i965/fs: Enable store_ssbo for 8-bit types.
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
71 if (vec4s[loc] == 0) {
72 loc++;
73 continue;
74 }
75
76 unsigned reg_size = vec4s[loc];
77
78 /* Check if there are any ranges that start within this range and extend
79 * past it. If so, include them in this allocation.
80 */
81 for (unsigned i = 1; i < reg_size; i++)
82 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
83
84 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
85 for (unsigned i = 0; i < reg_size; i++)
86 outputs[loc + i] = offset(reg, bld, 4 * i);
87
88 loc += reg_size;
89 }
90 }
91
92 void
93 fs_visitor::nir_setup_uniforms()
94 {
95 /* Only the first compile gets to set up uniforms. */
96 if (push_constant_loc) {
97 assert(pull_constant_loc);
98 return;
99 }
100
101 uniforms = nir->num_uniforms / 4;
102
103 if (stage == MESA_SHADER_COMPUTE) {
104 /* Add a uniform for the thread local id. It must be the last uniform
105 * on the list.
106 */
107 assert(uniforms == prog_data->nr_params);
108 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
109 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
110 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
111 }
112 }
113
114 static bool
115 emit_system_values_block(nir_block *block, fs_visitor *v)
116 {
117 fs_reg *reg;
118
119 nir_foreach_instr(instr, block) {
120 if (instr->type != nir_instr_type_intrinsic)
121 continue;
122
123 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
124 switch (intrin->intrinsic) {
125 case nir_intrinsic_load_vertex_id:
126 case nir_intrinsic_load_base_vertex:
127 unreachable("should be lowered by nir_lower_system_values().");
128
129 case nir_intrinsic_load_vertex_id_zero_base:
130 case nir_intrinsic_load_is_indexed_draw:
131 case nir_intrinsic_load_first_vertex:
132 case nir_intrinsic_load_instance_id:
133 case nir_intrinsic_load_base_instance:
134 case nir_intrinsic_load_draw_id:
135 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
136
137 case nir_intrinsic_load_invocation_id:
138 if (v->stage == MESA_SHADER_TESS_CTRL)
139 break;
140 assert(v->stage == MESA_SHADER_GEOMETRY);
141 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
142 if (reg->file == BAD_FILE) {
143 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
144 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
145 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
146 abld.SHR(iid, g1, brw_imm_ud(27u));
147 *reg = iid;
148 }
149 break;
150
151 case nir_intrinsic_load_sample_pos:
152 assert(v->stage == MESA_SHADER_FRAGMENT);
153 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
154 if (reg->file == BAD_FILE)
155 *reg = *v->emit_samplepos_setup();
156 break;
157
158 case nir_intrinsic_load_sample_id:
159 assert(v->stage == MESA_SHADER_FRAGMENT);
160 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
161 if (reg->file == BAD_FILE)
162 *reg = *v->emit_sampleid_setup();
163 break;
164
165 case nir_intrinsic_load_sample_mask_in:
166 assert(v->stage == MESA_SHADER_FRAGMENT);
167 assert(v->devinfo->gen >= 7);
168 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
169 if (reg->file == BAD_FILE)
170 *reg = *v->emit_samplemaskin_setup();
171 break;
172
173 case nir_intrinsic_load_work_group_id:
174 assert(v->stage == MESA_SHADER_COMPUTE);
175 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
176 if (reg->file == BAD_FILE)
177 *reg = *v->emit_cs_work_group_id_setup();
178 break;
179
180 case nir_intrinsic_load_helper_invocation:
181 assert(v->stage == MESA_SHADER_FRAGMENT);
182 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
183 if (reg->file == BAD_FILE) {
184 const fs_builder abld =
185 v->bld.annotate("gl_HelperInvocation", NULL);
186
187 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
188 * pixel mask is in g1.7 of the thread payload.
189 *
190 * We move the per-channel pixel enable bit to the low bit of each
191 * channel by shifting the byte containing the pixel mask by the
192 * vector immediate 0x76543210UV.
193 *
194 * The region of <1,8,0> reads only 1 byte (the pixel masks for
195 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
196 * masks for 2 and 3) in SIMD16.
197 */
198 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
199
200 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
201 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
202 hbld.SHR(offset(shifted, hbld, i),
203 stride(retype(brw_vec1_grf(1 + i, 7),
204 BRW_REGISTER_TYPE_UB),
205 1, 8, 0),
206 brw_imm_v(0x76543210));
207 }
208
209 /* A set bit in the pixel mask means the channel is enabled, but
210 * that is the opposite of gl_HelperInvocation so we need to invert
211 * the mask.
212 *
213 * The negate source-modifier bit of logical instructions on Gen8+
214 * performs 1's complement negation, so we can use that instead of
215 * a NOT instruction.
216 */
217 fs_reg inverted = negate(shifted);
218 if (v->devinfo->gen < 8) {
219 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
220 abld.NOT(inverted, shifted);
221 }
222
223 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
224 * with 1 and negating.
225 */
226 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
227 abld.AND(anded, inverted, brw_imm_uw(1));
228
229 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
230 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
231 *reg = dst;
232 }
233 break;
234
235 default:
236 break;
237 }
238 }
239
240 return true;
241 }
242
243 void
244 fs_visitor::nir_emit_system_values()
245 {
246 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
247 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
248 nir_system_values[i] = fs_reg();
249 }
250
251 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
252 * never end up using it.
253 */
254 {
255 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
256 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
257 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
258
259 const fs_builder allbld8 = abld.group(8, 0).exec_all();
260 allbld8.MOV(reg, brw_imm_v(0x76543210));
261 if (dispatch_width > 8)
262 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
263 if (dispatch_width > 16) {
264 const fs_builder allbld16 = abld.group(16, 0).exec_all();
265 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
266 }
267 }
268
269 nir_foreach_function(function, nir) {
270 assert(strcmp(function->name, "main") == 0);
271 assert(function->impl);
272 nir_foreach_block(block, function->impl) {
273 emit_system_values_block(block, this);
274 }
275 }
276 }
277
278 /*
279 * Returns a type based on a reference_type (word, float, half-float) and a
280 * given bit_size.
281 *
282 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
283 *
284 * @FIXME: 64-bit return types are always DF on integer types to maintain
285 * compability with uses of DF previously to the introduction of int64
286 * support.
287 */
288 static brw_reg_type
289 brw_reg_type_from_bit_size(const unsigned bit_size,
290 const brw_reg_type reference_type)
291 {
292 switch(reference_type) {
293 case BRW_REGISTER_TYPE_HF:
294 case BRW_REGISTER_TYPE_F:
295 case BRW_REGISTER_TYPE_DF:
296 switch(bit_size) {
297 case 16:
298 return BRW_REGISTER_TYPE_HF;
299 case 32:
300 return BRW_REGISTER_TYPE_F;
301 case 64:
302 return BRW_REGISTER_TYPE_DF;
303 default:
304 unreachable("Invalid bit size");
305 }
306 case BRW_REGISTER_TYPE_B:
307 case BRW_REGISTER_TYPE_W:
308 case BRW_REGISTER_TYPE_D:
309 case BRW_REGISTER_TYPE_Q:
310 switch(bit_size) {
311 case 8:
312 return BRW_REGISTER_TYPE_B;
313 case 16:
314 return BRW_REGISTER_TYPE_W;
315 case 32:
316 return BRW_REGISTER_TYPE_D;
317 case 64:
318 return BRW_REGISTER_TYPE_Q;
319 default:
320 unreachable("Invalid bit size");
321 }
322 case BRW_REGISTER_TYPE_UB:
323 case BRW_REGISTER_TYPE_UW:
324 case BRW_REGISTER_TYPE_UD:
325 case BRW_REGISTER_TYPE_UQ:
326 switch(bit_size) {
327 case 8:
328 return BRW_REGISTER_TYPE_UB;
329 case 16:
330 return BRW_REGISTER_TYPE_UW;
331 case 32:
332 return BRW_REGISTER_TYPE_UD;
333 case 64:
334 return BRW_REGISTER_TYPE_UQ;
335 default:
336 unreachable("Invalid bit size");
337 }
338 default:
339 unreachable("Unknown type");
340 }
341 }
342
343 void
344 fs_visitor::nir_emit_impl(nir_function_impl *impl)
345 {
346 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
347 for (unsigned i = 0; i < impl->reg_alloc; i++) {
348 nir_locals[i] = fs_reg();
349 }
350
351 foreach_list_typed(nir_register, reg, node, &impl->registers) {
352 unsigned array_elems =
353 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
354 unsigned size = array_elems * reg->num_components;
355 const brw_reg_type reg_type =
356 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
357 nir_locals[reg->index] = bld.vgrf(reg_type, size);
358 }
359
360 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
361 impl->ssa_alloc);
362
363 nir_emit_cf_list(&impl->body);
364 }
365
366 void
367 fs_visitor::nir_emit_cf_list(exec_list *list)
368 {
369 exec_list_validate(list);
370 foreach_list_typed(nir_cf_node, node, node, list) {
371 switch (node->type) {
372 case nir_cf_node_if:
373 nir_emit_if(nir_cf_node_as_if(node));
374 break;
375
376 case nir_cf_node_loop:
377 nir_emit_loop(nir_cf_node_as_loop(node));
378 break;
379
380 case nir_cf_node_block:
381 nir_emit_block(nir_cf_node_as_block(node));
382 break;
383
384 default:
385 unreachable("Invalid CFG node block");
386 }
387 }
388 }
389
390 void
391 fs_visitor::nir_emit_if(nir_if *if_stmt)
392 {
393 /* first, put the condition into f0 */
394 fs_inst *inst = bld.MOV(bld.null_reg_d(),
395 retype(get_nir_src(if_stmt->condition),
396 BRW_REGISTER_TYPE_D));
397 inst->conditional_mod = BRW_CONDITIONAL_NZ;
398
399 bld.IF(BRW_PREDICATE_NORMAL);
400
401 nir_emit_cf_list(&if_stmt->then_list);
402
403 /* note: if the else is empty, dead CF elimination will remove it */
404 bld.emit(BRW_OPCODE_ELSE);
405
406 nir_emit_cf_list(&if_stmt->else_list);
407
408 bld.emit(BRW_OPCODE_ENDIF);
409
410 if (devinfo->gen < 7)
411 limit_dispatch_width(16, "Non-uniform control flow unsupported "
412 "in SIMD32 mode.");
413 }
414
415 void
416 fs_visitor::nir_emit_loop(nir_loop *loop)
417 {
418 bld.emit(BRW_OPCODE_DO);
419
420 nir_emit_cf_list(&loop->body);
421
422 bld.emit(BRW_OPCODE_WHILE);
423
424 if (devinfo->gen < 7)
425 limit_dispatch_width(16, "Non-uniform control flow unsupported "
426 "in SIMD32 mode.");
427 }
428
429 void
430 fs_visitor::nir_emit_block(nir_block *block)
431 {
432 nir_foreach_instr(instr, block) {
433 nir_emit_instr(instr);
434 }
435 }
436
437 void
438 fs_visitor::nir_emit_instr(nir_instr *instr)
439 {
440 const fs_builder abld = bld.annotate(NULL, instr);
441
442 switch (instr->type) {
443 case nir_instr_type_alu:
444 nir_emit_alu(abld, nir_instr_as_alu(instr));
445 break;
446
447 case nir_instr_type_deref:
448 /* Derefs can exist for images but they do nothing */
449 break;
450
451 case nir_instr_type_intrinsic:
452 switch (stage) {
453 case MESA_SHADER_VERTEX:
454 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456 case MESA_SHADER_TESS_CTRL:
457 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
458 break;
459 case MESA_SHADER_TESS_EVAL:
460 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462 case MESA_SHADER_GEOMETRY:
463 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 case MESA_SHADER_FRAGMENT:
466 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_COMPUTE:
469 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 default:
472 unreachable("unsupported shader stage");
473 }
474 break;
475
476 case nir_instr_type_tex:
477 nir_emit_texture(abld, nir_instr_as_tex(instr));
478 break;
479
480 case nir_instr_type_load_const:
481 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
482 break;
483
484 case nir_instr_type_ssa_undef:
485 /* We create a new VGRF for undefs on every use (by handling
486 * them in get_nir_src()), rather than for each definition.
487 * This helps register coalescing eliminate MOVs from undef.
488 */
489 break;
490
491 case nir_instr_type_jump:
492 nir_emit_jump(abld, nir_instr_as_jump(instr));
493 break;
494
495 default:
496 unreachable("unknown instruction type");
497 }
498 }
499
500 /**
501 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
502 * match instr.
503 */
504 bool
505 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
506 const fs_reg &result)
507 {
508 if (!instr->src[0].src.is_ssa ||
509 !instr->src[0].src.ssa->parent_instr)
510 return false;
511
512 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
513 return false;
514
515 nir_alu_instr *src0 =
516 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
517
518 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
519 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
520 return false;
521
522 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
523 assert(element != NULL);
524
525 /* Element type to extract.*/
526 const brw_reg_type type = brw_int_type(
527 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
528 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
529
530 fs_reg op0 = get_nir_src(src0->src[0].src);
531 op0.type = brw_type_for_nir_type(devinfo,
532 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
533 nir_src_bit_size(src0->src[0].src)));
534 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
535
536 set_saturate(instr->dest.saturate,
537 bld.MOV(result, subscript(op0, type, element->u32[0])));
538 return true;
539 }
540
541 bool
542 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
543 const fs_reg &result)
544 {
545 if (!instr->src[0].src.is_ssa ||
546 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
547 return false;
548
549 nir_intrinsic_instr *src0 =
550 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
551
552 if (src0->intrinsic != nir_intrinsic_load_front_face)
553 return false;
554
555 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
556 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
557 return false;
558
559 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
560 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
561 return false;
562
563 fs_reg tmp = vgrf(glsl_type::int_type);
564
565 if (devinfo->gen >= 6) {
566 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
567 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
568
569 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
570 *
571 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
572 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
573 *
574 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
575 *
576 * This negation looks like it's safe in practice, because bits 0:4 will
577 * surely be TRIANGLES
578 */
579
580 if (value1->f32[0] == -1.0f) {
581 g0.negate = true;
582 }
583
584 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
585 g0, brw_imm_uw(0x3f80));
586 } else {
587 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
588 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
589
590 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
591 *
592 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
593 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
594 *
595 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
596 *
597 * This negation looks like it's safe in practice, because bits 0:4 will
598 * surely be TRIANGLES
599 */
600
601 if (value1->f32[0] == -1.0f) {
602 g1_6.negate = true;
603 }
604
605 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
606 }
607 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
608
609 return true;
610 }
611
612 static void
613 emit_find_msb_using_lzd(const fs_builder &bld,
614 const fs_reg &result,
615 const fs_reg &src,
616 bool is_signed)
617 {
618 fs_inst *inst;
619 fs_reg temp = src;
620
621 if (is_signed) {
622 /* LZD of an absolute value source almost always does the right
623 * thing. There are two problem values:
624 *
625 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
626 * 0. However, findMSB(int(0x80000000)) == 30.
627 *
628 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
629 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
630 *
631 * For a value of zero or negative one, -1 will be returned.
632 *
633 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
634 * findMSB(-(1<<x)) should return x-1.
635 *
636 * For all negative number cases, including 0x80000000 and
637 * 0xffffffff, the correct value is obtained from LZD if instead of
638 * negating the (already negative) value the logical-not is used. A
639 * conditonal logical-not can be achieved in two instructions.
640 */
641 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
642
643 bld.ASR(temp, src, brw_imm_d(31));
644 bld.XOR(temp, temp, src);
645 }
646
647 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
648 retype(temp, BRW_REGISTER_TYPE_UD));
649
650 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
651 * from the LSB side. Subtract the result from 31 to convert the MSB
652 * count into an LSB count. If no bits are set, LZD will return 32.
653 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
654 */
655 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
656 inst->src[0].negate = true;
657 }
658
659 static brw_rnd_mode
660 brw_rnd_mode_from_nir_op (const nir_op op) {
661 switch (op) {
662 case nir_op_f2f16_rtz:
663 return BRW_RND_MODE_RTZ;
664 case nir_op_f2f16_rtne:
665 return BRW_RND_MODE_RTNE;
666 default:
667 unreachable("Operation doesn't support rounding mode");
668 }
669 }
670
671 void
672 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
673 {
674 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
675 fs_inst *inst;
676
677 fs_reg result = get_nir_dest(instr->dest.dest);
678 result.type = brw_type_for_nir_type(devinfo,
679 (nir_alu_type)(nir_op_infos[instr->op].output_type |
680 nir_dest_bit_size(instr->dest.dest)));
681
682 fs_reg op[4];
683 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
684 op[i] = get_nir_src(instr->src[i].src);
685 op[i].type = brw_type_for_nir_type(devinfo,
686 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
687 nir_src_bit_size(instr->src[i].src)));
688 op[i].abs = instr->src[i].abs;
689 op[i].negate = instr->src[i].negate;
690 }
691
692 /* We get a bunch of mov's out of the from_ssa pass and they may still
693 * be vectorized. We'll handle them as a special-case. We'll also
694 * handle vecN here because it's basically the same thing.
695 */
696 switch (instr->op) {
697 case nir_op_imov:
698 case nir_op_fmov:
699 case nir_op_vec2:
700 case nir_op_vec3:
701 case nir_op_vec4: {
702 fs_reg temp = result;
703 bool need_extra_copy = false;
704 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
705 if (!instr->src[i].src.is_ssa &&
706 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
707 need_extra_copy = true;
708 temp = bld.vgrf(result.type, 4);
709 break;
710 }
711 }
712
713 for (unsigned i = 0; i < 4; i++) {
714 if (!(instr->dest.write_mask & (1 << i)))
715 continue;
716
717 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
718 inst = bld.MOV(offset(temp, bld, i),
719 offset(op[0], bld, instr->src[0].swizzle[i]));
720 } else {
721 inst = bld.MOV(offset(temp, bld, i),
722 offset(op[i], bld, instr->src[i].swizzle[0]));
723 }
724 inst->saturate = instr->dest.saturate;
725 }
726
727 /* In this case the source and destination registers were the same,
728 * so we need to insert an extra set of moves in order to deal with
729 * any swizzling.
730 */
731 if (need_extra_copy) {
732 for (unsigned i = 0; i < 4; i++) {
733 if (!(instr->dest.write_mask & (1 << i)))
734 continue;
735
736 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
737 }
738 }
739 return;
740 }
741 default:
742 break;
743 }
744
745 /* At this point, we have dealt with any instruction that operates on
746 * more than a single channel. Therefore, we can just adjust the source
747 * and destination registers for that channel and emit the instruction.
748 */
749 unsigned channel = 0;
750 if (nir_op_infos[instr->op].output_size == 0) {
751 /* Since NIR is doing the scalarizing for us, we should only ever see
752 * vectorized operations with a single channel.
753 */
754 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
755 channel = ffs(instr->dest.write_mask) - 1;
756
757 result = offset(result, bld, channel);
758 }
759
760 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
761 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
762 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
763 }
764
765 switch (instr->op) {
766 case nir_op_i2f32:
767 case nir_op_u2f32:
768 if (optimize_extract_to_float(instr, result))
769 return;
770 inst = bld.MOV(result, op[0]);
771 inst->saturate = instr->dest.saturate;
772 break;
773
774 case nir_op_f2f16_rtne:
775 case nir_op_f2f16_rtz:
776 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
777 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
778 /* fallthrough */
779
780 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
781 * on the HW gen, it is a special hw opcode or just a MOV, and
782 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
783 *
784 * But if we want to use that opcode, we need to provide support on
785 * different optimizations and lowerings. As right now HF support is
786 * only for gen8+, it will be better to use directly the MOV, and use
787 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
788 */
789
790 case nir_op_f2f16_undef:
791 inst = bld.MOV(result, op[0]);
792 inst->saturate = instr->dest.saturate;
793 break;
794
795 case nir_op_f2f64:
796 case nir_op_f2i64:
797 case nir_op_f2u64:
798 case nir_op_i2f64:
799 case nir_op_i2i64:
800 case nir_op_u2f64:
801 case nir_op_u2u64:
802 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
803 *
804 * "When source or destination is 64b (...), regioning in Align1
805 * must follow these rules:
806 *
807 * 1. Source and destination horizontal stride must be aligned to
808 * the same qword.
809 * (...)"
810 *
811 * This means that conversions from bit-sizes smaller than 64-bit to
812 * 64-bit need to have the source data elements aligned to 64-bit.
813 * This restriction does not apply to BDW and later.
814 */
815 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
816 nir_src_bit_size(instr->src[0].src) < 64 &&
817 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
818 fs_reg tmp = bld.vgrf(result.type, 1);
819 tmp = subscript(tmp, op[0].type, 0);
820 inst = bld.MOV(tmp, op[0]);
821 inst = bld.MOV(result, tmp);
822 inst->saturate = instr->dest.saturate;
823 break;
824 }
825 /* fallthrough */
826 case nir_op_f2f32:
827 case nir_op_f2i32:
828 case nir_op_f2u32:
829 case nir_op_f2i16:
830 case nir_op_f2u16:
831 case nir_op_i2i32:
832 case nir_op_u2u32:
833 case nir_op_i2i16:
834 case nir_op_u2u16:
835 case nir_op_i2f16:
836 case nir_op_u2f16:
837 case nir_op_i2i8:
838 case nir_op_u2u8:
839 inst = bld.MOV(result, op[0]);
840 inst->saturate = instr->dest.saturate;
841 break;
842
843 case nir_op_fsign: {
844 if (op[0].abs) {
845 /* Straightforward since the source can be assumed to be either
846 * strictly >= 0 or strictly <= 0 depending on the setting of the
847 * negate flag.
848 */
849 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
850
851 inst = (op[0].negate)
852 ? bld.MOV(result, brw_imm_f(-1.0f))
853 : bld.MOV(result, brw_imm_f(1.0f));
854
855 set_predicate(BRW_PREDICATE_NORMAL, inst);
856
857 if (instr->dest.saturate)
858 inst->saturate = true;
859
860 } else if (type_sz(op[0].type) < 8) {
861 /* AND(val, 0x80000000) gives the sign bit.
862 *
863 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
864 * zero.
865 */
866 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
867
868 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
869 op[0].type = BRW_REGISTER_TYPE_UD;
870 result.type = BRW_REGISTER_TYPE_UD;
871 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
872
873 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
874 inst->predicate = BRW_PREDICATE_NORMAL;
875 if (instr->dest.saturate) {
876 inst = bld.MOV(result, result);
877 inst->saturate = true;
878 }
879 } else {
880 /* For doubles we do the same but we need to consider:
881 *
882 * - 2-src instructions can't operate with 64-bit immediates
883 * - The sign is encoded in the high 32-bit of each DF
884 * - We need to produce a DF result.
885 */
886
887 fs_reg zero = vgrf(glsl_type::double_type);
888 bld.MOV(zero, setup_imm_df(bld, 0.0));
889 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
890
891 bld.MOV(result, zero);
892
893 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
894 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
895 brw_imm_ud(0x80000000u));
896
897 set_predicate(BRW_PREDICATE_NORMAL,
898 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
899
900 if (instr->dest.saturate) {
901 inst = bld.MOV(result, result);
902 inst->saturate = true;
903 }
904 }
905 break;
906 }
907
908 case nir_op_isign: {
909 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
910 * -> non-negative val generates 0x00000000.
911 * Predicated OR sets 1 if val is positive.
912 */
913 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
914 assert(bit_size == 32 || bit_size == 16);
915
916 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
917 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
918 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
919
920 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
921 bld.ASR(result, op[0], shift);
922 inst = bld.OR(result, result, one);
923 inst->predicate = BRW_PREDICATE_NORMAL;
924 break;
925 }
926
927 case nir_op_frcp:
928 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
929 inst->saturate = instr->dest.saturate;
930 break;
931
932 case nir_op_fexp2:
933 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936
937 case nir_op_flog2:
938 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
939 inst->saturate = instr->dest.saturate;
940 break;
941
942 case nir_op_fsin:
943 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
944 inst->saturate = instr->dest.saturate;
945 break;
946
947 case nir_op_fcos:
948 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
949 inst->saturate = instr->dest.saturate;
950 break;
951
952 case nir_op_fddx:
953 if (fs_key->high_quality_derivatives) {
954 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
955 } else {
956 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
957 }
958 inst->saturate = instr->dest.saturate;
959 break;
960 case nir_op_fddx_fine:
961 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
962 inst->saturate = instr->dest.saturate;
963 break;
964 case nir_op_fddx_coarse:
965 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
966 inst->saturate = instr->dest.saturate;
967 break;
968 case nir_op_fddy:
969 if (fs_key->high_quality_derivatives) {
970 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
971 } else {
972 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
973 }
974 inst->saturate = instr->dest.saturate;
975 break;
976 case nir_op_fddy_fine:
977 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
978 inst->saturate = instr->dest.saturate;
979 break;
980 case nir_op_fddy_coarse:
981 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
982 inst->saturate = instr->dest.saturate;
983 break;
984
985 case nir_op_iadd:
986 case nir_op_fadd:
987 inst = bld.ADD(result, op[0], op[1]);
988 inst->saturate = instr->dest.saturate;
989 break;
990
991 case nir_op_fmul:
992 inst = bld.MUL(result, op[0], op[1]);
993 inst->saturate = instr->dest.saturate;
994 break;
995
996 case nir_op_imul:
997 assert(nir_dest_bit_size(instr->dest.dest) < 64);
998 bld.MUL(result, op[0], op[1]);
999 break;
1000
1001 case nir_op_imul_high:
1002 case nir_op_umul_high:
1003 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1004 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1005 break;
1006
1007 case nir_op_idiv:
1008 case nir_op_udiv:
1009 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1010 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1011 break;
1012
1013 case nir_op_uadd_carry:
1014 unreachable("Should have been lowered by carry_to_arith().");
1015
1016 case nir_op_usub_borrow:
1017 unreachable("Should have been lowered by borrow_to_arith().");
1018
1019 case nir_op_umod:
1020 case nir_op_irem:
1021 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1022 * appears that our hardware just does the right thing for signed
1023 * remainder.
1024 */
1025 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1026 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1027 break;
1028
1029 case nir_op_imod: {
1030 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1031 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1032
1033 /* Math instructions don't support conditional mod */
1034 inst = bld.MOV(bld.null_reg_d(), result);
1035 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1036
1037 /* Now, we need to determine if signs of the sources are different.
1038 * When we XOR the sources, the top bit is 0 if they are the same and 1
1039 * if they are different. We can then use a conditional modifier to
1040 * turn that into a predicate. This leads us to an XOR.l instruction.
1041 *
1042 * Technically, according to the PRM, you're not allowed to use .l on a
1043 * XOR instruction. However, emperical experiments and Curro's reading
1044 * of the simulator source both indicate that it's safe.
1045 */
1046 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1047 inst = bld.XOR(tmp, op[0], op[1]);
1048 inst->predicate = BRW_PREDICATE_NORMAL;
1049 inst->conditional_mod = BRW_CONDITIONAL_L;
1050
1051 /* If the result of the initial remainder operation is non-zero and the
1052 * two sources have different signs, add in a copy of op[1] to get the
1053 * final integer modulus value.
1054 */
1055 inst = bld.ADD(result, result, op[1]);
1056 inst->predicate = BRW_PREDICATE_NORMAL;
1057 break;
1058 }
1059
1060 case nir_op_flt:
1061 case nir_op_fge:
1062 case nir_op_feq:
1063 case nir_op_fne: {
1064 fs_reg dest = result;
1065
1066 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1067 if (bit_size != 32)
1068 dest = bld.vgrf(op[0].type, 1);
1069
1070 brw_conditional_mod cond;
1071 switch (instr->op) {
1072 case nir_op_flt:
1073 cond = BRW_CONDITIONAL_L;
1074 break;
1075 case nir_op_fge:
1076 cond = BRW_CONDITIONAL_GE;
1077 break;
1078 case nir_op_feq:
1079 cond = BRW_CONDITIONAL_Z;
1080 break;
1081 case nir_op_fne:
1082 cond = BRW_CONDITIONAL_NZ;
1083 break;
1084 default:
1085 unreachable("bad opcode");
1086 }
1087
1088 bld.CMP(dest, op[0], op[1], cond);
1089
1090 if (bit_size > 32) {
1091 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1092 } else if(bit_size < 32) {
1093 /* When we convert the result to 32-bit we need to be careful and do
1094 * it as a signed conversion to get sign extension (for 32-bit true)
1095 */
1096 const brw_reg_type src_type =
1097 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1098
1099 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1100 }
1101 break;
1102 }
1103
1104 case nir_op_ilt:
1105 case nir_op_ult:
1106 case nir_op_ige:
1107 case nir_op_uge:
1108 case nir_op_ieq:
1109 case nir_op_ine: {
1110 fs_reg dest = result;
1111
1112 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1113 if (bit_size != 32)
1114 dest = bld.vgrf(op[0].type, 1);
1115
1116 brw_conditional_mod cond;
1117 switch (instr->op) {
1118 case nir_op_ilt:
1119 case nir_op_ult:
1120 cond = BRW_CONDITIONAL_L;
1121 break;
1122 case nir_op_ige:
1123 case nir_op_uge:
1124 cond = BRW_CONDITIONAL_GE;
1125 break;
1126 case nir_op_ieq:
1127 cond = BRW_CONDITIONAL_Z;
1128 break;
1129 case nir_op_ine:
1130 cond = BRW_CONDITIONAL_NZ;
1131 break;
1132 default:
1133 unreachable("bad opcode");
1134 }
1135 bld.CMP(dest, op[0], op[1], cond);
1136
1137 if (bit_size > 32) {
1138 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1139 } else if (bit_size < 32) {
1140 /* When we convert the result to 32-bit we need to be careful and do
1141 * it as a signed conversion to get sign extension (for 32-bit true)
1142 */
1143 const brw_reg_type src_type =
1144 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1145
1146 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1147 }
1148 break;
1149 }
1150
1151 case nir_op_inot:
1152 if (devinfo->gen >= 8) {
1153 op[0] = resolve_source_modifiers(op[0]);
1154 }
1155 bld.NOT(result, op[0]);
1156 break;
1157 case nir_op_ixor:
1158 if (devinfo->gen >= 8) {
1159 op[0] = resolve_source_modifiers(op[0]);
1160 op[1] = resolve_source_modifiers(op[1]);
1161 }
1162 bld.XOR(result, op[0], op[1]);
1163 break;
1164 case nir_op_ior:
1165 if (devinfo->gen >= 8) {
1166 op[0] = resolve_source_modifiers(op[0]);
1167 op[1] = resolve_source_modifiers(op[1]);
1168 }
1169 bld.OR(result, op[0], op[1]);
1170 break;
1171 case nir_op_iand:
1172 if (devinfo->gen >= 8) {
1173 op[0] = resolve_source_modifiers(op[0]);
1174 op[1] = resolve_source_modifiers(op[1]);
1175 }
1176 bld.AND(result, op[0], op[1]);
1177 break;
1178
1179 case nir_op_fdot2:
1180 case nir_op_fdot3:
1181 case nir_op_fdot4:
1182 case nir_op_ball_fequal2:
1183 case nir_op_ball_iequal2:
1184 case nir_op_ball_fequal3:
1185 case nir_op_ball_iequal3:
1186 case nir_op_ball_fequal4:
1187 case nir_op_ball_iequal4:
1188 case nir_op_bany_fnequal2:
1189 case nir_op_bany_inequal2:
1190 case nir_op_bany_fnequal3:
1191 case nir_op_bany_inequal3:
1192 case nir_op_bany_fnequal4:
1193 case nir_op_bany_inequal4:
1194 unreachable("Lowered by nir_lower_alu_reductions");
1195
1196 case nir_op_fnoise1_1:
1197 case nir_op_fnoise1_2:
1198 case nir_op_fnoise1_3:
1199 case nir_op_fnoise1_4:
1200 case nir_op_fnoise2_1:
1201 case nir_op_fnoise2_2:
1202 case nir_op_fnoise2_3:
1203 case nir_op_fnoise2_4:
1204 case nir_op_fnoise3_1:
1205 case nir_op_fnoise3_2:
1206 case nir_op_fnoise3_3:
1207 case nir_op_fnoise3_4:
1208 case nir_op_fnoise4_1:
1209 case nir_op_fnoise4_2:
1210 case nir_op_fnoise4_3:
1211 case nir_op_fnoise4_4:
1212 unreachable("not reached: should be handled by lower_noise");
1213
1214 case nir_op_ldexp:
1215 unreachable("not reached: should be handled by ldexp_to_arith()");
1216
1217 case nir_op_fsqrt:
1218 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1219 inst->saturate = instr->dest.saturate;
1220 break;
1221
1222 case nir_op_frsq:
1223 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1224 inst->saturate = instr->dest.saturate;
1225 break;
1226
1227 case nir_op_b2i:
1228 case nir_op_b2f:
1229 bld.MOV(result, negate(op[0]));
1230 break;
1231
1232 case nir_op_i2b:
1233 case nir_op_f2b: {
1234 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1235 if (bit_size == 64) {
1236 /* two-argument instructions can't take 64-bit immediates */
1237 fs_reg zero;
1238 fs_reg tmp;
1239
1240 if (instr->op == nir_op_f2b) {
1241 zero = vgrf(glsl_type::double_type);
1242 tmp = vgrf(glsl_type::double_type);
1243 bld.MOV(zero, setup_imm_df(bld, 0.0));
1244 } else {
1245 zero = vgrf(glsl_type::int64_t_type);
1246 tmp = vgrf(glsl_type::int64_t_type);
1247 bld.MOV(zero, brw_imm_q(0));
1248 }
1249
1250 /* A SIMD16 execution needs to be split in two instructions, so use
1251 * a vgrf instead of the flag register as dst so instruction splitting
1252 * works
1253 */
1254 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1255 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1256 } else {
1257 fs_reg zero;
1258 if (bit_size == 32) {
1259 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1260 } else {
1261 assert(bit_size == 16);
1262 zero = instr->op == nir_op_f2b ?
1263 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1264 }
1265 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1266 }
1267 break;
1268 }
1269
1270 case nir_op_ftrunc:
1271 inst = bld.RNDZ(result, op[0]);
1272 inst->saturate = instr->dest.saturate;
1273 break;
1274
1275 case nir_op_fceil: {
1276 op[0].negate = !op[0].negate;
1277 fs_reg temp = vgrf(glsl_type::float_type);
1278 bld.RNDD(temp, op[0]);
1279 temp.negate = true;
1280 inst = bld.MOV(result, temp);
1281 inst->saturate = instr->dest.saturate;
1282 break;
1283 }
1284 case nir_op_ffloor:
1285 inst = bld.RNDD(result, op[0]);
1286 inst->saturate = instr->dest.saturate;
1287 break;
1288 case nir_op_ffract:
1289 inst = bld.FRC(result, op[0]);
1290 inst->saturate = instr->dest.saturate;
1291 break;
1292 case nir_op_fround_even:
1293 inst = bld.RNDE(result, op[0]);
1294 inst->saturate = instr->dest.saturate;
1295 break;
1296
1297 case nir_op_fquantize2f16: {
1298 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1299 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1300 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1301
1302 /* The destination stride must be at least as big as the source stride. */
1303 tmp16.type = BRW_REGISTER_TYPE_W;
1304 tmp16.stride = 2;
1305
1306 /* Check for denormal */
1307 fs_reg abs_src0 = op[0];
1308 abs_src0.abs = true;
1309 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1310 BRW_CONDITIONAL_L);
1311 /* Get the appropriately signed zero */
1312 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1313 retype(op[0], BRW_REGISTER_TYPE_UD),
1314 brw_imm_ud(0x80000000));
1315 /* Do the actual F32 -> F16 -> F32 conversion */
1316 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1317 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1318 /* Select that or zero based on normal status */
1319 inst = bld.SEL(result, zero, tmp32);
1320 inst->predicate = BRW_PREDICATE_NORMAL;
1321 inst->saturate = instr->dest.saturate;
1322 break;
1323 }
1324
1325 case nir_op_imin:
1326 case nir_op_umin:
1327 case nir_op_fmin:
1328 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1329 inst->saturate = instr->dest.saturate;
1330 break;
1331
1332 case nir_op_imax:
1333 case nir_op_umax:
1334 case nir_op_fmax:
1335 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1336 inst->saturate = instr->dest.saturate;
1337 break;
1338
1339 case nir_op_pack_snorm_2x16:
1340 case nir_op_pack_snorm_4x8:
1341 case nir_op_pack_unorm_2x16:
1342 case nir_op_pack_unorm_4x8:
1343 case nir_op_unpack_snorm_2x16:
1344 case nir_op_unpack_snorm_4x8:
1345 case nir_op_unpack_unorm_2x16:
1346 case nir_op_unpack_unorm_4x8:
1347 case nir_op_unpack_half_2x16:
1348 case nir_op_pack_half_2x16:
1349 unreachable("not reached: should be handled by lower_packing_builtins");
1350
1351 case nir_op_unpack_half_2x16_split_x:
1352 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1353 inst->saturate = instr->dest.saturate;
1354 break;
1355 case nir_op_unpack_half_2x16_split_y:
1356 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1357 inst->saturate = instr->dest.saturate;
1358 break;
1359
1360 case nir_op_pack_64_2x32_split:
1361 case nir_op_pack_32_2x16_split:
1362 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1363 break;
1364
1365 case nir_op_unpack_64_2x32_split_x:
1366 case nir_op_unpack_64_2x32_split_y: {
1367 if (instr->op == nir_op_unpack_64_2x32_split_x)
1368 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1369 else
1370 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1371 break;
1372 }
1373
1374 case nir_op_unpack_32_2x16_split_x:
1375 case nir_op_unpack_32_2x16_split_y: {
1376 if (instr->op == nir_op_unpack_32_2x16_split_x)
1377 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1378 else
1379 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1380 break;
1381 }
1382
1383 case nir_op_fpow:
1384 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1385 inst->saturate = instr->dest.saturate;
1386 break;
1387
1388 case nir_op_bitfield_reverse:
1389 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1390 bld.BFREV(result, op[0]);
1391 break;
1392
1393 case nir_op_bit_count:
1394 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1395 bld.CBIT(result, op[0]);
1396 break;
1397
1398 case nir_op_ufind_msb: {
1399 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1400 emit_find_msb_using_lzd(bld, result, op[0], false);
1401 break;
1402 }
1403
1404 case nir_op_ifind_msb: {
1405 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1406
1407 if (devinfo->gen < 7) {
1408 emit_find_msb_using_lzd(bld, result, op[0], true);
1409 } else {
1410 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1411
1412 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1413 * count from the LSB side. If FBH didn't return an error
1414 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1415 * count into an LSB count.
1416 */
1417 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1418
1419 inst = bld.ADD(result, result, brw_imm_d(31));
1420 inst->predicate = BRW_PREDICATE_NORMAL;
1421 inst->src[0].negate = true;
1422 }
1423 break;
1424 }
1425
1426 case nir_op_find_lsb:
1427 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1428
1429 if (devinfo->gen < 7) {
1430 fs_reg temp = vgrf(glsl_type::int_type);
1431
1432 /* (x & -x) generates a value that consists of only the LSB of x.
1433 * For all powers of 2, findMSB(y) == findLSB(y).
1434 */
1435 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1436 fs_reg negated_src = src;
1437
1438 /* One must be negated, and the other must be non-negated. It
1439 * doesn't matter which is which.
1440 */
1441 negated_src.negate = true;
1442 src.negate = false;
1443
1444 bld.AND(temp, src, negated_src);
1445 emit_find_msb_using_lzd(bld, result, temp, false);
1446 } else {
1447 bld.FBL(result, op[0]);
1448 }
1449 break;
1450
1451 case nir_op_ubitfield_extract:
1452 case nir_op_ibitfield_extract:
1453 unreachable("should have been lowered");
1454 case nir_op_ubfe:
1455 case nir_op_ibfe:
1456 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1457 bld.BFE(result, op[2], op[1], op[0]);
1458 break;
1459 case nir_op_bfm:
1460 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1461 bld.BFI1(result, op[0], op[1]);
1462 break;
1463 case nir_op_bfi:
1464 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1465 bld.BFI2(result, op[0], op[1], op[2]);
1466 break;
1467
1468 case nir_op_bitfield_insert:
1469 unreachable("not reached: should have been lowered");
1470
1471 case nir_op_ishl:
1472 case nir_op_ishr:
1473 case nir_op_ushr: {
1474 fs_reg shift_count = op[1];
1475
1476 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1477 if (op[1].file == VGRF &&
1478 (result.type == BRW_REGISTER_TYPE_Q ||
1479 result.type == BRW_REGISTER_TYPE_UQ)) {
1480 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1481 BRW_REGISTER_TYPE_UD);
1482 shift_count.stride = 2;
1483 bld.MOV(shift_count, op[1]);
1484 }
1485 }
1486
1487 switch (instr->op) {
1488 case nir_op_ishl:
1489 bld.SHL(result, op[0], shift_count);
1490 break;
1491 case nir_op_ishr:
1492 bld.ASR(result, op[0], shift_count);
1493 break;
1494 case nir_op_ushr:
1495 bld.SHR(result, op[0], shift_count);
1496 break;
1497 default:
1498 unreachable("not reached");
1499 }
1500 break;
1501 }
1502
1503 case nir_op_pack_half_2x16_split:
1504 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1505 break;
1506
1507 case nir_op_ffma:
1508 inst = bld.MAD(result, op[2], op[1], op[0]);
1509 inst->saturate = instr->dest.saturate;
1510 break;
1511
1512 case nir_op_flrp:
1513 inst = bld.LRP(result, op[0], op[1], op[2]);
1514 inst->saturate = instr->dest.saturate;
1515 break;
1516
1517 case nir_op_bcsel:
1518 if (optimize_frontfacing_ternary(instr, result))
1519 return;
1520
1521 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1522 inst = bld.SEL(result, op[1], op[2]);
1523 inst->predicate = BRW_PREDICATE_NORMAL;
1524 break;
1525
1526 case nir_op_extract_u8:
1527 case nir_op_extract_i8: {
1528 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1529 assert(byte != NULL);
1530
1531 /* The PRMs say:
1532 *
1533 * BDW+
1534 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1535 * Use two instructions and a word or DWord intermediate integer type.
1536 */
1537 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1538 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1539
1540 if (instr->op == nir_op_extract_i8) {
1541 /* If we need to sign extend, extract to a word first */
1542 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1543 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1544 bld.MOV(result, w_temp);
1545 } else {
1546 /* Otherwise use an AND with 0xff and a word type */
1547 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1548 }
1549 } else {
1550 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1551 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1552 }
1553 break;
1554 }
1555
1556 case nir_op_extract_u16:
1557 case nir_op_extract_i16: {
1558 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1559 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1560 assert(word != NULL);
1561 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1562 break;
1563 }
1564
1565 default:
1566 unreachable("unhandled instruction");
1567 }
1568
1569 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1570 * to sign extend the low bit to 0/~0
1571 */
1572 if (devinfo->gen <= 5 &&
1573 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1574 fs_reg masked = vgrf(glsl_type::int_type);
1575 bld.AND(masked, result, brw_imm_d(1));
1576 masked.negate = true;
1577 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1578 }
1579 }
1580
1581 void
1582 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1583 nir_load_const_instr *instr)
1584 {
1585 const brw_reg_type reg_type =
1586 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1587 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1588
1589 switch (instr->def.bit_size) {
1590 case 16:
1591 for (unsigned i = 0; i < instr->def.num_components; i++)
1592 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1593 break;
1594
1595 case 32:
1596 for (unsigned i = 0; i < instr->def.num_components; i++)
1597 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1598 break;
1599
1600 case 64:
1601 assert(devinfo->gen >= 7);
1602 if (devinfo->gen == 7) {
1603 /* We don't get 64-bit integer types until gen8 */
1604 for (unsigned i = 0; i < instr->def.num_components; i++) {
1605 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1606 setup_imm_df(bld, instr->value.f64[i]));
1607 }
1608 } else {
1609 for (unsigned i = 0; i < instr->def.num_components; i++)
1610 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1611 }
1612 break;
1613
1614 default:
1615 unreachable("Invalid bit size");
1616 }
1617
1618 nir_ssa_values[instr->def.index] = reg;
1619 }
1620
1621 fs_reg
1622 fs_visitor::get_nir_src(const nir_src &src)
1623 {
1624 fs_reg reg;
1625 if (src.is_ssa) {
1626 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1627 const brw_reg_type reg_type =
1628 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1629 reg = bld.vgrf(reg_type, src.ssa->num_components);
1630 } else {
1631 reg = nir_ssa_values[src.ssa->index];
1632 }
1633 } else {
1634 /* We don't handle indirects on locals */
1635 assert(src.reg.indirect == NULL);
1636 reg = offset(nir_locals[src.reg.reg->index], bld,
1637 src.reg.base_offset * src.reg.reg->num_components);
1638 }
1639
1640 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1641 /* The only 64-bit type available on gen7 is DF, so use that. */
1642 reg.type = BRW_REGISTER_TYPE_DF;
1643 } else {
1644 /* To avoid floating-point denorm flushing problems, set the type by
1645 * default to an integer type - instructions that need floating point
1646 * semantics will set this to F if they need to
1647 */
1648 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1649 BRW_REGISTER_TYPE_D);
1650 }
1651
1652 return reg;
1653 }
1654
1655 /**
1656 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1657 *
1658 * This function should not be called on any value which may be 64 bits.
1659 * We could theoretically support 64-bit on gen8+ but we choose not to
1660 * because it wouldn't work in general (no gen7 support) and there are
1661 * enough restrictions in 64-bit immediates that you can't take the return
1662 * value and treat it the same as the result of get_nir_src().
1663 */
1664 fs_reg
1665 fs_visitor::get_nir_src_imm(const nir_src &src)
1666 {
1667 nir_const_value *val = nir_src_as_const_value(src);
1668 assert(nir_src_bit_size(src) == 32);
1669 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1670 }
1671
1672 fs_reg
1673 fs_visitor::get_nir_dest(const nir_dest &dest)
1674 {
1675 if (dest.is_ssa) {
1676 const brw_reg_type reg_type =
1677 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1678 dest.ssa.bit_size == 8 ?
1679 BRW_REGISTER_TYPE_D :
1680 BRW_REGISTER_TYPE_F);
1681 nir_ssa_values[dest.ssa.index] =
1682 bld.vgrf(reg_type, dest.ssa.num_components);
1683 return nir_ssa_values[dest.ssa.index];
1684 } else {
1685 /* We don't handle indirects on locals */
1686 assert(dest.reg.indirect == NULL);
1687 return offset(nir_locals[dest.reg.reg->index], bld,
1688 dest.reg.base_offset * dest.reg.reg->num_components);
1689 }
1690 }
1691
1692 fs_reg
1693 fs_visitor::get_nir_image_deref(nir_deref_instr *deref)
1694 {
1695 fs_reg arr_offset = brw_imm_ud(0);
1696 unsigned array_size = BRW_IMAGE_PARAM_SIZE * 4;
1697 nir_deref_instr *head = deref;
1698 while (head->deref_type != nir_deref_type_var) {
1699 assert(head->deref_type == nir_deref_type_array);
1700
1701 /* This level's element size is the previous level's array size */
1702 const unsigned elem_size = array_size;
1703
1704 fs_reg index = retype(get_nir_src_imm(head->arr.index),
1705 BRW_REGISTER_TYPE_UD);
1706 if (arr_offset.file == BRW_IMMEDIATE_VALUE &&
1707 index.file == BRW_IMMEDIATE_VALUE) {
1708 arr_offset.ud += index.ud * elem_size;
1709 } else if (index.file == BRW_IMMEDIATE_VALUE) {
1710 bld.ADD(arr_offset, arr_offset, brw_imm_ud(index.ud * elem_size));
1711 } else {
1712 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
1713 bld.MUL(tmp, index, brw_imm_ud(elem_size));
1714 bld.ADD(tmp, tmp, arr_offset);
1715 arr_offset = tmp;
1716 }
1717
1718 head = nir_deref_instr_parent(head);
1719 assert(glsl_type_is_array(head->type));
1720 array_size = elem_size * glsl_get_length(head->type);
1721 }
1722
1723 assert(head->deref_type == nir_deref_type_var);
1724 const unsigned max_arr_offset = array_size - (BRW_IMAGE_PARAM_SIZE * 4);
1725 fs_reg image(UNIFORM, head->var->data.driver_location / 4,
1726 BRW_REGISTER_TYPE_UD);
1727
1728 if (arr_offset.file == BRW_IMMEDIATE_VALUE) {
1729 /* The offset is in bytes but we want it in dwords */
1730 return offset(image, bld, MIN2(arr_offset.ud, max_arr_offset) / 4);
1731 } else {
1732 /* Accessing an invalid surface index with the dataport can result
1733 * in a hang. According to the spec "if the index used to
1734 * select an individual element is negative or greater than or
1735 * equal to the size of the array, the results of the operation
1736 * are undefined but may not lead to termination" -- which is one
1737 * of the possible outcomes of the hang. Clamp the index to
1738 * prevent access outside of the array bounds.
1739 */
1740 bld.emit_minmax(arr_offset, arr_offset, brw_imm_ud(max_arr_offset),
1741 BRW_CONDITIONAL_L);
1742
1743 /* Emit a pile of MOVs to load the uniform into a temporary. The
1744 * dead-code elimination pass will get rid of what we don't use.
1745 */
1746 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1747 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1748 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1749 offset(tmp, bld, j), offset(image, bld, j),
1750 arr_offset, brw_imm_ud(max_arr_offset + 4));
1751 }
1752 return tmp;
1753 }
1754 }
1755
1756 void
1757 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1758 unsigned wr_mask)
1759 {
1760 for (unsigned i = 0; i < 4; i++) {
1761 if (!((wr_mask >> i) & 1))
1762 continue;
1763
1764 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1765 new_inst->dst = offset(new_inst->dst, bld, i);
1766 for (unsigned j = 0; j < new_inst->sources; j++)
1767 if (new_inst->src[j].file == VGRF)
1768 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1769
1770 bld.emit(new_inst);
1771 }
1772 }
1773
1774 /**
1775 * Get the matching channel register datatype for an image intrinsic of the
1776 * specified GLSL image type.
1777 */
1778 static brw_reg_type
1779 get_image_base_type(const glsl_type *type)
1780 {
1781 switch ((glsl_base_type)type->sampled_type) {
1782 case GLSL_TYPE_UINT:
1783 return BRW_REGISTER_TYPE_UD;
1784 case GLSL_TYPE_INT:
1785 return BRW_REGISTER_TYPE_D;
1786 case GLSL_TYPE_FLOAT:
1787 return BRW_REGISTER_TYPE_F;
1788 default:
1789 unreachable("Not reached.");
1790 }
1791 }
1792
1793 /**
1794 * Get the appropriate atomic op for an image atomic intrinsic.
1795 */
1796 static unsigned
1797 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1798 {
1799 switch (op) {
1800 case nir_intrinsic_image_deref_atomic_add:
1801 return BRW_AOP_ADD;
1802 case nir_intrinsic_image_deref_atomic_min:
1803 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1804 BRW_AOP_IMIN : BRW_AOP_UMIN);
1805 case nir_intrinsic_image_deref_atomic_max:
1806 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1807 BRW_AOP_IMAX : BRW_AOP_UMAX);
1808 case nir_intrinsic_image_deref_atomic_and:
1809 return BRW_AOP_AND;
1810 case nir_intrinsic_image_deref_atomic_or:
1811 return BRW_AOP_OR;
1812 case nir_intrinsic_image_deref_atomic_xor:
1813 return BRW_AOP_XOR;
1814 case nir_intrinsic_image_deref_atomic_exchange:
1815 return BRW_AOP_MOV;
1816 case nir_intrinsic_image_deref_atomic_comp_swap:
1817 return BRW_AOP_CMPWR;
1818 default:
1819 unreachable("Not reachable.");
1820 }
1821 }
1822
1823 static fs_inst *
1824 emit_pixel_interpolater_send(const fs_builder &bld,
1825 enum opcode opcode,
1826 const fs_reg &dst,
1827 const fs_reg &src,
1828 const fs_reg &desc,
1829 glsl_interp_mode interpolation)
1830 {
1831 struct brw_wm_prog_data *wm_prog_data =
1832 brw_wm_prog_data(bld.shader->stage_prog_data);
1833
1834 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1835 /* 2 floats per slot returned */
1836 inst->size_written = 2 * dst.component_size(inst->exec_size);
1837 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1838
1839 wm_prog_data->pulls_bary = true;
1840
1841 return inst;
1842 }
1843
1844 /**
1845 * Computes 1 << x, given a D/UD register containing some value x.
1846 */
1847 static fs_reg
1848 intexp2(const fs_builder &bld, const fs_reg &x)
1849 {
1850 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1851
1852 fs_reg result = bld.vgrf(x.type, 1);
1853 fs_reg one = bld.vgrf(x.type, 1);
1854
1855 bld.MOV(one, retype(brw_imm_d(1), one.type));
1856 bld.SHL(result, one, x);
1857 return result;
1858 }
1859
1860 void
1861 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1862 {
1863 assert(stage == MESA_SHADER_GEOMETRY);
1864
1865 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1866
1867 if (gs_compile->control_data_header_size_bits == 0)
1868 return;
1869
1870 /* We can only do EndPrimitive() functionality when the control data
1871 * consists of cut bits. Fortunately, the only time it isn't is when the
1872 * output type is points, in which case EndPrimitive() is a no-op.
1873 */
1874 if (gs_prog_data->control_data_format !=
1875 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1876 return;
1877 }
1878
1879 /* Cut bits use one bit per vertex. */
1880 assert(gs_compile->control_data_bits_per_vertex == 1);
1881
1882 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1883 vertex_count.type = BRW_REGISTER_TYPE_UD;
1884
1885 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1886 * vertex n, 0 otherwise. So all we need to do here is mark bit
1887 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1888 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1889 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1890 *
1891 * Note that if EndPrimitive() is called before emitting any vertices, this
1892 * will cause us to set bit 31 of the control_data_bits register to 1.
1893 * That's fine because:
1894 *
1895 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1896 * output, so the hardware will ignore cut bit 31.
1897 *
1898 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1899 * last vertex, so setting cut bit 31 has no effect (since the primitive
1900 * is automatically ended when the GS terminates).
1901 *
1902 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1903 * control_data_bits register to 0 when the first vertex is emitted.
1904 */
1905
1906 const fs_builder abld = bld.annotate("end primitive");
1907
1908 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1909 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1910 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1911 fs_reg mask = intexp2(abld, prev_count);
1912 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1913 * attention to the lower 5 bits of its second source argument, so on this
1914 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1915 * ((vertex_count - 1) % 32).
1916 */
1917 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1918 }
1919
1920 void
1921 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1922 {
1923 assert(stage == MESA_SHADER_GEOMETRY);
1924 assert(gs_compile->control_data_bits_per_vertex != 0);
1925
1926 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1927
1928 const fs_builder abld = bld.annotate("emit control data bits");
1929 const fs_builder fwa_bld = bld.exec_all();
1930
1931 /* We use a single UD register to accumulate control data bits (32 bits
1932 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1933 * at a time.
1934 *
1935 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1936 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1937 * use the Channel Mask phase to enable/disable which DWord within that
1938 * group to write. (Remember, different SIMD8 channels may have emitted
1939 * different numbers of vertices, so we may need per-slot offsets.)
1940 *
1941 * Channel masking presents an annoying problem: we may have to replicate
1942 * the data up to 4 times:
1943 *
1944 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1945 *
1946 * To avoid penalizing shaders that emit a small number of vertices, we
1947 * can avoid these sometimes: if the size of the control data header is
1948 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1949 * land in the same 128-bit group, so we can skip per-slot offsets.
1950 *
1951 * Similarly, if the control data header is <= 32 bits, there is only one
1952 * DWord, so we can skip channel masks.
1953 */
1954 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1955
1956 fs_reg channel_mask, per_slot_offset;
1957
1958 if (gs_compile->control_data_header_size_bits > 32) {
1959 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1960 channel_mask = vgrf(glsl_type::uint_type);
1961 }
1962
1963 if (gs_compile->control_data_header_size_bits > 128) {
1964 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1965 per_slot_offset = vgrf(glsl_type::uint_type);
1966 }
1967
1968 /* Figure out which DWord we're trying to write to using the formula:
1969 *
1970 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1971 *
1972 * Since bits_per_vertex is a power of two, and is known at compile
1973 * time, this can be optimized to:
1974 *
1975 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1976 */
1977 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1978 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1979 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1980 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1981 unsigned log2_bits_per_vertex =
1982 util_last_bit(gs_compile->control_data_bits_per_vertex);
1983 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1984
1985 if (per_slot_offset.file != BAD_FILE) {
1986 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1987 * the appropriate OWord within the control data header.
1988 */
1989 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1990 }
1991
1992 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1993 * write to the appropriate DWORD within the OWORD.
1994 */
1995 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1996 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1997 channel_mask = intexp2(fwa_bld, channel);
1998 /* Then the channel masks need to be in bits 23:16. */
1999 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2000 }
2001
2002 /* Store the control data bits in the message payload and send it. */
2003 int mlen = 2;
2004 if (channel_mask.file != BAD_FILE)
2005 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2006 if (per_slot_offset.file != BAD_FILE)
2007 mlen++;
2008
2009 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2010 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2011 int i = 0;
2012 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2013 if (per_slot_offset.file != BAD_FILE)
2014 sources[i++] = per_slot_offset;
2015 if (channel_mask.file != BAD_FILE)
2016 sources[i++] = channel_mask;
2017 while (i < mlen) {
2018 sources[i++] = this->control_data_bits;
2019 }
2020
2021 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2022 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2023 inst->mlen = mlen;
2024 /* We need to increment Global Offset by 256-bits to make room for
2025 * Broadwell's extra "Vertex Count" payload at the beginning of the
2026 * URB entry. Since this is an OWord message, Global Offset is counted
2027 * in 128-bit units, so we must set it to 2.
2028 */
2029 if (gs_prog_data->static_vertex_count == -1)
2030 inst->offset = 2;
2031 }
2032
2033 void
2034 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2035 unsigned stream_id)
2036 {
2037 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2038
2039 /* Note: we are calling this *before* increasing vertex_count, so
2040 * this->vertex_count == vertex_count - 1 in the formula above.
2041 */
2042
2043 /* Stream mode uses 2 bits per vertex */
2044 assert(gs_compile->control_data_bits_per_vertex == 2);
2045
2046 /* Must be a valid stream */
2047 assert(stream_id < MAX_VERTEX_STREAMS);
2048
2049 /* Control data bits are initialized to 0 so we don't have to set any
2050 * bits when sending vertices to stream 0.
2051 */
2052 if (stream_id == 0)
2053 return;
2054
2055 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2056
2057 /* reg::sid = stream_id */
2058 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2059 abld.MOV(sid, brw_imm_ud(stream_id));
2060
2061 /* reg:shift_count = 2 * (vertex_count - 1) */
2062 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2063 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2064
2065 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2066 * attention to the lower 5 bits of its second source argument, so on this
2067 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2068 * stream_id << ((2 * (vertex_count - 1)) % 32).
2069 */
2070 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2071 abld.SHL(mask, sid, shift_count);
2072 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2073 }
2074
2075 void
2076 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2077 unsigned stream_id)
2078 {
2079 assert(stage == MESA_SHADER_GEOMETRY);
2080
2081 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2082
2083 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2084 vertex_count.type = BRW_REGISTER_TYPE_UD;
2085
2086 /* Haswell and later hardware ignores the "Render Stream Select" bits
2087 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2088 * and instead sends all primitives down the pipeline for rasterization.
2089 * If the SOL stage is enabled, "Render Stream Select" is honored and
2090 * primitives bound to non-zero streams are discarded after stream output.
2091 *
2092 * Since the only purpose of primives sent to non-zero streams is to
2093 * be recorded by transform feedback, we can simply discard all geometry
2094 * bound to these streams when transform feedback is disabled.
2095 */
2096 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2097 return;
2098
2099 /* If we're outputting 32 control data bits or less, then we can wait
2100 * until the shader is over to output them all. Otherwise we need to
2101 * output them as we go. Now is the time to do it, since we're about to
2102 * output the vertex_count'th vertex, so it's guaranteed that the
2103 * control data bits associated with the (vertex_count - 1)th vertex are
2104 * correct.
2105 */
2106 if (gs_compile->control_data_header_size_bits > 32) {
2107 const fs_builder abld =
2108 bld.annotate("emit vertex: emit control data bits");
2109
2110 /* Only emit control data bits if we've finished accumulating a batch
2111 * of 32 bits. This is the case when:
2112 *
2113 * (vertex_count * bits_per_vertex) % 32 == 0
2114 *
2115 * (in other words, when the last 5 bits of vertex_count *
2116 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2117 * integer n (which is always the case, since bits_per_vertex is
2118 * always 1 or 2), this is equivalent to requiring that the last 5-n
2119 * bits of vertex_count are 0:
2120 *
2121 * vertex_count & (2^(5-n) - 1) == 0
2122 *
2123 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2124 * equivalent to:
2125 *
2126 * vertex_count & (32 / bits_per_vertex - 1) == 0
2127 *
2128 * TODO: If vertex_count is an immediate, we could do some of this math
2129 * at compile time...
2130 */
2131 fs_inst *inst =
2132 abld.AND(bld.null_reg_d(), vertex_count,
2133 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2134 inst->conditional_mod = BRW_CONDITIONAL_Z;
2135
2136 abld.IF(BRW_PREDICATE_NORMAL);
2137 /* If vertex_count is 0, then no control data bits have been
2138 * accumulated yet, so we can skip emitting them.
2139 */
2140 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2141 BRW_CONDITIONAL_NEQ);
2142 abld.IF(BRW_PREDICATE_NORMAL);
2143 emit_gs_control_data_bits(vertex_count);
2144 abld.emit(BRW_OPCODE_ENDIF);
2145
2146 /* Reset control_data_bits to 0 so we can start accumulating a new
2147 * batch.
2148 *
2149 * Note: in the case where vertex_count == 0, this neutralizes the
2150 * effect of any call to EndPrimitive() that the shader may have
2151 * made before outputting its first vertex.
2152 */
2153 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2154 inst->force_writemask_all = true;
2155 abld.emit(BRW_OPCODE_ENDIF);
2156 }
2157
2158 emit_urb_writes(vertex_count);
2159
2160 /* In stream mode we have to set control data bits for all vertices
2161 * unless we have disabled control data bits completely (which we do
2162 * do for GL_POINTS outputs that don't use streams).
2163 */
2164 if (gs_compile->control_data_header_size_bits > 0 &&
2165 gs_prog_data->control_data_format ==
2166 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2167 set_gs_stream_control_data_bits(vertex_count, stream_id);
2168 }
2169 }
2170
2171 void
2172 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2173 const nir_src &vertex_src,
2174 unsigned base_offset,
2175 const nir_src &offset_src,
2176 unsigned num_components,
2177 unsigned first_component)
2178 {
2179 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2180
2181 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2182 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2183 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2184
2185 /* TODO: figure out push input layout for invocations == 1 */
2186 /* TODO: make this work with 64-bit inputs */
2187 if (gs_prog_data->invocations == 1 &&
2188 type_sz(dst.type) <= 4 &&
2189 offset_const != NULL && vertex_const != NULL &&
2190 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2191 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2192 vertex_const->u32[0] * push_reg_count;
2193 for (unsigned i = 0; i < num_components; i++) {
2194 bld.MOV(offset(dst, bld, i),
2195 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2196 }
2197 return;
2198 }
2199
2200 /* Resort to the pull model. Ensure the VUE handles are provided. */
2201 assert(gs_prog_data->base.include_vue_handles);
2202
2203 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2204 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2205
2206 if (gs_prog_data->invocations == 1) {
2207 if (vertex_const) {
2208 /* The vertex index is constant; just select the proper URB handle. */
2209 icp_handle =
2210 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2211 BRW_REGISTER_TYPE_UD);
2212 } else {
2213 /* The vertex index is non-constant. We need to use indirect
2214 * addressing to fetch the proper URB handle.
2215 *
2216 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2217 * indicating that channel <n> should read the handle from
2218 * DWord <n>. We convert that to bytes by multiplying by 4.
2219 *
2220 * Next, we convert the vertex index to bytes by multiplying
2221 * by 32 (shifting by 5), and add the two together. This is
2222 * the final indirect byte offset.
2223 */
2224 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2225 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2226 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2227 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2228
2229 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2230 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2231 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2232 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2233 /* Convert vertex_index to bytes (multiply by 32) */
2234 bld.SHL(vertex_offset_bytes,
2235 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2236 brw_imm_ud(5u));
2237 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2238
2239 /* Use first_icp_handle as the base offset. There is one register
2240 * of URB handles per vertex, so inform the register allocator that
2241 * we might read up to nir->info.gs.vertices_in registers.
2242 */
2243 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2244 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2245 fs_reg(icp_offset_bytes),
2246 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2247 }
2248 } else {
2249 assert(gs_prog_data->invocations > 1);
2250
2251 if (vertex_const) {
2252 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2253 bld.MOV(icp_handle,
2254 retype(brw_vec1_grf(first_icp_handle +
2255 vertex_const->i32[0] / 8,
2256 vertex_const->i32[0] % 8),
2257 BRW_REGISTER_TYPE_UD));
2258 } else {
2259 /* The vertex index is non-constant. We need to use indirect
2260 * addressing to fetch the proper URB handle.
2261 *
2262 */
2263 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2264
2265 /* Convert vertex_index to bytes (multiply by 4) */
2266 bld.SHL(icp_offset_bytes,
2267 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2268 brw_imm_ud(2u));
2269
2270 /* Use first_icp_handle as the base offset. There is one DWord
2271 * of URB handles per vertex, so inform the register allocator that
2272 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2273 */
2274 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2275 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2276 fs_reg(icp_offset_bytes),
2277 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2278 REG_SIZE));
2279 }
2280 }
2281
2282 fs_inst *inst;
2283
2284 fs_reg tmp_dst = dst;
2285 fs_reg indirect_offset = get_nir_src(offset_src);
2286 unsigned num_iterations = 1;
2287 unsigned orig_num_components = num_components;
2288
2289 if (type_sz(dst.type) == 8) {
2290 if (num_components > 2) {
2291 num_iterations = 2;
2292 num_components = 2;
2293 }
2294 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2295 tmp_dst = tmp;
2296 first_component = first_component / 2;
2297 }
2298
2299 for (unsigned iter = 0; iter < num_iterations; iter++) {
2300 if (offset_const) {
2301 /* Constant indexing - use global offset. */
2302 if (first_component != 0) {
2303 unsigned read_components = num_components + first_component;
2304 fs_reg tmp = bld.vgrf(dst.type, read_components);
2305 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2306 inst->size_written = read_components *
2307 tmp.component_size(inst->exec_size);
2308 for (unsigned i = 0; i < num_components; i++) {
2309 bld.MOV(offset(tmp_dst, bld, i),
2310 offset(tmp, bld, i + first_component));
2311 }
2312 } else {
2313 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2314 icp_handle);
2315 inst->size_written = num_components *
2316 tmp_dst.component_size(inst->exec_size);
2317 }
2318 inst->offset = base_offset + offset_const->u32[0];
2319 inst->mlen = 1;
2320 } else {
2321 /* Indirect indexing - use per-slot offsets as well. */
2322 const fs_reg srcs[] = { icp_handle, indirect_offset };
2323 unsigned read_components = num_components + first_component;
2324 fs_reg tmp = bld.vgrf(dst.type, read_components);
2325 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2326 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2327 if (first_component != 0) {
2328 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2329 payload);
2330 inst->size_written = read_components *
2331 tmp.component_size(inst->exec_size);
2332 for (unsigned i = 0; i < num_components; i++) {
2333 bld.MOV(offset(tmp_dst, bld, i),
2334 offset(tmp, bld, i + first_component));
2335 }
2336 } else {
2337 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2338 payload);
2339 inst->size_written = num_components *
2340 tmp_dst.component_size(inst->exec_size);
2341 }
2342 inst->offset = base_offset;
2343 inst->mlen = 2;
2344 }
2345
2346 if (type_sz(dst.type) == 8) {
2347 shuffle_from_32bit_read(bld,
2348 offset(dst, bld, iter * 2),
2349 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2350 0,
2351 num_components);
2352 }
2353
2354 if (num_iterations > 1) {
2355 num_components = orig_num_components - 2;
2356 if(offset_const) {
2357 base_offset++;
2358 } else {
2359 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2360 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2361 indirect_offset = new_indirect;
2362 }
2363 }
2364 }
2365 }
2366
2367 fs_reg
2368 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2369 {
2370 nir_src *offset_src = nir_get_io_offset_src(instr);
2371 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2372
2373 if (const_value) {
2374 /* The only constant offset we should find is 0. brw_nir.c's
2375 * add_const_offset_to_base() will fold other constant offsets
2376 * into instr->const_index[0].
2377 */
2378 assert(const_value->u32[0] == 0);
2379 return fs_reg();
2380 }
2381
2382 return get_nir_src(*offset_src);
2383 }
2384
2385 static void
2386 do_untyped_vector_read(const fs_builder &bld,
2387 const fs_reg dest,
2388 const fs_reg surf_index,
2389 const fs_reg offset_reg,
2390 unsigned num_components)
2391 {
2392 if (type_sz(dest.type) <= 2) {
2393 assert(dest.stride == 1);
2394 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2395
2396 if (is_const_offset) {
2397 uint32_t start = offset_reg.ud & ~3;
2398 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2399 end = ALIGN(end, 4);
2400 assert (end - start <= 16);
2401
2402 /* At this point we have 16-bit component/s that have constant
2403 * offset aligned to 4-bytes that can be read with untyped_reads.
2404 * untyped_read message requires 32-bit aligned offsets.
2405 */
2406 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2407 unsigned num_components_32bit = (end - start) / 4;
2408
2409 fs_reg read_result =
2410 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2411 1 /* dims */,
2412 num_components_32bit,
2413 BRW_PREDICATE_NONE);
2414 shuffle_from_32bit_read(bld, dest, read_result, first_component,
2415 num_components);
2416 } else {
2417 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2418 for (unsigned i = 0; i < num_components; i++) {
2419 if (i == 0) {
2420 bld.MOV(read_offset, offset_reg);
2421 } else {
2422 bld.ADD(read_offset, offset_reg,
2423 brw_imm_ud(i * type_sz(dest.type)));
2424 }
2425 /* Non constant offsets are not guaranteed to be aligned 32-bits
2426 * so they are read using one byte_scattered_read message
2427 * for each component.
2428 */
2429 fs_reg read_result =
2430 emit_byte_scattered_read(bld, surf_index, read_offset,
2431 1 /* dims */, 1,
2432 type_sz(dest.type) * 8 /* bit_size */,
2433 BRW_PREDICATE_NONE);
2434 bld.MOV(offset(dest, bld, i),
2435 subscript (read_result, dest.type, 0));
2436 }
2437 }
2438 } else if (type_sz(dest.type) == 4) {
2439 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2440 1 /* dims */,
2441 num_components,
2442 BRW_PREDICATE_NONE);
2443 read_result.type = dest.type;
2444 for (unsigned i = 0; i < num_components; i++)
2445 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2446 } else if (type_sz(dest.type) == 8) {
2447 /* Reading a dvec, so we need to:
2448 *
2449 * 1. Multiply num_components by 2, to account for the fact that we
2450 * need to read 64-bit components.
2451 * 2. Shuffle the result of the load to form valid 64-bit elements
2452 * 3. Emit a second load (for components z/w) if needed.
2453 */
2454 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2455 bld.MOV(read_offset, offset_reg);
2456
2457 int iters = num_components <= 2 ? 1 : 2;
2458
2459 /* Load the dvec, the first iteration loads components x/y, the second
2460 * iteration, if needed, loads components z/w
2461 */
2462 for (int it = 0; it < iters; it++) {
2463 /* Compute number of components to read in this iteration */
2464 int iter_components = MIN2(2, num_components);
2465 num_components -= iter_components;
2466
2467 /* Read. Since this message reads 32-bit components, we need to
2468 * read twice as many components.
2469 */
2470 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2471 1 /* dims */,
2472 iter_components * 2,
2473 BRW_PREDICATE_NONE);
2474
2475 /* Shuffle the 32-bit load result into valid 64-bit data */
2476 shuffle_from_32bit_read(bld, offset(dest, bld, it * 2),
2477 read_result, 0, iter_components);
2478
2479 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2480 }
2481 } else {
2482 unreachable("Unsupported type");
2483 }
2484 }
2485
2486 void
2487 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2488 nir_intrinsic_instr *instr)
2489 {
2490 assert(stage == MESA_SHADER_VERTEX);
2491
2492 fs_reg dest;
2493 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2494 dest = get_nir_dest(instr->dest);
2495
2496 switch (instr->intrinsic) {
2497 case nir_intrinsic_load_vertex_id:
2498 case nir_intrinsic_load_base_vertex:
2499 unreachable("should be lowered by nir_lower_system_values()");
2500
2501 case nir_intrinsic_load_vertex_id_zero_base:
2502 case nir_intrinsic_load_instance_id:
2503 case nir_intrinsic_load_base_instance:
2504 case nir_intrinsic_load_draw_id: {
2505 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2506 fs_reg val = nir_system_values[sv];
2507 assert(val.file != BAD_FILE);
2508 dest.type = val.type;
2509 bld.MOV(dest, val);
2510 break;
2511 }
2512
2513 case nir_intrinsic_load_input: {
2514 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2515 unsigned first_component = nir_intrinsic_component(instr);
2516 unsigned num_components = instr->num_components;
2517
2518 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2519 assert(const_offset && "Indirect input loads not allowed");
2520 src = offset(src, bld, const_offset->u32[0]);
2521
2522 if (type_sz(dest.type) == 8)
2523 first_component /= 2;
2524
2525 /* For 16-bit support maybe a temporary will be needed to copy from
2526 * the ATTR file.
2527 */
2528 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2529 first_component, num_components);
2530 break;
2531 }
2532
2533 case nir_intrinsic_load_first_vertex:
2534 case nir_intrinsic_load_is_indexed_draw:
2535 unreachable("lowered by brw_nir_lower_vs_inputs");
2536
2537 default:
2538 nir_emit_intrinsic(bld, instr);
2539 break;
2540 }
2541 }
2542
2543 void
2544 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2545 nir_intrinsic_instr *instr)
2546 {
2547 assert(stage == MESA_SHADER_TESS_CTRL);
2548 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2549 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2550
2551 fs_reg dst;
2552 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2553 dst = get_nir_dest(instr->dest);
2554
2555 switch (instr->intrinsic) {
2556 case nir_intrinsic_load_primitive_id:
2557 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2558 break;
2559 case nir_intrinsic_load_invocation_id:
2560 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2561 break;
2562 case nir_intrinsic_load_patch_vertices_in:
2563 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2564 brw_imm_d(tcs_key->input_vertices));
2565 break;
2566
2567 case nir_intrinsic_barrier: {
2568 if (tcs_prog_data->instances == 1)
2569 break;
2570
2571 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2572 fs_reg m0_2 = component(m0, 2);
2573
2574 const fs_builder chanbld = bld.exec_all().group(1, 0);
2575
2576 /* Zero the message header */
2577 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2578
2579 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2580 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2581 brw_imm_ud(INTEL_MASK(16, 13)));
2582
2583 /* Shift it up to bits 27:24. */
2584 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2585
2586 /* Set the Barrier Count and the enable bit */
2587 chanbld.OR(m0_2, m0_2,
2588 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2589
2590 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2591 break;
2592 }
2593
2594 case nir_intrinsic_load_input:
2595 unreachable("nir_lower_io should never give us these.");
2596 break;
2597
2598 case nir_intrinsic_load_per_vertex_input: {
2599 fs_reg indirect_offset = get_indirect_offset(instr);
2600 unsigned imm_offset = instr->const_index[0];
2601
2602 const nir_src &vertex_src = instr->src[0];
2603 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2604
2605 fs_inst *inst;
2606
2607 fs_reg icp_handle;
2608
2609 if (vertex_const) {
2610 /* Emit a MOV to resolve <0,1,0> regioning. */
2611 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2612 bld.MOV(icp_handle,
2613 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2614 vertex_const->i32[0] & 7),
2615 BRW_REGISTER_TYPE_UD));
2616 } else if (tcs_prog_data->instances == 1 &&
2617 vertex_src.is_ssa &&
2618 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2619 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2620 /* For the common case of only 1 instance, an array index of
2621 * gl_InvocationID means reading g1. Skip all the indirect work.
2622 */
2623 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2624 } else {
2625 /* The vertex index is non-constant. We need to use indirect
2626 * addressing to fetch the proper URB handle.
2627 */
2628 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2629
2630 /* Each ICP handle is a single DWord (4 bytes) */
2631 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2632 bld.SHL(vertex_offset_bytes,
2633 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2634 brw_imm_ud(2u));
2635
2636 /* Start at g1. We might read up to 4 registers. */
2637 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2638 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2639 brw_imm_ud(4 * REG_SIZE));
2640 }
2641
2642 /* We can only read two double components with each URB read, so
2643 * we send two read messages in that case, each one loading up to
2644 * two double components.
2645 */
2646 unsigned num_iterations = 1;
2647 unsigned num_components = instr->num_components;
2648 unsigned first_component = nir_intrinsic_component(instr);
2649 fs_reg orig_dst = dst;
2650 if (type_sz(dst.type) == 8) {
2651 first_component = first_component / 2;
2652 if (instr->num_components > 2) {
2653 num_iterations = 2;
2654 num_components = 2;
2655 }
2656
2657 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2658 dst = tmp;
2659 }
2660
2661 for (unsigned iter = 0; iter < num_iterations; iter++) {
2662 if (indirect_offset.file == BAD_FILE) {
2663 /* Constant indexing - use global offset. */
2664 if (first_component != 0) {
2665 unsigned read_components = num_components + first_component;
2666 fs_reg tmp = bld.vgrf(dst.type, read_components);
2667 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2668 for (unsigned i = 0; i < num_components; i++) {
2669 bld.MOV(offset(dst, bld, i),
2670 offset(tmp, bld, i + first_component));
2671 }
2672 } else {
2673 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2674 }
2675 inst->offset = imm_offset;
2676 inst->mlen = 1;
2677 } else {
2678 /* Indirect indexing - use per-slot offsets as well. */
2679 const fs_reg srcs[] = { icp_handle, indirect_offset };
2680 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2681 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2682 if (first_component != 0) {
2683 unsigned read_components = num_components + first_component;
2684 fs_reg tmp = bld.vgrf(dst.type, read_components);
2685 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2686 payload);
2687 for (unsigned i = 0; i < num_components; i++) {
2688 bld.MOV(offset(dst, bld, i),
2689 offset(tmp, bld, i + first_component));
2690 }
2691 } else {
2692 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2693 payload);
2694 }
2695 inst->offset = imm_offset;
2696 inst->mlen = 2;
2697 }
2698 inst->size_written = (num_components + first_component) *
2699 inst->dst.component_size(inst->exec_size);
2700
2701 /* If we are reading 64-bit data using 32-bit read messages we need
2702 * build proper 64-bit data elements by shuffling the low and high
2703 * 32-bit components around like we do for other things like UBOs
2704 * or SSBOs.
2705 */
2706 if (type_sz(dst.type) == 8) {
2707 shuffle_from_32bit_read(bld,
2708 offset(orig_dst, bld, iter * 2),
2709 retype(dst, BRW_REGISTER_TYPE_D),
2710 0, num_components);
2711 }
2712
2713 /* Copy the temporary to the destination to deal with writemasking.
2714 *
2715 * Also attempt to deal with gl_PointSize being in the .w component.
2716 */
2717 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2718 assert(type_sz(dst.type) < 8);
2719 inst->dst = bld.vgrf(dst.type, 4);
2720 inst->size_written = 4 * REG_SIZE;
2721 bld.MOV(dst, offset(inst->dst, bld, 3));
2722 }
2723
2724 /* If we are loading double data and we need a second read message
2725 * adjust the write offset
2726 */
2727 if (num_iterations > 1) {
2728 num_components = instr->num_components - 2;
2729 imm_offset++;
2730 }
2731 }
2732 break;
2733 }
2734
2735 case nir_intrinsic_load_output:
2736 case nir_intrinsic_load_per_vertex_output: {
2737 fs_reg indirect_offset = get_indirect_offset(instr);
2738 unsigned imm_offset = instr->const_index[0];
2739 unsigned first_component = nir_intrinsic_component(instr);
2740
2741 fs_inst *inst;
2742 if (indirect_offset.file == BAD_FILE) {
2743 /* Replicate the patch handle to all enabled channels */
2744 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2745 bld.MOV(patch_handle,
2746 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2747
2748 {
2749 if (first_component != 0) {
2750 unsigned read_components =
2751 instr->num_components + first_component;
2752 fs_reg tmp = bld.vgrf(dst.type, read_components);
2753 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2754 patch_handle);
2755 inst->size_written = read_components * REG_SIZE;
2756 for (unsigned i = 0; i < instr->num_components; i++) {
2757 bld.MOV(offset(dst, bld, i),
2758 offset(tmp, bld, i + first_component));
2759 }
2760 } else {
2761 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2762 patch_handle);
2763 inst->size_written = instr->num_components * REG_SIZE;
2764 }
2765 inst->offset = imm_offset;
2766 inst->mlen = 1;
2767 }
2768 } else {
2769 /* Indirect indexing - use per-slot offsets as well. */
2770 const fs_reg srcs[] = {
2771 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2772 indirect_offset
2773 };
2774 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2775 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2776 if (first_component != 0) {
2777 unsigned read_components =
2778 instr->num_components + first_component;
2779 fs_reg tmp = bld.vgrf(dst.type, read_components);
2780 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2781 payload);
2782 inst->size_written = read_components * REG_SIZE;
2783 for (unsigned i = 0; i < instr->num_components; i++) {
2784 bld.MOV(offset(dst, bld, i),
2785 offset(tmp, bld, i + first_component));
2786 }
2787 } else {
2788 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2789 payload);
2790 inst->size_written = instr->num_components * REG_SIZE;
2791 }
2792 inst->offset = imm_offset;
2793 inst->mlen = 2;
2794 }
2795 break;
2796 }
2797
2798 case nir_intrinsic_store_output:
2799 case nir_intrinsic_store_per_vertex_output: {
2800 fs_reg value = get_nir_src(instr->src[0]);
2801 bool is_64bit = (instr->src[0].is_ssa ?
2802 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2803 fs_reg indirect_offset = get_indirect_offset(instr);
2804 unsigned imm_offset = instr->const_index[0];
2805 unsigned mask = instr->const_index[1];
2806 unsigned header_regs = 0;
2807 fs_reg srcs[7];
2808 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2809
2810 if (indirect_offset.file != BAD_FILE) {
2811 srcs[header_regs++] = indirect_offset;
2812 }
2813
2814 if (mask == 0)
2815 break;
2816
2817 unsigned num_components = util_last_bit(mask);
2818 enum opcode opcode;
2819
2820 /* We can only pack two 64-bit components in a single message, so send
2821 * 2 messages if we have more components
2822 */
2823 unsigned num_iterations = 1;
2824 unsigned iter_components = num_components;
2825 unsigned first_component = nir_intrinsic_component(instr);
2826 if (is_64bit) {
2827 first_component = first_component / 2;
2828 if (instr->num_components > 2) {
2829 num_iterations = 2;
2830 iter_components = 2;
2831 }
2832 }
2833
2834 mask = mask << first_component;
2835
2836 for (unsigned iter = 0; iter < num_iterations; iter++) {
2837 if (!is_64bit && mask != WRITEMASK_XYZW) {
2838 srcs[header_regs++] = brw_imm_ud(mask << 16);
2839 opcode = indirect_offset.file != BAD_FILE ?
2840 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2841 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2842 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2843 /* Expand the 64-bit mask to 32-bit channels. We only handle
2844 * two channels in each iteration, so we only care about X/Y.
2845 */
2846 unsigned mask32 = 0;
2847 if (mask & WRITEMASK_X)
2848 mask32 |= WRITEMASK_XY;
2849 if (mask & WRITEMASK_Y)
2850 mask32 |= WRITEMASK_ZW;
2851
2852 /* If the mask does not include any of the channels X or Y there
2853 * is nothing to do in this iteration. Move on to the next couple
2854 * of 64-bit channels.
2855 */
2856 if (!mask32) {
2857 mask >>= 2;
2858 imm_offset++;
2859 continue;
2860 }
2861
2862 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2863 opcode = indirect_offset.file != BAD_FILE ?
2864 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2865 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2866 } else {
2867 opcode = indirect_offset.file != BAD_FILE ?
2868 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2869 SHADER_OPCODE_URB_WRITE_SIMD8;
2870 }
2871
2872 for (unsigned i = 0; i < iter_components; i++) {
2873 if (!(mask & (1 << (i + first_component))))
2874 continue;
2875
2876 if (!is_64bit) {
2877 srcs[header_regs + i + first_component] = offset(value, bld, i);
2878 } else {
2879 /* We need to shuffle the 64-bit data to match the layout
2880 * expected by our 32-bit URB write messages. We use a temporary
2881 * for that.
2882 */
2883 unsigned channel = iter * 2 + i;
2884 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2885
2886 srcs[header_regs + (i + first_component) * 2] = dest;
2887 srcs[header_regs + (i + first_component) * 2 + 1] =
2888 offset(dest, bld, 1);
2889 }
2890 }
2891
2892 unsigned mlen =
2893 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2894 (is_64bit ? 2 * first_component : first_component);
2895 fs_reg payload =
2896 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2897 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2898
2899 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2900 inst->offset = imm_offset;
2901 inst->mlen = mlen;
2902
2903 /* If this is a 64-bit attribute, select the next two 64-bit channels
2904 * to be handled in the next iteration.
2905 */
2906 if (is_64bit) {
2907 mask >>= 2;
2908 imm_offset++;
2909 }
2910 }
2911 break;
2912 }
2913
2914 default:
2915 nir_emit_intrinsic(bld, instr);
2916 break;
2917 }
2918 }
2919
2920 void
2921 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2922 nir_intrinsic_instr *instr)
2923 {
2924 assert(stage == MESA_SHADER_TESS_EVAL);
2925 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2926
2927 fs_reg dest;
2928 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2929 dest = get_nir_dest(instr->dest);
2930
2931 switch (instr->intrinsic) {
2932 case nir_intrinsic_load_primitive_id:
2933 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2934 break;
2935 case nir_intrinsic_load_tess_coord:
2936 /* gl_TessCoord is part of the payload in g1-3 */
2937 for (unsigned i = 0; i < 3; i++) {
2938 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2939 }
2940 break;
2941
2942 case nir_intrinsic_load_input:
2943 case nir_intrinsic_load_per_vertex_input: {
2944 fs_reg indirect_offset = get_indirect_offset(instr);
2945 unsigned imm_offset = instr->const_index[0];
2946 unsigned first_component = nir_intrinsic_component(instr);
2947
2948 if (type_sz(dest.type) == 8) {
2949 first_component = first_component / 2;
2950 }
2951
2952 fs_inst *inst;
2953 if (indirect_offset.file == BAD_FILE) {
2954 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2955 * which is 16 registers (since each holds 2 vec4 slots).
2956 */
2957 unsigned slot_count = 1;
2958 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2959 slot_count++;
2960
2961 const unsigned max_push_slots = 32;
2962 if (imm_offset + slot_count <= max_push_slots) {
2963 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2964 for (int i = 0; i < instr->num_components; i++) {
2965 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2966 i + first_component;
2967 bld.MOV(offset(dest, bld, i), component(src, comp));
2968 }
2969
2970 tes_prog_data->base.urb_read_length =
2971 MAX2(tes_prog_data->base.urb_read_length,
2972 DIV_ROUND_UP(imm_offset + slot_count, 2));
2973 } else {
2974 /* Replicate the patch handle to all enabled channels */
2975 const fs_reg srcs[] = {
2976 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2977 };
2978 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2979 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2980
2981 if (first_component != 0) {
2982 unsigned read_components =
2983 instr->num_components + first_component;
2984 fs_reg tmp = bld.vgrf(dest.type, read_components);
2985 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2986 patch_handle);
2987 inst->size_written = read_components * REG_SIZE;
2988 for (unsigned i = 0; i < instr->num_components; i++) {
2989 bld.MOV(offset(dest, bld, i),
2990 offset(tmp, bld, i + first_component));
2991 }
2992 } else {
2993 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2994 patch_handle);
2995 inst->size_written = instr->num_components * REG_SIZE;
2996 }
2997 inst->mlen = 1;
2998 inst->offset = imm_offset;
2999 }
3000 } else {
3001 /* Indirect indexing - use per-slot offsets as well. */
3002
3003 /* We can only read two double components with each URB read, so
3004 * we send two read messages in that case, each one loading up to
3005 * two double components.
3006 */
3007 unsigned num_iterations = 1;
3008 unsigned num_components = instr->num_components;
3009 fs_reg orig_dest = dest;
3010 if (type_sz(dest.type) == 8) {
3011 if (instr->num_components > 2) {
3012 num_iterations = 2;
3013 num_components = 2;
3014 }
3015 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
3016 dest = tmp;
3017 }
3018
3019 for (unsigned iter = 0; iter < num_iterations; iter++) {
3020 const fs_reg srcs[] = {
3021 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3022 indirect_offset
3023 };
3024 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3025 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3026
3027 if (first_component != 0) {
3028 unsigned read_components =
3029 num_components + first_component;
3030 fs_reg tmp = bld.vgrf(dest.type, read_components);
3031 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3032 payload);
3033 for (unsigned i = 0; i < num_components; i++) {
3034 bld.MOV(offset(dest, bld, i),
3035 offset(tmp, bld, i + first_component));
3036 }
3037 } else {
3038 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3039 payload);
3040 }
3041 inst->mlen = 2;
3042 inst->offset = imm_offset;
3043 inst->size_written = (num_components + first_component) *
3044 inst->dst.component_size(inst->exec_size);
3045
3046 /* If we are reading 64-bit data using 32-bit read messages we need
3047 * build proper 64-bit data elements by shuffling the low and high
3048 * 32-bit components around like we do for other things like UBOs
3049 * or SSBOs.
3050 */
3051 if (type_sz(dest.type) == 8) {
3052 shuffle_from_32bit_read(bld,
3053 offset(orig_dest, bld, iter * 2),
3054 retype(dest, BRW_REGISTER_TYPE_D),
3055 0, num_components);
3056 }
3057
3058 /* If we are loading double data and we need a second read message
3059 * adjust the offset
3060 */
3061 if (num_iterations > 1) {
3062 num_components = instr->num_components - 2;
3063 imm_offset++;
3064 }
3065 }
3066 }
3067 break;
3068 }
3069 default:
3070 nir_emit_intrinsic(bld, instr);
3071 break;
3072 }
3073 }
3074
3075 void
3076 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3077 nir_intrinsic_instr *instr)
3078 {
3079 assert(stage == MESA_SHADER_GEOMETRY);
3080 fs_reg indirect_offset;
3081
3082 fs_reg dest;
3083 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3084 dest = get_nir_dest(instr->dest);
3085
3086 switch (instr->intrinsic) {
3087 case nir_intrinsic_load_primitive_id:
3088 assert(stage == MESA_SHADER_GEOMETRY);
3089 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3090 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3091 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3092 break;
3093
3094 case nir_intrinsic_load_input:
3095 unreachable("load_input intrinsics are invalid for the GS stage");
3096
3097 case nir_intrinsic_load_per_vertex_input:
3098 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3099 instr->src[1], instr->num_components,
3100 nir_intrinsic_component(instr));
3101 break;
3102
3103 case nir_intrinsic_emit_vertex_with_counter:
3104 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3105 break;
3106
3107 case nir_intrinsic_end_primitive_with_counter:
3108 emit_gs_end_primitive(instr->src[0]);
3109 break;
3110
3111 case nir_intrinsic_set_vertex_count:
3112 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3113 break;
3114
3115 case nir_intrinsic_load_invocation_id: {
3116 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3117 assert(val.file != BAD_FILE);
3118 dest.type = val.type;
3119 bld.MOV(dest, val);
3120 break;
3121 }
3122
3123 default:
3124 nir_emit_intrinsic(bld, instr);
3125 break;
3126 }
3127 }
3128
3129 /**
3130 * Fetch the current render target layer index.
3131 */
3132 static fs_reg
3133 fetch_render_target_array_index(const fs_builder &bld)
3134 {
3135 if (bld.shader->devinfo->gen >= 6) {
3136 /* The render target array index is provided in the thread payload as
3137 * bits 26:16 of r0.0.
3138 */
3139 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3140 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3141 brw_imm_uw(0x7ff));
3142 return idx;
3143 } else {
3144 /* Pre-SNB we only ever render into the first layer of the framebuffer
3145 * since layered rendering is not implemented.
3146 */
3147 return brw_imm_ud(0);
3148 }
3149 }
3150
3151 /**
3152 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3153 * framebuffer at the current fragment coordinates and sample index.
3154 */
3155 fs_inst *
3156 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3157 unsigned target)
3158 {
3159 const struct gen_device_info *devinfo = bld.shader->devinfo;
3160
3161 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3162 const brw_wm_prog_key *wm_key =
3163 reinterpret_cast<const brw_wm_prog_key *>(key);
3164 assert(!wm_key->coherent_fb_fetch);
3165 const struct brw_wm_prog_data *wm_prog_data =
3166 brw_wm_prog_data(stage_prog_data);
3167
3168 /* Calculate the surface index relative to the start of the texture binding
3169 * table block, since that's what the texturing messages expect.
3170 */
3171 const unsigned surface = target +
3172 wm_prog_data->binding_table.render_target_read_start -
3173 wm_prog_data->base.binding_table.texture_start;
3174
3175 brw_mark_surface_used(
3176 bld.shader->stage_prog_data,
3177 wm_prog_data->binding_table.render_target_read_start + target);
3178
3179 /* Calculate the fragment coordinates. */
3180 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3181 bld.MOV(offset(coords, bld, 0), pixel_x);
3182 bld.MOV(offset(coords, bld, 1), pixel_y);
3183 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3184
3185 /* Calculate the sample index and MCS payload when multisampling. Luckily
3186 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3187 * shouldn't be necessary to recompile based on whether the framebuffer is
3188 * CMS or UMS.
3189 */
3190 if (wm_key->multisample_fbo &&
3191 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3192 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3193
3194 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3195 const fs_reg mcs = wm_key->multisample_fbo ?
3196 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3197
3198 /* Use either a normal or a CMS texel fetch message depending on whether
3199 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3200 * message just in case the framebuffer uses 16x multisampling, it should
3201 * be equivalent to the normal CMS fetch for lower multisampling modes.
3202 */
3203 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3204 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3205 SHADER_OPCODE_TXF_CMS_LOGICAL;
3206
3207 /* Emit the instruction. */
3208 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3209 sample, mcs,
3210 brw_imm_ud(surface), brw_imm_ud(0),
3211 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3212 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3213
3214 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3215 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3216
3217 return inst;
3218 }
3219
3220 /**
3221 * Actual coherent framebuffer read implemented using the native render target
3222 * read message. Requires SKL+.
3223 */
3224 static fs_inst *
3225 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3226 {
3227 assert(bld.shader->devinfo->gen >= 9);
3228 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3229 inst->target = target;
3230 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3231
3232 return inst;
3233 }
3234
3235 static fs_reg
3236 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3237 {
3238 if (n && regs[0].file != BAD_FILE) {
3239 return regs[0];
3240
3241 } else {
3242 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3243
3244 for (unsigned i = 0; i < n; i++)
3245 regs[i] = tmp;
3246
3247 return tmp;
3248 }
3249 }
3250
3251 static fs_reg
3252 alloc_frag_output(fs_visitor *v, unsigned location)
3253 {
3254 assert(v->stage == MESA_SHADER_FRAGMENT);
3255 const brw_wm_prog_key *const key =
3256 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3257 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3258 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3259
3260 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3261 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3262
3263 else if (l == FRAG_RESULT_COLOR)
3264 return alloc_temporary(v->bld, 4, v->outputs,
3265 MAX2(key->nr_color_regions, 1));
3266
3267 else if (l == FRAG_RESULT_DEPTH)
3268 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3269
3270 else if (l == FRAG_RESULT_STENCIL)
3271 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3272
3273 else if (l == FRAG_RESULT_SAMPLE_MASK)
3274 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3275
3276 else if (l >= FRAG_RESULT_DATA0 &&
3277 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3278 return alloc_temporary(v->bld, 4,
3279 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3280
3281 else
3282 unreachable("Invalid location");
3283 }
3284
3285 void
3286 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3287 nir_intrinsic_instr *instr)
3288 {
3289 assert(stage == MESA_SHADER_FRAGMENT);
3290
3291 fs_reg dest;
3292 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3293 dest = get_nir_dest(instr->dest);
3294
3295 switch (instr->intrinsic) {
3296 case nir_intrinsic_load_front_face:
3297 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3298 *emit_frontfacing_interpolation());
3299 break;
3300
3301 case nir_intrinsic_load_sample_pos: {
3302 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3303 assert(sample_pos.file != BAD_FILE);
3304 dest.type = sample_pos.type;
3305 bld.MOV(dest, sample_pos);
3306 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3307 break;
3308 }
3309
3310 case nir_intrinsic_load_layer_id:
3311 dest.type = BRW_REGISTER_TYPE_UD;
3312 bld.MOV(dest, fetch_render_target_array_index(bld));
3313 break;
3314
3315 case nir_intrinsic_load_helper_invocation:
3316 case nir_intrinsic_load_sample_mask_in:
3317 case nir_intrinsic_load_sample_id: {
3318 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3319 fs_reg val = nir_system_values[sv];
3320 assert(val.file != BAD_FILE);
3321 dest.type = val.type;
3322 bld.MOV(dest, val);
3323 break;
3324 }
3325
3326 case nir_intrinsic_store_output: {
3327 const fs_reg src = get_nir_src(instr->src[0]);
3328 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3329 assert(const_offset && "Indirect output stores not allowed");
3330 const unsigned location = nir_intrinsic_base(instr) +
3331 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3332 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3333 src.type);
3334
3335 for (unsigned j = 0; j < instr->num_components; j++)
3336 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3337 offset(src, bld, j));
3338
3339 break;
3340 }
3341
3342 case nir_intrinsic_load_output: {
3343 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3344 BRW_NIR_FRAG_OUTPUT_LOCATION);
3345 assert(l >= FRAG_RESULT_DATA0);
3346 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3347 assert(const_offset && "Indirect output loads not allowed");
3348 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3349 const fs_reg tmp = bld.vgrf(dest.type, 4);
3350
3351 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3352 emit_coherent_fb_read(bld, tmp, target);
3353 else
3354 emit_non_coherent_fb_read(bld, tmp, target);
3355
3356 for (unsigned j = 0; j < instr->num_components; j++) {
3357 bld.MOV(offset(dest, bld, j),
3358 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3359 }
3360
3361 break;
3362 }
3363
3364 case nir_intrinsic_discard:
3365 case nir_intrinsic_discard_if: {
3366 /* We track our discarded pixels in f0.1. By predicating on it, we can
3367 * update just the flag bits that aren't yet discarded. If there's no
3368 * condition, we emit a CMP of g0 != g0, so all currently executing
3369 * channels will get turned off.
3370 */
3371 fs_inst *cmp;
3372 if (instr->intrinsic == nir_intrinsic_discard_if) {
3373 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3374 brw_imm_d(0), BRW_CONDITIONAL_Z);
3375 } else {
3376 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3377 BRW_REGISTER_TYPE_UW));
3378 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3379 }
3380 cmp->predicate = BRW_PREDICATE_NORMAL;
3381 cmp->flag_subreg = 1;
3382
3383 if (devinfo->gen >= 6) {
3384 emit_discard_jump();
3385 }
3386
3387 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3388 break;
3389 }
3390
3391 case nir_intrinsic_load_input: {
3392 /* load_input is only used for flat inputs */
3393 unsigned base = nir_intrinsic_base(instr);
3394 unsigned comp = nir_intrinsic_component(instr);
3395 unsigned num_components = instr->num_components;
3396 fs_reg orig_dest = dest;
3397 enum brw_reg_type type = dest.type;
3398
3399 /* Special case fields in the VUE header */
3400 if (base == VARYING_SLOT_LAYER)
3401 comp = 1;
3402 else if (base == VARYING_SLOT_VIEWPORT)
3403 comp = 2;
3404
3405 if (nir_dest_bit_size(instr->dest) == 64) {
3406 /* const_index is in 32-bit type size units that could not be aligned
3407 * with DF. We need to read the double vector as if it was a float
3408 * vector of twice the number of components to fetch the right data.
3409 */
3410 type = BRW_REGISTER_TYPE_F;
3411 num_components *= 2;
3412 dest = bld.vgrf(type, num_components);
3413 }
3414
3415 for (unsigned int i = 0; i < num_components; i++) {
3416 bld.MOV(offset(retype(dest, type), bld, i),
3417 retype(component(interp_reg(base, comp + i), 3), type));
3418 }
3419
3420 if (nir_dest_bit_size(instr->dest) == 64) {
3421 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3422 instr->num_components);
3423 }
3424 break;
3425 }
3426
3427 case nir_intrinsic_load_barycentric_pixel:
3428 case nir_intrinsic_load_barycentric_centroid:
3429 case nir_intrinsic_load_barycentric_sample:
3430 /* Do nothing - load_interpolated_input handling will handle it later. */
3431 break;
3432
3433 case nir_intrinsic_load_barycentric_at_sample: {
3434 const glsl_interp_mode interpolation =
3435 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3436
3437 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3438
3439 if (const_sample) {
3440 unsigned msg_data = const_sample->i32[0] << 4;
3441
3442 emit_pixel_interpolater_send(bld,
3443 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3444 dest,
3445 fs_reg(), /* src */
3446 brw_imm_ud(msg_data),
3447 interpolation);
3448 } else {
3449 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3450 BRW_REGISTER_TYPE_UD);
3451
3452 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3453 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3454 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3455 bld.exec_all().group(1, 0)
3456 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3457 emit_pixel_interpolater_send(bld,
3458 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3459 dest,
3460 fs_reg(), /* src */
3461 msg_data,
3462 interpolation);
3463 } else {
3464 /* Make a loop that sends a message to the pixel interpolater
3465 * for the sample number in each live channel. If there are
3466 * multiple channels with the same sample number then these
3467 * will be handled simultaneously with a single interation of
3468 * the loop.
3469 */
3470 bld.emit(BRW_OPCODE_DO);
3471
3472 /* Get the next live sample number into sample_id_reg */
3473 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3474
3475 /* Set the flag register so that we can perform the send
3476 * message on all channels that have the same sample number
3477 */
3478 bld.CMP(bld.null_reg_ud(),
3479 sample_src, sample_id,
3480 BRW_CONDITIONAL_EQ);
3481 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3482 bld.exec_all().group(1, 0)
3483 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3484 fs_inst *inst =
3485 emit_pixel_interpolater_send(bld,
3486 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3487 dest,
3488 fs_reg(), /* src */
3489 component(msg_data, 0),
3490 interpolation);
3491 set_predicate(BRW_PREDICATE_NORMAL, inst);
3492
3493 /* Continue the loop if there are any live channels left */
3494 set_predicate_inv(BRW_PREDICATE_NORMAL,
3495 true, /* inverse */
3496 bld.emit(BRW_OPCODE_WHILE));
3497 }
3498 }
3499 break;
3500 }
3501
3502 case nir_intrinsic_load_barycentric_at_offset: {
3503 const glsl_interp_mode interpolation =
3504 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3505
3506 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3507
3508 if (const_offset) {
3509 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3510 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3511
3512 emit_pixel_interpolater_send(bld,
3513 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3514 dest,
3515 fs_reg(), /* src */
3516 brw_imm_ud(off_x | (off_y << 4)),
3517 interpolation);
3518 } else {
3519 fs_reg src = vgrf(glsl_type::ivec2_type);
3520 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3521 BRW_REGISTER_TYPE_F);
3522 for (int i = 0; i < 2; i++) {
3523 fs_reg temp = vgrf(glsl_type::float_type);
3524 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3525 fs_reg itemp = vgrf(glsl_type::int_type);
3526 /* float to int */
3527 bld.MOV(itemp, temp);
3528
3529 /* Clamp the upper end of the range to +7/16.
3530 * ARB_gpu_shader5 requires that we support a maximum offset
3531 * of +0.5, which isn't representable in a S0.4 value -- if
3532 * we didn't clamp it, we'd end up with -8/16, which is the
3533 * opposite of what the shader author wanted.
3534 *
3535 * This is legal due to ARB_gpu_shader5's quantization
3536 * rules:
3537 *
3538 * "Not all values of <offset> may be supported; x and y
3539 * offsets may be rounded to fixed-point values with the
3540 * number of fraction bits given by the
3541 * implementation-dependent constant
3542 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3543 */
3544 set_condmod(BRW_CONDITIONAL_L,
3545 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3546 }
3547
3548 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3549 emit_pixel_interpolater_send(bld,
3550 opcode,
3551 dest,
3552 src,
3553 brw_imm_ud(0u),
3554 interpolation);
3555 }
3556 break;
3557 }
3558
3559 case nir_intrinsic_load_interpolated_input: {
3560 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3561 emit_fragcoord_interpolation(dest);
3562 break;
3563 }
3564
3565 assert(instr->src[0].ssa &&
3566 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3567 nir_intrinsic_instr *bary_intrinsic =
3568 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3569 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3570 enum glsl_interp_mode interp_mode =
3571 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3572 fs_reg dst_xy;
3573
3574 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3575 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3576 /* Use the result of the PI message */
3577 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3578 } else {
3579 /* Use the delta_xy values computed from the payload */
3580 enum brw_barycentric_mode bary =
3581 brw_barycentric_mode(interp_mode, bary_intrin);
3582
3583 dst_xy = this->delta_xy[bary];
3584 }
3585
3586 for (unsigned int i = 0; i < instr->num_components; i++) {
3587 fs_reg interp =
3588 component(interp_reg(nir_intrinsic_base(instr),
3589 nir_intrinsic_component(instr) + i), 0);
3590 interp.type = BRW_REGISTER_TYPE_F;
3591 dest.type = BRW_REGISTER_TYPE_F;
3592
3593 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3594 fs_reg tmp = vgrf(glsl_type::float_type);
3595 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3596 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3597 } else {
3598 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3599 }
3600 }
3601 break;
3602 }
3603
3604 default:
3605 nir_emit_intrinsic(bld, instr);
3606 break;
3607 }
3608 }
3609
3610 void
3611 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3612 nir_intrinsic_instr *instr)
3613 {
3614 assert(stage == MESA_SHADER_COMPUTE);
3615 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3616
3617 fs_reg dest;
3618 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3619 dest = get_nir_dest(instr->dest);
3620
3621 switch (instr->intrinsic) {
3622 case nir_intrinsic_barrier:
3623 emit_barrier();
3624 cs_prog_data->uses_barrier = true;
3625 break;
3626
3627 case nir_intrinsic_load_subgroup_id:
3628 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3629 break;
3630
3631 case nir_intrinsic_load_local_invocation_id:
3632 case nir_intrinsic_load_work_group_id: {
3633 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3634 fs_reg val = nir_system_values[sv];
3635 assert(val.file != BAD_FILE);
3636 dest.type = val.type;
3637 for (unsigned i = 0; i < 3; i++)
3638 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3639 break;
3640 }
3641
3642 case nir_intrinsic_load_num_work_groups: {
3643 const unsigned surface =
3644 cs_prog_data->binding_table.work_groups_start;
3645
3646 cs_prog_data->uses_num_work_groups = true;
3647
3648 fs_reg surf_index = brw_imm_ud(surface);
3649 brw_mark_surface_used(prog_data, surface);
3650
3651 /* Read the 3 GLuint components of gl_NumWorkGroups */
3652 for (unsigned i = 0; i < 3; i++) {
3653 fs_reg read_result =
3654 emit_untyped_read(bld, surf_index,
3655 brw_imm_ud(i << 2),
3656 1 /* dims */, 1 /* size */,
3657 BRW_PREDICATE_NONE);
3658 read_result.type = dest.type;
3659 bld.MOV(dest, read_result);
3660 dest = offset(dest, bld, 1);
3661 }
3662 break;
3663 }
3664
3665 case nir_intrinsic_shared_atomic_add:
3666 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3667 break;
3668 case nir_intrinsic_shared_atomic_imin:
3669 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3670 break;
3671 case nir_intrinsic_shared_atomic_umin:
3672 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3673 break;
3674 case nir_intrinsic_shared_atomic_imax:
3675 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3676 break;
3677 case nir_intrinsic_shared_atomic_umax:
3678 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3679 break;
3680 case nir_intrinsic_shared_atomic_and:
3681 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3682 break;
3683 case nir_intrinsic_shared_atomic_or:
3684 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3685 break;
3686 case nir_intrinsic_shared_atomic_xor:
3687 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3688 break;
3689 case nir_intrinsic_shared_atomic_exchange:
3690 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3691 break;
3692 case nir_intrinsic_shared_atomic_comp_swap:
3693 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3694 break;
3695
3696 case nir_intrinsic_load_shared: {
3697 assert(devinfo->gen >= 7);
3698
3699 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3700
3701 /* Get the offset to read from */
3702 fs_reg offset_reg;
3703 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3704 if (const_offset) {
3705 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3706 } else {
3707 offset_reg = vgrf(glsl_type::uint_type);
3708 bld.ADD(offset_reg,
3709 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3710 brw_imm_ud(instr->const_index[0]));
3711 }
3712
3713 /* Read the vector */
3714 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3715 instr->num_components);
3716 break;
3717 }
3718
3719 case nir_intrinsic_store_shared: {
3720 assert(devinfo->gen >= 7);
3721
3722 /* Block index */
3723 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3724
3725 /* Value */
3726 fs_reg val_reg = get_nir_src(instr->src[0]);
3727
3728 /* Writemask */
3729 unsigned writemask = instr->const_index[1];
3730
3731 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3732 * since the untyped writes below operate in units of 32-bits, which
3733 * means that we need to write twice as many components each time.
3734 * Also, we have to suffle 64-bit data to be in the appropriate layout
3735 * expected by our 32-bit write messages.
3736 */
3737 unsigned type_size = 4;
3738 if (nir_src_bit_size(instr->src[0]) == 64) {
3739 type_size = 8;
3740 val_reg = shuffle_for_32bit_write(bld, val_reg, 0,
3741 instr->num_components);
3742 }
3743
3744 unsigned type_slots = type_size / 4;
3745
3746 /* Combine groups of consecutive enabled channels in one write
3747 * message. We use ffs to find the first enabled channel and then ffs on
3748 * the bit-inverse, down-shifted writemask to determine the length of
3749 * the block of enabled bits.
3750 */
3751 while (writemask) {
3752 unsigned first_component = ffs(writemask) - 1;
3753 unsigned length = ffs(~(writemask >> first_component)) - 1;
3754
3755 /* We can't write more than 2 64-bit components at once. Limit the
3756 * length of the write to what we can do and let the next iteration
3757 * handle the rest
3758 */
3759 if (type_size > 4)
3760 length = MIN2(2, length);
3761
3762 fs_reg offset_reg;
3763 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3764 if (const_offset) {
3765 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3766 type_size * first_component);
3767 } else {
3768 offset_reg = vgrf(glsl_type::uint_type);
3769 bld.ADD(offset_reg,
3770 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3771 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3772 }
3773
3774 emit_untyped_write(bld, surf_index, offset_reg,
3775 offset(val_reg, bld, first_component * type_slots),
3776 1 /* dims */, length * type_slots,
3777 BRW_PREDICATE_NONE);
3778
3779 /* Clear the bits in the writemask that we just wrote, then try
3780 * again to see if more channels are left.
3781 */
3782 writemask &= (15 << (first_component + length));
3783 }
3784
3785 break;
3786 }
3787
3788 default:
3789 nir_emit_intrinsic(bld, instr);
3790 break;
3791 }
3792 }
3793
3794 static fs_reg
3795 brw_nir_reduction_op_identity(const fs_builder &bld,
3796 nir_op op, brw_reg_type type)
3797 {
3798 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3799 switch (type_sz(type)) {
3800 case 2:
3801 assert(type != BRW_REGISTER_TYPE_HF);
3802 return retype(brw_imm_uw(value.u16[0]), type);
3803 case 4:
3804 return retype(brw_imm_ud(value.u32[0]), type);
3805 case 8:
3806 if (type == BRW_REGISTER_TYPE_DF)
3807 return setup_imm_df(bld, value.f64[0]);
3808 else
3809 return retype(brw_imm_u64(value.u64[0]), type);
3810 default:
3811 unreachable("Invalid type size");
3812 }
3813 }
3814
3815 static opcode
3816 brw_op_for_nir_reduction_op(nir_op op)
3817 {
3818 switch (op) {
3819 case nir_op_iadd: return BRW_OPCODE_ADD;
3820 case nir_op_fadd: return BRW_OPCODE_ADD;
3821 case nir_op_imul: return BRW_OPCODE_MUL;
3822 case nir_op_fmul: return BRW_OPCODE_MUL;
3823 case nir_op_imin: return BRW_OPCODE_SEL;
3824 case nir_op_umin: return BRW_OPCODE_SEL;
3825 case nir_op_fmin: return BRW_OPCODE_SEL;
3826 case nir_op_imax: return BRW_OPCODE_SEL;
3827 case nir_op_umax: return BRW_OPCODE_SEL;
3828 case nir_op_fmax: return BRW_OPCODE_SEL;
3829 case nir_op_iand: return BRW_OPCODE_AND;
3830 case nir_op_ior: return BRW_OPCODE_OR;
3831 case nir_op_ixor: return BRW_OPCODE_XOR;
3832 default:
3833 unreachable("Invalid reduction operation");
3834 }
3835 }
3836
3837 static brw_conditional_mod
3838 brw_cond_mod_for_nir_reduction_op(nir_op op)
3839 {
3840 switch (op) {
3841 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3842 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3843 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3844 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3845 case nir_op_imin: return BRW_CONDITIONAL_L;
3846 case nir_op_umin: return BRW_CONDITIONAL_L;
3847 case nir_op_fmin: return BRW_CONDITIONAL_L;
3848 case nir_op_imax: return BRW_CONDITIONAL_GE;
3849 case nir_op_umax: return BRW_CONDITIONAL_GE;
3850 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3851 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3852 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3853 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3854 default:
3855 unreachable("Invalid reduction operation");
3856 }
3857 }
3858
3859 void
3860 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3861 {
3862 fs_reg dest;
3863 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3864 dest = get_nir_dest(instr->dest);
3865
3866 switch (instr->intrinsic) {
3867 case nir_intrinsic_image_deref_load:
3868 case nir_intrinsic_image_deref_store:
3869 case nir_intrinsic_image_deref_atomic_add:
3870 case nir_intrinsic_image_deref_atomic_min:
3871 case nir_intrinsic_image_deref_atomic_max:
3872 case nir_intrinsic_image_deref_atomic_and:
3873 case nir_intrinsic_image_deref_atomic_or:
3874 case nir_intrinsic_image_deref_atomic_xor:
3875 case nir_intrinsic_image_deref_atomic_exchange:
3876 case nir_intrinsic_image_deref_atomic_comp_swap: {
3877 using namespace image_access;
3878
3879 if (stage == MESA_SHADER_FRAGMENT &&
3880 instr->intrinsic != nir_intrinsic_image_deref_load)
3881 brw_wm_prog_data(prog_data)->has_side_effects = true;
3882
3883 /* Get the referenced image variable and type. */
3884 nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
3885 const nir_variable *var = nir_deref_instr_get_variable(deref);
3886 const glsl_type *type = var->type->without_array();
3887 const brw_reg_type base_type = get_image_base_type(type);
3888
3889 /* Get some metadata from the image intrinsic. */
3890 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3891 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3892 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3893 const unsigned format = var->data.image.format;
3894 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3895
3896 /* Get the arguments of the image intrinsic. */
3897 const fs_reg image = get_nir_image_deref(deref);
3898 const fs_reg addr = retype(get_nir_src(instr->src[1]),
3899 BRW_REGISTER_TYPE_UD);
3900 const fs_reg src0 = (info->num_srcs >= 4 ?
3901 retype(get_nir_src(instr->src[3]), base_type) :
3902 fs_reg());
3903 const fs_reg src1 = (info->num_srcs >= 5 ?
3904 retype(get_nir_src(instr->src[4]), base_type) :
3905 fs_reg());
3906 fs_reg tmp;
3907
3908 /* Emit an image load, store or atomic op. */
3909 if (instr->intrinsic == nir_intrinsic_image_deref_load)
3910 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3911
3912 else if (instr->intrinsic == nir_intrinsic_image_deref_store)
3913 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3914 var->data.image.write_only ? GL_NONE : format);
3915
3916 else
3917 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3918 surf_dims, arr_dims, dest_components,
3919 get_image_atomic_op(instr->intrinsic, type));
3920
3921 /* Assign the result. */
3922 for (unsigned c = 0; c < dest_components; ++c) {
3923 bld.MOV(offset(retype(dest, base_type), bld, c),
3924 offset(tmp, bld, c));
3925 }
3926 break;
3927 }
3928
3929 case nir_intrinsic_memory_barrier_atomic_counter:
3930 case nir_intrinsic_memory_barrier_buffer:
3931 case nir_intrinsic_memory_barrier_image:
3932 case nir_intrinsic_memory_barrier: {
3933 const fs_builder ubld = bld.group(8, 0);
3934 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3935 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3936 ->size_written = 2 * REG_SIZE;
3937 break;
3938 }
3939
3940 case nir_intrinsic_group_memory_barrier:
3941 case nir_intrinsic_memory_barrier_shared:
3942 /* We treat these workgroup-level barriers as no-ops. This should be
3943 * safe at present and as long as:
3944 *
3945 * - Memory access instructions are not subsequently reordered by the
3946 * compiler back-end.
3947 *
3948 * - All threads from a given compute shader workgroup fit within a
3949 * single subslice and therefore talk to the same HDC shared unit
3950 * what supposedly guarantees ordering and coherency between threads
3951 * from the same workgroup. This may change in the future when we
3952 * start splitting workgroups across multiple subslices.
3953 *
3954 * - The context is not in fault-and-stream mode, which could cause
3955 * memory transactions (including to SLM) prior to the barrier to be
3956 * replayed after the barrier if a pagefault occurs. This shouldn't
3957 * be a problem up to and including SKL because fault-and-stream is
3958 * not usable due to hardware issues, but that's likely to change in
3959 * the future.
3960 */
3961 break;
3962
3963 case nir_intrinsic_shader_clock: {
3964 /* We cannot do anything if there is an event, so ignore it for now */
3965 const fs_reg shader_clock = get_timestamp(bld);
3966 const fs_reg srcs[] = { component(shader_clock, 0),
3967 component(shader_clock, 1) };
3968 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3969 break;
3970 }
3971
3972 case nir_intrinsic_image_deref_size: {
3973 /* Get the referenced image variable and type. */
3974 nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
3975 const nir_variable *var = nir_deref_instr_get_variable(deref);
3976 const glsl_type *type = var->type->without_array();
3977
3978 /* Get the size of the image. */
3979 const fs_reg image = get_nir_image_deref(deref);
3980 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3981
3982 /* For 1DArray image types, the array index is stored in the Z component.
3983 * Fix this by swizzling the Z component to the Y component.
3984 */
3985 const bool is_1d_array_image =
3986 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3987 type->sampler_array;
3988
3989 /* For CubeArray images, we should count the number of cubes instead
3990 * of the number of faces. Fix it by dividing the (Z component) by 6.
3991 */
3992 const bool is_cube_array_image =
3993 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3994 type->sampler_array;
3995
3996 /* Copy all the components. */
3997 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3998 if ((int)c >= type->coordinate_components()) {
3999 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
4000 brw_imm_d(1));
4001 } else if (c == 1 && is_1d_array_image) {
4002 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
4003 offset(size, bld, 2));
4004 } else if (c == 2 && is_cube_array_image) {
4005 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4006 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
4007 offset(size, bld, c), brw_imm_d(6));
4008 } else {
4009 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
4010 offset(size, bld, c));
4011 }
4012 }
4013
4014 break;
4015 }
4016
4017 case nir_intrinsic_image_deref_samples:
4018 /* The driver does not support multi-sampled images. */
4019 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4020 break;
4021
4022 case nir_intrinsic_load_uniform: {
4023 /* Offsets are in bytes but they should always aligned to
4024 * the type size
4025 */
4026 assert(instr->const_index[0] % 4 == 0 ||
4027 instr->const_index[0] % type_sz(dest.type) == 0);
4028
4029 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4030
4031 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4032 if (const_offset) {
4033 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
4034 /* For 16-bit types we add the module of the const_index[0]
4035 * offset to access to not 32-bit aligned element
4036 */
4037 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
4038
4039 for (unsigned j = 0; j < instr->num_components; j++) {
4040 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4041 }
4042 } else {
4043 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4044 BRW_REGISTER_TYPE_UD);
4045
4046 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4047 * go past the end of the uniform. In order to keep the n'th
4048 * component from running past, we subtract off the size of all but
4049 * one component of the vector.
4050 */
4051 assert(instr->const_index[1] >=
4052 instr->num_components * (int) type_sz(dest.type));
4053 unsigned read_size = instr->const_index[1] -
4054 (instr->num_components - 1) * type_sz(dest.type);
4055
4056 bool supports_64bit_indirects =
4057 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4058
4059 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4060 for (unsigned j = 0; j < instr->num_components; j++) {
4061 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4062 offset(dest, bld, j), offset(src, bld, j),
4063 indirect, brw_imm_ud(read_size));
4064 }
4065 } else {
4066 const unsigned num_mov_indirects =
4067 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4068 /* We read a little bit less per MOV INDIRECT, as they are now
4069 * 32-bits ones instead of 64-bit. Fix read_size then.
4070 */
4071 const unsigned read_size_32bit = read_size -
4072 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4073 for (unsigned j = 0; j < instr->num_components; j++) {
4074 for (unsigned i = 0; i < num_mov_indirects; i++) {
4075 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4076 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4077 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4078 indirect, brw_imm_ud(read_size_32bit));
4079 }
4080 }
4081 }
4082 }
4083 break;
4084 }
4085
4086 case nir_intrinsic_load_ubo: {
4087 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4088 fs_reg surf_index;
4089
4090 if (const_index) {
4091 const unsigned index = stage_prog_data->binding_table.ubo_start +
4092 const_index->u32[0];
4093 surf_index = brw_imm_ud(index);
4094 brw_mark_surface_used(prog_data, index);
4095 } else {
4096 /* The block index is not a constant. Evaluate the index expression
4097 * per-channel and add the base UBO index; we have to select a value
4098 * from any live channel.
4099 */
4100 surf_index = vgrf(glsl_type::uint_type);
4101 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4102 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4103 surf_index = bld.emit_uniformize(surf_index);
4104
4105 /* Assume this may touch any UBO. It would be nice to provide
4106 * a tighter bound, but the array information is already lowered away.
4107 */
4108 brw_mark_surface_used(prog_data,
4109 stage_prog_data->binding_table.ubo_start +
4110 nir->info.num_ubos - 1);
4111 }
4112
4113 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4114 if (const_offset == NULL) {
4115 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4116 BRW_REGISTER_TYPE_UD);
4117
4118 for (int i = 0; i < instr->num_components; i++)
4119 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4120 base_offset, i * type_sz(dest.type));
4121 } else {
4122 /* Even if we are loading doubles, a pull constant load will load
4123 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4124 * need to load a full dvec4 we will have to emit 2 loads. This is
4125 * similar to demote_pull_constants(), except that in that case we
4126 * see individual accesses to each component of the vector and then
4127 * we let CSE deal with duplicate loads. Here we see a vector access
4128 * and we have to split it if necessary.
4129 */
4130 const unsigned type_size = type_sz(dest.type);
4131
4132 /* See if we've selected this as a push constant candidate */
4133 if (const_index) {
4134 const unsigned ubo_block = const_index->u32[0];
4135 const unsigned offset_256b = const_offset->u32[0] / 32;
4136
4137 fs_reg push_reg;
4138 for (int i = 0; i < 4; i++) {
4139 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4140 if (range->block == ubo_block &&
4141 offset_256b >= range->start &&
4142 offset_256b < range->start + range->length) {
4143
4144 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4145 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4146 break;
4147 }
4148 }
4149
4150 if (push_reg.file != BAD_FILE) {
4151 for (unsigned i = 0; i < instr->num_components; i++) {
4152 bld.MOV(offset(dest, bld, i),
4153 byte_offset(push_reg, i * type_size));
4154 }
4155 break;
4156 }
4157 }
4158
4159 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4160 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4161 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4162
4163 for (unsigned c = 0; c < instr->num_components;) {
4164 const unsigned base = const_offset->u32[0] + c * type_size;
4165 /* Number of usable components in the next block-aligned load. */
4166 const unsigned count = MIN2(instr->num_components - c,
4167 (block_sz - base % block_sz) / type_size);
4168
4169 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4170 packed_consts, surf_index,
4171 brw_imm_ud(base & ~(block_sz - 1)));
4172
4173 const fs_reg consts =
4174 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4175 dest.type);
4176
4177 for (unsigned d = 0; d < count; d++)
4178 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4179
4180 c += count;
4181 }
4182 }
4183 break;
4184 }
4185
4186 case nir_intrinsic_load_ssbo: {
4187 assert(devinfo->gen >= 7);
4188
4189 nir_const_value *const_uniform_block =
4190 nir_src_as_const_value(instr->src[0]);
4191
4192 fs_reg surf_index;
4193 if (const_uniform_block) {
4194 unsigned index = stage_prog_data->binding_table.ssbo_start +
4195 const_uniform_block->u32[0];
4196 surf_index = brw_imm_ud(index);
4197 brw_mark_surface_used(prog_data, index);
4198 } else {
4199 surf_index = vgrf(glsl_type::uint_type);
4200 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4201 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4202
4203 /* Assume this may touch any UBO. It would be nice to provide
4204 * a tighter bound, but the array information is already lowered away.
4205 */
4206 brw_mark_surface_used(prog_data,
4207 stage_prog_data->binding_table.ssbo_start +
4208 nir->info.num_ssbos - 1);
4209 }
4210
4211 fs_reg offset_reg;
4212 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4213 if (const_offset) {
4214 offset_reg = brw_imm_ud(const_offset->u32[0]);
4215 } else {
4216 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4217 }
4218
4219 /* Read the vector */
4220 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4221 instr->num_components);
4222
4223 break;
4224 }
4225
4226 case nir_intrinsic_store_ssbo: {
4227 assert(devinfo->gen >= 7);
4228
4229 if (stage == MESA_SHADER_FRAGMENT)
4230 brw_wm_prog_data(prog_data)->has_side_effects = true;
4231
4232 /* Block index */
4233 fs_reg surf_index;
4234 nir_const_value *const_uniform_block =
4235 nir_src_as_const_value(instr->src[1]);
4236 if (const_uniform_block) {
4237 unsigned index = stage_prog_data->binding_table.ssbo_start +
4238 const_uniform_block->u32[0];
4239 surf_index = brw_imm_ud(index);
4240 brw_mark_surface_used(prog_data, index);
4241 } else {
4242 surf_index = vgrf(glsl_type::uint_type);
4243 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4244 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4245
4246 brw_mark_surface_used(prog_data,
4247 stage_prog_data->binding_table.ssbo_start +
4248 nir->info.num_ssbos - 1);
4249 }
4250
4251 /* Value */
4252 fs_reg val_reg = get_nir_src(instr->src[0]);
4253
4254 /* Writemask */
4255 unsigned writemask = instr->const_index[0];
4256
4257 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4258 * since the untyped writes below operate in units of 32-bits, which
4259 * means that we need to write twice as many components each time.
4260 * Also, we have to suffle 64-bit data to be in the appropriate layout
4261 * expected by our 32-bit write messages.
4262 */
4263 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4264 unsigned type_size = bit_size / 8;
4265
4266 /* Combine groups of consecutive enabled channels in one write
4267 * message. We use ffs to find the first enabled channel and then ffs on
4268 * the bit-inverse, down-shifted writemask to determine the num_components
4269 * of the block of enabled bits.
4270 */
4271 while (writemask) {
4272 unsigned first_component = ffs(writemask) - 1;
4273 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4274 fs_reg write_src = offset(val_reg, bld, first_component);
4275
4276 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4277
4278 if (type_size > 4) {
4279 /* We can't write more than 2 64-bit components at once. Limit
4280 * the num_components of the write to what we can do and let the next
4281 * iteration handle the rest.
4282 */
4283 num_components = MIN2(2, num_components);
4284 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4285 num_components);
4286 } else if (type_size < 4) {
4287 /* For 16-bit types we pack two consecutive values into a 32-bit
4288 * word and use an untyped write message. For single values or not
4289 * 32-bit-aligned we need to use byte-scattered writes because
4290 * untyped writes works with 32-bit components with 32-bit
4291 * alignment. byte_scattered_write messages only support one
4292 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4293 * could be enabled we can not guarantee that not constant offsets
4294 * to be 32-bit aligned for 16-bit types. For example an array, of
4295 * 16-bit vec3 with array element stride of 6.
4296 *
4297 * In the case of 32-bit aligned constant offsets if there is
4298 * a 3-components vector we submit one untyped-write message
4299 * of 32-bit (first two components), and one byte-scattered
4300 * write message (the last component).
4301 */
4302
4303 if ( !const_offset || ((const_offset->u32[0] +
4304 type_size * first_component) % 4)) {
4305 /* If we use a .yz writemask we also need to emit 2
4306 * byte-scattered write messages because of y-component not
4307 * being aligned to 32-bit.
4308 */
4309 num_components = 1;
4310 } else if (num_components * type_size > 4 &&
4311 (num_components * type_size % 4)) {
4312 /* If the pending components size is not a multiple of 4 bytes
4313 * we left the not aligned components for following emits of
4314 * length == 1 with byte_scattered_write.
4315 */
4316 num_components -= (num_components * type_size % 4) / type_size;
4317 } else if (num_components * type_size < 4) {
4318 num_components = 1;
4319 }
4320 /* For num_components == 1 we are also shuffling the component
4321 * because byte scattered writes of 16-bit need values to be dword
4322 * aligned. Shuffling only one component would be the same as
4323 * striding it.
4324 */
4325 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4326 num_components);
4327 }
4328
4329 fs_reg offset_reg;
4330
4331 if (const_offset) {
4332 offset_reg = brw_imm_ud(const_offset->u32[0] +
4333 type_size * first_component);
4334 } else {
4335 offset_reg = vgrf(glsl_type::uint_type);
4336 bld.ADD(offset_reg,
4337 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4338 brw_imm_ud(type_size * first_component));
4339 }
4340
4341 if (type_size < 4 && num_components == 1) {
4342 /* Untyped Surface messages have a fixed 32-bit size, so we need
4343 * to rely on byte scattered in order to write 16-bit elements.
4344 * The byte_scattered_write message needs that every written 16-bit
4345 * type to be aligned 32-bits (stride=2).
4346 */
4347 emit_byte_scattered_write(bld, surf_index, offset_reg,
4348 write_src,
4349 1 /* dims */, 1,
4350 bit_size,
4351 BRW_PREDICATE_NONE);
4352 } else {
4353 assert(num_components * type_size <= 16);
4354 assert((num_components * type_size) % 4 == 0);
4355 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4356 offset_reg.ud % 4 == 0);
4357 unsigned num_slots = (num_components * type_size) / 4;
4358
4359 emit_untyped_write(bld, surf_index, offset_reg,
4360 write_src,
4361 1 /* dims */, num_slots,
4362 BRW_PREDICATE_NONE);
4363 }
4364
4365 /* Clear the bits in the writemask that we just wrote, then try
4366 * again to see if more channels are left.
4367 */
4368 writemask &= (15 << (first_component + num_components));
4369 }
4370 break;
4371 }
4372
4373 case nir_intrinsic_store_output: {
4374 fs_reg src = get_nir_src(instr->src[0]);
4375
4376 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4377 assert(const_offset && "Indirect output stores not allowed");
4378
4379 unsigned num_components = instr->num_components;
4380 unsigned first_component = nir_intrinsic_component(instr);
4381 if (nir_src_bit_size(instr->src[0]) == 64) {
4382 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4383 num_components *= 2;
4384 }
4385
4386 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4387 4 * const_offset->u32[0]), src.type);
4388 for (unsigned j = 0; j < num_components; j++) {
4389 bld.MOV(offset(new_dest, bld, j + first_component),
4390 offset(src, bld, j));
4391 }
4392 break;
4393 }
4394
4395 case nir_intrinsic_ssbo_atomic_add:
4396 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4397 break;
4398 case nir_intrinsic_ssbo_atomic_imin:
4399 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4400 break;
4401 case nir_intrinsic_ssbo_atomic_umin:
4402 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4403 break;
4404 case nir_intrinsic_ssbo_atomic_imax:
4405 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4406 break;
4407 case nir_intrinsic_ssbo_atomic_umax:
4408 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4409 break;
4410 case nir_intrinsic_ssbo_atomic_and:
4411 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4412 break;
4413 case nir_intrinsic_ssbo_atomic_or:
4414 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4415 break;
4416 case nir_intrinsic_ssbo_atomic_xor:
4417 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4418 break;
4419 case nir_intrinsic_ssbo_atomic_exchange:
4420 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4421 break;
4422 case nir_intrinsic_ssbo_atomic_comp_swap:
4423 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4424 break;
4425
4426 case nir_intrinsic_get_buffer_size: {
4427 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4428 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4429
4430 /* A resinfo's sampler message is used to get the buffer size. The
4431 * SIMD8's writeback message consists of four registers and SIMD16's
4432 * writeback message consists of 8 destination registers (two per each
4433 * component). Because we are only interested on the first channel of
4434 * the first returned component, where resinfo returns the buffer size
4435 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4436 * the dispatch width.
4437 */
4438 const fs_builder ubld = bld.exec_all().group(8, 0);
4439 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4440 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4441
4442 /* Set LOD = 0 */
4443 ubld.MOV(src_payload, brw_imm_d(0));
4444
4445 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4446 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4447 src_payload, brw_imm_ud(index));
4448 inst->header_size = 0;
4449 inst->mlen = 1;
4450 inst->size_written = 4 * REG_SIZE;
4451
4452 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4453 *
4454 * "Out-of-bounds checking is always performed at a DWord granularity. If
4455 * any part of the DWord is out-of-bounds then the whole DWord is
4456 * considered out-of-bounds."
4457 *
4458 * This implies that types with size smaller than 4-bytes need to be
4459 * padded if they don't complete the last dword of the buffer. But as we
4460 * need to maintain the original size we need to reverse the padding
4461 * calculation to return the correct size to know the number of elements
4462 * of an unsized array. As we stored in the last two bits of the surface
4463 * size the needed padding for the buffer, we calculate here the
4464 * original buffer_size reversing the surface_size calculation:
4465 *
4466 * surface_size = isl_align(buffer_size, 4) +
4467 * (isl_align(buffer_size) - buffer_size)
4468 *
4469 * buffer_size = surface_size & ~3 - surface_size & 3
4470 */
4471
4472 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4473 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4474 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4475
4476 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4477 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4478 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4479
4480 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4481
4482 brw_mark_surface_used(prog_data, index);
4483 break;
4484 }
4485
4486 case nir_intrinsic_load_subgroup_invocation:
4487 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4488 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4489 break;
4490
4491 case nir_intrinsic_load_subgroup_eq_mask:
4492 case nir_intrinsic_load_subgroup_ge_mask:
4493 case nir_intrinsic_load_subgroup_gt_mask:
4494 case nir_intrinsic_load_subgroup_le_mask:
4495 case nir_intrinsic_load_subgroup_lt_mask:
4496 unreachable("not reached");
4497
4498 case nir_intrinsic_vote_any: {
4499 const fs_builder ubld = bld.exec_all().group(1, 0);
4500
4501 /* The any/all predicates do not consider channel enables. To prevent
4502 * dead channels from affecting the result, we initialize the flag with
4503 * with the identity value for the logical operation.
4504 */
4505 if (dispatch_width == 32) {
4506 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4507 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4508 brw_imm_ud(0));
4509 } else {
4510 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4511 }
4512 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4513
4514 /* For some reason, the any/all predicates don't work properly with
4515 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4516 * doesn't read the correct subset of the flag register and you end up
4517 * getting garbage in the second half. Work around this by using a pair
4518 * of 1-wide MOVs and scattering the result.
4519 */
4520 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4521 ubld.MOV(res1, brw_imm_d(0));
4522 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4523 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4524 BRW_PREDICATE_ALIGN1_ANY32H,
4525 ubld.MOV(res1, brw_imm_d(-1)));
4526
4527 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4528 break;
4529 }
4530 case nir_intrinsic_vote_all: {
4531 const fs_builder ubld = bld.exec_all().group(1, 0);
4532
4533 /* The any/all predicates do not consider channel enables. To prevent
4534 * dead channels from affecting the result, we initialize the flag with
4535 * with the identity value for the logical operation.
4536 */
4537 if (dispatch_width == 32) {
4538 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4539 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4540 brw_imm_ud(0xffffffff));
4541 } else {
4542 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4543 }
4544 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4545
4546 /* For some reason, the any/all predicates don't work properly with
4547 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4548 * doesn't read the correct subset of the flag register and you end up
4549 * getting garbage in the second half. Work around this by using a pair
4550 * of 1-wide MOVs and scattering the result.
4551 */
4552 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4553 ubld.MOV(res1, brw_imm_d(0));
4554 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4555 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4556 BRW_PREDICATE_ALIGN1_ALL32H,
4557 ubld.MOV(res1, brw_imm_d(-1)));
4558
4559 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4560 break;
4561 }
4562 case nir_intrinsic_vote_feq:
4563 case nir_intrinsic_vote_ieq: {
4564 fs_reg value = get_nir_src(instr->src[0]);
4565 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4566 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4567 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4568 }
4569
4570 fs_reg uniformized = bld.emit_uniformize(value);
4571 const fs_builder ubld = bld.exec_all().group(1, 0);
4572
4573 /* The any/all predicates do not consider channel enables. To prevent
4574 * dead channels from affecting the result, we initialize the flag with
4575 * with the identity value for the logical operation.
4576 */
4577 if (dispatch_width == 32) {
4578 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4579 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4580 brw_imm_ud(0xffffffff));
4581 } else {
4582 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4583 }
4584 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4585
4586 /* For some reason, the any/all predicates don't work properly with
4587 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4588 * doesn't read the correct subset of the flag register and you end up
4589 * getting garbage in the second half. Work around this by using a pair
4590 * of 1-wide MOVs and scattering the result.
4591 */
4592 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4593 ubld.MOV(res1, brw_imm_d(0));
4594 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4595 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4596 BRW_PREDICATE_ALIGN1_ALL32H,
4597 ubld.MOV(res1, brw_imm_d(-1)));
4598
4599 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4600 break;
4601 }
4602
4603 case nir_intrinsic_ballot: {
4604 const fs_reg value = retype(get_nir_src(instr->src[0]),
4605 BRW_REGISTER_TYPE_UD);
4606 struct brw_reg flag = brw_flag_reg(0, 0);
4607 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4608 * as f0.0. This is a problem for fragment programs as we currently use
4609 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4610 * programs yet so this isn't a problem. When we do, something will
4611 * have to change.
4612 */
4613 if (dispatch_width == 32)
4614 flag.type = BRW_REGISTER_TYPE_UD;
4615
4616 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4617 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4618
4619 if (instr->dest.ssa.bit_size > 32) {
4620 dest.type = BRW_REGISTER_TYPE_UQ;
4621 } else {
4622 dest.type = BRW_REGISTER_TYPE_UD;
4623 }
4624 bld.MOV(dest, flag);
4625 break;
4626 }
4627
4628 case nir_intrinsic_read_invocation: {
4629 const fs_reg value = get_nir_src(instr->src[0]);
4630 const fs_reg invocation = get_nir_src(instr->src[1]);
4631 fs_reg tmp = bld.vgrf(value.type);
4632
4633 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4634 bld.emit_uniformize(invocation));
4635
4636 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4637 break;
4638 }
4639
4640 case nir_intrinsic_read_first_invocation: {
4641 const fs_reg value = get_nir_src(instr->src[0]);
4642 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4643 break;
4644 }
4645
4646 case nir_intrinsic_shuffle: {
4647 const fs_reg value = get_nir_src(instr->src[0]);
4648 const fs_reg index = get_nir_src(instr->src[1]);
4649
4650 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4651 break;
4652 }
4653
4654 case nir_intrinsic_first_invocation: {
4655 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4656 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4657 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4658 fs_reg(component(tmp, 0)));
4659 break;
4660 }
4661
4662 case nir_intrinsic_quad_broadcast: {
4663 const fs_reg value = get_nir_src(instr->src[0]);
4664 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4665 assert(nir_src_bit_size(instr->src[1]) == 32);
4666
4667 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4668 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4669 break;
4670 }
4671
4672 case nir_intrinsic_quad_swap_horizontal: {
4673 const fs_reg value = get_nir_src(instr->src[0]);
4674 const fs_reg tmp = bld.vgrf(value.type);
4675 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4676
4677 const fs_reg src_left = horiz_stride(value, 2);
4678 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4679 const fs_reg tmp_left = horiz_stride(tmp, 2);
4680 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4681
4682 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4683 *
4684 * "When source or destination datatype is 64b or operation is
4685 * integer DWord multiply, regioning in Align1 must follow
4686 * these rules:
4687 *
4688 * [...]
4689 *
4690 * 3. Source and Destination offset must be the same, except
4691 * the case of scalar source."
4692 *
4693 * In order to work around this, we have to emit two 32-bit MOVs instead
4694 * of a single 64-bit MOV to do the shuffle.
4695 */
4696 if (type_sz(value.type) > 4 &&
4697 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4698 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4699 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4700 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4701 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4702 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4703 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4704 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4705 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4706 } else {
4707 ubld.MOV(tmp_left, src_right);
4708 ubld.MOV(tmp_right, src_left);
4709 }
4710 bld.MOV(retype(dest, value.type), tmp);
4711 break;
4712 }
4713
4714 case nir_intrinsic_quad_swap_vertical: {
4715 const fs_reg value = get_nir_src(instr->src[0]);
4716 if (nir_src_bit_size(instr->src[0]) == 32) {
4717 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4718 const fs_reg tmp = bld.vgrf(value.type);
4719 const fs_builder ubld = bld.exec_all();
4720 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4721 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4722 bld.MOV(retype(dest, value.type), tmp);
4723 } else {
4724 /* For larger data types, we have to either emit dispatch_width many
4725 * MOVs or else fall back to doing indirects.
4726 */
4727 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4728 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4729 brw_imm_w(0x2));
4730 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4731 }
4732 break;
4733 }
4734
4735 case nir_intrinsic_quad_swap_diagonal: {
4736 const fs_reg value = get_nir_src(instr->src[0]);
4737 if (nir_src_bit_size(instr->src[0]) == 32) {
4738 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4739 const fs_reg tmp = bld.vgrf(value.type);
4740 const fs_builder ubld = bld.exec_all();
4741 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4742 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4743 bld.MOV(retype(dest, value.type), tmp);
4744 } else {
4745 /* For larger data types, we have to either emit dispatch_width many
4746 * MOVs or else fall back to doing indirects.
4747 */
4748 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4749 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4750 brw_imm_w(0x3));
4751 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4752 }
4753 break;
4754 }
4755
4756 case nir_intrinsic_reduce: {
4757 fs_reg src = get_nir_src(instr->src[0]);
4758 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4759 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4760 if (cluster_size == 0 || cluster_size > dispatch_width)
4761 cluster_size = dispatch_width;
4762
4763 /* Figure out the source type */
4764 src.type = brw_type_for_nir_type(devinfo,
4765 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4766 nir_src_bit_size(instr->src[0])));
4767
4768 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4769 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4770 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4771
4772 /* Set up a register for all of our scratching around and initialize it
4773 * to reduction operation's identity value.
4774 */
4775 fs_reg scan = bld.vgrf(src.type);
4776 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4777
4778 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4779
4780 dest.type = src.type;
4781 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4782 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4783 * the distance between clusters is at least 2 GRFs. In this case,
4784 * we don't need the weird striding of the CLUSTER_BROADCAST
4785 * instruction and can just do regular MOVs.
4786 */
4787 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4788 const unsigned groups =
4789 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4790 const unsigned group_size = dispatch_width / groups;
4791 for (unsigned i = 0; i < groups; i++) {
4792 const unsigned cluster = (i * group_size) / cluster_size;
4793 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4794 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4795 component(scan, comp));
4796 }
4797 } else {
4798 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4799 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4800 }
4801 break;
4802 }
4803
4804 case nir_intrinsic_inclusive_scan:
4805 case nir_intrinsic_exclusive_scan: {
4806 fs_reg src = get_nir_src(instr->src[0]);
4807 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4808
4809 /* Figure out the source type */
4810 src.type = brw_type_for_nir_type(devinfo,
4811 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4812 nir_src_bit_size(instr->src[0])));
4813
4814 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4815 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4816 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4817
4818 /* Set up a register for all of our scratching around and initialize it
4819 * to reduction operation's identity value.
4820 */
4821 fs_reg scan = bld.vgrf(src.type);
4822 const fs_builder allbld = bld.exec_all();
4823 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4824
4825 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4826 /* Exclusive scan is a bit harder because we have to do an annoying
4827 * shift of the contents before we can begin. To make things worse,
4828 * we can't do this with a normal stride; we have to use indirects.
4829 */
4830 fs_reg shifted = bld.vgrf(src.type);
4831 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4832 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4833 brw_imm_w(-1));
4834 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4835 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4836 scan = shifted;
4837 }
4838
4839 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4840
4841 bld.MOV(retype(dest, src.type), scan);
4842 break;
4843 }
4844
4845 case nir_intrinsic_begin_invocation_interlock: {
4846 const fs_builder ubld = bld.group(8, 0);
4847 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4848
4849 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4850 REG_SIZE;
4851
4852 break;
4853 }
4854
4855 case nir_intrinsic_end_invocation_interlock: {
4856 /* We don't need to do anything here */
4857 break;
4858 }
4859
4860 default:
4861 unreachable("unknown intrinsic");
4862 }
4863 }
4864
4865 void
4866 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4867 int op, nir_intrinsic_instr *instr)
4868 {
4869 if (stage == MESA_SHADER_FRAGMENT)
4870 brw_wm_prog_data(prog_data)->has_side_effects = true;
4871
4872 fs_reg dest;
4873 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4874 dest = get_nir_dest(instr->dest);
4875
4876 fs_reg surface;
4877 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4878 if (const_surface) {
4879 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4880 const_surface->u32[0];
4881 surface = brw_imm_ud(surf_index);
4882 brw_mark_surface_used(prog_data, surf_index);
4883 } else {
4884 surface = vgrf(glsl_type::uint_type);
4885 bld.ADD(surface, get_nir_src(instr->src[0]),
4886 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4887
4888 /* Assume this may touch any SSBO. This is the same we do for other
4889 * UBO/SSBO accesses with non-constant surface.
4890 */
4891 brw_mark_surface_used(prog_data,
4892 stage_prog_data->binding_table.ssbo_start +
4893 nir->info.num_ssbos - 1);
4894 }
4895
4896 fs_reg offset = get_nir_src(instr->src[1]);
4897 fs_reg data1 = get_nir_src(instr->src[2]);
4898 fs_reg data2;
4899 if (op == BRW_AOP_CMPWR)
4900 data2 = get_nir_src(instr->src[3]);
4901
4902 /* Emit the actual atomic operation */
4903
4904 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4905 data1, data2,
4906 1 /* dims */, 1 /* rsize */,
4907 op,
4908 BRW_PREDICATE_NONE);
4909 dest.type = atomic_result.type;
4910 bld.MOV(dest, atomic_result);
4911 }
4912
4913 void
4914 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4915 int op, nir_intrinsic_instr *instr)
4916 {
4917 fs_reg dest;
4918 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4919 dest = get_nir_dest(instr->dest);
4920
4921 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4922 fs_reg offset;
4923 fs_reg data1 = get_nir_src(instr->src[1]);
4924 fs_reg data2;
4925 if (op == BRW_AOP_CMPWR)
4926 data2 = get_nir_src(instr->src[2]);
4927
4928 /* Get the offset */
4929 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4930 if (const_offset) {
4931 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4932 } else {
4933 offset = vgrf(glsl_type::uint_type);
4934 bld.ADD(offset,
4935 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4936 brw_imm_ud(instr->const_index[0]));
4937 }
4938
4939 /* Emit the actual atomic operation operation */
4940
4941 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4942 data1, data2,
4943 1 /* dims */, 1 /* rsize */,
4944 op,
4945 BRW_PREDICATE_NONE);
4946 dest.type = atomic_result.type;
4947 bld.MOV(dest, atomic_result);
4948 }
4949
4950 void
4951 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4952 {
4953 unsigned texture = instr->texture_index;
4954 unsigned sampler = instr->sampler_index;
4955
4956 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4957
4958 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4959 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4960
4961 int lod_components = 0;
4962
4963 /* The hardware requires a LOD for buffer textures */
4964 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4965 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4966
4967 uint32_t header_bits = 0;
4968 for (unsigned i = 0; i < instr->num_srcs; i++) {
4969 fs_reg src = get_nir_src(instr->src[i].src);
4970 switch (instr->src[i].src_type) {
4971 case nir_tex_src_bias:
4972 srcs[TEX_LOGICAL_SRC_LOD] =
4973 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4974 break;
4975 case nir_tex_src_comparator:
4976 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4977 break;
4978 case nir_tex_src_coord:
4979 switch (instr->op) {
4980 case nir_texop_txf:
4981 case nir_texop_txf_ms:
4982 case nir_texop_txf_ms_mcs:
4983 case nir_texop_samples_identical:
4984 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4985 break;
4986 default:
4987 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4988 break;
4989 }
4990 break;
4991 case nir_tex_src_ddx:
4992 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4993 lod_components = nir_tex_instr_src_size(instr, i);
4994 break;
4995 case nir_tex_src_ddy:
4996 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4997 break;
4998 case nir_tex_src_lod:
4999 switch (instr->op) {
5000 case nir_texop_txs:
5001 srcs[TEX_LOGICAL_SRC_LOD] =
5002 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5003 break;
5004 case nir_texop_txf:
5005 srcs[TEX_LOGICAL_SRC_LOD] =
5006 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5007 break;
5008 default:
5009 srcs[TEX_LOGICAL_SRC_LOD] =
5010 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5011 break;
5012 }
5013 break;
5014 case nir_tex_src_ms_index:
5015 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5016 break;
5017
5018 case nir_tex_src_offset: {
5019 nir_const_value *const_offset =
5020 nir_src_as_const_value(instr->src[i].src);
5021 unsigned offset_bits = 0;
5022 if (const_offset &&
5023 brw_texture_offset(const_offset->i32,
5024 nir_tex_instr_src_size(instr, i),
5025 &offset_bits)) {
5026 header_bits |= offset_bits;
5027 } else {
5028 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5029 retype(src, BRW_REGISTER_TYPE_D);
5030 }
5031 break;
5032 }
5033
5034 case nir_tex_src_projector:
5035 unreachable("should be lowered");
5036
5037 case nir_tex_src_texture_offset: {
5038 /* Figure out the highest possible texture index and mark it as used */
5039 uint32_t max_used = texture + instr->texture_array_size - 1;
5040 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5041 max_used += stage_prog_data->binding_table.gather_texture_start;
5042 } else {
5043 max_used += stage_prog_data->binding_table.texture_start;
5044 }
5045 brw_mark_surface_used(prog_data, max_used);
5046
5047 /* Emit code to evaluate the actual indexing expression */
5048 fs_reg tmp = vgrf(glsl_type::uint_type);
5049 bld.ADD(tmp, src, brw_imm_ud(texture));
5050 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5051 break;
5052 }
5053
5054 case nir_tex_src_sampler_offset: {
5055 /* Emit code to evaluate the actual indexing expression */
5056 fs_reg tmp = vgrf(glsl_type::uint_type);
5057 bld.ADD(tmp, src, brw_imm_ud(sampler));
5058 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5059 break;
5060 }
5061
5062 case nir_tex_src_ms_mcs:
5063 assert(instr->op == nir_texop_txf_ms);
5064 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5065 break;
5066
5067 case nir_tex_src_plane: {
5068 nir_const_value *const_plane =
5069 nir_src_as_const_value(instr->src[i].src);
5070 const uint32_t plane = const_plane->u32[0];
5071 const uint32_t texture_index =
5072 instr->texture_index +
5073 stage_prog_data->binding_table.plane_start[plane] -
5074 stage_prog_data->binding_table.texture_start;
5075
5076 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5077 break;
5078 }
5079
5080 default:
5081 unreachable("unknown texture source");
5082 }
5083 }
5084
5085 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5086 (instr->op == nir_texop_txf_ms ||
5087 instr->op == nir_texop_samples_identical)) {
5088 if (devinfo->gen >= 7 &&
5089 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5090 srcs[TEX_LOGICAL_SRC_MCS] =
5091 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5092 instr->coord_components,
5093 srcs[TEX_LOGICAL_SRC_SURFACE]);
5094 } else {
5095 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5096 }
5097 }
5098
5099 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5100 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5101
5102 enum opcode opcode;
5103 switch (instr->op) {
5104 case nir_texop_tex:
5105 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5106 SHADER_OPCODE_TXL_LOGICAL);
5107 break;
5108 case nir_texop_txb:
5109 opcode = FS_OPCODE_TXB_LOGICAL;
5110 break;
5111 case nir_texop_txl:
5112 opcode = SHADER_OPCODE_TXL_LOGICAL;
5113 break;
5114 case nir_texop_txd:
5115 opcode = SHADER_OPCODE_TXD_LOGICAL;
5116 break;
5117 case nir_texop_txf:
5118 opcode = SHADER_OPCODE_TXF_LOGICAL;
5119 break;
5120 case nir_texop_txf_ms:
5121 if ((key_tex->msaa_16 & (1 << sampler)))
5122 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5123 else
5124 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5125 break;
5126 case nir_texop_txf_ms_mcs:
5127 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5128 break;
5129 case nir_texop_query_levels:
5130 case nir_texop_txs:
5131 opcode = SHADER_OPCODE_TXS_LOGICAL;
5132 break;
5133 case nir_texop_lod:
5134 opcode = SHADER_OPCODE_LOD_LOGICAL;
5135 break;
5136 case nir_texop_tg4:
5137 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5138 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5139 else
5140 opcode = SHADER_OPCODE_TG4_LOGICAL;
5141 break;
5142 case nir_texop_texture_samples:
5143 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5144 break;
5145 case nir_texop_samples_identical: {
5146 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5147
5148 /* If mcs is an immediate value, it means there is no MCS. In that case
5149 * just return false.
5150 */
5151 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5152 bld.MOV(dst, brw_imm_ud(0u));
5153 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5154 fs_reg tmp = vgrf(glsl_type::uint_type);
5155 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5156 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5157 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5158 } else {
5159 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5160 BRW_CONDITIONAL_EQ);
5161 }
5162 return;
5163 }
5164 default:
5165 unreachable("unknown texture opcode");
5166 }
5167
5168 if (instr->op == nir_texop_tg4) {
5169 if (instr->component == 1 &&
5170 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5171 /* gather4 sampler is broken for green channel on RG32F --
5172 * we must ask for blue instead.
5173 */
5174 header_bits |= 2 << 16;
5175 } else {
5176 header_bits |= instr->component << 16;
5177 }
5178 }
5179
5180 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5181 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5182 inst->offset = header_bits;
5183
5184 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5185 if (devinfo->gen >= 9 &&
5186 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5187 unsigned write_mask = instr->dest.is_ssa ?
5188 nir_ssa_def_components_read(&instr->dest.ssa):
5189 (1 << dest_size) - 1;
5190 assert(write_mask != 0); /* dead code should have been eliminated */
5191 inst->size_written = util_last_bit(write_mask) *
5192 inst->dst.component_size(inst->exec_size);
5193 } else {
5194 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5195 }
5196
5197 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5198 inst->shadow_compare = true;
5199
5200 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5201 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5202
5203 fs_reg nir_dest[4];
5204 for (unsigned i = 0; i < dest_size; i++)
5205 nir_dest[i] = offset(dst, bld, i);
5206
5207 if (instr->op == nir_texop_query_levels) {
5208 /* # levels is in .w */
5209 nir_dest[0] = offset(dst, bld, 3);
5210 } else if (instr->op == nir_texop_txs &&
5211 dest_size >= 3 && devinfo->gen < 7) {
5212 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5213 fs_reg depth = offset(dst, bld, 2);
5214 nir_dest[2] = vgrf(glsl_type::int_type);
5215 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5216 }
5217
5218 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5219 }
5220
5221 void
5222 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5223 {
5224 switch (instr->type) {
5225 case nir_jump_break:
5226 bld.emit(BRW_OPCODE_BREAK);
5227 break;
5228 case nir_jump_continue:
5229 bld.emit(BRW_OPCODE_CONTINUE);
5230 break;
5231 case nir_jump_return:
5232 default:
5233 unreachable("unknown jump");
5234 }
5235 }
5236
5237 /*
5238 * This helper takes a source register and un/shuffles it into the destination
5239 * register.
5240 *
5241 * If source type size is smaller than destination type size the operation
5242 * needed is a component shuffle. The opposite case would be an unshuffle. If
5243 * source/destination type size is equal a shuffle is done that would be
5244 * equivalent to a simple MOV.
5245 *
5246 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5247 * components .xyz 16-bit vector on SIMD8 would be.
5248 *
5249 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5250 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5251 *
5252 * This helper will return the following 2 32-bit components with the 16-bit
5253 * values shuffled:
5254 *
5255 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5256 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5257 *
5258 * For unshuffle, the example would be the opposite, a 64-bit type source
5259 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5260 * would be:
5261 *
5262 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5263 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5264 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5265 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5266 *
5267 * The returned result would be the following 4 32-bit components unshuffled:
5268 *
5269 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5270 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5271 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5272 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5273 *
5274 * - Source and destination register must not be overlapped.
5275 * - components units are measured in terms of the smaller type between
5276 * source and destination because we are un/shuffling the smaller
5277 * components from/into the bigger ones.
5278 * - first_component parameter allows skipping source components.
5279 */
5280 void
5281 shuffle_src_to_dst(const fs_builder &bld,
5282 const fs_reg &dst,
5283 const fs_reg &src,
5284 uint32_t first_component,
5285 uint32_t components)
5286 {
5287 if (type_sz(src.type) == type_sz(dst.type)) {
5288 assert(!regions_overlap(dst,
5289 type_sz(dst.type) * bld.dispatch_width() * components,
5290 offset(src, bld, first_component),
5291 type_sz(src.type) * bld.dispatch_width() * components));
5292 for (unsigned i = 0; i < components; i++) {
5293 bld.MOV(retype(offset(dst, bld, i), src.type),
5294 offset(src, bld, i + first_component));
5295 }
5296 } else if (type_sz(src.type) < type_sz(dst.type)) {
5297 /* Source is shuffled into destination */
5298 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5299 assert(!regions_overlap(dst,
5300 type_sz(dst.type) * bld.dispatch_width() *
5301 DIV_ROUND_UP(components, size_ratio),
5302 offset(src, bld, first_component),
5303 type_sz(src.type) * bld.dispatch_width() * components));
5304
5305 brw_reg_type shuffle_type =
5306 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5307 BRW_REGISTER_TYPE_D);
5308 for (unsigned i = 0; i < components; i++) {
5309 fs_reg shuffle_component_i =
5310 subscript(offset(dst, bld, i / size_ratio),
5311 shuffle_type, i % size_ratio);
5312 bld.MOV(shuffle_component_i,
5313 retype(offset(src, bld, i + first_component), shuffle_type));
5314 }
5315 } else {
5316 /* Source is unshuffled into destination */
5317 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5318 assert(!regions_overlap(dst,
5319 type_sz(dst.type) * bld.dispatch_width() * components,
5320 offset(src, bld, first_component / size_ratio),
5321 type_sz(src.type) * bld.dispatch_width() *
5322 DIV_ROUND_UP(components + (first_component % size_ratio),
5323 size_ratio)));
5324
5325 brw_reg_type shuffle_type =
5326 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5327 BRW_REGISTER_TYPE_D);
5328 for (unsigned i = 0; i < components; i++) {
5329 fs_reg shuffle_component_i =
5330 subscript(offset(src, bld, (first_component + i) / size_ratio),
5331 shuffle_type, (first_component + i) % size_ratio);
5332 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5333 shuffle_component_i);
5334 }
5335 }
5336 }
5337
5338 void
5339 shuffle_from_32bit_read(const fs_builder &bld,
5340 const fs_reg &dst,
5341 const fs_reg &src,
5342 uint32_t first_component,
5343 uint32_t components)
5344 {
5345 assert(type_sz(src.type) == 4);
5346
5347 /* This function takes components in units of the destination type while
5348 * shuffle_src_to_dst takes components in units of the smallest type
5349 */
5350 if (type_sz(dst.type) > 4) {
5351 assert(type_sz(dst.type) == 8);
5352 first_component *= 2;
5353 components *= 2;
5354 }
5355
5356 shuffle_src_to_dst(bld, dst, src, first_component, components);
5357 }
5358
5359 fs_reg
5360 shuffle_for_32bit_write(const fs_builder &bld,
5361 const fs_reg &src,
5362 uint32_t first_component,
5363 uint32_t components)
5364 {
5365 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5366 DIV_ROUND_UP (components * type_sz(src.type), 4));
5367 /* This function takes components in units of the source type while
5368 * shuffle_src_to_dst takes components in units of the smallest type
5369 */
5370 if (type_sz(src.type) > 4) {
5371 assert(type_sz(src.type) == 8);
5372 first_component *= 2;
5373 components *= 2;
5374 }
5375
5376 shuffle_src_to_dst(bld, dst, src, first_component, components);
5377
5378 return dst;
5379 }
5380
5381 fs_reg
5382 setup_imm_df(const fs_builder &bld, double v)
5383 {
5384 const struct gen_device_info *devinfo = bld.shader->devinfo;
5385 assert(devinfo->gen >= 7);
5386
5387 if (devinfo->gen >= 8)
5388 return brw_imm_df(v);
5389
5390 /* gen7.5 does not support DF immediates straighforward but the DIM
5391 * instruction allows to set the 64-bit immediate value.
5392 */
5393 if (devinfo->is_haswell) {
5394 const fs_builder ubld = bld.exec_all().group(1, 0);
5395 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5396 ubld.DIM(dst, brw_imm_df(v));
5397 return component(dst, 0);
5398 }
5399
5400 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5401 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5402 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5403 *
5404 * Alternatively, we could also produce a normal VGRF (without stride 0)
5405 * by writing to all the channels in the VGRF, however, that would hit the
5406 * gen7 bug where we have to split writes that span more than 1 register
5407 * into instructions with a width of 4 (otherwise the write to the second
5408 * register written runs into an execmask hardware bug) which isn't very
5409 * nice.
5410 */
5411 union {
5412 double d;
5413 struct {
5414 uint32_t i1;
5415 uint32_t i2;
5416 };
5417 } di;
5418
5419 di.d = v;
5420
5421 const fs_builder ubld = bld.exec_all().group(1, 0);
5422 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5423 ubld.MOV(tmp, brw_imm_ud(di.i1));
5424 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5425
5426 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5427 }