intel/fs: Use De Morgan's laws to avoid logical-not of a logic result on Gen8+
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "util/u_math.h"
28 #include "util/bitscan.h"
29
30 using namespace brw;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
43 }
44
45 void
46 fs_visitor::nir_setup_outputs()
47 {
48 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
49 return;
50
51 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
52
53 /* Calculate the size of output registers in a separate pass, before
54 * allocating them. With ARB_enhanced_layouts, multiple output variables
55 * may occupy the same slot, but have different type sizes.
56 */
57 nir_foreach_variable(var, &nir->outputs) {
58 const int loc = var->data.driver_location;
59 const unsigned var_vec4s =
60 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
61 : type_size_vec4(var->type);
62 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
63 }
64
65 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
66 if (vec4s[loc] == 0) {
67 loc++;
68 continue;
69 }
70
71 unsigned reg_size = vec4s[loc];
72
73 /* Check if there are any ranges that start within this range and extend
74 * past it. If so, include them in this allocation.
75 */
76 for (unsigned i = 1; i < reg_size; i++)
77 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
78
79 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
80 for (unsigned i = 0; i < reg_size; i++)
81 outputs[loc + i] = offset(reg, bld, 4 * i);
82
83 loc += reg_size;
84 }
85 }
86
87 void
88 fs_visitor::nir_setup_uniforms()
89 {
90 /* Only the first compile gets to set up uniforms. */
91 if (push_constant_loc) {
92 assert(pull_constant_loc);
93 return;
94 }
95
96 uniforms = nir->num_uniforms / 4;
97
98 if (stage == MESA_SHADER_COMPUTE) {
99 /* Add a uniform for the thread local id. It must be the last uniform
100 * on the list.
101 */
102 assert(uniforms == prog_data->nr_params);
103 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
104 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
105 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
106 }
107 }
108
109 static bool
110 emit_system_values_block(nir_block *block, fs_visitor *v)
111 {
112 fs_reg *reg;
113
114 nir_foreach_instr(instr, block) {
115 if (instr->type != nir_instr_type_intrinsic)
116 continue;
117
118 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
119 switch (intrin->intrinsic) {
120 case nir_intrinsic_load_vertex_id:
121 case nir_intrinsic_load_base_vertex:
122 unreachable("should be lowered by nir_lower_system_values().");
123
124 case nir_intrinsic_load_vertex_id_zero_base:
125 case nir_intrinsic_load_is_indexed_draw:
126 case nir_intrinsic_load_first_vertex:
127 case nir_intrinsic_load_instance_id:
128 case nir_intrinsic_load_base_instance:
129 case nir_intrinsic_load_draw_id:
130 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
131
132 case nir_intrinsic_load_invocation_id:
133 if (v->stage == MESA_SHADER_TESS_CTRL)
134 break;
135 assert(v->stage == MESA_SHADER_GEOMETRY);
136 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
137 if (reg->file == BAD_FILE) {
138 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
139 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
140 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
141 abld.SHR(iid, g1, brw_imm_ud(27u));
142 *reg = iid;
143 }
144 break;
145
146 case nir_intrinsic_load_sample_pos:
147 assert(v->stage == MESA_SHADER_FRAGMENT);
148 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
149 if (reg->file == BAD_FILE)
150 *reg = *v->emit_samplepos_setup();
151 break;
152
153 case nir_intrinsic_load_sample_id:
154 assert(v->stage == MESA_SHADER_FRAGMENT);
155 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
156 if (reg->file == BAD_FILE)
157 *reg = *v->emit_sampleid_setup();
158 break;
159
160 case nir_intrinsic_load_sample_mask_in:
161 assert(v->stage == MESA_SHADER_FRAGMENT);
162 assert(v->devinfo->gen >= 7);
163 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
164 if (reg->file == BAD_FILE)
165 *reg = *v->emit_samplemaskin_setup();
166 break;
167
168 case nir_intrinsic_load_work_group_id:
169 assert(v->stage == MESA_SHADER_COMPUTE);
170 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
171 if (reg->file == BAD_FILE)
172 *reg = *v->emit_cs_work_group_id_setup();
173 break;
174
175 case nir_intrinsic_load_helper_invocation:
176 assert(v->stage == MESA_SHADER_FRAGMENT);
177 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
178 if (reg->file == BAD_FILE) {
179 const fs_builder abld =
180 v->bld.annotate("gl_HelperInvocation", NULL);
181
182 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
183 * pixel mask is in g1.7 of the thread payload.
184 *
185 * We move the per-channel pixel enable bit to the low bit of each
186 * channel by shifting the byte containing the pixel mask by the
187 * vector immediate 0x76543210UV.
188 *
189 * The region of <1,8,0> reads only 1 byte (the pixel masks for
190 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
191 * masks for 2 and 3) in SIMD16.
192 */
193 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
194
195 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
196 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
197 hbld.SHR(offset(shifted, hbld, i),
198 stride(retype(brw_vec1_grf(1 + i, 7),
199 BRW_REGISTER_TYPE_UB),
200 1, 8, 0),
201 brw_imm_v(0x76543210));
202 }
203
204 /* A set bit in the pixel mask means the channel is enabled, but
205 * that is the opposite of gl_HelperInvocation so we need to invert
206 * the mask.
207 *
208 * The negate source-modifier bit of logical instructions on Gen8+
209 * performs 1's complement negation, so we can use that instead of
210 * a NOT instruction.
211 */
212 fs_reg inverted = negate(shifted);
213 if (v->devinfo->gen < 8) {
214 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
215 abld.NOT(inverted, shifted);
216 }
217
218 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
219 * with 1 and negating.
220 */
221 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
222 abld.AND(anded, inverted, brw_imm_uw(1));
223
224 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
225 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
226 *reg = dst;
227 }
228 break;
229
230 default:
231 break;
232 }
233 }
234
235 return true;
236 }
237
238 void
239 fs_visitor::nir_emit_system_values()
240 {
241 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
242 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
243 nir_system_values[i] = fs_reg();
244 }
245
246 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
247 * never end up using it.
248 */
249 {
250 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
251 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
252 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
253
254 const fs_builder allbld8 = abld.group(8, 0).exec_all();
255 allbld8.MOV(reg, brw_imm_v(0x76543210));
256 if (dispatch_width > 8)
257 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
258 if (dispatch_width > 16) {
259 const fs_builder allbld16 = abld.group(16, 0).exec_all();
260 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
261 }
262 }
263
264 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
265 nir_foreach_block(block, impl)
266 emit_system_values_block(block, this);
267 }
268
269 /*
270 * Returns a type based on a reference_type (word, float, half-float) and a
271 * given bit_size.
272 *
273 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
274 *
275 * @FIXME: 64-bit return types are always DF on integer types to maintain
276 * compability with uses of DF previously to the introduction of int64
277 * support.
278 */
279 static brw_reg_type
280 brw_reg_type_from_bit_size(const unsigned bit_size,
281 const brw_reg_type reference_type)
282 {
283 switch(reference_type) {
284 case BRW_REGISTER_TYPE_HF:
285 case BRW_REGISTER_TYPE_F:
286 case BRW_REGISTER_TYPE_DF:
287 switch(bit_size) {
288 case 16:
289 return BRW_REGISTER_TYPE_HF;
290 case 32:
291 return BRW_REGISTER_TYPE_F;
292 case 64:
293 return BRW_REGISTER_TYPE_DF;
294 default:
295 unreachable("Invalid bit size");
296 }
297 case BRW_REGISTER_TYPE_B:
298 case BRW_REGISTER_TYPE_W:
299 case BRW_REGISTER_TYPE_D:
300 case BRW_REGISTER_TYPE_Q:
301 switch(bit_size) {
302 case 8:
303 return BRW_REGISTER_TYPE_B;
304 case 16:
305 return BRW_REGISTER_TYPE_W;
306 case 32:
307 return BRW_REGISTER_TYPE_D;
308 case 64:
309 return BRW_REGISTER_TYPE_Q;
310 default:
311 unreachable("Invalid bit size");
312 }
313 case BRW_REGISTER_TYPE_UB:
314 case BRW_REGISTER_TYPE_UW:
315 case BRW_REGISTER_TYPE_UD:
316 case BRW_REGISTER_TYPE_UQ:
317 switch(bit_size) {
318 case 8:
319 return BRW_REGISTER_TYPE_UB;
320 case 16:
321 return BRW_REGISTER_TYPE_UW;
322 case 32:
323 return BRW_REGISTER_TYPE_UD;
324 case 64:
325 return BRW_REGISTER_TYPE_UQ;
326 default:
327 unreachable("Invalid bit size");
328 }
329 default:
330 unreachable("Unknown type");
331 }
332 }
333
334 void
335 fs_visitor::nir_emit_impl(nir_function_impl *impl)
336 {
337 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
338 for (unsigned i = 0; i < impl->reg_alloc; i++) {
339 nir_locals[i] = fs_reg();
340 }
341
342 foreach_list_typed(nir_register, reg, node, &impl->registers) {
343 unsigned array_elems =
344 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
345 unsigned size = array_elems * reg->num_components;
346 const brw_reg_type reg_type =
347 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
348 nir_locals[reg->index] = bld.vgrf(reg_type, size);
349 }
350
351 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
352 impl->ssa_alloc);
353
354 nir_emit_cf_list(&impl->body);
355 }
356
357 void
358 fs_visitor::nir_emit_cf_list(exec_list *list)
359 {
360 exec_list_validate(list);
361 foreach_list_typed(nir_cf_node, node, node, list) {
362 switch (node->type) {
363 case nir_cf_node_if:
364 nir_emit_if(nir_cf_node_as_if(node));
365 break;
366
367 case nir_cf_node_loop:
368 nir_emit_loop(nir_cf_node_as_loop(node));
369 break;
370
371 case nir_cf_node_block:
372 nir_emit_block(nir_cf_node_as_block(node));
373 break;
374
375 default:
376 unreachable("Invalid CFG node block");
377 }
378 }
379 }
380
381 void
382 fs_visitor::nir_emit_if(nir_if *if_stmt)
383 {
384 /* first, put the condition into f0 */
385 fs_inst *inst = bld.MOV(bld.null_reg_d(),
386 retype(get_nir_src(if_stmt->condition),
387 BRW_REGISTER_TYPE_D));
388 inst->conditional_mod = BRW_CONDITIONAL_NZ;
389
390 bld.IF(BRW_PREDICATE_NORMAL);
391
392 nir_emit_cf_list(&if_stmt->then_list);
393
394 /* note: if the else is empty, dead CF elimination will remove it */
395 bld.emit(BRW_OPCODE_ELSE);
396
397 nir_emit_cf_list(&if_stmt->else_list);
398
399 bld.emit(BRW_OPCODE_ENDIF);
400
401 if (devinfo->gen < 7)
402 limit_dispatch_width(16, "Non-uniform control flow unsupported "
403 "in SIMD32 mode.");
404 }
405
406 void
407 fs_visitor::nir_emit_loop(nir_loop *loop)
408 {
409 bld.emit(BRW_OPCODE_DO);
410
411 nir_emit_cf_list(&loop->body);
412
413 bld.emit(BRW_OPCODE_WHILE);
414
415 if (devinfo->gen < 7)
416 limit_dispatch_width(16, "Non-uniform control flow unsupported "
417 "in SIMD32 mode.");
418 }
419
420 void
421 fs_visitor::nir_emit_block(nir_block *block)
422 {
423 nir_foreach_instr(instr, block) {
424 nir_emit_instr(instr);
425 }
426 }
427
428 void
429 fs_visitor::nir_emit_instr(nir_instr *instr)
430 {
431 const fs_builder abld = bld.annotate(NULL, instr);
432
433 switch (instr->type) {
434 case nir_instr_type_alu:
435 nir_emit_alu(abld, nir_instr_as_alu(instr));
436 break;
437
438 case nir_instr_type_deref:
439 /* Derefs can exist for images but they do nothing */
440 break;
441
442 case nir_instr_type_intrinsic:
443 switch (stage) {
444 case MESA_SHADER_VERTEX:
445 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
446 break;
447 case MESA_SHADER_TESS_CTRL:
448 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
449 break;
450 case MESA_SHADER_TESS_EVAL:
451 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
452 break;
453 case MESA_SHADER_GEOMETRY:
454 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456 case MESA_SHADER_FRAGMENT:
457 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
458 break;
459 case MESA_SHADER_COMPUTE:
460 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462 default:
463 unreachable("unsupported shader stage");
464 }
465 break;
466
467 case nir_instr_type_tex:
468 nir_emit_texture(abld, nir_instr_as_tex(instr));
469 break;
470
471 case nir_instr_type_load_const:
472 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
473 break;
474
475 case nir_instr_type_ssa_undef:
476 /* We create a new VGRF for undefs on every use (by handling
477 * them in get_nir_src()), rather than for each definition.
478 * This helps register coalescing eliminate MOVs from undef.
479 */
480 break;
481
482 case nir_instr_type_jump:
483 nir_emit_jump(abld, nir_instr_as_jump(instr));
484 break;
485
486 default:
487 unreachable("unknown instruction type");
488 }
489 }
490
491 /**
492 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
493 * match instr.
494 */
495 bool
496 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
497 const fs_reg &result)
498 {
499 if (!instr->src[0].src.is_ssa ||
500 !instr->src[0].src.ssa->parent_instr)
501 return false;
502
503 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
504 return false;
505
506 nir_alu_instr *src0 =
507 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
508
509 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
510 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
511 return false;
512
513 /* If either opcode has source modifiers, bail.
514 *
515 * TODO: We can potentially handle source modifiers if both of the opcodes
516 * we're combining are signed integers.
517 */
518 if (instr->src[0].abs || instr->src[0].negate ||
519 src0->src[0].abs || src0->src[0].negate)
520 return false;
521
522 unsigned element = nir_src_as_uint(src0->src[1].src);
523
524 /* Element type to extract.*/
525 const brw_reg_type type = brw_int_type(
526 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
527 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
528
529 fs_reg op0 = get_nir_src(src0->src[0].src);
530 op0.type = brw_type_for_nir_type(devinfo,
531 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
532 nir_src_bit_size(src0->src[0].src)));
533 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
534
535 set_saturate(instr->dest.saturate,
536 bld.MOV(result, subscript(op0, type, element)));
537 return true;
538 }
539
540 bool
541 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
542 const fs_reg &result)
543 {
544 if (!instr->src[0].src.is_ssa ||
545 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
546 return false;
547
548 nir_intrinsic_instr *src0 =
549 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
550
551 if (src0->intrinsic != nir_intrinsic_load_front_face)
552 return false;
553
554 if (!nir_src_is_const(instr->src[1].src) ||
555 !nir_src_is_const(instr->src[2].src))
556 return false;
557
558 const float value1 = nir_src_as_float(instr->src[1].src);
559 const float value2 = nir_src_as_float(instr->src[2].src);
560 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
561 return false;
562
563 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
564 assert(value1 == -value2);
565
566 fs_reg tmp = vgrf(glsl_type::int_type);
567
568 if (devinfo->gen >= 6) {
569 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
570 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
571
572 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
573 *
574 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
575 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
576 *
577 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
578 *
579 * This negation looks like it's safe in practice, because bits 0:4 will
580 * surely be TRIANGLES
581 */
582
583 if (value1 == -1.0f) {
584 g0.negate = true;
585 }
586
587 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
588 g0, brw_imm_uw(0x3f80));
589 } else {
590 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
591 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
592
593 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
594 *
595 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
596 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
597 *
598 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
599 *
600 * This negation looks like it's safe in practice, because bits 0:4 will
601 * surely be TRIANGLES
602 */
603
604 if (value1 == -1.0f) {
605 g1_6.negate = true;
606 }
607
608 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
609 }
610 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
611
612 return true;
613 }
614
615 static void
616 emit_find_msb_using_lzd(const fs_builder &bld,
617 const fs_reg &result,
618 const fs_reg &src,
619 bool is_signed)
620 {
621 fs_inst *inst;
622 fs_reg temp = src;
623
624 if (is_signed) {
625 /* LZD of an absolute value source almost always does the right
626 * thing. There are two problem values:
627 *
628 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
629 * 0. However, findMSB(int(0x80000000)) == 30.
630 *
631 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
632 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
633 *
634 * For a value of zero or negative one, -1 will be returned.
635 *
636 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
637 * findMSB(-(1<<x)) should return x-1.
638 *
639 * For all negative number cases, including 0x80000000 and
640 * 0xffffffff, the correct value is obtained from LZD if instead of
641 * negating the (already negative) value the logical-not is used. A
642 * conditonal logical-not can be achieved in two instructions.
643 */
644 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
645
646 bld.ASR(temp, src, brw_imm_d(31));
647 bld.XOR(temp, temp, src);
648 }
649
650 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
651 retype(temp, BRW_REGISTER_TYPE_UD));
652
653 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
654 * from the LSB side. Subtract the result from 31 to convert the MSB
655 * count into an LSB count. If no bits are set, LZD will return 32.
656 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
657 */
658 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
659 inst->src[0].negate = true;
660 }
661
662 static brw_rnd_mode
663 brw_rnd_mode_from_nir_op (const nir_op op) {
664 switch (op) {
665 case nir_op_f2f16_rtz:
666 return BRW_RND_MODE_RTZ;
667 case nir_op_f2f16_rtne:
668 return BRW_RND_MODE_RTNE;
669 default:
670 unreachable("Operation doesn't support rounding mode");
671 }
672 }
673
674 fs_reg
675 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
676 nir_alu_instr *instr,
677 fs_reg *op,
678 bool need_dest)
679 {
680 fs_reg result =
681 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
682
683 result.type = brw_type_for_nir_type(devinfo,
684 (nir_alu_type)(nir_op_infos[instr->op].output_type |
685 nir_dest_bit_size(instr->dest.dest)));
686
687 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
688 op[i] = get_nir_src(instr->src[i].src);
689 op[i].type = brw_type_for_nir_type(devinfo,
690 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
691 nir_src_bit_size(instr->src[i].src)));
692 op[i].abs = instr->src[i].abs;
693 op[i].negate = instr->src[i].negate;
694 }
695
696 /* Move and vecN instrutions may still be vectored. Return the raw,
697 * vectored source and destination so that fs_visitor::nir_emit_alu can
698 * handle it. Other callers should not have to handle these kinds of
699 * instructions.
700 */
701 switch (instr->op) {
702 case nir_op_imov:
703 case nir_op_fmov:
704 case nir_op_vec2:
705 case nir_op_vec3:
706 case nir_op_vec4:
707 return result;
708 default:
709 break;
710 }
711
712 /* At this point, we have dealt with any instruction that operates on
713 * more than a single channel. Therefore, we can just adjust the source
714 * and destination registers for that channel and emit the instruction.
715 */
716 unsigned channel = 0;
717 if (nir_op_infos[instr->op].output_size == 0) {
718 /* Since NIR is doing the scalarizing for us, we should only ever see
719 * vectorized operations with a single channel.
720 */
721 assert(util_bitcount(instr->dest.write_mask) == 1);
722 channel = ffs(instr->dest.write_mask) - 1;
723
724 result = offset(result, bld, channel);
725 }
726
727 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
728 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
729 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
730 }
731
732 return result;
733 }
734
735 void
736 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
737 fs_reg *op)
738 {
739 for (unsigned i = 0; i < 2; i++) {
740 nir_alu_instr *const inot_instr =
741 nir_src_as_alu_instr(&instr->src[i].src);
742
743 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
744 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
745 /* The source of the inot is now the source of instr. */
746 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
747
748 assert(!op[i].negate);
749 op[i].negate = true;
750 } else {
751 op[i] = resolve_source_modifiers(op[i]);
752 }
753 }
754 }
755
756 void
757 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
758 {
759 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
760 fs_inst *inst;
761
762 fs_reg op[4];
763 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, true);
764
765 switch (instr->op) {
766 case nir_op_imov:
767 case nir_op_fmov:
768 case nir_op_vec2:
769 case nir_op_vec3:
770 case nir_op_vec4: {
771 fs_reg temp = result;
772 bool need_extra_copy = false;
773 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
774 if (!instr->src[i].src.is_ssa &&
775 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
776 need_extra_copy = true;
777 temp = bld.vgrf(result.type, 4);
778 break;
779 }
780 }
781
782 for (unsigned i = 0; i < 4; i++) {
783 if (!(instr->dest.write_mask & (1 << i)))
784 continue;
785
786 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
787 inst = bld.MOV(offset(temp, bld, i),
788 offset(op[0], bld, instr->src[0].swizzle[i]));
789 } else {
790 inst = bld.MOV(offset(temp, bld, i),
791 offset(op[i], bld, instr->src[i].swizzle[0]));
792 }
793 inst->saturate = instr->dest.saturate;
794 }
795
796 /* In this case the source and destination registers were the same,
797 * so we need to insert an extra set of moves in order to deal with
798 * any swizzling.
799 */
800 if (need_extra_copy) {
801 for (unsigned i = 0; i < 4; i++) {
802 if (!(instr->dest.write_mask & (1 << i)))
803 continue;
804
805 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
806 }
807 }
808 return;
809 }
810
811 case nir_op_i2f32:
812 case nir_op_u2f32:
813 if (optimize_extract_to_float(instr, result))
814 return;
815 inst = bld.MOV(result, op[0]);
816 inst->saturate = instr->dest.saturate;
817 break;
818
819 case nir_op_f2f16_rtne:
820 case nir_op_f2f16_rtz:
821 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
822 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
823 /* fallthrough */
824
825 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
826 * on the HW gen, it is a special hw opcode or just a MOV, and
827 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
828 *
829 * But if we want to use that opcode, we need to provide support on
830 * different optimizations and lowerings. As right now HF support is
831 * only for gen8+, it will be better to use directly the MOV, and use
832 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
833 */
834
835 case nir_op_f2f16:
836 inst = bld.MOV(result, op[0]);
837 inst->saturate = instr->dest.saturate;
838 break;
839
840 case nir_op_b2i8:
841 case nir_op_b2i16:
842 case nir_op_b2i32:
843 case nir_op_b2i64:
844 case nir_op_b2f16:
845 case nir_op_b2f32:
846 case nir_op_b2f64:
847 op[0].type = BRW_REGISTER_TYPE_D;
848 op[0].negate = !op[0].negate;
849 /* fallthrough */
850 case nir_op_f2f64:
851 case nir_op_f2i64:
852 case nir_op_f2u64:
853 case nir_op_i2f64:
854 case nir_op_i2i64:
855 case nir_op_u2f64:
856 case nir_op_u2u64:
857 case nir_op_f2f32:
858 case nir_op_f2i32:
859 case nir_op_f2u32:
860 case nir_op_f2i16:
861 case nir_op_f2u16:
862 case nir_op_i2i32:
863 case nir_op_u2u32:
864 case nir_op_i2i16:
865 case nir_op_u2u16:
866 case nir_op_i2f16:
867 case nir_op_u2f16:
868 case nir_op_i2i8:
869 case nir_op_u2u8:
870 inst = bld.MOV(result, op[0]);
871 inst->saturate = instr->dest.saturate;
872 break;
873
874 case nir_op_fsign: {
875 assert(!instr->dest.saturate);
876 if (op[0].abs) {
877 /* Straightforward since the source can be assumed to be either
878 * strictly >= 0 or strictly <= 0 depending on the setting of the
879 * negate flag.
880 */
881 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
882
883 inst = (op[0].negate)
884 ? bld.MOV(result, brw_imm_f(-1.0f))
885 : bld.MOV(result, brw_imm_f(1.0f));
886
887 set_predicate(BRW_PREDICATE_NORMAL, inst);
888 } else if (type_sz(op[0].type) < 8) {
889 /* AND(val, 0x80000000) gives the sign bit.
890 *
891 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
892 * zero.
893 */
894 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
895
896 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
897 op[0].type = BRW_REGISTER_TYPE_UD;
898 result.type = BRW_REGISTER_TYPE_UD;
899 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
900
901 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
902 inst->predicate = BRW_PREDICATE_NORMAL;
903 } else {
904 /* For doubles we do the same but we need to consider:
905 *
906 * - 2-src instructions can't operate with 64-bit immediates
907 * - The sign is encoded in the high 32-bit of each DF
908 * - We need to produce a DF result.
909 */
910
911 fs_reg zero = vgrf(glsl_type::double_type);
912 bld.MOV(zero, setup_imm_df(bld, 0.0));
913 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
914
915 bld.MOV(result, zero);
916
917 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
918 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
919 brw_imm_ud(0x80000000u));
920
921 set_predicate(BRW_PREDICATE_NORMAL,
922 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
923 }
924 break;
925 }
926
927 case nir_op_frcp:
928 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
929 inst->saturate = instr->dest.saturate;
930 break;
931
932 case nir_op_fexp2:
933 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936
937 case nir_op_flog2:
938 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
939 inst->saturate = instr->dest.saturate;
940 break;
941
942 case nir_op_fsin:
943 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
944 inst->saturate = instr->dest.saturate;
945 break;
946
947 case nir_op_fcos:
948 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
949 inst->saturate = instr->dest.saturate;
950 break;
951
952 case nir_op_fddx:
953 if (fs_key->high_quality_derivatives) {
954 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
955 } else {
956 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
957 }
958 inst->saturate = instr->dest.saturate;
959 break;
960 case nir_op_fddx_fine:
961 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
962 inst->saturate = instr->dest.saturate;
963 break;
964 case nir_op_fddx_coarse:
965 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
966 inst->saturate = instr->dest.saturate;
967 break;
968 case nir_op_fddy:
969 if (fs_key->high_quality_derivatives) {
970 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
971 } else {
972 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
973 }
974 inst->saturate = instr->dest.saturate;
975 break;
976 case nir_op_fddy_fine:
977 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
978 inst->saturate = instr->dest.saturate;
979 break;
980 case nir_op_fddy_coarse:
981 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
982 inst->saturate = instr->dest.saturate;
983 break;
984
985 case nir_op_iadd:
986 case nir_op_fadd:
987 inst = bld.ADD(result, op[0], op[1]);
988 inst->saturate = instr->dest.saturate;
989 break;
990
991 case nir_op_uadd_sat:
992 inst = bld.ADD(result, op[0], op[1]);
993 inst->saturate = true;
994 break;
995
996 case nir_op_fmul:
997 inst = bld.MUL(result, op[0], op[1]);
998 inst->saturate = instr->dest.saturate;
999 break;
1000
1001 case nir_op_imul:
1002 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1003 bld.MUL(result, op[0], op[1]);
1004 break;
1005
1006 case nir_op_imul_high:
1007 case nir_op_umul_high:
1008 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1009 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1010 break;
1011
1012 case nir_op_idiv:
1013 case nir_op_udiv:
1014 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1015 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1016 break;
1017
1018 case nir_op_uadd_carry:
1019 unreachable("Should have been lowered by carry_to_arith().");
1020
1021 case nir_op_usub_borrow:
1022 unreachable("Should have been lowered by borrow_to_arith().");
1023
1024 case nir_op_umod:
1025 case nir_op_irem:
1026 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1027 * appears that our hardware just does the right thing for signed
1028 * remainder.
1029 */
1030 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1031 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1032 break;
1033
1034 case nir_op_imod: {
1035 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1036 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1037
1038 /* Math instructions don't support conditional mod */
1039 inst = bld.MOV(bld.null_reg_d(), result);
1040 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1041
1042 /* Now, we need to determine if signs of the sources are different.
1043 * When we XOR the sources, the top bit is 0 if they are the same and 1
1044 * if they are different. We can then use a conditional modifier to
1045 * turn that into a predicate. This leads us to an XOR.l instruction.
1046 *
1047 * Technically, according to the PRM, you're not allowed to use .l on a
1048 * XOR instruction. However, emperical experiments and Curro's reading
1049 * of the simulator source both indicate that it's safe.
1050 */
1051 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1052 inst = bld.XOR(tmp, op[0], op[1]);
1053 inst->predicate = BRW_PREDICATE_NORMAL;
1054 inst->conditional_mod = BRW_CONDITIONAL_L;
1055
1056 /* If the result of the initial remainder operation is non-zero and the
1057 * two sources have different signs, add in a copy of op[1] to get the
1058 * final integer modulus value.
1059 */
1060 inst = bld.ADD(result, result, op[1]);
1061 inst->predicate = BRW_PREDICATE_NORMAL;
1062 break;
1063 }
1064
1065 case nir_op_flt32:
1066 case nir_op_fge32:
1067 case nir_op_feq32:
1068 case nir_op_fne32: {
1069 fs_reg dest = result;
1070
1071 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1072 if (bit_size != 32)
1073 dest = bld.vgrf(op[0].type, 1);
1074
1075 brw_conditional_mod cond;
1076 switch (instr->op) {
1077 case nir_op_flt32:
1078 cond = BRW_CONDITIONAL_L;
1079 break;
1080 case nir_op_fge32:
1081 cond = BRW_CONDITIONAL_GE;
1082 break;
1083 case nir_op_feq32:
1084 cond = BRW_CONDITIONAL_Z;
1085 break;
1086 case nir_op_fne32:
1087 cond = BRW_CONDITIONAL_NZ;
1088 break;
1089 default:
1090 unreachable("bad opcode");
1091 }
1092
1093 bld.CMP(dest, op[0], op[1], cond);
1094
1095 if (bit_size > 32) {
1096 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1097 } else if(bit_size < 32) {
1098 /* When we convert the result to 32-bit we need to be careful and do
1099 * it as a signed conversion to get sign extension (for 32-bit true)
1100 */
1101 const brw_reg_type src_type =
1102 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1103
1104 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1105 }
1106 break;
1107 }
1108
1109 case nir_op_ilt32:
1110 case nir_op_ult32:
1111 case nir_op_ige32:
1112 case nir_op_uge32:
1113 case nir_op_ieq32:
1114 case nir_op_ine32: {
1115 fs_reg dest = result;
1116
1117 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1118 if (bit_size != 32)
1119 dest = bld.vgrf(op[0].type, 1);
1120
1121 brw_conditional_mod cond;
1122 switch (instr->op) {
1123 case nir_op_ilt32:
1124 case nir_op_ult32:
1125 cond = BRW_CONDITIONAL_L;
1126 break;
1127 case nir_op_ige32:
1128 case nir_op_uge32:
1129 cond = BRW_CONDITIONAL_GE;
1130 break;
1131 case nir_op_ieq32:
1132 cond = BRW_CONDITIONAL_Z;
1133 break;
1134 case nir_op_ine32:
1135 cond = BRW_CONDITIONAL_NZ;
1136 break;
1137 default:
1138 unreachable("bad opcode");
1139 }
1140 bld.CMP(dest, op[0], op[1], cond);
1141
1142 if (bit_size > 32) {
1143 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1144 } else if (bit_size < 32) {
1145 /* When we convert the result to 32-bit we need to be careful and do
1146 * it as a signed conversion to get sign extension (for 32-bit true)
1147 */
1148 const brw_reg_type src_type =
1149 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1150
1151 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1152 }
1153 break;
1154 }
1155
1156 case nir_op_inot:
1157 if (devinfo->gen >= 8) {
1158 nir_alu_instr *const inot_src_instr =
1159 nir_src_as_alu_instr(&instr->src[0].src);
1160
1161 if (inot_src_instr != NULL &&
1162 (inot_src_instr->op == nir_op_ior ||
1163 inot_src_instr->op == nir_op_ixor ||
1164 inot_src_instr->op == nir_op_iand) &&
1165 !inot_src_instr->src[0].abs &&
1166 !inot_src_instr->src[0].negate &&
1167 !inot_src_instr->src[1].abs &&
1168 !inot_src_instr->src[1].negate) {
1169 /* The sources of the source logical instruction are now the
1170 * sources of the instruction that will be generated.
1171 */
1172 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1173 resolve_inot_sources(bld, inot_src_instr, op);
1174
1175 /* Smash all of the sources and destination to be signed. This
1176 * doesn't matter for the operation of the instruction, but cmod
1177 * propagation fails on unsigned sources with negation (due to
1178 * fs_inst::can_do_cmod returning false).
1179 */
1180 result.type =
1181 brw_type_for_nir_type(devinfo,
1182 (nir_alu_type)(nir_type_int |
1183 nir_dest_bit_size(instr->dest.dest)));
1184 op[0].type =
1185 brw_type_for_nir_type(devinfo,
1186 (nir_alu_type)(nir_type_int |
1187 nir_src_bit_size(inot_src_instr->src[0].src)));
1188 op[1].type =
1189 brw_type_for_nir_type(devinfo,
1190 (nir_alu_type)(nir_type_int |
1191 nir_src_bit_size(inot_src_instr->src[1].src)));
1192
1193 /* For XOR, only invert one of the sources. Arbitrarily choose
1194 * the first source.
1195 */
1196 op[0].negate = !op[0].negate;
1197 if (inot_src_instr->op != nir_op_ixor)
1198 op[1].negate = !op[1].negate;
1199
1200 switch (inot_src_instr->op) {
1201 case nir_op_ior:
1202 bld.AND(result, op[0], op[1]);
1203 return;
1204
1205 case nir_op_iand:
1206 bld.OR(result, op[0], op[1]);
1207 return;
1208
1209 case nir_op_ixor:
1210 bld.XOR(result, op[0], op[1]);
1211 return;
1212
1213 default:
1214 unreachable("impossible opcode");
1215 }
1216 }
1217 op[0] = resolve_source_modifiers(op[0]);
1218 }
1219 bld.NOT(result, op[0]);
1220 break;
1221 case nir_op_ixor:
1222 if (devinfo->gen >= 8) {
1223 resolve_inot_sources(bld, instr, op);
1224 }
1225 bld.XOR(result, op[0], op[1]);
1226 break;
1227 case nir_op_ior:
1228 if (devinfo->gen >= 8) {
1229 resolve_inot_sources(bld, instr, op);
1230 }
1231 bld.OR(result, op[0], op[1]);
1232 break;
1233 case nir_op_iand:
1234 if (devinfo->gen >= 8) {
1235 resolve_inot_sources(bld, instr, op);
1236 }
1237 bld.AND(result, op[0], op[1]);
1238 break;
1239
1240 case nir_op_fdot2:
1241 case nir_op_fdot3:
1242 case nir_op_fdot4:
1243 case nir_op_b32all_fequal2:
1244 case nir_op_b32all_iequal2:
1245 case nir_op_b32all_fequal3:
1246 case nir_op_b32all_iequal3:
1247 case nir_op_b32all_fequal4:
1248 case nir_op_b32all_iequal4:
1249 case nir_op_b32any_fnequal2:
1250 case nir_op_b32any_inequal2:
1251 case nir_op_b32any_fnequal3:
1252 case nir_op_b32any_inequal3:
1253 case nir_op_b32any_fnequal4:
1254 case nir_op_b32any_inequal4:
1255 unreachable("Lowered by nir_lower_alu_reductions");
1256
1257 case nir_op_fnoise1_1:
1258 case nir_op_fnoise1_2:
1259 case nir_op_fnoise1_3:
1260 case nir_op_fnoise1_4:
1261 case nir_op_fnoise2_1:
1262 case nir_op_fnoise2_2:
1263 case nir_op_fnoise2_3:
1264 case nir_op_fnoise2_4:
1265 case nir_op_fnoise3_1:
1266 case nir_op_fnoise3_2:
1267 case nir_op_fnoise3_3:
1268 case nir_op_fnoise3_4:
1269 case nir_op_fnoise4_1:
1270 case nir_op_fnoise4_2:
1271 case nir_op_fnoise4_3:
1272 case nir_op_fnoise4_4:
1273 unreachable("not reached: should be handled by lower_noise");
1274
1275 case nir_op_ldexp:
1276 unreachable("not reached: should be handled by ldexp_to_arith()");
1277
1278 case nir_op_fsqrt:
1279 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1280 inst->saturate = instr->dest.saturate;
1281 break;
1282
1283 case nir_op_frsq:
1284 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1285 inst->saturate = instr->dest.saturate;
1286 break;
1287
1288 case nir_op_i2b32:
1289 case nir_op_f2b32: {
1290 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1291 if (bit_size == 64) {
1292 /* two-argument instructions can't take 64-bit immediates */
1293 fs_reg zero;
1294 fs_reg tmp;
1295
1296 if (instr->op == nir_op_f2b32) {
1297 zero = vgrf(glsl_type::double_type);
1298 tmp = vgrf(glsl_type::double_type);
1299 bld.MOV(zero, setup_imm_df(bld, 0.0));
1300 } else {
1301 zero = vgrf(glsl_type::int64_t_type);
1302 tmp = vgrf(glsl_type::int64_t_type);
1303 bld.MOV(zero, brw_imm_q(0));
1304 }
1305
1306 /* A SIMD16 execution needs to be split in two instructions, so use
1307 * a vgrf instead of the flag register as dst so instruction splitting
1308 * works
1309 */
1310 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1311 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1312 } else {
1313 fs_reg zero;
1314 if (bit_size == 32) {
1315 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1316 } else {
1317 assert(bit_size == 16);
1318 zero = instr->op == nir_op_f2b32 ?
1319 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1320 }
1321 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1322 }
1323 break;
1324 }
1325
1326 case nir_op_ftrunc:
1327 inst = bld.RNDZ(result, op[0]);
1328 inst->saturate = instr->dest.saturate;
1329 break;
1330
1331 case nir_op_fceil: {
1332 op[0].negate = !op[0].negate;
1333 fs_reg temp = vgrf(glsl_type::float_type);
1334 bld.RNDD(temp, op[0]);
1335 temp.negate = true;
1336 inst = bld.MOV(result, temp);
1337 inst->saturate = instr->dest.saturate;
1338 break;
1339 }
1340 case nir_op_ffloor:
1341 inst = bld.RNDD(result, op[0]);
1342 inst->saturate = instr->dest.saturate;
1343 break;
1344 case nir_op_ffract:
1345 inst = bld.FRC(result, op[0]);
1346 inst->saturate = instr->dest.saturate;
1347 break;
1348 case nir_op_fround_even:
1349 inst = bld.RNDE(result, op[0]);
1350 inst->saturate = instr->dest.saturate;
1351 break;
1352
1353 case nir_op_fquantize2f16: {
1354 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1355 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1356 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1357
1358 /* The destination stride must be at least as big as the source stride. */
1359 tmp16.type = BRW_REGISTER_TYPE_W;
1360 tmp16.stride = 2;
1361
1362 /* Check for denormal */
1363 fs_reg abs_src0 = op[0];
1364 abs_src0.abs = true;
1365 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1366 BRW_CONDITIONAL_L);
1367 /* Get the appropriately signed zero */
1368 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1369 retype(op[0], BRW_REGISTER_TYPE_UD),
1370 brw_imm_ud(0x80000000));
1371 /* Do the actual F32 -> F16 -> F32 conversion */
1372 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1373 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1374 /* Select that or zero based on normal status */
1375 inst = bld.SEL(result, zero, tmp32);
1376 inst->predicate = BRW_PREDICATE_NORMAL;
1377 inst->saturate = instr->dest.saturate;
1378 break;
1379 }
1380
1381 case nir_op_imin:
1382 case nir_op_umin:
1383 case nir_op_fmin:
1384 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1385 inst->saturate = instr->dest.saturate;
1386 break;
1387
1388 case nir_op_imax:
1389 case nir_op_umax:
1390 case nir_op_fmax:
1391 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1392 inst->saturate = instr->dest.saturate;
1393 break;
1394
1395 case nir_op_pack_snorm_2x16:
1396 case nir_op_pack_snorm_4x8:
1397 case nir_op_pack_unorm_2x16:
1398 case nir_op_pack_unorm_4x8:
1399 case nir_op_unpack_snorm_2x16:
1400 case nir_op_unpack_snorm_4x8:
1401 case nir_op_unpack_unorm_2x16:
1402 case nir_op_unpack_unorm_4x8:
1403 case nir_op_unpack_half_2x16:
1404 case nir_op_pack_half_2x16:
1405 unreachable("not reached: should be handled by lower_packing_builtins");
1406
1407 case nir_op_unpack_half_2x16_split_x:
1408 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1409 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1410 inst->saturate = instr->dest.saturate;
1411 break;
1412 case nir_op_unpack_half_2x16_split_y:
1413 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1414 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1415 inst->saturate = instr->dest.saturate;
1416 break;
1417
1418 case nir_op_pack_64_2x32_split:
1419 case nir_op_pack_32_2x16_split:
1420 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1421 break;
1422
1423 case nir_op_unpack_64_2x32_split_x:
1424 case nir_op_unpack_64_2x32_split_y: {
1425 if (instr->op == nir_op_unpack_64_2x32_split_x)
1426 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1427 else
1428 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1429 break;
1430 }
1431
1432 case nir_op_unpack_32_2x16_split_x:
1433 case nir_op_unpack_32_2x16_split_y: {
1434 if (instr->op == nir_op_unpack_32_2x16_split_x)
1435 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1436 else
1437 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1438 break;
1439 }
1440
1441 case nir_op_fpow:
1442 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1443 inst->saturate = instr->dest.saturate;
1444 break;
1445
1446 case nir_op_bitfield_reverse:
1447 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1448 bld.BFREV(result, op[0]);
1449 break;
1450
1451 case nir_op_bit_count:
1452 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1453 bld.CBIT(result, op[0]);
1454 break;
1455
1456 case nir_op_ufind_msb: {
1457 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1458 emit_find_msb_using_lzd(bld, result, op[0], false);
1459 break;
1460 }
1461
1462 case nir_op_ifind_msb: {
1463 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1464
1465 if (devinfo->gen < 7) {
1466 emit_find_msb_using_lzd(bld, result, op[0], true);
1467 } else {
1468 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1469
1470 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1471 * count from the LSB side. If FBH didn't return an error
1472 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1473 * count into an LSB count.
1474 */
1475 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1476
1477 inst = bld.ADD(result, result, brw_imm_d(31));
1478 inst->predicate = BRW_PREDICATE_NORMAL;
1479 inst->src[0].negate = true;
1480 }
1481 break;
1482 }
1483
1484 case nir_op_find_lsb:
1485 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1486
1487 if (devinfo->gen < 7) {
1488 fs_reg temp = vgrf(glsl_type::int_type);
1489
1490 /* (x & -x) generates a value that consists of only the LSB of x.
1491 * For all powers of 2, findMSB(y) == findLSB(y).
1492 */
1493 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1494 fs_reg negated_src = src;
1495
1496 /* One must be negated, and the other must be non-negated. It
1497 * doesn't matter which is which.
1498 */
1499 negated_src.negate = true;
1500 src.negate = false;
1501
1502 bld.AND(temp, src, negated_src);
1503 emit_find_msb_using_lzd(bld, result, temp, false);
1504 } else {
1505 bld.FBL(result, op[0]);
1506 }
1507 break;
1508
1509 case nir_op_ubitfield_extract:
1510 case nir_op_ibitfield_extract:
1511 unreachable("should have been lowered");
1512 case nir_op_ubfe:
1513 case nir_op_ibfe:
1514 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1515 bld.BFE(result, op[2], op[1], op[0]);
1516 break;
1517 case nir_op_bfm:
1518 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1519 bld.BFI1(result, op[0], op[1]);
1520 break;
1521 case nir_op_bfi:
1522 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1523 bld.BFI2(result, op[0], op[1], op[2]);
1524 break;
1525
1526 case nir_op_bitfield_insert:
1527 unreachable("not reached: should have been lowered");
1528
1529 case nir_op_ishl:
1530 bld.SHL(result, op[0], op[1]);
1531 break;
1532 case nir_op_ishr:
1533 bld.ASR(result, op[0], op[1]);
1534 break;
1535 case nir_op_ushr:
1536 bld.SHR(result, op[0], op[1]);
1537 break;
1538
1539 case nir_op_pack_half_2x16_split:
1540 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1541 break;
1542
1543 case nir_op_ffma:
1544 inst = bld.MAD(result, op[2], op[1], op[0]);
1545 inst->saturate = instr->dest.saturate;
1546 break;
1547
1548 case nir_op_flrp:
1549 inst = bld.LRP(result, op[0], op[1], op[2]);
1550 inst->saturate = instr->dest.saturate;
1551 break;
1552
1553 case nir_op_b32csel:
1554 if (optimize_frontfacing_ternary(instr, result))
1555 return;
1556
1557 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1558 inst = bld.SEL(result, op[1], op[2]);
1559 inst->predicate = BRW_PREDICATE_NORMAL;
1560 break;
1561
1562 case nir_op_extract_u8:
1563 case nir_op_extract_i8: {
1564 unsigned byte = nir_src_as_uint(instr->src[1].src);
1565
1566 /* The PRMs say:
1567 *
1568 * BDW+
1569 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1570 * Use two instructions and a word or DWord intermediate integer type.
1571 */
1572 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1573 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1574
1575 if (instr->op == nir_op_extract_i8) {
1576 /* If we need to sign extend, extract to a word first */
1577 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1578 bld.MOV(w_temp, subscript(op[0], type, byte));
1579 bld.MOV(result, w_temp);
1580 } else {
1581 /* Otherwise use an AND with 0xff and a word type */
1582 bld.AND(result, subscript(op[0], type, byte / 2), brw_imm_uw(0xff));
1583 }
1584 } else {
1585 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1586 bld.MOV(result, subscript(op[0], type, byte));
1587 }
1588 break;
1589 }
1590
1591 case nir_op_extract_u16:
1592 case nir_op_extract_i16: {
1593 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1594 unsigned word = nir_src_as_uint(instr->src[1].src);
1595 bld.MOV(result, subscript(op[0], type, word));
1596 break;
1597 }
1598
1599 default:
1600 unreachable("unhandled instruction");
1601 }
1602
1603 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1604 * to sign extend the low bit to 0/~0
1605 */
1606 if (devinfo->gen <= 5 &&
1607 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1608 fs_reg masked = vgrf(glsl_type::int_type);
1609 bld.AND(masked, result, brw_imm_d(1));
1610 masked.negate = true;
1611 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1612 }
1613 }
1614
1615 void
1616 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1617 nir_load_const_instr *instr)
1618 {
1619 const brw_reg_type reg_type =
1620 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1621 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1622
1623 switch (instr->def.bit_size) {
1624 case 8:
1625 for (unsigned i = 0; i < instr->def.num_components; i++)
1626 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value.i8[i]));
1627 break;
1628
1629 case 16:
1630 for (unsigned i = 0; i < instr->def.num_components; i++)
1631 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1632 break;
1633
1634 case 32:
1635 for (unsigned i = 0; i < instr->def.num_components; i++)
1636 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1637 break;
1638
1639 case 64:
1640 assert(devinfo->gen >= 7);
1641 if (devinfo->gen == 7) {
1642 /* We don't get 64-bit integer types until gen8 */
1643 for (unsigned i = 0; i < instr->def.num_components; i++) {
1644 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1645 setup_imm_df(bld, instr->value.f64[i]));
1646 }
1647 } else {
1648 for (unsigned i = 0; i < instr->def.num_components; i++)
1649 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1650 }
1651 break;
1652
1653 default:
1654 unreachable("Invalid bit size");
1655 }
1656
1657 nir_ssa_values[instr->def.index] = reg;
1658 }
1659
1660 fs_reg
1661 fs_visitor::get_nir_src(const nir_src &src)
1662 {
1663 fs_reg reg;
1664 if (src.is_ssa) {
1665 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1666 const brw_reg_type reg_type =
1667 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1668 reg = bld.vgrf(reg_type, src.ssa->num_components);
1669 } else {
1670 reg = nir_ssa_values[src.ssa->index];
1671 }
1672 } else {
1673 /* We don't handle indirects on locals */
1674 assert(src.reg.indirect == NULL);
1675 reg = offset(nir_locals[src.reg.reg->index], bld,
1676 src.reg.base_offset * src.reg.reg->num_components);
1677 }
1678
1679 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1680 /* The only 64-bit type available on gen7 is DF, so use that. */
1681 reg.type = BRW_REGISTER_TYPE_DF;
1682 } else {
1683 /* To avoid floating-point denorm flushing problems, set the type by
1684 * default to an integer type - instructions that need floating point
1685 * semantics will set this to F if they need to
1686 */
1687 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1688 BRW_REGISTER_TYPE_D);
1689 }
1690
1691 return reg;
1692 }
1693
1694 /**
1695 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1696 *
1697 * This function should not be called on any value which may be 64 bits.
1698 * We could theoretically support 64-bit on gen8+ but we choose not to
1699 * because it wouldn't work in general (no gen7 support) and there are
1700 * enough restrictions in 64-bit immediates that you can't take the return
1701 * value and treat it the same as the result of get_nir_src().
1702 */
1703 fs_reg
1704 fs_visitor::get_nir_src_imm(const nir_src &src)
1705 {
1706 assert(nir_src_bit_size(src) == 32);
1707 return nir_src_is_const(src) ?
1708 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1709 }
1710
1711 fs_reg
1712 fs_visitor::get_nir_dest(const nir_dest &dest)
1713 {
1714 if (dest.is_ssa) {
1715 const brw_reg_type reg_type =
1716 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1717 dest.ssa.bit_size == 8 ?
1718 BRW_REGISTER_TYPE_D :
1719 BRW_REGISTER_TYPE_F);
1720 nir_ssa_values[dest.ssa.index] =
1721 bld.vgrf(reg_type, dest.ssa.num_components);
1722 return nir_ssa_values[dest.ssa.index];
1723 } else {
1724 /* We don't handle indirects on locals */
1725 assert(dest.reg.indirect == NULL);
1726 return offset(nir_locals[dest.reg.reg->index], bld,
1727 dest.reg.base_offset * dest.reg.reg->num_components);
1728 }
1729 }
1730
1731 void
1732 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1733 unsigned wr_mask)
1734 {
1735 for (unsigned i = 0; i < 4; i++) {
1736 if (!((wr_mask >> i) & 1))
1737 continue;
1738
1739 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1740 new_inst->dst = offset(new_inst->dst, bld, i);
1741 for (unsigned j = 0; j < new_inst->sources; j++)
1742 if (new_inst->src[j].file == VGRF)
1743 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1744
1745 bld.emit(new_inst);
1746 }
1747 }
1748
1749 static fs_inst *
1750 emit_pixel_interpolater_send(const fs_builder &bld,
1751 enum opcode opcode,
1752 const fs_reg &dst,
1753 const fs_reg &src,
1754 const fs_reg &desc,
1755 glsl_interp_mode interpolation)
1756 {
1757 struct brw_wm_prog_data *wm_prog_data =
1758 brw_wm_prog_data(bld.shader->stage_prog_data);
1759
1760 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1761 /* 2 floats per slot returned */
1762 inst->size_written = 2 * dst.component_size(inst->exec_size);
1763 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1764
1765 wm_prog_data->pulls_bary = true;
1766
1767 return inst;
1768 }
1769
1770 /**
1771 * Computes 1 << x, given a D/UD register containing some value x.
1772 */
1773 static fs_reg
1774 intexp2(const fs_builder &bld, const fs_reg &x)
1775 {
1776 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1777
1778 fs_reg result = bld.vgrf(x.type, 1);
1779 fs_reg one = bld.vgrf(x.type, 1);
1780
1781 bld.MOV(one, retype(brw_imm_d(1), one.type));
1782 bld.SHL(result, one, x);
1783 return result;
1784 }
1785
1786 void
1787 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1788 {
1789 assert(stage == MESA_SHADER_GEOMETRY);
1790
1791 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1792
1793 if (gs_compile->control_data_header_size_bits == 0)
1794 return;
1795
1796 /* We can only do EndPrimitive() functionality when the control data
1797 * consists of cut bits. Fortunately, the only time it isn't is when the
1798 * output type is points, in which case EndPrimitive() is a no-op.
1799 */
1800 if (gs_prog_data->control_data_format !=
1801 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1802 return;
1803 }
1804
1805 /* Cut bits use one bit per vertex. */
1806 assert(gs_compile->control_data_bits_per_vertex == 1);
1807
1808 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1809 vertex_count.type = BRW_REGISTER_TYPE_UD;
1810
1811 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1812 * vertex n, 0 otherwise. So all we need to do here is mark bit
1813 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1814 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1815 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1816 *
1817 * Note that if EndPrimitive() is called before emitting any vertices, this
1818 * will cause us to set bit 31 of the control_data_bits register to 1.
1819 * That's fine because:
1820 *
1821 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1822 * output, so the hardware will ignore cut bit 31.
1823 *
1824 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1825 * last vertex, so setting cut bit 31 has no effect (since the primitive
1826 * is automatically ended when the GS terminates).
1827 *
1828 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1829 * control_data_bits register to 0 when the first vertex is emitted.
1830 */
1831
1832 const fs_builder abld = bld.annotate("end primitive");
1833
1834 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1835 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1836 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1837 fs_reg mask = intexp2(abld, prev_count);
1838 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1839 * attention to the lower 5 bits of its second source argument, so on this
1840 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1841 * ((vertex_count - 1) % 32).
1842 */
1843 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1844 }
1845
1846 void
1847 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1848 {
1849 assert(stage == MESA_SHADER_GEOMETRY);
1850 assert(gs_compile->control_data_bits_per_vertex != 0);
1851
1852 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1853
1854 const fs_builder abld = bld.annotate("emit control data bits");
1855 const fs_builder fwa_bld = bld.exec_all();
1856
1857 /* We use a single UD register to accumulate control data bits (32 bits
1858 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1859 * at a time.
1860 *
1861 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1862 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1863 * use the Channel Mask phase to enable/disable which DWord within that
1864 * group to write. (Remember, different SIMD8 channels may have emitted
1865 * different numbers of vertices, so we may need per-slot offsets.)
1866 *
1867 * Channel masking presents an annoying problem: we may have to replicate
1868 * the data up to 4 times:
1869 *
1870 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1871 *
1872 * To avoid penalizing shaders that emit a small number of vertices, we
1873 * can avoid these sometimes: if the size of the control data header is
1874 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1875 * land in the same 128-bit group, so we can skip per-slot offsets.
1876 *
1877 * Similarly, if the control data header is <= 32 bits, there is only one
1878 * DWord, so we can skip channel masks.
1879 */
1880 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1881
1882 fs_reg channel_mask, per_slot_offset;
1883
1884 if (gs_compile->control_data_header_size_bits > 32) {
1885 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1886 channel_mask = vgrf(glsl_type::uint_type);
1887 }
1888
1889 if (gs_compile->control_data_header_size_bits > 128) {
1890 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1891 per_slot_offset = vgrf(glsl_type::uint_type);
1892 }
1893
1894 /* Figure out which DWord we're trying to write to using the formula:
1895 *
1896 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1897 *
1898 * Since bits_per_vertex is a power of two, and is known at compile
1899 * time, this can be optimized to:
1900 *
1901 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1902 */
1903 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1904 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1905 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1906 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1907 unsigned log2_bits_per_vertex =
1908 util_last_bit(gs_compile->control_data_bits_per_vertex);
1909 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1910
1911 if (per_slot_offset.file != BAD_FILE) {
1912 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1913 * the appropriate OWord within the control data header.
1914 */
1915 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1916 }
1917
1918 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1919 * write to the appropriate DWORD within the OWORD.
1920 */
1921 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1922 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1923 channel_mask = intexp2(fwa_bld, channel);
1924 /* Then the channel masks need to be in bits 23:16. */
1925 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1926 }
1927
1928 /* Store the control data bits in the message payload and send it. */
1929 unsigned mlen = 2;
1930 if (channel_mask.file != BAD_FILE)
1931 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1932 if (per_slot_offset.file != BAD_FILE)
1933 mlen++;
1934
1935 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1936 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1937 unsigned i = 0;
1938 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1939 if (per_slot_offset.file != BAD_FILE)
1940 sources[i++] = per_slot_offset;
1941 if (channel_mask.file != BAD_FILE)
1942 sources[i++] = channel_mask;
1943 while (i < mlen) {
1944 sources[i++] = this->control_data_bits;
1945 }
1946
1947 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1948 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1949 inst->mlen = mlen;
1950 /* We need to increment Global Offset by 256-bits to make room for
1951 * Broadwell's extra "Vertex Count" payload at the beginning of the
1952 * URB entry. Since this is an OWord message, Global Offset is counted
1953 * in 128-bit units, so we must set it to 2.
1954 */
1955 if (gs_prog_data->static_vertex_count == -1)
1956 inst->offset = 2;
1957 }
1958
1959 void
1960 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1961 unsigned stream_id)
1962 {
1963 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1964
1965 /* Note: we are calling this *before* increasing vertex_count, so
1966 * this->vertex_count == vertex_count - 1 in the formula above.
1967 */
1968
1969 /* Stream mode uses 2 bits per vertex */
1970 assert(gs_compile->control_data_bits_per_vertex == 2);
1971
1972 /* Must be a valid stream */
1973 assert(stream_id < MAX_VERTEX_STREAMS);
1974
1975 /* Control data bits are initialized to 0 so we don't have to set any
1976 * bits when sending vertices to stream 0.
1977 */
1978 if (stream_id == 0)
1979 return;
1980
1981 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1982
1983 /* reg::sid = stream_id */
1984 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1985 abld.MOV(sid, brw_imm_ud(stream_id));
1986
1987 /* reg:shift_count = 2 * (vertex_count - 1) */
1988 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1989 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1990
1991 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1992 * attention to the lower 5 bits of its second source argument, so on this
1993 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1994 * stream_id << ((2 * (vertex_count - 1)) % 32).
1995 */
1996 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1997 abld.SHL(mask, sid, shift_count);
1998 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1999 }
2000
2001 void
2002 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2003 unsigned stream_id)
2004 {
2005 assert(stage == MESA_SHADER_GEOMETRY);
2006
2007 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2008
2009 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2010 vertex_count.type = BRW_REGISTER_TYPE_UD;
2011
2012 /* Haswell and later hardware ignores the "Render Stream Select" bits
2013 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2014 * and instead sends all primitives down the pipeline for rasterization.
2015 * If the SOL stage is enabled, "Render Stream Select" is honored and
2016 * primitives bound to non-zero streams are discarded after stream output.
2017 *
2018 * Since the only purpose of primives sent to non-zero streams is to
2019 * be recorded by transform feedback, we can simply discard all geometry
2020 * bound to these streams when transform feedback is disabled.
2021 */
2022 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2023 return;
2024
2025 /* If we're outputting 32 control data bits or less, then we can wait
2026 * until the shader is over to output them all. Otherwise we need to
2027 * output them as we go. Now is the time to do it, since we're about to
2028 * output the vertex_count'th vertex, so it's guaranteed that the
2029 * control data bits associated with the (vertex_count - 1)th vertex are
2030 * correct.
2031 */
2032 if (gs_compile->control_data_header_size_bits > 32) {
2033 const fs_builder abld =
2034 bld.annotate("emit vertex: emit control data bits");
2035
2036 /* Only emit control data bits if we've finished accumulating a batch
2037 * of 32 bits. This is the case when:
2038 *
2039 * (vertex_count * bits_per_vertex) % 32 == 0
2040 *
2041 * (in other words, when the last 5 bits of vertex_count *
2042 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2043 * integer n (which is always the case, since bits_per_vertex is
2044 * always 1 or 2), this is equivalent to requiring that the last 5-n
2045 * bits of vertex_count are 0:
2046 *
2047 * vertex_count & (2^(5-n) - 1) == 0
2048 *
2049 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2050 * equivalent to:
2051 *
2052 * vertex_count & (32 / bits_per_vertex - 1) == 0
2053 *
2054 * TODO: If vertex_count is an immediate, we could do some of this math
2055 * at compile time...
2056 */
2057 fs_inst *inst =
2058 abld.AND(bld.null_reg_d(), vertex_count,
2059 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2060 inst->conditional_mod = BRW_CONDITIONAL_Z;
2061
2062 abld.IF(BRW_PREDICATE_NORMAL);
2063 /* If vertex_count is 0, then no control data bits have been
2064 * accumulated yet, so we can skip emitting them.
2065 */
2066 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2067 BRW_CONDITIONAL_NEQ);
2068 abld.IF(BRW_PREDICATE_NORMAL);
2069 emit_gs_control_data_bits(vertex_count);
2070 abld.emit(BRW_OPCODE_ENDIF);
2071
2072 /* Reset control_data_bits to 0 so we can start accumulating a new
2073 * batch.
2074 *
2075 * Note: in the case where vertex_count == 0, this neutralizes the
2076 * effect of any call to EndPrimitive() that the shader may have
2077 * made before outputting its first vertex.
2078 */
2079 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2080 inst->force_writemask_all = true;
2081 abld.emit(BRW_OPCODE_ENDIF);
2082 }
2083
2084 emit_urb_writes(vertex_count);
2085
2086 /* In stream mode we have to set control data bits for all vertices
2087 * unless we have disabled control data bits completely (which we do
2088 * do for GL_POINTS outputs that don't use streams).
2089 */
2090 if (gs_compile->control_data_header_size_bits > 0 &&
2091 gs_prog_data->control_data_format ==
2092 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2093 set_gs_stream_control_data_bits(vertex_count, stream_id);
2094 }
2095 }
2096
2097 void
2098 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2099 const nir_src &vertex_src,
2100 unsigned base_offset,
2101 const nir_src &offset_src,
2102 unsigned num_components,
2103 unsigned first_component)
2104 {
2105 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2106 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2107
2108 /* TODO: figure out push input layout for invocations == 1 */
2109 /* TODO: make this work with 64-bit inputs */
2110 if (gs_prog_data->invocations == 1 &&
2111 type_sz(dst.type) <= 4 &&
2112 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2113 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2114 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2115 nir_src_as_uint(vertex_src) * push_reg_count;
2116 for (unsigned i = 0; i < num_components; i++) {
2117 bld.MOV(offset(dst, bld, i),
2118 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2119 }
2120 return;
2121 }
2122
2123 /* Resort to the pull model. Ensure the VUE handles are provided. */
2124 assert(gs_prog_data->base.include_vue_handles);
2125
2126 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2127 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2128
2129 if (gs_prog_data->invocations == 1) {
2130 if (nir_src_is_const(vertex_src)) {
2131 /* The vertex index is constant; just select the proper URB handle. */
2132 icp_handle =
2133 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2134 BRW_REGISTER_TYPE_UD);
2135 } else {
2136 /* The vertex index is non-constant. We need to use indirect
2137 * addressing to fetch the proper URB handle.
2138 *
2139 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2140 * indicating that channel <n> should read the handle from
2141 * DWord <n>. We convert that to bytes by multiplying by 4.
2142 *
2143 * Next, we convert the vertex index to bytes by multiplying
2144 * by 32 (shifting by 5), and add the two together. This is
2145 * the final indirect byte offset.
2146 */
2147 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2148 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2149 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2150 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2151
2152 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2153 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2154 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2155 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2156 /* Convert vertex_index to bytes (multiply by 32) */
2157 bld.SHL(vertex_offset_bytes,
2158 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2159 brw_imm_ud(5u));
2160 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2161
2162 /* Use first_icp_handle as the base offset. There is one register
2163 * of URB handles per vertex, so inform the register allocator that
2164 * we might read up to nir->info.gs.vertices_in registers.
2165 */
2166 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2167 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2168 fs_reg(icp_offset_bytes),
2169 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2170 }
2171 } else {
2172 assert(gs_prog_data->invocations > 1);
2173
2174 if (nir_src_is_const(vertex_src)) {
2175 unsigned vertex = nir_src_as_uint(vertex_src);
2176 assert(devinfo->gen >= 9 || vertex <= 5);
2177 bld.MOV(icp_handle,
2178 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2179 BRW_REGISTER_TYPE_UD));
2180 } else {
2181 /* The vertex index is non-constant. We need to use indirect
2182 * addressing to fetch the proper URB handle.
2183 *
2184 */
2185 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2186
2187 /* Convert vertex_index to bytes (multiply by 4) */
2188 bld.SHL(icp_offset_bytes,
2189 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2190 brw_imm_ud(2u));
2191
2192 /* Use first_icp_handle as the base offset. There is one DWord
2193 * of URB handles per vertex, so inform the register allocator that
2194 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2195 */
2196 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2197 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2198 fs_reg(icp_offset_bytes),
2199 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2200 REG_SIZE));
2201 }
2202 }
2203
2204 fs_inst *inst;
2205
2206 fs_reg tmp_dst = dst;
2207 fs_reg indirect_offset = get_nir_src(offset_src);
2208 unsigned num_iterations = 1;
2209 unsigned orig_num_components = num_components;
2210
2211 if (type_sz(dst.type) == 8) {
2212 if (num_components > 2) {
2213 num_iterations = 2;
2214 num_components = 2;
2215 }
2216 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2217 tmp_dst = tmp;
2218 first_component = first_component / 2;
2219 }
2220
2221 for (unsigned iter = 0; iter < num_iterations; iter++) {
2222 if (nir_src_is_const(offset_src)) {
2223 /* Constant indexing - use global offset. */
2224 if (first_component != 0) {
2225 unsigned read_components = num_components + first_component;
2226 fs_reg tmp = bld.vgrf(dst.type, read_components);
2227 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2228 inst->size_written = read_components *
2229 tmp.component_size(inst->exec_size);
2230 for (unsigned i = 0; i < num_components; i++) {
2231 bld.MOV(offset(tmp_dst, bld, i),
2232 offset(tmp, bld, i + first_component));
2233 }
2234 } else {
2235 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2236 icp_handle);
2237 inst->size_written = num_components *
2238 tmp_dst.component_size(inst->exec_size);
2239 }
2240 inst->offset = base_offset + nir_src_as_uint(offset_src);
2241 inst->mlen = 1;
2242 } else {
2243 /* Indirect indexing - use per-slot offsets as well. */
2244 const fs_reg srcs[] = { icp_handle, indirect_offset };
2245 unsigned read_components = num_components + first_component;
2246 fs_reg tmp = bld.vgrf(dst.type, read_components);
2247 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2248 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2249 if (first_component != 0) {
2250 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2251 payload);
2252 inst->size_written = read_components *
2253 tmp.component_size(inst->exec_size);
2254 for (unsigned i = 0; i < num_components; i++) {
2255 bld.MOV(offset(tmp_dst, bld, i),
2256 offset(tmp, bld, i + first_component));
2257 }
2258 } else {
2259 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2260 payload);
2261 inst->size_written = num_components *
2262 tmp_dst.component_size(inst->exec_size);
2263 }
2264 inst->offset = base_offset;
2265 inst->mlen = 2;
2266 }
2267
2268 if (type_sz(dst.type) == 8) {
2269 shuffle_from_32bit_read(bld,
2270 offset(dst, bld, iter * 2),
2271 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2272 0,
2273 num_components);
2274 }
2275
2276 if (num_iterations > 1) {
2277 num_components = orig_num_components - 2;
2278 if(nir_src_is_const(offset_src)) {
2279 base_offset++;
2280 } else {
2281 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2282 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2283 indirect_offset = new_indirect;
2284 }
2285 }
2286 }
2287 }
2288
2289 fs_reg
2290 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2291 {
2292 nir_src *offset_src = nir_get_io_offset_src(instr);
2293
2294 if (nir_src_is_const(*offset_src)) {
2295 /* The only constant offset we should find is 0. brw_nir.c's
2296 * add_const_offset_to_base() will fold other constant offsets
2297 * into instr->const_index[0].
2298 */
2299 assert(nir_src_as_uint(*offset_src) == 0);
2300 return fs_reg();
2301 }
2302
2303 return get_nir_src(*offset_src);
2304 }
2305
2306 void
2307 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2308 nir_intrinsic_instr *instr)
2309 {
2310 assert(stage == MESA_SHADER_VERTEX);
2311
2312 fs_reg dest;
2313 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2314 dest = get_nir_dest(instr->dest);
2315
2316 switch (instr->intrinsic) {
2317 case nir_intrinsic_load_vertex_id:
2318 case nir_intrinsic_load_base_vertex:
2319 unreachable("should be lowered by nir_lower_system_values()");
2320
2321 case nir_intrinsic_load_input: {
2322 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2323 unsigned first_component = nir_intrinsic_component(instr);
2324 unsigned num_components = instr->num_components;
2325
2326 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2327
2328 if (type_sz(dest.type) == 8)
2329 first_component /= 2;
2330
2331 /* For 16-bit support maybe a temporary will be needed to copy from
2332 * the ATTR file.
2333 */
2334 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2335 first_component, num_components);
2336 break;
2337 }
2338
2339 case nir_intrinsic_load_vertex_id_zero_base:
2340 case nir_intrinsic_load_instance_id:
2341 case nir_intrinsic_load_base_instance:
2342 case nir_intrinsic_load_draw_id:
2343 case nir_intrinsic_load_first_vertex:
2344 case nir_intrinsic_load_is_indexed_draw:
2345 unreachable("lowered by brw_nir_lower_vs_inputs");
2346
2347 default:
2348 nir_emit_intrinsic(bld, instr);
2349 break;
2350 }
2351 }
2352
2353 void
2354 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2355 nir_intrinsic_instr *instr)
2356 {
2357 assert(stage == MESA_SHADER_TESS_CTRL);
2358 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2359 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2360
2361 fs_reg dst;
2362 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2363 dst = get_nir_dest(instr->dest);
2364
2365 switch (instr->intrinsic) {
2366 case nir_intrinsic_load_primitive_id:
2367 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2368 break;
2369 case nir_intrinsic_load_invocation_id:
2370 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2371 break;
2372 case nir_intrinsic_load_patch_vertices_in:
2373 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2374 brw_imm_d(tcs_key->input_vertices));
2375 break;
2376
2377 case nir_intrinsic_barrier: {
2378 if (tcs_prog_data->instances == 1)
2379 break;
2380
2381 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2382 fs_reg m0_2 = component(m0, 2);
2383
2384 const fs_builder chanbld = bld.exec_all().group(1, 0);
2385
2386 /* Zero the message header */
2387 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2388
2389 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2390 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2391 brw_imm_ud(INTEL_MASK(16, 13)));
2392
2393 /* Shift it up to bits 27:24. */
2394 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2395
2396 /* Set the Barrier Count and the enable bit */
2397 chanbld.OR(m0_2, m0_2,
2398 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2399
2400 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2401 break;
2402 }
2403
2404 case nir_intrinsic_load_input:
2405 unreachable("nir_lower_io should never give us these.");
2406 break;
2407
2408 case nir_intrinsic_load_per_vertex_input: {
2409 fs_reg indirect_offset = get_indirect_offset(instr);
2410 unsigned imm_offset = instr->const_index[0];
2411
2412 const nir_src &vertex_src = instr->src[0];
2413
2414 fs_inst *inst;
2415
2416 fs_reg icp_handle;
2417
2418 if (nir_src_is_const(vertex_src)) {
2419 /* Emit a MOV to resolve <0,1,0> regioning. */
2420 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2421 unsigned vertex = nir_src_as_uint(vertex_src);
2422 bld.MOV(icp_handle,
2423 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2424 BRW_REGISTER_TYPE_UD));
2425 } else if (tcs_prog_data->instances == 1 &&
2426 vertex_src.is_ssa &&
2427 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2428 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2429 /* For the common case of only 1 instance, an array index of
2430 * gl_InvocationID means reading g1. Skip all the indirect work.
2431 */
2432 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2433 } else {
2434 /* The vertex index is non-constant. We need to use indirect
2435 * addressing to fetch the proper URB handle.
2436 */
2437 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2438
2439 /* Each ICP handle is a single DWord (4 bytes) */
2440 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2441 bld.SHL(vertex_offset_bytes,
2442 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2443 brw_imm_ud(2u));
2444
2445 /* Start at g1. We might read up to 4 registers. */
2446 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2447 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2448 brw_imm_ud(4 * REG_SIZE));
2449 }
2450
2451 /* We can only read two double components with each URB read, so
2452 * we send two read messages in that case, each one loading up to
2453 * two double components.
2454 */
2455 unsigned num_iterations = 1;
2456 unsigned num_components = instr->num_components;
2457 unsigned first_component = nir_intrinsic_component(instr);
2458 fs_reg orig_dst = dst;
2459 if (type_sz(dst.type) == 8) {
2460 first_component = first_component / 2;
2461 if (instr->num_components > 2) {
2462 num_iterations = 2;
2463 num_components = 2;
2464 }
2465
2466 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2467 dst = tmp;
2468 }
2469
2470 for (unsigned iter = 0; iter < num_iterations; iter++) {
2471 if (indirect_offset.file == BAD_FILE) {
2472 /* Constant indexing - use global offset. */
2473 if (first_component != 0) {
2474 unsigned read_components = num_components + first_component;
2475 fs_reg tmp = bld.vgrf(dst.type, read_components);
2476 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2477 for (unsigned i = 0; i < num_components; i++) {
2478 bld.MOV(offset(dst, bld, i),
2479 offset(tmp, bld, i + first_component));
2480 }
2481 } else {
2482 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2483 }
2484 inst->offset = imm_offset;
2485 inst->mlen = 1;
2486 } else {
2487 /* Indirect indexing - use per-slot offsets as well. */
2488 const fs_reg srcs[] = { icp_handle, indirect_offset };
2489 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2490 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2491 if (first_component != 0) {
2492 unsigned read_components = num_components + first_component;
2493 fs_reg tmp = bld.vgrf(dst.type, read_components);
2494 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2495 payload);
2496 for (unsigned i = 0; i < num_components; i++) {
2497 bld.MOV(offset(dst, bld, i),
2498 offset(tmp, bld, i + first_component));
2499 }
2500 } else {
2501 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2502 payload);
2503 }
2504 inst->offset = imm_offset;
2505 inst->mlen = 2;
2506 }
2507 inst->size_written = (num_components + first_component) *
2508 inst->dst.component_size(inst->exec_size);
2509
2510 /* If we are reading 64-bit data using 32-bit read messages we need
2511 * build proper 64-bit data elements by shuffling the low and high
2512 * 32-bit components around like we do for other things like UBOs
2513 * or SSBOs.
2514 */
2515 if (type_sz(dst.type) == 8) {
2516 shuffle_from_32bit_read(bld,
2517 offset(orig_dst, bld, iter * 2),
2518 retype(dst, BRW_REGISTER_TYPE_D),
2519 0, num_components);
2520 }
2521
2522 /* Copy the temporary to the destination to deal with writemasking.
2523 *
2524 * Also attempt to deal with gl_PointSize being in the .w component.
2525 */
2526 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2527 assert(type_sz(dst.type) < 8);
2528 inst->dst = bld.vgrf(dst.type, 4);
2529 inst->size_written = 4 * REG_SIZE;
2530 bld.MOV(dst, offset(inst->dst, bld, 3));
2531 }
2532
2533 /* If we are loading double data and we need a second read message
2534 * adjust the write offset
2535 */
2536 if (num_iterations > 1) {
2537 num_components = instr->num_components - 2;
2538 imm_offset++;
2539 }
2540 }
2541 break;
2542 }
2543
2544 case nir_intrinsic_load_output:
2545 case nir_intrinsic_load_per_vertex_output: {
2546 fs_reg indirect_offset = get_indirect_offset(instr);
2547 unsigned imm_offset = instr->const_index[0];
2548 unsigned first_component = nir_intrinsic_component(instr);
2549
2550 fs_inst *inst;
2551 if (indirect_offset.file == BAD_FILE) {
2552 /* Replicate the patch handle to all enabled channels */
2553 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2554 bld.MOV(patch_handle,
2555 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2556
2557 {
2558 if (first_component != 0) {
2559 unsigned read_components =
2560 instr->num_components + first_component;
2561 fs_reg tmp = bld.vgrf(dst.type, read_components);
2562 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2563 patch_handle);
2564 inst->size_written = read_components * REG_SIZE;
2565 for (unsigned i = 0; i < instr->num_components; i++) {
2566 bld.MOV(offset(dst, bld, i),
2567 offset(tmp, bld, i + first_component));
2568 }
2569 } else {
2570 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2571 patch_handle);
2572 inst->size_written = instr->num_components * REG_SIZE;
2573 }
2574 inst->offset = imm_offset;
2575 inst->mlen = 1;
2576 }
2577 } else {
2578 /* Indirect indexing - use per-slot offsets as well. */
2579 const fs_reg srcs[] = {
2580 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2581 indirect_offset
2582 };
2583 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2584 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2585 if (first_component != 0) {
2586 unsigned read_components =
2587 instr->num_components + first_component;
2588 fs_reg tmp = bld.vgrf(dst.type, read_components);
2589 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2590 payload);
2591 inst->size_written = read_components * REG_SIZE;
2592 for (unsigned i = 0; i < instr->num_components; i++) {
2593 bld.MOV(offset(dst, bld, i),
2594 offset(tmp, bld, i + first_component));
2595 }
2596 } else {
2597 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2598 payload);
2599 inst->size_written = instr->num_components * REG_SIZE;
2600 }
2601 inst->offset = imm_offset;
2602 inst->mlen = 2;
2603 }
2604 break;
2605 }
2606
2607 case nir_intrinsic_store_output:
2608 case nir_intrinsic_store_per_vertex_output: {
2609 fs_reg value = get_nir_src(instr->src[0]);
2610 bool is_64bit = (instr->src[0].is_ssa ?
2611 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2612 fs_reg indirect_offset = get_indirect_offset(instr);
2613 unsigned imm_offset = instr->const_index[0];
2614 unsigned mask = instr->const_index[1];
2615 unsigned header_regs = 0;
2616 fs_reg srcs[7];
2617 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2618
2619 if (indirect_offset.file != BAD_FILE) {
2620 srcs[header_regs++] = indirect_offset;
2621 }
2622
2623 if (mask == 0)
2624 break;
2625
2626 unsigned num_components = util_last_bit(mask);
2627 enum opcode opcode;
2628
2629 /* We can only pack two 64-bit components in a single message, so send
2630 * 2 messages if we have more components
2631 */
2632 unsigned num_iterations = 1;
2633 unsigned iter_components = num_components;
2634 unsigned first_component = nir_intrinsic_component(instr);
2635 if (is_64bit) {
2636 first_component = first_component / 2;
2637 if (instr->num_components > 2) {
2638 num_iterations = 2;
2639 iter_components = 2;
2640 }
2641 }
2642
2643 mask = mask << first_component;
2644
2645 for (unsigned iter = 0; iter < num_iterations; iter++) {
2646 if (!is_64bit && mask != WRITEMASK_XYZW) {
2647 srcs[header_regs++] = brw_imm_ud(mask << 16);
2648 opcode = indirect_offset.file != BAD_FILE ?
2649 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2650 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2651 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2652 /* Expand the 64-bit mask to 32-bit channels. We only handle
2653 * two channels in each iteration, so we only care about X/Y.
2654 */
2655 unsigned mask32 = 0;
2656 if (mask & WRITEMASK_X)
2657 mask32 |= WRITEMASK_XY;
2658 if (mask & WRITEMASK_Y)
2659 mask32 |= WRITEMASK_ZW;
2660
2661 /* If the mask does not include any of the channels X or Y there
2662 * is nothing to do in this iteration. Move on to the next couple
2663 * of 64-bit channels.
2664 */
2665 if (!mask32) {
2666 mask >>= 2;
2667 imm_offset++;
2668 continue;
2669 }
2670
2671 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2672 opcode = indirect_offset.file != BAD_FILE ?
2673 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2674 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2675 } else {
2676 opcode = indirect_offset.file != BAD_FILE ?
2677 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2678 SHADER_OPCODE_URB_WRITE_SIMD8;
2679 }
2680
2681 for (unsigned i = 0; i < iter_components; i++) {
2682 if (!(mask & (1 << (i + first_component))))
2683 continue;
2684
2685 if (!is_64bit) {
2686 srcs[header_regs + i + first_component] = offset(value, bld, i);
2687 } else {
2688 /* We need to shuffle the 64-bit data to match the layout
2689 * expected by our 32-bit URB write messages. We use a temporary
2690 * for that.
2691 */
2692 unsigned channel = iter * 2 + i;
2693 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2694
2695 srcs[header_regs + (i + first_component) * 2] = dest;
2696 srcs[header_regs + (i + first_component) * 2 + 1] =
2697 offset(dest, bld, 1);
2698 }
2699 }
2700
2701 unsigned mlen =
2702 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2703 (is_64bit ? 2 * first_component : first_component);
2704 fs_reg payload =
2705 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2706 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2707
2708 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2709 inst->offset = imm_offset;
2710 inst->mlen = mlen;
2711
2712 /* If this is a 64-bit attribute, select the next two 64-bit channels
2713 * to be handled in the next iteration.
2714 */
2715 if (is_64bit) {
2716 mask >>= 2;
2717 imm_offset++;
2718 }
2719 }
2720 break;
2721 }
2722
2723 default:
2724 nir_emit_intrinsic(bld, instr);
2725 break;
2726 }
2727 }
2728
2729 void
2730 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2731 nir_intrinsic_instr *instr)
2732 {
2733 assert(stage == MESA_SHADER_TESS_EVAL);
2734 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2735
2736 fs_reg dest;
2737 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2738 dest = get_nir_dest(instr->dest);
2739
2740 switch (instr->intrinsic) {
2741 case nir_intrinsic_load_primitive_id:
2742 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2743 break;
2744 case nir_intrinsic_load_tess_coord:
2745 /* gl_TessCoord is part of the payload in g1-3 */
2746 for (unsigned i = 0; i < 3; i++) {
2747 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2748 }
2749 break;
2750
2751 case nir_intrinsic_load_input:
2752 case nir_intrinsic_load_per_vertex_input: {
2753 fs_reg indirect_offset = get_indirect_offset(instr);
2754 unsigned imm_offset = instr->const_index[0];
2755 unsigned first_component = nir_intrinsic_component(instr);
2756
2757 if (type_sz(dest.type) == 8) {
2758 first_component = first_component / 2;
2759 }
2760
2761 fs_inst *inst;
2762 if (indirect_offset.file == BAD_FILE) {
2763 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2764 * which is 16 registers (since each holds 2 vec4 slots).
2765 */
2766 unsigned slot_count = 1;
2767 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2768 slot_count++;
2769
2770 const unsigned max_push_slots = 32;
2771 if (imm_offset + slot_count <= max_push_slots) {
2772 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2773 for (int i = 0; i < instr->num_components; i++) {
2774 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2775 i + first_component;
2776 bld.MOV(offset(dest, bld, i), component(src, comp));
2777 }
2778
2779 tes_prog_data->base.urb_read_length =
2780 MAX2(tes_prog_data->base.urb_read_length,
2781 DIV_ROUND_UP(imm_offset + slot_count, 2));
2782 } else {
2783 /* Replicate the patch handle to all enabled channels */
2784 const fs_reg srcs[] = {
2785 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2786 };
2787 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2788 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2789
2790 if (first_component != 0) {
2791 unsigned read_components =
2792 instr->num_components + first_component;
2793 fs_reg tmp = bld.vgrf(dest.type, read_components);
2794 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2795 patch_handle);
2796 inst->size_written = read_components * REG_SIZE;
2797 for (unsigned i = 0; i < instr->num_components; i++) {
2798 bld.MOV(offset(dest, bld, i),
2799 offset(tmp, bld, i + first_component));
2800 }
2801 } else {
2802 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2803 patch_handle);
2804 inst->size_written = instr->num_components * REG_SIZE;
2805 }
2806 inst->mlen = 1;
2807 inst->offset = imm_offset;
2808 }
2809 } else {
2810 /* Indirect indexing - use per-slot offsets as well. */
2811
2812 /* We can only read two double components with each URB read, so
2813 * we send two read messages in that case, each one loading up to
2814 * two double components.
2815 */
2816 unsigned num_iterations = 1;
2817 unsigned num_components = instr->num_components;
2818 fs_reg orig_dest = dest;
2819 if (type_sz(dest.type) == 8) {
2820 if (instr->num_components > 2) {
2821 num_iterations = 2;
2822 num_components = 2;
2823 }
2824 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2825 dest = tmp;
2826 }
2827
2828 for (unsigned iter = 0; iter < num_iterations; iter++) {
2829 const fs_reg srcs[] = {
2830 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2831 indirect_offset
2832 };
2833 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2834 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2835
2836 if (first_component != 0) {
2837 unsigned read_components =
2838 num_components + first_component;
2839 fs_reg tmp = bld.vgrf(dest.type, read_components);
2840 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2841 payload);
2842 for (unsigned i = 0; i < num_components; i++) {
2843 bld.MOV(offset(dest, bld, i),
2844 offset(tmp, bld, i + first_component));
2845 }
2846 } else {
2847 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2848 payload);
2849 }
2850 inst->mlen = 2;
2851 inst->offset = imm_offset;
2852 inst->size_written = (num_components + first_component) *
2853 inst->dst.component_size(inst->exec_size);
2854
2855 /* If we are reading 64-bit data using 32-bit read messages we need
2856 * build proper 64-bit data elements by shuffling the low and high
2857 * 32-bit components around like we do for other things like UBOs
2858 * or SSBOs.
2859 */
2860 if (type_sz(dest.type) == 8) {
2861 shuffle_from_32bit_read(bld,
2862 offset(orig_dest, bld, iter * 2),
2863 retype(dest, BRW_REGISTER_TYPE_D),
2864 0, num_components);
2865 }
2866
2867 /* If we are loading double data and we need a second read message
2868 * adjust the offset
2869 */
2870 if (num_iterations > 1) {
2871 num_components = instr->num_components - 2;
2872 imm_offset++;
2873 }
2874 }
2875 }
2876 break;
2877 }
2878 default:
2879 nir_emit_intrinsic(bld, instr);
2880 break;
2881 }
2882 }
2883
2884 void
2885 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2886 nir_intrinsic_instr *instr)
2887 {
2888 assert(stage == MESA_SHADER_GEOMETRY);
2889 fs_reg indirect_offset;
2890
2891 fs_reg dest;
2892 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2893 dest = get_nir_dest(instr->dest);
2894
2895 switch (instr->intrinsic) {
2896 case nir_intrinsic_load_primitive_id:
2897 assert(stage == MESA_SHADER_GEOMETRY);
2898 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2899 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2900 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2901 break;
2902
2903 case nir_intrinsic_load_input:
2904 unreachable("load_input intrinsics are invalid for the GS stage");
2905
2906 case nir_intrinsic_load_per_vertex_input:
2907 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2908 instr->src[1], instr->num_components,
2909 nir_intrinsic_component(instr));
2910 break;
2911
2912 case nir_intrinsic_emit_vertex_with_counter:
2913 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2914 break;
2915
2916 case nir_intrinsic_end_primitive_with_counter:
2917 emit_gs_end_primitive(instr->src[0]);
2918 break;
2919
2920 case nir_intrinsic_set_vertex_count:
2921 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2922 break;
2923
2924 case nir_intrinsic_load_invocation_id: {
2925 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2926 assert(val.file != BAD_FILE);
2927 dest.type = val.type;
2928 bld.MOV(dest, val);
2929 break;
2930 }
2931
2932 default:
2933 nir_emit_intrinsic(bld, instr);
2934 break;
2935 }
2936 }
2937
2938 /**
2939 * Fetch the current render target layer index.
2940 */
2941 static fs_reg
2942 fetch_render_target_array_index(const fs_builder &bld)
2943 {
2944 if (bld.shader->devinfo->gen >= 6) {
2945 /* The render target array index is provided in the thread payload as
2946 * bits 26:16 of r0.0.
2947 */
2948 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
2949 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
2950 brw_imm_uw(0x7ff));
2951 return idx;
2952 } else {
2953 /* Pre-SNB we only ever render into the first layer of the framebuffer
2954 * since layered rendering is not implemented.
2955 */
2956 return brw_imm_ud(0);
2957 }
2958 }
2959
2960 /**
2961 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
2962 * framebuffer at the current fragment coordinates and sample index.
2963 */
2964 fs_inst *
2965 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
2966 unsigned target)
2967 {
2968 const struct gen_device_info *devinfo = bld.shader->devinfo;
2969
2970 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
2971 const brw_wm_prog_key *wm_key =
2972 reinterpret_cast<const brw_wm_prog_key *>(key);
2973 assert(!wm_key->coherent_fb_fetch);
2974 const struct brw_wm_prog_data *wm_prog_data =
2975 brw_wm_prog_data(stage_prog_data);
2976
2977 /* Calculate the surface index relative to the start of the texture binding
2978 * table block, since that's what the texturing messages expect.
2979 */
2980 const unsigned surface = target +
2981 wm_prog_data->binding_table.render_target_read_start -
2982 wm_prog_data->base.binding_table.texture_start;
2983
2984 /* Calculate the fragment coordinates. */
2985 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
2986 bld.MOV(offset(coords, bld, 0), pixel_x);
2987 bld.MOV(offset(coords, bld, 1), pixel_y);
2988 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
2989
2990 /* Calculate the sample index and MCS payload when multisampling. Luckily
2991 * the MCS fetch message behaves deterministically for UMS surfaces, so it
2992 * shouldn't be necessary to recompile based on whether the framebuffer is
2993 * CMS or UMS.
2994 */
2995 if (wm_key->multisample_fbo &&
2996 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
2997 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
2998
2999 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3000 const fs_reg mcs = wm_key->multisample_fbo ?
3001 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3002
3003 /* Use either a normal or a CMS texel fetch message depending on whether
3004 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3005 * message just in case the framebuffer uses 16x multisampling, it should
3006 * be equivalent to the normal CMS fetch for lower multisampling modes.
3007 */
3008 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3009 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3010 SHADER_OPCODE_TXF_CMS_LOGICAL;
3011
3012 /* Emit the instruction. */
3013 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3014 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3015 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3016 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3017 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3018 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3019 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3020 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3021 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3022
3023 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3024 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3025
3026 return inst;
3027 }
3028
3029 /**
3030 * Actual coherent framebuffer read implemented using the native render target
3031 * read message. Requires SKL+.
3032 */
3033 static fs_inst *
3034 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3035 {
3036 assert(bld.shader->devinfo->gen >= 9);
3037 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3038 inst->target = target;
3039 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3040
3041 return inst;
3042 }
3043
3044 static fs_reg
3045 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3046 {
3047 if (n && regs[0].file != BAD_FILE) {
3048 return regs[0];
3049
3050 } else {
3051 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3052
3053 for (unsigned i = 0; i < n; i++)
3054 regs[i] = tmp;
3055
3056 return tmp;
3057 }
3058 }
3059
3060 static fs_reg
3061 alloc_frag_output(fs_visitor *v, unsigned location)
3062 {
3063 assert(v->stage == MESA_SHADER_FRAGMENT);
3064 const brw_wm_prog_key *const key =
3065 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3066 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3067 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3068
3069 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3070 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3071
3072 else if (l == FRAG_RESULT_COLOR)
3073 return alloc_temporary(v->bld, 4, v->outputs,
3074 MAX2(key->nr_color_regions, 1));
3075
3076 else if (l == FRAG_RESULT_DEPTH)
3077 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3078
3079 else if (l == FRAG_RESULT_STENCIL)
3080 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3081
3082 else if (l == FRAG_RESULT_SAMPLE_MASK)
3083 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3084
3085 else if (l >= FRAG_RESULT_DATA0 &&
3086 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3087 return alloc_temporary(v->bld, 4,
3088 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3089
3090 else
3091 unreachable("Invalid location");
3092 }
3093
3094 void
3095 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3096 nir_intrinsic_instr *instr)
3097 {
3098 assert(stage == MESA_SHADER_FRAGMENT);
3099
3100 fs_reg dest;
3101 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3102 dest = get_nir_dest(instr->dest);
3103
3104 switch (instr->intrinsic) {
3105 case nir_intrinsic_load_front_face:
3106 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3107 *emit_frontfacing_interpolation());
3108 break;
3109
3110 case nir_intrinsic_load_sample_pos: {
3111 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3112 assert(sample_pos.file != BAD_FILE);
3113 dest.type = sample_pos.type;
3114 bld.MOV(dest, sample_pos);
3115 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3116 break;
3117 }
3118
3119 case nir_intrinsic_load_layer_id:
3120 dest.type = BRW_REGISTER_TYPE_UD;
3121 bld.MOV(dest, fetch_render_target_array_index(bld));
3122 break;
3123
3124 case nir_intrinsic_load_helper_invocation:
3125 case nir_intrinsic_load_sample_mask_in:
3126 case nir_intrinsic_load_sample_id: {
3127 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3128 fs_reg val = nir_system_values[sv];
3129 assert(val.file != BAD_FILE);
3130 dest.type = val.type;
3131 bld.MOV(dest, val);
3132 break;
3133 }
3134
3135 case nir_intrinsic_store_output: {
3136 const fs_reg src = get_nir_src(instr->src[0]);
3137 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3138 const unsigned location = nir_intrinsic_base(instr) +
3139 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3140 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3141 src.type);
3142
3143 for (unsigned j = 0; j < instr->num_components; j++)
3144 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3145 offset(src, bld, j));
3146
3147 break;
3148 }
3149
3150 case nir_intrinsic_load_output: {
3151 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3152 BRW_NIR_FRAG_OUTPUT_LOCATION);
3153 assert(l >= FRAG_RESULT_DATA0);
3154 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3155 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3156 const fs_reg tmp = bld.vgrf(dest.type, 4);
3157
3158 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3159 emit_coherent_fb_read(bld, tmp, target);
3160 else
3161 emit_non_coherent_fb_read(bld, tmp, target);
3162
3163 for (unsigned j = 0; j < instr->num_components; j++) {
3164 bld.MOV(offset(dest, bld, j),
3165 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3166 }
3167
3168 break;
3169 }
3170
3171 case nir_intrinsic_discard:
3172 case nir_intrinsic_discard_if: {
3173 /* We track our discarded pixels in f0.1. By predicating on it, we can
3174 * update just the flag bits that aren't yet discarded. If there's no
3175 * condition, we emit a CMP of g0 != g0, so all currently executing
3176 * channels will get turned off.
3177 */
3178 fs_inst *cmp;
3179 if (instr->intrinsic == nir_intrinsic_discard_if) {
3180 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3181 brw_imm_d(0), BRW_CONDITIONAL_Z);
3182 } else {
3183 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3184 BRW_REGISTER_TYPE_UW));
3185 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3186 }
3187 cmp->predicate = BRW_PREDICATE_NORMAL;
3188 cmp->flag_subreg = 1;
3189
3190 if (devinfo->gen >= 6) {
3191 emit_discard_jump();
3192 }
3193
3194 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3195 break;
3196 }
3197
3198 case nir_intrinsic_load_input: {
3199 /* load_input is only used for flat inputs */
3200 unsigned base = nir_intrinsic_base(instr);
3201 unsigned comp = nir_intrinsic_component(instr);
3202 unsigned num_components = instr->num_components;
3203 fs_reg orig_dest = dest;
3204 enum brw_reg_type type = dest.type;
3205
3206 /* Special case fields in the VUE header */
3207 if (base == VARYING_SLOT_LAYER)
3208 comp = 1;
3209 else if (base == VARYING_SLOT_VIEWPORT)
3210 comp = 2;
3211
3212 if (nir_dest_bit_size(instr->dest) == 64) {
3213 /* const_index is in 32-bit type size units that could not be aligned
3214 * with DF. We need to read the double vector as if it was a float
3215 * vector of twice the number of components to fetch the right data.
3216 */
3217 type = BRW_REGISTER_TYPE_F;
3218 num_components *= 2;
3219 dest = bld.vgrf(type, num_components);
3220 }
3221
3222 for (unsigned int i = 0; i < num_components; i++) {
3223 bld.MOV(offset(retype(dest, type), bld, i),
3224 retype(component(interp_reg(base, comp + i), 3), type));
3225 }
3226
3227 if (nir_dest_bit_size(instr->dest) == 64) {
3228 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3229 instr->num_components);
3230 }
3231 break;
3232 }
3233
3234 case nir_intrinsic_load_barycentric_pixel:
3235 case nir_intrinsic_load_barycentric_centroid:
3236 case nir_intrinsic_load_barycentric_sample:
3237 /* Do nothing - load_interpolated_input handling will handle it later. */
3238 break;
3239
3240 case nir_intrinsic_load_barycentric_at_sample: {
3241 const glsl_interp_mode interpolation =
3242 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3243
3244 if (nir_src_is_const(instr->src[0])) {
3245 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3246
3247 emit_pixel_interpolater_send(bld,
3248 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3249 dest,
3250 fs_reg(), /* src */
3251 brw_imm_ud(msg_data),
3252 interpolation);
3253 } else {
3254 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3255 BRW_REGISTER_TYPE_UD);
3256
3257 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3258 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3259 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3260 bld.exec_all().group(1, 0)
3261 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3262 emit_pixel_interpolater_send(bld,
3263 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3264 dest,
3265 fs_reg(), /* src */
3266 msg_data,
3267 interpolation);
3268 } else {
3269 /* Make a loop that sends a message to the pixel interpolater
3270 * for the sample number in each live channel. If there are
3271 * multiple channels with the same sample number then these
3272 * will be handled simultaneously with a single interation of
3273 * the loop.
3274 */
3275 bld.emit(BRW_OPCODE_DO);
3276
3277 /* Get the next live sample number into sample_id_reg */
3278 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3279
3280 /* Set the flag register so that we can perform the send
3281 * message on all channels that have the same sample number
3282 */
3283 bld.CMP(bld.null_reg_ud(),
3284 sample_src, sample_id,
3285 BRW_CONDITIONAL_EQ);
3286 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3287 bld.exec_all().group(1, 0)
3288 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3289 fs_inst *inst =
3290 emit_pixel_interpolater_send(bld,
3291 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3292 dest,
3293 fs_reg(), /* src */
3294 component(msg_data, 0),
3295 interpolation);
3296 set_predicate(BRW_PREDICATE_NORMAL, inst);
3297
3298 /* Continue the loop if there are any live channels left */
3299 set_predicate_inv(BRW_PREDICATE_NORMAL,
3300 true, /* inverse */
3301 bld.emit(BRW_OPCODE_WHILE));
3302 }
3303 }
3304 break;
3305 }
3306
3307 case nir_intrinsic_load_barycentric_at_offset: {
3308 const glsl_interp_mode interpolation =
3309 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3310
3311 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3312
3313 if (const_offset) {
3314 assert(nir_src_bit_size(instr->src[0]) == 32);
3315 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3316 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3317
3318 emit_pixel_interpolater_send(bld,
3319 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3320 dest,
3321 fs_reg(), /* src */
3322 brw_imm_ud(off_x | (off_y << 4)),
3323 interpolation);
3324 } else {
3325 fs_reg src = vgrf(glsl_type::ivec2_type);
3326 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3327 BRW_REGISTER_TYPE_F);
3328 for (int i = 0; i < 2; i++) {
3329 fs_reg temp = vgrf(glsl_type::float_type);
3330 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3331 fs_reg itemp = vgrf(glsl_type::int_type);
3332 /* float to int */
3333 bld.MOV(itemp, temp);
3334
3335 /* Clamp the upper end of the range to +7/16.
3336 * ARB_gpu_shader5 requires that we support a maximum offset
3337 * of +0.5, which isn't representable in a S0.4 value -- if
3338 * we didn't clamp it, we'd end up with -8/16, which is the
3339 * opposite of what the shader author wanted.
3340 *
3341 * This is legal due to ARB_gpu_shader5's quantization
3342 * rules:
3343 *
3344 * "Not all values of <offset> may be supported; x and y
3345 * offsets may be rounded to fixed-point values with the
3346 * number of fraction bits given by the
3347 * implementation-dependent constant
3348 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3349 */
3350 set_condmod(BRW_CONDITIONAL_L,
3351 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3352 }
3353
3354 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3355 emit_pixel_interpolater_send(bld,
3356 opcode,
3357 dest,
3358 src,
3359 brw_imm_ud(0u),
3360 interpolation);
3361 }
3362 break;
3363 }
3364
3365 case nir_intrinsic_load_interpolated_input: {
3366 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3367 emit_fragcoord_interpolation(dest);
3368 break;
3369 }
3370
3371 assert(instr->src[0].ssa &&
3372 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3373 nir_intrinsic_instr *bary_intrinsic =
3374 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3375 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3376 enum glsl_interp_mode interp_mode =
3377 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3378 fs_reg dst_xy;
3379
3380 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3381 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3382 /* Use the result of the PI message */
3383 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3384 } else {
3385 /* Use the delta_xy values computed from the payload */
3386 enum brw_barycentric_mode bary =
3387 brw_barycentric_mode(interp_mode, bary_intrin);
3388
3389 dst_xy = this->delta_xy[bary];
3390 }
3391
3392 for (unsigned int i = 0; i < instr->num_components; i++) {
3393 fs_reg interp =
3394 component(interp_reg(nir_intrinsic_base(instr),
3395 nir_intrinsic_component(instr) + i), 0);
3396 interp.type = BRW_REGISTER_TYPE_F;
3397 dest.type = BRW_REGISTER_TYPE_F;
3398
3399 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3400 fs_reg tmp = vgrf(glsl_type::float_type);
3401 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3402 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3403 } else {
3404 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3405 }
3406 }
3407 break;
3408 }
3409
3410 default:
3411 nir_emit_intrinsic(bld, instr);
3412 break;
3413 }
3414 }
3415
3416 static int
3417 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3418 {
3419 if (nir_src_is_const(instr->src[src])) {
3420 int64_t add_val = nir_src_as_int(instr->src[src]);
3421 if (add_val == 1)
3422 return BRW_AOP_INC;
3423 else if (add_val == -1)
3424 return BRW_AOP_DEC;
3425 }
3426
3427 return BRW_AOP_ADD;
3428 }
3429
3430 void
3431 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3432 nir_intrinsic_instr *instr)
3433 {
3434 assert(stage == MESA_SHADER_COMPUTE);
3435 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3436
3437 fs_reg dest;
3438 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3439 dest = get_nir_dest(instr->dest);
3440
3441 switch (instr->intrinsic) {
3442 case nir_intrinsic_barrier:
3443 emit_barrier();
3444 cs_prog_data->uses_barrier = true;
3445 break;
3446
3447 case nir_intrinsic_load_subgroup_id:
3448 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3449 break;
3450
3451 case nir_intrinsic_load_local_invocation_id:
3452 case nir_intrinsic_load_work_group_id: {
3453 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3454 fs_reg val = nir_system_values[sv];
3455 assert(val.file != BAD_FILE);
3456 dest.type = val.type;
3457 for (unsigned i = 0; i < 3; i++)
3458 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3459 break;
3460 }
3461
3462 case nir_intrinsic_load_num_work_groups: {
3463 const unsigned surface =
3464 cs_prog_data->binding_table.work_groups_start;
3465
3466 cs_prog_data->uses_num_work_groups = true;
3467
3468 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3469 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3470 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3471 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3472
3473 /* Read the 3 GLuint components of gl_NumWorkGroups */
3474 for (unsigned i = 0; i < 3; i++) {
3475 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3476 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3477 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3478 }
3479 break;
3480 }
3481
3482 case nir_intrinsic_shared_atomic_add:
3483 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3484 break;
3485 case nir_intrinsic_shared_atomic_imin:
3486 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3487 break;
3488 case nir_intrinsic_shared_atomic_umin:
3489 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3490 break;
3491 case nir_intrinsic_shared_atomic_imax:
3492 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3493 break;
3494 case nir_intrinsic_shared_atomic_umax:
3495 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3496 break;
3497 case nir_intrinsic_shared_atomic_and:
3498 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3499 break;
3500 case nir_intrinsic_shared_atomic_or:
3501 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3502 break;
3503 case nir_intrinsic_shared_atomic_xor:
3504 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3505 break;
3506 case nir_intrinsic_shared_atomic_exchange:
3507 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3508 break;
3509 case nir_intrinsic_shared_atomic_comp_swap:
3510 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3511 break;
3512 case nir_intrinsic_shared_atomic_fmin:
3513 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3514 break;
3515 case nir_intrinsic_shared_atomic_fmax:
3516 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3517 break;
3518 case nir_intrinsic_shared_atomic_fcomp_swap:
3519 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3520 break;
3521
3522 case nir_intrinsic_load_shared: {
3523 assert(devinfo->gen >= 7);
3524 assert(stage == MESA_SHADER_COMPUTE);
3525
3526 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3527 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3528 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3529 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3530 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3531
3532 /* Make dest unsigned because that's what the temporary will be */
3533 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3534
3535 /* Read the vector */
3536 if (nir_intrinsic_align(instr) >= 4) {
3537 assert(nir_dest_bit_size(instr->dest) == 32);
3538 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3539 fs_inst *inst =
3540 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3541 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3542 inst->size_written = instr->num_components * dispatch_width * 4;
3543 } else {
3544 assert(nir_dest_bit_size(instr->dest) <= 32);
3545 assert(nir_dest_num_components(instr->dest) == 1);
3546 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3547
3548 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3549 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3550 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3551 bld.MOV(dest, read_result);
3552 }
3553 break;
3554 }
3555
3556 case nir_intrinsic_store_shared: {
3557 assert(devinfo->gen >= 7);
3558 assert(stage == MESA_SHADER_COMPUTE);
3559
3560 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3561 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3562 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3563 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3564 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3565
3566 fs_reg data = get_nir_src(instr->src[0]);
3567 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3568
3569 assert(nir_intrinsic_write_mask(instr) ==
3570 (1u << instr->num_components) - 1);
3571 if (nir_intrinsic_align(instr) >= 4) {
3572 assert(nir_src_bit_size(instr->src[0]) == 32);
3573 assert(nir_src_num_components(instr->src[0]) <= 4);
3574 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3575 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3576 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3577 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3578 } else {
3579 assert(nir_src_bit_size(instr->src[0]) <= 32);
3580 assert(nir_src_num_components(instr->src[0]) == 1);
3581 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3582
3583 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3584 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3585
3586 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3587 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3588 }
3589 break;
3590 }
3591
3592 default:
3593 nir_emit_intrinsic(bld, instr);
3594 break;
3595 }
3596 }
3597
3598 static fs_reg
3599 brw_nir_reduction_op_identity(const fs_builder &bld,
3600 nir_op op, brw_reg_type type)
3601 {
3602 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3603 switch (type_sz(type)) {
3604 case 2:
3605 assert(type != BRW_REGISTER_TYPE_HF);
3606 return retype(brw_imm_uw(value.u16[0]), type);
3607 case 4:
3608 return retype(brw_imm_ud(value.u32[0]), type);
3609 case 8:
3610 if (type == BRW_REGISTER_TYPE_DF)
3611 return setup_imm_df(bld, value.f64[0]);
3612 else
3613 return retype(brw_imm_u64(value.u64[0]), type);
3614 default:
3615 unreachable("Invalid type size");
3616 }
3617 }
3618
3619 static opcode
3620 brw_op_for_nir_reduction_op(nir_op op)
3621 {
3622 switch (op) {
3623 case nir_op_iadd: return BRW_OPCODE_ADD;
3624 case nir_op_fadd: return BRW_OPCODE_ADD;
3625 case nir_op_imul: return BRW_OPCODE_MUL;
3626 case nir_op_fmul: return BRW_OPCODE_MUL;
3627 case nir_op_imin: return BRW_OPCODE_SEL;
3628 case nir_op_umin: return BRW_OPCODE_SEL;
3629 case nir_op_fmin: return BRW_OPCODE_SEL;
3630 case nir_op_imax: return BRW_OPCODE_SEL;
3631 case nir_op_umax: return BRW_OPCODE_SEL;
3632 case nir_op_fmax: return BRW_OPCODE_SEL;
3633 case nir_op_iand: return BRW_OPCODE_AND;
3634 case nir_op_ior: return BRW_OPCODE_OR;
3635 case nir_op_ixor: return BRW_OPCODE_XOR;
3636 default:
3637 unreachable("Invalid reduction operation");
3638 }
3639 }
3640
3641 static brw_conditional_mod
3642 brw_cond_mod_for_nir_reduction_op(nir_op op)
3643 {
3644 switch (op) {
3645 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3646 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3647 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3648 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3649 case nir_op_imin: return BRW_CONDITIONAL_L;
3650 case nir_op_umin: return BRW_CONDITIONAL_L;
3651 case nir_op_fmin: return BRW_CONDITIONAL_L;
3652 case nir_op_imax: return BRW_CONDITIONAL_GE;
3653 case nir_op_umax: return BRW_CONDITIONAL_GE;
3654 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3655 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3656 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3657 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3658 default:
3659 unreachable("Invalid reduction operation");
3660 }
3661 }
3662
3663 fs_reg
3664 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3665 nir_intrinsic_instr *instr)
3666 {
3667 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3668
3669 if (stage_prog_data->binding_table.image_start > 0) {
3670 if (image.file == BRW_IMMEDIATE_VALUE) {
3671 image.d += stage_prog_data->binding_table.image_start;
3672 } else {
3673 bld.ADD(image, image,
3674 brw_imm_d(stage_prog_data->binding_table.image_start));
3675 }
3676 }
3677
3678 return bld.emit_uniformize(image);
3679 }
3680
3681 fs_reg
3682 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3683 nir_intrinsic_instr *instr)
3684 {
3685 /* SSBO stores are weird in that their index is in src[1] */
3686 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3687
3688 fs_reg surf_index;
3689 if (nir_src_is_const(instr->src[src])) {
3690 unsigned index = stage_prog_data->binding_table.ssbo_start +
3691 nir_src_as_uint(instr->src[src]);
3692 surf_index = brw_imm_ud(index);
3693 } else {
3694 surf_index = vgrf(glsl_type::uint_type);
3695 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3696 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3697 }
3698
3699 return bld.emit_uniformize(surf_index);
3700 }
3701
3702 static unsigned
3703 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3704 {
3705 switch (nir_intrinsic_image_dim(instr)) {
3706 case GLSL_SAMPLER_DIM_1D:
3707 return 1 + nir_intrinsic_image_array(instr);
3708 case GLSL_SAMPLER_DIM_2D:
3709 case GLSL_SAMPLER_DIM_RECT:
3710 return 2 + nir_intrinsic_image_array(instr);
3711 case GLSL_SAMPLER_DIM_3D:
3712 case GLSL_SAMPLER_DIM_CUBE:
3713 return 3;
3714 case GLSL_SAMPLER_DIM_BUF:
3715 return 1;
3716 case GLSL_SAMPLER_DIM_MS:
3717 return 2 + nir_intrinsic_image_array(instr);
3718 default:
3719 unreachable("Invalid image dimension");
3720 }
3721 }
3722
3723 void
3724 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3725 {
3726 fs_reg dest;
3727 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3728 dest = get_nir_dest(instr->dest);
3729
3730 switch (instr->intrinsic) {
3731 case nir_intrinsic_image_load:
3732 case nir_intrinsic_image_store:
3733 case nir_intrinsic_image_atomic_add:
3734 case nir_intrinsic_image_atomic_min:
3735 case nir_intrinsic_image_atomic_max:
3736 case nir_intrinsic_image_atomic_and:
3737 case nir_intrinsic_image_atomic_or:
3738 case nir_intrinsic_image_atomic_xor:
3739 case nir_intrinsic_image_atomic_exchange:
3740 case nir_intrinsic_image_atomic_comp_swap: {
3741 if (stage == MESA_SHADER_FRAGMENT &&
3742 instr->intrinsic != nir_intrinsic_image_load)
3743 brw_wm_prog_data(prog_data)->has_side_effects = true;
3744
3745 /* Get some metadata from the image intrinsic. */
3746 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3747 const GLenum format = nir_intrinsic_format(instr);
3748
3749 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3750 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3751 get_nir_image_intrinsic_image(bld, instr);
3752 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3753 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
3754 brw_imm_ud(image_intrinsic_coord_components(instr));
3755
3756 /* Emit an image load, store or atomic op. */
3757 if (instr->intrinsic == nir_intrinsic_image_load) {
3758 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3759 fs_inst *inst =
3760 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
3761 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3762 inst->size_written = instr->num_components * dispatch_width * 4;
3763 } else if (instr->intrinsic == nir_intrinsic_image_store) {
3764 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3765 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
3766 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
3767 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3768 } else {
3769 int op;
3770 unsigned num_srcs = info->num_srcs;
3771
3772 switch (instr->intrinsic) {
3773 case nir_intrinsic_image_atomic_add:
3774 assert(num_srcs == 4);
3775
3776 op = get_op_for_atomic_add(instr, 3);
3777
3778 if (op != BRW_AOP_ADD)
3779 num_srcs = 3;
3780 break;
3781 case nir_intrinsic_image_atomic_min:
3782 assert(format == GL_R32UI || format == GL_R32I);
3783 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3784 break;
3785 case nir_intrinsic_image_atomic_max:
3786 assert(format == GL_R32UI || format == GL_R32I);
3787 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3788 break;
3789 case nir_intrinsic_image_atomic_and:
3790 op = BRW_AOP_AND;
3791 break;
3792 case nir_intrinsic_image_atomic_or:
3793 op = BRW_AOP_OR;
3794 break;
3795 case nir_intrinsic_image_atomic_xor:
3796 op = BRW_AOP_XOR;
3797 break;
3798 case nir_intrinsic_image_atomic_exchange:
3799 op = BRW_AOP_MOV;
3800 break;
3801 case nir_intrinsic_image_atomic_comp_swap:
3802 op = BRW_AOP_CMPWR;
3803 break;
3804 default:
3805 unreachable("Not reachable.");
3806 }
3807
3808 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
3809
3810 fs_reg data;
3811 if (num_srcs >= 4)
3812 data = get_nir_src(instr->src[3]);
3813 if (num_srcs >= 5) {
3814 fs_reg tmp = bld.vgrf(data.type, 2);
3815 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
3816 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
3817 data = tmp;
3818 }
3819 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3820
3821 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
3822 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3823 }
3824 break;
3825 }
3826
3827 case nir_intrinsic_image_size: {
3828 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3829 * into will handle the binding table index for us in the geneerator.
3830 */
3831 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3832 BRW_REGISTER_TYPE_UD);
3833 image = bld.emit_uniformize(image);
3834
3835 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3836 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
3837 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
3838 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
3839 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
3840
3841 /* Since the image size is always uniform, we can just emit a SIMD8
3842 * query instruction and splat the result out.
3843 */
3844 const fs_builder ubld = bld.exec_all().group(8, 0);
3845
3846 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3847 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
3848 tmp, srcs, ARRAY_SIZE(srcs));
3849 inst->size_written = 4 * REG_SIZE;
3850
3851 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3852 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3853 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3854 offset(retype(dest, tmp.type), bld, c),
3855 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3856 } else {
3857 bld.MOV(offset(retype(dest, tmp.type), bld, c),
3858 component(offset(tmp, ubld, c), 0));
3859 }
3860 }
3861 break;
3862 }
3863
3864 case nir_intrinsic_image_load_raw_intel: {
3865 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3866 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3867 get_nir_image_intrinsic_image(bld, instr);
3868 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3869 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3870 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3871
3872 fs_inst *inst =
3873 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3874 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3875 inst->size_written = instr->num_components * dispatch_width * 4;
3876 break;
3877 }
3878
3879 case nir_intrinsic_image_store_raw_intel: {
3880 if (stage == MESA_SHADER_FRAGMENT)
3881 brw_wm_prog_data(prog_data)->has_side_effects = true;
3882
3883 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3884 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3885 get_nir_image_intrinsic_image(bld, instr);
3886 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3887 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
3888 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3889 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3890
3891 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3892 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3893 break;
3894 }
3895
3896 case nir_intrinsic_group_memory_barrier:
3897 case nir_intrinsic_memory_barrier_shared:
3898 case nir_intrinsic_memory_barrier_atomic_counter:
3899 case nir_intrinsic_memory_barrier_buffer:
3900 case nir_intrinsic_memory_barrier_image:
3901 case nir_intrinsic_memory_barrier: {
3902 const fs_builder ubld = bld.group(8, 0);
3903 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3904 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3905 ->size_written = 2 * REG_SIZE;
3906 break;
3907 }
3908
3909 case nir_intrinsic_shader_clock: {
3910 /* We cannot do anything if there is an event, so ignore it for now */
3911 const fs_reg shader_clock = get_timestamp(bld);
3912 const fs_reg srcs[] = { component(shader_clock, 0),
3913 component(shader_clock, 1) };
3914 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3915 break;
3916 }
3917
3918 case nir_intrinsic_image_samples:
3919 /* The driver does not support multi-sampled images. */
3920 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3921 break;
3922
3923 case nir_intrinsic_load_uniform: {
3924 /* Offsets are in bytes but they should always aligned to
3925 * the type size
3926 */
3927 assert(instr->const_index[0] % 4 == 0 ||
3928 instr->const_index[0] % type_sz(dest.type) == 0);
3929
3930 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3931
3932 if (nir_src_is_const(instr->src[0])) {
3933 unsigned load_offset = nir_src_as_uint(instr->src[0]);
3934 assert(load_offset % type_sz(dest.type) == 0);
3935 /* For 16-bit types we add the module of the const_index[0]
3936 * offset to access to not 32-bit aligned element
3937 */
3938 src.offset = load_offset + instr->const_index[0] % 4;
3939
3940 for (unsigned j = 0; j < instr->num_components; j++) {
3941 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3942 }
3943 } else {
3944 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3945 BRW_REGISTER_TYPE_UD);
3946
3947 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3948 * go past the end of the uniform. In order to keep the n'th
3949 * component from running past, we subtract off the size of all but
3950 * one component of the vector.
3951 */
3952 assert(instr->const_index[1] >=
3953 instr->num_components * (int) type_sz(dest.type));
3954 unsigned read_size = instr->const_index[1] -
3955 (instr->num_components - 1) * type_sz(dest.type);
3956
3957 bool supports_64bit_indirects =
3958 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
3959
3960 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
3961 for (unsigned j = 0; j < instr->num_components; j++) {
3962 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3963 offset(dest, bld, j), offset(src, bld, j),
3964 indirect, brw_imm_ud(read_size));
3965 }
3966 } else {
3967 const unsigned num_mov_indirects =
3968 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
3969 /* We read a little bit less per MOV INDIRECT, as they are now
3970 * 32-bits ones instead of 64-bit. Fix read_size then.
3971 */
3972 const unsigned read_size_32bit = read_size -
3973 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
3974 for (unsigned j = 0; j < instr->num_components; j++) {
3975 for (unsigned i = 0; i < num_mov_indirects; i++) {
3976 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3977 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
3978 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
3979 indirect, brw_imm_ud(read_size_32bit));
3980 }
3981 }
3982 }
3983 }
3984 break;
3985 }
3986
3987 case nir_intrinsic_load_ubo: {
3988 fs_reg surf_index;
3989 if (nir_src_is_const(instr->src[0])) {
3990 const unsigned index = stage_prog_data->binding_table.ubo_start +
3991 nir_src_as_uint(instr->src[0]);
3992 surf_index = brw_imm_ud(index);
3993 } else {
3994 /* The block index is not a constant. Evaluate the index expression
3995 * per-channel and add the base UBO index; we have to select a value
3996 * from any live channel.
3997 */
3998 surf_index = vgrf(glsl_type::uint_type);
3999 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4000 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4001 surf_index = bld.emit_uniformize(surf_index);
4002 }
4003
4004 if (!nir_src_is_const(instr->src[1])) {
4005 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4006 BRW_REGISTER_TYPE_UD);
4007
4008 for (int i = 0; i < instr->num_components; i++)
4009 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4010 base_offset, i * type_sz(dest.type));
4011 } else {
4012 /* Even if we are loading doubles, a pull constant load will load
4013 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4014 * need to load a full dvec4 we will have to emit 2 loads. This is
4015 * similar to demote_pull_constants(), except that in that case we
4016 * see individual accesses to each component of the vector and then
4017 * we let CSE deal with duplicate loads. Here we see a vector access
4018 * and we have to split it if necessary.
4019 */
4020 const unsigned type_size = type_sz(dest.type);
4021 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4022
4023 /* See if we've selected this as a push constant candidate */
4024 if (nir_src_is_const(instr->src[0])) {
4025 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4026 const unsigned offset_256b = load_offset / 32;
4027
4028 fs_reg push_reg;
4029 for (int i = 0; i < 4; i++) {
4030 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4031 if (range->block == ubo_block &&
4032 offset_256b >= range->start &&
4033 offset_256b < range->start + range->length) {
4034
4035 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4036 push_reg.offset = load_offset - 32 * range->start;
4037 break;
4038 }
4039 }
4040
4041 if (push_reg.file != BAD_FILE) {
4042 for (unsigned i = 0; i < instr->num_components; i++) {
4043 bld.MOV(offset(dest, bld, i),
4044 byte_offset(push_reg, i * type_size));
4045 }
4046 break;
4047 }
4048 }
4049
4050 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4051 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4052 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4053
4054 for (unsigned c = 0; c < instr->num_components;) {
4055 const unsigned base = load_offset + c * type_size;
4056 /* Number of usable components in the next block-aligned load. */
4057 const unsigned count = MIN2(instr->num_components - c,
4058 (block_sz - base % block_sz) / type_size);
4059
4060 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4061 packed_consts, surf_index,
4062 brw_imm_ud(base & ~(block_sz - 1)));
4063
4064 const fs_reg consts =
4065 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4066 dest.type);
4067
4068 for (unsigned d = 0; d < count; d++)
4069 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4070
4071 c += count;
4072 }
4073 }
4074 break;
4075 }
4076
4077 case nir_intrinsic_load_global: {
4078 assert(devinfo->gen >= 8);
4079
4080 if (nir_intrinsic_align(instr) >= 4) {
4081 assert(nir_dest_bit_size(instr->dest) == 32);
4082 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4083 dest,
4084 get_nir_src(instr->src[0]), /* Address */
4085 fs_reg(), /* No source data */
4086 brw_imm_ud(instr->num_components));
4087 inst->size_written = instr->num_components *
4088 inst->dst.component_size(inst->exec_size);
4089 } else {
4090 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4091 assert(bit_size <= 32);
4092 assert(nir_dest_num_components(instr->dest) == 1);
4093 brw_reg_type data_type =
4094 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4095 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4096 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4097 tmp,
4098 get_nir_src(instr->src[0]), /* Address */
4099 fs_reg(), /* No source data */
4100 brw_imm_ud(bit_size));
4101 bld.MOV(retype(dest, data_type), tmp);
4102 }
4103 break;
4104 }
4105
4106 case nir_intrinsic_store_global:
4107 assert(devinfo->gen >= 8);
4108
4109 if (stage == MESA_SHADER_FRAGMENT)
4110 brw_wm_prog_data(prog_data)->has_side_effects = true;
4111
4112 if (nir_intrinsic_align(instr) >= 4) {
4113 assert(nir_src_bit_size(instr->src[0]) == 32);
4114 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4115 fs_reg(),
4116 get_nir_src(instr->src[1]), /* Address */
4117 get_nir_src(instr->src[0]), /* Data */
4118 brw_imm_ud(instr->num_components));
4119 } else {
4120 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4121 assert(bit_size <= 32);
4122 assert(nir_src_num_components(instr->src[0]) == 1);
4123 brw_reg_type data_type =
4124 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4125 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4126 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4127 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4128 fs_reg(),
4129 get_nir_src(instr->src[1]), /* Address */
4130 tmp, /* Data */
4131 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4132 }
4133 break;
4134
4135 case nir_intrinsic_global_atomic_add:
4136 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4137 break;
4138 case nir_intrinsic_global_atomic_imin:
4139 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4140 break;
4141 case nir_intrinsic_global_atomic_umin:
4142 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4143 break;
4144 case nir_intrinsic_global_atomic_imax:
4145 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4146 break;
4147 case nir_intrinsic_global_atomic_umax:
4148 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4149 break;
4150 case nir_intrinsic_global_atomic_and:
4151 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4152 break;
4153 case nir_intrinsic_global_atomic_or:
4154 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4155 break;
4156 case nir_intrinsic_global_atomic_xor:
4157 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4158 break;
4159 case nir_intrinsic_global_atomic_exchange:
4160 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4161 break;
4162 case nir_intrinsic_global_atomic_comp_swap:
4163 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4164 break;
4165 case nir_intrinsic_global_atomic_fmin:
4166 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4167 break;
4168 case nir_intrinsic_global_atomic_fmax:
4169 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4170 break;
4171 case nir_intrinsic_global_atomic_fcomp_swap:
4172 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4173 break;
4174
4175 case nir_intrinsic_load_ssbo: {
4176 assert(devinfo->gen >= 7);
4177
4178 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4179 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4180 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4181 get_nir_ssbo_intrinsic_index(bld, instr);
4182 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4183 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4184
4185 /* Make dest unsigned because that's what the temporary will be */
4186 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4187
4188 /* Read the vector */
4189 if (nir_intrinsic_align(instr) >= 4) {
4190 assert(nir_dest_bit_size(instr->dest) == 32);
4191 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4192 fs_inst *inst =
4193 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4194 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4195 inst->size_written = instr->num_components * dispatch_width * 4;
4196 } else {
4197 assert(nir_dest_bit_size(instr->dest) <= 32);
4198 assert(nir_dest_num_components(instr->dest) == 1);
4199 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4200
4201 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4202 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4203 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4204 bld.MOV(dest, read_result);
4205 }
4206 break;
4207 }
4208
4209 case nir_intrinsic_store_ssbo: {
4210 assert(devinfo->gen >= 7);
4211
4212 if (stage == MESA_SHADER_FRAGMENT)
4213 brw_wm_prog_data(prog_data)->has_side_effects = true;
4214
4215 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4216 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4217 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4218 get_nir_ssbo_intrinsic_index(bld, instr);
4219 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4220 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4221
4222 fs_reg data = get_nir_src(instr->src[0]);
4223 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4224
4225 assert(nir_intrinsic_write_mask(instr) ==
4226 (1u << instr->num_components) - 1);
4227 if (nir_intrinsic_align(instr) >= 4) {
4228 assert(nir_src_bit_size(instr->src[0]) == 32);
4229 assert(nir_src_num_components(instr->src[0]) <= 4);
4230 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4231 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4232 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4233 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4234 } else {
4235 assert(nir_src_bit_size(instr->src[0]) <= 32);
4236 assert(nir_src_num_components(instr->src[0]) == 1);
4237 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4238
4239 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4240 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4241
4242 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4243 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4244 }
4245 break;
4246 }
4247
4248 case nir_intrinsic_store_output: {
4249 fs_reg src = get_nir_src(instr->src[0]);
4250
4251 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4252 unsigned num_components = instr->num_components;
4253 unsigned first_component = nir_intrinsic_component(instr);
4254 if (nir_src_bit_size(instr->src[0]) == 64) {
4255 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4256 num_components *= 2;
4257 }
4258
4259 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4260 4 * store_offset), src.type);
4261 for (unsigned j = 0; j < num_components; j++) {
4262 bld.MOV(offset(new_dest, bld, j + first_component),
4263 offset(src, bld, j));
4264 }
4265 break;
4266 }
4267
4268 case nir_intrinsic_ssbo_atomic_add:
4269 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4270 break;
4271 case nir_intrinsic_ssbo_atomic_imin:
4272 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4273 break;
4274 case nir_intrinsic_ssbo_atomic_umin:
4275 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4276 break;
4277 case nir_intrinsic_ssbo_atomic_imax:
4278 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4279 break;
4280 case nir_intrinsic_ssbo_atomic_umax:
4281 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4282 break;
4283 case nir_intrinsic_ssbo_atomic_and:
4284 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4285 break;
4286 case nir_intrinsic_ssbo_atomic_or:
4287 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4288 break;
4289 case nir_intrinsic_ssbo_atomic_xor:
4290 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4291 break;
4292 case nir_intrinsic_ssbo_atomic_exchange:
4293 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4294 break;
4295 case nir_intrinsic_ssbo_atomic_comp_swap:
4296 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4297 break;
4298 case nir_intrinsic_ssbo_atomic_fmin:
4299 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4300 break;
4301 case nir_intrinsic_ssbo_atomic_fmax:
4302 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4303 break;
4304 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4305 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4306 break;
4307
4308 case nir_intrinsic_get_buffer_size: {
4309 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4310 nir_src_as_uint(instr->src[0]) : 0;
4311
4312 /* A resinfo's sampler message is used to get the buffer size. The
4313 * SIMD8's writeback message consists of four registers and SIMD16's
4314 * writeback message consists of 8 destination registers (two per each
4315 * component). Because we are only interested on the first channel of
4316 * the first returned component, where resinfo returns the buffer size
4317 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4318 * the dispatch width.
4319 */
4320 const fs_builder ubld = bld.exec_all().group(8, 0);
4321 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4322 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4323
4324 /* Set LOD = 0 */
4325 ubld.MOV(src_payload, brw_imm_d(0));
4326
4327 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4328 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4329 src_payload, brw_imm_ud(index));
4330 inst->header_size = 0;
4331 inst->mlen = 1;
4332 inst->size_written = 4 * REG_SIZE;
4333
4334 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4335 *
4336 * "Out-of-bounds checking is always performed at a DWord granularity. If
4337 * any part of the DWord is out-of-bounds then the whole DWord is
4338 * considered out-of-bounds."
4339 *
4340 * This implies that types with size smaller than 4-bytes need to be
4341 * padded if they don't complete the last dword of the buffer. But as we
4342 * need to maintain the original size we need to reverse the padding
4343 * calculation to return the correct size to know the number of elements
4344 * of an unsized array. As we stored in the last two bits of the surface
4345 * size the needed padding for the buffer, we calculate here the
4346 * original buffer_size reversing the surface_size calculation:
4347 *
4348 * surface_size = isl_align(buffer_size, 4) +
4349 * (isl_align(buffer_size) - buffer_size)
4350 *
4351 * buffer_size = surface_size & ~3 - surface_size & 3
4352 */
4353
4354 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4355 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4356 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4357
4358 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4359 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4360 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4361
4362 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4363 break;
4364 }
4365
4366 case nir_intrinsic_load_subgroup_invocation:
4367 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4368 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4369 break;
4370
4371 case nir_intrinsic_load_subgroup_eq_mask:
4372 case nir_intrinsic_load_subgroup_ge_mask:
4373 case nir_intrinsic_load_subgroup_gt_mask:
4374 case nir_intrinsic_load_subgroup_le_mask:
4375 case nir_intrinsic_load_subgroup_lt_mask:
4376 unreachable("not reached");
4377
4378 case nir_intrinsic_vote_any: {
4379 const fs_builder ubld = bld.exec_all().group(1, 0);
4380
4381 /* The any/all predicates do not consider channel enables. To prevent
4382 * dead channels from affecting the result, we initialize the flag with
4383 * with the identity value for the logical operation.
4384 */
4385 if (dispatch_width == 32) {
4386 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4387 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4388 brw_imm_ud(0));
4389 } else {
4390 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4391 }
4392 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4393
4394 /* For some reason, the any/all predicates don't work properly with
4395 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4396 * doesn't read the correct subset of the flag register and you end up
4397 * getting garbage in the second half. Work around this by using a pair
4398 * of 1-wide MOVs and scattering the result.
4399 */
4400 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4401 ubld.MOV(res1, brw_imm_d(0));
4402 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4403 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4404 BRW_PREDICATE_ALIGN1_ANY32H,
4405 ubld.MOV(res1, brw_imm_d(-1)));
4406
4407 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4408 break;
4409 }
4410 case nir_intrinsic_vote_all: {
4411 const fs_builder ubld = bld.exec_all().group(1, 0);
4412
4413 /* The any/all predicates do not consider channel enables. To prevent
4414 * dead channels from affecting the result, we initialize the flag with
4415 * with the identity value for the logical operation.
4416 */
4417 if (dispatch_width == 32) {
4418 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4419 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4420 brw_imm_ud(0xffffffff));
4421 } else {
4422 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4423 }
4424 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4425
4426 /* For some reason, the any/all predicates don't work properly with
4427 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4428 * doesn't read the correct subset of the flag register and you end up
4429 * getting garbage in the second half. Work around this by using a pair
4430 * of 1-wide MOVs and scattering the result.
4431 */
4432 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4433 ubld.MOV(res1, brw_imm_d(0));
4434 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4435 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4436 BRW_PREDICATE_ALIGN1_ALL32H,
4437 ubld.MOV(res1, brw_imm_d(-1)));
4438
4439 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4440 break;
4441 }
4442 case nir_intrinsic_vote_feq:
4443 case nir_intrinsic_vote_ieq: {
4444 fs_reg value = get_nir_src(instr->src[0]);
4445 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4446 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4447 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4448 }
4449
4450 fs_reg uniformized = bld.emit_uniformize(value);
4451 const fs_builder ubld = bld.exec_all().group(1, 0);
4452
4453 /* The any/all predicates do not consider channel enables. To prevent
4454 * dead channels from affecting the result, we initialize the flag with
4455 * with the identity value for the logical operation.
4456 */
4457 if (dispatch_width == 32) {
4458 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4459 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4460 brw_imm_ud(0xffffffff));
4461 } else {
4462 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4463 }
4464 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4465
4466 /* For some reason, the any/all predicates don't work properly with
4467 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4468 * doesn't read the correct subset of the flag register and you end up
4469 * getting garbage in the second half. Work around this by using a pair
4470 * of 1-wide MOVs and scattering the result.
4471 */
4472 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4473 ubld.MOV(res1, brw_imm_d(0));
4474 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4475 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4476 BRW_PREDICATE_ALIGN1_ALL32H,
4477 ubld.MOV(res1, brw_imm_d(-1)));
4478
4479 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4480 break;
4481 }
4482
4483 case nir_intrinsic_ballot: {
4484 const fs_reg value = retype(get_nir_src(instr->src[0]),
4485 BRW_REGISTER_TYPE_UD);
4486 struct brw_reg flag = brw_flag_reg(0, 0);
4487 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4488 * as f0.0. This is a problem for fragment programs as we currently use
4489 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4490 * programs yet so this isn't a problem. When we do, something will
4491 * have to change.
4492 */
4493 if (dispatch_width == 32)
4494 flag.type = BRW_REGISTER_TYPE_UD;
4495
4496 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4497 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4498
4499 if (instr->dest.ssa.bit_size > 32) {
4500 dest.type = BRW_REGISTER_TYPE_UQ;
4501 } else {
4502 dest.type = BRW_REGISTER_TYPE_UD;
4503 }
4504 bld.MOV(dest, flag);
4505 break;
4506 }
4507
4508 case nir_intrinsic_read_invocation: {
4509 const fs_reg value = get_nir_src(instr->src[0]);
4510 const fs_reg invocation = get_nir_src(instr->src[1]);
4511 fs_reg tmp = bld.vgrf(value.type);
4512
4513 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4514 bld.emit_uniformize(invocation));
4515
4516 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4517 break;
4518 }
4519
4520 case nir_intrinsic_read_first_invocation: {
4521 const fs_reg value = get_nir_src(instr->src[0]);
4522 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4523 break;
4524 }
4525
4526 case nir_intrinsic_shuffle: {
4527 const fs_reg value = get_nir_src(instr->src[0]);
4528 const fs_reg index = get_nir_src(instr->src[1]);
4529
4530 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4531 break;
4532 }
4533
4534 case nir_intrinsic_first_invocation: {
4535 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4536 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4537 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4538 fs_reg(component(tmp, 0)));
4539 break;
4540 }
4541
4542 case nir_intrinsic_quad_broadcast: {
4543 const fs_reg value = get_nir_src(instr->src[0]);
4544 const unsigned index = nir_src_as_uint(instr->src[1]);
4545
4546 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4547 value, brw_imm_ud(index), brw_imm_ud(4));
4548 break;
4549 }
4550
4551 case nir_intrinsic_quad_swap_horizontal: {
4552 const fs_reg value = get_nir_src(instr->src[0]);
4553 const fs_reg tmp = bld.vgrf(value.type);
4554 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4555
4556 const fs_reg src_left = horiz_stride(value, 2);
4557 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4558 const fs_reg tmp_left = horiz_stride(tmp, 2);
4559 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4560
4561 ubld.MOV(tmp_left, src_right);
4562 ubld.MOV(tmp_right, src_left);
4563
4564 bld.MOV(retype(dest, value.type), tmp);
4565 break;
4566 }
4567
4568 case nir_intrinsic_quad_swap_vertical: {
4569 const fs_reg value = get_nir_src(instr->src[0]);
4570 if (nir_src_bit_size(instr->src[0]) == 32) {
4571 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4572 const fs_reg tmp = bld.vgrf(value.type);
4573 const fs_builder ubld = bld.exec_all();
4574 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4575 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4576 bld.MOV(retype(dest, value.type), tmp);
4577 } else {
4578 /* For larger data types, we have to either emit dispatch_width many
4579 * MOVs or else fall back to doing indirects.
4580 */
4581 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4582 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4583 brw_imm_w(0x2));
4584 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4585 }
4586 break;
4587 }
4588
4589 case nir_intrinsic_quad_swap_diagonal: {
4590 const fs_reg value = get_nir_src(instr->src[0]);
4591 if (nir_src_bit_size(instr->src[0]) == 32) {
4592 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4593 const fs_reg tmp = bld.vgrf(value.type);
4594 const fs_builder ubld = bld.exec_all();
4595 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4596 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4597 bld.MOV(retype(dest, value.type), tmp);
4598 } else {
4599 /* For larger data types, we have to either emit dispatch_width many
4600 * MOVs or else fall back to doing indirects.
4601 */
4602 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4603 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4604 brw_imm_w(0x3));
4605 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4606 }
4607 break;
4608 }
4609
4610 case nir_intrinsic_reduce: {
4611 fs_reg src = get_nir_src(instr->src[0]);
4612 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4613 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4614 if (cluster_size == 0 || cluster_size > dispatch_width)
4615 cluster_size = dispatch_width;
4616
4617 /* Figure out the source type */
4618 src.type = brw_type_for_nir_type(devinfo,
4619 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4620 nir_src_bit_size(instr->src[0])));
4621
4622 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4623 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4624 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4625
4626 /* Set up a register for all of our scratching around and initialize it
4627 * to reduction operation's identity value.
4628 */
4629 fs_reg scan = bld.vgrf(src.type);
4630 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4631
4632 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4633
4634 dest.type = src.type;
4635 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4636 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4637 * the distance between clusters is at least 2 GRFs. In this case,
4638 * we don't need the weird striding of the CLUSTER_BROADCAST
4639 * instruction and can just do regular MOVs.
4640 */
4641 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4642 const unsigned groups =
4643 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4644 const unsigned group_size = dispatch_width / groups;
4645 for (unsigned i = 0; i < groups; i++) {
4646 const unsigned cluster = (i * group_size) / cluster_size;
4647 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4648 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4649 component(scan, comp));
4650 }
4651 } else {
4652 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4653 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4654 }
4655 break;
4656 }
4657
4658 case nir_intrinsic_inclusive_scan:
4659 case nir_intrinsic_exclusive_scan: {
4660 fs_reg src = get_nir_src(instr->src[0]);
4661 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4662
4663 /* Figure out the source type */
4664 src.type = brw_type_for_nir_type(devinfo,
4665 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4666 nir_src_bit_size(instr->src[0])));
4667
4668 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4669 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4670 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4671
4672 /* Set up a register for all of our scratching around and initialize it
4673 * to reduction operation's identity value.
4674 */
4675 fs_reg scan = bld.vgrf(src.type);
4676 const fs_builder allbld = bld.exec_all();
4677 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4678
4679 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4680 /* Exclusive scan is a bit harder because we have to do an annoying
4681 * shift of the contents before we can begin. To make things worse,
4682 * we can't do this with a normal stride; we have to use indirects.
4683 */
4684 fs_reg shifted = bld.vgrf(src.type);
4685 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4686 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4687 brw_imm_w(-1));
4688 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4689 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4690 scan = shifted;
4691 }
4692
4693 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4694
4695 bld.MOV(retype(dest, src.type), scan);
4696 break;
4697 }
4698
4699 case nir_intrinsic_begin_invocation_interlock: {
4700 const fs_builder ubld = bld.group(8, 0);
4701 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4702
4703 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4704 REG_SIZE;
4705
4706 break;
4707 }
4708
4709 case nir_intrinsic_end_invocation_interlock: {
4710 /* We don't need to do anything here */
4711 break;
4712 }
4713
4714 default:
4715 unreachable("unknown intrinsic");
4716 }
4717 }
4718
4719 void
4720 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4721 int op, nir_intrinsic_instr *instr)
4722 {
4723 if (stage == MESA_SHADER_FRAGMENT)
4724 brw_wm_prog_data(prog_data)->has_side_effects = true;
4725
4726 fs_reg dest;
4727 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4728 dest = get_nir_dest(instr->dest);
4729
4730 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4731 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4732 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4733 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4734 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4735
4736 fs_reg data;
4737 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4738 data = get_nir_src(instr->src[2]);
4739
4740 if (op == BRW_AOP_CMPWR) {
4741 fs_reg tmp = bld.vgrf(data.type, 2);
4742 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4743 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4744 data = tmp;
4745 }
4746 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4747
4748 /* Emit the actual atomic operation */
4749
4750 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4751 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4752 }
4753
4754 void
4755 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4756 int op, nir_intrinsic_instr *instr)
4757 {
4758 if (stage == MESA_SHADER_FRAGMENT)
4759 brw_wm_prog_data(prog_data)->has_side_effects = true;
4760
4761 fs_reg dest;
4762 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4763 dest = get_nir_dest(instr->dest);
4764
4765 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4766 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4767 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4768 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4769 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4770
4771 fs_reg data = get_nir_src(instr->src[2]);
4772 if (op == BRW_AOP_FCMPWR) {
4773 fs_reg tmp = bld.vgrf(data.type, 2);
4774 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4775 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4776 data = tmp;
4777 }
4778 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4779
4780 /* Emit the actual atomic operation */
4781
4782 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4783 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4784 }
4785
4786 void
4787 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4788 int op, nir_intrinsic_instr *instr)
4789 {
4790 fs_reg dest;
4791 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4792 dest = get_nir_dest(instr->dest);
4793
4794 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4795 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4796 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4797 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4798
4799 fs_reg data;
4800 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4801 data = get_nir_src(instr->src[1]);
4802 if (op == BRW_AOP_CMPWR) {
4803 fs_reg tmp = bld.vgrf(data.type, 2);
4804 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4805 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4806 data = tmp;
4807 }
4808 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4809
4810 /* Get the offset */
4811 if (nir_src_is_const(instr->src[0])) {
4812 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4813 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4814 } else {
4815 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4816 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4817 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4818 brw_imm_ud(instr->const_index[0]));
4819 }
4820
4821 /* Emit the actual atomic operation operation */
4822
4823 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
4824 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4825 }
4826
4827 void
4828 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4829 int op, nir_intrinsic_instr *instr)
4830 {
4831 fs_reg dest;
4832 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4833 dest = get_nir_dest(instr->dest);
4834
4835 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4836 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4837 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4838 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4839
4840 fs_reg data = get_nir_src(instr->src[1]);
4841 if (op == BRW_AOP_FCMPWR) {
4842 fs_reg tmp = bld.vgrf(data.type, 2);
4843 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4844 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4845 data = tmp;
4846 }
4847 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4848
4849 /* Get the offset */
4850 if (nir_src_is_const(instr->src[0])) {
4851 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4852 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
4853 } else {
4854 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
4855 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
4856 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4857 brw_imm_ud(instr->const_index[0]));
4858 }
4859
4860 /* Emit the actual atomic operation operation */
4861
4862 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
4863 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4864 }
4865
4866 void
4867 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
4868 int op, nir_intrinsic_instr *instr)
4869 {
4870 if (stage == MESA_SHADER_FRAGMENT)
4871 brw_wm_prog_data(prog_data)->has_side_effects = true;
4872
4873 fs_reg dest;
4874 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4875 dest = get_nir_dest(instr->dest);
4876
4877 fs_reg addr = get_nir_src(instr->src[0]);
4878
4879 fs_reg data;
4880 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4881 data = get_nir_src(instr->src[1]);
4882
4883 if (op == BRW_AOP_CMPWR) {
4884 fs_reg tmp = bld.vgrf(data.type, 2);
4885 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4886 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4887 data = tmp;
4888 }
4889
4890 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4891 dest, addr, data, brw_imm_ud(op));
4892 }
4893
4894 void
4895 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
4896 int op, nir_intrinsic_instr *instr)
4897 {
4898 if (stage == MESA_SHADER_FRAGMENT)
4899 brw_wm_prog_data(prog_data)->has_side_effects = true;
4900
4901 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
4902 fs_reg dest = get_nir_dest(instr->dest);
4903
4904 fs_reg addr = get_nir_src(instr->src[0]);
4905
4906 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
4907 fs_reg data = get_nir_src(instr->src[1]);
4908
4909 if (op == BRW_AOP_FCMPWR) {
4910 fs_reg tmp = bld.vgrf(data.type, 2);
4911 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
4912 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4913 data = tmp;
4914 }
4915
4916 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
4917 dest, addr, data, brw_imm_ud(op));
4918 }
4919
4920 void
4921 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4922 {
4923 unsigned texture = instr->texture_index;
4924 unsigned sampler = instr->sampler_index;
4925
4926 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4927
4928 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4929 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4930
4931 int lod_components = 0;
4932
4933 /* The hardware requires a LOD for buffer textures */
4934 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4935 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4936
4937 uint32_t header_bits = 0;
4938 for (unsigned i = 0; i < instr->num_srcs; i++) {
4939 fs_reg src = get_nir_src(instr->src[i].src);
4940 switch (instr->src[i].src_type) {
4941 case nir_tex_src_bias:
4942 srcs[TEX_LOGICAL_SRC_LOD] =
4943 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4944 break;
4945 case nir_tex_src_comparator:
4946 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4947 break;
4948 case nir_tex_src_coord:
4949 switch (instr->op) {
4950 case nir_texop_txf:
4951 case nir_texop_txf_ms:
4952 case nir_texop_txf_ms_mcs:
4953 case nir_texop_samples_identical:
4954 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4955 break;
4956 default:
4957 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4958 break;
4959 }
4960 break;
4961 case nir_tex_src_ddx:
4962 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4963 lod_components = nir_tex_instr_src_size(instr, i);
4964 break;
4965 case nir_tex_src_ddy:
4966 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4967 break;
4968 case nir_tex_src_lod:
4969 switch (instr->op) {
4970 case nir_texop_txs:
4971 srcs[TEX_LOGICAL_SRC_LOD] =
4972 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4973 break;
4974 case nir_texop_txf:
4975 srcs[TEX_LOGICAL_SRC_LOD] =
4976 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4977 break;
4978 default:
4979 srcs[TEX_LOGICAL_SRC_LOD] =
4980 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4981 break;
4982 }
4983 break;
4984 case nir_tex_src_min_lod:
4985 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
4986 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4987 break;
4988 case nir_tex_src_ms_index:
4989 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4990 break;
4991
4992 case nir_tex_src_offset: {
4993 nir_const_value *const_offset =
4994 nir_src_as_const_value(instr->src[i].src);
4995 assert(nir_src_bit_size(instr->src[i].src) == 32);
4996 unsigned offset_bits = 0;
4997 if (const_offset &&
4998 brw_texture_offset(const_offset->i32,
4999 nir_tex_instr_src_size(instr, i),
5000 &offset_bits)) {
5001 header_bits |= offset_bits;
5002 } else {
5003 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5004 retype(src, BRW_REGISTER_TYPE_D);
5005 }
5006 break;
5007 }
5008
5009 case nir_tex_src_projector:
5010 unreachable("should be lowered");
5011
5012 case nir_tex_src_texture_offset: {
5013 /* Emit code to evaluate the actual indexing expression */
5014 fs_reg tmp = vgrf(glsl_type::uint_type);
5015 bld.ADD(tmp, src, brw_imm_ud(texture));
5016 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5017 break;
5018 }
5019
5020 case nir_tex_src_sampler_offset: {
5021 /* Emit code to evaluate the actual indexing expression */
5022 fs_reg tmp = vgrf(glsl_type::uint_type);
5023 bld.ADD(tmp, src, brw_imm_ud(sampler));
5024 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5025 break;
5026 }
5027
5028 case nir_tex_src_ms_mcs:
5029 assert(instr->op == nir_texop_txf_ms);
5030 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5031 break;
5032
5033 case nir_tex_src_plane: {
5034 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5035 const uint32_t texture_index =
5036 instr->texture_index +
5037 stage_prog_data->binding_table.plane_start[plane] -
5038 stage_prog_data->binding_table.texture_start;
5039
5040 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5041 break;
5042 }
5043
5044 default:
5045 unreachable("unknown texture source");
5046 }
5047 }
5048
5049 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5050 (instr->op == nir_texop_txf_ms ||
5051 instr->op == nir_texop_samples_identical)) {
5052 if (devinfo->gen >= 7 &&
5053 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5054 srcs[TEX_LOGICAL_SRC_MCS] =
5055 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5056 instr->coord_components,
5057 srcs[TEX_LOGICAL_SRC_SURFACE]);
5058 } else {
5059 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5060 }
5061 }
5062
5063 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5064 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5065
5066 enum opcode opcode;
5067 switch (instr->op) {
5068 case nir_texop_tex:
5069 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5070 SHADER_OPCODE_TXL_LOGICAL);
5071 break;
5072 case nir_texop_txb:
5073 opcode = FS_OPCODE_TXB_LOGICAL;
5074 break;
5075 case nir_texop_txl:
5076 opcode = SHADER_OPCODE_TXL_LOGICAL;
5077 break;
5078 case nir_texop_txd:
5079 opcode = SHADER_OPCODE_TXD_LOGICAL;
5080 break;
5081 case nir_texop_txf:
5082 opcode = SHADER_OPCODE_TXF_LOGICAL;
5083 break;
5084 case nir_texop_txf_ms:
5085 if ((key_tex->msaa_16 & (1 << sampler)))
5086 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5087 else
5088 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5089 break;
5090 case nir_texop_txf_ms_mcs:
5091 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5092 break;
5093 case nir_texop_query_levels:
5094 case nir_texop_txs:
5095 opcode = SHADER_OPCODE_TXS_LOGICAL;
5096 break;
5097 case nir_texop_lod:
5098 opcode = SHADER_OPCODE_LOD_LOGICAL;
5099 break;
5100 case nir_texop_tg4:
5101 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5102 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5103 else
5104 opcode = SHADER_OPCODE_TG4_LOGICAL;
5105 break;
5106 case nir_texop_texture_samples:
5107 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5108 break;
5109 case nir_texop_samples_identical: {
5110 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5111
5112 /* If mcs is an immediate value, it means there is no MCS. In that case
5113 * just return false.
5114 */
5115 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5116 bld.MOV(dst, brw_imm_ud(0u));
5117 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5118 fs_reg tmp = vgrf(glsl_type::uint_type);
5119 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5120 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5121 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5122 } else {
5123 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5124 BRW_CONDITIONAL_EQ);
5125 }
5126 return;
5127 }
5128 default:
5129 unreachable("unknown texture opcode");
5130 }
5131
5132 if (instr->op == nir_texop_tg4) {
5133 if (instr->component == 1 &&
5134 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5135 /* gather4 sampler is broken for green channel on RG32F --
5136 * we must ask for blue instead.
5137 */
5138 header_bits |= 2 << 16;
5139 } else {
5140 header_bits |= instr->component << 16;
5141 }
5142 }
5143
5144 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5145 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5146 inst->offset = header_bits;
5147
5148 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5149 if (devinfo->gen >= 9 &&
5150 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5151 unsigned write_mask = instr->dest.is_ssa ?
5152 nir_ssa_def_components_read(&instr->dest.ssa):
5153 (1 << dest_size) - 1;
5154 assert(write_mask != 0); /* dead code should have been eliminated */
5155 inst->size_written = util_last_bit(write_mask) *
5156 inst->dst.component_size(inst->exec_size);
5157 } else {
5158 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5159 }
5160
5161 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5162 inst->shadow_compare = true;
5163
5164 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5165 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5166
5167 fs_reg nir_dest[4];
5168 for (unsigned i = 0; i < dest_size; i++)
5169 nir_dest[i] = offset(dst, bld, i);
5170
5171 if (instr->op == nir_texop_query_levels) {
5172 /* # levels is in .w */
5173 nir_dest[0] = offset(dst, bld, 3);
5174 } else if (instr->op == nir_texop_txs &&
5175 dest_size >= 3 && devinfo->gen < 7) {
5176 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5177 fs_reg depth = offset(dst, bld, 2);
5178 nir_dest[2] = vgrf(glsl_type::int_type);
5179 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5180 }
5181
5182 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5183 }
5184
5185 void
5186 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5187 {
5188 switch (instr->type) {
5189 case nir_jump_break:
5190 bld.emit(BRW_OPCODE_BREAK);
5191 break;
5192 case nir_jump_continue:
5193 bld.emit(BRW_OPCODE_CONTINUE);
5194 break;
5195 case nir_jump_return:
5196 default:
5197 unreachable("unknown jump");
5198 }
5199 }
5200
5201 /*
5202 * This helper takes a source register and un/shuffles it into the destination
5203 * register.
5204 *
5205 * If source type size is smaller than destination type size the operation
5206 * needed is a component shuffle. The opposite case would be an unshuffle. If
5207 * source/destination type size is equal a shuffle is done that would be
5208 * equivalent to a simple MOV.
5209 *
5210 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5211 * components .xyz 16-bit vector on SIMD8 would be.
5212 *
5213 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5214 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5215 *
5216 * This helper will return the following 2 32-bit components with the 16-bit
5217 * values shuffled:
5218 *
5219 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5220 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5221 *
5222 * For unshuffle, the example would be the opposite, a 64-bit type source
5223 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5224 * would be:
5225 *
5226 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5227 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5228 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5229 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5230 *
5231 * The returned result would be the following 4 32-bit components unshuffled:
5232 *
5233 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5234 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5235 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5236 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5237 *
5238 * - Source and destination register must not be overlapped.
5239 * - components units are measured in terms of the smaller type between
5240 * source and destination because we are un/shuffling the smaller
5241 * components from/into the bigger ones.
5242 * - first_component parameter allows skipping source components.
5243 */
5244 void
5245 shuffle_src_to_dst(const fs_builder &bld,
5246 const fs_reg &dst,
5247 const fs_reg &src,
5248 uint32_t first_component,
5249 uint32_t components)
5250 {
5251 if (type_sz(src.type) == type_sz(dst.type)) {
5252 assert(!regions_overlap(dst,
5253 type_sz(dst.type) * bld.dispatch_width() * components,
5254 offset(src, bld, first_component),
5255 type_sz(src.type) * bld.dispatch_width() * components));
5256 for (unsigned i = 0; i < components; i++) {
5257 bld.MOV(retype(offset(dst, bld, i), src.type),
5258 offset(src, bld, i + first_component));
5259 }
5260 } else if (type_sz(src.type) < type_sz(dst.type)) {
5261 /* Source is shuffled into destination */
5262 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5263 assert(!regions_overlap(dst,
5264 type_sz(dst.type) * bld.dispatch_width() *
5265 DIV_ROUND_UP(components, size_ratio),
5266 offset(src, bld, first_component),
5267 type_sz(src.type) * bld.dispatch_width() * components));
5268
5269 brw_reg_type shuffle_type =
5270 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5271 BRW_REGISTER_TYPE_D);
5272 for (unsigned i = 0; i < components; i++) {
5273 fs_reg shuffle_component_i =
5274 subscript(offset(dst, bld, i / size_ratio),
5275 shuffle_type, i % size_ratio);
5276 bld.MOV(shuffle_component_i,
5277 retype(offset(src, bld, i + first_component), shuffle_type));
5278 }
5279 } else {
5280 /* Source is unshuffled into destination */
5281 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5282 assert(!regions_overlap(dst,
5283 type_sz(dst.type) * bld.dispatch_width() * components,
5284 offset(src, bld, first_component / size_ratio),
5285 type_sz(src.type) * bld.dispatch_width() *
5286 DIV_ROUND_UP(components + (first_component % size_ratio),
5287 size_ratio)));
5288
5289 brw_reg_type shuffle_type =
5290 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5291 BRW_REGISTER_TYPE_D);
5292 for (unsigned i = 0; i < components; i++) {
5293 fs_reg shuffle_component_i =
5294 subscript(offset(src, bld, (first_component + i) / size_ratio),
5295 shuffle_type, (first_component + i) % size_ratio);
5296 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5297 shuffle_component_i);
5298 }
5299 }
5300 }
5301
5302 void
5303 shuffle_from_32bit_read(const fs_builder &bld,
5304 const fs_reg &dst,
5305 const fs_reg &src,
5306 uint32_t first_component,
5307 uint32_t components)
5308 {
5309 assert(type_sz(src.type) == 4);
5310
5311 /* This function takes components in units of the destination type while
5312 * shuffle_src_to_dst takes components in units of the smallest type
5313 */
5314 if (type_sz(dst.type) > 4) {
5315 assert(type_sz(dst.type) == 8);
5316 first_component *= 2;
5317 components *= 2;
5318 }
5319
5320 shuffle_src_to_dst(bld, dst, src, first_component, components);
5321 }
5322
5323 fs_reg
5324 shuffle_for_32bit_write(const fs_builder &bld,
5325 const fs_reg &src,
5326 uint32_t first_component,
5327 uint32_t components)
5328 {
5329 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5330 DIV_ROUND_UP (components * type_sz(src.type), 4));
5331 /* This function takes components in units of the source type while
5332 * shuffle_src_to_dst takes components in units of the smallest type
5333 */
5334 if (type_sz(src.type) > 4) {
5335 assert(type_sz(src.type) == 8);
5336 first_component *= 2;
5337 components *= 2;
5338 }
5339
5340 shuffle_src_to_dst(bld, dst, src, first_component, components);
5341
5342 return dst;
5343 }
5344
5345 fs_reg
5346 setup_imm_df(const fs_builder &bld, double v)
5347 {
5348 const struct gen_device_info *devinfo = bld.shader->devinfo;
5349 assert(devinfo->gen >= 7);
5350
5351 if (devinfo->gen >= 8)
5352 return brw_imm_df(v);
5353
5354 /* gen7.5 does not support DF immediates straighforward but the DIM
5355 * instruction allows to set the 64-bit immediate value.
5356 */
5357 if (devinfo->is_haswell) {
5358 const fs_builder ubld = bld.exec_all().group(1, 0);
5359 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5360 ubld.DIM(dst, brw_imm_df(v));
5361 return component(dst, 0);
5362 }
5363
5364 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5365 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5366 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5367 *
5368 * Alternatively, we could also produce a normal VGRF (without stride 0)
5369 * by writing to all the channels in the VGRF, however, that would hit the
5370 * gen7 bug where we have to split writes that span more than 1 register
5371 * into instructions with a width of 4 (otherwise the write to the second
5372 * register written runs into an execmask hardware bug) which isn't very
5373 * nice.
5374 */
5375 union {
5376 double d;
5377 struct {
5378 uint32_t i1;
5379 uint32_t i2;
5380 };
5381 } di;
5382
5383 di.d = v;
5384
5385 const fs_builder ubld = bld.exec_all().group(1, 0);
5386 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5387 ubld.MOV(tmp, brw_imm_ud(di.i1));
5388 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5389
5390 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5391 }
5392
5393 fs_reg
5394 setup_imm_b(const fs_builder &bld, int8_t v)
5395 {
5396 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5397 bld.MOV(tmp, brw_imm_w(v));
5398 return tmp;
5399 }
5400
5401 fs_reg
5402 setup_imm_ub(const fs_builder &bld, uint8_t v)
5403 {
5404 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5405 bld.MOV(tmp, brw_imm_uw(v));
5406 return tmp;
5407 }