two instructions and a word or DWord intermediate integer type.
1536 */
1537 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1538 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1539
1540 if (instr->op == nir_op_extract_i8) {
1541 /* If we need to sign extend, extract to a word first */
1542 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1543 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1544 bld.MOV(result, w_temp);
1545 } else {
1546 /* Otherwise use an AND with 0xff and a word type */
1547 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1548 }
1549 } else {
1550 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1551 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1552 }
1553 break;
1554 }
1555
1556 case nir_op_extract_u16:
1557 case nir_op_extract_i16: {
1558 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1559 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1560 assert(word != NULL);
1561 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1562 break;
1563 }
1564
1565 default:
1566 unreachable("unhandled instruction");
1567 }
1568
1569 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1570 * to sign extend the low bit to 0/~0
1571 */
1572 if (devinfo->gen <= 5 &&
1573 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1574 fs_reg masked = vgrf(glsl_type::int_type);
1575 bld.AND(masked, result, brw_imm_d(1));
1576 masked.negate = true;
1577 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1578 }
1579 }
1580
1581 void
1582 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1583 nir_load_const_instr *instr)
1584 {
1585 const brw_reg_type reg_type =
1586 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1587 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1588
1589 switch (instr->def.bit_size) {
1590 case 8:
1591 for (unsigned i = 0; i < instr->def.num_components; i++)
1592 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value.i8[i]));
1593 break;
1594
1595 case 16:
1596 for (unsigned i = 0; i < instr->def.num_components; i++)
1597 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1598 break;
1599
1600 case 32:
1601 for (unsigned i = 0; i < instr->def.num_components; i++)
1602 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1603 break;
1604
1605 case 64:
1606 assert(devinfo->gen >= 7);
1607 if (devinfo->gen == 7) {
1608 /* We don't get 64-bit integer types until gen8 */
1609 for (unsigned i = 0; i < instr->def.num_components; i++) {
1610 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1611 setup_imm_df(bld, instr->value.f64[i]));
1612 }
1613 } else {
1614 for (unsigned i = 0; i < instr->def.num_components; i++)
1615 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1616 }
1617 break;
1618
1619 default:
1620 unreachable("Invalid bit size");
1621 }
1622
1623 nir_ssa_values[instr->def.index] = reg;
1624 }
1625
1626 fs_reg
1627 fs_visitor::get_nir_src(const nir_src &src)
1628 {
1629 fs_reg reg;
1630 if (src.is_ssa) {
1631 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1632 const brw_reg_type reg_type =
1633 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1634 reg = bld.vgrf(reg_type, src.ssa->num_components);
1635 } else {
1636 reg = nir_ssa_values[src.ssa->index];
1637 }
1638 } else {
1639 /* We don't handle indirects on locals */
1640 assert(src.reg.indirect == NULL);
1641 reg = offset(nir_locals[src.reg.reg->index], bld,
1642 src.reg.base_offset * src.reg.reg->num_components);
1643 }
1644
1645 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1646 /* The only 64-bit type available on gen7 is DF, so use that. */
1647 reg.type = BRW_REGISTER_TYPE_DF;
1648 } else {
1649 /* To avoid floating-point denorm flushing problems, set the type by
1650 * default to an integer type - instructions that need floating point
1651 * semantics will set this to F if they need to
1652 */
1653 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1654 BRW_REGISTER_TYPE_D);
1655 }
1656
1657 return reg;
1658 }
1659
1660 /**
1661 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1662 *
1663 * This function should not be called on any value which may be 64 bits.
1664 * We could theoretically support 64-bit on gen8+ but we choose not to
1665 * because it wouldn't work in general (no gen7 support) and there are
1666 * enough restrictions in 64-bit immediates that you can't take the return
1667 * value and treat it the same as the result of get_nir_src().
1668 */
1669 fs_reg
1670 fs_visitor::get_nir_src_imm(const nir_src &src)
1671 {
1672 nir_const_value *val = nir_src_as_const_value(src);
1673 assert(nir_src_bit_size(src) == 32);
1674 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1675 }
1676
1677 fs_reg
1678 fs_visitor::get_nir_dest(const nir_dest &dest)
1679 {
1680 if (dest.is_ssa) {
1681 const brw_reg_type reg_type =
1682 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1683 dest.ssa.bit_size == 8 ?
1684 BRW_REGISTER_TYPE_D :
1685 BRW_REGISTER_TYPE_F);
1686 nir_ssa_values[dest.ssa.index] =
1687 bld.vgrf(reg_type, dest.ssa.num_components);
1688 return nir_ssa_values[dest.ssa.index];
1689 } else {
1690 /* We don't handle indirects on locals */
1691 assert(dest.reg.indirect == NULL);
1692 return offset(nir_locals[dest.reg.reg->index], bld,
1693 dest.reg.base_offset * dest.reg.reg->num_components);
1694 }
1695 }
1696
1697 fs_reg
1698 fs_visitor::get_nir_image_deref(nir_deref_instr *deref)
1699 {
1700 fs_reg arr_offset = brw_imm_ud(0);
1701 unsigned array_size = BRW_IMAGE_PARAM_SIZE * 4;
1702 nir_deref_instr *head = deref;
1703 while (head->deref_type != nir_deref_type_var) {
1704 assert(head->deref_type == nir_deref_type_array);
1705
1706 /* This level's element size is the previous level's array size */
1707 const unsigned elem_size = array_size;
1708
1709 fs_reg index = retype(get_nir_src_imm(head->arr.index),
1710 BRW_REGISTER_TYPE_UD);
1711 if (arr_offset.file == BRW_IMMEDIATE_VALUE &&
1712 index.file == BRW_IMMEDIATE_VALUE) {
1713 arr_offset.ud += index.ud * elem_size;
1714 } else if (index.file == BRW_IMMEDIATE_VALUE) {
1715 bld.ADD(arr_offset, arr_offset, brw_imm_ud(index.ud * elem_size));
1716 } else {
1717 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
1718 bld.MUL(tmp, index, brw_imm_ud(elem_size));
1719 bld.ADD(tmp, tmp, arr_offset);
1720 arr_offset = tmp;
1721 }
1722
1723 head = nir_deref_instr_parent(head);
1724 assert(glsl_type_is_array(head->type));
1725 array_size = elem_size * glsl_get_length(head->type);
1726 }
1727
1728 assert(head->deref_type == nir_deref_type_var);
1729 const unsigned max_arr_offset = array_size - (BRW_IMAGE_PARAM_SIZE * 4);
1730 fs_reg image(UNIFORM, head->var->data.driver_location / 4,
1731 BRW_REGISTER_TYPE_UD);
1732
1733 if (arr_offset.file == BRW_IMMEDIATE_VALUE) {
1734 /* The offset is in bytes but we want it in dwords */
1735 return offset(image, bld, MIN2(arr_offset.ud, max_arr_offset) / 4);
1736 } else {
1737 /* Accessing an invalid surface index with the dataport can result
1738 * in a hang. According to the spec "if the index used to
1739 * select an individual element is negative or greater than or
1740 * equal to the size of the array, the results of the operation
1741 * are undefined but may not lead to termination" -- which is one
1742 * of the possible outcomes of the hang. Clamp the index to
1743 * prevent access outside of the array bounds.
1744 */
1745 bld.emit_minmax(arr_offset, arr_offset, brw_imm_ud(max_arr_offset),
1746 BRW_CONDITIONAL_L);
1747
1748 /* Emit a pile of MOVs to load the uniform into a temporary. The
1749 * dead-code elimination pass will get rid of what we don't use.
1750 */
1751 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1752 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1753 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1754 offset(tmp, bld, j), offset(image, bld, j),
1755 arr_offset, brw_imm_ud(max_arr_offset + 4));
1756 }
1757 return tmp;
1758 }
1759 }
1760
1761 void
1762 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1763 unsigned wr_mask)
1764 {
1765 for (unsigned i = 0; i < 4; i++) {
1766 if (!((wr_mask >> i) & 1))
1767 continue;
1768
1769 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1770 new_inst->dst = offset(new_inst->dst, bld, i);
1771 for (unsigned j = 0; j < new_inst->sources; j++)
1772 if (new_inst->src[j].file == VGRF)
1773 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1774
1775 bld.emit(new_inst);
1776 }
1777 }
1778
1779 /**
1780 * Get the matching channel register datatype for an image intrinsic of the
1781 * specified GLSL image type.
1782 */
1783 static brw_reg_type
1784 get_image_base_type(const glsl_type *type)
1785 {
1786 switch ((glsl_base_type)type->sampled_type) {
1787 case GLSL_TYPE_UINT:
1788 return BRW_REGISTER_TYPE_UD;
1789 case GLSL_TYPE_INT:
1790 return BRW_REGISTER_TYPE_D;
1791 case GLSL_TYPE_FLOAT:
1792 return BRW_REGISTER_TYPE_F;
1793 default:
1794 unreachable("Not reached.");
1795 }
1796 }
1797
1798 static fs_inst *
1799 emit_pixel_interpolater_send(const fs_builder &bld,
1800 enum opcode opcode,
1801 const fs_reg &dst,
1802 const fs_reg &src,
1803 const fs_reg &desc,
1804 glsl_interp_mode interpolation)
1805 {
1806 struct brw_wm_prog_data *wm_prog_data =
1807 brw_wm_prog_data(bld.shader->stage_prog_data);
1808
1809 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1810 /* 2 floats per slot returned */
1811 inst->size_written = 2 * dst.component_size(inst->exec_size);
1812 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1813
1814 wm_prog_data->pulls_bary = true;
1815
1816 return inst;
1817 }
1818
1819 /**
1820 * Computes 1 << x, given a D/UD register containing some value x.
1821 */
1822 static fs_reg
1823 intexp2(const fs_builder &bld, const fs_reg &x)
1824 {
1825 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1826
1827 fs_reg result = bld.vgrf(x.type, 1);
1828 fs_reg one = bld.vgrf(x.type, 1);
1829
1830 bld.MOV(one, retype(brw_imm_d(1), one.type));
1831 bld.SHL(result, one, x);
1832 return result;
1833 }
1834
1835 void
1836 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1837 {
1838 assert(stage == MESA_SHADER_GEOMETRY);
1839
1840 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1841
1842 if (gs_compile->control_data_header_size_bits == 0)
1843 return;
1844
1845 /* We can only do EndPrimitive() functionality when the control data
1846 * consists of cut bits. Fortunately, the only time it isn't is when the
1847 * output type is points, in which case EndPrimitive() is a no-op.
1848 */
1849 if (gs_prog_data->control_data_format !=
1850 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1851 return;
1852 }
1853
1854 /* Cut bits use one bit per vertex. */
1855 assert(gs_compile->control_data_bits_per_vertex == 1);
1856
1857 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1858 vertex_count.type = BRW_REGISTER_TYPE_UD;
1859
1860 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1861 * vertex n, 0 otherwise. So all we need to do here is mark bit
1862 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1863 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1864 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1865 *
1866 * Note that if EndPrimitive() is called before emitting any vertices, this
1867 * will cause us to set bit 31 of the control_data_bits register to 1.
1868 * That's fine because:
1869 *
1870 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1871 * output, so the hardware will ignore cut bit 31.
1872 *
1873 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1874 * last vertex, so setting cut bit 31 has no effect (since the primitive
1875 * is automatically ended when the GS terminates).
1876 *
1877 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1878 * control_data_bits register to 0 when the first vertex is emitted.
1879 */
1880
1881 const fs_builder abld = bld.annotate("end primitive");
1882
1883 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1884 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1885 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1886 fs_reg mask = intexp2(abld, prev_count);
1887 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1888 * attention to the lower 5 bits of its second source argument, so on this
1889 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1890 * ((vertex_count - 1) % 32).
1891 */
1892 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1893 }
1894
1895 void
1896 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1897 {
1898 assert(stage == MESA_SHADER_GEOMETRY);
1899 assert(gs_compile->control_data_bits_per_vertex != 0);
1900
1901 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1902
1903 const fs_builder abld = bld.annotate("emit control data bits");
1904 const fs_builder fwa_bld = bld.exec_all();
1905
1906 /* We use a single UD register to accumulate control data bits (32 bits
1907 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1908 * at a time.
1909 *
1910 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1911 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1912 * use the Channel Mask phase to enable/disable which DWord within that
1913 * group to write. (Remember, different SIMD8 channels may have emitted
1914 * different numbers of vertices, so we may need per-slot offsets.)
1915 *
1916 * Channel masking presents an annoying problem: we may have to replicate
1917 * the data up to 4 times:
1918 *
1919 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1920 *
1921 * To avoid penalizing shaders that emit a small number of vertices, we
1922 * can avoid these sometimes: if the size of the control data header is
1923 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1924 * land in the same 128-bit group, so we can skip per-slot offsets.
1925 *
1926 * Similarly, if the control data header is <= 32 bits, there is only one
1927 * DWord, so we can skip channel masks.
1928 */
1929 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1930
1931 fs_reg channel_mask, per_slot_offset;
1932
1933 if (gs_compile->control_data_header_size_bits > 32) {
1934 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1935 channel_mask = vgrf(glsl_type::uint_type);
1936 }
1937
1938 if (gs_compile->control_data_header_size_bits > 128) {
1939 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1940 per_slot_offset = vgrf(glsl_type::uint_type);
1941 }
1942
1943 /* Figure out which DWord we're trying to write to using the formula:
1944 *
1945 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1946 *
1947 * Since bits_per_vertex is a power of two, and is known at compile
1948 * time, this can be optimized to:
1949 *
1950 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1951 */
1952 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1953 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1954 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1955 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1956 unsigned log2_bits_per_vertex =
1957 util_last_bit(gs_compile->control_data_bits_per_vertex);
1958 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1959
1960 if (per_slot_offset.file != BAD_FILE) {
1961 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1962 * the appropriate OWord within the control data header.
1963 */
1964 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1965 }
1966
1967 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1968 * write to the appropriate DWORD within the OWORD.
1969 */
1970 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1971 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1972 channel_mask = intexp2(fwa_bld, channel);
1973 /* Then the channel masks need to be in bits 23:16. */
1974 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1975 }
1976
1977 /* Store the control data bits in the message payload and send it. */
1978 int mlen = 2;
1979 if (channel_mask.file != BAD_FILE)
1980 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1981 if (per_slot_offset.file != BAD_FILE)
1982 mlen++;
1983
1984 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1985 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1986 int i = 0;
1987 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1988 if (per_slot_offset.file != BAD_FILE)
1989 sources[i++] = per_slot_offset;
1990 if (channel_mask.file != BAD_FILE)
1991 sources[i++] = channel_mask;
1992 while (i < mlen) {
1993 sources[i++] = this->control_data_bits;
1994 }
1995
1996 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1997 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1998 inst->mlen = mlen;
1999 /* We need to increment Global Offset by 256-bits to make room for
2000 * Broadwell's extra "Vertex Count" payload at the beginning of the
2001 * URB entry. Since this is an OWord message, Global Offset is counted
2002 * in 128-bit units, so we must set it to 2.
2003 */
2004 if (gs_prog_data->static_vertex_count == -1)
2005 inst->offset = 2;
2006 }
2007
2008 void
2009 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2010 unsigned stream_id)
2011 {
2012 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2013
2014 /* Note: we are calling this *before* increasing vertex_count, so
2015 * this->vertex_count == vertex_count - 1 in the formula above.
2016 */
2017
2018 /* Stream mode uses 2 bits per vertex */
2019 assert(gs_compile->control_data_bits_per_vertex == 2);
2020
2021 /* Must be a valid stream */
2022 assert(stream_id < MAX_VERTEX_STREAMS);
2023
2024 /* Control data bits are initialized to 0 so we don't have to set any
2025 * bits when sending vertices to stream 0.
2026 */
2027 if (stream_id == 0)
2028 return;
2029
2030 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2031
2032 /* reg::sid = stream_id */
2033 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2034 abld.MOV(sid, brw_imm_ud(stream_id));
2035
2036 /* reg:shift_count = 2 * (vertex_count - 1) */
2037 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2038 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2039
2040 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2041 * attention to the lower 5 bits of its second source argument, so on this
2042 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2043 * stream_id << ((2 * (vertex_count - 1)) % 32).
2044 */
2045 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2046 abld.SHL(mask, sid, shift_count);
2047 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2048 }
2049
2050 void
2051 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2052 unsigned stream_id)
2053 {
2054 assert(stage == MESA_SHADER_GEOMETRY);
2055
2056 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2057
2058 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2059 vertex_count.type = BRW_REGISTER_TYPE_UD;
2060
2061 /* Haswell and later hardware ignores the "Render Stream Select" bits
2062 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2063 * and instead sends all primitives down the pipeline for rasterization.
2064 * If the SOL stage is enabled, "Render Stream Select" is honored and
2065 * primitives bound to non-zero streams are discarded after stream output.
2066 *
2067 * Since the only purpose of primives sent to non-zero streams is to
2068 * be recorded by transform feedback, we can simply discard all geometry
2069 * bound to these streams when transform feedback is disabled.
2070 */
2071 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2072 return;
2073
2074 /* If we're outputting 32 control data bits or less, then we can wait
2075 * until the shader is over to output them all. Otherwise we need to
2076 * output them as we go. Now is the time to do it, since we're about to
2077 * output the vertex_count'th vertex, so it's guaranteed that the
2078 * control data bits associated with the (vertex_count - 1)th vertex are
2079 * correct.
2080 */
2081 if (gs_compile->control_data_header_size_bits > 32) {
2082 const fs_builder abld =
2083 bld.annotate("emit vertex: emit control data bits");
2084
2085 /* Only emit control data bits if we've finished accumulating a batch
2086 * of 32 bits. This is the case when:
2087 *
2088 * (vertex_count * bits_per_vertex) % 32 == 0
2089 *
2090 * (in other words, when the last 5 bits of vertex_count *
2091 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2092 * integer n (which is always the case, since bits_per_vertex is
2093 * always 1 or 2), this is equivalent to requiring that the last 5-n
2094 * bits of vertex_count are 0:
2095 *
2096 * vertex_count & (2^(5-n) - 1) == 0
2097 *
2098 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2099 * equivalent to:
2100 *
2101 * vertex_count & (32 / bits_per_vertex - 1) == 0
2102 *
2103 * TODO: If vertex_count is an immediate, we could do some of this math
2104 * at compile time...
2105 */
2106 fs_inst *inst =
2107 abld.AND(bld.null_reg_d(), vertex_count,
2108 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2109 inst->conditional_mod = BRW_CONDITIONAL_Z;
2110
2111 abld.IF(BRW_PREDICATE_NORMAL);
2112 /* If vertex_count is 0, then no control data bits have been
2113 * accumulated yet, so we can skip emitting them.
2114 */
2115 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2116 BRW_CONDITIONAL_NEQ);
2117 abld.IF(BRW_PREDICATE_NORMAL);
2118 emit_gs_control_data_bits(vertex_count);
2119 abld.emit(BRW_OPCODE_ENDIF);
2120
2121 /* Reset control_data_bits to 0 so we can start accumulating a new
2122 * batch.
2123 *
2124 * Note: in the case where vertex_count == 0, this neutralizes the
2125 * effect of any call to EndPrimitive() that the shader may have
2126 * made before outputting its first vertex.
2127 */
2128 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2129 inst->force_writemask_all = true;
2130 abld.emit(BRW_OPCODE_ENDIF);
2131 }
2132
2133 emit_urb_writes(vertex_count);
2134
2135 /* In stream mode we have to set control data bits for all vertices
2136 * unless we have disabled control data bits completely (which we do
2137 * do for GL_POINTS outputs that don't use streams).
2138 */
2139 if (gs_compile->control_data_header_size_bits > 0 &&
2140 gs_prog_data->control_data_format ==
2141 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2142 set_gs_stream_control_data_bits(vertex_count, stream_id);
2143 }
2144 }
2145
2146 void
2147 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2148 const nir_src &vertex_src,
2149 unsigned base_offset,
2150 const nir_src &offset_src,
2151 unsigned num_components,
2152 unsigned first_component)
2153 {
2154 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2155
2156 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2157 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2158 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2159
2160 /* TODO: figure out push input layout for invocations == 1 */
2161 /* TODO: make this work with 64-bit inputs */
2162 if (gs_prog_data->invocations == 1 &&
2163 type_sz(dst.type) <= 4 &&
2164 offset_const != NULL && vertex_const != NULL &&
2165 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2166 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2167 vertex_const->u32[0] * push_reg_count;
2168 for (unsigned i = 0; i < num_components; i++) {
2169 bld.MOV(offset(dst, bld, i),
2170 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2171 }
2172 return;
2173 }
2174
2175 /* Resort to the pull model. Ensure the VUE handles are provided. */
2176 assert(gs_prog_data->base.include_vue_handles);
2177
2178 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2179 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2180
2181 if (gs_prog_data->invocations == 1) {
2182 if (vertex_const) {
2183 /* The vertex index is constant; just select the proper URB handle. */
2184 icp_handle =
2185 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2186 BRW_REGISTER_TYPE_UD);
2187 } else {
2188 /* The vertex index is non-constant. We need to use indirect
2189 * addressing to fetch the proper URB handle.
2190 *
2191 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2192 * indicating that channel <n> should read the handle from
2193 * DWord <n>. We convert that to bytes by multiplying by 4.
2194 *
2195 * Next, we convert the vertex index to bytes by multiplying
2196 * by 32 (shifting by 5), and add the two together. This is
2197 * the final indirect byte offset.
2198 */
2199 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2200 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2201 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2202 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2203
2204 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2205 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2206 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2207 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2208 /* Convert vertex_index to bytes (multiply by 32) */
2209 bld.SHL(vertex_offset_bytes,
2210 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2211 brw_imm_ud(5u));
2212 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2213
2214 /* Use first_icp_handle as the base offset. There is one register
2215 * of URB handles per vertex, so inform the register allocator that
2216 * we might read up to nir->info.gs.vertices_in registers.
2217 */
2218 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2219 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2220 fs_reg(icp_offset_bytes),
2221 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2222 }
2223 } else {
2224 assert(gs_prog_data->invocations > 1);
2225
2226 if (vertex_const) {
2227 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2228 bld.MOV(icp_handle,
2229 retype(brw_vec1_grf(first_icp_handle +
2230 vertex_const->i32[0] / 8,
2231 vertex_const->i32[0] % 8),
2232 BRW_REGISTER_TYPE_UD));
2233 } else {
2234 /* The vertex index is non-constant. We need to use indirect
2235 * addressing to fetch the proper URB handle.
2236 *
2237 */
2238 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2239
2240 /* Convert vertex_index to bytes (multiply by 4) */
2241 bld.SHL(icp_offset_bytes,
2242 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2243 brw_imm_ud(2u));
2244
2245 /* Use first_icp_handle as the base offset. There is one DWord
2246 * of URB handles per vertex, so inform the register allocator that
2247 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2248 */
2249 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2250 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2251 fs_reg(icp_offset_bytes),
2252 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2253 REG_SIZE));
2254 }
2255 }
2256
2257 fs_inst *inst;
2258
2259 fs_reg tmp_dst = dst;
2260 fs_reg indirect_offset = get_nir_src(offset_src);
2261 unsigned num_iterations = 1;
2262 unsigned orig_num_components = num_components;
2263
2264 if (type_sz(dst.type) == 8) {
2265 if (num_components > 2) {
2266 num_iterations = 2;
2267 num_components = 2;
2268 }
2269 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2270 tmp_dst = tmp;
2271 first_component = first_component / 2;
2272 }
2273
2274 for (unsigned iter = 0; iter < num_iterations; iter++) {
2275 if (offset_const) {
2276 /* Constant indexing - use global offset. */
2277 if (first_component != 0) {
2278 unsigned read_components = num_components + first_component;
2279 fs_reg tmp = bld.vgrf(dst.type, read_components);
2280 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2281 inst->size_written = read_components *
2282 tmp.component_size(inst->exec_size);
2283 for (unsigned i = 0; i < num_components; i++) {
2284 bld.MOV(offset(tmp_dst, bld, i),
2285 offset(tmp, bld, i + first_component));
2286 }
2287 } else {
2288 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2289 icp_handle);
2290 inst->size_written = num_components *
2291 tmp_dst.component_size(inst->exec_size);
2292 }
2293 inst->offset = base_offset + offset_const->u32[0];
2294 inst->mlen = 1;
2295 } else {
2296 /* Indirect indexing - use per-slot offsets as well. */
2297 const fs_reg srcs[] = { icp_handle, indirect_offset };
2298 unsigned read_components = num_components + first_component;
2299 fs_reg tmp = bld.vgrf(dst.type, read_components);
2300 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2301 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2302 if (first_component != 0) {
2303 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2304 payload);
2305 inst->size_written = read_components *
2306 tmp.component_size(inst->exec_size);
2307 for (unsigned i = 0; i < num_components; i++) {
2308 bld.MOV(offset(tmp_dst, bld, i),
2309 offset(tmp, bld, i + first_component));
2310 }
2311 } else {
2312 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2313 payload);
2314 inst->size_written = num_components *
2315 tmp_dst.component_size(inst->exec_size);
2316 }
2317 inst->offset = base_offset;
2318 inst->mlen = 2;
2319 }
2320
2321 if (type_sz(dst.type) == 8) {
2322 shuffle_from_32bit_read(bld,
2323 offset(dst, bld, iter * 2),
2324 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2325 0,
2326 num_components);
2327 }
2328
2329 if (num_iterations > 1) {
2330 num_components = orig_num_components - 2;
2331 if(offset_const) {
2332 base_offset++;
2333 } else {
2334 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2335 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2336 indirect_offset = new_indirect;
2337 }
2338 }
2339 }
2340 }
2341
2342 fs_reg
2343 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2344 {
2345 nir_src *offset_src = nir_get_io_offset_src(instr);
2346 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2347
2348 if (const_value) {
2349 /* The only constant offset we should find is 0. brw_nir.c's
2350 * add_const_offset_to_base() will fold other constant offsets
2351 * into instr->const_index[0].
2352 */
2353 assert(const_value->u32[0] == 0);
2354 return fs_reg();
2355 }
2356
2357 return get_nir_src(*offset_src);
2358 }
2359
2360 static void
2361 do_untyped_vector_read(const fs_builder &bld,
2362 const fs_reg dest,
2363 const fs_reg surf_index,
2364 const fs_reg offset_reg,
2365 unsigned num_components)
2366 {
2367 if (type_sz(dest.type) <= 2) {
2368 assert(dest.stride == 1);
2369 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2370
2371 if (is_const_offset) {
2372 uint32_t start = offset_reg.ud & ~3;
2373 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2374 end = ALIGN(end, 4);
2375 assert (end - start <= 16);
2376
2377 /* At this point we have 16-bit component/s that have constant
2378 * offset aligned to 4-bytes that can be read with untyped_reads.
2379 * untyped_read message requires 32-bit aligned offsets.
2380 */
2381 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2382 unsigned num_components_32bit = (end - start) / 4;
2383
2384 fs_reg read_result =
2385 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2386 1 /* dims */,
2387 num_components_32bit,
2388 BRW_PREDICATE_NONE);
2389 shuffle_from_32bit_read(bld, dest, read_result, first_component,
2390 num_components);
2391 } else {
2392 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2393 for (unsigned i = 0; i < num_components; i++) {
2394 if (i == 0) {
2395 bld.MOV(read_offset, offset_reg);
2396 } else {
2397 bld.ADD(read_offset, offset_reg,
2398 brw_imm_ud(i * type_sz(dest.type)));
2399 }
2400 /* Non constant offsets are not guaranteed to be aligned 32-bits
2401 * so they are read using one byte_scattered_read message
2402 * for each component.
2403 */
2404 fs_reg read_result =
2405 emit_byte_scattered_read(bld, surf_index, read_offset,
2406 1 /* dims */, 1,
2407 type_sz(dest.type) * 8 /* bit_size */,
2408 BRW_PREDICATE_NONE);
2409 bld.MOV(offset(dest, bld, i),
2410 subscript (read_result, dest.type, 0));
2411 }
2412 }
2413 } else if (type_sz(dest.type) == 4) {
2414 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2415 1 /* dims */,
2416 num_components,
2417 BRW_PREDICATE_NONE);
2418 read_result.type = dest.type;
2419 for (unsigned i = 0; i < num_components; i++)
2420 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2421 } else if (type_sz(dest.type) == 8) {
2422 /* Reading a dvec, so we need to:
2423 *
2424 * 1. Multiply num_components by 2, to account for the fact that we
2425 * need to read 64-bit components.
2426 * 2. Shuffle the result of the load to form valid 64-bit elements
2427 * 3. Emit a second load (for components z/w) if needed.
2428 */
2429 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2430 bld.MOV(read_offset, offset_reg);
2431
2432 int iters = num_components <= 2 ? 1 : 2;
2433
2434 /* Load the dvec, the first iteration loads components x/y, the second
2435 * iteration, if needed, loads components z/w
2436 */
2437 for (int it = 0; it < iters; it++) {
2438 /* Compute number of components to read in this iteration */
2439 int iter_components = MIN2(2, num_components);
2440 num_components -= iter_components;
2441
2442 /* Read. Since this message reads 32-bit components, we need to
2443 * read twice as many components.
2444 */
2445 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2446 1 /* dims */,
2447 iter_components * 2,
2448 BRW_PREDICATE_NONE);
2449
2450 /* Shuffle the 32-bit load result into valid 64-bit data */
2451 shuffle_from_32bit_read(bld, offset(dest, bld, it * 2),
2452 read_result, 0, iter_components);
2453
2454 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2455 }
2456 } else {
2457 unreachable("Unsupported type");
2458 }
2459 }
2460
2461 void
2462 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2463 nir_intrinsic_instr *instr)
2464 {
2465 assert(stage == MESA_SHADER_VERTEX);
2466
2467 fs_reg dest;
2468 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2469 dest = get_nir_dest(instr->dest);
2470
2471 switch (instr->intrinsic) {
2472 case nir_intrinsic_load_vertex_id:
2473 case nir_intrinsic_load_base_vertex:
2474 unreachable("should be lowered by nir_lower_system_values()");
2475
2476 case nir_intrinsic_load_input: {
2477 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2478 unsigned first_component = nir_intrinsic_component(instr);
2479 unsigned num_components = instr->num_components;
2480
2481 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2482 assert(const_offset && "Indirect input loads not allowed");
2483 src = offset(src, bld, const_offset->u32[0]);
2484
2485 if (type_sz(dest.type) == 8)
2486 first_component /= 2;
2487
2488 /* For 16-bit support maybe a temporary will be needed to copy from
2489 * the ATTR file.
2490 */
2491 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2492 first_component, num_components);
2493 break;
2494 }
2495
2496 case nir_intrinsic_load_vertex_id_zero_base:
2497 case nir_intrinsic_load_instance_id:
2498 case nir_intrinsic_load_base_instance:
2499 case nir_intrinsic_load_draw_id:
2500 case nir_intrinsic_load_first_vertex:
2501 case nir_intrinsic_load_is_indexed_draw:
2502 unreachable("lowered by brw_nir_lower_vs_inputs");
2503
2504 default:
2505 nir_emit_intrinsic(bld, instr);
2506 break;
2507 }
2508 }
2509
2510 void
2511 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2512 nir_intrinsic_instr *instr)
2513 {
2514 assert(stage == MESA_SHADER_TESS_CTRL);
2515 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2516 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2517
2518 fs_reg dst;
2519 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2520 dst = get_nir_dest(instr->dest);
2521
2522 switch (instr->intrinsic) {
2523 case nir_intrinsic_load_primitive_id:
2524 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2525 break;
2526 case nir_intrinsic_load_invocation_id:
2527 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2528 break;
2529 case nir_intrinsic_load_patch_vertices_in:
2530 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2531 brw_imm_d(tcs_key->input_vertices));
2532 break;
2533
2534 case nir_intrinsic_barrier: {
2535 if (tcs_prog_data->instances == 1)
2536 break;
2537
2538 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2539 fs_reg m0_2 = component(m0, 2);
2540
2541 const fs_builder chanbld = bld.exec_all().group(1, 0);
2542
2543 /* Zero the message header */
2544 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2545
2546 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2547 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2548 brw_imm_ud(INTEL_MASK(16, 13)));
2549
2550 /* Shift it up to bits 27:24. */
2551 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2552
2553 /* Set the Barrier Count and the enable bit */
2554 chanbld.OR(m0_2, m0_2,
2555 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2556
2557 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2558 break;
2559 }
2560
2561 case nir_intrinsic_load_input:
2562 unreachable("nir_lower_io should never give us these.");
2563 break;
2564
2565 case nir_intrinsic_load_per_vertex_input: {
2566 fs_reg indirect_offset = get_indirect_offset(instr);
2567 unsigned imm_offset = instr->const_index[0];
2568
2569 const nir_src &vertex_src = instr->src[0];
2570 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2571
2572 fs_inst *inst;
2573
2574 fs_reg icp_handle;
2575
2576 if (vertex_const) {
2577 /* Emit a MOV to resolve <0,1,0> regioning. */
2578 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2579 bld.MOV(icp_handle,
2580 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2581 vertex_const->i32[0] & 7),
2582 BRW_REGISTER_TYPE_UD));
2583 } else if (tcs_prog_data->instances == 1 &&
2584 vertex_src.is_ssa &&
2585 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2586 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2587 /* For the common case of only 1 instance, an array index of
2588 * gl_InvocationID means reading g1. Skip all the indirect work.
2589 */
2590 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2591 } else {
2592 /* The vertex index is non-constant. We need to use indirect
2593 * addressing to fetch the proper URB handle.
2594 */
2595 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2596
2597 /* Each ICP handle is a single DWord (4 bytes) */
2598 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2599 bld.SHL(vertex_offset_bytes,
2600 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2601 brw_imm_ud(2u));
2602
2603 /* Start at g1. We might read up to 4 registers. */
2604 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2605 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2606 brw_imm_ud(4 * REG_SIZE));
2607 }
2608
2609 /* We can only read two double components with each URB read, so
2610 * we send two read messages in that case, each one loading up to
2611 * two double components.
2612 */
2613 unsigned num_iterations = 1;
2614 unsigned num_components = instr->num_components;
2615 unsigned first_component = nir_intrinsic_component(instr);
2616 fs_reg orig_dst = dst;
2617 if (type_sz(dst.type) == 8) {
2618 first_component = first_component / 2;
2619 if (instr->num_components > 2) {
2620 num_iterations = 2;
2621 num_components = 2;
2622 }
2623
2624 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2625 dst = tmp;
2626 }
2627
2628 for (unsigned iter = 0; iter < num_iterations; iter++) {
2629 if (indirect_offset.file == BAD_FILE) {
2630 /* Constant indexing - use global offset. */
2631 if (first_component != 0) {
2632 unsigned read_components = num_components + first_component;
2633 fs_reg tmp = bld.vgrf(dst.type, read_components);
2634 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2635 for (unsigned i = 0; i < num_components; i++) {
2636 bld.MOV(offset(dst, bld, i),
2637 offset(tmp, bld, i + first_component));
2638 }
2639 } else {
2640 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2641 }
2642 inst->offset = imm_offset;
2643 inst->mlen = 1;
2644 } else {
2645 /* Indirect indexing - use per-slot offsets as well. */
2646 const fs_reg srcs[] = { icp_handle, indirect_offset };
2647 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2648 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2649 if (first_component != 0) {
2650 unsigned read_components = num_components + first_component;
2651 fs_reg tmp = bld.vgrf(dst.type, read_components);
2652 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2653 payload);
2654 for (unsigned i = 0; i < num_components; i++) {
2655 bld.MOV(offset(dst, bld, i),
2656 offset(tmp, bld, i + first_component));
2657 }
2658 } else {
2659 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2660 payload);
2661 }
2662 inst->offset = imm_offset;
2663 inst->mlen = 2;
2664 }
2665 inst->size_written = (num_components + first_component) *
2666 inst->dst.component_size(inst->exec_size);
2667
2668 /* If we are reading 64-bit data using 32-bit read messages we need
2669 * build proper 64-bit data elements by shuffling the low and high
2670 * 32-bit components around like we do for other things like UBOs
2671 * or SSBOs.
2672 */
2673 if (type_sz(dst.type) == 8) {
2674 shuffle_from_32bit_read(bld,
2675 offset(orig_dst, bld, iter * 2),
2676 retype(dst, BRW_REGISTER_TYPE_D),
2677 0, num_components);
2678 }
2679
2680 /* Copy the temporary to the destination to deal with writemasking.
2681 *
2682 * Also attempt to deal with gl_PointSize being in the .w component.
2683 */
2684 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2685 assert(type_sz(dst.type) < 8);
2686 inst->dst = bld.vgrf(dst.type, 4);
2687 inst->size_written = 4 * REG_SIZE;
2688 bld.MOV(dst, offset(inst->dst, bld, 3));
2689 }
2690
2691 /* If we are loading double data and we need a second read message
2692 * adjust the write offset
2693 */
2694 if (num_iterations > 1) {
2695 num_components = instr->num_components - 2;
2696 imm_offset++;
2697 }
2698 }
2699 break;
2700 }
2701
2702 case nir_intrinsic_load_output:
2703 case nir_intrinsic_load_per_vertex_output: {
2704 fs_reg indirect_offset = get_indirect_offset(instr);
2705 unsigned imm_offset = instr->const_index[0];
2706 unsigned first_component = nir_intrinsic_component(instr);
2707
2708 fs_inst *inst;
2709 if (indirect_offset.file == BAD_FILE) {
2710 /* Replicate the patch handle to all enabled channels */
2711 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2712 bld.MOV(patch_handle,
2713 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2714
2715 {
2716 if (first_component != 0) {
2717 unsigned read_components =
2718 instr->num_components + first_component;
2719 fs_reg tmp = bld.vgrf(dst.type, read_components);
2720 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2721 patch_handle);
2722 inst->size_written = read_components * REG_SIZE;
2723 for (unsigned i = 0; i < instr->num_components; i++) {
2724 bld.MOV(offset(dst, bld, i),
2725 offset(tmp, bld, i + first_component));
2726 }
2727 } else {
2728 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2729 patch_handle);
2730 inst->size_written = instr->num_components * REG_SIZE;
2731 }
2732 inst->offset = imm_offset;
2733 inst->mlen = 1;
2734 }
2735 } else {
2736 /* Indirect indexing - use per-slot offsets as well. */
2737 const fs_reg srcs[] = {
2738 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2739 indirect_offset
2740 };
2741 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2742 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2743 if (first_component != 0) {
2744 unsigned read_components =
2745 instr->num_components + first_component;
2746 fs_reg tmp = bld.vgrf(dst.type, read_components);
2747 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2748 payload);
2749 inst->size_written = read_components * REG_SIZE;
2750 for (unsigned i = 0; i < instr->num_components; i++) {
2751 bld.MOV(offset(dst, bld, i),
2752 offset(tmp, bld, i + first_component));
2753 }
2754 } else {
2755 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2756 payload);
2757 inst->size_written = instr->num_components * REG_SIZE;
2758 }
2759 inst->offset = imm_offset;
2760 inst->mlen = 2;
2761 }
2762 break;
2763 }
2764
2765 case nir_intrinsic_store_output:
2766 case nir_intrinsic_store_per_vertex_output: {
2767 fs_reg value = get_nir_src(instr->src[0]);
2768 bool is_64bit = (instr->src[0].is_ssa ?
2769 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2770 fs_reg indirect_offset = get_indirect_offset(instr);
2771 unsigned imm_offset = instr->const_index[0];
2772 unsigned mask = instr->const_index[1];
2773 unsigned header_regs = 0;
2774 fs_reg srcs[7];
2775 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2776
2777 if (indirect_offset.file != BAD_FILE) {
2778 srcs[header_regs++] = indirect_offset;
2779 }
2780
2781 if (mask == 0)
2782 break;
2783
2784 unsigned num_components = util_last_bit(mask);
2785 enum opcode opcode;
2786
2787 /* We can only pack two 64-bit components in a single message, so send
2788 * 2 messages if we have more components
2789 */
2790 unsigned num_iterations = 1;
2791 unsigned iter_components = num_components;
2792 unsigned first_component = nir_intrinsic_component(instr);
2793 if (is_64bit) {
2794 first_component = first_component / 2;
2795 if (instr->num_components > 2) {
2796 num_iterations = 2;
2797 iter_components = 2;
2798 }
2799 }
2800
2801 mask = mask << first_component;
2802
2803 for (unsigned iter = 0; iter < num_iterations; iter++) {
2804 if (!is_64bit && mask != WRITEMASK_XYZW) {
2805 srcs[header_regs++] = brw_imm_ud(mask << 16);
2806 opcode = indirect_offset.file != BAD_FILE ?
2807 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2808 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2809 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2810 /* Expand the 64-bit mask to 32-bit channels. We only handle
2811 * two channels in each iteration, so we only care about X/Y.
2812 */
2813 unsigned mask32 = 0;
2814 if (mask & WRITEMASK_X)
2815 mask32 |= WRITEMASK_XY;
2816 if (mask & WRITEMASK_Y)
2817 mask32 |= WRITEMASK_ZW;
2818
2819 /* If the mask does not include any of the channels X or Y there
2820 * is nothing to do in this iteration. Move on to the next couple
2821 * of 64-bit channels.
2822 */
2823 if (!mask32) {
2824 mask >>= 2;
2825 imm_offset++;
2826 continue;
2827 }
2828
2829 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2830 opcode = indirect_offset.file != BAD_FILE ?
2831 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2832 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2833 } else {
2834 opcode = indirect_offset.file != BAD_FILE ?
2835 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2836 SHADER_OPCODE_URB_WRITE_SIMD8;
2837 }
2838
2839 for (unsigned i = 0; i < iter_components; i++) {
2840 if (!(mask & (1 << (i + first_component))))
2841 continue;
2842
2843 if (!is_64bit) {
2844 srcs[header_regs + i + first_component] = offset(value, bld, i);
2845 } else {
2846 /* We need to shuffle the 64-bit data to match the layout
2847 * expected by our 32-bit URB write messages. We use a temporary
2848 * for that.
2849 */
2850 unsigned channel = iter * 2 + i;
2851 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2852
2853 srcs[header_regs + (i + first_component) * 2] = dest;
2854 srcs[header_regs + (i + first_component) * 2 + 1] =
2855 offset(dest, bld, 1);
2856 }
2857 }
2858
2859 unsigned mlen =
2860 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2861 (is_64bit ? 2 * first_component : first_component);
2862 fs_reg payload =
2863 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2864 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2865
2866 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2867 inst->offset = imm_offset;
2868 inst->mlen = mlen;
2869
2870 /* If this is a 64-bit attribute, select the next two 64-bit channels
2871 * to be handled in the next iteration.
2872 */
2873 if (is_64bit) {
2874 mask >>= 2;
2875 imm_offset++;
2876 }
2877 }
2878 break;
2879 }
2880
2881 default:
2882 nir_emit_intrinsic(bld, instr);
2883 break;
2884 }
2885 }
2886
2887 void
2888 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2889 nir_intrinsic_instr *instr)
2890 {
2891 assert(stage == MESA_SHADER_TESS_EVAL);
2892 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2893
2894 fs_reg dest;
2895 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2896 dest = get_nir_dest(instr->dest);
2897
2898 switch (instr->intrinsic) {
2899 case nir_intrinsic_load_primitive_id:
2900 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2901 break;
2902 case nir_intrinsic_load_tess_coord:
2903 /* gl_TessCoord is part of the payload in g1-3 */
2904 for (unsigned i = 0; i < 3; i++) {
2905 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2906 }
2907 break;
2908
2909 case nir_intrinsic_load_input:
2910 case nir_intrinsic_load_per_vertex_input: {
2911 fs_reg indirect_offset = get_indirect_offset(instr);
2912 unsigned imm_offset = instr->const_index[0];
2913 unsigned first_component = nir_intrinsic_component(instr);
2914
2915 if (type_sz(dest.type) == 8) {
2916 first_component = first_component / 2;
2917 }
2918
2919 fs_inst *inst;
2920 if (indirect_offset.file == BAD_FILE) {
2921 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2922 * which is 16 registers (since each holds 2 vec4 slots).
2923 */
2924 unsigned slot_count = 1;
2925 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2926 slot_count++;
2927
2928 const unsigned max_push_slots = 32;
2929 if (imm_offset + slot_count <= max_push_slots) {
2930 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2931 for (int i = 0; i < instr->num_components; i++) {
2932 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2933 i + first_component;
2934 bld.MOV(offset(dest, bld, i), component(src, comp));
2935 }
2936
2937 tes_prog_data->base.urb_read_length =
2938 MAX2(tes_prog_data->base.urb_read_length,
2939 DIV_ROUND_UP(imm_offset + slot_count, 2));
2940 } else {
2941 /* Replicate the patch handle to all enabled channels */
2942 const fs_reg srcs[] = {
2943 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2944 };
2945 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2946 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2947
2948 if (first_component != 0) {
2949 unsigned read_components =
2950 instr->num_components + first_component;
2951 fs_reg tmp = bld.vgrf(dest.type, read_components);
2952 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2953 patch_handle);
2954 inst->size_written = read_components * REG_SIZE;
2955 for (unsigned i = 0; i < instr->num_components; i++) {
2956 bld.MOV(offset(dest, bld, i),
2957 offset(tmp, bld, i + first_component));
2958 }
2959 } else {
2960 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2961 patch_handle);
2962 inst->size_written = instr->num_components * REG_SIZE;
2963 }
2964 inst->mlen = 1;
2965 inst->offset = imm_offset;
2966 }
2967 } else {
2968 /* Indirect indexing - use per-slot offsets as well. */
2969
2970 /* We can only read two double components with each URB read, so
2971 * we send two read messages in that case, each one loading up to
2972 * two double components.
2973 */
2974 unsigned num_iterations = 1;
2975 unsigned num_components = instr->num_components;
2976 fs_reg orig_dest = dest;
2977 if (type_sz(dest.type) == 8) {
2978 if (instr->num_components > 2) {
2979 num_iterations = 2;
2980 num_components = 2;
2981 }
2982 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2983 dest = tmp;
2984 }
2985
2986 for (unsigned iter = 0; iter < num_iterations; iter++) {
2987 const fs_reg srcs[] = {
2988 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2989 indirect_offset
2990 };
2991 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2992 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2993
2994 if (first_component != 0) {
2995 unsigned read_components =
2996 num_components + first_component;
2997 fs_reg tmp = bld.vgrf(dest.type, read_components);
2998 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2999 payload);
3000 for (unsigned i = 0; i < num_components; i++) {
3001 bld.MOV(offset(dest, bld, i),
3002 offset(tmp, bld, i + first_component));
3003 }
3004 } else {
3005 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3006 payload);
3007 }
3008 inst->mlen = 2;
3009 inst->offset = imm_offset;
3010 inst->size_written = (num_components + first_component) *
3011 inst->dst.component_size(inst->exec_size);
3012
3013 /* If we are reading 64-bit data using 32-bit read messages we need
3014 * build proper 64-bit data elements by shuffling the low and high
3015 * 32-bit components around like we do for other things like UBOs
3016 * or SSBOs.
3017 */
3018 if (type_sz(dest.type) == 8) {
3019 shuffle_from_32bit_read(bld,
3020 offset(orig_dest, bld, iter * 2),
3021 retype(dest, BRW_REGISTER_TYPE_D),
3022 0, num_components);
3023 }
3024
3025 /* If we are loading double data and we need a second read message
3026 * adjust the offset
3027 */
3028 if (num_iterations > 1) {
3029 num_components = instr->num_components - 2;
3030 imm_offset++;
3031 }
3032 }
3033 }
3034 break;
3035 }
3036 default:
3037 nir_emit_intrinsic(bld, instr);
3038 break;
3039 }
3040 }
3041
3042 void
3043 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3044 nir_intrinsic_instr *instr)
3045 {
3046 assert(stage == MESA_SHADER_GEOMETRY);
3047 fs_reg indirect_offset;
3048
3049 fs_reg dest;
3050 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3051 dest = get_nir_dest(instr->dest);
3052
3053 switch (instr->intrinsic) {
3054 case nir_intrinsic_load_primitive_id:
3055 assert(stage == MESA_SHADER_GEOMETRY);
3056 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3057 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3058 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3059 break;
3060
3061 case nir_intrinsic_load_input:
3062 unreachable("load_input intrinsics are invalid for the GS stage");
3063
3064 case nir_intrinsic_load_per_vertex_input:
3065 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3066 instr->src[1], instr->num_components,
3067 nir_intrinsic_component(instr));
3068 break;
3069
3070 case nir_intrinsic_emit_vertex_with_counter:
3071 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3072 break;
3073
3074 case nir_intrinsic_end_primitive_with_counter:
3075 emit_gs_end_primitive(instr->src[0]);
3076 break;
3077
3078 case nir_intrinsic_set_vertex_count:
3079 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3080 break;
3081
3082 case nir_intrinsic_load_invocation_id: {
3083 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3084 assert(val.file != BAD_FILE);
3085 dest.type = val.type;
3086 bld.MOV(dest, val);
3087 break;
3088 }
3089
3090 default:
3091 nir_emit_intrinsic(bld, instr);
3092 break;
3093 }
3094 }
3095
3096 /**
3097 * Fetch the current render target layer index.
3098 */
3099 static fs_reg
3100 fetch_render_target_array_index(const fs_builder &bld)
3101 {
3102 if (bld.shader->devinfo->gen >= 6) {
3103 /* The render target array index is provided in the thread payload as
3104 * bits 26:16 of r0.0.
3105 */
3106 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3107 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3108 brw_imm_uw(0x7ff));
3109 return idx;
3110 } else {
3111 /* Pre-SNB we only ever render into the first layer of the framebuffer
3112 * since layered rendering is not implemented.
3113 */
3114 return brw_imm_ud(0);
3115 }
3116 }
3117
3118 /**
3119 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3120 * framebuffer at the current fragment coordinates and sample index.
3121 */
3122 fs_inst *
3123 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3124 unsigned target)
3125 {
3126 const struct gen_device_info *devinfo = bld.shader->devinfo;
3127
3128 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3129 const brw_wm_prog_key *wm_key =
3130 reinterpret_cast<const brw_wm_prog_key *>(key);
3131 assert(!wm_key->coherent_fb_fetch);
3132 const struct brw_wm_prog_data *wm_prog_data =
3133 brw_wm_prog_data(stage_prog_data);
3134
3135 /* Calculate the surface index relative to the start of the texture binding
3136 * table block, since that's what the texturing messages expect.
3137 */
3138 const unsigned surface = target +
3139 wm_prog_data->binding_table.render_target_read_start -
3140 wm_prog_data->base.binding_table.texture_start;
3141
3142 brw_mark_surface_used(
3143 bld.shader->stage_prog_data,
3144 wm_prog_data->binding_table.render_target_read_start + target);
3145
3146 /* Calculate the fragment coordinates. */
3147 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3148 bld.MOV(offset(coords, bld, 0), pixel_x);
3149 bld.MOV(offset(coords, bld, 1), pixel_y);
3150 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3151
3152 /* Calculate the sample index and MCS payload when multisampling. Luckily
3153 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3154 * shouldn't be necessary to recompile based on whether the framebuffer is
3155 * CMS or UMS.
3156 */
3157 if (wm_key->multisample_fbo &&
3158 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3159 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3160
3161 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3162 const fs_reg mcs = wm_key->multisample_fbo ?
3163 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3164
3165 /* Use either a normal or a CMS texel fetch message depending on whether
3166 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3167 * message just in case the framebuffer uses 16x multisampling, it should
3168 * be equivalent to the normal CMS fetch for lower multisampling modes.
3169 */
3170 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3171 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3172 SHADER_OPCODE_TXF_CMS_LOGICAL;
3173
3174 /* Emit the instruction. */
3175 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3176 sample, mcs,
3177 brw_imm_ud(surface), brw_imm_ud(0),
3178 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3179 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3180
3181 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3182 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3183
3184 return inst;
3185 }
3186
3187 /**
3188 * Actual coherent framebuffer read implemented using the native render target
3189 * read message. Requires SKL+.
3190 */
3191 static fs_inst *
3192 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3193 {
3194 assert(bld.shader->devinfo->gen >= 9);
3195 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3196 inst->target = target;
3197 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3198
3199 return inst;
3200 }
3201
3202 static fs_reg
3203 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3204 {
3205 if (n && regs[0].file != BAD_FILE) {
3206 return regs[0];
3207
3208 } else {
3209 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3210
3211 for (unsigned i = 0; i < n; i++)
3212 regs[i] = tmp;
3213
3214 return tmp;
3215 }
3216 }
3217
3218 static fs_reg
3219 alloc_frag_output(fs_visitor *v, unsigned location)
3220 {
3221 assert(v->stage == MESA_SHADER_FRAGMENT);
3222 const brw_wm_prog_key *const key =
3223 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3224 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3225 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3226
3227 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3228 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3229
3230 else if (l == FRAG_RESULT_COLOR)
3231 return alloc_temporary(v->bld, 4, v->outputs,
3232 MAX2(key->nr_color_regions, 1));
3233
3234 else if (l == FRAG_RESULT_DEPTH)
3235 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3236
3237 else if (l == FRAG_RESULT_STENCIL)
3238 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3239
3240 else if (l == FRAG_RESULT_SAMPLE_MASK)
3241 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3242
3243 else if (l >= FRAG_RESULT_DATA0 &&
3244 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3245 return alloc_temporary(v->bld, 4,
3246 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3247
3248 else
3249 unreachable("Invalid location");
3250 }
3251
3252 void
3253 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3254 nir_intrinsic_instr *instr)
3255 {
3256 assert(stage == MESA_SHADER_FRAGMENT);
3257
3258 fs_reg dest;
3259 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3260 dest = get_nir_dest(instr->dest);
3261
3262 switch (instr->intrinsic) {
3263 case nir_intrinsic_load_front_face:
3264 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3265 *emit_frontfacing_interpolation());
3266 break;
3267
3268 case nir_intrinsic_load_sample_pos: {
3269 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3270 assert(sample_pos.file != BAD_FILE);
3271 dest.type = sample_pos.type;
3272 bld.MOV(dest, sample_pos);
3273 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3274 break;
3275 }
3276
3277 case nir_intrinsic_load_layer_id:
3278 dest.type = BRW_REGISTER_TYPE_UD;
3279 bld.MOV(dest, fetch_render_target_array_index(bld));
3280 break;
3281
3282 case nir_intrinsic_load_helper_invocation:
3283 case nir_intrinsic_load_sample_mask_in:
3284 case nir_intrinsic_load_sample_id: {
3285 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3286 fs_reg val = nir_system_values[sv];
3287 assert(val.file != BAD_FILE);
3288 dest.type = val.type;
3289 bld.MOV(dest, val);
3290 break;
3291 }
3292
3293 case nir_intrinsic_store_output: {
3294 const fs_reg src = get_nir_src(instr->src[0]);
3295 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3296 assert(const_offset && "Indirect output stores not allowed");
3297 const unsigned location = nir_intrinsic_base(instr) +
3298 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3299 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3300 src.type);
3301
3302 for (unsigned j = 0; j < instr->num_components; j++)
3303 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3304 offset(src, bld, j));
3305
3306 break;
3307 }
3308
3309 case nir_intrinsic_load_output: {
3310 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3311 BRW_NIR_FRAG_OUTPUT_LOCATION);
3312 assert(l >= FRAG_RESULT_DATA0);
3313 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3314 assert(const_offset && "Indirect output loads not allowed");
3315 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3316 const fs_reg tmp = bld.vgrf(dest.type, 4);
3317
3318 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3319 emit_coherent_fb_read(bld, tmp, target);
3320 else
3321 emit_non_coherent_fb_read(bld, tmp, target);
3322
3323 for (unsigned j = 0; j < instr->num_components; j++) {
3324 bld.MOV(offset(dest, bld, j),
3325 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3326 }
3327
3328 break;
3329 }
3330
3331 case nir_intrinsic_discard:
3332 case nir_intrinsic_discard_if: {
3333 /* We track our discarded pixels in f0.1. By predicating on it, we can
3334 * update just the flag bits that aren't yet discarded. If there's no
3335 * condition, we emit a CMP of g0 != g0, so all currently executing
3336 * channels will get turned off.
3337 */
3338 fs_inst *cmp;
3339 if (instr->intrinsic == nir_intrinsic_discard_if) {
3340 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3341 brw_imm_d(0), BRW_CONDITIONAL_Z);
3342 } else {
3343 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3344 BRW_REGISTER_TYPE_UW));
3345 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3346 }
3347 cmp->predicate = BRW_PREDICATE_NORMAL;
3348 cmp->flag_subreg = 1;
3349
3350 if (devinfo->gen >= 6) {
3351 emit_discard_jump();
3352 }
3353
3354 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3355 break;
3356 }
3357
3358 case nir_intrinsic_load_input: {
3359 /* load_input is only used for flat inputs */
3360 unsigned base = nir_intrinsic_base(instr);
3361 unsigned comp = nir_intrinsic_component(instr);
3362 unsigned num_components = instr->num_components;
3363 fs_reg orig_dest = dest;
3364 enum brw_reg_type type = dest.type;
3365
3366 /* Special case fields in the VUE header */
3367 if (base == VARYING_SLOT_LAYER)
3368 comp = 1;
3369 else if (base == VARYING_SLOT_VIEWPORT)
3370 comp = 2;
3371
3372 if (nir_dest_bit_size(instr->dest) == 64) {
3373 /* const_index is in 32-bit type size units that could not be aligned
3374 * with DF. We need to read the double vector as if it was a float
3375 * vector of twice the number of components to fetch the right data.
3376 */
3377 type = BRW_REGISTER_TYPE_F;
3378 num_components *= 2;
3379 dest = bld.vgrf(type, num_components);
3380 }
3381
3382 for (unsigned int i = 0; i < num_components; i++) {
3383 bld.MOV(offset(retype(dest, type), bld, i),
3384 retype(component(interp_reg(base, comp + i), 3), type));
3385 }
3386
3387 if (nir_dest_bit_size(instr->dest) == 64) {
3388 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3389 instr->num_components);
3390 }
3391 break;
3392 }
3393
3394 case nir_intrinsic_load_barycentric_pixel:
3395 case nir_intrinsic_load_barycentric_centroid:
3396 case nir_intrinsic_load_barycentric_sample:
3397 /* Do nothing - load_interpolated_input handling will handle it later. */
3398 break;
3399
3400 case nir_intrinsic_load_barycentric_at_sample: {
3401 const glsl_interp_mode interpolation =
3402 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3403
3404 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3405
3406 if (const_sample) {
3407 unsigned msg_data = const_sample->i32[0] << 4;
3408
3409 emit_pixel_interpolater_send(bld,
3410 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3411 dest,
3412 fs_reg(), /* src */
3413 brw_imm_ud(msg_data),
3414 interpolation);
3415 } else {
3416 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3417 BRW_REGISTER_TYPE_UD);
3418
3419 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3420 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3421 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3422 bld.exec_all().group(1, 0)
3423 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3424 emit_pixel_interpolater_send(bld,
3425 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3426 dest,
3427 fs_reg(), /* src */
3428 msg_data,
3429 interpolation);
3430 } else {
3431 /* Make a loop that sends a message to the pixel interpolater
3432 * for the sample number in each live channel. If there are
3433 * multiple channels with the same sample number then these
3434 * will be handled simultaneously with a single interation of
3435 * the loop.
3436 */
3437 bld.emit(BRW_OPCODE_DO);
3438
3439 /* Get the next live sample number into sample_id_reg */
3440 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3441
3442 /* Set the flag register so that we can perform the send
3443 * message on all channels that have the same sample number
3444 */
3445 bld.CMP(bld.null_reg_ud(),
3446 sample_src, sample_id,
3447 BRW_CONDITIONAL_EQ);
3448 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3449 bld.exec_all().group(1, 0)
3450 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3451 fs_inst *inst =
3452 emit_pixel_interpolater_send(bld,
3453 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3454 dest,
3455 fs_reg(), /* src */
3456 component(msg_data, 0),
3457 interpolation);
3458 set_predicate(BRW_PREDICATE_NORMAL, inst);
3459
3460 /* Continue the loop if there are any live channels left */
3461 set_predicate_inv(BRW_PREDICATE_NORMAL,
3462 true, /* inverse */
3463 bld.emit(BRW_OPCODE_WHILE));
3464 }
3465 }
3466 break;
3467 }
3468
3469 case nir_intrinsic_load_barycentric_at_offset: {
3470 const glsl_interp_mode interpolation =
3471 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3472
3473 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3474
3475 if (const_offset) {
3476 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3477 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3478
3479 emit_pixel_interpolater_send(bld,
3480 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3481 dest,
3482 fs_reg(), /* src */
3483 brw_imm_ud(off_x | (off_y << 4)),
3484 interpolation);
3485 } else {
3486 fs_reg src = vgrf(glsl_type::ivec2_type);
3487 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3488 BRW_REGISTER_TYPE_F);
3489 for (int i = 0; i < 2; i++) {
3490 fs_reg temp = vgrf(glsl_type::float_type);
3491 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3492 fs_reg itemp = vgrf(glsl_type::int_type);
3493 /* float to int */
3494 bld.MOV(itemp, temp);
3495
3496 /* Clamp the upper end of the range to +7/16.
3497 * ARB_gpu_shader5 requires that we support a maximum offset
3498 * of +0.5, which isn't representable in a S0.4 value -- if
3499 * we didn't clamp it, we'd end up with -8/16, which is the
3500 * opposite of what the shader author wanted.
3501 *
3502 * This is legal due to ARB_gpu_shader5's quantization
3503 * rules:
3504 *
3505 * "Not all values of <offset> may be supported; x and y
3506 * offsets may be rounded to fixed-point values with the
3507 * number of fraction bits given by the
3508 * implementation-dependent constant
3509 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3510 */
3511 set_condmod(BRW_CONDITIONAL_L,
3512 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3513 }
3514
3515 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3516 emit_pixel_interpolater_send(bld,
3517 opcode,
3518 dest,
3519 src,
3520 brw_imm_ud(0u),
3521 interpolation);
3522 }
3523 break;
3524 }
3525
3526 case nir_intrinsic_load_interpolated_input: {
3527 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3528 emit_fragcoord_interpolation(dest);
3529 break;
3530 }
3531
3532 assert(instr->src[0].ssa &&
3533 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3534 nir_intrinsic_instr *bary_intrinsic =
3535 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3536 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3537 enum glsl_interp_mode interp_mode =
3538 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3539 fs_reg dst_xy;
3540
3541 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3542 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3543 /* Use the result of the PI message */
3544 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3545 } else {
3546 /* Use the delta_xy values computed from the payload */
3547 enum brw_barycentric_mode bary =
3548 brw_barycentric_mode(interp_mode, bary_intrin);
3549
3550 dst_xy = this->delta_xy[bary];
3551 }
3552
3553 for (unsigned int i = 0; i < instr->num_components; i++) {
3554 fs_reg interp =
3555 component(interp_reg(nir_intrinsic_base(instr),
3556 nir_intrinsic_component(instr) + i), 0);
3557 interp.type = BRW_REGISTER_TYPE_F;
3558 dest.type = BRW_REGISTER_TYPE_F;
3559
3560 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3561 fs_reg tmp = vgrf(glsl_type::float_type);
3562 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3563 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3564 } else {
3565 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3566 }
3567 }
3568 break;
3569 }
3570
3571 default:
3572 nir_emit_intrinsic(bld, instr);
3573 break;
3574 }
3575 }
3576
3577 static int
3578 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3579 {
3580 const nir_const_value *const val = nir_src_as_const_value(instr->src[src]);
3581
3582 if (val != NULL) {
3583 if (val->i32[0] == 1)
3584 return BRW_AOP_INC;
3585 else if (val->i32[0] == -1)
3586 return BRW_AOP_DEC;
3587 }
3588
3589 return BRW_AOP_ADD;
3590 }
3591
3592 void
3593 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3594 nir_intrinsic_instr *instr)
3595 {
3596 assert(stage == MESA_SHADER_COMPUTE);
3597 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3598
3599 fs_reg dest;
3600 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3601 dest = get_nir_dest(instr->dest);
3602
3603 switch (instr->intrinsic) {
3604 case nir_intrinsic_barrier:
3605 emit_barrier();
3606 cs_prog_data->uses_barrier = true;
3607 break;
3608
3609 case nir_intrinsic_load_subgroup_id:
3610 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3611 break;
3612
3613 case nir_intrinsic_load_local_invocation_id:
3614 case nir_intrinsic_load_work_group_id: {
3615 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3616 fs_reg val = nir_system_values[sv];
3617 assert(val.file != BAD_FILE);
3618 dest.type = val.type;
3619 for (unsigned i = 0; i < 3; i++)
3620 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3621 break;
3622 }
3623
3624 case nir_intrinsic_load_num_work_groups: {
3625 const unsigned surface =
3626 cs_prog_data->binding_table.work_groups_start;
3627
3628 cs_prog_data->uses_num_work_groups = true;
3629
3630 fs_reg surf_index = brw_imm_ud(surface);
3631 brw_mark_surface_used(prog_data, surface);
3632
3633 /* Read the 3 GLuint components of gl_NumWorkGroups */
3634 for (unsigned i = 0; i < 3; i++) {
3635 fs_reg read_result =
3636 emit_untyped_read(bld, surf_index,
3637 brw_imm_ud(i << 2),
3638 1 /* dims */, 1 /* size */,
3639 BRW_PREDICATE_NONE);
3640 read_result.type = dest.type;
3641 bld.MOV(dest, read_result);
3642 dest = offset(dest, bld, 1);
3643 }
3644 break;
3645 }
3646
3647 case nir_intrinsic_shared_atomic_add:
3648 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3649 break;
3650 case nir_intrinsic_shared_atomic_imin:
3651 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3652 break;
3653 case nir_intrinsic_shared_atomic_umin:
3654 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3655 break;
3656 case nir_intrinsic_shared_atomic_imax:
3657 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3658 break;
3659 case nir_intrinsic_shared_atomic_umax:
3660 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3661 break;
3662 case nir_intrinsic_shared_atomic_and:
3663 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3664 break;
3665 case nir_intrinsic_shared_atomic_or:
3666 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3667 break;
3668 case nir_intrinsic_shared_atomic_xor:
3669 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3670 break;
3671 case nir_intrinsic_shared_atomic_exchange:
3672 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3673 break;
3674 case nir_intrinsic_shared_atomic_comp_swap:
3675 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3676 break;
3677 case nir_intrinsic_shared_atomic_fmin:
3678 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3679 break;
3680 case nir_intrinsic_shared_atomic_fmax:
3681 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3682 break;
3683 case nir_intrinsic_shared_atomic_fcomp_swap:
3684 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3685 break;
3686
3687 case nir_intrinsic_load_shared: {
3688 assert(devinfo->gen >= 7);
3689
3690 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3691
3692 /* Get the offset to read from */
3693 fs_reg offset_reg;
3694 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3695 if (const_offset) {
3696 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3697 } else {
3698 offset_reg = vgrf(glsl_type::uint_type);
3699 bld.ADD(offset_reg,
3700 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3701 brw_imm_ud(instr->const_index[0]));
3702 }
3703
3704 /* Read the vector */
3705 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3706 instr->num_components);
3707 break;
3708 }
3709
3710 case nir_intrinsic_store_shared: {
3711 assert(devinfo->gen >= 7);
3712
3713 /* Block index */
3714 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3715
3716 /* Value */
3717 fs_reg val_reg = get_nir_src(instr->src[0]);
3718
3719 /* Writemask */
3720 unsigned writemask = instr->const_index[1];
3721
3722 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3723 * since the untyped writes below operate in units of 32-bits, which
3724 * means that we need to write twice as many components each time.
3725 * Also, we have to suffle 64-bit data to be in the appropriate layout
3726 * expected by our 32-bit write messages.
3727 */
3728 unsigned type_size = 4;
3729 if (nir_src_bit_size(instr->src[0]) == 64) {
3730 type_size = 8;
3731 val_reg = shuffle_for_32bit_write(bld, val_reg, 0,
3732 instr->num_components);
3733 }
3734
3735 unsigned type_slots = type_size / 4;
3736
3737 /* Combine groups of consecutive enabled channels in one write
3738 * message. We use ffs to find the first enabled channel and then ffs on
3739 * the bit-inverse, down-shifted writemask to determine the length of
3740 * the block of enabled bits.
3741 */
3742 while (writemask) {
3743 unsigned first_component = ffs(writemask) - 1;
3744 unsigned length = ffs(~(writemask >> first_component)) - 1;
3745
3746 /* We can't write more than 2 64-bit components at once. Limit the
3747 * length of the write to what we can do and let the next iteration
3748 * handle the rest
3749 */
3750 if (type_size > 4)
3751 length = MIN2(2, length);
3752
3753 fs_reg offset_reg;
3754 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3755 if (const_offset) {
3756 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3757 type_size * first_component);
3758 } else {
3759 offset_reg = vgrf(glsl_type::uint_type);
3760 bld.ADD(offset_reg,
3761 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3762 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3763 }
3764
3765 emit_untyped_write(bld, surf_index, offset_reg,
3766 offset(val_reg, bld, first_component * type_slots),
3767 1 /* dims */, length * type_slots,
3768 BRW_PREDICATE_NONE);
3769
3770 /* Clear the bits in the writemask that we just wrote, then try
3771 * again to see if more channels are left.
3772 */
3773 writemask &= (15 << (first_component + length));
3774 }
3775
3776 break;
3777 }
3778
3779 default:
3780 nir_emit_intrinsic(bld, instr);
3781 break;
3782 }
3783 }
3784
3785 static fs_reg
3786 brw_nir_reduction_op_identity(const fs_builder &bld,
3787 nir_op op, brw_reg_type type)
3788 {
3789 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3790 switch (type_sz(type)) {
3791 case 2:
3792 assert(type != BRW_REGISTER_TYPE_HF);
3793 return retype(brw_imm_uw(value.u16[0]), type);
3794 case 4:
3795 return retype(brw_imm_ud(value.u32[0]), type);
3796 case 8:
3797 if (type == BRW_REGISTER_TYPE_DF)
3798 return setup_imm_df(bld, value.f64[0]);
3799 else
3800 return retype(brw_imm_u64(value.u64[0]), type);
3801 default:
3802 unreachable("Invalid type size");
3803 }
3804 }
3805
3806 static opcode
3807 brw_op_for_nir_reduction_op(nir_op op)
3808 {
3809 switch (op) {
3810 case nir_op_iadd: return BRW_OPCODE_ADD;
3811 case nir_op_fadd: return BRW_OPCODE_ADD;
3812 case nir_op_imul: return BRW_OPCODE_MUL;
3813 case nir_op_fmul: return BRW_OPCODE_MUL;
3814 case nir_op_imin: return BRW_OPCODE_SEL;
3815 case nir_op_umin: return BRW_OPCODE_SEL;
3816 case nir_op_fmin: return BRW_OPCODE_SEL;
3817 case nir_op_imax: return BRW_OPCODE_SEL;
3818 case nir_op_umax: return BRW_OPCODE_SEL;
3819 case nir_op_fmax: return BRW_OPCODE_SEL;
3820 case nir_op_iand: return BRW_OPCODE_AND;
3821 case nir_op_ior: return BRW_OPCODE_OR;
3822 case nir_op_ixor: return BRW_OPCODE_XOR;
3823 default:
3824 unreachable("Invalid reduction operation");
3825 }
3826 }
3827
3828 static brw_conditional_mod
3829 brw_cond_mod_for_nir_reduction_op(nir_op op)
3830 {
3831 switch (op) {
3832 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3833 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3834 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3835 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3836 case nir_op_imin: return BRW_CONDITIONAL_L;
3837 case nir_op_umin: return BRW_CONDITIONAL_L;
3838 case nir_op_fmin: return BRW_CONDITIONAL_L;
3839 case nir_op_imax: return BRW_CONDITIONAL_GE;
3840 case nir_op_umax: return BRW_CONDITIONAL_GE;
3841 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3842 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3843 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3844 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3845 default:
3846 unreachable("Invalid reduction operation");
3847 }
3848 }
3849
3850 void
3851 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3852 {
3853 fs_reg dest;
3854 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3855 dest = get_nir_dest(instr->dest);
3856
3857 switch (instr->intrinsic) {
3858 case nir_intrinsic_image_deref_load:
3859 case nir_intrinsic_image_deref_store:
3860 case nir_intrinsic_image_deref_atomic_add:
3861 case nir_intrinsic_image_deref_atomic_min:
3862 case nir_intrinsic_image_deref_atomic_max:
3863 case nir_intrinsic_image_deref_atomic_and:
3864 case nir_intrinsic_image_deref_atomic_or:
3865 case nir_intrinsic_image_deref_atomic_xor:
3866 case nir_intrinsic_image_deref_atomic_exchange:
3867 case nir_intrinsic_image_deref_atomic_comp_swap: {
3868 using namespace image_access;
3869
3870 if (stage == MESA_SHADER_FRAGMENT &&
3871 instr->intrinsic != nir_intrinsic_image_deref_load)
3872 brw_wm_prog_data(prog_data)->has_side_effects = true;
3873
3874 /* Get the referenced image variable and type. */
3875 nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
3876 const nir_variable *var = nir_deref_instr_get_variable(deref);
3877 const glsl_type *type = var->type->without_array();
3878 const brw_reg_type base_type = get_image_base_type(type);
3879
3880 /* Get some metadata from the image intrinsic. */
3881 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3882 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3883 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3884 const unsigned format = var->data.image.format;
3885 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3886
3887 /* Get the arguments of the image intrinsic. */
3888 const fs_reg image = get_nir_image_deref(deref);
3889 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3890 BRW_REGISTER_TYPE_UD);
3891 fs_reg tmp;
3892
3893 /* Emit an image load, store or atomic op. */
3894 if (instr->intrinsic == nir_intrinsic_image_deref_load)
3895 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3896 else if (instr->intrinsic == nir_intrinsic_image_deref_store) {
3897 const fs_reg src0 = retype(get_nir_src(instr->src[3]), base_type);
3898 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3899 var->data.image.write_only ? GL_NONE : format);
3900 } else {
3901 int op;
3902 unsigned num_srcs = info->num_srcs;
3903
3904 switch (instr->intrinsic) {
3905 case nir_intrinsic_image_deref_atomic_add:
3906 assert(num_srcs == 4);
3907
3908 op = get_op_for_atomic_add(instr, 3);
3909
3910 if (op != BRW_AOP_ADD)
3911 num_srcs = 3;
3912 break;
3913 case nir_intrinsic_image_deref_atomic_min:
3914 op = (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
3915 BRW_AOP_IMIN : BRW_AOP_UMIN);
3916 break;
3917 case nir_intrinsic_image_deref_atomic_max:
3918 op = (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
3919 BRW_AOP_IMAX : BRW_AOP_UMAX);
3920 break;
3921 case nir_intrinsic_image_deref_atomic_and:
3922 op = BRW_AOP_AND;
3923 break;
3924 case nir_intrinsic_image_deref_atomic_or:
3925 op = BRW_AOP_OR;
3926 break;
3927 case nir_intrinsic_image_deref_atomic_xor:
3928 op = BRW_AOP_XOR;
3929 break;
3930 case nir_intrinsic_image_deref_atomic_exchange:
3931 op = BRW_AOP_MOV;
3932 break;
3933 case nir_intrinsic_image_deref_atomic_comp_swap:
3934 op = BRW_AOP_CMPWR;
3935 break;
3936 default:
3937 unreachable("Not reachable.");
3938 }
3939
3940 const fs_reg src0 = (num_srcs >= 4 ?
3941 retype(get_nir_src(instr->src[3]), base_type) :
3942 fs_reg());
3943 const fs_reg src1 = (num_srcs >= 5 ?
3944 retype(get_nir_src(instr->src[4]), base_type) :
3945 fs_reg());
3946
3947 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3948 surf_dims, arr_dims, dest_components,
3949 op);
3950 }
3951
3952 /* Assign the result. */
3953 for (unsigned c = 0; c < dest_components; ++c) {
3954 bld.MOV(offset(retype(dest, base_type), bld, c),
3955 offset(tmp, bld, c));
3956 }
3957 break;
3958 }
3959
3960 case nir_intrinsic_group_memory_barrier:
3961 case nir_intrinsic_memory_barrier_shared:
3962 case nir_intrinsic_memory_barrier_atomic_counter:
3963 case nir_intrinsic_memory_barrier_buffer:
3964 case nir_intrinsic_memory_barrier_image:
3965 case nir_intrinsic_memory_barrier: {
3966 const fs_builder ubld = bld.group(8, 0);
3967 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3968 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3969 ->size_written = 2 * REG_SIZE;
3970 break;
3971 }
3972
3973 case nir_intrinsic_shader_clock: {
3974 /* We cannot do anything if there is an event, so ignore it for now */
3975 const fs_reg shader_clock = get_timestamp(bld);
3976 const fs_reg srcs[] = { component(shader_clock, 0),
3977 component(shader_clock, 1) };
3978 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3979 break;
3980 }
3981
3982 case nir_intrinsic_image_deref_size: {
3983 /* Get the referenced image variable and type. */
3984 nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
3985 const nir_variable *var = nir_deref_instr_get_variable(deref);
3986 const glsl_type *type = var->type->without_array();
3987
3988 /* Get the size of the image. */
3989 const fs_reg image = get_nir_image_deref(deref);
3990 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3991
3992 /* For 1DArray image types, the array index is stored in the Z component.
3993 * Fix this by swizzling the Z component to the Y component.
3994 */
3995 const bool is_1d_array_image =
3996 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3997 type->sampler_array;
3998
3999 /* For CubeArray images, we should count the number of cubes instead
4000 * of the number of faces. Fix it by dividing the (Z component) by 6.
4001 */
4002 const bool is_cube_array_image =
4003 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
4004 type->sampler_array;
4005
4006 /* Copy all the components. */
4007 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4008 if ((int)c >= type->coordinate_components()) {
4009 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
4010 brw_imm_d(1));
4011 } else if (c == 1 && is_1d_array_image) {
4012 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
4013 offset(size, bld, 2));
4014 } else if (c == 2 && is_cube_array_image) {
4015 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4016 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
4017 offset(size, bld, c), brw_imm_d(6));
4018 } else {
4019 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
4020 offset(size, bld, c));
4021 }
4022 }
4023
4024 break;
4025 }
4026
4027 case nir_intrinsic_image_deref_samples:
4028 /* The driver does not support multi-sampled images. */
4029 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4030 break;
4031
4032 case nir_intrinsic_load_uniform: {
4033 /* Offsets are in bytes but they should always aligned to
4034 * the type size
4035 */
4036 assert(instr->const_index[0] % 4 == 0 ||
4037 instr->const_index[0] % type_sz(dest.type) == 0);
4038
4039 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4040
4041 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4042 if (const_offset) {
4043 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
4044 /* For 16-bit types we add the module of the const_index[0]
4045 * offset to access to not 32-bit aligned element
4046 */
4047 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
4048
4049 for (unsigned j = 0; j < instr->num_components; j++) {
4050 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4051 }
4052 } else {
4053 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4054 BRW_REGISTER_TYPE_UD);
4055
4056 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4057 * go past the end of the uniform. In order to keep the n'th
4058 * component from running past, we subtract off the size of all but
4059 * one component of the vector.
4060 */
4061 assert(instr->const_index[1] >=
4062 instr->num_components * (int) type_sz(dest.type));
4063 unsigned read_size = instr->const_index[1] -
4064 (instr->num_components - 1) * type_sz(dest.type);
4065
4066 bool supports_64bit_indirects =
4067 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4068
4069 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4070 for (unsigned j = 0; j < instr->num_components; j++) {
4071 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4072 offset(dest, bld, j), offset(src, bld, j),
4073 indirect, brw_imm_ud(read_size));
4074 }
4075 } else {
4076 const unsigned num_mov_indirects =
4077 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4078 /* We read a little bit less per MOV INDIRECT, as they are now
4079 * 32-bits ones instead of 64-bit. Fix read_size then.
4080 */
4081 const unsigned read_size_32bit = read_size -
4082 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4083 for (unsigned j = 0; j < instr->num_components; j++) {
4084 for (unsigned i = 0; i < num_mov_indirects; i++) {
4085 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4086 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4087 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4088 indirect, brw_imm_ud(read_size_32bit));
4089 }
4090 }
4091 }
4092 }
4093 break;
4094 }
4095
4096 case nir_intrinsic_load_ubo: {
4097 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4098 fs_reg surf_index;
4099
4100 if (const_index) {
4101 const unsigned index = stage_prog_data->binding_table.ubo_start +
4102 const_index->u32[0];
4103 surf_index = brw_imm_ud(index);
4104 brw_mark_surface_used(prog_data, index);
4105 } else {
4106 /* The block index is not a constant. Evaluate the index expression
4107 * per-channel and add the base UBO index; we have to select a value
4108 * from any live channel.
4109 */
4110 surf_index = vgrf(glsl_type::uint_type);
4111 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4112 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4113 surf_index = bld.emit_uniformize(surf_index);
4114
4115 /* Assume this may touch any UBO. It would be nice to provide
4116 * a tighter bound, but the array information is already lowered away.
4117 */
4118 brw_mark_surface_used(prog_data,
4119 stage_prog_data->binding_table.ubo_start +
4120 nir->info.num_ubos - 1);
4121 }
4122
4123 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4124 if (const_offset == NULL) {
4125 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4126 BRW_REGISTER_TYPE_UD);
4127
4128 for (int i = 0; i < instr->num_components; i++)
4129 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4130 base_offset, i * type_sz(dest.type));
4131 } else {
4132 /* Even if we are loading doubles, a pull constant load will load
4133 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4134 * need to load a full dvec4 we will have to emit 2 loads. This is
4135 * similar to demote_pull_constants(), except that in that case we
4136 * see individual accesses to each component of the vector and then
4137 * we let CSE deal with duplicate loads. Here we see a vector access
4138 * and we have to split it if necessary.
4139 */
4140 const unsigned type_size = type_sz(dest.type);
4141
4142 /* See if we've selected this as a push constant candidate */
4143 if (const_index) {
4144 const unsigned ubo_block = const_index->u32[0];
4145 const unsigned offset_256b = const_offset->u32[0] / 32;
4146
4147 fs_reg push_reg;
4148 for (int i = 0; i < 4; i++) {
4149 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4150 if (range->block == ubo_block &&
4151 offset_256b >= range->start &&
4152 offset_256b < range->start + range->length) {
4153
4154 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4155 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4156 break;
4157 }
4158 }
4159
4160 if (push_reg.file != BAD_FILE) {
4161 for (unsigned i = 0; i < instr->num_components; i++) {
4162 bld.MOV(offset(dest, bld, i),
4163 byte_offset(push_reg, i * type_size));
4164 }
4165 break;
4166 }
4167 }
4168
4169 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4170 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4171 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4172
4173 for (unsigned c = 0; c < instr->num_components;) {
4174 const unsigned base = const_offset->u32[0] + c * type_size;
4175 /* Number of usable components in the next block-aligned load. */
4176 const unsigned count = MIN2(instr->num_components - c,
4177 (block_sz - base % block_sz) / type_size);
4178
4179 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4180 packed_consts, surf_index,
4181 brw_imm_ud(base & ~(block_sz - 1)));
4182
4183 const fs_reg consts =
4184 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4185 dest.type);
4186
4187 for (unsigned d = 0; d < count; d++)
4188 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4189
4190 c += count;
4191 }
4192 }
4193 break;
4194 }
4195
4196 case nir_intrinsic_load_ssbo: {
4197 assert(devinfo->gen >= 7);
4198
4199 nir_const_value *const_uniform_block =
4200 nir_src_as_const_value(instr->src[0]);
4201
4202 fs_reg surf_index;
4203 if (const_uniform_block) {
4204 unsigned index = stage_prog_data->binding_table.ssbo_start +
4205 const_uniform_block->u32[0];
4206 surf_index = brw_imm_ud(index);
4207 brw_mark_surface_used(prog_data, index);
4208 } else {
4209 surf_index = vgrf(glsl_type::uint_type);
4210 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4211 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4212
4213 /* Assume this may touch any UBO. It would be nice to provide
4214 * a tighter bound, but the array information is already lowered away.
4215 */
4216 brw_mark_surface_used(prog_data,
4217 stage_prog_data->binding_table.ssbo_start +
4218 nir->info.num_ssbos - 1);
4219 }
4220
4221 fs_reg offset_reg;
4222 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4223 if (const_offset) {
4224 offset_reg = brw_imm_ud(const_offset->u32[0]);
4225 } else {
4226 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4227 }
4228
4229 /* Read the vector */
4230 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4231 instr->num_components);
4232
4233 break;
4234 }
4235
4236 case nir_intrinsic_store_ssbo: {
4237 assert(devinfo->gen >= 7);
4238
4239 if (stage == MESA_SHADER_FRAGMENT)
4240 brw_wm_prog_data(prog_data)->has_side_effects = true;
4241
4242 /* Block index */
4243 fs_reg surf_index;
4244 nir_const_value *const_uniform_block =
4245 nir_src_as_const_value(instr->src[1]);
4246 if (const_uniform_block) {
4247 unsigned index = stage_prog_data->binding_table.ssbo_start +
4248 const_uniform_block->u32[0];
4249 surf_index = brw_imm_ud(index);
4250 brw_mark_surface_used(prog_data, index);
4251 } else {
4252 surf_index = vgrf(glsl_type::uint_type);
4253 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4254 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4255
4256 brw_mark_surface_used(prog_data,
4257 stage_prog_data->binding_table.ssbo_start +
4258 nir->info.num_ssbos - 1);
4259 }
4260
4261 /* Value */
4262 fs_reg val_reg = get_nir_src(instr->src[0]);
4263
4264 /* Writemask */
4265 unsigned writemask = instr->const_index[0];
4266
4267 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4268 * since the untyped writes below operate in units of 32-bits, which
4269 * means that we need to write twice as many components each time.
4270 * Also, we have to suffle 64-bit data to be in the appropriate layout
4271 * expected by our 32-bit write messages.
4272 */
4273 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4274 unsigned type_size = bit_size / 8;
4275
4276 /* Combine groups of consecutive enabled channels in one write
4277 * message. We use ffs to find the first enabled channel and then ffs on
4278 * the bit-inverse, down-shifted writemask to determine the num_components
4279 * of the block of enabled bits.
4280 */
4281 while (writemask) {
4282 unsigned first_component = ffs(writemask) - 1;
4283 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4284 fs_reg write_src = offset(val_reg, bld, first_component);
4285
4286 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4287
4288 if (type_size > 4) {
4289 /* We can't write more than 2 64-bit components at once. Limit
4290 * the num_components of the write to what we can do and let the next
4291 * iteration handle the rest.
4292 */
4293 num_components = MIN2(2, num_components);
4294 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4295 num_components);
4296 } else if (type_size < 4) {
4297 /* For 16-bit types we pack two consecutive values into a 32-bit
4298 * word and use an untyped write message. For single values or not
4299 * 32-bit-aligned we need to use byte-scattered writes because
4300 * untyped writes works with 32-bit components with 32-bit
4301 * alignment. byte_scattered_write messages only support one
4302 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4303 * could be enabled we can not guarantee that not constant offsets
4304 * to be 32-bit aligned for 16-bit types. For example an array, of
4305 * 16-bit vec3 with array element stride of 6.
4306 *
4307 * In the case of 32-bit aligned constant offsets if there is
4308 * a 3-components vector we submit one untyped-write message
4309 * of 32-bit (first two components), and one byte-scattered
4310 * write message (the last component).
4311 */
4312
4313 if ( !const_offset || ((const_offset->u32[0] +
4314 type_size * first_component) % 4)) {
4315 /* If we use a .yz writemask we also need to emit 2
4316 * byte-scattered write messages because of y-component not
4317 * being aligned to 32-bit.
4318 */
4319 num_components = 1;
4320 } else if (num_components * type_size > 4 &&
4321 (num_components * type_size % 4)) {
4322 /* If the pending components size is not a multiple of 4 bytes
4323 * we left the not aligned components for following emits of
4324 * length == 1 with byte_scattered_write.
4325 */
4326 num_components -= (num_components * type_size % 4) / type_size;
4327 } else if (num_components * type_size < 4) {
4328 num_components = 1;
4329 }
4330 /* For num_components == 1 we are also shuffling the component
4331 * because byte scattered writes of 16-bit need values to be dword
4332 * aligned. Shuffling only one component would be the same as
4333 * striding it.
4334 */
4335 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4336 num_components);
4337 }
4338
4339 fs_reg offset_reg;
4340
4341 if (const_offset) {
4342 offset_reg = brw_imm_ud(const_offset->u32[0] +
4343 type_size * first_component);
4344 } else {
4345 offset_reg = vgrf(glsl_type::uint_type);
4346 bld.ADD(offset_reg,
4347 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4348 brw_imm_ud(type_size * first_component));
4349 }
4350
4351 if (type_size < 4 && num_components == 1) {
4352 /* Untyped Surface messages have a fixed 32-bit size, so we need
4353 * to rely on byte scattered in order to write 16-bit elements.
4354 * The byte_scattered_write message needs that every written 16-bit
4355 * type to be aligned 32-bits (stride=2).
4356 */
4357 emit_byte_scattered_write(bld, surf_index, offset_reg,
4358 write_src,
4359 1 /* dims */,
4360 bit_size,
4361 BRW_PREDICATE_NONE);
4362 } else {
4363 assert(num_components * type_size <= 16);
4364 assert((num_components * type_size) % 4 == 0);
4365 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4366 offset_reg.ud % 4 == 0);
4367 unsigned num_slots = (num_components * type_size) / 4;
4368
4369 emit_untyped_write(bld, surf_index, offset_reg,
4370 write_src,
4371 1 /* dims */, num_slots,
4372 BRW_PREDICATE_NONE);
4373 }
4374
4375 /* Clear the bits in the writemask that we just wrote, then try
4376 * again to see if more channels are left.
4377 */
4378 writemask &= (15 << (first_component + num_components));
4379 }
4380 break;
4381 }
4382
4383 case nir_intrinsic_store_output: {
4384 fs_reg src = get_nir_src(instr->src[0]);
4385
4386 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4387 assert(const_offset && "Indirect output stores not allowed");
4388
4389 unsigned num_components = instr->num_components;
4390 unsigned first_component = nir_intrinsic_component(instr);
4391 if (nir_src_bit_size(instr->src[0]) == 64) {
4392 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4393 num_components *= 2;
4394 }
4395
4396 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4397 4 * const_offset->u32[0]), src.type);
4398 for (unsigned j = 0; j < num_components; j++) {
4399 bld.MOV(offset(new_dest, bld, j + first_component),
4400 offset(src, bld, j));
4401 }
4402 break;
4403 }
4404
4405 case nir_intrinsic_ssbo_atomic_add:
4406 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4407 break;
4408 case nir_intrinsic_ssbo_atomic_imin:
4409 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4410 break;
4411 case nir_intrinsic_ssbo_atomic_umin:
4412 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4413 break;
4414 case nir_intrinsic_ssbo_atomic_imax:
4415 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4416 break;
4417 case nir_intrinsic_ssbo_atomic_umax:
4418 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4419 break;
4420 case nir_intrinsic_ssbo_atomic_and:
4421 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4422 break;
4423 case nir_intrinsic_ssbo_atomic_or:
4424 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4425 break;
4426 case nir_intrinsic_ssbo_atomic_xor:
4427 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4428 break;
4429 case nir_intrinsic_ssbo_atomic_exchange:
4430 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4431 break;
4432 case nir_intrinsic_ssbo_atomic_comp_swap:
4433 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4434 break;
4435 case nir_intrinsic_ssbo_atomic_fmin:
4436 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4437 break;
4438 case nir_intrinsic_ssbo_atomic_fmax:
4439 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4440 break;
4441 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4442 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4443 break;
4444
4445 case nir_intrinsic_get_buffer_size: {
4446 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4447 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4448
4449 /* A resinfo's sampler message is used to get the buffer size. The
4450 * SIMD8's writeback message consists of four registers and SIMD16's
4451 * writeback message consists of 8 destination registers (two per each
4452 * component). Because we are only interested on the first channel of
4453 * the first returned component, where resinfo returns the buffer size
4454 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4455 * the dispatch width.
4456 */
4457 const fs_builder ubld = bld.exec_all().group(8, 0);
4458 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4459 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4460
4461 /* Set LOD = 0 */
4462 ubld.MOV(src_payload, brw_imm_d(0));
4463
4464 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4465 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4466 src_payload, brw_imm_ud(index));
4467 inst->header_size = 0;
4468 inst->mlen = 1;
4469 inst->size_written = 4 * REG_SIZE;
4470
4471 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4472 *
4473 * "Out-of-bounds checking is always performed at a DWord granularity. If
4474 * any part of the DWord is out-of-bounds then the whole DWord is
4475 * considered out-of-bounds."
4476 *
4477 * This implies that types with size smaller than 4-bytes need to be
4478 * padded if they don't complete the last dword of the buffer. But as we
4479 * need to maintain the original size we need to reverse the padding
4480 * calculation to return the correct size to know the number of elements
4481 * of an unsized array. As we stored in the last two bits of the surface
4482 * size the needed padding for the buffer, we calculate here the
4483 * original buffer_size reversing the surface_size calculation:
4484 *
4485 * surface_size = isl_align(buffer_size, 4) +
4486 * (isl_align(buffer_size) - buffer_size)
4487 *
4488 * buffer_size = surface_size & ~3 - surface_size & 3
4489 */
4490
4491 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4492 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4493 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4494
4495 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4496 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4497 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4498
4499 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4500
4501 brw_mark_surface_used(prog_data, index);
4502 break;
4503 }
4504
4505 case nir_intrinsic_load_subgroup_invocation:
4506 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4507 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4508 break;
4509
4510 case nir_intrinsic_load_subgroup_eq_mask:
4511 case nir_intrinsic_load_subgroup_ge_mask:
4512 case nir_intrinsic_load_subgroup_gt_mask:
4513 case nir_intrinsic_load_subgroup_le_mask:
4514 case nir_intrinsic_load_subgroup_lt_mask:
4515 unreachable("not reached");
4516
4517 case nir_intrinsic_vote_any: {
4518 const fs_builder ubld = bld.exec_all().group(1, 0);
4519
4520 /* The any/all predicates do not consider channel enables. To prevent
4521 * dead channels from affecting the result, we initialize the flag with
4522 * with the identity value for the logical operation.
4523 */
4524 if (dispatch_width == 32) {
4525 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4526 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4527 brw_imm_ud(0));
4528 } else {
4529 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4530 }
4531 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4532
4533 /* For some reason, the any/all predicates don't work properly with
4534 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4535 * doesn't read the correct subset of the flag register and you end up
4536 * getting garbage in the second half. Work around this by using a pair
4537 * of 1-wide MOVs and scattering the result.
4538 */
4539 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4540 ubld.MOV(res1, brw_imm_d(0));
4541 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4542 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4543 BRW_PREDICATE_ALIGN1_ANY32H,
4544 ubld.MOV(res1, brw_imm_d(-1)));
4545
4546 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4547 break;
4548 }
4549 case nir_intrinsic_vote_all: {
4550 const fs_builder ubld = bld.exec_all().group(1, 0);
4551
4552 /* The any/all predicates do not consider channel enables. To prevent
4553 * dead channels from affecting the result, we initialize the flag with
4554 * with the identity value for the logical operation.
4555 */
4556 if (dispatch_width == 32) {
4557 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4558 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4559 brw_imm_ud(0xffffffff));
4560 } else {
4561 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4562 }
4563 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4564
4565 /* For some reason, the any/all predicates don't work properly with
4566 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4567 * doesn't read the correct subset of the flag register and you end up
4568 * getting garbage in the second half. Work around this by using a pair
4569 * of 1-wide MOVs and scattering the result.
4570 */
4571 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4572 ubld.MOV(res1, brw_imm_d(0));
4573 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4574 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4575 BRW_PREDICATE_ALIGN1_ALL32H,
4576 ubld.MOV(res1, brw_imm_d(-1)));
4577
4578 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4579 break;
4580 }
4581 case nir_intrinsic_vote_feq:
4582 case nir_intrinsic_vote_ieq: {
4583 fs_reg value = get_nir_src(instr->src[0]);
4584 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4585 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4586 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4587 }
4588
4589 fs_reg uniformized = bld.emit_uniformize(value);
4590 const fs_builder ubld = bld.exec_all().group(1, 0);
4591
4592 /* The any/all predicates do not consider channel enables. To prevent
4593 * dead channels from affecting the result, we initialize the flag with
4594 * with the identity value for the logical operation.
4595 */
4596 if (dispatch_width == 32) {
4597 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4598 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4599 brw_imm_ud(0xffffffff));
4600 } else {
4601 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4602 }
4603 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4604
4605 /* For some reason, the any/all predicates don't work properly with
4606 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4607 * doesn't read the correct subset of the flag register and you end up
4608 * getting garbage in the second half. Work around this by using a pair
4609 * of 1-wide MOVs and scattering the result.
4610 */
4611 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4612 ubld.MOV(res1, brw_imm_d(0));
4613 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4614 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4615 BRW_PREDICATE_ALIGN1_ALL32H,
4616 ubld.MOV(res1, brw_imm_d(-1)));
4617
4618 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4619 break;
4620 }
4621
4622 case nir_intrinsic_ballot: {
4623 const fs_reg value = retype(get_nir_src(instr->src[0]),
4624 BRW_REGISTER_TYPE_UD);
4625 struct brw_reg flag = brw_flag_reg(0, 0);
4626 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4627 * as f0.0. This is a problem for fragment programs as we currently use
4628 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4629 * programs yet so this isn't a problem. When we do, something will
4630 * have to change.
4631 */
4632 if (dispatch_width == 32)
4633 flag.type = BRW_REGISTER_TYPE_UD;
4634
4635 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4636 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4637
4638 if (instr->dest.ssa.bit_size > 32) {
4639 dest.type = BRW_REGISTER_TYPE_UQ;
4640 } else {
4641 dest.type = BRW_REGISTER_TYPE_UD;
4642 }
4643 bld.MOV(dest, flag);
4644 break;
4645 }
4646
4647 case nir_intrinsic_read_invocation: {
4648 const fs_reg value = get_nir_src(instr->src[0]);
4649 const fs_reg invocation = get_nir_src(instr->src[1]);
4650 fs_reg tmp = bld.vgrf(value.type);
4651
4652 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4653 bld.emit_uniformize(invocation));
4654
4655 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4656 break;
4657 }
4658
4659 case nir_intrinsic_read_first_invocation: {
4660 const fs_reg value = get_nir_src(instr->src[0]);
4661 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4662 break;
4663 }
4664
4665 case nir_intrinsic_shuffle: {
4666 const fs_reg value = get_nir_src(instr->src[0]);
4667 const fs_reg index = get_nir_src(instr->src[1]);
4668
4669 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4670 break;
4671 }
4672
4673 case nir_intrinsic_first_invocation: {
4674 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4675 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4676 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4677 fs_reg(component(tmp, 0)));
4678 break;
4679 }
4680
4681 case nir_intrinsic_quad_broadcast: {
4682 const fs_reg value = get_nir_src(instr->src[0]);
4683 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4684 assert(nir_src_bit_size(instr->src[1]) == 32);
4685
4686 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4687 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4688 break;
4689 }
4690
4691 case nir_intrinsic_quad_swap_horizontal: {
4692 const fs_reg value = get_nir_src(instr->src[0]);
4693 const fs_reg tmp = bld.vgrf(value.type);
4694 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4695
4696 const fs_reg src_left = horiz_stride(value, 2);
4697 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4698 const fs_reg tmp_left = horiz_stride(tmp, 2);
4699 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4700
4701 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4702 *
4703 * "When source or destination datatype is 64b or operation is
4704 * integer DWord multiply, regioning in Align1 must follow
4705 * these rules:
4706 *
4707 * [...]
4708 *
4709 * 3. Source and Destination offset must be the same, except
4710 * the case of scalar source."
4711 *
4712 * In order to work around this, we have to emit two 32-bit MOVs instead
4713 * of a single 64-bit MOV to do the shuffle.
4714 */
4715 if (type_sz(value.type) > 4 &&
4716 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4717 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4718 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4719 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4720 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4721 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4722 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4723 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4724 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4725 } else {
4726 ubld.MOV(tmp_left, src_right);
4727 ubld.MOV(tmp_right, src_left);
4728 }
4729 bld.MOV(retype(dest, value.type), tmp);
4730 break;
4731 }
4732
4733 case nir_intrinsic_quad_swap_vertical: {
4734 const fs_reg value = get_nir_src(instr->src[0]);
4735 if (nir_src_bit_size(instr->src[0]) == 32) {
4736 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4737 const fs_reg tmp = bld.vgrf(value.type);
4738 const fs_builder ubld = bld.exec_all();
4739 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4740 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4741 bld.MOV(retype(dest, value.type), tmp);
4742 } else {
4743 /* For larger data types, we have to either emit dispatch_width many
4744 * MOVs or else fall back to doing indirects.
4745 */
4746 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4747 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4748 brw_imm_w(0x2));
4749 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4750 }
4751 break;
4752 }
4753
4754 case nir_intrinsic_quad_swap_diagonal: {
4755 const fs_reg value = get_nir_src(instr->src[0]);
4756 if (nir_src_bit_size(instr->src[0]) == 32) {
4757 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4758 const fs_reg tmp = bld.vgrf(value.type);
4759 const fs_builder ubld = bld.exec_all();
4760 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4761 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4762 bld.MOV(retype(dest, value.type), tmp);
4763 } else {
4764 /* For larger data types, we have to either emit dispatch_width many
4765 * MOVs or else fall back to doing indirects.
4766 */
4767 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4768 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4769 brw_imm_w(0x3));
4770 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4771 }
4772 break;
4773 }
4774
4775 case nir_intrinsic_reduce: {
4776 fs_reg src = get_nir_src(instr->src[0]);
4777 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4778 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4779 if (cluster_size == 0 || cluster_size > dispatch_width)
4780 cluster_size = dispatch_width;
4781
4782 /* Figure out the source type */
4783 src.type = brw_type_for_nir_type(devinfo,
4784 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4785 nir_src_bit_size(instr->src[0])));
4786
4787 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4788 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4789 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4790
4791 /* Set up a register for all of our scratching around and initialize it
4792 * to reduction operation's identity value.
4793 */
4794 fs_reg scan = bld.vgrf(src.type);
4795 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4796
4797 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4798
4799 dest.type = src.type;
4800 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4801 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4802 * the distance between clusters is at least 2 GRFs. In this case,
4803 * we don't need the weird striding of the CLUSTER_BROADCAST
4804 * instruction and can just do regular MOVs.
4805 */
4806 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4807 const unsigned groups =
4808 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4809 const unsigned group_size = dispatch_width / groups;
4810 for (unsigned i = 0; i < groups; i++) {
4811 const unsigned cluster = (i * group_size) / cluster_size;
4812 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4813 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4814 component(scan, comp));
4815 }
4816 } else {
4817 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4818 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4819 }
4820 break;
4821 }
4822
4823 case nir_intrinsic_inclusive_scan:
4824 case nir_intrinsic_exclusive_scan: {
4825 fs_reg src = get_nir_src(instr->src[0]);
4826 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4827
4828 /* Figure out the source type */
4829 src.type = brw_type_for_nir_type(devinfo,
4830 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4831 nir_src_bit_size(instr->src[0])));
4832
4833 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4834 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4835 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4836
4837 /* Set up a register for all of our scratching around and initialize it
4838 * to reduction operation's identity value.
4839 */
4840 fs_reg scan = bld.vgrf(src.type);
4841 const fs_builder allbld = bld.exec_all();
4842 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4843
4844 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4845 /* Exclusive scan is a bit harder because we have to do an annoying
4846 * shift of the contents before we can begin. To make things worse,
4847 * we can't do this with a normal stride; we have to use indirects.
4848 */
4849 fs_reg shifted = bld.vgrf(src.type);
4850 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4851 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4852 brw_imm_w(-1));
4853 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4854 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4855 scan = shifted;
4856 }
4857
4858 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4859
4860 bld.MOV(retype(dest, src.type), scan);
4861 break;
4862 }
4863
4864 case nir_intrinsic_begin_fragment_shader_ordering:
4865 case nir_intrinsic_begin_invocation_interlock: {
4866 const fs_builder ubld = bld.group(8, 0);
4867 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4868
4869 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4870 REG_SIZE;
4871
4872 break;
4873 }
4874
4875 case nir_intrinsic_end_invocation_interlock: {
4876 /* We don't need to do anything here */
4877 break;
4878 }
4879
4880 default:
4881 unreachable("unknown intrinsic");
4882 }
4883 }
4884
4885 void
4886 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4887 int op, nir_intrinsic_instr *instr)
4888 {
4889 if (stage == MESA_SHADER_FRAGMENT)
4890 brw_wm_prog_data(prog_data)->has_side_effects = true;
4891
4892 fs_reg dest;
4893 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4894 dest = get_nir_dest(instr->dest);
4895
4896 fs_reg surface;
4897 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4898 if (const_surface) {
4899 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4900 const_surface->u32[0];
4901 surface = brw_imm_ud(surf_index);
4902 brw_mark_surface_used(prog_data, surf_index);
4903 } else {
4904 surface = vgrf(glsl_type::uint_type);
4905 bld.ADD(surface, get_nir_src(instr->src[0]),
4906 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4907
4908 /* Assume this may touch any SSBO. This is the same we do for other
4909 * UBO/SSBO accesses with non-constant surface.
4910 */
4911 brw_mark_surface_used(prog_data,
4912 stage_prog_data->binding_table.ssbo_start +
4913 nir->info.num_ssbos - 1);
4914 }
4915
4916 fs_reg offset = get_nir_src(instr->src[1]);
4917 fs_reg data1;
4918 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4919 data1 = get_nir_src(instr->src[2]);
4920 fs_reg data2;
4921 if (op == BRW_AOP_CMPWR)
4922 data2 = get_nir_src(instr->src[3]);
4923
4924 /* Emit the actual atomic operation */
4925
4926 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4927 data1, data2,
4928 1 /* dims */, 1 /* rsize */,
4929 op,
4930 BRW_PREDICATE_NONE);
4931 dest.type = atomic_result.type;
4932 bld.MOV(dest, atomic_result);
4933 }
4934
4935 void
4936 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4937 int op, nir_intrinsic_instr *instr)
4938 {
4939 if (stage == MESA_SHADER_FRAGMENT)
4940 brw_wm_prog_data(prog_data)->has_side_effects = true;
4941
4942 fs_reg dest;
4943 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4944 dest = get_nir_dest(instr->dest);
4945
4946 fs_reg surface;
4947 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4948 if (const_surface) {
4949 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4950 const_surface->u32[0];
4951 surface = brw_imm_ud(surf_index);
4952 brw_mark_surface_used(prog_data, surf_index);
4953 } else {
4954 surface = vgrf(glsl_type::uint_type);
4955 bld.ADD(surface, get_nir_src(instr->src[0]),
4956 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4957
4958 /* Assume this may touch any SSBO. This is the same we do for other
4959 * UBO/SSBO accesses with non-constant surface.
4960 */
4961 brw_mark_surface_used(prog_data,
4962 stage_prog_data->binding_table.ssbo_start +
4963 nir->info.num_ssbos - 1);
4964 }
4965
4966 fs_reg offset = get_nir_src(instr->src[1]);
4967 fs_reg data1 = get_nir_src(instr->src[2]);
4968 fs_reg data2;
4969 if (op == BRW_AOP_FCMPWR)
4970 data2 = get_nir_src(instr->src[3]);
4971
4972 /* Emit the actual atomic operation */
4973
4974 fs_reg atomic_result = emit_untyped_atomic_float(bld, surface, offset,
4975 data1, data2,
4976 1 /* dims */, 1 /* rsize */,
4977 op,
4978 BRW_PREDICATE_NONE);
4979 dest.type = atomic_result.type;
4980 bld.MOV(dest, atomic_result);
4981 }
4982
4983 void
4984 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4985 int op, nir_intrinsic_instr *instr)
4986 {
4987 fs_reg dest;
4988 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4989 dest = get_nir_dest(instr->dest);
4990
4991 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4992 fs_reg offset;
4993 fs_reg data1;
4994 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4995 data1 = get_nir_src(instr->src[1]);
4996 fs_reg data2;
4997 if (op == BRW_AOP_CMPWR)
4998 data2 = get_nir_src(instr->src[2]);
4999
5000 /* Get the offset */
5001 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
5002 if (const_offset) {
5003 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
5004 } else {
5005 offset = vgrf(glsl_type::uint_type);
5006 bld.ADD(offset,
5007 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5008 brw_imm_ud(instr->const_index[0]));
5009 }
5010
5011 /* Emit the actual atomic operation operation */
5012
5013 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
5014 data1, data2,
5015 1 /* dims */, 1 /* rsize */,
5016 op,
5017 BRW_PREDICATE_NONE);
5018 dest.type = atomic_result.type;
5019 bld.MOV(dest, atomic_result);
5020 }
5021
5022 void
5023 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5024 int op, nir_intrinsic_instr *instr)
5025 {
5026 fs_reg dest;
5027 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5028 dest = get_nir_dest(instr->dest);
5029
5030 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
5031 fs_reg offset;
5032 fs_reg data1 = get_nir_src(instr->src[1]);
5033 fs_reg data2;
5034 if (op == BRW_AOP_FCMPWR)
5035 data2 = get_nir_src(instr->src[2]);
5036
5037 /* Get the offset */
5038 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
5039 if (const_offset) {
5040 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
5041 } else {
5042 offset = vgrf(glsl_type::uint_type);
5043 bld.ADD(offset,
5044 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5045 brw_imm_ud(instr->const_index[0]));
5046 }
5047
5048 /* Emit the actual atomic operation operation */
5049
5050 fs_reg atomic_result = emit_untyped_atomic_float(bld, surface, offset,
5051 data1, data2,
5052 1 /* dims */, 1 /* rsize */,
5053 op,
5054 BRW_PREDICATE_NONE);
5055 dest.type = atomic_result.type;
5056 bld.MOV(dest, atomic_result);
5057 }
5058
5059 void
5060 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5061 {
5062 unsigned texture = instr->texture_index;
5063 unsigned sampler = instr->sampler_index;
5064
5065 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5066
5067 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5068 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5069
5070 int lod_components = 0;
5071
5072 /* The hardware requires a LOD for buffer textures */
5073 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5074 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5075
5076 uint32_t header_bits = 0;
5077 for (unsigned i = 0; i < instr->num_srcs; i++) {
5078 fs_reg src = get_nir_src(instr->src[i].src);
5079 switch (instr->src[i].src_type) {
5080 case nir_tex_src_bias:
5081 srcs[TEX_LOGICAL_SRC_LOD] =
5082 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5083 break;
5084 case nir_tex_src_comparator:
5085 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5086 break;
5087 case nir_tex_src_coord:
5088 switch (instr->op) {
5089 case nir_texop_txf:
5090 case nir_texop_txf_ms:
5091 case nir_texop_txf_ms_mcs:
5092 case nir_texop_samples_identical:
5093 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5094 break;
5095 default:
5096 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5097 break;
5098 }
5099 break;
5100 case nir_tex_src_ddx:
5101 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5102 lod_components = nir_tex_instr_src_size(instr, i);
5103 break;
5104 case nir_tex_src_ddy:
5105 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5106 break;
5107 case nir_tex_src_lod:
5108 switch (instr->op) {
5109 case nir_texop_txs:
5110 srcs[TEX_LOGICAL_SRC_LOD] =
5111 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5112 break;
5113 case nir_texop_txf:
5114 srcs[TEX_LOGICAL_SRC_LOD] =
5115 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5116 break;
5117 default:
5118 srcs[TEX_LOGICAL_SRC_LOD] =
5119 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5120 break;
5121 }
5122 break;
5123 case nir_tex_src_ms_index:
5124 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5125 break;
5126
5127 case nir_tex_src_offset: {
5128 nir_const_value *const_offset =
5129 nir_src_as_const_value(instr->src[i].src);
5130 unsigned offset_bits = 0;
5131 if (const_offset &&
5132 brw_texture_offset(const_offset->i32,
5133 nir_tex_instr_src_size(instr, i),
5134 &offset_bits)) {
5135 header_bits |= offset_bits;
5136 } else {
5137 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5138 retype(src, BRW_REGISTER_TYPE_D);
5139 }
5140 break;
5141 }
5142
5143 case nir_tex_src_projector:
5144 unreachable("should be lowered");
5145
5146 case nir_tex_src_texture_offset: {
5147 /* Figure out the highest possible texture index and mark it as used */
5148 uint32_t max_used = texture + instr->texture_array_size - 1;
5149 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5150 max_used += stage_prog_data->binding_table.gather_texture_start;
5151 } else {
5152 max_used += stage_prog_data->binding_table.texture_start;
5153 }
5154 brw_mark_surface_used(prog_data, max_used);
5155
5156 /* Emit code to evaluate the actual indexing expression */
5157 fs_reg tmp = vgrf(glsl_type::uint_type);
5158 bld.ADD(tmp, src, brw_imm_ud(texture));
5159 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5160 break;
5161 }
5162
5163 case nir_tex_src_sampler_offset: {
5164 /* Emit code to evaluate the actual indexing expression */
5165 fs_reg tmp = vgrf(glsl_type::uint_type);
5166 bld.ADD(tmp, src, brw_imm_ud(sampler));
5167 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5168 break;
5169 }
5170
5171 case nir_tex_src_ms_mcs:
5172 assert(instr->op == nir_texop_txf_ms);
5173 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5174 break;
5175
5176 case nir_tex_src_plane: {
5177 nir_const_value *const_plane =
5178 nir_src_as_const_value(instr->src[i].src);
5179 const uint32_t plane = const_plane->u32[0];
5180 const uint32_t texture_index =
5181 instr->texture_index +
5182 stage_prog_data->binding_table.plane_start[plane] -
5183 stage_prog_data->binding_table.texture_start;
5184
5185 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5186 break;
5187 }
5188
5189 default:
5190 unreachable("unknown texture source");
5191 }
5192 }
5193
5194 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5195 (instr->op == nir_texop_txf_ms ||
5196 instr->op == nir_texop_samples_identical)) {
5197 if (devinfo->gen >= 7 &&
5198 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5199 srcs[TEX_LOGICAL_SRC_MCS] =
5200 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5201 instr->coord_components,
5202 srcs[TEX_LOGICAL_SRC_SURFACE]);
5203 } else {
5204 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5205 }
5206 }
5207
5208 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5209 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5210
5211 enum opcode opcode;
5212 switch (instr->op) {
5213 case nir_texop_tex:
5214 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5215 SHADER_OPCODE_TXL_LOGICAL);
5216 break;
5217 case nir_texop_txb:
5218 opcode = FS_OPCODE_TXB_LOGICAL;
5219 break;
5220 case nir_texop_txl:
5221 opcode = SHADER_OPCODE_TXL_LOGICAL;
5222 break;
5223 case nir_texop_txd:
5224 opcode = SHADER_OPCODE_TXD_LOGICAL;
5225 break;
5226 case nir_texop_txf:
5227 opcode = SHADER_OPCODE_TXF_LOGICAL;
5228 break;
5229 case nir_texop_txf_ms:
5230 if ((key_tex->msaa_16 & (1 << sampler)))
5231 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5232 else
5233 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5234 break;
5235 case nir_texop_txf_ms_mcs:
5236 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5237 break;
5238 case nir_texop_query_levels:
5239 case nir_texop_txs:
5240 opcode = SHADER_OPCODE_TXS_LOGICAL;
5241 break;
5242 case nir_texop_lod:
5243 opcode = SHADER_OPCODE_LOD_LOGICAL;
5244 break;
5245 case nir_texop_tg4:
5246 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5247 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5248 else
5249 opcode = SHADER_OPCODE_TG4_LOGICAL;
5250 break;
5251 case nir_texop_texture_samples:
5252 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5253 break;
5254 case nir_texop_samples_identical: {
5255 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5256
5257 /* If mcs is an immediate value, it means there is no MCS. In that case
5258 * just return false.
5259 */
5260 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5261 bld.MOV(dst, brw_imm_ud(0u));
5262 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5263 fs_reg tmp = vgrf(glsl_type::uint_type);
5264 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5265 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5266 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5267 } else {
5268 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5269 BRW_CONDITIONAL_EQ);
5270 }
5271 return;
5272 }
5273 default:
5274 unreachable("unknown texture opcode");
5275 }
5276
5277 if (instr->op == nir_texop_tg4) {
5278 if (instr->component == 1 &&
5279 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5280 /* gather4 sampler is broken for green channel on RG32F --
5281 * we must ask for blue instead.
5282 */
5283 header_bits |= 2 << 16;
5284 } else {
5285 header_bits |= instr->component << 16;
5286 }
5287 }
5288
5289 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5290 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5291 inst->offset = header_bits;
5292
5293 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5294 if (devinfo->gen >= 9 &&
5295 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5296 unsigned write_mask = instr->dest.is_ssa ?
5297 nir_ssa_def_components_read(&instr->dest.ssa):
5298 (1 << dest_size) - 1;
5299 assert(write_mask != 0); /* dead code should have been eliminated */
5300 inst->size_written = util_last_bit(write_mask) *
5301 inst->dst.component_size(inst->exec_size);
5302 } else {
5303 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5304 }
5305
5306 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5307 inst->shadow_compare = true;
5308
5309 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5310 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5311
5312 fs_reg nir_dest[4];
5313 for (unsigned i = 0; i < dest_size; i++)
5314 nir_dest[i] = offset(dst, bld, i);
5315
5316 if (instr->op == nir_texop_query_levels) {
5317 /* # levels is in .w */
5318 nir_dest[0] = offset(dst, bld, 3);
5319 } else if (instr->op == nir_texop_txs &&
5320 dest_size >= 3 && devinfo->gen < 7) {
5321 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5322 fs_reg depth = offset(dst, bld, 2);
5323 nir_dest[2] = vgrf(glsl_type::int_type);
5324 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5325 }
5326
5327 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5328 }
5329
5330 void
5331 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5332 {
5333 switch (instr->type) {
5334 case nir_jump_break:
5335 bld.emit(BRW_OPCODE_BREAK);
5336 break;
5337 case nir_jump_continue:
5338 bld.emit(BRW_OPCODE_CONTINUE);
5339 break;
5340 case nir_jump_return:
5341 default:
5342 unreachable("unknown jump");
5343 }
5344 }
5345
5346 /*
5347 * This helper takes a source register and un/shuffles it into the destination
5348 * register.
5349 *
5350 * If source type size is smaller than destination type size the operation
5351 * needed is a component shuffle. The opposite case would be an unshuffle. If
5352 * source/destination type size is equal a shuffle is done that would be
5353 * equivalent to a simple MOV.
5354 *
5355 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5356 * components .xyz 16-bit vector on SIMD8 would be.
5357 *
5358 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5359 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5360 *
5361 * This helper will return the following 2 32-bit components with the 16-bit
5362 * values shuffled:
5363 *
5364 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5365 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5366 *
5367 * For unshuffle, the example would be the opposite, a 64-bit type source
5368 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5369 * would be:
5370 *
5371 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5372 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5373 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5374 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5375 *
5376 * The returned result would be the following 4 32-bit components unshuffled:
5377 *
5378 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5379 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5380 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5381 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5382 *
5383 * - Source and destination register must not be overlapped.
5384 * - components units are measured in terms of the smaller type between
5385 * source and destination because we are un/shuffling the smaller
5386 * components from/into the bigger ones.
5387 * - first_component parameter allows skipping source components.
5388 */
5389 void
5390 shuffle_src_to_dst(const fs_builder &bld,
5391 const fs_reg &dst,
5392 const fs_reg &src,
5393 uint32_t first_component,
5394 uint32_t components)
5395 {
5396 if (type_sz(src.type) == type_sz(dst.type)) {
5397 assert(!regions_overlap(dst,
5398 type_sz(dst.type) * bld.dispatch_width() * components,
5399 offset(src, bld, first_component),
5400 type_sz(src.type) * bld.dispatch_width() * components));
5401 for (unsigned i = 0; i < components; i++) {
5402 bld.MOV(retype(offset(dst, bld, i), src.type),
5403 offset(src, bld, i + first_component));
5404 }
5405 } else if (type_sz(src.type) < type_sz(dst.type)) {
5406 /* Source is shuffled into destination */
5407 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5408 assert(!regions_overlap(dst,
5409 type_sz(dst.type) * bld.dispatch_width() *
5410 DIV_ROUND_UP(components, size_ratio),
5411 offset(src, bld, first_component),
5412 type_sz(src.type) * bld.dispatch_width() * components));
5413
5414 brw_reg_type shuffle_type =
5415 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5416 BRW_REGISTER_TYPE_D);
5417 for (unsigned i = 0; i < components; i++) {
5418 fs_reg shuffle_component_i =
5419 subscript(offset(dst, bld, i / size_ratio),
5420 shuffle_type, i % size_ratio);
5421 bld.MOV(shuffle_component_i,
5422 retype(offset(src, bld, i + first_component), shuffle_type));
5423 }
5424 } else {
5425 /* Source is unshuffled into destination */
5426 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5427 assert(!regions_overlap(dst,
5428 type_sz(dst.type) * bld.dispatch_width() * components,
5429 offset(src, bld, first_component / size_ratio),
5430 type_sz(src.type) * bld.dispatch_width() *
5431 DIV_ROUND_UP(components + (first_component % size_ratio),
5432 size_ratio)));
5433
5434 brw_reg_type shuffle_type =
5435 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5436 BRW_REGISTER_TYPE_D);
5437 for (unsigned i = 0; i < components; i++) {
5438 fs_reg shuffle_component_i =
5439 subscript(offset(src, bld, (first_component + i) / size_ratio),
5440 shuffle_type, (first_component + i) % size_ratio);
5441 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5442 shuffle_component_i);
5443 }
5444 }
5445 }
5446
5447 void
5448 shuffle_from_32bit_read(const fs_builder &bld,
5449 const fs_reg &dst,
5450 const fs_reg &src,
5451 uint32_t first_component,
5452 uint32_t components)
5453 {
5454 assert(type_sz(src.type) == 4);
5455
5456 /* This function takes components in units of the destination type while
5457 * shuffle_src_to_dst takes components in units of the smallest type
5458 */
5459 if (type_sz(dst.type) > 4) {
5460 assert(type_sz(dst.type) == 8);
5461 first_component *= 2;
5462 components *= 2;
5463 }
5464
5465 shuffle_src_to_dst(bld, dst, src, first_component, components);
5466 }
5467
5468 fs_reg
5469 shuffle_for_32bit_write(const fs_builder &bld,
5470 const fs_reg &src,
5471 uint32_t first_component,
5472 uint32_t components)
5473 {
5474 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5475 DIV_ROUND_UP (components * type_sz(src.type), 4));
5476 /* This function takes components in units of the source type while
5477 * shuffle_src_to_dst takes components in units of the smallest type
5478 */
5479 if (type_sz(src.type) > 4) {
5480 assert(type_sz(src.type) == 8);
5481 first_component *= 2;
5482 components *= 2;
5483 }
5484
5485 shuffle_src_to_dst(bld, dst, src, first_component, components);
5486
5487 return dst;
5488 }
5489
5490 fs_reg
5491 setup_imm_df(const fs_builder &bld, double v)
5492 {
5493 const struct gen_device_info *devinfo = bld.shader->devinfo;
5494 assert(devinfo->gen >= 7);
5495
5496 if (devinfo->gen >= 8)
5497 return brw_imm_df(v);
5498
5499 /* gen7.5 does not support DF immediates straighforward but the DIM
5500 * instruction allows to set the 64-bit immediate value.
5501 */
5502 if (devinfo->is_haswell) {
5503 const fs_builder ubld = bld.exec_all().group(1, 0);
5504 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5505 ubld.DIM(dst, brw_imm_df(v));
5506 return component(dst, 0);
5507 }
5508
5509 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5510 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5511 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5512 *
5513 * Alternatively, we could also produce a normal VGRF (without stride 0)
5514 * by writing to all the channels in the VGRF, however, that would hit the
5515 * gen7 bug where we have to split writes that span more than 1 register
5516 * into instructions with a width of 4 (otherwise the write to the second
5517 * register written runs into an execmask hardware bug) which isn't very
5518 * nice.
5519 */
5520 union {
5521 double d;
5522 struct {
5523 uint32_t i1;
5524 uint32_t i2;
5525 };
5526 } di;
5527
5528 di.d = v;
5529
5530 const fs_builder ubld = bld.exec_all().group(1, 0);
5531 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5532 ubld.MOV(tmp, brw_imm_ud(di.i1));
5533 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5534
5535 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5536 }
5537
5538 fs_reg
5539 setup_imm_b(const fs_builder &bld, int8_t v)
5540 {
5541 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5542 bld.MOV(tmp, brw_imm_w(v));
5543 return tmp;
5544 }
5545
5546 fs_reg
5547 setup_imm_ub(const fs_builder &bld, uint8_t v)
5548 {
5549 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5550 bld.MOV(tmp, brw_imm_uw(v));
5551 return tmp;
5552 }