i965/fs/nir: add nir_op_unpack_half_2x16_split_*_flush_to_zero
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "brw_eu.h"
28 #include "nir_search_helpers.h"
29 #include "util/u_math.h"
30 #include "util/bitscan.h"
31
32 using namespace brw;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 /* emit the arrays used for inputs and outputs - load/store intrinsics will
38 * be converted to reads/writes of these arrays
39 */
40 nir_setup_outputs();
41 nir_setup_uniforms();
42 nir_emit_system_values();
43
44 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
45 }
46
47 void
48 fs_visitor::nir_setup_outputs()
49 {
50 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
51 return;
52
53 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
54
55 /* Calculate the size of output registers in a separate pass, before
56 * allocating them. With ARB_enhanced_layouts, multiple output variables
57 * may occupy the same slot, but have different type sizes.
58 */
59 nir_foreach_variable(var, &nir->outputs) {
60 const int loc = var->data.driver_location;
61 const unsigned var_vec4s =
62 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
63 : type_size_vec4(var->type, true);
64 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
65 }
66
67 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
68 if (vec4s[loc] == 0) {
69 loc++;
70 continue;
71 }
72
73 unsigned reg_size = vec4s[loc];
74
75 /* Check if there are any ranges that start within this range and extend
76 * past it. If so, include them in this allocation.
77 */
78 for (unsigned i = 1; i < reg_size; i++)
79 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
80
81 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
82 for (unsigned i = 0; i < reg_size; i++)
83 outputs[loc + i] = offset(reg, bld, 4 * i);
84
85 loc += reg_size;
86 }
87 }
88
89 void
90 fs_visitor::nir_setup_uniforms()
91 {
92 /* Only the first compile gets to set up uniforms. */
93 if (push_constant_loc) {
94 assert(pull_constant_loc);
95 return;
96 }
97
98 uniforms = nir->num_uniforms / 4;
99
100 if (stage == MESA_SHADER_COMPUTE) {
101 /* Add a uniform for the thread local id. It must be the last uniform
102 * on the list.
103 */
104 assert(uniforms == prog_data->nr_params);
105 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
106 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
107 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
108 }
109 }
110
111 static bool
112 emit_system_values_block(nir_block *block, fs_visitor *v)
113 {
114 fs_reg *reg;
115
116 nir_foreach_instr(instr, block) {
117 if (instr->type != nir_instr_type_intrinsic)
118 continue;
119
120 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
121 switch (intrin->intrinsic) {
122 case nir_intrinsic_load_vertex_id:
123 case nir_intrinsic_load_base_vertex:
124 unreachable("should be lowered by nir_lower_system_values().");
125
126 case nir_intrinsic_load_vertex_id_zero_base:
127 case nir_intrinsic_load_is_indexed_draw:
128 case nir_intrinsic_load_first_vertex:
129 case nir_intrinsic_load_instance_id:
130 case nir_intrinsic_load_base_instance:
131 case nir_intrinsic_load_draw_id:
132 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
133
134 case nir_intrinsic_load_invocation_id:
135 if (v->stage == MESA_SHADER_TESS_CTRL)
136 break;
137 assert(v->stage == MESA_SHADER_GEOMETRY);
138 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
139 if (reg->file == BAD_FILE) {
140 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
141 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
142 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
143 abld.SHR(iid, g1, brw_imm_ud(27u));
144 *reg = iid;
145 }
146 break;
147
148 case nir_intrinsic_load_sample_pos:
149 assert(v->stage == MESA_SHADER_FRAGMENT);
150 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
151 if (reg->file == BAD_FILE)
152 *reg = *v->emit_samplepos_setup();
153 break;
154
155 case nir_intrinsic_load_sample_id:
156 assert(v->stage == MESA_SHADER_FRAGMENT);
157 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
158 if (reg->file == BAD_FILE)
159 *reg = *v->emit_sampleid_setup();
160 break;
161
162 case nir_intrinsic_load_sample_mask_in:
163 assert(v->stage == MESA_SHADER_FRAGMENT);
164 assert(v->devinfo->gen >= 7);
165 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
166 if (reg->file == BAD_FILE)
167 *reg = *v->emit_samplemaskin_setup();
168 break;
169
170 case nir_intrinsic_load_work_group_id:
171 assert(v->stage == MESA_SHADER_COMPUTE);
172 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
173 if (reg->file == BAD_FILE)
174 *reg = *v->emit_cs_work_group_id_setup();
175 break;
176
177 case nir_intrinsic_load_helper_invocation:
178 assert(v->stage == MESA_SHADER_FRAGMENT);
179 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
180 if (reg->file == BAD_FILE) {
181 const fs_builder abld =
182 v->bld.annotate("gl_HelperInvocation", NULL);
183
184 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
185 * pixel mask is in g1.7 of the thread payload.
186 *
187 * We move the per-channel pixel enable bit to the low bit of each
188 * channel by shifting the byte containing the pixel mask by the
189 * vector immediate 0x76543210UV.
190 *
191 * The region of <1,8,0> reads only 1 byte (the pixel masks for
192 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
193 * masks for 2 and 3) in SIMD16.
194 */
195 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
196
197 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
198 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
199 hbld.SHR(offset(shifted, hbld, i),
200 stride(retype(brw_vec1_grf(1 + i, 7),
201 BRW_REGISTER_TYPE_UB),
202 1, 8, 0),
203 brw_imm_v(0x76543210));
204 }
205
206 /* A set bit in the pixel mask means the channel is enabled, but
207 * that is the opposite of gl_HelperInvocation so we need to invert
208 * the mask.
209 *
210 * The negate source-modifier bit of logical instructions on Gen8+
211 * performs 1's complement negation, so we can use that instead of
212 * a NOT instruction.
213 */
214 fs_reg inverted = negate(shifted);
215 if (v->devinfo->gen < 8) {
216 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
217 abld.NOT(inverted, shifted);
218 }
219
220 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
221 * with 1 and negating.
222 */
223 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
224 abld.AND(anded, inverted, brw_imm_uw(1));
225
226 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
227 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
228 *reg = dst;
229 }
230 break;
231
232 default:
233 break;
234 }
235 }
236
237 return true;
238 }
239
240 void
241 fs_visitor::nir_emit_system_values()
242 {
243 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
244 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
245 nir_system_values[i] = fs_reg();
246 }
247
248 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
249 * never end up using it.
250 */
251 {
252 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
253 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
254 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
255
256 const fs_builder allbld8 = abld.group(8, 0).exec_all();
257 allbld8.MOV(reg, brw_imm_v(0x76543210));
258 if (dispatch_width > 8)
259 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
260 if (dispatch_width > 16) {
261 const fs_builder allbld16 = abld.group(16, 0).exec_all();
262 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
263 }
264 }
265
266 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
267 nir_foreach_block(block, impl)
268 emit_system_values_block(block, this);
269 }
270
271 /*
272 * Returns a type based on a reference_type (word, float, half-float) and a
273 * given bit_size.
274 *
275 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
276 *
277 * @FIXME: 64-bit return types are always DF on integer types to maintain
278 * compability with uses of DF previously to the introduction of int64
279 * support.
280 */
281 static brw_reg_type
282 brw_reg_type_from_bit_size(const unsigned bit_size,
283 const brw_reg_type reference_type)
284 {
285 switch(reference_type) {
286 case BRW_REGISTER_TYPE_HF:
287 case BRW_REGISTER_TYPE_F:
288 case BRW_REGISTER_TYPE_DF:
289 switch(bit_size) {
290 case 16:
291 return BRW_REGISTER_TYPE_HF;
292 case 32:
293 return BRW_REGISTER_TYPE_F;
294 case 64:
295 return BRW_REGISTER_TYPE_DF;
296 default:
297 unreachable("Invalid bit size");
298 }
299 case BRW_REGISTER_TYPE_B:
300 case BRW_REGISTER_TYPE_W:
301 case BRW_REGISTER_TYPE_D:
302 case BRW_REGISTER_TYPE_Q:
303 switch(bit_size) {
304 case 8:
305 return BRW_REGISTER_TYPE_B;
306 case 16:
307 return BRW_REGISTER_TYPE_W;
308 case 32:
309 return BRW_REGISTER_TYPE_D;
310 case 64:
311 return BRW_REGISTER_TYPE_Q;
312 default:
313 unreachable("Invalid bit size");
314 }
315 case BRW_REGISTER_TYPE_UB:
316 case BRW_REGISTER_TYPE_UW:
317 case BRW_REGISTER_TYPE_UD:
318 case BRW_REGISTER_TYPE_UQ:
319 switch(bit_size) {
320 case 8:
321 return BRW_REGISTER_TYPE_UB;
322 case 16:
323 return BRW_REGISTER_TYPE_UW;
324 case 32:
325 return BRW_REGISTER_TYPE_UD;
326 case 64:
327 return BRW_REGISTER_TYPE_UQ;
328 default:
329 unreachable("Invalid bit size");
330 }
331 default:
332 unreachable("Unknown type");
333 }
334 }
335
336 void
337 fs_visitor::nir_emit_impl(nir_function_impl *impl)
338 {
339 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
340 for (unsigned i = 0; i < impl->reg_alloc; i++) {
341 nir_locals[i] = fs_reg();
342 }
343
344 foreach_list_typed(nir_register, reg, node, &impl->registers) {
345 unsigned array_elems =
346 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
347 unsigned size = array_elems * reg->num_components;
348 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
349 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
350 nir_locals[reg->index] = bld.vgrf(reg_type, size);
351 }
352
353 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
354 impl->ssa_alloc);
355
356 nir_emit_cf_list(&impl->body);
357 }
358
359 void
360 fs_visitor::nir_emit_cf_list(exec_list *list)
361 {
362 exec_list_validate(list);
363 foreach_list_typed(nir_cf_node, node, node, list) {
364 switch (node->type) {
365 case nir_cf_node_if:
366 nir_emit_if(nir_cf_node_as_if(node));
367 break;
368
369 case nir_cf_node_loop:
370 nir_emit_loop(nir_cf_node_as_loop(node));
371 break;
372
373 case nir_cf_node_block:
374 nir_emit_block(nir_cf_node_as_block(node));
375 break;
376
377 default:
378 unreachable("Invalid CFG node block");
379 }
380 }
381 }
382
383 void
384 fs_visitor::nir_emit_if(nir_if *if_stmt)
385 {
386 bool invert;
387 fs_reg cond_reg;
388
389 /* If the condition has the form !other_condition, use other_condition as
390 * the source, but invert the predicate on the if instruction.
391 */
392 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
393 if (cond != NULL && cond->op == nir_op_inot) {
394 assert(!cond->src[0].negate);
395 assert(!cond->src[0].abs);
396
397 invert = true;
398 cond_reg = get_nir_src(cond->src[0].src);
399 } else {
400 invert = false;
401 cond_reg = get_nir_src(if_stmt->condition);
402 }
403
404 /* first, put the condition into f0 */
405 fs_inst *inst = bld.MOV(bld.null_reg_d(),
406 retype(cond_reg, BRW_REGISTER_TYPE_D));
407 inst->conditional_mod = BRW_CONDITIONAL_NZ;
408
409 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
410
411 nir_emit_cf_list(&if_stmt->then_list);
412
413 if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
414 bld.emit(BRW_OPCODE_ELSE);
415 nir_emit_cf_list(&if_stmt->else_list);
416 }
417
418 bld.emit(BRW_OPCODE_ENDIF);
419
420 if (devinfo->gen < 7)
421 limit_dispatch_width(16, "Non-uniform control flow unsupported "
422 "in SIMD32 mode.");
423 }
424
425 void
426 fs_visitor::nir_emit_loop(nir_loop *loop)
427 {
428 bld.emit(BRW_OPCODE_DO);
429
430 nir_emit_cf_list(&loop->body);
431
432 bld.emit(BRW_OPCODE_WHILE);
433
434 if (devinfo->gen < 7)
435 limit_dispatch_width(16, "Non-uniform control flow unsupported "
436 "in SIMD32 mode.");
437 }
438
439 void
440 fs_visitor::nir_emit_block(nir_block *block)
441 {
442 nir_foreach_instr(instr, block) {
443 nir_emit_instr(instr);
444 }
445 }
446
447 void
448 fs_visitor::nir_emit_instr(nir_instr *instr)
449 {
450 const fs_builder abld = bld.annotate(NULL, instr);
451
452 switch (instr->type) {
453 case nir_instr_type_alu:
454 nir_emit_alu(abld, nir_instr_as_alu(instr), true);
455 break;
456
457 case nir_instr_type_deref:
458 unreachable("All derefs should've been lowered");
459 break;
460
461 case nir_instr_type_intrinsic:
462 switch (stage) {
463 case MESA_SHADER_VERTEX:
464 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
465 break;
466 case MESA_SHADER_TESS_CTRL:
467 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
468 break;
469 case MESA_SHADER_TESS_EVAL:
470 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
471 break;
472 case MESA_SHADER_GEOMETRY:
473 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
474 break;
475 case MESA_SHADER_FRAGMENT:
476 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
477 break;
478 case MESA_SHADER_COMPUTE:
479 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
480 break;
481 default:
482 unreachable("unsupported shader stage");
483 }
484 break;
485
486 case nir_instr_type_tex:
487 nir_emit_texture(abld, nir_instr_as_tex(instr));
488 break;
489
490 case nir_instr_type_load_const:
491 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
492 break;
493
494 case nir_instr_type_ssa_undef:
495 /* We create a new VGRF for undefs on every use (by handling
496 * them in get_nir_src()), rather than for each definition.
497 * This helps register coalescing eliminate MOVs from undef.
498 */
499 break;
500
501 case nir_instr_type_jump:
502 nir_emit_jump(abld, nir_instr_as_jump(instr));
503 break;
504
505 default:
506 unreachable("unknown instruction type");
507 }
508 }
509
510 /**
511 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
512 * match instr.
513 */
514 bool
515 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
516 const fs_reg &result)
517 {
518 if (!instr->src[0].src.is_ssa ||
519 !instr->src[0].src.ssa->parent_instr)
520 return false;
521
522 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
523 return false;
524
525 nir_alu_instr *src0 =
526 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
527
528 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
529 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
530 return false;
531
532 /* If either opcode has source modifiers, bail.
533 *
534 * TODO: We can potentially handle source modifiers if both of the opcodes
535 * we're combining are signed integers.
536 */
537 if (instr->src[0].abs || instr->src[0].negate ||
538 src0->src[0].abs || src0->src[0].negate)
539 return false;
540
541 unsigned element = nir_src_as_uint(src0->src[1].src);
542
543 /* Element type to extract.*/
544 const brw_reg_type type = brw_int_type(
545 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
546 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
547
548 fs_reg op0 = get_nir_src(src0->src[0].src);
549 op0.type = brw_type_for_nir_type(devinfo,
550 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
551 nir_src_bit_size(src0->src[0].src)));
552 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
553
554 set_saturate(instr->dest.saturate,
555 bld.MOV(result, subscript(op0, type, element)));
556 return true;
557 }
558
559 bool
560 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
561 const fs_reg &result)
562 {
563 nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
564 if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
565 return false;
566
567 if (!nir_src_is_const(instr->src[1].src) ||
568 !nir_src_is_const(instr->src[2].src))
569 return false;
570
571 const float value1 = nir_src_as_float(instr->src[1].src);
572 const float value2 = nir_src_as_float(instr->src[2].src);
573 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
574 return false;
575
576 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
577 assert(value1 == -value2);
578
579 fs_reg tmp = vgrf(glsl_type::int_type);
580
581 if (devinfo->gen >= 6) {
582 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
583 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
584
585 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
586 *
587 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
588 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
589 *
590 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
591 *
592 * This negation looks like it's safe in practice, because bits 0:4 will
593 * surely be TRIANGLES
594 */
595
596 if (value1 == -1.0f) {
597 g0.negate = true;
598 }
599
600 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
601 g0, brw_imm_uw(0x3f80));
602 } else {
603 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
604 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
605
606 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
607 *
608 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
609 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
610 *
611 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
612 *
613 * This negation looks like it's safe in practice, because bits 0:4 will
614 * surely be TRIANGLES
615 */
616
617 if (value1 == -1.0f) {
618 g1_6.negate = true;
619 }
620
621 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
622 }
623 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
624
625 return true;
626 }
627
628 static void
629 emit_find_msb_using_lzd(const fs_builder &bld,
630 const fs_reg &result,
631 const fs_reg &src,
632 bool is_signed)
633 {
634 fs_inst *inst;
635 fs_reg temp = src;
636
637 if (is_signed) {
638 /* LZD of an absolute value source almost always does the right
639 * thing. There are two problem values:
640 *
641 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
642 * 0. However, findMSB(int(0x80000000)) == 30.
643 *
644 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
645 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
646 *
647 * For a value of zero or negative one, -1 will be returned.
648 *
649 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
650 * findMSB(-(1<<x)) should return x-1.
651 *
652 * For all negative number cases, including 0x80000000 and
653 * 0xffffffff, the correct value is obtained from LZD if instead of
654 * negating the (already negative) value the logical-not is used. A
655 * conditonal logical-not can be achieved in two instructions.
656 */
657 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
658
659 bld.ASR(temp, src, brw_imm_d(31));
660 bld.XOR(temp, temp, src);
661 }
662
663 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
664 retype(temp, BRW_REGISTER_TYPE_UD));
665
666 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
667 * from the LSB side. Subtract the result from 31 to convert the MSB
668 * count into an LSB count. If no bits are set, LZD will return 32.
669 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
670 */
671 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
672 inst->src[0].negate = true;
673 }
674
675 static brw_rnd_mode
676 brw_rnd_mode_from_nir_op (const nir_op op) {
677 switch (op) {
678 case nir_op_f2f16_rtz:
679 return BRW_RND_MODE_RTZ;
680 case nir_op_f2f16_rtne:
681 return BRW_RND_MODE_RTNE;
682 default:
683 unreachable("Operation doesn't support rounding mode");
684 }
685 }
686
687 fs_reg
688 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
689 nir_alu_instr *instr,
690 fs_reg *op,
691 bool need_dest)
692 {
693 fs_reg result =
694 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
695
696 result.type = brw_type_for_nir_type(devinfo,
697 (nir_alu_type)(nir_op_infos[instr->op].output_type |
698 nir_dest_bit_size(instr->dest.dest)));
699
700 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
701 op[i] = get_nir_src(instr->src[i].src);
702 op[i].type = brw_type_for_nir_type(devinfo,
703 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
704 nir_src_bit_size(instr->src[i].src)));
705 op[i].abs = instr->src[i].abs;
706 op[i].negate = instr->src[i].negate;
707 }
708
709 /* Move and vecN instrutions may still be vectored. Return the raw,
710 * vectored source and destination so that fs_visitor::nir_emit_alu can
711 * handle it. Other callers should not have to handle these kinds of
712 * instructions.
713 */
714 switch (instr->op) {
715 case nir_op_mov:
716 case nir_op_vec2:
717 case nir_op_vec3:
718 case nir_op_vec4:
719 return result;
720 default:
721 break;
722 }
723
724 /* At this point, we have dealt with any instruction that operates on
725 * more than a single channel. Therefore, we can just adjust the source
726 * and destination registers for that channel and emit the instruction.
727 */
728 unsigned channel = 0;
729 if (nir_op_infos[instr->op].output_size == 0) {
730 /* Since NIR is doing the scalarizing for us, we should only ever see
731 * vectorized operations with a single channel.
732 */
733 assert(util_bitcount(instr->dest.write_mask) == 1);
734 channel = ffs(instr->dest.write_mask) - 1;
735
736 result = offset(result, bld, channel);
737 }
738
739 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
740 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
741 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
742 }
743
744 return result;
745 }
746
747 void
748 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
749 fs_reg *op)
750 {
751 for (unsigned i = 0; i < 2; i++) {
752 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
753
754 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
755 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
756 /* The source of the inot is now the source of instr. */
757 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
758
759 assert(!op[i].negate);
760 op[i].negate = true;
761 } else {
762 op[i] = resolve_source_modifiers(op[i]);
763 }
764 }
765 }
766
767 bool
768 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
769 fs_reg result,
770 nir_alu_instr *instr)
771 {
772 if (devinfo->gen < 6 || devinfo->gen >= 12)
773 return false;
774
775 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
776
777 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
778 return false;
779
780 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
781 * of valid size-changing combinations is a bit more complex.
782 *
783 * The source restriction is just because I was lazy about generating the
784 * constant below.
785 */
786 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
787 nir_src_bit_size(inot_instr->src[0].src) != 32)
788 return false;
789
790 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
791 * this is float(1 + a).
792 */
793 fs_reg op;
794
795 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
796
797 /* Ignore the saturate modifier, if there is one. The result of the
798 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
799 */
800 bld.ADD(result, op, brw_imm_d(1));
801
802 return true;
803 }
804
805 /**
806 * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
807 *
808 * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
809 * the source of \c instr that is a \c nir_op_fsign.
810 */
811 void
812 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
813 fs_reg result, fs_reg *op, unsigned fsign_src)
814 {
815 fs_inst *inst;
816
817 assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
818 assert(fsign_src < nir_op_infos[instr->op].num_inputs);
819
820 if (instr->op != nir_op_fsign) {
821 const nir_alu_instr *const fsign_instr =
822 nir_src_as_alu_instr(instr->src[fsign_src].src);
823
824 assert(!fsign_instr->dest.saturate);
825
826 /* op[fsign_src] has the nominal result of the fsign, and op[1 -
827 * fsign_src] has the other multiply source. This must be rearranged so
828 * that op[0] is the source of the fsign op[1] is the other multiply
829 * source.
830 */
831 if (fsign_src != 0)
832 op[1] = op[0];
833
834 op[0] = get_nir_src(fsign_instr->src[0].src);
835
836 const nir_alu_type t =
837 (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
838 nir_src_bit_size(fsign_instr->src[0].src));
839
840 op[0].type = brw_type_for_nir_type(devinfo, t);
841 op[0].abs = fsign_instr->src[0].abs;
842 op[0].negate = fsign_instr->src[0].negate;
843
844 unsigned channel = 0;
845 if (nir_op_infos[instr->op].output_size == 0) {
846 /* Since NIR is doing the scalarizing for us, we should only ever see
847 * vectorized operations with a single channel.
848 */
849 assert(util_bitcount(instr->dest.write_mask) == 1);
850 channel = ffs(instr->dest.write_mask) - 1;
851 }
852
853 op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
854 } else {
855 assert(!instr->dest.saturate);
856 }
857
858 if (op[0].abs) {
859 /* Straightforward since the source can be assumed to be either strictly
860 * >= 0 or strictly <= 0 depending on the setting of the negate flag.
861 */
862 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
863
864 if (instr->op == nir_op_fsign) {
865 inst = (op[0].negate)
866 ? bld.MOV(result, brw_imm_f(-1.0f))
867 : bld.MOV(result, brw_imm_f(1.0f));
868 } else {
869 op[1].negate = (op[0].negate != op[1].negate);
870 inst = bld.MOV(result, op[1]);
871 }
872
873 set_predicate(BRW_PREDICATE_NORMAL, inst);
874 } else if (type_sz(op[0].type) == 2) {
875 /* AND(val, 0x8000) gives the sign bit.
876 *
877 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
878 */
879 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
880 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
881
882 op[0].type = BRW_REGISTER_TYPE_UW;
883 result.type = BRW_REGISTER_TYPE_UW;
884 bld.AND(result, op[0], brw_imm_uw(0x8000u));
885
886 if (instr->op == nir_op_fsign)
887 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
888 else {
889 /* Use XOR here to get the result sign correct. */
890 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
891 }
892
893 inst->predicate = BRW_PREDICATE_NORMAL;
894 } else if (type_sz(op[0].type) == 4) {
895 /* AND(val, 0x80000000) gives the sign bit.
896 *
897 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
898 * zero.
899 */
900 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
901
902 op[0].type = BRW_REGISTER_TYPE_UD;
903 result.type = BRW_REGISTER_TYPE_UD;
904 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
905
906 if (instr->op == nir_op_fsign)
907 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
908 else {
909 /* Use XOR here to get the result sign correct. */
910 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
911 }
912
913 inst->predicate = BRW_PREDICATE_NORMAL;
914 } else {
915 /* For doubles we do the same but we need to consider:
916 *
917 * - 2-src instructions can't operate with 64-bit immediates
918 * - The sign is encoded in the high 32-bit of each DF
919 * - We need to produce a DF result.
920 */
921
922 fs_reg zero = vgrf(glsl_type::double_type);
923 bld.MOV(zero, setup_imm_df(bld, 0.0));
924 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
925
926 bld.MOV(result, zero);
927
928 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
929 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
930 brw_imm_ud(0x80000000u));
931
932 if (instr->op == nir_op_fsign) {
933 set_predicate(BRW_PREDICATE_NORMAL,
934 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
935 } else {
936 /* This could be done better in some cases. If the scale is an
937 * immediate with the low 32-bits all 0, emitting a separate XOR and
938 * OR would allow an algebraic optimization to remove the OR. There
939 * are currently zero instances of fsign(double(x))*IMM in shader-db
940 * or any test suite, so it is hard to care at this time.
941 */
942 fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
943 inst = bld.XOR(result_int64, result_int64,
944 retype(op[1], BRW_REGISTER_TYPE_UQ));
945 }
946 }
947 }
948
949 /**
950 * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
951 *
952 * Checks the operands of a \c nir_op_fmul to determine whether or not
953 * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
954 *
955 * \param instr The multiplication instruction
956 *
957 * \param fsign_src The source of \c instr that may or may not be a
958 * \c nir_op_fsign
959 */
960 static bool
961 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
962 {
963 assert(instr->op == nir_op_fmul);
964
965 nir_alu_instr *const fsign_instr =
966 nir_src_as_alu_instr(instr->src[fsign_src].src);
967
968 /* Rules:
969 *
970 * 1. instr->src[fsign_src] must be a nir_op_fsign.
971 * 2. The nir_op_fsign can only be used by this multiplication.
972 * 3. The source that is the nir_op_fsign does not have source modifiers.
973 * \c emit_fsign only examines the source modifiers of the source of the
974 * \c nir_op_fsign.
975 *
976 * The nir_op_fsign must also not have the saturate modifier, but steps
977 * have already been taken (in nir_opt_algebraic) to ensure that.
978 */
979 return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
980 is_used_once(fsign_instr) &&
981 !instr->src[fsign_src].abs && !instr->src[fsign_src].negate;
982 }
983
984 void
985 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
986 bool need_dest)
987 {
988 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
989 fs_inst *inst;
990
991 fs_reg op[4];
992 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
993
994 switch (instr->op) {
995 case nir_op_mov:
996 case nir_op_vec2:
997 case nir_op_vec3:
998 case nir_op_vec4: {
999 fs_reg temp = result;
1000 bool need_extra_copy = false;
1001 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1002 if (!instr->src[i].src.is_ssa &&
1003 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1004 need_extra_copy = true;
1005 temp = bld.vgrf(result.type, 4);
1006 break;
1007 }
1008 }
1009
1010 for (unsigned i = 0; i < 4; i++) {
1011 if (!(instr->dest.write_mask & (1 << i)))
1012 continue;
1013
1014 if (instr->op == nir_op_mov) {
1015 inst = bld.MOV(offset(temp, bld, i),
1016 offset(op[0], bld, instr->src[0].swizzle[i]));
1017 } else {
1018 inst = bld.MOV(offset(temp, bld, i),
1019 offset(op[i], bld, instr->src[i].swizzle[0]));
1020 }
1021 inst->saturate = instr->dest.saturate;
1022 }
1023
1024 /* In this case the source and destination registers were the same,
1025 * so we need to insert an extra set of moves in order to deal with
1026 * any swizzling.
1027 */
1028 if (need_extra_copy) {
1029 for (unsigned i = 0; i < 4; i++) {
1030 if (!(instr->dest.write_mask & (1 << i)))
1031 continue;
1032
1033 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1034 }
1035 }
1036 return;
1037 }
1038
1039 case nir_op_i2f32:
1040 case nir_op_u2f32:
1041 if (optimize_extract_to_float(instr, result))
1042 return;
1043 inst = bld.MOV(result, op[0]);
1044 inst->saturate = instr->dest.saturate;
1045 break;
1046
1047 case nir_op_f2f16_rtne:
1048 case nir_op_f2f16_rtz:
1049 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1050 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
1051 /* fallthrough */
1052 case nir_op_f2f16:
1053 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1054 * on the HW gen, it is a special hw opcode or just a MOV, and
1055 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1056 *
1057 * But if we want to use that opcode, we need to provide support on
1058 * different optimizations and lowerings. As right now HF support is
1059 * only for gen8+, it will be better to use directly the MOV, and use
1060 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
1061 */
1062 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1063 inst = bld.MOV(result, op[0]);
1064 inst->saturate = instr->dest.saturate;
1065 break;
1066
1067 case nir_op_b2i8:
1068 case nir_op_b2i16:
1069 case nir_op_b2i32:
1070 case nir_op_b2i64:
1071 case nir_op_b2f16:
1072 case nir_op_b2f32:
1073 case nir_op_b2f64:
1074 if (try_emit_b2fi_of_inot(bld, result, instr))
1075 break;
1076 op[0].type = BRW_REGISTER_TYPE_D;
1077 op[0].negate = !op[0].negate;
1078 /* fallthrough */
1079 case nir_op_i2f64:
1080 case nir_op_i2i64:
1081 case nir_op_u2f64:
1082 case nir_op_u2u64:
1083 case nir_op_f2f64:
1084 case nir_op_f2i64:
1085 case nir_op_f2u64:
1086 case nir_op_i2i32:
1087 case nir_op_u2u32:
1088 case nir_op_f2f32:
1089 case nir_op_f2i32:
1090 case nir_op_f2u32:
1091 case nir_op_i2f16:
1092 case nir_op_i2i16:
1093 case nir_op_u2f16:
1094 case nir_op_u2u16:
1095 case nir_op_f2i16:
1096 case nir_op_f2u16:
1097 case nir_op_i2i8:
1098 case nir_op_u2u8:
1099 case nir_op_f2i8:
1100 case nir_op_f2u8:
1101 if (result.type == BRW_REGISTER_TYPE_B ||
1102 result.type == BRW_REGISTER_TYPE_UB ||
1103 result.type == BRW_REGISTER_TYPE_HF)
1104 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1105
1106 if (op[0].type == BRW_REGISTER_TYPE_B ||
1107 op[0].type == BRW_REGISTER_TYPE_UB ||
1108 op[0].type == BRW_REGISTER_TYPE_HF)
1109 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1110
1111 inst = bld.MOV(result, op[0]);
1112 inst->saturate = instr->dest.saturate;
1113 break;
1114
1115 case nir_op_fsat:
1116 inst = bld.MOV(result, op[0]);
1117 inst->saturate = true;
1118 break;
1119
1120 case nir_op_fneg:
1121 case nir_op_ineg:
1122 op[0].negate = true;
1123 inst = bld.MOV(result, op[0]);
1124 if (instr->op == nir_op_fneg)
1125 inst->saturate = instr->dest.saturate;
1126 break;
1127
1128 case nir_op_fabs:
1129 case nir_op_iabs:
1130 op[0].negate = false;
1131 op[0].abs = true;
1132 inst = bld.MOV(result, op[0]);
1133 if (instr->op == nir_op_fabs)
1134 inst->saturate = instr->dest.saturate;
1135 break;
1136
1137 case nir_op_fsign:
1138 emit_fsign(bld, instr, result, op, 0);
1139 break;
1140
1141 case nir_op_frcp:
1142 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1143 inst->saturate = instr->dest.saturate;
1144 break;
1145
1146 case nir_op_fexp2:
1147 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1148 inst->saturate = instr->dest.saturate;
1149 break;
1150
1151 case nir_op_flog2:
1152 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1153 inst->saturate = instr->dest.saturate;
1154 break;
1155
1156 case nir_op_fsin:
1157 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1158 inst->saturate = instr->dest.saturate;
1159 break;
1160
1161 case nir_op_fcos:
1162 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1163 inst->saturate = instr->dest.saturate;
1164 break;
1165
1166 case nir_op_fddx:
1167 if (fs_key->high_quality_derivatives) {
1168 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1169 } else {
1170 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1171 }
1172 inst->saturate = instr->dest.saturate;
1173 break;
1174 case nir_op_fddx_fine:
1175 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1176 inst->saturate = instr->dest.saturate;
1177 break;
1178 case nir_op_fddx_coarse:
1179 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1180 inst->saturate = instr->dest.saturate;
1181 break;
1182 case nir_op_fddy:
1183 if (fs_key->high_quality_derivatives) {
1184 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1185 } else {
1186 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1187 }
1188 inst->saturate = instr->dest.saturate;
1189 break;
1190 case nir_op_fddy_fine:
1191 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1192 inst->saturate = instr->dest.saturate;
1193 break;
1194 case nir_op_fddy_coarse:
1195 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1196 inst->saturate = instr->dest.saturate;
1197 break;
1198
1199 case nir_op_iadd:
1200 case nir_op_fadd:
1201 inst = bld.ADD(result, op[0], op[1]);
1202 inst->saturate = instr->dest.saturate;
1203 break;
1204
1205 case nir_op_uadd_sat:
1206 inst = bld.ADD(result, op[0], op[1]);
1207 inst->saturate = true;
1208 break;
1209
1210 case nir_op_fmul:
1211 for (unsigned i = 0; i < 2; i++) {
1212 if (can_fuse_fmul_fsign(instr, i)) {
1213 emit_fsign(bld, instr, result, op, i);
1214 return;
1215 }
1216 }
1217
1218 inst = bld.MUL(result, op[0], op[1]);
1219 inst->saturate = instr->dest.saturate;
1220 break;
1221
1222 case nir_op_imul_2x32_64:
1223 case nir_op_umul_2x32_64:
1224 bld.MUL(result, op[0], op[1]);
1225 break;
1226
1227 case nir_op_imul:
1228 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1229 bld.MUL(result, op[0], op[1]);
1230 break;
1231
1232 case nir_op_imul_high:
1233 case nir_op_umul_high:
1234 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1235 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1236 break;
1237
1238 case nir_op_idiv:
1239 case nir_op_udiv:
1240 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1241 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1242 break;
1243
1244 case nir_op_uadd_carry:
1245 unreachable("Should have been lowered by carry_to_arith().");
1246
1247 case nir_op_usub_borrow:
1248 unreachable("Should have been lowered by borrow_to_arith().");
1249
1250 case nir_op_umod:
1251 case nir_op_irem:
1252 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1253 * appears that our hardware just does the right thing for signed
1254 * remainder.
1255 */
1256 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1257 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1258 break;
1259
1260 case nir_op_imod: {
1261 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1262 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1263
1264 /* Math instructions don't support conditional mod */
1265 inst = bld.MOV(bld.null_reg_d(), result);
1266 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1267
1268 /* Now, we need to determine if signs of the sources are different.
1269 * When we XOR the sources, the top bit is 0 if they are the same and 1
1270 * if they are different. We can then use a conditional modifier to
1271 * turn that into a predicate. This leads us to an XOR.l instruction.
1272 *
1273 * Technically, according to the PRM, you're not allowed to use .l on a
1274 * XOR instruction. However, emperical experiments and Curro's reading
1275 * of the simulator source both indicate that it's safe.
1276 */
1277 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1278 inst = bld.XOR(tmp, op[0], op[1]);
1279 inst->predicate = BRW_PREDICATE_NORMAL;
1280 inst->conditional_mod = BRW_CONDITIONAL_L;
1281
1282 /* If the result of the initial remainder operation is non-zero and the
1283 * two sources have different signs, add in a copy of op[1] to get the
1284 * final integer modulus value.
1285 */
1286 inst = bld.ADD(result, result, op[1]);
1287 inst->predicate = BRW_PREDICATE_NORMAL;
1288 break;
1289 }
1290
1291 case nir_op_flt32:
1292 case nir_op_fge32:
1293 case nir_op_feq32:
1294 case nir_op_fne32: {
1295 fs_reg dest = result;
1296
1297 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1298 if (bit_size != 32)
1299 dest = bld.vgrf(op[0].type, 1);
1300
1301 bld.CMP(dest, op[0], op[1], brw_cmod_for_nir_comparison(instr->op));
1302
1303 if (bit_size > 32) {
1304 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1305 } else if(bit_size < 32) {
1306 /* When we convert the result to 32-bit we need to be careful and do
1307 * it as a signed conversion to get sign extension (for 32-bit true)
1308 */
1309 const brw_reg_type src_type =
1310 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1311
1312 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1313 }
1314 break;
1315 }
1316
1317 case nir_op_ilt32:
1318 case nir_op_ult32:
1319 case nir_op_ige32:
1320 case nir_op_uge32:
1321 case nir_op_ieq32:
1322 case nir_op_ine32: {
1323 fs_reg dest = result;
1324
1325 /* On Gen11 we have an additional issue being that src1 cannot be a byte
1326 * type. So we convert both operands for the comparison.
1327 */
1328 fs_reg temp_op[2];
1329 temp_op[0] = bld.fix_byte_src(op[0]);
1330 temp_op[1] = bld.fix_byte_src(op[1]);
1331
1332 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1333 if (bit_size != 32)
1334 dest = bld.vgrf(temp_op[0].type, 1);
1335
1336 bld.CMP(dest, temp_op[0], temp_op[1],
1337 brw_cmod_for_nir_comparison(instr->op));
1338
1339 if (bit_size > 32) {
1340 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1341 } else if (bit_size < 32) {
1342 /* When we convert the result to 32-bit we need to be careful and do
1343 * it as a signed conversion to get sign extension (for 32-bit true)
1344 */
1345 const brw_reg_type src_type =
1346 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1347
1348 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1349 }
1350 break;
1351 }
1352
1353 case nir_op_inot:
1354 if (devinfo->gen >= 8) {
1355 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1356
1357 if (inot_src_instr != NULL &&
1358 (inot_src_instr->op == nir_op_ior ||
1359 inot_src_instr->op == nir_op_ixor ||
1360 inot_src_instr->op == nir_op_iand) &&
1361 !inot_src_instr->src[0].abs &&
1362 !inot_src_instr->src[0].negate &&
1363 !inot_src_instr->src[1].abs &&
1364 !inot_src_instr->src[1].negate) {
1365 /* The sources of the source logical instruction are now the
1366 * sources of the instruction that will be generated.
1367 */
1368 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1369 resolve_inot_sources(bld, inot_src_instr, op);
1370
1371 /* Smash all of the sources and destination to be signed. This
1372 * doesn't matter for the operation of the instruction, but cmod
1373 * propagation fails on unsigned sources with negation (due to
1374 * fs_inst::can_do_cmod returning false).
1375 */
1376 result.type =
1377 brw_type_for_nir_type(devinfo,
1378 (nir_alu_type)(nir_type_int |
1379 nir_dest_bit_size(instr->dest.dest)));
1380 op[0].type =
1381 brw_type_for_nir_type(devinfo,
1382 (nir_alu_type)(nir_type_int |
1383 nir_src_bit_size(inot_src_instr->src[0].src)));
1384 op[1].type =
1385 brw_type_for_nir_type(devinfo,
1386 (nir_alu_type)(nir_type_int |
1387 nir_src_bit_size(inot_src_instr->src[1].src)));
1388
1389 /* For XOR, only invert one of the sources. Arbitrarily choose
1390 * the first source.
1391 */
1392 op[0].negate = !op[0].negate;
1393 if (inot_src_instr->op != nir_op_ixor)
1394 op[1].negate = !op[1].negate;
1395
1396 switch (inot_src_instr->op) {
1397 case nir_op_ior:
1398 bld.AND(result, op[0], op[1]);
1399 return;
1400
1401 case nir_op_iand:
1402 bld.OR(result, op[0], op[1]);
1403 return;
1404
1405 case nir_op_ixor:
1406 bld.XOR(result, op[0], op[1]);
1407 return;
1408
1409 default:
1410 unreachable("impossible opcode");
1411 }
1412 }
1413 op[0] = resolve_source_modifiers(op[0]);
1414 }
1415 bld.NOT(result, op[0]);
1416 break;
1417 case nir_op_ixor:
1418 if (devinfo->gen >= 8) {
1419 resolve_inot_sources(bld, instr, op);
1420 }
1421 bld.XOR(result, op[0], op[1]);
1422 break;
1423 case nir_op_ior:
1424 if (devinfo->gen >= 8) {
1425 resolve_inot_sources(bld, instr, op);
1426 }
1427 bld.OR(result, op[0], op[1]);
1428 break;
1429 case nir_op_iand:
1430 if (devinfo->gen >= 8) {
1431 resolve_inot_sources(bld, instr, op);
1432 }
1433 bld.AND(result, op[0], op[1]);
1434 break;
1435
1436 case nir_op_fdot2:
1437 case nir_op_fdot3:
1438 case nir_op_fdot4:
1439 case nir_op_b32all_fequal2:
1440 case nir_op_b32all_iequal2:
1441 case nir_op_b32all_fequal3:
1442 case nir_op_b32all_iequal3:
1443 case nir_op_b32all_fequal4:
1444 case nir_op_b32all_iequal4:
1445 case nir_op_b32any_fnequal2:
1446 case nir_op_b32any_inequal2:
1447 case nir_op_b32any_fnequal3:
1448 case nir_op_b32any_inequal3:
1449 case nir_op_b32any_fnequal4:
1450 case nir_op_b32any_inequal4:
1451 unreachable("Lowered by nir_lower_alu_reductions");
1452
1453 case nir_op_fnoise1_1:
1454 case nir_op_fnoise1_2:
1455 case nir_op_fnoise1_3:
1456 case nir_op_fnoise1_4:
1457 case nir_op_fnoise2_1:
1458 case nir_op_fnoise2_2:
1459 case nir_op_fnoise2_3:
1460 case nir_op_fnoise2_4:
1461 case nir_op_fnoise3_1:
1462 case nir_op_fnoise3_2:
1463 case nir_op_fnoise3_3:
1464 case nir_op_fnoise3_4:
1465 case nir_op_fnoise4_1:
1466 case nir_op_fnoise4_2:
1467 case nir_op_fnoise4_3:
1468 case nir_op_fnoise4_4:
1469 unreachable("not reached: should be handled by lower_noise");
1470
1471 case nir_op_ldexp:
1472 unreachable("not reached: should be handled by ldexp_to_arith()");
1473
1474 case nir_op_fsqrt:
1475 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1476 inst->saturate = instr->dest.saturate;
1477 break;
1478
1479 case nir_op_frsq:
1480 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1481 inst->saturate = instr->dest.saturate;
1482 break;
1483
1484 case nir_op_i2b32:
1485 case nir_op_f2b32: {
1486 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1487 if (bit_size == 64) {
1488 /* two-argument instructions can't take 64-bit immediates */
1489 fs_reg zero;
1490 fs_reg tmp;
1491
1492 if (instr->op == nir_op_f2b32) {
1493 zero = vgrf(glsl_type::double_type);
1494 tmp = vgrf(glsl_type::double_type);
1495 bld.MOV(zero, setup_imm_df(bld, 0.0));
1496 } else {
1497 zero = vgrf(glsl_type::int64_t_type);
1498 tmp = vgrf(glsl_type::int64_t_type);
1499 bld.MOV(zero, brw_imm_q(0));
1500 }
1501
1502 /* A SIMD16 execution needs to be split in two instructions, so use
1503 * a vgrf instead of the flag register as dst so instruction splitting
1504 * works
1505 */
1506 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1507 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1508 } else {
1509 fs_reg zero;
1510 if (bit_size == 32) {
1511 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1512 } else {
1513 assert(bit_size == 16);
1514 zero = instr->op == nir_op_f2b32 ?
1515 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1516 }
1517 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1518 }
1519 break;
1520 }
1521
1522 case nir_op_ftrunc:
1523 inst = bld.RNDZ(result, op[0]);
1524 inst->saturate = instr->dest.saturate;
1525 break;
1526
1527 case nir_op_fceil: {
1528 op[0].negate = !op[0].negate;
1529 fs_reg temp = vgrf(glsl_type::float_type);
1530 bld.RNDD(temp, op[0]);
1531 temp.negate = true;
1532 inst = bld.MOV(result, temp);
1533 inst->saturate = instr->dest.saturate;
1534 break;
1535 }
1536 case nir_op_ffloor:
1537 inst = bld.RNDD(result, op[0]);
1538 inst->saturate = instr->dest.saturate;
1539 break;
1540 case nir_op_ffract:
1541 inst = bld.FRC(result, op[0]);
1542 inst->saturate = instr->dest.saturate;
1543 break;
1544 case nir_op_fround_even:
1545 inst = bld.RNDE(result, op[0]);
1546 inst->saturate = instr->dest.saturate;
1547 break;
1548
1549 case nir_op_fquantize2f16: {
1550 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1551 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1552 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1553
1554 /* The destination stride must be at least as big as the source stride. */
1555 tmp16.type = BRW_REGISTER_TYPE_W;
1556 tmp16.stride = 2;
1557
1558 /* Check for denormal */
1559 fs_reg abs_src0 = op[0];
1560 abs_src0.abs = true;
1561 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1562 BRW_CONDITIONAL_L);
1563 /* Get the appropriately signed zero */
1564 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1565 retype(op[0], BRW_REGISTER_TYPE_UD),
1566 brw_imm_ud(0x80000000));
1567 /* Do the actual F32 -> F16 -> F32 conversion */
1568 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1569 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1570 /* Select that or zero based on normal status */
1571 inst = bld.SEL(result, zero, tmp32);
1572 inst->predicate = BRW_PREDICATE_NORMAL;
1573 inst->saturate = instr->dest.saturate;
1574 break;
1575 }
1576
1577 case nir_op_imin:
1578 case nir_op_umin:
1579 case nir_op_fmin:
1580 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1581 inst->saturate = instr->dest.saturate;
1582 break;
1583
1584 case nir_op_imax:
1585 case nir_op_umax:
1586 case nir_op_fmax:
1587 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1588 inst->saturate = instr->dest.saturate;
1589 break;
1590
1591 case nir_op_pack_snorm_2x16:
1592 case nir_op_pack_snorm_4x8:
1593 case nir_op_pack_unorm_2x16:
1594 case nir_op_pack_unorm_4x8:
1595 case nir_op_unpack_snorm_2x16:
1596 case nir_op_unpack_snorm_4x8:
1597 case nir_op_unpack_unorm_2x16:
1598 case nir_op_unpack_unorm_4x8:
1599 case nir_op_unpack_half_2x16:
1600 case nir_op_pack_half_2x16:
1601 unreachable("not reached: should be handled by lower_packing_builtins");
1602
1603 case nir_op_unpack_half_2x16_split_x_flush_to_zero:
1604 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1605 case nir_op_unpack_half_2x16_split_x:
1606 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1607 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1608 inst->saturate = instr->dest.saturate;
1609 break;
1610 case nir_op_unpack_half_2x16_split_y_flush_to_zero:
1611 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1612 case nir_op_unpack_half_2x16_split_y:
1613 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1614 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1615 inst->saturate = instr->dest.saturate;
1616 break;
1617
1618 case nir_op_pack_64_2x32_split:
1619 case nir_op_pack_32_2x16_split:
1620 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1621 break;
1622
1623 case nir_op_unpack_64_2x32_split_x:
1624 case nir_op_unpack_64_2x32_split_y: {
1625 if (instr->op == nir_op_unpack_64_2x32_split_x)
1626 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1627 else
1628 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1629 break;
1630 }
1631
1632 case nir_op_unpack_32_2x16_split_x:
1633 case nir_op_unpack_32_2x16_split_y: {
1634 if (instr->op == nir_op_unpack_32_2x16_split_x)
1635 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1636 else
1637 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1638 break;
1639 }
1640
1641 case nir_op_fpow:
1642 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1643 inst->saturate = instr->dest.saturate;
1644 break;
1645
1646 case nir_op_bitfield_reverse:
1647 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1648 bld.BFREV(result, op[0]);
1649 break;
1650
1651 case nir_op_bit_count:
1652 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1653 bld.CBIT(result, op[0]);
1654 break;
1655
1656 case nir_op_ufind_msb: {
1657 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1658 emit_find_msb_using_lzd(bld, result, op[0], false);
1659 break;
1660 }
1661
1662 case nir_op_ifind_msb: {
1663 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1664
1665 if (devinfo->gen < 7) {
1666 emit_find_msb_using_lzd(bld, result, op[0], true);
1667 } else {
1668 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1669
1670 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1671 * count from the LSB side. If FBH didn't return an error
1672 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1673 * count into an LSB count.
1674 */
1675 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1676
1677 inst = bld.ADD(result, result, brw_imm_d(31));
1678 inst->predicate = BRW_PREDICATE_NORMAL;
1679 inst->src[0].negate = true;
1680 }
1681 break;
1682 }
1683
1684 case nir_op_find_lsb:
1685 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1686
1687 if (devinfo->gen < 7) {
1688 fs_reg temp = vgrf(glsl_type::int_type);
1689
1690 /* (x & -x) generates a value that consists of only the LSB of x.
1691 * For all powers of 2, findMSB(y) == findLSB(y).
1692 */
1693 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1694 fs_reg negated_src = src;
1695
1696 /* One must be negated, and the other must be non-negated. It
1697 * doesn't matter which is which.
1698 */
1699 negated_src.negate = true;
1700 src.negate = false;
1701
1702 bld.AND(temp, src, negated_src);
1703 emit_find_msb_using_lzd(bld, result, temp, false);
1704 } else {
1705 bld.FBL(result, op[0]);
1706 }
1707 break;
1708
1709 case nir_op_ubitfield_extract:
1710 case nir_op_ibitfield_extract:
1711 unreachable("should have been lowered");
1712 case nir_op_ubfe:
1713 case nir_op_ibfe:
1714 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1715 bld.BFE(result, op[2], op[1], op[0]);
1716 break;
1717 case nir_op_bfm:
1718 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1719 bld.BFI1(result, op[0], op[1]);
1720 break;
1721 case nir_op_bfi:
1722 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1723 bld.BFI2(result, op[0], op[1], op[2]);
1724 break;
1725
1726 case nir_op_bitfield_insert:
1727 unreachable("not reached: should have been lowered");
1728
1729 case nir_op_ishl:
1730 bld.SHL(result, op[0], op[1]);
1731 break;
1732 case nir_op_ishr:
1733 bld.ASR(result, op[0], op[1]);
1734 break;
1735 case nir_op_ushr:
1736 bld.SHR(result, op[0], op[1]);
1737 break;
1738
1739 case nir_op_urol:
1740 bld.ROL(result, op[0], op[1]);
1741 break;
1742 case nir_op_uror:
1743 bld.ROR(result, op[0], op[1]);
1744 break;
1745
1746 case nir_op_pack_half_2x16_split:
1747 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1748 break;
1749
1750 case nir_op_ffma:
1751 inst = bld.MAD(result, op[2], op[1], op[0]);
1752 inst->saturate = instr->dest.saturate;
1753 break;
1754
1755 case nir_op_flrp:
1756 inst = bld.LRP(result, op[0], op[1], op[2]);
1757 inst->saturate = instr->dest.saturate;
1758 break;
1759
1760 case nir_op_b32csel:
1761 if (optimize_frontfacing_ternary(instr, result))
1762 return;
1763
1764 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1765 inst = bld.SEL(result, op[1], op[2]);
1766 inst->predicate = BRW_PREDICATE_NORMAL;
1767 break;
1768
1769 case nir_op_extract_u8:
1770 case nir_op_extract_i8: {
1771 unsigned byte = nir_src_as_uint(instr->src[1].src);
1772
1773 /* The PRMs say:
1774 *
1775 * BDW+
1776 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1777 * Use two instructions and a word or DWord intermediate integer type.
1778 */
1779 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1780 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1781
1782 if (instr->op == nir_op_extract_i8) {
1783 /* If we need to sign extend, extract to a word first */
1784 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1785 bld.MOV(w_temp, subscript(op[0], type, byte));
1786 bld.MOV(result, w_temp);
1787 } else if (byte & 1) {
1788 /* Extract the high byte from the word containing the desired byte
1789 * offset.
1790 */
1791 bld.SHR(result,
1792 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1793 brw_imm_uw(8));
1794 } else {
1795 /* Otherwise use an AND with 0xff and a word type */
1796 bld.AND(result,
1797 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1798 brw_imm_uw(0xff));
1799 }
1800 } else {
1801 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1802 bld.MOV(result, subscript(op[0], type, byte));
1803 }
1804 break;
1805 }
1806
1807 case nir_op_extract_u16:
1808 case nir_op_extract_i16: {
1809 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1810 unsigned word = nir_src_as_uint(instr->src[1].src);
1811 bld.MOV(result, subscript(op[0], type, word));
1812 break;
1813 }
1814
1815 default:
1816 unreachable("unhandled instruction");
1817 }
1818
1819 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1820 * to sign extend the low bit to 0/~0
1821 */
1822 if (devinfo->gen <= 5 &&
1823 !result.is_null() &&
1824 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1825 fs_reg masked = vgrf(glsl_type::int_type);
1826 bld.AND(masked, result, brw_imm_d(1));
1827 masked.negate = true;
1828 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1829 }
1830 }
1831
1832 void
1833 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1834 nir_load_const_instr *instr)
1835 {
1836 const brw_reg_type reg_type =
1837 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1838 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1839
1840 switch (instr->def.bit_size) {
1841 case 8:
1842 for (unsigned i = 0; i < instr->def.num_components; i++)
1843 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1844 break;
1845
1846 case 16:
1847 for (unsigned i = 0; i < instr->def.num_components; i++)
1848 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1849 break;
1850
1851 case 32:
1852 for (unsigned i = 0; i < instr->def.num_components; i++)
1853 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1854 break;
1855
1856 case 64:
1857 assert(devinfo->gen >= 7);
1858 if (devinfo->gen == 7) {
1859 /* We don't get 64-bit integer types until gen8 */
1860 for (unsigned i = 0; i < instr->def.num_components; i++) {
1861 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1862 setup_imm_df(bld, instr->value[i].f64));
1863 }
1864 } else {
1865 for (unsigned i = 0; i < instr->def.num_components; i++)
1866 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1867 }
1868 break;
1869
1870 default:
1871 unreachable("Invalid bit size");
1872 }
1873
1874 nir_ssa_values[instr->def.index] = reg;
1875 }
1876
1877 fs_reg
1878 fs_visitor::get_nir_src(const nir_src &src)
1879 {
1880 fs_reg reg;
1881 if (src.is_ssa) {
1882 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1883 const brw_reg_type reg_type =
1884 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1885 reg = bld.vgrf(reg_type, src.ssa->num_components);
1886 } else {
1887 reg = nir_ssa_values[src.ssa->index];
1888 }
1889 } else {
1890 /* We don't handle indirects on locals */
1891 assert(src.reg.indirect == NULL);
1892 reg = offset(nir_locals[src.reg.reg->index], bld,
1893 src.reg.base_offset * src.reg.reg->num_components);
1894 }
1895
1896 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1897 /* The only 64-bit type available on gen7 is DF, so use that. */
1898 reg.type = BRW_REGISTER_TYPE_DF;
1899 } else {
1900 /* To avoid floating-point denorm flushing problems, set the type by
1901 * default to an integer type - instructions that need floating point
1902 * semantics will set this to F if they need to
1903 */
1904 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1905 BRW_REGISTER_TYPE_D);
1906 }
1907
1908 return reg;
1909 }
1910
1911 /**
1912 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1913 *
1914 * This function should not be called on any value which may be 64 bits.
1915 * We could theoretically support 64-bit on gen8+ but we choose not to
1916 * because it wouldn't work in general (no gen7 support) and there are
1917 * enough restrictions in 64-bit immediates that you can't take the return
1918 * value and treat it the same as the result of get_nir_src().
1919 */
1920 fs_reg
1921 fs_visitor::get_nir_src_imm(const nir_src &src)
1922 {
1923 assert(nir_src_bit_size(src) == 32);
1924 return nir_src_is_const(src) ?
1925 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1926 }
1927
1928 fs_reg
1929 fs_visitor::get_nir_dest(const nir_dest &dest)
1930 {
1931 if (dest.is_ssa) {
1932 const brw_reg_type reg_type =
1933 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1934 dest.ssa.bit_size == 8 ?
1935 BRW_REGISTER_TYPE_D :
1936 BRW_REGISTER_TYPE_F);
1937 nir_ssa_values[dest.ssa.index] =
1938 bld.vgrf(reg_type, dest.ssa.num_components);
1939 bld.UNDEF(nir_ssa_values[dest.ssa.index]);
1940 return nir_ssa_values[dest.ssa.index];
1941 } else {
1942 /* We don't handle indirects on locals */
1943 assert(dest.reg.indirect == NULL);
1944 return offset(nir_locals[dest.reg.reg->index], bld,
1945 dest.reg.base_offset * dest.reg.reg->num_components);
1946 }
1947 }
1948
1949 void
1950 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1951 unsigned wr_mask)
1952 {
1953 for (unsigned i = 0; i < 4; i++) {
1954 if (!((wr_mask >> i) & 1))
1955 continue;
1956
1957 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1958 new_inst->dst = offset(new_inst->dst, bld, i);
1959 for (unsigned j = 0; j < new_inst->sources; j++)
1960 if (new_inst->src[j].file == VGRF)
1961 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1962
1963 bld.emit(new_inst);
1964 }
1965 }
1966
1967 static fs_inst *
1968 emit_pixel_interpolater_send(const fs_builder &bld,
1969 enum opcode opcode,
1970 const fs_reg &dst,
1971 const fs_reg &src,
1972 const fs_reg &desc,
1973 glsl_interp_mode interpolation)
1974 {
1975 struct brw_wm_prog_data *wm_prog_data =
1976 brw_wm_prog_data(bld.shader->stage_prog_data);
1977
1978 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1979 /* 2 floats per slot returned */
1980 inst->size_written = 2 * dst.component_size(inst->exec_size);
1981 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1982
1983 wm_prog_data->pulls_bary = true;
1984
1985 return inst;
1986 }
1987
1988 /**
1989 * Computes 1 << x, given a D/UD register containing some value x.
1990 */
1991 static fs_reg
1992 intexp2(const fs_builder &bld, const fs_reg &x)
1993 {
1994 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1995
1996 fs_reg result = bld.vgrf(x.type, 1);
1997 fs_reg one = bld.vgrf(x.type, 1);
1998
1999 bld.MOV(one, retype(brw_imm_d(1), one.type));
2000 bld.SHL(result, one, x);
2001 return result;
2002 }
2003
2004 void
2005 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2006 {
2007 assert(stage == MESA_SHADER_GEOMETRY);
2008
2009 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2010
2011 if (gs_compile->control_data_header_size_bits == 0)
2012 return;
2013
2014 /* We can only do EndPrimitive() functionality when the control data
2015 * consists of cut bits. Fortunately, the only time it isn't is when the
2016 * output type is points, in which case EndPrimitive() is a no-op.
2017 */
2018 if (gs_prog_data->control_data_format !=
2019 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2020 return;
2021 }
2022
2023 /* Cut bits use one bit per vertex. */
2024 assert(gs_compile->control_data_bits_per_vertex == 1);
2025
2026 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2027 vertex_count.type = BRW_REGISTER_TYPE_UD;
2028
2029 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2030 * vertex n, 0 otherwise. So all we need to do here is mark bit
2031 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2032 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2033 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2034 *
2035 * Note that if EndPrimitive() is called before emitting any vertices, this
2036 * will cause us to set bit 31 of the control_data_bits register to 1.
2037 * That's fine because:
2038 *
2039 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2040 * output, so the hardware will ignore cut bit 31.
2041 *
2042 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2043 * last vertex, so setting cut bit 31 has no effect (since the primitive
2044 * is automatically ended when the GS terminates).
2045 *
2046 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2047 * control_data_bits register to 0 when the first vertex is emitted.
2048 */
2049
2050 const fs_builder abld = bld.annotate("end primitive");
2051
2052 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2053 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2054 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2055 fs_reg mask = intexp2(abld, prev_count);
2056 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2057 * attention to the lower 5 bits of its second source argument, so on this
2058 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2059 * ((vertex_count - 1) % 32).
2060 */
2061 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2062 }
2063
2064 void
2065 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2066 {
2067 assert(stage == MESA_SHADER_GEOMETRY);
2068 assert(gs_compile->control_data_bits_per_vertex != 0);
2069
2070 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2071
2072 const fs_builder abld = bld.annotate("emit control data bits");
2073 const fs_builder fwa_bld = bld.exec_all();
2074
2075 /* We use a single UD register to accumulate control data bits (32 bits
2076 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
2077 * at a time.
2078 *
2079 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2080 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2081 * use the Channel Mask phase to enable/disable which DWord within that
2082 * group to write. (Remember, different SIMD8 channels may have emitted
2083 * different numbers of vertices, so we may need per-slot offsets.)
2084 *
2085 * Channel masking presents an annoying problem: we may have to replicate
2086 * the data up to 4 times:
2087 *
2088 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2089 *
2090 * To avoid penalizing shaders that emit a small number of vertices, we
2091 * can avoid these sometimes: if the size of the control data header is
2092 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
2093 * land in the same 128-bit group, so we can skip per-slot offsets.
2094 *
2095 * Similarly, if the control data header is <= 32 bits, there is only one
2096 * DWord, so we can skip channel masks.
2097 */
2098 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2099
2100 fs_reg channel_mask, per_slot_offset;
2101
2102 if (gs_compile->control_data_header_size_bits > 32) {
2103 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2104 channel_mask = vgrf(glsl_type::uint_type);
2105 }
2106
2107 if (gs_compile->control_data_header_size_bits > 128) {
2108 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2109 per_slot_offset = vgrf(glsl_type::uint_type);
2110 }
2111
2112 /* Figure out which DWord we're trying to write to using the formula:
2113 *
2114 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
2115 *
2116 * Since bits_per_vertex is a power of two, and is known at compile
2117 * time, this can be optimized to:
2118 *
2119 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2120 */
2121 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2122 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2123 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2124 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2125 unsigned log2_bits_per_vertex =
2126 util_last_bit(gs_compile->control_data_bits_per_vertex);
2127 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2128
2129 if (per_slot_offset.file != BAD_FILE) {
2130 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2131 * the appropriate OWord within the control data header.
2132 */
2133 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2134 }
2135
2136 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2137 * write to the appropriate DWORD within the OWORD.
2138 */
2139 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2140 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2141 channel_mask = intexp2(fwa_bld, channel);
2142 /* Then the channel masks need to be in bits 23:16. */
2143 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2144 }
2145
2146 /* Store the control data bits in the message payload and send it. */
2147 unsigned mlen = 2;
2148 if (channel_mask.file != BAD_FILE)
2149 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2150 if (per_slot_offset.file != BAD_FILE)
2151 mlen++;
2152
2153 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2154 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2155 unsigned i = 0;
2156 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2157 if (per_slot_offset.file != BAD_FILE)
2158 sources[i++] = per_slot_offset;
2159 if (channel_mask.file != BAD_FILE)
2160 sources[i++] = channel_mask;
2161 while (i < mlen) {
2162 sources[i++] = this->control_data_bits;
2163 }
2164
2165 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2166 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2167 inst->mlen = mlen;
2168 /* We need to increment Global Offset by 256-bits to make room for
2169 * Broadwell's extra "Vertex Count" payload at the beginning of the
2170 * URB entry. Since this is an OWord message, Global Offset is counted
2171 * in 128-bit units, so we must set it to 2.
2172 */
2173 if (gs_prog_data->static_vertex_count == -1)
2174 inst->offset = 2;
2175 }
2176
2177 void
2178 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2179 unsigned stream_id)
2180 {
2181 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2182
2183 /* Note: we are calling this *before* increasing vertex_count, so
2184 * this->vertex_count == vertex_count - 1 in the formula above.
2185 */
2186
2187 /* Stream mode uses 2 bits per vertex */
2188 assert(gs_compile->control_data_bits_per_vertex == 2);
2189
2190 /* Must be a valid stream */
2191 assert(stream_id < MAX_VERTEX_STREAMS);
2192
2193 /* Control data bits are initialized to 0 so we don't have to set any
2194 * bits when sending vertices to stream 0.
2195 */
2196 if (stream_id == 0)
2197 return;
2198
2199 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2200
2201 /* reg::sid = stream_id */
2202 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2203 abld.MOV(sid, brw_imm_ud(stream_id));
2204
2205 /* reg:shift_count = 2 * (vertex_count - 1) */
2206 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2207 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2208
2209 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2210 * attention to the lower 5 bits of its second source argument, so on this
2211 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2212 * stream_id << ((2 * (vertex_count - 1)) % 32).
2213 */
2214 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2215 abld.SHL(mask, sid, shift_count);
2216 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2217 }
2218
2219 void
2220 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2221 unsigned stream_id)
2222 {
2223 assert(stage == MESA_SHADER_GEOMETRY);
2224
2225 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2226
2227 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2228 vertex_count.type = BRW_REGISTER_TYPE_UD;
2229
2230 /* Haswell and later hardware ignores the "Render Stream Select" bits
2231 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2232 * and instead sends all primitives down the pipeline for rasterization.
2233 * If the SOL stage is enabled, "Render Stream Select" is honored and
2234 * primitives bound to non-zero streams are discarded after stream output.
2235 *
2236 * Since the only purpose of primives sent to non-zero streams is to
2237 * be recorded by transform feedback, we can simply discard all geometry
2238 * bound to these streams when transform feedback is disabled.
2239 */
2240 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2241 return;
2242
2243 /* If we're outputting 32 control data bits or less, then we can wait
2244 * until the shader is over to output them all. Otherwise we need to
2245 * output them as we go. Now is the time to do it, since we're about to
2246 * output the vertex_count'th vertex, so it's guaranteed that the
2247 * control data bits associated with the (vertex_count - 1)th vertex are
2248 * correct.
2249 */
2250 if (gs_compile->control_data_header_size_bits > 32) {
2251 const fs_builder abld =
2252 bld.annotate("emit vertex: emit control data bits");
2253
2254 /* Only emit control data bits if we've finished accumulating a batch
2255 * of 32 bits. This is the case when:
2256 *
2257 * (vertex_count * bits_per_vertex) % 32 == 0
2258 *
2259 * (in other words, when the last 5 bits of vertex_count *
2260 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2261 * integer n (which is always the case, since bits_per_vertex is
2262 * always 1 or 2), this is equivalent to requiring that the last 5-n
2263 * bits of vertex_count are 0:
2264 *
2265 * vertex_count & (2^(5-n) - 1) == 0
2266 *
2267 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2268 * equivalent to:
2269 *
2270 * vertex_count & (32 / bits_per_vertex - 1) == 0
2271 *
2272 * TODO: If vertex_count is an immediate, we could do some of this math
2273 * at compile time...
2274 */
2275 fs_inst *inst =
2276 abld.AND(bld.null_reg_d(), vertex_count,
2277 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2278 inst->conditional_mod = BRW_CONDITIONAL_Z;
2279
2280 abld.IF(BRW_PREDICATE_NORMAL);
2281 /* If vertex_count is 0, then no control data bits have been
2282 * accumulated yet, so we can skip emitting them.
2283 */
2284 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2285 BRW_CONDITIONAL_NEQ);
2286 abld.IF(BRW_PREDICATE_NORMAL);
2287 emit_gs_control_data_bits(vertex_count);
2288 abld.emit(BRW_OPCODE_ENDIF);
2289
2290 /* Reset control_data_bits to 0 so we can start accumulating a new
2291 * batch.
2292 *
2293 * Note: in the case where vertex_count == 0, this neutralizes the
2294 * effect of any call to EndPrimitive() that the shader may have
2295 * made before outputting its first vertex.
2296 */
2297 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2298 inst->force_writemask_all = true;
2299 abld.emit(BRW_OPCODE_ENDIF);
2300 }
2301
2302 emit_urb_writes(vertex_count);
2303
2304 /* In stream mode we have to set control data bits for all vertices
2305 * unless we have disabled control data bits completely (which we do
2306 * do for GL_POINTS outputs that don't use streams).
2307 */
2308 if (gs_compile->control_data_header_size_bits > 0 &&
2309 gs_prog_data->control_data_format ==
2310 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2311 set_gs_stream_control_data_bits(vertex_count, stream_id);
2312 }
2313 }
2314
2315 void
2316 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2317 const nir_src &vertex_src,
2318 unsigned base_offset,
2319 const nir_src &offset_src,
2320 unsigned num_components,
2321 unsigned first_component)
2322 {
2323 assert(type_sz(dst.type) == 4);
2324 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2325 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2326
2327 /* TODO: figure out push input layout for invocations == 1 */
2328 if (gs_prog_data->invocations == 1 &&
2329 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2330 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2331 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2332 nir_src_as_uint(vertex_src) * push_reg_count;
2333 for (unsigned i = 0; i < num_components; i++) {
2334 bld.MOV(offset(dst, bld, i),
2335 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2336 }
2337 return;
2338 }
2339
2340 /* Resort to the pull model. Ensure the VUE handles are provided. */
2341 assert(gs_prog_data->base.include_vue_handles);
2342
2343 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2344 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2345
2346 if (gs_prog_data->invocations == 1) {
2347 if (nir_src_is_const(vertex_src)) {
2348 /* The vertex index is constant; just select the proper URB handle. */
2349 icp_handle =
2350 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2351 BRW_REGISTER_TYPE_UD);
2352 } else {
2353 /* The vertex index is non-constant. We need to use indirect
2354 * addressing to fetch the proper URB handle.
2355 *
2356 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2357 * indicating that channel <n> should read the handle from
2358 * DWord <n>. We convert that to bytes by multiplying by 4.
2359 *
2360 * Next, we convert the vertex index to bytes by multiplying
2361 * by 32 (shifting by 5), and add the two together. This is
2362 * the final indirect byte offset.
2363 */
2364 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2365 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2366 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2367 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2368
2369 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2370 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2371 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2372 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2373 /* Convert vertex_index to bytes (multiply by 32) */
2374 bld.SHL(vertex_offset_bytes,
2375 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2376 brw_imm_ud(5u));
2377 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2378
2379 /* Use first_icp_handle as the base offset. There is one register
2380 * of URB handles per vertex, so inform the register allocator that
2381 * we might read up to nir->info.gs.vertices_in registers.
2382 */
2383 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2384 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2385 fs_reg(icp_offset_bytes),
2386 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2387 }
2388 } else {
2389 assert(gs_prog_data->invocations > 1);
2390
2391 if (nir_src_is_const(vertex_src)) {
2392 unsigned vertex = nir_src_as_uint(vertex_src);
2393 assert(devinfo->gen >= 9 || vertex <= 5);
2394 bld.MOV(icp_handle,
2395 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2396 BRW_REGISTER_TYPE_UD));
2397 } else {
2398 /* The vertex index is non-constant. We need to use indirect
2399 * addressing to fetch the proper URB handle.
2400 *
2401 */
2402 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2403
2404 /* Convert vertex_index to bytes (multiply by 4) */
2405 bld.SHL(icp_offset_bytes,
2406 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2407 brw_imm_ud(2u));
2408
2409 /* Use first_icp_handle as the base offset. There is one DWord
2410 * of URB handles per vertex, so inform the register allocator that
2411 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2412 */
2413 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2414 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2415 fs_reg(icp_offset_bytes),
2416 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2417 REG_SIZE));
2418 }
2419 }
2420
2421 fs_inst *inst;
2422 fs_reg indirect_offset = get_nir_src(offset_src);
2423
2424 if (nir_src_is_const(offset_src)) {
2425 /* Constant indexing - use global offset. */
2426 if (first_component != 0) {
2427 unsigned read_components = num_components + first_component;
2428 fs_reg tmp = bld.vgrf(dst.type, read_components);
2429 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2430 inst->size_written = read_components *
2431 tmp.component_size(inst->exec_size);
2432 for (unsigned i = 0; i < num_components; i++) {
2433 bld.MOV(offset(dst, bld, i),
2434 offset(tmp, bld, i + first_component));
2435 }
2436 } else {
2437 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2438 inst->size_written = num_components *
2439 dst.component_size(inst->exec_size);
2440 }
2441 inst->offset = base_offset + nir_src_as_uint(offset_src);
2442 inst->mlen = 1;
2443 } else {
2444 /* Indirect indexing - use per-slot offsets as well. */
2445 const fs_reg srcs[] = { icp_handle, indirect_offset };
2446 unsigned read_components = num_components + first_component;
2447 fs_reg tmp = bld.vgrf(dst.type, read_components);
2448 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2449 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2450 if (first_component != 0) {
2451 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2452 payload);
2453 inst->size_written = read_components *
2454 tmp.component_size(inst->exec_size);
2455 for (unsigned i = 0; i < num_components; i++) {
2456 bld.MOV(offset(dst, bld, i),
2457 offset(tmp, bld, i + first_component));
2458 }
2459 } else {
2460 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2461 inst->size_written = num_components *
2462 dst.component_size(inst->exec_size);
2463 }
2464 inst->offset = base_offset;
2465 inst->mlen = 2;
2466 }
2467 }
2468
2469 fs_reg
2470 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2471 {
2472 nir_src *offset_src = nir_get_io_offset_src(instr);
2473
2474 if (nir_src_is_const(*offset_src)) {
2475 /* The only constant offset we should find is 0. brw_nir.c's
2476 * add_const_offset_to_base() will fold other constant offsets
2477 * into instr->const_index[0].
2478 */
2479 assert(nir_src_as_uint(*offset_src) == 0);
2480 return fs_reg();
2481 }
2482
2483 return get_nir_src(*offset_src);
2484 }
2485
2486 void
2487 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2488 nir_intrinsic_instr *instr)
2489 {
2490 assert(stage == MESA_SHADER_VERTEX);
2491
2492 fs_reg dest;
2493 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2494 dest = get_nir_dest(instr->dest);
2495
2496 switch (instr->intrinsic) {
2497 case nir_intrinsic_load_vertex_id:
2498 case nir_intrinsic_load_base_vertex:
2499 unreachable("should be lowered by nir_lower_system_values()");
2500
2501 case nir_intrinsic_load_input: {
2502 assert(nir_dest_bit_size(instr->dest) == 32);
2503 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2504 src = offset(src, bld, nir_intrinsic_component(instr));
2505 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2506
2507 for (unsigned i = 0; i < instr->num_components; i++)
2508 bld.MOV(offset(dest, bld, i), offset(src, bld, i));
2509 break;
2510 }
2511
2512 case nir_intrinsic_load_vertex_id_zero_base:
2513 case nir_intrinsic_load_instance_id:
2514 case nir_intrinsic_load_base_instance:
2515 case nir_intrinsic_load_draw_id:
2516 case nir_intrinsic_load_first_vertex:
2517 case nir_intrinsic_load_is_indexed_draw:
2518 unreachable("lowered by brw_nir_lower_vs_inputs");
2519
2520 default:
2521 nir_emit_intrinsic(bld, instr);
2522 break;
2523 }
2524 }
2525
2526 fs_reg
2527 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2528 nir_intrinsic_instr *instr)
2529 {
2530 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2531 const nir_src &vertex_src = instr->src[0];
2532 nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2533 fs_reg icp_handle;
2534
2535 if (nir_src_is_const(vertex_src)) {
2536 /* Emit a MOV to resolve <0,1,0> regioning. */
2537 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2538 unsigned vertex = nir_src_as_uint(vertex_src);
2539 bld.MOV(icp_handle,
2540 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2541 BRW_REGISTER_TYPE_UD));
2542 } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2543 vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2544 /* For the common case of only 1 instance, an array index of
2545 * gl_InvocationID means reading g1. Skip all the indirect work.
2546 */
2547 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2548 } else {
2549 /* The vertex index is non-constant. We need to use indirect
2550 * addressing to fetch the proper URB handle.
2551 */
2552 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2553
2554 /* Each ICP handle is a single DWord (4 bytes) */
2555 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2556 bld.SHL(vertex_offset_bytes,
2557 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2558 brw_imm_ud(2u));
2559
2560 /* Start at g1. We might read up to 4 registers. */
2561 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2562 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2563 brw_imm_ud(4 * REG_SIZE));
2564 }
2565
2566 return icp_handle;
2567 }
2568
2569 fs_reg
2570 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2571 nir_intrinsic_instr *instr)
2572 {
2573 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2574 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2575 const nir_src &vertex_src = instr->src[0];
2576
2577 unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2578
2579 if (nir_src_is_const(vertex_src)) {
2580 return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2581 nir_src_as_uint(vertex_src), 0),
2582 BRW_REGISTER_TYPE_UD));
2583 }
2584
2585 /* The vertex index is non-constant. We need to use indirect
2586 * addressing to fetch the proper URB handle.
2587 *
2588 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2589 * indicating that channel <n> should read the handle from
2590 * DWord <n>. We convert that to bytes by multiplying by 4.
2591 *
2592 * Next, we convert the vertex index to bytes by multiplying
2593 * by 32 (shifting by 5), and add the two together. This is
2594 * the final indirect byte offset.
2595 */
2596 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2597 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2598 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2599 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2600 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2601
2602 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2603 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2604 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2605 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2606 /* Convert vertex_index to bytes (multiply by 32) */
2607 bld.SHL(vertex_offset_bytes,
2608 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2609 brw_imm_ud(5u));
2610 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2611
2612 /* Use first_icp_handle as the base offset. There is one register
2613 * of URB handles per vertex, so inform the register allocator that
2614 * we might read up to nir->info.gs.vertices_in registers.
2615 */
2616 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2617 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2618 icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2619
2620 return icp_handle;
2621 }
2622
2623 struct brw_reg
2624 fs_visitor::get_tcs_output_urb_handle()
2625 {
2626 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2627
2628 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2629 return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2630 } else {
2631 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2632 return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2633 }
2634 }
2635
2636 void
2637 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2638 nir_intrinsic_instr *instr)
2639 {
2640 assert(stage == MESA_SHADER_TESS_CTRL);
2641 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2642 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2643 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2644
2645 bool eight_patch =
2646 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2647
2648 fs_reg dst;
2649 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2650 dst = get_nir_dest(instr->dest);
2651
2652 switch (instr->intrinsic) {
2653 case nir_intrinsic_load_primitive_id:
2654 bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2655 : brw_vec1_grf(0, 1)));
2656 break;
2657 case nir_intrinsic_load_invocation_id:
2658 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2659 break;
2660 case nir_intrinsic_load_patch_vertices_in:
2661 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2662 brw_imm_d(tcs_key->input_vertices));
2663 break;
2664
2665 case nir_intrinsic_barrier: {
2666 if (tcs_prog_data->instances == 1)
2667 break;
2668
2669 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2670 fs_reg m0_2 = component(m0, 2);
2671
2672 const fs_builder chanbld = bld.exec_all().group(1, 0);
2673
2674 /* Zero the message header */
2675 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2676
2677 if (devinfo->gen < 11) {
2678 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2679 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2680 brw_imm_ud(INTEL_MASK(16, 13)));
2681
2682 /* Shift it up to bits 27:24. */
2683 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2684 } else {
2685 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2686 brw_imm_ud(INTEL_MASK(30, 24)));
2687 }
2688
2689 /* Set the Barrier Count and the enable bit */
2690 if (devinfo->gen < 11) {
2691 chanbld.OR(m0_2, m0_2,
2692 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2693 } else {
2694 chanbld.OR(m0_2, m0_2,
2695 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2696 }
2697
2698 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2699 break;
2700 }
2701
2702 case nir_intrinsic_load_input:
2703 unreachable("nir_lower_io should never give us these.");
2704 break;
2705
2706 case nir_intrinsic_load_per_vertex_input: {
2707 assert(nir_dest_bit_size(instr->dest) == 32);
2708 fs_reg indirect_offset = get_indirect_offset(instr);
2709 unsigned imm_offset = instr->const_index[0];
2710 fs_inst *inst;
2711
2712 fs_reg icp_handle =
2713 eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2714 : get_tcs_single_patch_icp_handle(bld, instr);
2715
2716 /* We can only read two double components with each URB read, so
2717 * we send two read messages in that case, each one loading up to
2718 * two double components.
2719 */
2720 unsigned num_components = instr->num_components;
2721 unsigned first_component = nir_intrinsic_component(instr);
2722
2723 if (indirect_offset.file == BAD_FILE) {
2724 /* Constant indexing - use global offset. */
2725 if (first_component != 0) {
2726 unsigned read_components = num_components + first_component;
2727 fs_reg tmp = bld.vgrf(dst.type, read_components);
2728 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2729 for (unsigned i = 0; i < num_components; i++) {
2730 bld.MOV(offset(dst, bld, i),
2731 offset(tmp, bld, i + first_component));
2732 }
2733 } else {
2734 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2735 }
2736 inst->offset = imm_offset;
2737 inst->mlen = 1;
2738 } else {
2739 /* Indirect indexing - use per-slot offsets as well. */
2740 const fs_reg srcs[] = { icp_handle, indirect_offset };
2741 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2742 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2743 if (first_component != 0) {
2744 unsigned read_components = num_components + first_component;
2745 fs_reg tmp = bld.vgrf(dst.type, read_components);
2746 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2747 payload);
2748 for (unsigned i = 0; i < num_components; i++) {
2749 bld.MOV(offset(dst, bld, i),
2750 offset(tmp, bld, i + first_component));
2751 }
2752 } else {
2753 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2754 payload);
2755 }
2756 inst->offset = imm_offset;
2757 inst->mlen = 2;
2758 }
2759 inst->size_written = (num_components + first_component) *
2760 inst->dst.component_size(inst->exec_size);
2761
2762 /* Copy the temporary to the destination to deal with writemasking.
2763 *
2764 * Also attempt to deal with gl_PointSize being in the .w component.
2765 */
2766 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2767 assert(type_sz(dst.type) == 4);
2768 inst->dst = bld.vgrf(dst.type, 4);
2769 inst->size_written = 4 * REG_SIZE;
2770 bld.MOV(dst, offset(inst->dst, bld, 3));
2771 }
2772 break;
2773 }
2774
2775 case nir_intrinsic_load_output:
2776 case nir_intrinsic_load_per_vertex_output: {
2777 assert(nir_dest_bit_size(instr->dest) == 32);
2778 fs_reg indirect_offset = get_indirect_offset(instr);
2779 unsigned imm_offset = instr->const_index[0];
2780 unsigned first_component = nir_intrinsic_component(instr);
2781
2782 struct brw_reg output_handles = get_tcs_output_urb_handle();
2783
2784 fs_inst *inst;
2785 if (indirect_offset.file == BAD_FILE) {
2786 /* This MOV replicates the output handle to all enabled channels
2787 * is SINGLE_PATCH mode.
2788 */
2789 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2790 bld.MOV(patch_handle, output_handles);
2791
2792 {
2793 if (first_component != 0) {
2794 unsigned read_components =
2795 instr->num_components + first_component;
2796 fs_reg tmp = bld.vgrf(dst.type, read_components);
2797 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2798 patch_handle);
2799 inst->size_written = read_components * REG_SIZE;
2800 for (unsigned i = 0; i < instr->num_components; i++) {
2801 bld.MOV(offset(dst, bld, i),
2802 offset(tmp, bld, i + first_component));
2803 }
2804 } else {
2805 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2806 patch_handle);
2807 inst->size_written = instr->num_components * REG_SIZE;
2808 }
2809 inst->offset = imm_offset;
2810 inst->mlen = 1;
2811 }
2812 } else {
2813 /* Indirect indexing - use per-slot offsets as well. */
2814 const fs_reg srcs[] = { output_handles, indirect_offset };
2815 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2816 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2817 if (first_component != 0) {
2818 unsigned read_components =
2819 instr->num_components + first_component;
2820 fs_reg tmp = bld.vgrf(dst.type, read_components);
2821 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2822 payload);
2823 inst->size_written = read_components * REG_SIZE;
2824 for (unsigned i = 0; i < instr->num_components; i++) {
2825 bld.MOV(offset(dst, bld, i),
2826 offset(tmp, bld, i + first_component));
2827 }
2828 } else {
2829 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2830 payload);
2831 inst->size_written = instr->num_components * REG_SIZE;
2832 }
2833 inst->offset = imm_offset;
2834 inst->mlen = 2;
2835 }
2836 break;
2837 }
2838
2839 case nir_intrinsic_store_output:
2840 case nir_intrinsic_store_per_vertex_output: {
2841 assert(nir_src_bit_size(instr->src[0]) == 32);
2842 fs_reg value = get_nir_src(instr->src[0]);
2843 fs_reg indirect_offset = get_indirect_offset(instr);
2844 unsigned imm_offset = instr->const_index[0];
2845 unsigned mask = instr->const_index[1];
2846 unsigned header_regs = 0;
2847 struct brw_reg output_handles = get_tcs_output_urb_handle();
2848
2849 fs_reg srcs[7];
2850 srcs[header_regs++] = output_handles;
2851
2852 if (indirect_offset.file != BAD_FILE) {
2853 srcs[header_regs++] = indirect_offset;
2854 }
2855
2856 if (mask == 0)
2857 break;
2858
2859 unsigned num_components = util_last_bit(mask);
2860 enum opcode opcode;
2861
2862 /* We can only pack two 64-bit components in a single message, so send
2863 * 2 messages if we have more components
2864 */
2865 unsigned first_component = nir_intrinsic_component(instr);
2866 mask = mask << first_component;
2867
2868 if (mask != WRITEMASK_XYZW) {
2869 srcs[header_regs++] = brw_imm_ud(mask << 16);
2870 opcode = indirect_offset.file != BAD_FILE ?
2871 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2872 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2873 } else {
2874 opcode = indirect_offset.file != BAD_FILE ?
2875 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2876 SHADER_OPCODE_URB_WRITE_SIMD8;
2877 }
2878
2879 for (unsigned i = 0; i < num_components; i++) {
2880 if (!(mask & (1 << (i + first_component))))
2881 continue;
2882
2883 srcs[header_regs + i + first_component] = offset(value, bld, i);
2884 }
2885
2886 unsigned mlen = header_regs + num_components + first_component;
2887 fs_reg payload =
2888 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2889 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2890
2891 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2892 inst->offset = imm_offset;
2893 inst->mlen = mlen;
2894 break;
2895 }
2896
2897 default:
2898 nir_emit_intrinsic(bld, instr);
2899 break;
2900 }
2901 }
2902
2903 void
2904 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2905 nir_intrinsic_instr *instr)
2906 {
2907 assert(stage == MESA_SHADER_TESS_EVAL);
2908 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2909
2910 fs_reg dest;
2911 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2912 dest = get_nir_dest(instr->dest);
2913
2914 switch (instr->intrinsic) {
2915 case nir_intrinsic_load_primitive_id:
2916 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2917 break;
2918 case nir_intrinsic_load_tess_coord:
2919 /* gl_TessCoord is part of the payload in g1-3 */
2920 for (unsigned i = 0; i < 3; i++) {
2921 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2922 }
2923 break;
2924
2925 case nir_intrinsic_load_input:
2926 case nir_intrinsic_load_per_vertex_input: {
2927 assert(nir_dest_bit_size(instr->dest) == 32);
2928 fs_reg indirect_offset = get_indirect_offset(instr);
2929 unsigned imm_offset = instr->const_index[0];
2930 unsigned first_component = nir_intrinsic_component(instr);
2931
2932 fs_inst *inst;
2933 if (indirect_offset.file == BAD_FILE) {
2934 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2935 * which is 16 registers (since each holds 2 vec4 slots).
2936 */
2937 const unsigned max_push_slots = 32;
2938 if (imm_offset < max_push_slots) {
2939 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2940 for (int i = 0; i < instr->num_components; i++) {
2941 unsigned comp = 4 * (imm_offset % 2) + i + first_component;
2942 bld.MOV(offset(dest, bld, i), component(src, comp));
2943 }
2944
2945 tes_prog_data->base.urb_read_length =
2946 MAX2(tes_prog_data->base.urb_read_length,
2947 (imm_offset / 2) + 1);
2948 } else {
2949 /* Replicate the patch handle to all enabled channels */
2950 const fs_reg srcs[] = {
2951 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2952 };
2953 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2954 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2955
2956 if (first_component != 0) {
2957 unsigned read_components =
2958 instr->num_components + first_component;
2959 fs_reg tmp = bld.vgrf(dest.type, read_components);
2960 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2961 patch_handle);
2962 inst->size_written = read_components * REG_SIZE;
2963 for (unsigned i = 0; i < instr->num_components; i++) {
2964 bld.MOV(offset(dest, bld, i),
2965 offset(tmp, bld, i + first_component));
2966 }
2967 } else {
2968 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2969 patch_handle);
2970 inst->size_written = instr->num_components * REG_SIZE;
2971 }
2972 inst->mlen = 1;
2973 inst->offset = imm_offset;
2974 }
2975 } else {
2976 /* Indirect indexing - use per-slot offsets as well. */
2977
2978 /* We can only read two double components with each URB read, so
2979 * we send two read messages in that case, each one loading up to
2980 * two double components.
2981 */
2982 unsigned num_components = instr->num_components;
2983 const fs_reg srcs[] = {
2984 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2985 indirect_offset
2986 };
2987 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2988 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2989
2990 if (first_component != 0) {
2991 unsigned read_components =
2992 num_components + first_component;
2993 fs_reg tmp = bld.vgrf(dest.type, read_components);
2994 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2995 payload);
2996 for (unsigned i = 0; i < num_components; i++) {
2997 bld.MOV(offset(dest, bld, i),
2998 offset(tmp, bld, i + first_component));
2999 }
3000 } else {
3001 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3002 payload);
3003 }
3004 inst->mlen = 2;
3005 inst->offset = imm_offset;
3006 inst->size_written = (num_components + first_component) *
3007 inst->dst.component_size(inst->exec_size);
3008 }
3009 break;
3010 }
3011 default:
3012 nir_emit_intrinsic(bld, instr);
3013 break;
3014 }
3015 }
3016
3017 void
3018 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3019 nir_intrinsic_instr *instr)
3020 {
3021 assert(stage == MESA_SHADER_GEOMETRY);
3022 fs_reg indirect_offset;
3023
3024 fs_reg dest;
3025 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3026 dest = get_nir_dest(instr->dest);
3027
3028 switch (instr->intrinsic) {
3029 case nir_intrinsic_load_primitive_id:
3030 assert(stage == MESA_SHADER_GEOMETRY);
3031 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3032 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3033 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3034 break;
3035
3036 case nir_intrinsic_load_input:
3037 unreachable("load_input intrinsics are invalid for the GS stage");
3038
3039 case nir_intrinsic_load_per_vertex_input:
3040 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3041 instr->src[1], instr->num_components,
3042 nir_intrinsic_component(instr));
3043 break;
3044
3045 case nir_intrinsic_emit_vertex_with_counter:
3046 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3047 break;
3048
3049 case nir_intrinsic_end_primitive_with_counter:
3050 emit_gs_end_primitive(instr->src[0]);
3051 break;
3052
3053 case nir_intrinsic_set_vertex_count:
3054 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3055 break;
3056
3057 case nir_intrinsic_load_invocation_id: {
3058 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3059 assert(val.file != BAD_FILE);
3060 dest.type = val.type;
3061 bld.MOV(dest, val);
3062 break;
3063 }
3064
3065 default:
3066 nir_emit_intrinsic(bld, instr);
3067 break;
3068 }
3069 }
3070
3071 /**
3072 * Fetch the current render target layer index.
3073 */
3074 static fs_reg
3075 fetch_render_target_array_index(const fs_builder &bld)
3076 {
3077 if (bld.shader->devinfo->gen >= 6) {
3078 /* The render target array index is provided in the thread payload as
3079 * bits 26:16 of r0.0.
3080 */
3081 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3082 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3083 brw_imm_uw(0x7ff));
3084 return idx;
3085 } else {
3086 /* Pre-SNB we only ever render into the first layer of the framebuffer
3087 * since layered rendering is not implemented.
3088 */
3089 return brw_imm_ud(0);
3090 }
3091 }
3092
3093 /**
3094 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3095 * framebuffer at the current fragment coordinates and sample index.
3096 */
3097 fs_inst *
3098 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3099 unsigned target)
3100 {
3101 const struct gen_device_info *devinfo = bld.shader->devinfo;
3102
3103 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3104 const brw_wm_prog_key *wm_key =
3105 reinterpret_cast<const brw_wm_prog_key *>(key);
3106 assert(!wm_key->coherent_fb_fetch);
3107 const struct brw_wm_prog_data *wm_prog_data =
3108 brw_wm_prog_data(stage_prog_data);
3109
3110 /* Calculate the surface index relative to the start of the texture binding
3111 * table block, since that's what the texturing messages expect.
3112 */
3113 const unsigned surface = target +
3114 wm_prog_data->binding_table.render_target_read_start -
3115 wm_prog_data->base.binding_table.texture_start;
3116
3117 /* Calculate the fragment coordinates. */
3118 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3119 bld.MOV(offset(coords, bld, 0), pixel_x);
3120 bld.MOV(offset(coords, bld, 1), pixel_y);
3121 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3122
3123 /* Calculate the sample index and MCS payload when multisampling. Luckily
3124 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3125 * shouldn't be necessary to recompile based on whether the framebuffer is
3126 * CMS or UMS.
3127 */
3128 if (wm_key->multisample_fbo &&
3129 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3130 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3131
3132 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3133 const fs_reg mcs = wm_key->multisample_fbo ?
3134 emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3135
3136 /* Use either a normal or a CMS texel fetch message depending on whether
3137 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3138 * message just in case the framebuffer uses 16x multisampling, it should
3139 * be equivalent to the normal CMS fetch for lower multisampling modes.
3140 */
3141 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3142 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3143 SHADER_OPCODE_TXF_CMS_LOGICAL;
3144
3145 /* Emit the instruction. */
3146 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3147 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3148 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3149 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3150 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3151 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3152 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3153 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3154 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3155
3156 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3157 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3158
3159 return inst;
3160 }
3161
3162 /**
3163 * Actual coherent framebuffer read implemented using the native render target
3164 * read message. Requires SKL+.
3165 */
3166 static fs_inst *
3167 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3168 {
3169 assert(bld.shader->devinfo->gen >= 9);
3170 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3171 inst->target = target;
3172 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3173
3174 return inst;
3175 }
3176
3177 static fs_reg
3178 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3179 {
3180 if (n && regs[0].file != BAD_FILE) {
3181 return regs[0];
3182
3183 } else {
3184 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3185
3186 for (unsigned i = 0; i < n; i++)
3187 regs[i] = tmp;
3188
3189 return tmp;
3190 }
3191 }
3192
3193 static fs_reg
3194 alloc_frag_output(fs_visitor *v, unsigned location)
3195 {
3196 assert(v->stage == MESA_SHADER_FRAGMENT);
3197 const brw_wm_prog_key *const key =
3198 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3199 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3200 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3201
3202 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3203 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3204
3205 else if (l == FRAG_RESULT_COLOR)
3206 return alloc_temporary(v->bld, 4, v->outputs,
3207 MAX2(key->nr_color_regions, 1));
3208
3209 else if (l == FRAG_RESULT_DEPTH)
3210 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3211
3212 else if (l == FRAG_RESULT_STENCIL)
3213 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3214
3215 else if (l == FRAG_RESULT_SAMPLE_MASK)
3216 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3217
3218 else if (l >= FRAG_RESULT_DATA0 &&
3219 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3220 return alloc_temporary(v->bld, 4,
3221 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3222
3223 else
3224 unreachable("Invalid location");
3225 }
3226
3227 /* Annoyingly, we get the barycentrics into the shader in a layout that's
3228 * optimized for PLN but it doesn't work nearly as well as one would like for
3229 * manual interpolation.
3230 */
3231 static void
3232 shuffle_from_pln_layout(const fs_builder &bld, fs_reg dest, fs_reg pln_data)
3233 {
3234 dest.type = BRW_REGISTER_TYPE_F;
3235 pln_data.type = BRW_REGISTER_TYPE_F;
3236 const fs_reg dest_u = offset(dest, bld, 0);
3237 const fs_reg dest_v = offset(dest, bld, 1);
3238
3239 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3240 const fs_builder gbld = bld.group(8, g);
3241 gbld.MOV(horiz_offset(dest_u, g * 8),
3242 byte_offset(pln_data, (g * 2 + 0) * REG_SIZE));
3243 gbld.MOV(horiz_offset(dest_v, g * 8),
3244 byte_offset(pln_data, (g * 2 + 1) * REG_SIZE));
3245 }
3246 }
3247
3248 static void
3249 shuffle_to_pln_layout(const fs_builder &bld, fs_reg pln_data, fs_reg src)
3250 {
3251 pln_data.type = BRW_REGISTER_TYPE_F;
3252 src.type = BRW_REGISTER_TYPE_F;
3253 const fs_reg src_u = offset(src, bld, 0);
3254 const fs_reg src_v = offset(src, bld, 1);
3255
3256 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3257 const fs_builder gbld = bld.group(8, g);
3258 gbld.MOV(byte_offset(pln_data, (g * 2 + 0) * REG_SIZE),
3259 horiz_offset(src_u, g * 8));
3260 gbld.MOV(byte_offset(pln_data, (g * 2 + 1) * REG_SIZE),
3261 horiz_offset(src_v, g * 8));
3262 }
3263 }
3264
3265 void
3266 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3267 nir_intrinsic_instr *instr)
3268 {
3269 assert(stage == MESA_SHADER_FRAGMENT);
3270
3271 fs_reg dest;
3272 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3273 dest = get_nir_dest(instr->dest);
3274
3275 switch (instr->intrinsic) {
3276 case nir_intrinsic_load_front_face:
3277 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3278 *emit_frontfacing_interpolation());
3279 break;
3280
3281 case nir_intrinsic_load_sample_pos: {
3282 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3283 assert(sample_pos.file != BAD_FILE);
3284 dest.type = sample_pos.type;
3285 bld.MOV(dest, sample_pos);
3286 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3287 break;
3288 }
3289
3290 case nir_intrinsic_load_layer_id:
3291 dest.type = BRW_REGISTER_TYPE_UD;
3292 bld.MOV(dest, fetch_render_target_array_index(bld));
3293 break;
3294
3295 case nir_intrinsic_is_helper_invocation: {
3296 /* Unlike the regular gl_HelperInvocation, that is defined at dispatch,
3297 * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into
3298 * consideration demoted invocations. That information is stored in
3299 * f0.1.
3300 */
3301 dest.type = BRW_REGISTER_TYPE_UD;
3302
3303 bld.MOV(dest, brw_imm_ud(0));
3304
3305 fs_inst *mov = bld.MOV(dest, brw_imm_ud(~0));
3306 mov->predicate = BRW_PREDICATE_NORMAL;
3307 mov->predicate_inverse = true;
3308 mov->flag_subreg = 1;
3309 break;
3310 }
3311
3312 case nir_intrinsic_load_helper_invocation:
3313 case nir_intrinsic_load_sample_mask_in:
3314 case nir_intrinsic_load_sample_id: {
3315 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3316 fs_reg val = nir_system_values[sv];
3317 assert(val.file != BAD_FILE);
3318 dest.type = val.type;
3319 bld.MOV(dest, val);
3320 break;
3321 }
3322
3323 case nir_intrinsic_store_output: {
3324 const fs_reg src = get_nir_src(instr->src[0]);
3325 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3326 const unsigned location = nir_intrinsic_base(instr) +
3327 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3328 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3329 src.type);
3330
3331 for (unsigned j = 0; j < instr->num_components; j++)
3332 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3333 offset(src, bld, j));
3334
3335 break;
3336 }
3337
3338 case nir_intrinsic_load_output: {
3339 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3340 BRW_NIR_FRAG_OUTPUT_LOCATION);
3341 assert(l >= FRAG_RESULT_DATA0);
3342 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3343 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3344 const fs_reg tmp = bld.vgrf(dest.type, 4);
3345
3346 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3347 emit_coherent_fb_read(bld, tmp, target);
3348 else
3349 emit_non_coherent_fb_read(bld, tmp, target);
3350
3351 for (unsigned j = 0; j < instr->num_components; j++) {
3352 bld.MOV(offset(dest, bld, j),
3353 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3354 }
3355
3356 break;
3357 }
3358
3359 case nir_intrinsic_demote:
3360 case nir_intrinsic_discard:
3361 case nir_intrinsic_demote_if:
3362 case nir_intrinsic_discard_if: {
3363 /* We track our discarded pixels in f0.1. By predicating on it, we can
3364 * update just the flag bits that aren't yet discarded. If there's no
3365 * condition, we emit a CMP of g0 != g0, so all currently executing
3366 * channels will get turned off.
3367 */
3368 fs_inst *cmp = NULL;
3369 if (instr->intrinsic == nir_intrinsic_demote_if ||
3370 instr->intrinsic == nir_intrinsic_discard_if) {
3371 nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]);
3372
3373 if (alu != NULL &&
3374 alu->op != nir_op_bcsel &&
3375 alu->op != nir_op_inot) {
3376 /* Re-emit the instruction that generated the Boolean value, but
3377 * do not store it. Since this instruction will be conditional,
3378 * other instructions that want to use the real Boolean value may
3379 * get garbage. This was a problem for piglit's fs-discard-exit-2
3380 * test.
3381 *
3382 * Ideally we'd detect that the instruction cannot have a
3383 * conditional modifier before emitting the instructions. Alas,
3384 * that is nigh impossible. Instead, we're going to assume the
3385 * instruction (or last instruction) generated can have a
3386 * conditional modifier. If it cannot, fallback to the old-style
3387 * compare, and hope dead code elimination will clean up the
3388 * extra instructions generated.
3389 */
3390 nir_emit_alu(bld, alu, false);
3391
3392 cmp = (fs_inst *) instructions.get_tail();
3393 if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) {
3394 if (cmp->can_do_cmod())
3395 cmp->conditional_mod = BRW_CONDITIONAL_Z;
3396 else
3397 cmp = NULL;
3398 } else {
3399 /* The old sequence that would have been generated is,
3400 * basically, bool_result == false. This is equivalent to
3401 * !bool_result, so negate the old modifier.
3402 */
3403 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
3404 }
3405 }
3406
3407 if (cmp == NULL) {
3408 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3409 brw_imm_d(0), BRW_CONDITIONAL_Z);
3410 }
3411 } else {
3412 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3413 BRW_REGISTER_TYPE_UW));
3414 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3415 }
3416
3417 cmp->predicate = BRW_PREDICATE_NORMAL;
3418 cmp->flag_subreg = 1;
3419
3420 if (devinfo->gen >= 6) {
3421 /* Due to the way we implement discard, the jump will only happen
3422 * when the whole quad is discarded. So we can do this even for
3423 * demote as it won't break its uniformity promises.
3424 */
3425 emit_discard_jump();
3426 }
3427
3428 limit_dispatch_width(16, "Fragment discard/demote not implemented in SIMD32 mode.");
3429 break;
3430 }
3431
3432 case nir_intrinsic_load_input: {
3433 /* load_input is only used for flat inputs */
3434 assert(nir_dest_bit_size(instr->dest) == 32);
3435 unsigned base = nir_intrinsic_base(instr);
3436 unsigned comp = nir_intrinsic_component(instr);
3437 unsigned num_components = instr->num_components;
3438
3439 /* Special case fields in the VUE header */
3440 if (base == VARYING_SLOT_LAYER)
3441 comp = 1;
3442 else if (base == VARYING_SLOT_VIEWPORT)
3443 comp = 2;
3444
3445 for (unsigned int i = 0; i < num_components; i++) {
3446 bld.MOV(offset(dest, bld, i),
3447 retype(component(interp_reg(base, comp + i), 3), dest.type));
3448 }
3449 break;
3450 }
3451
3452 case nir_intrinsic_load_fs_input_interp_deltas: {
3453 assert(stage == MESA_SHADER_FRAGMENT);
3454 assert(nir_src_as_uint(instr->src[0]) == 0);
3455 fs_reg interp = interp_reg(nir_intrinsic_base(instr),
3456 nir_intrinsic_component(instr));
3457 dest.type = BRW_REGISTER_TYPE_F;
3458 bld.MOV(offset(dest, bld, 0), component(interp, 3));
3459 bld.MOV(offset(dest, bld, 1), component(interp, 1));
3460 bld.MOV(offset(dest, bld, 2), component(interp, 0));
3461 break;
3462 }
3463
3464 case nir_intrinsic_load_barycentric_pixel:
3465 case nir_intrinsic_load_barycentric_centroid:
3466 case nir_intrinsic_load_barycentric_sample: {
3467 /* Use the delta_xy values computed from the payload */
3468 const glsl_interp_mode interp_mode =
3469 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3470 enum brw_barycentric_mode bary =
3471 brw_barycentric_mode(interp_mode, instr->intrinsic);
3472
3473 shuffle_from_pln_layout(bld, dest, this->delta_xy[bary]);
3474 break;
3475 }
3476
3477 case nir_intrinsic_load_barycentric_at_sample: {
3478 const glsl_interp_mode interpolation =
3479 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3480
3481 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3482 if (nir_src_is_const(instr->src[0])) {
3483 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3484
3485 emit_pixel_interpolater_send(bld,
3486 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3487 tmp,
3488 fs_reg(), /* src */
3489 brw_imm_ud(msg_data),
3490 interpolation);
3491 } else {
3492 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3493 BRW_REGISTER_TYPE_UD);
3494
3495 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3496 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3497 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3498 bld.exec_all().group(1, 0)
3499 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3500 emit_pixel_interpolater_send(bld,
3501 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3502 tmp,
3503 fs_reg(), /* src */
3504 msg_data,
3505 interpolation);
3506 } else {
3507 /* Make a loop that sends a message to the pixel interpolater
3508 * for the sample number in each live channel. If there are
3509 * multiple channels with the same sample number then these
3510 * will be handled simultaneously with a single interation of
3511 * the loop.
3512 */
3513 bld.emit(BRW_OPCODE_DO);
3514
3515 /* Get the next live sample number into sample_id_reg */
3516 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3517
3518 /* Set the flag register so that we can perform the send
3519 * message on all channels that have the same sample number
3520 */
3521 bld.CMP(bld.null_reg_ud(),
3522 sample_src, sample_id,
3523 BRW_CONDITIONAL_EQ);
3524 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3525 bld.exec_all().group(1, 0)
3526 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3527 fs_inst *inst =
3528 emit_pixel_interpolater_send(bld,
3529 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3530 tmp,
3531 fs_reg(), /* src */
3532 component(msg_data, 0),
3533 interpolation);
3534 set_predicate(BRW_PREDICATE_NORMAL, inst);
3535
3536 /* Continue the loop if there are any live channels left */
3537 set_predicate_inv(BRW_PREDICATE_NORMAL,
3538 true, /* inverse */
3539 bld.emit(BRW_OPCODE_WHILE));
3540 }
3541 }
3542 shuffle_from_pln_layout(bld, dest, tmp);
3543 break;
3544 }
3545
3546 case nir_intrinsic_load_barycentric_at_offset: {
3547 const glsl_interp_mode interpolation =
3548 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3549
3550 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3551
3552 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3553 if (const_offset) {
3554 assert(nir_src_bit_size(instr->src[0]) == 32);
3555 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3556 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3557
3558 emit_pixel_interpolater_send(bld,
3559 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3560 tmp,
3561 fs_reg(), /* src */
3562 brw_imm_ud(off_x | (off_y << 4)),
3563 interpolation);
3564 } else {
3565 fs_reg src = vgrf(glsl_type::ivec2_type);
3566 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3567 BRW_REGISTER_TYPE_F);
3568 for (int i = 0; i < 2; i++) {
3569 fs_reg temp = vgrf(glsl_type::float_type);
3570 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3571 fs_reg itemp = vgrf(glsl_type::int_type);
3572 /* float to int */
3573 bld.MOV(itemp, temp);
3574
3575 /* Clamp the upper end of the range to +7/16.
3576 * ARB_gpu_shader5 requires that we support a maximum offset
3577 * of +0.5, which isn't representable in a S0.4 value -- if
3578 * we didn't clamp it, we'd end up with -8/16, which is the
3579 * opposite of what the shader author wanted.
3580 *
3581 * This is legal due to ARB_gpu_shader5's quantization
3582 * rules:
3583 *
3584 * "Not all values of <offset> may be supported; x and y
3585 * offsets may be rounded to fixed-point values with the
3586 * number of fraction bits given by the
3587 * implementation-dependent constant
3588 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3589 */
3590 set_condmod(BRW_CONDITIONAL_L,
3591 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3592 }
3593
3594 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3595 emit_pixel_interpolater_send(bld,
3596 opcode,
3597 tmp,
3598 src,
3599 brw_imm_ud(0u),
3600 interpolation);
3601 }
3602 shuffle_from_pln_layout(bld, dest, tmp);
3603 break;
3604 }
3605
3606 case nir_intrinsic_load_frag_coord:
3607 emit_fragcoord_interpolation(dest);
3608 break;
3609
3610 case nir_intrinsic_load_interpolated_input: {
3611 assert(instr->src[0].ssa &&
3612 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3613 nir_intrinsic_instr *bary_intrinsic =
3614 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3615 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3616 enum glsl_interp_mode interp_mode =
3617 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3618 fs_reg dst_xy;
3619
3620 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3621 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3622 /* Use the result of the PI message. Because the load_barycentric
3623 * intrinsics return a regular vec2 and we need it in PLN layout, we
3624 * have to do a translation. Fortunately, copy-prop cleans this up
3625 * reliably.
3626 */
3627 dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3628 shuffle_to_pln_layout(bld, dst_xy, get_nir_src(instr->src[0]));
3629 } else {
3630 /* Use the delta_xy values computed from the payload */
3631 enum brw_barycentric_mode bary =
3632 brw_barycentric_mode(interp_mode, bary_intrin);
3633
3634 dst_xy = this->delta_xy[bary];
3635 }
3636
3637 for (unsigned int i = 0; i < instr->num_components; i++) {
3638 fs_reg interp =
3639 component(interp_reg(nir_intrinsic_base(instr),
3640 nir_intrinsic_component(instr) + i), 0);
3641 interp.type = BRW_REGISTER_TYPE_F;
3642 dest.type = BRW_REGISTER_TYPE_F;
3643
3644 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3645 fs_reg tmp = vgrf(glsl_type::float_type);
3646 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3647 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3648 } else {
3649 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3650 }
3651 }
3652 break;
3653 }
3654
3655 default:
3656 nir_emit_intrinsic(bld, instr);
3657 break;
3658 }
3659 }
3660
3661 void
3662 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3663 nir_intrinsic_instr *instr)
3664 {
3665 assert(stage == MESA_SHADER_COMPUTE);
3666 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3667
3668 fs_reg dest;
3669 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3670 dest = get_nir_dest(instr->dest);
3671
3672 switch (instr->intrinsic) {
3673 case nir_intrinsic_barrier:
3674 emit_barrier();
3675 cs_prog_data->uses_barrier = true;
3676 break;
3677
3678 case nir_intrinsic_load_subgroup_id:
3679 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3680 break;
3681
3682 case nir_intrinsic_load_local_invocation_id:
3683 case nir_intrinsic_load_work_group_id: {
3684 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3685 fs_reg val = nir_system_values[sv];
3686 assert(val.file != BAD_FILE);
3687 dest.type = val.type;
3688 for (unsigned i = 0; i < 3; i++)
3689 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3690 break;
3691 }
3692
3693 case nir_intrinsic_load_num_work_groups: {
3694 const unsigned surface =
3695 cs_prog_data->binding_table.work_groups_start;
3696
3697 cs_prog_data->uses_num_work_groups = true;
3698
3699 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3700 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3701 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3702 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3703
3704 /* Read the 3 GLuint components of gl_NumWorkGroups */
3705 for (unsigned i = 0; i < 3; i++) {
3706 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3707 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3708 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3709 }
3710 break;
3711 }
3712
3713 case nir_intrinsic_shared_atomic_add:
3714 case nir_intrinsic_shared_atomic_imin:
3715 case nir_intrinsic_shared_atomic_umin:
3716 case nir_intrinsic_shared_atomic_imax:
3717 case nir_intrinsic_shared_atomic_umax:
3718 case nir_intrinsic_shared_atomic_and:
3719 case nir_intrinsic_shared_atomic_or:
3720 case nir_intrinsic_shared_atomic_xor:
3721 case nir_intrinsic_shared_atomic_exchange:
3722 case nir_intrinsic_shared_atomic_comp_swap:
3723 nir_emit_shared_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
3724 break;
3725 case nir_intrinsic_shared_atomic_fmin:
3726 case nir_intrinsic_shared_atomic_fmax:
3727 case nir_intrinsic_shared_atomic_fcomp_swap:
3728 nir_emit_shared_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
3729 break;
3730
3731 case nir_intrinsic_load_shared: {
3732 assert(devinfo->gen >= 7);
3733 assert(stage == MESA_SHADER_COMPUTE);
3734
3735 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3736 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3737 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3738 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3739 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3740
3741 /* Make dest unsigned because that's what the temporary will be */
3742 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3743
3744 /* Read the vector */
3745 if (nir_intrinsic_align(instr) >= 4) {
3746 assert(nir_dest_bit_size(instr->dest) == 32);
3747 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3748 fs_inst *inst =
3749 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3750 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3751 inst->size_written = instr->num_components * dispatch_width * 4;
3752 } else {
3753 assert(nir_dest_bit_size(instr->dest) <= 32);
3754 assert(nir_dest_num_components(instr->dest) == 1);
3755 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3756
3757 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3758 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3759 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3760 bld.MOV(dest, subscript(read_result, dest.type, 0));
3761 }
3762 break;
3763 }
3764
3765 case nir_intrinsic_store_shared: {
3766 assert(devinfo->gen >= 7);
3767 assert(stage == MESA_SHADER_COMPUTE);
3768
3769 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3770 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3771 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3772 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3773 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3774
3775 fs_reg data = get_nir_src(instr->src[0]);
3776 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3777
3778 assert(nir_intrinsic_write_mask(instr) ==
3779 (1u << instr->num_components) - 1);
3780 if (nir_intrinsic_align(instr) >= 4) {
3781 assert(nir_src_bit_size(instr->src[0]) == 32);
3782 assert(nir_src_num_components(instr->src[0]) <= 4);
3783 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3784 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3785 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3786 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3787 } else {
3788 assert(nir_src_bit_size(instr->src[0]) <= 32);
3789 assert(nir_src_num_components(instr->src[0]) == 1);
3790 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3791
3792 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3793 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3794
3795 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3796 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3797 }
3798 break;
3799 }
3800
3801 default:
3802 nir_emit_intrinsic(bld, instr);
3803 break;
3804 }
3805 }
3806
3807 static fs_reg
3808 brw_nir_reduction_op_identity(const fs_builder &bld,
3809 nir_op op, brw_reg_type type)
3810 {
3811 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3812 switch (type_sz(type)) {
3813 case 2:
3814 assert(type != BRW_REGISTER_TYPE_HF);
3815 return retype(brw_imm_uw(value.u16), type);
3816 case 4:
3817 return retype(brw_imm_ud(value.u32), type);
3818 case 8:
3819 if (type == BRW_REGISTER_TYPE_DF)
3820 return setup_imm_df(bld, value.f64);
3821 else
3822 return retype(brw_imm_u64(value.u64), type);
3823 default:
3824 unreachable("Invalid type size");
3825 }
3826 }
3827
3828 static opcode
3829 brw_op_for_nir_reduction_op(nir_op op)
3830 {
3831 switch (op) {
3832 case nir_op_iadd: return BRW_OPCODE_ADD;
3833 case nir_op_fadd: return BRW_OPCODE_ADD;
3834 case nir_op_imul: return BRW_OPCODE_MUL;
3835 case nir_op_fmul: return BRW_OPCODE_MUL;
3836 case nir_op_imin: return BRW_OPCODE_SEL;
3837 case nir_op_umin: return BRW_OPCODE_SEL;
3838 case nir_op_fmin: return BRW_OPCODE_SEL;
3839 case nir_op_imax: return BRW_OPCODE_SEL;
3840 case nir_op_umax: return BRW_OPCODE_SEL;
3841 case nir_op_fmax: return BRW_OPCODE_SEL;
3842 case nir_op_iand: return BRW_OPCODE_AND;
3843 case nir_op_ior: return BRW_OPCODE_OR;
3844 case nir_op_ixor: return BRW_OPCODE_XOR;
3845 default:
3846 unreachable("Invalid reduction operation");
3847 }
3848 }
3849
3850 static brw_conditional_mod
3851 brw_cond_mod_for_nir_reduction_op(nir_op op)
3852 {
3853 switch (op) {
3854 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3855 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3856 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3857 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3858 case nir_op_imin: return BRW_CONDITIONAL_L;
3859 case nir_op_umin: return BRW_CONDITIONAL_L;
3860 case nir_op_fmin: return BRW_CONDITIONAL_L;
3861 case nir_op_imax: return BRW_CONDITIONAL_GE;
3862 case nir_op_umax: return BRW_CONDITIONAL_GE;
3863 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3864 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3865 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3866 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3867 default:
3868 unreachable("Invalid reduction operation");
3869 }
3870 }
3871
3872 fs_reg
3873 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3874 nir_intrinsic_instr *instr)
3875 {
3876 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3877
3878 if (stage_prog_data->binding_table.image_start > 0) {
3879 if (image.file == BRW_IMMEDIATE_VALUE) {
3880 image.d += stage_prog_data->binding_table.image_start;
3881 } else {
3882 bld.ADD(image, image,
3883 brw_imm_d(stage_prog_data->binding_table.image_start));
3884 }
3885 }
3886
3887 return bld.emit_uniformize(image);
3888 }
3889
3890 fs_reg
3891 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3892 nir_intrinsic_instr *instr)
3893 {
3894 /* SSBO stores are weird in that their index is in src[1] */
3895 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3896
3897 fs_reg surf_index;
3898 if (nir_src_is_const(instr->src[src])) {
3899 unsigned index = stage_prog_data->binding_table.ssbo_start +
3900 nir_src_as_uint(instr->src[src]);
3901 surf_index = brw_imm_ud(index);
3902 } else {
3903 surf_index = vgrf(glsl_type::uint_type);
3904 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3905 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3906 }
3907
3908 return bld.emit_uniformize(surf_index);
3909 }
3910
3911 static unsigned
3912 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3913 {
3914 switch (nir_intrinsic_image_dim(instr)) {
3915 case GLSL_SAMPLER_DIM_1D:
3916 return 1 + nir_intrinsic_image_array(instr);
3917 case GLSL_SAMPLER_DIM_2D:
3918 case GLSL_SAMPLER_DIM_RECT:
3919 return 2 + nir_intrinsic_image_array(instr);
3920 case GLSL_SAMPLER_DIM_3D:
3921 case GLSL_SAMPLER_DIM_CUBE:
3922 return 3;
3923 case GLSL_SAMPLER_DIM_BUF:
3924 return 1;
3925 case GLSL_SAMPLER_DIM_MS:
3926 return 2 + nir_intrinsic_image_array(instr);
3927 default:
3928 unreachable("Invalid image dimension");
3929 }
3930 }
3931
3932 void
3933 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3934 {
3935 fs_reg dest;
3936 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3937 dest = get_nir_dest(instr->dest);
3938
3939 switch (instr->intrinsic) {
3940 case nir_intrinsic_image_load:
3941 case nir_intrinsic_image_store:
3942 case nir_intrinsic_image_atomic_add:
3943 case nir_intrinsic_image_atomic_imin:
3944 case nir_intrinsic_image_atomic_umin:
3945 case nir_intrinsic_image_atomic_imax:
3946 case nir_intrinsic_image_atomic_umax:
3947 case nir_intrinsic_image_atomic_and:
3948 case nir_intrinsic_image_atomic_or:
3949 case nir_intrinsic_image_atomic_xor:
3950 case nir_intrinsic_image_atomic_exchange:
3951 case nir_intrinsic_image_atomic_comp_swap:
3952 case nir_intrinsic_bindless_image_load:
3953 case nir_intrinsic_bindless_image_store:
3954 case nir_intrinsic_bindless_image_atomic_add:
3955 case nir_intrinsic_bindless_image_atomic_imin:
3956 case nir_intrinsic_bindless_image_atomic_umin:
3957 case nir_intrinsic_bindless_image_atomic_imax:
3958 case nir_intrinsic_bindless_image_atomic_umax:
3959 case nir_intrinsic_bindless_image_atomic_and:
3960 case nir_intrinsic_bindless_image_atomic_or:
3961 case nir_intrinsic_bindless_image_atomic_xor:
3962 case nir_intrinsic_bindless_image_atomic_exchange:
3963 case nir_intrinsic_bindless_image_atomic_comp_swap: {
3964 if (stage == MESA_SHADER_FRAGMENT &&
3965 instr->intrinsic != nir_intrinsic_image_load)
3966 brw_wm_prog_data(prog_data)->has_side_effects = true;
3967
3968 /* Get some metadata from the image intrinsic. */
3969 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3970
3971 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3972
3973 switch (instr->intrinsic) {
3974 case nir_intrinsic_image_load:
3975 case nir_intrinsic_image_store:
3976 case nir_intrinsic_image_atomic_add:
3977 case nir_intrinsic_image_atomic_imin:
3978 case nir_intrinsic_image_atomic_umin:
3979 case nir_intrinsic_image_atomic_imax:
3980 case nir_intrinsic_image_atomic_umax:
3981 case nir_intrinsic_image_atomic_and:
3982 case nir_intrinsic_image_atomic_or:
3983 case nir_intrinsic_image_atomic_xor:
3984 case nir_intrinsic_image_atomic_exchange:
3985 case nir_intrinsic_image_atomic_comp_swap:
3986 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3987 get_nir_image_intrinsic_image(bld, instr);
3988 break;
3989
3990 default:
3991 /* Bindless */
3992 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
3993 bld.emit_uniformize(get_nir_src(instr->src[0]));
3994 break;
3995 }
3996
3997 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3998 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
3999 brw_imm_ud(image_intrinsic_coord_components(instr));
4000
4001 /* Emit an image load, store or atomic op. */
4002 if (instr->intrinsic == nir_intrinsic_image_load ||
4003 instr->intrinsic == nir_intrinsic_bindless_image_load) {
4004 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4005 fs_inst *inst =
4006 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4007 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4008 inst->size_written = instr->num_components * dispatch_width * 4;
4009 } else if (instr->intrinsic == nir_intrinsic_image_store ||
4010 instr->intrinsic == nir_intrinsic_bindless_image_store) {
4011 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4012 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4013 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4014 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4015 } else {
4016 unsigned num_srcs = info->num_srcs;
4017 int op = brw_aop_for_nir_intrinsic(instr);
4018 if (op == BRW_AOP_INC || op == BRW_AOP_DEC) {
4019 assert(num_srcs == 4);
4020 num_srcs = 3;
4021 }
4022
4023 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4024
4025 fs_reg data;
4026 if (num_srcs >= 4)
4027 data = get_nir_src(instr->src[3]);
4028 if (num_srcs >= 5) {
4029 fs_reg tmp = bld.vgrf(data.type, 2);
4030 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4031 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4032 data = tmp;
4033 }
4034 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4035
4036 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4037 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4038 }
4039 break;
4040 }
4041
4042 case nir_intrinsic_image_size:
4043 case nir_intrinsic_bindless_image_size: {
4044 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4045 * into will handle the binding table index for us in the geneerator.
4046 * Incidentally, this means that we can handle bindless with exactly the
4047 * same code.
4048 */
4049 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4050 BRW_REGISTER_TYPE_UD);
4051 image = bld.emit_uniformize(image);
4052
4053 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4054 if (instr->intrinsic == nir_intrinsic_image_size)
4055 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4056 else
4057 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4058 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4059 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4060 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4061
4062 /* Since the image size is always uniform, we can just emit a SIMD8
4063 * query instruction and splat the result out.
4064 */
4065 const fs_builder ubld = bld.exec_all().group(8, 0);
4066
4067 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4068 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4069 tmp, srcs, ARRAY_SIZE(srcs));
4070 inst->size_written = 4 * REG_SIZE;
4071
4072 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4073 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
4074 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4075 offset(retype(dest, tmp.type), bld, c),
4076 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
4077 } else {
4078 bld.MOV(offset(retype(dest, tmp.type), bld, c),
4079 component(offset(tmp, ubld, c), 0));
4080 }
4081 }
4082 break;
4083 }
4084
4085 case nir_intrinsic_image_load_raw_intel: {
4086 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4087 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4088 get_nir_image_intrinsic_image(bld, instr);
4089 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4090 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4091 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4092
4093 fs_inst *inst =
4094 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4095 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4096 inst->size_written = instr->num_components * dispatch_width * 4;
4097 break;
4098 }
4099
4100 case nir_intrinsic_image_store_raw_intel: {
4101 if (stage == MESA_SHADER_FRAGMENT)
4102 brw_wm_prog_data(prog_data)->has_side_effects = true;
4103
4104 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4105 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4106 get_nir_image_intrinsic_image(bld, instr);
4107 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4108 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4109 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4110 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4111
4112 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4113 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4114 break;
4115 }
4116
4117 case nir_intrinsic_group_memory_barrier:
4118 case nir_intrinsic_memory_barrier_shared:
4119 case nir_intrinsic_memory_barrier_atomic_counter:
4120 case nir_intrinsic_memory_barrier_buffer:
4121 case nir_intrinsic_memory_barrier_image:
4122 case nir_intrinsic_memory_barrier: {
4123 bool l3_fence, slm_fence;
4124 if (devinfo->gen >= 11) {
4125 l3_fence = instr->intrinsic != nir_intrinsic_memory_barrier_shared;
4126 slm_fence = instr->intrinsic == nir_intrinsic_group_memory_barrier ||
4127 instr->intrinsic == nir_intrinsic_memory_barrier ||
4128 instr->intrinsic == nir_intrinsic_memory_barrier_shared;
4129 } else {
4130 /* Prior to gen11, we only have one kind of fence. */
4131 l3_fence = true;
4132 slm_fence = false;
4133 }
4134
4135 /* Be conservative in Gen11+ and always stall in a fence. Since there
4136 * are two different fences, and shader might want to synchronize
4137 * between them.
4138 *
4139 * TODO: Improve NIR so that scope and visibility information for the
4140 * barriers is available here to make a better decision.
4141 *
4142 * TODO: When emitting more than one fence, it might help emit all
4143 * the fences first and then generate the stall moves.
4144 */
4145 const bool stall = devinfo->gen >= 11;
4146
4147 const fs_builder ubld = bld.group(8, 0);
4148 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4149
4150 if (l3_fence) {
4151 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4152 brw_vec8_grf(0, 0), brw_imm_ud(stall),
4153 /* bti */ brw_imm_ud(0))
4154 ->size_written = 2 * REG_SIZE;
4155 }
4156
4157 if (slm_fence) {
4158 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4159 brw_vec8_grf(0, 0), brw_imm_ud(stall),
4160 brw_imm_ud(GEN7_BTI_SLM))
4161 ->size_written = 2 * REG_SIZE;
4162 }
4163
4164 break;
4165 }
4166
4167 case nir_intrinsic_shader_clock: {
4168 /* We cannot do anything if there is an event, so ignore it for now */
4169 const fs_reg shader_clock = get_timestamp(bld);
4170 const fs_reg srcs[] = { component(shader_clock, 0),
4171 component(shader_clock, 1) };
4172 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4173 break;
4174 }
4175
4176 case nir_intrinsic_image_samples:
4177 /* The driver does not support multi-sampled images. */
4178 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4179 break;
4180
4181 case nir_intrinsic_load_uniform: {
4182 /* Offsets are in bytes but they should always aligned to
4183 * the type size
4184 */
4185 assert(instr->const_index[0] % 4 == 0 ||
4186 instr->const_index[0] % type_sz(dest.type) == 0);
4187
4188 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4189
4190 if (nir_src_is_const(instr->src[0])) {
4191 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4192 assert(load_offset % type_sz(dest.type) == 0);
4193 /* For 16-bit types we add the module of the const_index[0]
4194 * offset to access to not 32-bit aligned element
4195 */
4196 src.offset = load_offset + instr->const_index[0] % 4;
4197
4198 for (unsigned j = 0; j < instr->num_components; j++) {
4199 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4200 }
4201 } else {
4202 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4203 BRW_REGISTER_TYPE_UD);
4204
4205 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4206 * go past the end of the uniform. In order to keep the n'th
4207 * component from running past, we subtract off the size of all but
4208 * one component of the vector.
4209 */
4210 assert(instr->const_index[1] >=
4211 instr->num_components * (int) type_sz(dest.type));
4212 unsigned read_size = instr->const_index[1] -
4213 (instr->num_components - 1) * type_sz(dest.type);
4214
4215 bool supports_64bit_indirects =
4216 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4217
4218 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4219 for (unsigned j = 0; j < instr->num_components; j++) {
4220 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4221 offset(dest, bld, j), offset(src, bld, j),
4222 indirect, brw_imm_ud(read_size));
4223 }
4224 } else {
4225 const unsigned num_mov_indirects =
4226 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4227 /* We read a little bit less per MOV INDIRECT, as they are now
4228 * 32-bits ones instead of 64-bit. Fix read_size then.
4229 */
4230 const unsigned read_size_32bit = read_size -
4231 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4232 for (unsigned j = 0; j < instr->num_components; j++) {
4233 for (unsigned i = 0; i < num_mov_indirects; i++) {
4234 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4235 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4236 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4237 indirect, brw_imm_ud(read_size_32bit));
4238 }
4239 }
4240 }
4241 }
4242 break;
4243 }
4244
4245 case nir_intrinsic_load_ubo: {
4246 fs_reg surf_index;
4247 if (nir_src_is_const(instr->src[0])) {
4248 const unsigned index = stage_prog_data->binding_table.ubo_start +
4249 nir_src_as_uint(instr->src[0]);
4250 surf_index = brw_imm_ud(index);
4251 } else {
4252 /* The block index is not a constant. Evaluate the index expression
4253 * per-channel and add the base UBO index; we have to select a value
4254 * from any live channel.
4255 */
4256 surf_index = vgrf(glsl_type::uint_type);
4257 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4258 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4259 surf_index = bld.emit_uniformize(surf_index);
4260 }
4261
4262 if (!nir_src_is_const(instr->src[1])) {
4263 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4264 BRW_REGISTER_TYPE_UD);
4265
4266 for (int i = 0; i < instr->num_components; i++)
4267 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4268 base_offset, i * type_sz(dest.type));
4269 } else {
4270 /* Even if we are loading doubles, a pull constant load will load
4271 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4272 * need to load a full dvec4 we will have to emit 2 loads. This is
4273 * similar to demote_pull_constants(), except that in that case we
4274 * see individual accesses to each component of the vector and then
4275 * we let CSE deal with duplicate loads. Here we see a vector access
4276 * and we have to split it if necessary.
4277 */
4278 const unsigned type_size = type_sz(dest.type);
4279 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4280
4281 /* See if we've selected this as a push constant candidate */
4282 if (nir_src_is_const(instr->src[0])) {
4283 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4284 const unsigned offset_256b = load_offset / 32;
4285
4286 fs_reg push_reg;
4287 for (int i = 0; i < 4; i++) {
4288 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4289 if (range->block == ubo_block &&
4290 offset_256b >= range->start &&
4291 offset_256b < range->start + range->length) {
4292
4293 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4294 push_reg.offset = load_offset - 32 * range->start;
4295 break;
4296 }
4297 }
4298
4299 if (push_reg.file != BAD_FILE) {
4300 for (unsigned i = 0; i < instr->num_components; i++) {
4301 bld.MOV(offset(dest, bld, i),
4302 byte_offset(push_reg, i * type_size));
4303 }
4304 break;
4305 }
4306 }
4307
4308 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4309 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4310 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4311
4312 for (unsigned c = 0; c < instr->num_components;) {
4313 const unsigned base = load_offset + c * type_size;
4314 /* Number of usable components in the next block-aligned load. */
4315 const unsigned count = MIN2(instr->num_components - c,
4316 (block_sz - base % block_sz) / type_size);
4317
4318 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4319 packed_consts, surf_index,
4320 brw_imm_ud(base & ~(block_sz - 1)));
4321
4322 const fs_reg consts =
4323 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4324 dest.type);
4325
4326 for (unsigned d = 0; d < count; d++)
4327 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4328
4329 c += count;
4330 }
4331 }
4332 break;
4333 }
4334
4335 case nir_intrinsic_load_global: {
4336 assert(devinfo->gen >= 8);
4337
4338 if (nir_intrinsic_align(instr) >= 4) {
4339 assert(nir_dest_bit_size(instr->dest) == 32);
4340 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4341 dest,
4342 get_nir_src(instr->src[0]), /* Address */
4343 fs_reg(), /* No source data */
4344 brw_imm_ud(instr->num_components));
4345 inst->size_written = instr->num_components *
4346 inst->dst.component_size(inst->exec_size);
4347 } else {
4348 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4349 assert(bit_size <= 32);
4350 assert(nir_dest_num_components(instr->dest) == 1);
4351 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4352 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4353 tmp,
4354 get_nir_src(instr->src[0]), /* Address */
4355 fs_reg(), /* No source data */
4356 brw_imm_ud(bit_size));
4357 bld.MOV(dest, subscript(tmp, dest.type, 0));
4358 }
4359 break;
4360 }
4361
4362 case nir_intrinsic_store_global:
4363 assert(devinfo->gen >= 8);
4364
4365 if (stage == MESA_SHADER_FRAGMENT)
4366 brw_wm_prog_data(prog_data)->has_side_effects = true;
4367
4368 if (nir_intrinsic_align(instr) >= 4) {
4369 assert(nir_src_bit_size(instr->src[0]) == 32);
4370 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4371 fs_reg(),
4372 get_nir_src(instr->src[1]), /* Address */
4373 get_nir_src(instr->src[0]), /* Data */
4374 brw_imm_ud(instr->num_components));
4375 } else {
4376 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4377 assert(bit_size <= 32);
4378 assert(nir_src_num_components(instr->src[0]) == 1);
4379 brw_reg_type data_type =
4380 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4381 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4382 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4383 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4384 fs_reg(),
4385 get_nir_src(instr->src[1]), /* Address */
4386 tmp, /* Data */
4387 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4388 }
4389 break;
4390
4391 case nir_intrinsic_global_atomic_add:
4392 case nir_intrinsic_global_atomic_imin:
4393 case nir_intrinsic_global_atomic_umin:
4394 case nir_intrinsic_global_atomic_imax:
4395 case nir_intrinsic_global_atomic_umax:
4396 case nir_intrinsic_global_atomic_and:
4397 case nir_intrinsic_global_atomic_or:
4398 case nir_intrinsic_global_atomic_xor:
4399 case nir_intrinsic_global_atomic_exchange:
4400 case nir_intrinsic_global_atomic_comp_swap:
4401 nir_emit_global_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4402 break;
4403 case nir_intrinsic_global_atomic_fmin:
4404 case nir_intrinsic_global_atomic_fmax:
4405 case nir_intrinsic_global_atomic_fcomp_swap:
4406 nir_emit_global_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4407 break;
4408
4409 case nir_intrinsic_load_ssbo: {
4410 assert(devinfo->gen >= 7);
4411
4412 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4413 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4414 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4415 get_nir_ssbo_intrinsic_index(bld, instr);
4416 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4417 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4418
4419 /* Make dest unsigned because that's what the temporary will be */
4420 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4421
4422 /* Read the vector */
4423 if (nir_intrinsic_align(instr) >= 4) {
4424 assert(nir_dest_bit_size(instr->dest) == 32);
4425 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4426 fs_inst *inst =
4427 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4428 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4429 inst->size_written = instr->num_components * dispatch_width * 4;
4430 } else {
4431 assert(nir_dest_bit_size(instr->dest) <= 32);
4432 assert(nir_dest_num_components(instr->dest) == 1);
4433 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4434
4435 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4436 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4437 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4438 bld.MOV(dest, subscript(read_result, dest.type, 0));
4439 }
4440 break;
4441 }
4442
4443 case nir_intrinsic_store_ssbo: {
4444 assert(devinfo->gen >= 7);
4445
4446 if (stage == MESA_SHADER_FRAGMENT)
4447 brw_wm_prog_data(prog_data)->has_side_effects = true;
4448
4449 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4450 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4451 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4452 get_nir_ssbo_intrinsic_index(bld, instr);
4453 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4454 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4455
4456 fs_reg data = get_nir_src(instr->src[0]);
4457 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4458
4459 assert(nir_intrinsic_write_mask(instr) ==
4460 (1u << instr->num_components) - 1);
4461 if (nir_intrinsic_align(instr) >= 4) {
4462 assert(nir_src_bit_size(instr->src[0]) == 32);
4463 assert(nir_src_num_components(instr->src[0]) <= 4);
4464 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4465 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4466 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4467 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4468 } else {
4469 assert(nir_src_bit_size(instr->src[0]) <= 32);
4470 assert(nir_src_num_components(instr->src[0]) == 1);
4471 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4472
4473 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4474 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4475
4476 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4477 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4478 }
4479 break;
4480 }
4481
4482 case nir_intrinsic_store_output: {
4483 assert(nir_src_bit_size(instr->src[0]) == 32);
4484 fs_reg src = get_nir_src(instr->src[0]);
4485
4486 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4487 unsigned num_components = instr->num_components;
4488 unsigned first_component = nir_intrinsic_component(instr);
4489
4490 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4491 4 * store_offset), src.type);
4492 for (unsigned j = 0; j < num_components; j++) {
4493 bld.MOV(offset(new_dest, bld, j + first_component),
4494 offset(src, bld, j));
4495 }
4496 break;
4497 }
4498
4499 case nir_intrinsic_ssbo_atomic_add:
4500 case nir_intrinsic_ssbo_atomic_imin:
4501 case nir_intrinsic_ssbo_atomic_umin:
4502 case nir_intrinsic_ssbo_atomic_imax:
4503 case nir_intrinsic_ssbo_atomic_umax:
4504 case nir_intrinsic_ssbo_atomic_and:
4505 case nir_intrinsic_ssbo_atomic_or:
4506 case nir_intrinsic_ssbo_atomic_xor:
4507 case nir_intrinsic_ssbo_atomic_exchange:
4508 case nir_intrinsic_ssbo_atomic_comp_swap:
4509 nir_emit_ssbo_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4510 break;
4511 case nir_intrinsic_ssbo_atomic_fmin:
4512 case nir_intrinsic_ssbo_atomic_fmax:
4513 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4514 nir_emit_ssbo_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4515 break;
4516
4517 case nir_intrinsic_get_buffer_size: {
4518 assert(nir_src_num_components(instr->src[0]) == 1);
4519 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4520 nir_src_as_uint(instr->src[0]) : 0;
4521
4522 /* A resinfo's sampler message is used to get the buffer size. The
4523 * SIMD8's writeback message consists of four registers and SIMD16's
4524 * writeback message consists of 8 destination registers (two per each
4525 * component). Because we are only interested on the first channel of
4526 * the first returned component, where resinfo returns the buffer size
4527 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4528 * the dispatch width.
4529 */
4530 const fs_builder ubld = bld.exec_all().group(8, 0);
4531 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4532 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4533
4534 /* Set LOD = 0 */
4535 ubld.MOV(src_payload, brw_imm_d(0));
4536
4537 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4538 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4539 src_payload, brw_imm_ud(index));
4540 inst->header_size = 0;
4541 inst->mlen = 1;
4542 inst->size_written = 4 * REG_SIZE;
4543
4544 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4545 *
4546 * "Out-of-bounds checking is always performed at a DWord granularity. If
4547 * any part of the DWord is out-of-bounds then the whole DWord is
4548 * considered out-of-bounds."
4549 *
4550 * This implies that types with size smaller than 4-bytes need to be
4551 * padded if they don't complete the last dword of the buffer. But as we
4552 * need to maintain the original size we need to reverse the padding
4553 * calculation to return the correct size to know the number of elements
4554 * of an unsized array. As we stored in the last two bits of the surface
4555 * size the needed padding for the buffer, we calculate here the
4556 * original buffer_size reversing the surface_size calculation:
4557 *
4558 * surface_size = isl_align(buffer_size, 4) +
4559 * (isl_align(buffer_size) - buffer_size)
4560 *
4561 * buffer_size = surface_size & ~3 - surface_size & 3
4562 */
4563
4564 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4565 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4566 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4567
4568 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4569 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4570 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4571
4572 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4573 break;
4574 }
4575
4576 case nir_intrinsic_load_subgroup_size:
4577 /* This should only happen for fragment shaders because every other case
4578 * is lowered in NIR so we can optimize on it.
4579 */
4580 assert(stage == MESA_SHADER_FRAGMENT);
4581 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(dispatch_width));
4582 break;
4583
4584 case nir_intrinsic_load_subgroup_invocation:
4585 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4586 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4587 break;
4588
4589 case nir_intrinsic_load_subgroup_eq_mask:
4590 case nir_intrinsic_load_subgroup_ge_mask:
4591 case nir_intrinsic_load_subgroup_gt_mask:
4592 case nir_intrinsic_load_subgroup_le_mask:
4593 case nir_intrinsic_load_subgroup_lt_mask:
4594 unreachable("not reached");
4595
4596 case nir_intrinsic_vote_any: {
4597 const fs_builder ubld = bld.exec_all().group(1, 0);
4598
4599 /* The any/all predicates do not consider channel enables. To prevent
4600 * dead channels from affecting the result, we initialize the flag with
4601 * with the identity value for the logical operation.
4602 */
4603 if (dispatch_width == 32) {
4604 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4605 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4606 brw_imm_ud(0));
4607 } else {
4608 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4609 }
4610 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4611
4612 /* For some reason, the any/all predicates don't work properly with
4613 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4614 * doesn't read the correct subset of the flag register and you end up
4615 * getting garbage in the second half. Work around this by using a pair
4616 * of 1-wide MOVs and scattering the result.
4617 */
4618 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4619 ubld.MOV(res1, brw_imm_d(0));
4620 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4621 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4622 BRW_PREDICATE_ALIGN1_ANY32H,
4623 ubld.MOV(res1, brw_imm_d(-1)));
4624
4625 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4626 break;
4627 }
4628 case nir_intrinsic_vote_all: {
4629 const fs_builder ubld = bld.exec_all().group(1, 0);
4630
4631 /* The any/all predicates do not consider channel enables. To prevent
4632 * dead channels from affecting the result, we initialize the flag with
4633 * with the identity value for the logical operation.
4634 */
4635 if (dispatch_width == 32) {
4636 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4637 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4638 brw_imm_ud(0xffffffff));
4639 } else {
4640 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4641 }
4642 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4643
4644 /* For some reason, the any/all predicates don't work properly with
4645 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4646 * doesn't read the correct subset of the flag register and you end up
4647 * getting garbage in the second half. Work around this by using a pair
4648 * of 1-wide MOVs and scattering the result.
4649 */
4650 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4651 ubld.MOV(res1, brw_imm_d(0));
4652 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4653 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4654 BRW_PREDICATE_ALIGN1_ALL32H,
4655 ubld.MOV(res1, brw_imm_d(-1)));
4656
4657 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4658 break;
4659 }
4660 case nir_intrinsic_vote_feq:
4661 case nir_intrinsic_vote_ieq: {
4662 fs_reg value = get_nir_src(instr->src[0]);
4663 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4664 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4665 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
4666 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4667 }
4668
4669 fs_reg uniformized = bld.emit_uniformize(value);
4670 const fs_builder ubld = bld.exec_all().group(1, 0);
4671
4672 /* The any/all predicates do not consider channel enables. To prevent
4673 * dead channels from affecting the result, we initialize the flag with
4674 * with the identity value for the logical operation.
4675 */
4676 if (dispatch_width == 32) {
4677 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4678 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4679 brw_imm_ud(0xffffffff));
4680 } else {
4681 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4682 }
4683 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4684
4685 /* For some reason, the any/all predicates don't work properly with
4686 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4687 * doesn't read the correct subset of the flag register and you end up
4688 * getting garbage in the second half. Work around this by using a pair
4689 * of 1-wide MOVs and scattering the result.
4690 */
4691 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4692 ubld.MOV(res1, brw_imm_d(0));
4693 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4694 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4695 BRW_PREDICATE_ALIGN1_ALL32H,
4696 ubld.MOV(res1, brw_imm_d(-1)));
4697
4698 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4699 break;
4700 }
4701
4702 case nir_intrinsic_ballot: {
4703 const fs_reg value = retype(get_nir_src(instr->src[0]),
4704 BRW_REGISTER_TYPE_UD);
4705 struct brw_reg flag = brw_flag_reg(0, 0);
4706 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4707 * as f0.0. This is a problem for fragment programs as we currently use
4708 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4709 * programs yet so this isn't a problem. When we do, something will
4710 * have to change.
4711 */
4712 if (dispatch_width == 32)
4713 flag.type = BRW_REGISTER_TYPE_UD;
4714
4715 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4716 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4717
4718 if (instr->dest.ssa.bit_size > 32) {
4719 dest.type = BRW_REGISTER_TYPE_UQ;
4720 } else {
4721 dest.type = BRW_REGISTER_TYPE_UD;
4722 }
4723 bld.MOV(dest, flag);
4724 break;
4725 }
4726
4727 case nir_intrinsic_read_invocation: {
4728 const fs_reg value = get_nir_src(instr->src[0]);
4729 const fs_reg invocation = get_nir_src(instr->src[1]);
4730 fs_reg tmp = bld.vgrf(value.type);
4731
4732 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4733 bld.emit_uniformize(invocation));
4734
4735 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4736 break;
4737 }
4738
4739 case nir_intrinsic_read_first_invocation: {
4740 const fs_reg value = get_nir_src(instr->src[0]);
4741 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4742 break;
4743 }
4744
4745 case nir_intrinsic_shuffle: {
4746 const fs_reg value = get_nir_src(instr->src[0]);
4747 const fs_reg index = get_nir_src(instr->src[1]);
4748
4749 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4750 break;
4751 }
4752
4753 case nir_intrinsic_first_invocation: {
4754 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4755 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4756 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4757 fs_reg(component(tmp, 0)));
4758 break;
4759 }
4760
4761 case nir_intrinsic_quad_broadcast: {
4762 const fs_reg value = get_nir_src(instr->src[0]);
4763 const unsigned index = nir_src_as_uint(instr->src[1]);
4764
4765 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4766 value, brw_imm_ud(index), brw_imm_ud(4));
4767 break;
4768 }
4769
4770 case nir_intrinsic_quad_swap_horizontal: {
4771 const fs_reg value = get_nir_src(instr->src[0]);
4772 const fs_reg tmp = bld.vgrf(value.type);
4773 if (devinfo->gen <= 7) {
4774 /* The hardware doesn't seem to support these crazy regions with
4775 * compressed instructions on gen7 and earlier so we fall back to
4776 * using quad swizzles. Fortunately, we don't support 64-bit
4777 * anything in Vulkan on gen7.
4778 */
4779 assert(nir_src_bit_size(instr->src[0]) == 32);
4780 const fs_builder ubld = bld.exec_all();
4781 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4782 brw_imm_ud(BRW_SWIZZLE4(1,0,3,2)));
4783 bld.MOV(retype(dest, value.type), tmp);
4784 } else {
4785 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4786
4787 const fs_reg src_left = horiz_stride(value, 2);
4788 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4789 const fs_reg tmp_left = horiz_stride(tmp, 2);
4790 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4791
4792 ubld.MOV(tmp_left, src_right);
4793 ubld.MOV(tmp_right, src_left);
4794
4795 }
4796 bld.MOV(retype(dest, value.type), tmp);
4797 break;
4798 }
4799
4800 case nir_intrinsic_quad_swap_vertical: {
4801 const fs_reg value = get_nir_src(instr->src[0]);
4802 if (nir_src_bit_size(instr->src[0]) == 32) {
4803 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4804 const fs_reg tmp = bld.vgrf(value.type);
4805 const fs_builder ubld = bld.exec_all();
4806 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4807 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4808 bld.MOV(retype(dest, value.type), tmp);
4809 } else {
4810 /* For larger data types, we have to either emit dispatch_width many
4811 * MOVs or else fall back to doing indirects.
4812 */
4813 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4814 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4815 brw_imm_w(0x2));
4816 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4817 }
4818 break;
4819 }
4820
4821 case nir_intrinsic_quad_swap_diagonal: {
4822 const fs_reg value = get_nir_src(instr->src[0]);
4823 if (nir_src_bit_size(instr->src[0]) == 32) {
4824 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4825 const fs_reg tmp = bld.vgrf(value.type);
4826 const fs_builder ubld = bld.exec_all();
4827 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4828 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4829 bld.MOV(retype(dest, value.type), tmp);
4830 } else {
4831 /* For larger data types, we have to either emit dispatch_width many
4832 * MOVs or else fall back to doing indirects.
4833 */
4834 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4835 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4836 brw_imm_w(0x3));
4837 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4838 }
4839 break;
4840 }
4841
4842 case nir_intrinsic_reduce: {
4843 fs_reg src = get_nir_src(instr->src[0]);
4844 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4845 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4846 if (cluster_size == 0 || cluster_size > dispatch_width)
4847 cluster_size = dispatch_width;
4848
4849 /* Figure out the source type */
4850 src.type = brw_type_for_nir_type(devinfo,
4851 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4852 nir_src_bit_size(instr->src[0])));
4853
4854 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4855 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4856 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4857
4858 /* Set up a register for all of our scratching around and initialize it
4859 * to reduction operation's identity value.
4860 */
4861 fs_reg scan = bld.vgrf(src.type);
4862 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4863
4864 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4865
4866 dest.type = src.type;
4867 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4868 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4869 * the distance between clusters is at least 2 GRFs. In this case,
4870 * we don't need the weird striding of the CLUSTER_BROADCAST
4871 * instruction and can just do regular MOVs.
4872 */
4873 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4874 const unsigned groups =
4875 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4876 const unsigned group_size = dispatch_width / groups;
4877 for (unsigned i = 0; i < groups; i++) {
4878 const unsigned cluster = (i * group_size) / cluster_size;
4879 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4880 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4881 component(scan, comp));
4882 }
4883 } else {
4884 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4885 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4886 }
4887 break;
4888 }
4889
4890 case nir_intrinsic_inclusive_scan:
4891 case nir_intrinsic_exclusive_scan: {
4892 fs_reg src = get_nir_src(instr->src[0]);
4893 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4894
4895 /* Figure out the source type */
4896 src.type = brw_type_for_nir_type(devinfo,
4897 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4898 nir_src_bit_size(instr->src[0])));
4899
4900 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4901 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4902 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4903
4904 /* Set up a register for all of our scratching around and initialize it
4905 * to reduction operation's identity value.
4906 */
4907 fs_reg scan = bld.vgrf(src.type);
4908 const fs_builder allbld = bld.exec_all();
4909 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4910
4911 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4912 /* Exclusive scan is a bit harder because we have to do an annoying
4913 * shift of the contents before we can begin. To make things worse,
4914 * we can't do this with a normal stride; we have to use indirects.
4915 */
4916 fs_reg shifted = bld.vgrf(src.type);
4917 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4918 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4919 brw_imm_w(-1));
4920 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4921 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4922 scan = shifted;
4923 }
4924
4925 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4926
4927 bld.MOV(retype(dest, src.type), scan);
4928 break;
4929 }
4930
4931 case nir_intrinsic_begin_invocation_interlock: {
4932 const fs_builder ubld = bld.group(8, 0);
4933 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4934
4935 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp, brw_vec8_grf(0, 0))
4936 ->size_written = 2 * REG_SIZE;
4937 break;
4938 }
4939
4940 case nir_intrinsic_end_invocation_interlock: {
4941 /* For endInvocationInterlock(), we need to insert a memory fence which
4942 * stalls in the shader until the memory transactions prior to that
4943 * fence are complete. This ensures that the shader does not end before
4944 * any writes from its critical section have landed. Otherwise, you can
4945 * end up with a case where the next invocation on that pixel properly
4946 * stalls for previous FS invocation on its pixel to complete but
4947 * doesn't actually wait for the dataport memory transactions from that
4948 * thread to land before submitting its own.
4949 */
4950 const fs_builder ubld = bld.group(8, 0);
4951 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4952 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4953 brw_vec8_grf(0, 0), brw_imm_ud(1), brw_imm_ud(0))
4954 ->size_written = 2 * REG_SIZE;
4955 break;
4956 }
4957
4958 default:
4959 unreachable("unknown intrinsic");
4960 }
4961 }
4962
4963 void
4964 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4965 int op, nir_intrinsic_instr *instr)
4966 {
4967 if (stage == MESA_SHADER_FRAGMENT)
4968 brw_wm_prog_data(prog_data)->has_side_effects = true;
4969
4970 /* The BTI untyped atomic messages only support 32-bit atomics. If you
4971 * just look at the big table of messages in the Vol 7 of the SKL PRM, they
4972 * appear to exist. However, if you look at Vol 2a, there are no message
4973 * descriptors provided for Qword atomic ops except for A64 messages.
4974 */
4975 assert(nir_dest_bit_size(instr->dest) == 32);
4976
4977 fs_reg dest;
4978 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4979 dest = get_nir_dest(instr->dest);
4980
4981 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4982 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
4983 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4984 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4985 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4986
4987 fs_reg data;
4988 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4989 data = get_nir_src(instr->src[2]);
4990
4991 if (op == BRW_AOP_CMPWR) {
4992 fs_reg tmp = bld.vgrf(data.type, 2);
4993 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
4994 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4995 data = tmp;
4996 }
4997 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4998
4999 /* Emit the actual atomic operation */
5000
5001 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5002 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5003 }
5004
5005 void
5006 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5007 int op, nir_intrinsic_instr *instr)
5008 {
5009 if (stage == MESA_SHADER_FRAGMENT)
5010 brw_wm_prog_data(prog_data)->has_side_effects = true;
5011
5012 fs_reg dest;
5013 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5014 dest = get_nir_dest(instr->dest);
5015
5016 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5017 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5018 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5019 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5020 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5021
5022 fs_reg data = get_nir_src(instr->src[2]);
5023 if (op == BRW_AOP_FCMPWR) {
5024 fs_reg tmp = bld.vgrf(data.type, 2);
5025 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5026 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5027 data = tmp;
5028 }
5029 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5030
5031 /* Emit the actual atomic operation */
5032
5033 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5034 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5035 }
5036
5037 void
5038 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5039 int op, nir_intrinsic_instr *instr)
5040 {
5041 fs_reg dest;
5042 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5043 dest = get_nir_dest(instr->dest);
5044
5045 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5046 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5047 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5048 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5049
5050 fs_reg data;
5051 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5052 data = get_nir_src(instr->src[1]);
5053 if (op == BRW_AOP_CMPWR) {
5054 fs_reg tmp = bld.vgrf(data.type, 2);
5055 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5056 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5057 data = tmp;
5058 }
5059 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5060
5061 /* Get the offset */
5062 if (nir_src_is_const(instr->src[0])) {
5063 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5064 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5065 } else {
5066 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5067 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5068 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5069 brw_imm_ud(instr->const_index[0]));
5070 }
5071
5072 /* Emit the actual atomic operation operation */
5073
5074 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5075 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5076 }
5077
5078 void
5079 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5080 int op, nir_intrinsic_instr *instr)
5081 {
5082 fs_reg dest;
5083 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5084 dest = get_nir_dest(instr->dest);
5085
5086 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5087 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5088 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5089 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5090
5091 fs_reg data = get_nir_src(instr->src[1]);
5092 if (op == BRW_AOP_FCMPWR) {
5093 fs_reg tmp = bld.vgrf(data.type, 2);
5094 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5095 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5096 data = tmp;
5097 }
5098 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5099
5100 /* Get the offset */
5101 if (nir_src_is_const(instr->src[0])) {
5102 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5103 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5104 } else {
5105 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5106 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5107 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5108 brw_imm_ud(instr->const_index[0]));
5109 }
5110
5111 /* Emit the actual atomic operation operation */
5112
5113 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5114 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5115 }
5116
5117 void
5118 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5119 int op, nir_intrinsic_instr *instr)
5120 {
5121 if (stage == MESA_SHADER_FRAGMENT)
5122 brw_wm_prog_data(prog_data)->has_side_effects = true;
5123
5124 fs_reg dest;
5125 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5126 dest = get_nir_dest(instr->dest);
5127
5128 fs_reg addr = get_nir_src(instr->src[0]);
5129
5130 fs_reg data;
5131 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5132 data = get_nir_src(instr->src[1]);
5133
5134 if (op == BRW_AOP_CMPWR) {
5135 fs_reg tmp = bld.vgrf(data.type, 2);
5136 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5137 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5138 data = tmp;
5139 }
5140
5141 if (nir_dest_bit_size(instr->dest) == 64) {
5142 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5143 dest, addr, data, brw_imm_ud(op));
5144 } else {
5145 assert(nir_dest_bit_size(instr->dest) == 32);
5146 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5147 dest, addr, data, brw_imm_ud(op));
5148 }
5149 }
5150
5151 void
5152 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5153 int op, nir_intrinsic_instr *instr)
5154 {
5155 if (stage == MESA_SHADER_FRAGMENT)
5156 brw_wm_prog_data(prog_data)->has_side_effects = true;
5157
5158 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5159 fs_reg dest = get_nir_dest(instr->dest);
5160
5161 fs_reg addr = get_nir_src(instr->src[0]);
5162
5163 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5164 fs_reg data = get_nir_src(instr->src[1]);
5165
5166 if (op == BRW_AOP_FCMPWR) {
5167 fs_reg tmp = bld.vgrf(data.type, 2);
5168 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5169 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5170 data = tmp;
5171 }
5172
5173 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5174 dest, addr, data, brw_imm_ud(op));
5175 }
5176
5177 void
5178 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5179 {
5180 unsigned texture = instr->texture_index;
5181 unsigned sampler = instr->sampler_index;
5182
5183 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5184
5185 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5186 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5187
5188 int lod_components = 0;
5189
5190 /* The hardware requires a LOD for buffer textures */
5191 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5192 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5193
5194 uint32_t header_bits = 0;
5195 for (unsigned i = 0; i < instr->num_srcs; i++) {
5196 fs_reg src = get_nir_src(instr->src[i].src);
5197 switch (instr->src[i].src_type) {
5198 case nir_tex_src_bias:
5199 srcs[TEX_LOGICAL_SRC_LOD] =
5200 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5201 break;
5202 case nir_tex_src_comparator:
5203 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5204 break;
5205 case nir_tex_src_coord:
5206 switch (instr->op) {
5207 case nir_texop_txf:
5208 case nir_texop_txf_ms:
5209 case nir_texop_txf_ms_mcs:
5210 case nir_texop_samples_identical:
5211 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5212 break;
5213 default:
5214 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5215 break;
5216 }
5217 break;
5218 case nir_tex_src_ddx:
5219 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5220 lod_components = nir_tex_instr_src_size(instr, i);
5221 break;
5222 case nir_tex_src_ddy:
5223 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5224 break;
5225 case nir_tex_src_lod:
5226 switch (instr->op) {
5227 case nir_texop_txs:
5228 srcs[TEX_LOGICAL_SRC_LOD] =
5229 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5230 break;
5231 case nir_texop_txf:
5232 srcs[TEX_LOGICAL_SRC_LOD] =
5233 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5234 break;
5235 default:
5236 srcs[TEX_LOGICAL_SRC_LOD] =
5237 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5238 break;
5239 }
5240 break;
5241 case nir_tex_src_min_lod:
5242 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5243 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5244 break;
5245 case nir_tex_src_ms_index:
5246 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5247 break;
5248
5249 case nir_tex_src_offset: {
5250 uint32_t offset_bits = 0;
5251 if (brw_texture_offset(instr, i, &offset_bits)) {
5252 header_bits |= offset_bits;
5253 } else {
5254 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5255 retype(src, BRW_REGISTER_TYPE_D);
5256 }
5257 break;
5258 }
5259
5260 case nir_tex_src_projector:
5261 unreachable("should be lowered");
5262
5263 case nir_tex_src_texture_offset: {
5264 /* Emit code to evaluate the actual indexing expression */
5265 fs_reg tmp = vgrf(glsl_type::uint_type);
5266 bld.ADD(tmp, src, brw_imm_ud(texture));
5267 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5268 break;
5269 }
5270
5271 case nir_tex_src_sampler_offset: {
5272 /* Emit code to evaluate the actual indexing expression */
5273 fs_reg tmp = vgrf(glsl_type::uint_type);
5274 bld.ADD(tmp, src, brw_imm_ud(sampler));
5275 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5276 break;
5277 }
5278
5279 case nir_tex_src_texture_handle:
5280 assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
5281 srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
5282 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
5283 break;
5284
5285 case nir_tex_src_sampler_handle:
5286 assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
5287 srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
5288 srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
5289 break;
5290
5291 case nir_tex_src_ms_mcs:
5292 assert(instr->op == nir_texop_txf_ms);
5293 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5294 break;
5295
5296 case nir_tex_src_plane: {
5297 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5298 const uint32_t texture_index =
5299 instr->texture_index +
5300 stage_prog_data->binding_table.plane_start[plane] -
5301 stage_prog_data->binding_table.texture_start;
5302
5303 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5304 break;
5305 }
5306
5307 default:
5308 unreachable("unknown texture source");
5309 }
5310 }
5311
5312 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5313 (instr->op == nir_texop_txf_ms ||
5314 instr->op == nir_texop_samples_identical)) {
5315 if (devinfo->gen >= 7 &&
5316 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5317 srcs[TEX_LOGICAL_SRC_MCS] =
5318 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5319 instr->coord_components,
5320 srcs[TEX_LOGICAL_SRC_SURFACE],
5321 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
5322 } else {
5323 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5324 }
5325 }
5326
5327 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5328 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5329
5330 enum opcode opcode;
5331 switch (instr->op) {
5332 case nir_texop_tex:
5333 opcode = SHADER_OPCODE_TEX_LOGICAL;
5334 break;
5335 case nir_texop_txb:
5336 opcode = FS_OPCODE_TXB_LOGICAL;
5337 break;
5338 case nir_texop_txl:
5339 opcode = SHADER_OPCODE_TXL_LOGICAL;
5340 break;
5341 case nir_texop_txd:
5342 opcode = SHADER_OPCODE_TXD_LOGICAL;
5343 break;
5344 case nir_texop_txf:
5345 opcode = SHADER_OPCODE_TXF_LOGICAL;
5346 break;
5347 case nir_texop_txf_ms:
5348 if ((key_tex->msaa_16 & (1 << sampler)))
5349 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5350 else
5351 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5352 break;
5353 case nir_texop_txf_ms_mcs:
5354 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5355 break;
5356 case nir_texop_query_levels:
5357 case nir_texop_txs:
5358 opcode = SHADER_OPCODE_TXS_LOGICAL;
5359 break;
5360 case nir_texop_lod:
5361 opcode = SHADER_OPCODE_LOD_LOGICAL;
5362 break;
5363 case nir_texop_tg4:
5364 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5365 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5366 else
5367 opcode = SHADER_OPCODE_TG4_LOGICAL;
5368 break;
5369 case nir_texop_texture_samples:
5370 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5371 break;
5372 case nir_texop_samples_identical: {
5373 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5374
5375 /* If mcs is an immediate value, it means there is no MCS. In that case
5376 * just return false.
5377 */
5378 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5379 bld.MOV(dst, brw_imm_ud(0u));
5380 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5381 fs_reg tmp = vgrf(glsl_type::uint_type);
5382 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5383 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5384 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5385 } else {
5386 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5387 BRW_CONDITIONAL_EQ);
5388 }
5389 return;
5390 }
5391 default:
5392 unreachable("unknown texture opcode");
5393 }
5394
5395 if (instr->op == nir_texop_tg4) {
5396 if (instr->component == 1 &&
5397 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5398 /* gather4 sampler is broken for green channel on RG32F --
5399 * we must ask for blue instead.
5400 */
5401 header_bits |= 2 << 16;
5402 } else {
5403 header_bits |= instr->component << 16;
5404 }
5405 }
5406
5407 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5408 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5409 inst->offset = header_bits;
5410
5411 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5412 if (devinfo->gen >= 9 &&
5413 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5414 unsigned write_mask = instr->dest.is_ssa ?
5415 nir_ssa_def_components_read(&instr->dest.ssa):
5416 (1 << dest_size) - 1;
5417 assert(write_mask != 0); /* dead code should have been eliminated */
5418 inst->size_written = util_last_bit(write_mask) *
5419 inst->dst.component_size(inst->exec_size);
5420 } else {
5421 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5422 }
5423
5424 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5425 inst->shadow_compare = true;
5426
5427 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5428 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5429
5430 fs_reg nir_dest[4];
5431 for (unsigned i = 0; i < dest_size; i++)
5432 nir_dest[i] = offset(dst, bld, i);
5433
5434 if (instr->op == nir_texop_query_levels) {
5435 /* # levels is in .w */
5436 nir_dest[0] = offset(dst, bld, 3);
5437 } else if (instr->op == nir_texop_txs &&
5438 dest_size >= 3 && devinfo->gen < 7) {
5439 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5440 fs_reg depth = offset(dst, bld, 2);
5441 nir_dest[2] = vgrf(glsl_type::int_type);
5442 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5443 }
5444
5445 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5446 }
5447
5448 void
5449 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5450 {
5451 switch (instr->type) {
5452 case nir_jump_break:
5453 bld.emit(BRW_OPCODE_BREAK);
5454 break;
5455 case nir_jump_continue:
5456 bld.emit(BRW_OPCODE_CONTINUE);
5457 break;
5458 case nir_jump_return:
5459 default:
5460 unreachable("unknown jump");
5461 }
5462 }
5463
5464 /*
5465 * This helper takes a source register and un/shuffles it into the destination
5466 * register.
5467 *
5468 * If source type size is smaller than destination type size the operation
5469 * needed is a component shuffle. The opposite case would be an unshuffle. If
5470 * source/destination type size is equal a shuffle is done that would be
5471 * equivalent to a simple MOV.
5472 *
5473 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5474 * components .xyz 16-bit vector on SIMD8 would be.
5475 *
5476 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5477 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5478 *
5479 * This helper will return the following 2 32-bit components with the 16-bit
5480 * values shuffled:
5481 *
5482 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5483 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5484 *
5485 * For unshuffle, the example would be the opposite, a 64-bit type source
5486 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5487 * would be:
5488 *
5489 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5490 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5491 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5492 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5493 *
5494 * The returned result would be the following 4 32-bit components unshuffled:
5495 *
5496 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5497 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5498 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5499 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5500 *
5501 * - Source and destination register must not be overlapped.
5502 * - components units are measured in terms of the smaller type between
5503 * source and destination because we are un/shuffling the smaller
5504 * components from/into the bigger ones.
5505 * - first_component parameter allows skipping source components.
5506 */
5507 void
5508 shuffle_src_to_dst(const fs_builder &bld,
5509 const fs_reg &dst,
5510 const fs_reg &src,
5511 uint32_t first_component,
5512 uint32_t components)
5513 {
5514 if (type_sz(src.type) == type_sz(dst.type)) {
5515 assert(!regions_overlap(dst,
5516 type_sz(dst.type) * bld.dispatch_width() * components,
5517 offset(src, bld, first_component),
5518 type_sz(src.type) * bld.dispatch_width() * components));
5519 for (unsigned i = 0; i < components; i++) {
5520 bld.MOV(retype(offset(dst, bld, i), src.type),
5521 offset(src, bld, i + first_component));
5522 }
5523 } else if (type_sz(src.type) < type_sz(dst.type)) {
5524 /* Source is shuffled into destination */
5525 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5526 assert(!regions_overlap(dst,
5527 type_sz(dst.type) * bld.dispatch_width() *
5528 DIV_ROUND_UP(components, size_ratio),
5529 offset(src, bld, first_component),
5530 type_sz(src.type) * bld.dispatch_width() * components));
5531
5532 brw_reg_type shuffle_type =
5533 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5534 BRW_REGISTER_TYPE_D);
5535 for (unsigned i = 0; i < components; i++) {
5536 fs_reg shuffle_component_i =
5537 subscript(offset(dst, bld, i / size_ratio),
5538 shuffle_type, i % size_ratio);
5539 bld.MOV(shuffle_component_i,
5540 retype(offset(src, bld, i + first_component), shuffle_type));
5541 }
5542 } else {
5543 /* Source is unshuffled into destination */
5544 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5545 assert(!regions_overlap(dst,
5546 type_sz(dst.type) * bld.dispatch_width() * components,
5547 offset(src, bld, first_component / size_ratio),
5548 type_sz(src.type) * bld.dispatch_width() *
5549 DIV_ROUND_UP(components + (first_component % size_ratio),
5550 size_ratio)));
5551
5552 brw_reg_type shuffle_type =
5553 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5554 BRW_REGISTER_TYPE_D);
5555 for (unsigned i = 0; i < components; i++) {
5556 fs_reg shuffle_component_i =
5557 subscript(offset(src, bld, (first_component + i) / size_ratio),
5558 shuffle_type, (first_component + i) % size_ratio);
5559 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5560 shuffle_component_i);
5561 }
5562 }
5563 }
5564
5565 void
5566 shuffle_from_32bit_read(const fs_builder &bld,
5567 const fs_reg &dst,
5568 const fs_reg &src,
5569 uint32_t first_component,
5570 uint32_t components)
5571 {
5572 assert(type_sz(src.type) == 4);
5573
5574 /* This function takes components in units of the destination type while
5575 * shuffle_src_to_dst takes components in units of the smallest type
5576 */
5577 if (type_sz(dst.type) > 4) {
5578 assert(type_sz(dst.type) == 8);
5579 first_component *= 2;
5580 components *= 2;
5581 }
5582
5583 shuffle_src_to_dst(bld, dst, src, first_component, components);
5584 }
5585
5586 fs_reg
5587 setup_imm_df(const fs_builder &bld, double v)
5588 {
5589 const struct gen_device_info *devinfo = bld.shader->devinfo;
5590 assert(devinfo->gen >= 7);
5591
5592 if (devinfo->gen >= 8)
5593 return brw_imm_df(v);
5594
5595 /* gen7.5 does not support DF immediates straighforward but the DIM
5596 * instruction allows to set the 64-bit immediate value.
5597 */
5598 if (devinfo->is_haswell) {
5599 const fs_builder ubld = bld.exec_all().group(1, 0);
5600 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5601 ubld.DIM(dst, brw_imm_df(v));
5602 return component(dst, 0);
5603 }
5604
5605 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5606 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5607 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5608 *
5609 * Alternatively, we could also produce a normal VGRF (without stride 0)
5610 * by writing to all the channels in the VGRF, however, that would hit the
5611 * gen7 bug where we have to split writes that span more than 1 register
5612 * into instructions with a width of 4 (otherwise the write to the second
5613 * register written runs into an execmask hardware bug) which isn't very
5614 * nice.
5615 */
5616 union {
5617 double d;
5618 struct {
5619 uint32_t i1;
5620 uint32_t i2;
5621 };
5622 } di;
5623
5624 di.d = v;
5625
5626 const fs_builder ubld = bld.exec_all().group(1, 0);
5627 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5628 ubld.MOV(tmp, brw_imm_ud(di.i1));
5629 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5630
5631 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5632 }
5633
5634 fs_reg
5635 setup_imm_b(const fs_builder &bld, int8_t v)
5636 {
5637 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5638 bld.MOV(tmp, brw_imm_w(v));
5639 return tmp;
5640 }
5641
5642 fs_reg
5643 setup_imm_ub(const fs_builder &bld, uint8_t v)
5644 {
5645 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5646 bld.MOV(tmp, brw_imm_uw(v));
5647 return tmp;
5648 }