intel/compiler: implement conversion between float/int 16-bit types
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 nir_foreach_variable(var, &nir->outputs) {
71 const int loc = var->data.driver_location;
72 if (outputs[loc].file == BAD_FILE) {
73 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s[loc]);
74 for (unsigned i = 0; i < vec4s[loc]; i++) {
75 outputs[loc + i] = offset(reg, bld, 4 * i);
76 }
77 }
78 }
79 }
80
81 void
82 fs_visitor::nir_setup_uniforms()
83 {
84 /* Only the first compile gets to set up uniforms. */
85 if (push_constant_loc) {
86 assert(pull_constant_loc);
87 return;
88 }
89
90 uniforms = nir->num_uniforms / 4;
91
92 if (stage == MESA_SHADER_COMPUTE) {
93 /* Add a uniform for the thread local id. It must be the last uniform
94 * on the list.
95 */
96 assert(uniforms == prog_data->nr_params);
97 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
98 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
99 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
100 }
101 }
102
103 static bool
104 emit_system_values_block(nir_block *block, fs_visitor *v)
105 {
106 fs_reg *reg;
107
108 nir_foreach_instr(instr, block) {
109 if (instr->type != nir_instr_type_intrinsic)
110 continue;
111
112 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
113 switch (intrin->intrinsic) {
114 case nir_intrinsic_load_vertex_id:
115 case nir_intrinsic_load_base_vertex:
116 unreachable("should be lowered by nir_lower_system_values().");
117
118 case nir_intrinsic_load_vertex_id_zero_base:
119 case nir_intrinsic_load_is_indexed_draw:
120 case nir_intrinsic_load_first_vertex:
121 case nir_intrinsic_load_instance_id:
122 case nir_intrinsic_load_base_instance:
123 case nir_intrinsic_load_draw_id:
124 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
125
126 case nir_intrinsic_load_invocation_id:
127 if (v->stage == MESA_SHADER_TESS_CTRL)
128 break;
129 assert(v->stage == MESA_SHADER_GEOMETRY);
130 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
131 if (reg->file == BAD_FILE) {
132 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
133 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
134 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
135 abld.SHR(iid, g1, brw_imm_ud(27u));
136 *reg = iid;
137 }
138 break;
139
140 case nir_intrinsic_load_sample_pos:
141 assert(v->stage == MESA_SHADER_FRAGMENT);
142 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
143 if (reg->file == BAD_FILE)
144 *reg = *v->emit_samplepos_setup();
145 break;
146
147 case nir_intrinsic_load_sample_id:
148 assert(v->stage == MESA_SHADER_FRAGMENT);
149 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
150 if (reg->file == BAD_FILE)
151 *reg = *v->emit_sampleid_setup();
152 break;
153
154 case nir_intrinsic_load_sample_mask_in:
155 assert(v->stage == MESA_SHADER_FRAGMENT);
156 assert(v->devinfo->gen >= 7);
157 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
158 if (reg->file == BAD_FILE)
159 *reg = *v->emit_samplemaskin_setup();
160 break;
161
162 case nir_intrinsic_load_work_group_id:
163 assert(v->stage == MESA_SHADER_COMPUTE);
164 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
165 if (reg->file == BAD_FILE)
166 *reg = *v->emit_cs_work_group_id_setup();
167 break;
168
169 case nir_intrinsic_load_helper_invocation:
170 assert(v->stage == MESA_SHADER_FRAGMENT);
171 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
172 if (reg->file == BAD_FILE) {
173 const fs_builder abld =
174 v->bld.annotate("gl_HelperInvocation", NULL);
175
176 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
177 * pixel mask is in g1.7 of the thread payload.
178 *
179 * We move the per-channel pixel enable bit to the low bit of each
180 * channel by shifting the byte containing the pixel mask by the
181 * vector immediate 0x76543210UV.
182 *
183 * The region of <1,8,0> reads only 1 byte (the pixel masks for
184 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
185 * masks for 2 and 3) in SIMD16.
186 */
187 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
188 abld.SHR(shifted,
189 stride(byte_offset(retype(brw_vec1_grf(1, 0),
190 BRW_REGISTER_TYPE_UB), 28),
191 1, 8, 0),
192 brw_imm_v(0x76543210));
193
194 /* A set bit in the pixel mask means the channel is enabled, but
195 * that is the opposite of gl_HelperInvocation so we need to invert
196 * the mask.
197 *
198 * The negate source-modifier bit of logical instructions on Gen8+
199 * performs 1's complement negation, so we can use that instead of
200 * a NOT instruction.
201 */
202 fs_reg inverted = negate(shifted);
203 if (v->devinfo->gen < 8) {
204 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
205 abld.NOT(inverted, shifted);
206 }
207
208 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
209 * with 1 and negating.
210 */
211 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
212 abld.AND(anded, inverted, brw_imm_uw(1));
213
214 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
215 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
216 *reg = dst;
217 }
218 break;
219
220 default:
221 break;
222 }
223 }
224
225 return true;
226 }
227
228 void
229 fs_visitor::nir_emit_system_values()
230 {
231 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
232 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
233 nir_system_values[i] = fs_reg();
234 }
235
236 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
237 * never end up using it.
238 */
239 {
240 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
241 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
242 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
243
244 const fs_builder allbld8 = abld.group(8, 0).exec_all();
245 allbld8.MOV(reg, brw_imm_v(0x76543210));
246 if (dispatch_width > 8)
247 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
248 if (dispatch_width > 16) {
249 const fs_builder allbld16 = abld.group(16, 0).exec_all();
250 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
251 }
252 }
253
254 nir_foreach_function(function, nir) {
255 assert(strcmp(function->name, "main") == 0);
256 assert(function->impl);
257 nir_foreach_block(block, function->impl) {
258 emit_system_values_block(block, this);
259 }
260 }
261 }
262
263 /*
264 * Returns a type based on a reference_type (word, float, half-float) and a
265 * given bit_size.
266 *
267 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
268 *
269 * @FIXME: 64-bit return types are always DF on integer types to maintain
270 * compability with uses of DF previously to the introduction of int64
271 * support.
272 */
273 static brw_reg_type
274 brw_reg_type_from_bit_size(const unsigned bit_size,
275 const brw_reg_type reference_type)
276 {
277 switch(reference_type) {
278 case BRW_REGISTER_TYPE_HF:
279 case BRW_REGISTER_TYPE_F:
280 case BRW_REGISTER_TYPE_DF:
281 switch(bit_size) {
282 case 16:
283 return BRW_REGISTER_TYPE_HF;
284 case 32:
285 return BRW_REGISTER_TYPE_F;
286 case 64:
287 return BRW_REGISTER_TYPE_DF;
288 default:
289 unreachable("Invalid bit size");
290 }
291 case BRW_REGISTER_TYPE_W:
292 case BRW_REGISTER_TYPE_D:
293 case BRW_REGISTER_TYPE_Q:
294 switch(bit_size) {
295 case 16:
296 return BRW_REGISTER_TYPE_W;
297 case 32:
298 return BRW_REGISTER_TYPE_D;
299 case 64:
300 return BRW_REGISTER_TYPE_Q;
301 default:
302 unreachable("Invalid bit size");
303 }
304 case BRW_REGISTER_TYPE_UW:
305 case BRW_REGISTER_TYPE_UD:
306 case BRW_REGISTER_TYPE_UQ:
307 switch(bit_size) {
308 case 16:
309 return BRW_REGISTER_TYPE_UW;
310 case 32:
311 return BRW_REGISTER_TYPE_UD;
312 case 64:
313 return BRW_REGISTER_TYPE_UQ;
314 default:
315 unreachable("Invalid bit size");
316 }
317 default:
318 unreachable("Unknown type");
319 }
320 }
321
322 void
323 fs_visitor::nir_emit_impl(nir_function_impl *impl)
324 {
325 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
326 for (unsigned i = 0; i < impl->reg_alloc; i++) {
327 nir_locals[i] = fs_reg();
328 }
329
330 foreach_list_typed(nir_register, reg, node, &impl->registers) {
331 unsigned array_elems =
332 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
333 unsigned size = array_elems * reg->num_components;
334 const brw_reg_type reg_type =
335 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
336 nir_locals[reg->index] = bld.vgrf(reg_type, size);
337 }
338
339 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
340 impl->ssa_alloc);
341
342 nir_emit_cf_list(&impl->body);
343 }
344
345 void
346 fs_visitor::nir_emit_cf_list(exec_list *list)
347 {
348 exec_list_validate(list);
349 foreach_list_typed(nir_cf_node, node, node, list) {
350 switch (node->type) {
351 case nir_cf_node_if:
352 nir_emit_if(nir_cf_node_as_if(node));
353 break;
354
355 case nir_cf_node_loop:
356 nir_emit_loop(nir_cf_node_as_loop(node));
357 break;
358
359 case nir_cf_node_block:
360 nir_emit_block(nir_cf_node_as_block(node));
361 break;
362
363 default:
364 unreachable("Invalid CFG node block");
365 }
366 }
367 }
368
369 void
370 fs_visitor::nir_emit_if(nir_if *if_stmt)
371 {
372 /* first, put the condition into f0 */
373 fs_inst *inst = bld.MOV(bld.null_reg_d(),
374 retype(get_nir_src(if_stmt->condition),
375 BRW_REGISTER_TYPE_D));
376 inst->conditional_mod = BRW_CONDITIONAL_NZ;
377
378 bld.IF(BRW_PREDICATE_NORMAL);
379
380 nir_emit_cf_list(&if_stmt->then_list);
381
382 /* note: if the else is empty, dead CF elimination will remove it */
383 bld.emit(BRW_OPCODE_ELSE);
384
385 nir_emit_cf_list(&if_stmt->else_list);
386
387 bld.emit(BRW_OPCODE_ENDIF);
388 }
389
390 void
391 fs_visitor::nir_emit_loop(nir_loop *loop)
392 {
393 bld.emit(BRW_OPCODE_DO);
394
395 nir_emit_cf_list(&loop->body);
396
397 bld.emit(BRW_OPCODE_WHILE);
398 }
399
400 void
401 fs_visitor::nir_emit_block(nir_block *block)
402 {
403 nir_foreach_instr(instr, block) {
404 nir_emit_instr(instr);
405 }
406 }
407
408 void
409 fs_visitor::nir_emit_instr(nir_instr *instr)
410 {
411 const fs_builder abld = bld.annotate(NULL, instr);
412
413 switch (instr->type) {
414 case nir_instr_type_alu:
415 nir_emit_alu(abld, nir_instr_as_alu(instr));
416 break;
417
418 case nir_instr_type_intrinsic:
419 switch (stage) {
420 case MESA_SHADER_VERTEX:
421 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
422 break;
423 case MESA_SHADER_TESS_CTRL:
424 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
425 break;
426 case MESA_SHADER_TESS_EVAL:
427 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
428 break;
429 case MESA_SHADER_GEOMETRY:
430 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
431 break;
432 case MESA_SHADER_FRAGMENT:
433 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
434 break;
435 case MESA_SHADER_COMPUTE:
436 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
437 break;
438 default:
439 unreachable("unsupported shader stage");
440 }
441 break;
442
443 case nir_instr_type_tex:
444 nir_emit_texture(abld, nir_instr_as_tex(instr));
445 break;
446
447 case nir_instr_type_load_const:
448 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
449 break;
450
451 case nir_instr_type_ssa_undef:
452 /* We create a new VGRF for undefs on every use (by handling
453 * them in get_nir_src()), rather than for each definition.
454 * This helps register coalescing eliminate MOVs from undef.
455 */
456 break;
457
458 case nir_instr_type_jump:
459 nir_emit_jump(abld, nir_instr_as_jump(instr));
460 break;
461
462 default:
463 unreachable("unknown instruction type");
464 }
465 }
466
467 /**
468 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
469 * match instr.
470 */
471 bool
472 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
473 const fs_reg &result)
474 {
475 if (!instr->src[0].src.is_ssa ||
476 !instr->src[0].src.ssa->parent_instr)
477 return false;
478
479 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
480 return false;
481
482 nir_alu_instr *src0 =
483 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
484
485 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
486 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
487 return false;
488
489 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
490 assert(element != NULL);
491
492 /* Element type to extract.*/
493 const brw_reg_type type = brw_int_type(
494 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
495 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
496
497 fs_reg op0 = get_nir_src(src0->src[0].src);
498 op0.type = brw_type_for_nir_type(devinfo,
499 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
500 nir_src_bit_size(src0->src[0].src)));
501 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
502
503 set_saturate(instr->dest.saturate,
504 bld.MOV(result, subscript(op0, type, element->u32[0])));
505 return true;
506 }
507
508 bool
509 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
510 const fs_reg &result)
511 {
512 if (!instr->src[0].src.is_ssa ||
513 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
514 return false;
515
516 nir_intrinsic_instr *src0 =
517 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
518
519 if (src0->intrinsic != nir_intrinsic_load_front_face)
520 return false;
521
522 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
523 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
524 return false;
525
526 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
527 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
528 return false;
529
530 fs_reg tmp = vgrf(glsl_type::int_type);
531
532 if (devinfo->gen >= 6) {
533 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
534 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
535
536 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
537 *
538 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
539 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
540 *
541 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
542 *
543 * This negation looks like it's safe in practice, because bits 0:4 will
544 * surely be TRIANGLES
545 */
546
547 if (value1->f32[0] == -1.0f) {
548 g0.negate = true;
549 }
550
551 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
552 g0, brw_imm_uw(0x3f80));
553 } else {
554 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
555 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
556
557 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
558 *
559 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
560 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
561 *
562 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
563 *
564 * This negation looks like it's safe in practice, because bits 0:4 will
565 * surely be TRIANGLES
566 */
567
568 if (value1->f32[0] == -1.0f) {
569 g1_6.negate = true;
570 }
571
572 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
573 }
574 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
575
576 return true;
577 }
578
579 static void
580 emit_find_msb_using_lzd(const fs_builder &bld,
581 const fs_reg &result,
582 const fs_reg &src,
583 bool is_signed)
584 {
585 fs_inst *inst;
586 fs_reg temp = src;
587
588 if (is_signed) {
589 /* LZD of an absolute value source almost always does the right
590 * thing. There are two problem values:
591 *
592 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
593 * 0. However, findMSB(int(0x80000000)) == 30.
594 *
595 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
596 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
597 *
598 * For a value of zero or negative one, -1 will be returned.
599 *
600 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
601 * findMSB(-(1<<x)) should return x-1.
602 *
603 * For all negative number cases, including 0x80000000 and
604 * 0xffffffff, the correct value is obtained from LZD if instead of
605 * negating the (already negative) value the logical-not is used. A
606 * conditonal logical-not can be achieved in two instructions.
607 */
608 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
609
610 bld.ASR(temp, src, brw_imm_d(31));
611 bld.XOR(temp, temp, src);
612 }
613
614 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
615 retype(temp, BRW_REGISTER_TYPE_UD));
616
617 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
618 * from the LSB side. Subtract the result from 31 to convert the MSB
619 * count into an LSB count. If no bits are set, LZD will return 32.
620 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
621 */
622 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
623 inst->src[0].negate = true;
624 }
625
626 static brw_rnd_mode
627 brw_rnd_mode_from_nir_op (const nir_op op) {
628 switch (op) {
629 case nir_op_f2f16_rtz:
630 return BRW_RND_MODE_RTZ;
631 case nir_op_f2f16_rtne:
632 return BRW_RND_MODE_RTNE;
633 default:
634 unreachable("Operation doesn't support rounding mode");
635 }
636 }
637
638 void
639 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
640 {
641 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
642 fs_inst *inst;
643
644 fs_reg result = get_nir_dest(instr->dest.dest);
645 result.type = brw_type_for_nir_type(devinfo,
646 (nir_alu_type)(nir_op_infos[instr->op].output_type |
647 nir_dest_bit_size(instr->dest.dest)));
648
649 fs_reg op[4];
650 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
651 op[i] = get_nir_src(instr->src[i].src);
652 op[i].type = brw_type_for_nir_type(devinfo,
653 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
654 nir_src_bit_size(instr->src[i].src)));
655 op[i].abs = instr->src[i].abs;
656 op[i].negate = instr->src[i].negate;
657 }
658
659 /* We get a bunch of mov's out of the from_ssa pass and they may still
660 * be vectorized. We'll handle them as a special-case. We'll also
661 * handle vecN here because it's basically the same thing.
662 */
663 switch (instr->op) {
664 case nir_op_imov:
665 case nir_op_fmov:
666 case nir_op_vec2:
667 case nir_op_vec3:
668 case nir_op_vec4: {
669 fs_reg temp = result;
670 bool need_extra_copy = false;
671 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
672 if (!instr->src[i].src.is_ssa &&
673 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
674 need_extra_copy = true;
675 temp = bld.vgrf(result.type, 4);
676 break;
677 }
678 }
679
680 for (unsigned i = 0; i < 4; i++) {
681 if (!(instr->dest.write_mask & (1 << i)))
682 continue;
683
684 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
685 inst = bld.MOV(offset(temp, bld, i),
686 offset(op[0], bld, instr->src[0].swizzle[i]));
687 } else {
688 inst = bld.MOV(offset(temp, bld, i),
689 offset(op[i], bld, instr->src[i].swizzle[0]));
690 }
691 inst->saturate = instr->dest.saturate;
692 }
693
694 /* In this case the source and destination registers were the same,
695 * so we need to insert an extra set of moves in order to deal with
696 * any swizzling.
697 */
698 if (need_extra_copy) {
699 for (unsigned i = 0; i < 4; i++) {
700 if (!(instr->dest.write_mask & (1 << i)))
701 continue;
702
703 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
704 }
705 }
706 return;
707 }
708 default:
709 break;
710 }
711
712 /* At this point, we have dealt with any instruction that operates on
713 * more than a single channel. Therefore, we can just adjust the source
714 * and destination registers for that channel and emit the instruction.
715 */
716 unsigned channel = 0;
717 if (nir_op_infos[instr->op].output_size == 0) {
718 /* Since NIR is doing the scalarizing for us, we should only ever see
719 * vectorized operations with a single channel.
720 */
721 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
722 channel = ffs(instr->dest.write_mask) - 1;
723
724 result = offset(result, bld, channel);
725 }
726
727 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
728 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
729 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
730 }
731
732 switch (instr->op) {
733 case nir_op_i2f32:
734 case nir_op_u2f32:
735 if (optimize_extract_to_float(instr, result))
736 return;
737 inst = bld.MOV(result, op[0]);
738 inst->saturate = instr->dest.saturate;
739 break;
740
741 case nir_op_f2f16_rtne:
742 case nir_op_f2f16_rtz:
743 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
744 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
745 /* fallthrough */
746
747 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
748 * on the HW gen, it is a special hw opcode or just a MOV, and
749 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
750 *
751 * But if we want to use that opcode, we need to provide support on
752 * different optimizations and lowerings. As right now HF support is
753 * only for gen8+, it will be better to use directly the MOV, and use
754 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
755 */
756
757 case nir_op_f2f16_undef:
758 inst = bld.MOV(result, op[0]);
759 inst->saturate = instr->dest.saturate;
760 break;
761
762 case nir_op_f2f64:
763 case nir_op_f2i64:
764 case nir_op_f2u64:
765 case nir_op_i2f64:
766 case nir_op_i2i64:
767 case nir_op_u2f64:
768 case nir_op_u2u64:
769 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
770 *
771 * "When source or destination is 64b (...), regioning in Align1
772 * must follow these rules:
773 *
774 * 1. Source and destination horizontal stride must be aligned to
775 * the same qword.
776 * (...)"
777 *
778 * This means that 32-bit to 64-bit conversions need to have the 32-bit
779 * data elements aligned to 64-bit. This restriction does not apply to
780 * BDW and later.
781 */
782 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
783 nir_src_bit_size(instr->src[0].src) == 32 &&
784 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
785 fs_reg tmp = bld.vgrf(result.type, 1);
786 tmp = subscript(tmp, op[0].type, 0);
787 inst = bld.MOV(tmp, op[0]);
788 inst = bld.MOV(result, tmp);
789 inst->saturate = instr->dest.saturate;
790 break;
791 }
792 /* fallthrough */
793 case nir_op_f2f32:
794 case nir_op_f2i32:
795 case nir_op_f2u32:
796 case nir_op_f2i16:
797 case nir_op_f2u16:
798 case nir_op_i2i32:
799 case nir_op_u2u32:
800 case nir_op_i2i16:
801 case nir_op_u2u16:
802 case nir_op_i2f16:
803 case nir_op_u2f16:
804 inst = bld.MOV(result, op[0]);
805 inst->saturate = instr->dest.saturate;
806 break;
807
808 case nir_op_fsign: {
809 if (op[0].abs) {
810 /* Straightforward since the source can be assumed to be
811 * non-negative.
812 */
813 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
814 set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
815
816 } else if (type_sz(op[0].type) < 8) {
817 /* AND(val, 0x80000000) gives the sign bit.
818 *
819 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
820 * zero.
821 */
822 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
823
824 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
825 op[0].type = BRW_REGISTER_TYPE_UD;
826 result.type = BRW_REGISTER_TYPE_UD;
827 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
828
829 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
830 inst->predicate = BRW_PREDICATE_NORMAL;
831 if (instr->dest.saturate) {
832 inst = bld.MOV(result, result);
833 inst->saturate = true;
834 }
835 } else {
836 /* For doubles we do the same but we need to consider:
837 *
838 * - 2-src instructions can't operate with 64-bit immediates
839 * - The sign is encoded in the high 32-bit of each DF
840 * - We need to produce a DF result.
841 */
842
843 fs_reg zero = vgrf(glsl_type::double_type);
844 bld.MOV(zero, setup_imm_df(bld, 0.0));
845 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
846
847 bld.MOV(result, zero);
848
849 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
850 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
851 brw_imm_ud(0x80000000u));
852
853 set_predicate(BRW_PREDICATE_NORMAL,
854 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
855
856 if (instr->dest.saturate) {
857 inst = bld.MOV(result, result);
858 inst->saturate = true;
859 }
860 }
861 break;
862 }
863
864 case nir_op_isign: {
865 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
866 * -> non-negative val generates 0x00000000.
867 * Predicated OR sets 1 if val is positive.
868 */
869 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
870 assert(bit_size == 32 || bit_size == 16);
871
872 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
873 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
874 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
875
876 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
877 bld.ASR(result, op[0], shift);
878 inst = bld.OR(result, result, one);
879 inst->predicate = BRW_PREDICATE_NORMAL;
880 break;
881 }
882
883 case nir_op_frcp:
884 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
885 inst->saturate = instr->dest.saturate;
886 break;
887
888 case nir_op_fexp2:
889 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
890 inst->saturate = instr->dest.saturate;
891 break;
892
893 case nir_op_flog2:
894 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
895 inst->saturate = instr->dest.saturate;
896 break;
897
898 case nir_op_fsin:
899 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
900 inst->saturate = instr->dest.saturate;
901 break;
902
903 case nir_op_fcos:
904 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
905 inst->saturate = instr->dest.saturate;
906 break;
907
908 case nir_op_fddx:
909 if (fs_key->high_quality_derivatives) {
910 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
911 } else {
912 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
913 }
914 inst->saturate = instr->dest.saturate;
915 break;
916 case nir_op_fddx_fine:
917 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
918 inst->saturate = instr->dest.saturate;
919 break;
920 case nir_op_fddx_coarse:
921 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
922 inst->saturate = instr->dest.saturate;
923 break;
924 case nir_op_fddy:
925 if (fs_key->high_quality_derivatives) {
926 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
927 } else {
928 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
929 }
930 inst->saturate = instr->dest.saturate;
931 break;
932 case nir_op_fddy_fine:
933 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936 case nir_op_fddy_coarse:
937 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
938 inst->saturate = instr->dest.saturate;
939 break;
940
941 case nir_op_iadd:
942 case nir_op_fadd:
943 inst = bld.ADD(result, op[0], op[1]);
944 inst->saturate = instr->dest.saturate;
945 break;
946
947 case nir_op_fmul:
948 inst = bld.MUL(result, op[0], op[1]);
949 inst->saturate = instr->dest.saturate;
950 break;
951
952 case nir_op_imul:
953 assert(nir_dest_bit_size(instr->dest.dest) < 64);
954 bld.MUL(result, op[0], op[1]);
955 break;
956
957 case nir_op_imul_high:
958 case nir_op_umul_high:
959 assert(nir_dest_bit_size(instr->dest.dest) < 64);
960 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
961 break;
962
963 case nir_op_idiv:
964 case nir_op_udiv:
965 assert(nir_dest_bit_size(instr->dest.dest) < 64);
966 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
967 break;
968
969 case nir_op_uadd_carry:
970 unreachable("Should have been lowered by carry_to_arith().");
971
972 case nir_op_usub_borrow:
973 unreachable("Should have been lowered by borrow_to_arith().");
974
975 case nir_op_umod:
976 case nir_op_irem:
977 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
978 * appears that our hardware just does the right thing for signed
979 * remainder.
980 */
981 assert(nir_dest_bit_size(instr->dest.dest) < 64);
982 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
983 break;
984
985 case nir_op_imod: {
986 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
987 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
988
989 /* Math instructions don't support conditional mod */
990 inst = bld.MOV(bld.null_reg_d(), result);
991 inst->conditional_mod = BRW_CONDITIONAL_NZ;
992
993 /* Now, we need to determine if signs of the sources are different.
994 * When we XOR the sources, the top bit is 0 if they are the same and 1
995 * if they are different. We can then use a conditional modifier to
996 * turn that into a predicate. This leads us to an XOR.l instruction.
997 *
998 * Technically, according to the PRM, you're not allowed to use .l on a
999 * XOR instruction. However, emperical experiments and Curro's reading
1000 * of the simulator source both indicate that it's safe.
1001 */
1002 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1003 inst = bld.XOR(tmp, op[0], op[1]);
1004 inst->predicate = BRW_PREDICATE_NORMAL;
1005 inst->conditional_mod = BRW_CONDITIONAL_L;
1006
1007 /* If the result of the initial remainder operation is non-zero and the
1008 * two sources have different signs, add in a copy of op[1] to get the
1009 * final integer modulus value.
1010 */
1011 inst = bld.ADD(result, result, op[1]);
1012 inst->predicate = BRW_PREDICATE_NORMAL;
1013 break;
1014 }
1015
1016 case nir_op_flt:
1017 case nir_op_fge:
1018 case nir_op_feq:
1019 case nir_op_fne: {
1020 fs_reg dest = result;
1021 if (nir_src_bit_size(instr->src[0].src) > 32) {
1022 dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
1023 }
1024 brw_conditional_mod cond;
1025 switch (instr->op) {
1026 case nir_op_flt:
1027 cond = BRW_CONDITIONAL_L;
1028 break;
1029 case nir_op_fge:
1030 cond = BRW_CONDITIONAL_GE;
1031 break;
1032 case nir_op_feq:
1033 cond = BRW_CONDITIONAL_Z;
1034 break;
1035 case nir_op_fne:
1036 cond = BRW_CONDITIONAL_NZ;
1037 break;
1038 default:
1039 unreachable("bad opcode");
1040 }
1041 bld.CMP(dest, op[0], op[1], cond);
1042 if (nir_src_bit_size(instr->src[0].src) > 32) {
1043 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1044 }
1045 break;
1046 }
1047
1048 case nir_op_ilt:
1049 case nir_op_ult:
1050 case nir_op_ige:
1051 case nir_op_uge:
1052 case nir_op_ieq:
1053 case nir_op_ine: {
1054 fs_reg dest = result;
1055 if (nir_src_bit_size(instr->src[0].src) > 32) {
1056 dest = bld.vgrf(BRW_REGISTER_TYPE_UQ, 1);
1057 }
1058
1059 brw_conditional_mod cond;
1060 switch (instr->op) {
1061 case nir_op_ilt:
1062 case nir_op_ult:
1063 cond = BRW_CONDITIONAL_L;
1064 break;
1065 case nir_op_ige:
1066 case nir_op_uge:
1067 cond = BRW_CONDITIONAL_GE;
1068 break;
1069 case nir_op_ieq:
1070 cond = BRW_CONDITIONAL_Z;
1071 break;
1072 case nir_op_ine:
1073 cond = BRW_CONDITIONAL_NZ;
1074 break;
1075 default:
1076 unreachable("bad opcode");
1077 }
1078 bld.CMP(dest, op[0], op[1], cond);
1079 if (nir_src_bit_size(instr->src[0].src) > 32) {
1080 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1081 }
1082 break;
1083 }
1084
1085 case nir_op_inot:
1086 if (devinfo->gen >= 8) {
1087 op[0] = resolve_source_modifiers(op[0]);
1088 }
1089 bld.NOT(result, op[0]);
1090 break;
1091 case nir_op_ixor:
1092 if (devinfo->gen >= 8) {
1093 op[0] = resolve_source_modifiers(op[0]);
1094 op[1] = resolve_source_modifiers(op[1]);
1095 }
1096 bld.XOR(result, op[0], op[1]);
1097 break;
1098 case nir_op_ior:
1099 if (devinfo->gen >= 8) {
1100 op[0] = resolve_source_modifiers(op[0]);
1101 op[1] = resolve_source_modifiers(op[1]);
1102 }
1103 bld.OR(result, op[0], op[1]);
1104 break;
1105 case nir_op_iand:
1106 if (devinfo->gen >= 8) {
1107 op[0] = resolve_source_modifiers(op[0]);
1108 op[1] = resolve_source_modifiers(op[1]);
1109 }
1110 bld.AND(result, op[0], op[1]);
1111 break;
1112
1113 case nir_op_fdot2:
1114 case nir_op_fdot3:
1115 case nir_op_fdot4:
1116 case nir_op_ball_fequal2:
1117 case nir_op_ball_iequal2:
1118 case nir_op_ball_fequal3:
1119 case nir_op_ball_iequal3:
1120 case nir_op_ball_fequal4:
1121 case nir_op_ball_iequal4:
1122 case nir_op_bany_fnequal2:
1123 case nir_op_bany_inequal2:
1124 case nir_op_bany_fnequal3:
1125 case nir_op_bany_inequal3:
1126 case nir_op_bany_fnequal4:
1127 case nir_op_bany_inequal4:
1128 unreachable("Lowered by nir_lower_alu_reductions");
1129
1130 case nir_op_fnoise1_1:
1131 case nir_op_fnoise1_2:
1132 case nir_op_fnoise1_3:
1133 case nir_op_fnoise1_4:
1134 case nir_op_fnoise2_1:
1135 case nir_op_fnoise2_2:
1136 case nir_op_fnoise2_3:
1137 case nir_op_fnoise2_4:
1138 case nir_op_fnoise3_1:
1139 case nir_op_fnoise3_2:
1140 case nir_op_fnoise3_3:
1141 case nir_op_fnoise3_4:
1142 case nir_op_fnoise4_1:
1143 case nir_op_fnoise4_2:
1144 case nir_op_fnoise4_3:
1145 case nir_op_fnoise4_4:
1146 unreachable("not reached: should be handled by lower_noise");
1147
1148 case nir_op_ldexp:
1149 unreachable("not reached: should be handled by ldexp_to_arith()");
1150
1151 case nir_op_fsqrt:
1152 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1153 inst->saturate = instr->dest.saturate;
1154 break;
1155
1156 case nir_op_frsq:
1157 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1158 inst->saturate = instr->dest.saturate;
1159 break;
1160
1161 case nir_op_b2i:
1162 case nir_op_b2f:
1163 bld.MOV(result, negate(op[0]));
1164 break;
1165
1166 case nir_op_i2b:
1167 case nir_op_f2b:
1168 if (nir_src_bit_size(instr->src[0].src) == 64) {
1169 /* two-argument instructions can't take 64-bit immediates */
1170 fs_reg zero;
1171 fs_reg tmp;
1172
1173 if (instr->op == nir_op_f2b) {
1174 zero = vgrf(glsl_type::double_type);
1175 tmp = vgrf(glsl_type::double_type);
1176 bld.MOV(zero, setup_imm_df(bld, 0.0));
1177 } else {
1178 zero = vgrf(glsl_type::int64_t_type);
1179 tmp = vgrf(glsl_type::int64_t_type);
1180 bld.MOV(zero, brw_imm_q(0));
1181 }
1182
1183 /* A SIMD16 execution needs to be split in two instructions, so use
1184 * a vgrf instead of the flag register as dst so instruction splitting
1185 * works
1186 */
1187 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1188 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1189 } else {
1190 if (instr->op == nir_op_f2b) {
1191 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
1192 } else {
1193 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1194 }
1195 }
1196 break;
1197
1198 case nir_op_ftrunc:
1199 inst = bld.RNDZ(result, op[0]);
1200 inst->saturate = instr->dest.saturate;
1201 break;
1202
1203 case nir_op_fceil: {
1204 op[0].negate = !op[0].negate;
1205 fs_reg temp = vgrf(glsl_type::float_type);
1206 bld.RNDD(temp, op[0]);
1207 temp.negate = true;
1208 inst = bld.MOV(result, temp);
1209 inst->saturate = instr->dest.saturate;
1210 break;
1211 }
1212 case nir_op_ffloor:
1213 inst = bld.RNDD(result, op[0]);
1214 inst->saturate = instr->dest.saturate;
1215 break;
1216 case nir_op_ffract:
1217 inst = bld.FRC(result, op[0]);
1218 inst->saturate = instr->dest.saturate;
1219 break;
1220 case nir_op_fround_even:
1221 inst = bld.RNDE(result, op[0]);
1222 inst->saturate = instr->dest.saturate;
1223 break;
1224
1225 case nir_op_fquantize2f16: {
1226 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1227 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1228 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1229
1230 /* The destination stride must be at least as big as the source stride. */
1231 tmp16.type = BRW_REGISTER_TYPE_W;
1232 tmp16.stride = 2;
1233
1234 /* Check for denormal */
1235 fs_reg abs_src0 = op[0];
1236 abs_src0.abs = true;
1237 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1238 BRW_CONDITIONAL_L);
1239 /* Get the appropriately signed zero */
1240 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1241 retype(op[0], BRW_REGISTER_TYPE_UD),
1242 brw_imm_ud(0x80000000));
1243 /* Do the actual F32 -> F16 -> F32 conversion */
1244 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1245 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1246 /* Select that or zero based on normal status */
1247 inst = bld.SEL(result, zero, tmp32);
1248 inst->predicate = BRW_PREDICATE_NORMAL;
1249 inst->saturate = instr->dest.saturate;
1250 break;
1251 }
1252
1253 case nir_op_imin:
1254 case nir_op_umin:
1255 case nir_op_fmin:
1256 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1257 inst->saturate = instr->dest.saturate;
1258 break;
1259
1260 case nir_op_imax:
1261 case nir_op_umax:
1262 case nir_op_fmax:
1263 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1264 inst->saturate = instr->dest.saturate;
1265 break;
1266
1267 case nir_op_pack_snorm_2x16:
1268 case nir_op_pack_snorm_4x8:
1269 case nir_op_pack_unorm_2x16:
1270 case nir_op_pack_unorm_4x8:
1271 case nir_op_unpack_snorm_2x16:
1272 case nir_op_unpack_snorm_4x8:
1273 case nir_op_unpack_unorm_2x16:
1274 case nir_op_unpack_unorm_4x8:
1275 case nir_op_unpack_half_2x16:
1276 case nir_op_pack_half_2x16:
1277 unreachable("not reached: should be handled by lower_packing_builtins");
1278
1279 case nir_op_unpack_half_2x16_split_x:
1280 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1281 inst->saturate = instr->dest.saturate;
1282 break;
1283 case nir_op_unpack_half_2x16_split_y:
1284 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1285 inst->saturate = instr->dest.saturate;
1286 break;
1287
1288 case nir_op_pack_64_2x32_split:
1289 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1290 break;
1291
1292 case nir_op_unpack_64_2x32_split_x:
1293 case nir_op_unpack_64_2x32_split_y: {
1294 if (instr->op == nir_op_unpack_64_2x32_split_x)
1295 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1296 else
1297 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1298 break;
1299 }
1300
1301 case nir_op_fpow:
1302 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1303 inst->saturate = instr->dest.saturate;
1304 break;
1305
1306 case nir_op_bitfield_reverse:
1307 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1308 bld.BFREV(result, op[0]);
1309 break;
1310
1311 case nir_op_bit_count:
1312 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1313 bld.CBIT(result, op[0]);
1314 break;
1315
1316 case nir_op_ufind_msb: {
1317 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1318 emit_find_msb_using_lzd(bld, result, op[0], false);
1319 break;
1320 }
1321
1322 case nir_op_ifind_msb: {
1323 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1324
1325 if (devinfo->gen < 7) {
1326 emit_find_msb_using_lzd(bld, result, op[0], true);
1327 } else {
1328 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1329
1330 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1331 * count from the LSB side. If FBH didn't return an error
1332 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1333 * count into an LSB count.
1334 */
1335 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1336
1337 inst = bld.ADD(result, result, brw_imm_d(31));
1338 inst->predicate = BRW_PREDICATE_NORMAL;
1339 inst->src[0].negate = true;
1340 }
1341 break;
1342 }
1343
1344 case nir_op_find_lsb:
1345 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1346
1347 if (devinfo->gen < 7) {
1348 fs_reg temp = vgrf(glsl_type::int_type);
1349
1350 /* (x & -x) generates a value that consists of only the LSB of x.
1351 * For all powers of 2, findMSB(y) == findLSB(y).
1352 */
1353 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1354 fs_reg negated_src = src;
1355
1356 /* One must be negated, and the other must be non-negated. It
1357 * doesn't matter which is which.
1358 */
1359 negated_src.negate = true;
1360 src.negate = false;
1361
1362 bld.AND(temp, src, negated_src);
1363 emit_find_msb_using_lzd(bld, result, temp, false);
1364 } else {
1365 bld.FBL(result, op[0]);
1366 }
1367 break;
1368
1369 case nir_op_ubitfield_extract:
1370 case nir_op_ibitfield_extract:
1371 unreachable("should have been lowered");
1372 case nir_op_ubfe:
1373 case nir_op_ibfe:
1374 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1375 bld.BFE(result, op[2], op[1], op[0]);
1376 break;
1377 case nir_op_bfm:
1378 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1379 bld.BFI1(result, op[0], op[1]);
1380 break;
1381 case nir_op_bfi:
1382 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1383 bld.BFI2(result, op[0], op[1], op[2]);
1384 break;
1385
1386 case nir_op_bitfield_insert:
1387 unreachable("not reached: should have been lowered");
1388
1389 case nir_op_ishl:
1390 case nir_op_ishr:
1391 case nir_op_ushr: {
1392 fs_reg shift_count = op[1];
1393
1394 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1395 if (op[1].file == VGRF &&
1396 (result.type == BRW_REGISTER_TYPE_Q ||
1397 result.type == BRW_REGISTER_TYPE_UQ)) {
1398 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1399 BRW_REGISTER_TYPE_UD);
1400 shift_count.stride = 2;
1401 bld.MOV(shift_count, op[1]);
1402 }
1403 }
1404
1405 switch (instr->op) {
1406 case nir_op_ishl:
1407 bld.SHL(result, op[0], shift_count);
1408 break;
1409 case nir_op_ishr:
1410 bld.ASR(result, op[0], shift_count);
1411 break;
1412 case nir_op_ushr:
1413 bld.SHR(result, op[0], shift_count);
1414 break;
1415 default:
1416 unreachable("not reached");
1417 }
1418 break;
1419 }
1420
1421 case nir_op_pack_half_2x16_split:
1422 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1423 break;
1424
1425 case nir_op_ffma:
1426 inst = bld.MAD(result, op[2], op[1], op[0]);
1427 inst->saturate = instr->dest.saturate;
1428 break;
1429
1430 case nir_op_flrp:
1431 inst = bld.LRP(result, op[0], op[1], op[2]);
1432 inst->saturate = instr->dest.saturate;
1433 break;
1434
1435 case nir_op_bcsel:
1436 if (optimize_frontfacing_ternary(instr, result))
1437 return;
1438
1439 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1440 inst = bld.SEL(result, op[1], op[2]);
1441 inst->predicate = BRW_PREDICATE_NORMAL;
1442 break;
1443
1444 case nir_op_extract_u8:
1445 case nir_op_extract_i8: {
1446 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1447 assert(byte != NULL);
1448
1449 /* The PRMs say:
1450 *
1451 * BDW+
1452 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1453 * Use two instructions and a word or DWord intermediate integer type.
1454 */
1455 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1456 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1457
1458 if (instr->op == nir_op_extract_i8) {
1459 /* If we need to sign extend, extract to a word first */
1460 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1461 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1462 bld.MOV(result, w_temp);
1463 } else {
1464 /* Otherwise use an AND with 0xff and a word type */
1465 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1466 }
1467 } else {
1468 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1469 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1470 }
1471 break;
1472 }
1473
1474 case nir_op_extract_u16:
1475 case nir_op_extract_i16: {
1476 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1477 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1478 assert(word != NULL);
1479 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1480 break;
1481 }
1482
1483 default:
1484 unreachable("unhandled instruction");
1485 }
1486
1487 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1488 * to sign extend the low bit to 0/~0
1489 */
1490 if (devinfo->gen <= 5 &&
1491 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1492 fs_reg masked = vgrf(glsl_type::int_type);
1493 bld.AND(masked, result, brw_imm_d(1));
1494 masked.negate = true;
1495 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1496 }
1497 }
1498
1499 void
1500 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1501 nir_load_const_instr *instr)
1502 {
1503 const brw_reg_type reg_type =
1504 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1505 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1506
1507 switch (instr->def.bit_size) {
1508 case 32:
1509 for (unsigned i = 0; i < instr->def.num_components; i++)
1510 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1511 break;
1512
1513 case 64:
1514 assert(devinfo->gen >= 7);
1515 if (devinfo->gen == 7) {
1516 /* We don't get 64-bit integer types until gen8 */
1517 for (unsigned i = 0; i < instr->def.num_components; i++) {
1518 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1519 setup_imm_df(bld, instr->value.f64[i]));
1520 }
1521 } else {
1522 for (unsigned i = 0; i < instr->def.num_components; i++)
1523 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1524 }
1525 break;
1526
1527 default:
1528 unreachable("Invalid bit size");
1529 }
1530
1531 nir_ssa_values[instr->def.index] = reg;
1532 }
1533
1534 fs_reg
1535 fs_visitor::get_nir_src(const nir_src &src)
1536 {
1537 fs_reg reg;
1538 if (src.is_ssa) {
1539 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1540 const brw_reg_type reg_type =
1541 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1542 reg = bld.vgrf(reg_type, src.ssa->num_components);
1543 } else {
1544 reg = nir_ssa_values[src.ssa->index];
1545 }
1546 } else {
1547 /* We don't handle indirects on locals */
1548 assert(src.reg.indirect == NULL);
1549 reg = offset(nir_locals[src.reg.reg->index], bld,
1550 src.reg.base_offset * src.reg.reg->num_components);
1551 }
1552
1553 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1554 /* The only 64-bit type available on gen7 is DF, so use that. */
1555 reg.type = BRW_REGISTER_TYPE_DF;
1556 } else {
1557 /* To avoid floating-point denorm flushing problems, set the type by
1558 * default to an integer type - instructions that need floating point
1559 * semantics will set this to F if they need to
1560 */
1561 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1562 BRW_REGISTER_TYPE_D);
1563 }
1564
1565 return reg;
1566 }
1567
1568 /**
1569 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1570 *
1571 * This function should not be called on any value which may be 64 bits.
1572 * We could theoretically support 64-bit on gen8+ but we choose not to
1573 * because it wouldn't work in general (no gen7 support) and there are
1574 * enough restrictions in 64-bit immediates that you can't take the return
1575 * value and treat it the same as the result of get_nir_src().
1576 */
1577 fs_reg
1578 fs_visitor::get_nir_src_imm(const nir_src &src)
1579 {
1580 nir_const_value *val = nir_src_as_const_value(src);
1581 assert(nir_src_bit_size(src) == 32);
1582 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1583 }
1584
1585 fs_reg
1586 fs_visitor::get_nir_dest(const nir_dest &dest)
1587 {
1588 if (dest.is_ssa) {
1589 const brw_reg_type reg_type =
1590 brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
1591 nir_ssa_values[dest.ssa.index] =
1592 bld.vgrf(reg_type, dest.ssa.num_components);
1593 return nir_ssa_values[dest.ssa.index];
1594 } else {
1595 /* We don't handle indirects on locals */
1596 assert(dest.reg.indirect == NULL);
1597 return offset(nir_locals[dest.reg.reg->index], bld,
1598 dest.reg.base_offset * dest.reg.reg->num_components);
1599 }
1600 }
1601
1602 fs_reg
1603 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1604 {
1605 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1606 BRW_REGISTER_TYPE_UD);
1607 fs_reg indirect;
1608 unsigned indirect_max = 0;
1609
1610 for (const nir_deref *tail = &deref->deref; tail->child;
1611 tail = tail->child) {
1612 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1613 assert(tail->child->deref_type == nir_deref_type_array);
1614 const unsigned size = glsl_get_length(tail->type);
1615 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1616 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1617 image = offset(image, bld, base * element_size);
1618
1619 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1620 fs_reg tmp = vgrf(glsl_type::uint_type);
1621
1622 /* Accessing an invalid surface index with the dataport can result
1623 * in a hang. According to the spec "if the index used to
1624 * select an individual element is negative or greater than or
1625 * equal to the size of the array, the results of the operation
1626 * are undefined but may not lead to termination" -- which is one
1627 * of the possible outcomes of the hang. Clamp the index to
1628 * prevent access outside of the array bounds.
1629 */
1630 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1631 BRW_REGISTER_TYPE_UD),
1632 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1633
1634 indirect_max += element_size * (tail->type->length - 1);
1635
1636 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1637 if (indirect.file == BAD_FILE) {
1638 indirect = tmp;
1639 } else {
1640 bld.ADD(indirect, indirect, tmp);
1641 }
1642 }
1643 }
1644
1645 if (indirect.file == BAD_FILE) {
1646 return image;
1647 } else {
1648 /* Emit a pile of MOVs to load the uniform into a temporary. The
1649 * dead-code elimination pass will get rid of what we don't use.
1650 */
1651 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1652 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1653 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1654 offset(tmp, bld, j), offset(image, bld, j),
1655 indirect, brw_imm_ud((indirect_max + 1) * 4));
1656 }
1657 return tmp;
1658 }
1659 }
1660
1661 void
1662 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1663 unsigned wr_mask)
1664 {
1665 for (unsigned i = 0; i < 4; i++) {
1666 if (!((wr_mask >> i) & 1))
1667 continue;
1668
1669 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1670 new_inst->dst = offset(new_inst->dst, bld, i);
1671 for (unsigned j = 0; j < new_inst->sources; j++)
1672 if (new_inst->src[j].file == VGRF)
1673 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1674
1675 bld.emit(new_inst);
1676 }
1677 }
1678
1679 /**
1680 * Get the matching channel register datatype for an image intrinsic of the
1681 * specified GLSL image type.
1682 */
1683 static brw_reg_type
1684 get_image_base_type(const glsl_type *type)
1685 {
1686 switch ((glsl_base_type)type->sampled_type) {
1687 case GLSL_TYPE_UINT:
1688 return BRW_REGISTER_TYPE_UD;
1689 case GLSL_TYPE_INT:
1690 return BRW_REGISTER_TYPE_D;
1691 case GLSL_TYPE_FLOAT:
1692 return BRW_REGISTER_TYPE_F;
1693 default:
1694 unreachable("Not reached.");
1695 }
1696 }
1697
1698 /**
1699 * Get the appropriate atomic op for an image atomic intrinsic.
1700 */
1701 static unsigned
1702 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1703 {
1704 switch (op) {
1705 case nir_intrinsic_image_var_atomic_add:
1706 return BRW_AOP_ADD;
1707 case nir_intrinsic_image_var_atomic_min:
1708 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1709 BRW_AOP_IMIN : BRW_AOP_UMIN);
1710 case nir_intrinsic_image_var_atomic_max:
1711 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1712 BRW_AOP_IMAX : BRW_AOP_UMAX);
1713 case nir_intrinsic_image_var_atomic_and:
1714 return BRW_AOP_AND;
1715 case nir_intrinsic_image_var_atomic_or:
1716 return BRW_AOP_OR;
1717 case nir_intrinsic_image_var_atomic_xor:
1718 return BRW_AOP_XOR;
1719 case nir_intrinsic_image_var_atomic_exchange:
1720 return BRW_AOP_MOV;
1721 case nir_intrinsic_image_var_atomic_comp_swap:
1722 return BRW_AOP_CMPWR;
1723 default:
1724 unreachable("Not reachable.");
1725 }
1726 }
1727
1728 static fs_inst *
1729 emit_pixel_interpolater_send(const fs_builder &bld,
1730 enum opcode opcode,
1731 const fs_reg &dst,
1732 const fs_reg &src,
1733 const fs_reg &desc,
1734 glsl_interp_mode interpolation)
1735 {
1736 struct brw_wm_prog_data *wm_prog_data =
1737 brw_wm_prog_data(bld.shader->stage_prog_data);
1738 fs_inst *inst;
1739 fs_reg payload;
1740 int mlen;
1741
1742 if (src.file == BAD_FILE) {
1743 /* Dummy payload */
1744 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1745 mlen = 1;
1746 } else {
1747 payload = src;
1748 mlen = 2 * bld.dispatch_width() / 8;
1749 }
1750
1751 inst = bld.emit(opcode, dst, payload, desc);
1752 inst->mlen = mlen;
1753 /* 2 floats per slot returned */
1754 inst->size_written = 2 * dst.component_size(inst->exec_size);
1755 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1756
1757 wm_prog_data->pulls_bary = true;
1758
1759 return inst;
1760 }
1761
1762 /**
1763 * Computes 1 << x, given a D/UD register containing some value x.
1764 */
1765 static fs_reg
1766 intexp2(const fs_builder &bld, const fs_reg &x)
1767 {
1768 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1769
1770 fs_reg result = bld.vgrf(x.type, 1);
1771 fs_reg one = bld.vgrf(x.type, 1);
1772
1773 bld.MOV(one, retype(brw_imm_d(1), one.type));
1774 bld.SHL(result, one, x);
1775 return result;
1776 }
1777
1778 void
1779 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1780 {
1781 assert(stage == MESA_SHADER_GEOMETRY);
1782
1783 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1784
1785 if (gs_compile->control_data_header_size_bits == 0)
1786 return;
1787
1788 /* We can only do EndPrimitive() functionality when the control data
1789 * consists of cut bits. Fortunately, the only time it isn't is when the
1790 * output type is points, in which case EndPrimitive() is a no-op.
1791 */
1792 if (gs_prog_data->control_data_format !=
1793 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1794 return;
1795 }
1796
1797 /* Cut bits use one bit per vertex. */
1798 assert(gs_compile->control_data_bits_per_vertex == 1);
1799
1800 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1801 vertex_count.type = BRW_REGISTER_TYPE_UD;
1802
1803 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1804 * vertex n, 0 otherwise. So all we need to do here is mark bit
1805 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1806 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1807 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1808 *
1809 * Note that if EndPrimitive() is called before emitting any vertices, this
1810 * will cause us to set bit 31 of the control_data_bits register to 1.
1811 * That's fine because:
1812 *
1813 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1814 * output, so the hardware will ignore cut bit 31.
1815 *
1816 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1817 * last vertex, so setting cut bit 31 has no effect (since the primitive
1818 * is automatically ended when the GS terminates).
1819 *
1820 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1821 * control_data_bits register to 0 when the first vertex is emitted.
1822 */
1823
1824 const fs_builder abld = bld.annotate("end primitive");
1825
1826 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1827 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1828 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1829 fs_reg mask = intexp2(abld, prev_count);
1830 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1831 * attention to the lower 5 bits of its second source argument, so on this
1832 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1833 * ((vertex_count - 1) % 32).
1834 */
1835 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1836 }
1837
1838 void
1839 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1840 {
1841 assert(stage == MESA_SHADER_GEOMETRY);
1842 assert(gs_compile->control_data_bits_per_vertex != 0);
1843
1844 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1845
1846 const fs_builder abld = bld.annotate("emit control data bits");
1847 const fs_builder fwa_bld = bld.exec_all();
1848
1849 /* We use a single UD register to accumulate control data bits (32 bits
1850 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1851 * at a time.
1852 *
1853 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1854 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1855 * use the Channel Mask phase to enable/disable which DWord within that
1856 * group to write. (Remember, different SIMD8 channels may have emitted
1857 * different numbers of vertices, so we may need per-slot offsets.)
1858 *
1859 * Channel masking presents an annoying problem: we may have to replicate
1860 * the data up to 4 times:
1861 *
1862 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1863 *
1864 * To avoid penalizing shaders that emit a small number of vertices, we
1865 * can avoid these sometimes: if the size of the control data header is
1866 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1867 * land in the same 128-bit group, so we can skip per-slot offsets.
1868 *
1869 * Similarly, if the control data header is <= 32 bits, there is only one
1870 * DWord, so we can skip channel masks.
1871 */
1872 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1873
1874 fs_reg channel_mask, per_slot_offset;
1875
1876 if (gs_compile->control_data_header_size_bits > 32) {
1877 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1878 channel_mask = vgrf(glsl_type::uint_type);
1879 }
1880
1881 if (gs_compile->control_data_header_size_bits > 128) {
1882 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1883 per_slot_offset = vgrf(glsl_type::uint_type);
1884 }
1885
1886 /* Figure out which DWord we're trying to write to using the formula:
1887 *
1888 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1889 *
1890 * Since bits_per_vertex is a power of two, and is known at compile
1891 * time, this can be optimized to:
1892 *
1893 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1894 */
1895 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1896 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1897 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1898 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1899 unsigned log2_bits_per_vertex =
1900 util_last_bit(gs_compile->control_data_bits_per_vertex);
1901 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1902
1903 if (per_slot_offset.file != BAD_FILE) {
1904 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1905 * the appropriate OWord within the control data header.
1906 */
1907 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1908 }
1909
1910 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1911 * write to the appropriate DWORD within the OWORD.
1912 */
1913 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1914 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1915 channel_mask = intexp2(fwa_bld, channel);
1916 /* Then the channel masks need to be in bits 23:16. */
1917 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1918 }
1919
1920 /* Store the control data bits in the message payload and send it. */
1921 int mlen = 2;
1922 if (channel_mask.file != BAD_FILE)
1923 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1924 if (per_slot_offset.file != BAD_FILE)
1925 mlen++;
1926
1927 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1928 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1929 int i = 0;
1930 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1931 if (per_slot_offset.file != BAD_FILE)
1932 sources[i++] = per_slot_offset;
1933 if (channel_mask.file != BAD_FILE)
1934 sources[i++] = channel_mask;
1935 while (i < mlen) {
1936 sources[i++] = this->control_data_bits;
1937 }
1938
1939 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1940 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1941 inst->mlen = mlen;
1942 /* We need to increment Global Offset by 256-bits to make room for
1943 * Broadwell's extra "Vertex Count" payload at the beginning of the
1944 * URB entry. Since this is an OWord message, Global Offset is counted
1945 * in 128-bit units, so we must set it to 2.
1946 */
1947 if (gs_prog_data->static_vertex_count == -1)
1948 inst->offset = 2;
1949 }
1950
1951 void
1952 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1953 unsigned stream_id)
1954 {
1955 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1956
1957 /* Note: we are calling this *before* increasing vertex_count, so
1958 * this->vertex_count == vertex_count - 1 in the formula above.
1959 */
1960
1961 /* Stream mode uses 2 bits per vertex */
1962 assert(gs_compile->control_data_bits_per_vertex == 2);
1963
1964 /* Must be a valid stream */
1965 assert(stream_id < MAX_VERTEX_STREAMS);
1966
1967 /* Control data bits are initialized to 0 so we don't have to set any
1968 * bits when sending vertices to stream 0.
1969 */
1970 if (stream_id == 0)
1971 return;
1972
1973 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1974
1975 /* reg::sid = stream_id */
1976 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1977 abld.MOV(sid, brw_imm_ud(stream_id));
1978
1979 /* reg:shift_count = 2 * (vertex_count - 1) */
1980 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1981 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1982
1983 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1984 * attention to the lower 5 bits of its second source argument, so on this
1985 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1986 * stream_id << ((2 * (vertex_count - 1)) % 32).
1987 */
1988 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1989 abld.SHL(mask, sid, shift_count);
1990 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1991 }
1992
1993 void
1994 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1995 unsigned stream_id)
1996 {
1997 assert(stage == MESA_SHADER_GEOMETRY);
1998
1999 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2000
2001 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2002 vertex_count.type = BRW_REGISTER_TYPE_UD;
2003
2004 /* Haswell and later hardware ignores the "Render Stream Select" bits
2005 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2006 * and instead sends all primitives down the pipeline for rasterization.
2007 * If the SOL stage is enabled, "Render Stream Select" is honored and
2008 * primitives bound to non-zero streams are discarded after stream output.
2009 *
2010 * Since the only purpose of primives sent to non-zero streams is to
2011 * be recorded by transform feedback, we can simply discard all geometry
2012 * bound to these streams when transform feedback is disabled.
2013 */
2014 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2015 return;
2016
2017 /* If we're outputting 32 control data bits or less, then we can wait
2018 * until the shader is over to output them all. Otherwise we need to
2019 * output them as we go. Now is the time to do it, since we're about to
2020 * output the vertex_count'th vertex, so it's guaranteed that the
2021 * control data bits associated with the (vertex_count - 1)th vertex are
2022 * correct.
2023 */
2024 if (gs_compile->control_data_header_size_bits > 32) {
2025 const fs_builder abld =
2026 bld.annotate("emit vertex: emit control data bits");
2027
2028 /* Only emit control data bits if we've finished accumulating a batch
2029 * of 32 bits. This is the case when:
2030 *
2031 * (vertex_count * bits_per_vertex) % 32 == 0
2032 *
2033 * (in other words, when the last 5 bits of vertex_count *
2034 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2035 * integer n (which is always the case, since bits_per_vertex is
2036 * always 1 or 2), this is equivalent to requiring that the last 5-n
2037 * bits of vertex_count are 0:
2038 *
2039 * vertex_count & (2^(5-n) - 1) == 0
2040 *
2041 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2042 * equivalent to:
2043 *
2044 * vertex_count & (32 / bits_per_vertex - 1) == 0
2045 *
2046 * TODO: If vertex_count is an immediate, we could do some of this math
2047 * at compile time...
2048 */
2049 fs_inst *inst =
2050 abld.AND(bld.null_reg_d(), vertex_count,
2051 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2052 inst->conditional_mod = BRW_CONDITIONAL_Z;
2053
2054 abld.IF(BRW_PREDICATE_NORMAL);
2055 /* If vertex_count is 0, then no control data bits have been
2056 * accumulated yet, so we can skip emitting them.
2057 */
2058 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2059 BRW_CONDITIONAL_NEQ);
2060 abld.IF(BRW_PREDICATE_NORMAL);
2061 emit_gs_control_data_bits(vertex_count);
2062 abld.emit(BRW_OPCODE_ENDIF);
2063
2064 /* Reset control_data_bits to 0 so we can start accumulating a new
2065 * batch.
2066 *
2067 * Note: in the case where vertex_count == 0, this neutralizes the
2068 * effect of any call to EndPrimitive() that the shader may have
2069 * made before outputting its first vertex.
2070 */
2071 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2072 inst->force_writemask_all = true;
2073 abld.emit(BRW_OPCODE_ENDIF);
2074 }
2075
2076 emit_urb_writes(vertex_count);
2077
2078 /* In stream mode we have to set control data bits for all vertices
2079 * unless we have disabled control data bits completely (which we do
2080 * do for GL_POINTS outputs that don't use streams).
2081 */
2082 if (gs_compile->control_data_header_size_bits > 0 &&
2083 gs_prog_data->control_data_format ==
2084 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2085 set_gs_stream_control_data_bits(vertex_count, stream_id);
2086 }
2087 }
2088
2089 void
2090 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2091 const nir_src &vertex_src,
2092 unsigned base_offset,
2093 const nir_src &offset_src,
2094 unsigned num_components,
2095 unsigned first_component)
2096 {
2097 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2098
2099 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2100 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2101 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2102
2103 /* TODO: figure out push input layout for invocations == 1 */
2104 /* TODO: make this work with 64-bit inputs */
2105 if (gs_prog_data->invocations == 1 &&
2106 type_sz(dst.type) <= 4 &&
2107 offset_const != NULL && vertex_const != NULL &&
2108 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2109 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2110 vertex_const->u32[0] * push_reg_count;
2111 for (unsigned i = 0; i < num_components; i++) {
2112 bld.MOV(offset(dst, bld, i),
2113 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2114 }
2115 return;
2116 }
2117
2118 /* Resort to the pull model. Ensure the VUE handles are provided. */
2119 assert(gs_prog_data->base.include_vue_handles);
2120
2121 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2122 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2123
2124 if (gs_prog_data->invocations == 1) {
2125 if (vertex_const) {
2126 /* The vertex index is constant; just select the proper URB handle. */
2127 icp_handle =
2128 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2129 BRW_REGISTER_TYPE_UD);
2130 } else {
2131 /* The vertex index is non-constant. We need to use indirect
2132 * addressing to fetch the proper URB handle.
2133 *
2134 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2135 * indicating that channel <n> should read the handle from
2136 * DWord <n>. We convert that to bytes by multiplying by 4.
2137 *
2138 * Next, we convert the vertex index to bytes by multiplying
2139 * by 32 (shifting by 5), and add the two together. This is
2140 * the final indirect byte offset.
2141 */
2142 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2143 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2144 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2145 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2146
2147 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2148 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2149 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2150 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2151 /* Convert vertex_index to bytes (multiply by 32) */
2152 bld.SHL(vertex_offset_bytes,
2153 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2154 brw_imm_ud(5u));
2155 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2156
2157 /* Use first_icp_handle as the base offset. There is one register
2158 * of URB handles per vertex, so inform the register allocator that
2159 * we might read up to nir->info.gs.vertices_in registers.
2160 */
2161 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2162 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2163 fs_reg(icp_offset_bytes),
2164 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2165 }
2166 } else {
2167 assert(gs_prog_data->invocations > 1);
2168
2169 if (vertex_const) {
2170 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2171 bld.MOV(icp_handle,
2172 retype(brw_vec1_grf(first_icp_handle +
2173 vertex_const->i32[0] / 8,
2174 vertex_const->i32[0] % 8),
2175 BRW_REGISTER_TYPE_UD));
2176 } else {
2177 /* The vertex index is non-constant. We need to use indirect
2178 * addressing to fetch the proper URB handle.
2179 *
2180 */
2181 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2182
2183 /* Convert vertex_index to bytes (multiply by 4) */
2184 bld.SHL(icp_offset_bytes,
2185 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2186 brw_imm_ud(2u));
2187
2188 /* Use first_icp_handle as the base offset. There is one DWord
2189 * of URB handles per vertex, so inform the register allocator that
2190 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2191 */
2192 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2193 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2194 fs_reg(icp_offset_bytes),
2195 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2196 REG_SIZE));
2197 }
2198 }
2199
2200 fs_inst *inst;
2201
2202 fs_reg tmp_dst = dst;
2203 fs_reg indirect_offset = get_nir_src(offset_src);
2204 unsigned num_iterations = 1;
2205 unsigned orig_num_components = num_components;
2206
2207 if (type_sz(dst.type) == 8) {
2208 if (num_components > 2) {
2209 num_iterations = 2;
2210 num_components = 2;
2211 }
2212 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2213 tmp_dst = tmp;
2214 first_component = first_component / 2;
2215 }
2216
2217 for (unsigned iter = 0; iter < num_iterations; iter++) {
2218 if (offset_const) {
2219 /* Constant indexing - use global offset. */
2220 if (first_component != 0) {
2221 unsigned read_components = num_components + first_component;
2222 fs_reg tmp = bld.vgrf(dst.type, read_components);
2223 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2224 inst->size_written = read_components *
2225 tmp.component_size(inst->exec_size);
2226 for (unsigned i = 0; i < num_components; i++) {
2227 bld.MOV(offset(tmp_dst, bld, i),
2228 offset(tmp, bld, i + first_component));
2229 }
2230 } else {
2231 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2232 icp_handle);
2233 inst->size_written = num_components *
2234 tmp_dst.component_size(inst->exec_size);
2235 }
2236 inst->offset = base_offset + offset_const->u32[0];
2237 inst->mlen = 1;
2238 } else {
2239 /* Indirect indexing - use per-slot offsets as well. */
2240 const fs_reg srcs[] = { icp_handle, indirect_offset };
2241 unsigned read_components = num_components + first_component;
2242 fs_reg tmp = bld.vgrf(dst.type, read_components);
2243 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2244 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2245 if (first_component != 0) {
2246 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2247 payload);
2248 inst->size_written = read_components *
2249 tmp.component_size(inst->exec_size);
2250 for (unsigned i = 0; i < num_components; i++) {
2251 bld.MOV(offset(tmp_dst, bld, i),
2252 offset(tmp, bld, i + first_component));
2253 }
2254 } else {
2255 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2256 payload);
2257 inst->size_written = num_components *
2258 tmp_dst.component_size(inst->exec_size);
2259 }
2260 inst->offset = base_offset;
2261 inst->mlen = 2;
2262 }
2263
2264 if (type_sz(dst.type) == 8) {
2265 shuffle_32bit_load_result_to_64bit_data(
2266 bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
2267
2268 for (unsigned c = 0; c < num_components; c++)
2269 bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
2270 }
2271
2272 if (num_iterations > 1) {
2273 num_components = orig_num_components - 2;
2274 if(offset_const) {
2275 base_offset++;
2276 } else {
2277 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2278 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2279 indirect_offset = new_indirect;
2280 }
2281 }
2282 }
2283 }
2284
2285 fs_reg
2286 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2287 {
2288 nir_src *offset_src = nir_get_io_offset_src(instr);
2289 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2290
2291 if (const_value) {
2292 /* The only constant offset we should find is 0. brw_nir.c's
2293 * add_const_offset_to_base() will fold other constant offsets
2294 * into instr->const_index[0].
2295 */
2296 assert(const_value->u32[0] == 0);
2297 return fs_reg();
2298 }
2299
2300 return get_nir_src(*offset_src);
2301 }
2302
2303 static void
2304 do_untyped_vector_read(const fs_builder &bld,
2305 const fs_reg dest,
2306 const fs_reg surf_index,
2307 const fs_reg offset_reg,
2308 unsigned num_components)
2309 {
2310 if (type_sz(dest.type) <= 2) {
2311 assert(dest.stride == 1);
2312 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2313
2314 if (is_const_offset) {
2315 uint32_t start = offset_reg.ud & ~3;
2316 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2317 end = ALIGN(end, 4);
2318 assert (end - start <= 16);
2319
2320 /* At this point we have 16-bit component/s that have constant
2321 * offset aligned to 4-bytes that can be read with untyped_reads.
2322 * untyped_read message requires 32-bit aligned offsets.
2323 */
2324 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2325 unsigned num_components_32bit = (end - start) / 4;
2326
2327 fs_reg read_result =
2328 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2329 1 /* dims */,
2330 num_components_32bit,
2331 BRW_PREDICATE_NONE);
2332 shuffle_32bit_load_result_to_16bit_data(bld,
2333 retype(dest, BRW_REGISTER_TYPE_W),
2334 retype(read_result, BRW_REGISTER_TYPE_D),
2335 first_component, num_components);
2336 } else {
2337 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2338 for (unsigned i = 0; i < num_components; i++) {
2339 if (i == 0) {
2340 bld.MOV(read_offset, offset_reg);
2341 } else {
2342 bld.ADD(read_offset, offset_reg,
2343 brw_imm_ud(i * type_sz(dest.type)));
2344 }
2345 /* Non constant offsets are not guaranteed to be aligned 32-bits
2346 * so they are read using one byte_scattered_read message
2347 * for each component.
2348 */
2349 fs_reg read_result =
2350 emit_byte_scattered_read(bld, surf_index, read_offset,
2351 1 /* dims */, 1,
2352 type_sz(dest.type) * 8 /* bit_size */,
2353 BRW_PREDICATE_NONE);
2354 bld.MOV(offset(dest, bld, i),
2355 subscript (read_result, dest.type, 0));
2356 }
2357 }
2358 } else if (type_sz(dest.type) == 4) {
2359 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2360 1 /* dims */,
2361 num_components,
2362 BRW_PREDICATE_NONE);
2363 read_result.type = dest.type;
2364 for (unsigned i = 0; i < num_components; i++)
2365 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2366 } else if (type_sz(dest.type) == 8) {
2367 /* Reading a dvec, so we need to:
2368 *
2369 * 1. Multiply num_components by 2, to account for the fact that we
2370 * need to read 64-bit components.
2371 * 2. Shuffle the result of the load to form valid 64-bit elements
2372 * 3. Emit a second load (for components z/w) if needed.
2373 */
2374 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2375 bld.MOV(read_offset, offset_reg);
2376
2377 int iters = num_components <= 2 ? 1 : 2;
2378
2379 /* Load the dvec, the first iteration loads components x/y, the second
2380 * iteration, if needed, loads components z/w
2381 */
2382 for (int it = 0; it < iters; it++) {
2383 /* Compute number of components to read in this iteration */
2384 int iter_components = MIN2(2, num_components);
2385 num_components -= iter_components;
2386
2387 /* Read. Since this message reads 32-bit components, we need to
2388 * read twice as many components.
2389 */
2390 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2391 1 /* dims */,
2392 iter_components * 2,
2393 BRW_PREDICATE_NONE);
2394
2395 /* Shuffle the 32-bit load result into valid 64-bit data */
2396 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2397 shuffle_32bit_load_result_to_64bit_data(
2398 bld, packed_result, read_result, iter_components);
2399
2400 /* Move each component to its destination */
2401 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2402 for (int c = 0; c < iter_components; c++) {
2403 bld.MOV(offset(dest, bld, it * 2 + c),
2404 offset(packed_result, bld, c));
2405 }
2406
2407 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2408 }
2409 } else {
2410 unreachable("Unsupported type");
2411 }
2412 }
2413
2414 void
2415 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2416 nir_intrinsic_instr *instr)
2417 {
2418 assert(stage == MESA_SHADER_VERTEX);
2419
2420 fs_reg dest;
2421 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2422 dest = get_nir_dest(instr->dest);
2423
2424 switch (instr->intrinsic) {
2425 case nir_intrinsic_load_vertex_id:
2426 case nir_intrinsic_load_base_vertex:
2427 unreachable("should be lowered by nir_lower_system_values()");
2428
2429 case nir_intrinsic_load_vertex_id_zero_base:
2430 case nir_intrinsic_load_instance_id:
2431 case nir_intrinsic_load_base_instance:
2432 case nir_intrinsic_load_draw_id: {
2433 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2434 fs_reg val = nir_system_values[sv];
2435 assert(val.file != BAD_FILE);
2436 dest.type = val.type;
2437 bld.MOV(dest, val);
2438 break;
2439 }
2440
2441 case nir_intrinsic_load_input: {
2442 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2443 unsigned first_component = nir_intrinsic_component(instr);
2444 unsigned num_components = instr->num_components;
2445
2446 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2447 assert(const_offset && "Indirect input loads not allowed");
2448 src = offset(src, bld, const_offset->u32[0]);
2449
2450 if (type_sz(dest.type) == 8)
2451 first_component /= 2;
2452
2453 for (unsigned j = 0; j < num_components; j++) {
2454 bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
2455 }
2456
2457 if (type_sz(dest.type) == 8) {
2458 shuffle_32bit_load_result_to_64bit_data(bld,
2459 dest,
2460 retype(dest, BRW_REGISTER_TYPE_F),
2461 instr->num_components);
2462 }
2463 break;
2464 }
2465
2466 case nir_intrinsic_load_first_vertex:
2467 case nir_intrinsic_load_is_indexed_draw:
2468 unreachable("lowered by brw_nir_lower_vs_inputs");
2469
2470 default:
2471 nir_emit_intrinsic(bld, instr);
2472 break;
2473 }
2474 }
2475
2476 void
2477 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2478 nir_intrinsic_instr *instr)
2479 {
2480 assert(stage == MESA_SHADER_TESS_CTRL);
2481 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2482 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2483
2484 fs_reg dst;
2485 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2486 dst = get_nir_dest(instr->dest);
2487
2488 switch (instr->intrinsic) {
2489 case nir_intrinsic_load_primitive_id:
2490 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2491 break;
2492 case nir_intrinsic_load_invocation_id:
2493 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2494 break;
2495 case nir_intrinsic_load_patch_vertices_in:
2496 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2497 brw_imm_d(tcs_key->input_vertices));
2498 break;
2499
2500 case nir_intrinsic_barrier: {
2501 if (tcs_prog_data->instances == 1)
2502 break;
2503
2504 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2505 fs_reg m0_2 = component(m0, 2);
2506
2507 const fs_builder chanbld = bld.exec_all().group(1, 0);
2508
2509 /* Zero the message header */
2510 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2511
2512 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2513 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2514 brw_imm_ud(INTEL_MASK(16, 13)));
2515
2516 /* Shift it up to bits 27:24. */
2517 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2518
2519 /* Set the Barrier Count and the enable bit */
2520 chanbld.OR(m0_2, m0_2,
2521 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2522
2523 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2524 break;
2525 }
2526
2527 case nir_intrinsic_load_input:
2528 unreachable("nir_lower_io should never give us these.");
2529 break;
2530
2531 case nir_intrinsic_load_per_vertex_input: {
2532 fs_reg indirect_offset = get_indirect_offset(instr);
2533 unsigned imm_offset = instr->const_index[0];
2534
2535 const nir_src &vertex_src = instr->src[0];
2536 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2537
2538 fs_inst *inst;
2539
2540 fs_reg icp_handle;
2541
2542 if (vertex_const) {
2543 /* Emit a MOV to resolve <0,1,0> regioning. */
2544 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2545 bld.MOV(icp_handle,
2546 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2547 vertex_const->i32[0] & 7),
2548 BRW_REGISTER_TYPE_UD));
2549 } else if (tcs_prog_data->instances == 1 &&
2550 vertex_src.is_ssa &&
2551 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2552 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2553 /* For the common case of only 1 instance, an array index of
2554 * gl_InvocationID means reading g1. Skip all the indirect work.
2555 */
2556 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2557 } else {
2558 /* The vertex index is non-constant. We need to use indirect
2559 * addressing to fetch the proper URB handle.
2560 */
2561 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2562
2563 /* Each ICP handle is a single DWord (4 bytes) */
2564 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2565 bld.SHL(vertex_offset_bytes,
2566 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2567 brw_imm_ud(2u));
2568
2569 /* Start at g1. We might read up to 4 registers. */
2570 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2571 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2572 brw_imm_ud(4 * REG_SIZE));
2573 }
2574
2575 /* We can only read two double components with each URB read, so
2576 * we send two read messages in that case, each one loading up to
2577 * two double components.
2578 */
2579 unsigned num_iterations = 1;
2580 unsigned num_components = instr->num_components;
2581 unsigned first_component = nir_intrinsic_component(instr);
2582 fs_reg orig_dst = dst;
2583 if (type_sz(dst.type) == 8) {
2584 first_component = first_component / 2;
2585 if (instr->num_components > 2) {
2586 num_iterations = 2;
2587 num_components = 2;
2588 }
2589
2590 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2591 dst = tmp;
2592 }
2593
2594 for (unsigned iter = 0; iter < num_iterations; iter++) {
2595 if (indirect_offset.file == BAD_FILE) {
2596 /* Constant indexing - use global offset. */
2597 if (first_component != 0) {
2598 unsigned read_components = num_components + first_component;
2599 fs_reg tmp = bld.vgrf(dst.type, read_components);
2600 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2601 for (unsigned i = 0; i < num_components; i++) {
2602 bld.MOV(offset(dst, bld, i),
2603 offset(tmp, bld, i + first_component));
2604 }
2605 } else {
2606 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2607 }
2608 inst->offset = imm_offset;
2609 inst->mlen = 1;
2610 } else {
2611 /* Indirect indexing - use per-slot offsets as well. */
2612 const fs_reg srcs[] = { icp_handle, indirect_offset };
2613 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2614 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2615 if (first_component != 0) {
2616 unsigned read_components = num_components + first_component;
2617 fs_reg tmp = bld.vgrf(dst.type, read_components);
2618 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2619 payload);
2620 for (unsigned i = 0; i < num_components; i++) {
2621 bld.MOV(offset(dst, bld, i),
2622 offset(tmp, bld, i + first_component));
2623 }
2624 } else {
2625 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2626 payload);
2627 }
2628 inst->offset = imm_offset;
2629 inst->mlen = 2;
2630 }
2631 inst->size_written = (num_components + first_component) *
2632 inst->dst.component_size(inst->exec_size);
2633
2634 /* If we are reading 64-bit data using 32-bit read messages we need
2635 * build proper 64-bit data elements by shuffling the low and high
2636 * 32-bit components around like we do for other things like UBOs
2637 * or SSBOs.
2638 */
2639 if (type_sz(dst.type) == 8) {
2640 shuffle_32bit_load_result_to_64bit_data(
2641 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2642
2643 for (unsigned c = 0; c < num_components; c++) {
2644 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2645 offset(dst, bld, c));
2646 }
2647 }
2648
2649 /* Copy the temporary to the destination to deal with writemasking.
2650 *
2651 * Also attempt to deal with gl_PointSize being in the .w component.
2652 */
2653 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2654 assert(type_sz(dst.type) < 8);
2655 inst->dst = bld.vgrf(dst.type, 4);
2656 inst->size_written = 4 * REG_SIZE;
2657 bld.MOV(dst, offset(inst->dst, bld, 3));
2658 }
2659
2660 /* If we are loading double data and we need a second read message
2661 * adjust the write offset
2662 */
2663 if (num_iterations > 1) {
2664 num_components = instr->num_components - 2;
2665 imm_offset++;
2666 }
2667 }
2668 break;
2669 }
2670
2671 case nir_intrinsic_load_output:
2672 case nir_intrinsic_load_per_vertex_output: {
2673 fs_reg indirect_offset = get_indirect_offset(instr);
2674 unsigned imm_offset = instr->const_index[0];
2675 unsigned first_component = nir_intrinsic_component(instr);
2676
2677 fs_inst *inst;
2678 if (indirect_offset.file == BAD_FILE) {
2679 /* Replicate the patch handle to all enabled channels */
2680 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2681 bld.MOV(patch_handle,
2682 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2683
2684 {
2685 if (first_component != 0) {
2686 unsigned read_components =
2687 instr->num_components + first_component;
2688 fs_reg tmp = bld.vgrf(dst.type, read_components);
2689 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2690 patch_handle);
2691 inst->size_written = read_components * REG_SIZE;
2692 for (unsigned i = 0; i < instr->num_components; i++) {
2693 bld.MOV(offset(dst, bld, i),
2694 offset(tmp, bld, i + first_component));
2695 }
2696 } else {
2697 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2698 patch_handle);
2699 inst->size_written = instr->num_components * REG_SIZE;
2700 }
2701 inst->offset = imm_offset;
2702 inst->mlen = 1;
2703 }
2704 } else {
2705 /* Indirect indexing - use per-slot offsets as well. */
2706 const fs_reg srcs[] = {
2707 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2708 indirect_offset
2709 };
2710 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2711 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2712 if (first_component != 0) {
2713 unsigned read_components =
2714 instr->num_components + first_component;
2715 fs_reg tmp = bld.vgrf(dst.type, read_components);
2716 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2717 payload);
2718 inst->size_written = read_components * REG_SIZE;
2719 for (unsigned i = 0; i < instr->num_components; i++) {
2720 bld.MOV(offset(dst, bld, i),
2721 offset(tmp, bld, i + first_component));
2722 }
2723 } else {
2724 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2725 payload);
2726 inst->size_written = instr->num_components * REG_SIZE;
2727 }
2728 inst->offset = imm_offset;
2729 inst->mlen = 2;
2730 }
2731 break;
2732 }
2733
2734 case nir_intrinsic_store_output:
2735 case nir_intrinsic_store_per_vertex_output: {
2736 fs_reg value = get_nir_src(instr->src[0]);
2737 bool is_64bit = (instr->src[0].is_ssa ?
2738 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2739 fs_reg indirect_offset = get_indirect_offset(instr);
2740 unsigned imm_offset = instr->const_index[0];
2741 unsigned mask = instr->const_index[1];
2742 unsigned header_regs = 0;
2743 fs_reg srcs[7];
2744 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2745
2746 if (indirect_offset.file != BAD_FILE) {
2747 srcs[header_regs++] = indirect_offset;
2748 }
2749
2750 if (mask == 0)
2751 break;
2752
2753 unsigned num_components = util_last_bit(mask);
2754 enum opcode opcode;
2755
2756 /* We can only pack two 64-bit components in a single message, so send
2757 * 2 messages if we have more components
2758 */
2759 unsigned num_iterations = 1;
2760 unsigned iter_components = num_components;
2761 unsigned first_component = nir_intrinsic_component(instr);
2762 if (is_64bit) {
2763 first_component = first_component / 2;
2764 if (instr->num_components > 2) {
2765 num_iterations = 2;
2766 iter_components = 2;
2767 }
2768 }
2769
2770 mask = mask << first_component;
2771
2772 for (unsigned iter = 0; iter < num_iterations; iter++) {
2773 if (!is_64bit && mask != WRITEMASK_XYZW) {
2774 srcs[header_regs++] = brw_imm_ud(mask << 16);
2775 opcode = indirect_offset.file != BAD_FILE ?
2776 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2777 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2778 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2779 /* Expand the 64-bit mask to 32-bit channels. We only handle
2780 * two channels in each iteration, so we only care about X/Y.
2781 */
2782 unsigned mask32 = 0;
2783 if (mask & WRITEMASK_X)
2784 mask32 |= WRITEMASK_XY;
2785 if (mask & WRITEMASK_Y)
2786 mask32 |= WRITEMASK_ZW;
2787
2788 /* If the mask does not include any of the channels X or Y there
2789 * is nothing to do in this iteration. Move on to the next couple
2790 * of 64-bit channels.
2791 */
2792 if (!mask32) {
2793 mask >>= 2;
2794 imm_offset++;
2795 continue;
2796 }
2797
2798 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2799 opcode = indirect_offset.file != BAD_FILE ?
2800 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2801 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2802 } else {
2803 opcode = indirect_offset.file != BAD_FILE ?
2804 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2805 SHADER_OPCODE_URB_WRITE_SIMD8;
2806 }
2807
2808 for (unsigned i = 0; i < iter_components; i++) {
2809 if (!(mask & (1 << (i + first_component))))
2810 continue;
2811
2812 if (!is_64bit) {
2813 srcs[header_regs + i + first_component] = offset(value, bld, i);
2814 } else {
2815 /* We need to shuffle the 64-bit data to match the layout
2816 * expected by our 32-bit URB write messages. We use a temporary
2817 * for that.
2818 */
2819 unsigned channel = iter * 2 + i;
2820 fs_reg dest = shuffle_64bit_data_for_32bit_write(bld,
2821 offset(value, bld, channel), 1);
2822
2823 srcs[header_regs + (i + first_component) * 2] = dest;
2824 srcs[header_regs + (i + first_component) * 2 + 1] =
2825 offset(dest, bld, 1);
2826 }
2827 }
2828
2829 unsigned mlen =
2830 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2831 (is_64bit ? 2 * first_component : first_component);
2832 fs_reg payload =
2833 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2834 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2835
2836 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2837 inst->offset = imm_offset;
2838 inst->mlen = mlen;
2839
2840 /* If this is a 64-bit attribute, select the next two 64-bit channels
2841 * to be handled in the next iteration.
2842 */
2843 if (is_64bit) {
2844 mask >>= 2;
2845 imm_offset++;
2846 }
2847 }
2848 break;
2849 }
2850
2851 default:
2852 nir_emit_intrinsic(bld, instr);
2853 break;
2854 }
2855 }
2856
2857 void
2858 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2859 nir_intrinsic_instr *instr)
2860 {
2861 assert(stage == MESA_SHADER_TESS_EVAL);
2862 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2863
2864 fs_reg dest;
2865 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2866 dest = get_nir_dest(instr->dest);
2867
2868 switch (instr->intrinsic) {
2869 case nir_intrinsic_load_primitive_id:
2870 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2871 break;
2872 case nir_intrinsic_load_tess_coord:
2873 /* gl_TessCoord is part of the payload in g1-3 */
2874 for (unsigned i = 0; i < 3; i++) {
2875 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2876 }
2877 break;
2878
2879 case nir_intrinsic_load_input:
2880 case nir_intrinsic_load_per_vertex_input: {
2881 fs_reg indirect_offset = get_indirect_offset(instr);
2882 unsigned imm_offset = instr->const_index[0];
2883 unsigned first_component = nir_intrinsic_component(instr);
2884
2885 if (type_sz(dest.type) == 8) {
2886 first_component = first_component / 2;
2887 }
2888
2889 fs_inst *inst;
2890 if (indirect_offset.file == BAD_FILE) {
2891 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2892 * which is 16 registers (since each holds 2 vec4 slots).
2893 */
2894 unsigned slot_count = 1;
2895 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2896 slot_count++;
2897
2898 const unsigned max_push_slots = 32;
2899 if (imm_offset + slot_count <= max_push_slots) {
2900 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2901 for (int i = 0; i < instr->num_components; i++) {
2902 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2903 i + first_component;
2904 bld.MOV(offset(dest, bld, i), component(src, comp));
2905 }
2906
2907 tes_prog_data->base.urb_read_length =
2908 MAX2(tes_prog_data->base.urb_read_length,
2909 DIV_ROUND_UP(imm_offset + slot_count, 2));
2910 } else {
2911 /* Replicate the patch handle to all enabled channels */
2912 const fs_reg srcs[] = {
2913 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2914 };
2915 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2916 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2917
2918 if (first_component != 0) {
2919 unsigned read_components =
2920 instr->num_components + first_component;
2921 fs_reg tmp = bld.vgrf(dest.type, read_components);
2922 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2923 patch_handle);
2924 inst->size_written = read_components * REG_SIZE;
2925 for (unsigned i = 0; i < instr->num_components; i++) {
2926 bld.MOV(offset(dest, bld, i),
2927 offset(tmp, bld, i + first_component));
2928 }
2929 } else {
2930 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2931 patch_handle);
2932 inst->size_written = instr->num_components * REG_SIZE;
2933 }
2934 inst->mlen = 1;
2935 inst->offset = imm_offset;
2936 }
2937 } else {
2938 /* Indirect indexing - use per-slot offsets as well. */
2939
2940 /* We can only read two double components with each URB read, so
2941 * we send two read messages in that case, each one loading up to
2942 * two double components.
2943 */
2944 unsigned num_iterations = 1;
2945 unsigned num_components = instr->num_components;
2946 fs_reg orig_dest = dest;
2947 if (type_sz(dest.type) == 8) {
2948 if (instr->num_components > 2) {
2949 num_iterations = 2;
2950 num_components = 2;
2951 }
2952 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2953 dest = tmp;
2954 }
2955
2956 for (unsigned iter = 0; iter < num_iterations; iter++) {
2957 const fs_reg srcs[] = {
2958 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2959 indirect_offset
2960 };
2961 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2962 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2963
2964 if (first_component != 0) {
2965 unsigned read_components =
2966 num_components + first_component;
2967 fs_reg tmp = bld.vgrf(dest.type, read_components);
2968 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2969 payload);
2970 for (unsigned i = 0; i < num_components; i++) {
2971 bld.MOV(offset(dest, bld, i),
2972 offset(tmp, bld, i + first_component));
2973 }
2974 } else {
2975 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2976 payload);
2977 }
2978 inst->mlen = 2;
2979 inst->offset = imm_offset;
2980 inst->size_written = (num_components + first_component) *
2981 inst->dst.component_size(inst->exec_size);
2982
2983 /* If we are reading 64-bit data using 32-bit read messages we need
2984 * build proper 64-bit data elements by shuffling the low and high
2985 * 32-bit components around like we do for other things like UBOs
2986 * or SSBOs.
2987 */
2988 if (type_sz(dest.type) == 8) {
2989 shuffle_32bit_load_result_to_64bit_data(
2990 bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
2991
2992 for (unsigned c = 0; c < num_components; c++) {
2993 bld.MOV(offset(orig_dest, bld, iter * 2 + c),
2994 offset(dest, bld, c));
2995 }
2996 }
2997
2998 /* If we are loading double data and we need a second read message
2999 * adjust the offset
3000 */
3001 if (num_iterations > 1) {
3002 num_components = instr->num_components - 2;
3003 imm_offset++;
3004 }
3005 }
3006 }
3007 break;
3008 }
3009 default:
3010 nir_emit_intrinsic(bld, instr);
3011 break;
3012 }
3013 }
3014
3015 void
3016 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3017 nir_intrinsic_instr *instr)
3018 {
3019 assert(stage == MESA_SHADER_GEOMETRY);
3020 fs_reg indirect_offset;
3021
3022 fs_reg dest;
3023 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3024 dest = get_nir_dest(instr->dest);
3025
3026 switch (instr->intrinsic) {
3027 case nir_intrinsic_load_primitive_id:
3028 assert(stage == MESA_SHADER_GEOMETRY);
3029 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3030 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3031 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3032 break;
3033
3034 case nir_intrinsic_load_input:
3035 unreachable("load_input intrinsics are invalid for the GS stage");
3036
3037 case nir_intrinsic_load_per_vertex_input:
3038 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3039 instr->src[1], instr->num_components,
3040 nir_intrinsic_component(instr));
3041 break;
3042
3043 case nir_intrinsic_emit_vertex_with_counter:
3044 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3045 break;
3046
3047 case nir_intrinsic_end_primitive_with_counter:
3048 emit_gs_end_primitive(instr->src[0]);
3049 break;
3050
3051 case nir_intrinsic_set_vertex_count:
3052 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3053 break;
3054
3055 case nir_intrinsic_load_invocation_id: {
3056 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3057 assert(val.file != BAD_FILE);
3058 dest.type = val.type;
3059 bld.MOV(dest, val);
3060 break;
3061 }
3062
3063 default:
3064 nir_emit_intrinsic(bld, instr);
3065 break;
3066 }
3067 }
3068
3069 /**
3070 * Fetch the current render target layer index.
3071 */
3072 static fs_reg
3073 fetch_render_target_array_index(const fs_builder &bld)
3074 {
3075 if (bld.shader->devinfo->gen >= 6) {
3076 /* The render target array index is provided in the thread payload as
3077 * bits 26:16 of r0.0.
3078 */
3079 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3080 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3081 brw_imm_uw(0x7ff));
3082 return idx;
3083 } else {
3084 /* Pre-SNB we only ever render into the first layer of the framebuffer
3085 * since layered rendering is not implemented.
3086 */
3087 return brw_imm_ud(0);
3088 }
3089 }
3090
3091 /**
3092 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3093 * framebuffer at the current fragment coordinates and sample index.
3094 */
3095 fs_inst *
3096 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3097 unsigned target)
3098 {
3099 const struct gen_device_info *devinfo = bld.shader->devinfo;
3100
3101 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3102 const brw_wm_prog_key *wm_key =
3103 reinterpret_cast<const brw_wm_prog_key *>(key);
3104 assert(!wm_key->coherent_fb_fetch);
3105 const struct brw_wm_prog_data *wm_prog_data =
3106 brw_wm_prog_data(stage_prog_data);
3107
3108 /* Calculate the surface index relative to the start of the texture binding
3109 * table block, since that's what the texturing messages expect.
3110 */
3111 const unsigned surface = target +
3112 wm_prog_data->binding_table.render_target_read_start -
3113 wm_prog_data->base.binding_table.texture_start;
3114
3115 brw_mark_surface_used(
3116 bld.shader->stage_prog_data,
3117 wm_prog_data->binding_table.render_target_read_start + target);
3118
3119 /* Calculate the fragment coordinates. */
3120 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3121 bld.MOV(offset(coords, bld, 0), pixel_x);
3122 bld.MOV(offset(coords, bld, 1), pixel_y);
3123 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3124
3125 /* Calculate the sample index and MCS payload when multisampling. Luckily
3126 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3127 * shouldn't be necessary to recompile based on whether the framebuffer is
3128 * CMS or UMS.
3129 */
3130 if (wm_key->multisample_fbo &&
3131 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3132 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3133
3134 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3135 const fs_reg mcs = wm_key->multisample_fbo ?
3136 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3137
3138 /* Use either a normal or a CMS texel fetch message depending on whether
3139 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3140 * message just in case the framebuffer uses 16x multisampling, it should
3141 * be equivalent to the normal CMS fetch for lower multisampling modes.
3142 */
3143 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3144 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3145 SHADER_OPCODE_TXF_CMS_LOGICAL;
3146
3147 /* Emit the instruction. */
3148 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3149 sample, mcs,
3150 brw_imm_ud(surface), brw_imm_ud(0),
3151 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3152 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3153
3154 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3155 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3156
3157 return inst;
3158 }
3159
3160 /**
3161 * Actual coherent framebuffer read implemented using the native render target
3162 * read message. Requires SKL+.
3163 */
3164 static fs_inst *
3165 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3166 {
3167 assert(bld.shader->devinfo->gen >= 9);
3168 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3169 inst->target = target;
3170 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3171
3172 return inst;
3173 }
3174
3175 static fs_reg
3176 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3177 {
3178 if (n && regs[0].file != BAD_FILE) {
3179 return regs[0];
3180
3181 } else {
3182 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3183
3184 for (unsigned i = 0; i < n; i++)
3185 regs[i] = tmp;
3186
3187 return tmp;
3188 }
3189 }
3190
3191 static fs_reg
3192 alloc_frag_output(fs_visitor *v, unsigned location)
3193 {
3194 assert(v->stage == MESA_SHADER_FRAGMENT);
3195 const brw_wm_prog_key *const key =
3196 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3197 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3198 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3199
3200 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3201 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3202
3203 else if (l == FRAG_RESULT_COLOR)
3204 return alloc_temporary(v->bld, 4, v->outputs,
3205 MAX2(key->nr_color_regions, 1));
3206
3207 else if (l == FRAG_RESULT_DEPTH)
3208 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3209
3210 else if (l == FRAG_RESULT_STENCIL)
3211 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3212
3213 else if (l == FRAG_RESULT_SAMPLE_MASK)
3214 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3215
3216 else if (l >= FRAG_RESULT_DATA0 &&
3217 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3218 return alloc_temporary(v->bld, 4,
3219 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3220
3221 else
3222 unreachable("Invalid location");
3223 }
3224
3225 void
3226 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3227 nir_intrinsic_instr *instr)
3228 {
3229 assert(stage == MESA_SHADER_FRAGMENT);
3230
3231 fs_reg dest;
3232 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3233 dest = get_nir_dest(instr->dest);
3234
3235 switch (instr->intrinsic) {
3236 case nir_intrinsic_load_front_face:
3237 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3238 *emit_frontfacing_interpolation());
3239 break;
3240
3241 case nir_intrinsic_load_sample_pos: {
3242 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3243 assert(sample_pos.file != BAD_FILE);
3244 dest.type = sample_pos.type;
3245 bld.MOV(dest, sample_pos);
3246 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3247 break;
3248 }
3249
3250 case nir_intrinsic_load_layer_id:
3251 dest.type = BRW_REGISTER_TYPE_UD;
3252 bld.MOV(dest, fetch_render_target_array_index(bld));
3253 break;
3254
3255 case nir_intrinsic_load_helper_invocation:
3256 case nir_intrinsic_load_sample_mask_in:
3257 case nir_intrinsic_load_sample_id: {
3258 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3259 fs_reg val = nir_system_values[sv];
3260 assert(val.file != BAD_FILE);
3261 dest.type = val.type;
3262 bld.MOV(dest, val);
3263 break;
3264 }
3265
3266 case nir_intrinsic_store_output: {
3267 const fs_reg src = get_nir_src(instr->src[0]);
3268 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3269 assert(const_offset && "Indirect output stores not allowed");
3270 const unsigned location = nir_intrinsic_base(instr) +
3271 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3272 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3273 src.type);
3274
3275 for (unsigned j = 0; j < instr->num_components; j++)
3276 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3277 offset(src, bld, j));
3278
3279 break;
3280 }
3281
3282 case nir_intrinsic_load_output: {
3283 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3284 BRW_NIR_FRAG_OUTPUT_LOCATION);
3285 assert(l >= FRAG_RESULT_DATA0);
3286 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3287 assert(const_offset && "Indirect output loads not allowed");
3288 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3289 const fs_reg tmp = bld.vgrf(dest.type, 4);
3290
3291 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3292 emit_coherent_fb_read(bld, tmp, target);
3293 else
3294 emit_non_coherent_fb_read(bld, tmp, target);
3295
3296 for (unsigned j = 0; j < instr->num_components; j++) {
3297 bld.MOV(offset(dest, bld, j),
3298 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3299 }
3300
3301 break;
3302 }
3303
3304 case nir_intrinsic_discard:
3305 case nir_intrinsic_discard_if: {
3306 /* We track our discarded pixels in f0.1. By predicating on it, we can
3307 * update just the flag bits that aren't yet discarded. If there's no
3308 * condition, we emit a CMP of g0 != g0, so all currently executing
3309 * channels will get turned off.
3310 */
3311 fs_inst *cmp;
3312 if (instr->intrinsic == nir_intrinsic_discard_if) {
3313 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3314 brw_imm_d(0), BRW_CONDITIONAL_Z);
3315 } else {
3316 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3317 BRW_REGISTER_TYPE_UW));
3318 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3319 }
3320 cmp->predicate = BRW_PREDICATE_NORMAL;
3321 cmp->flag_subreg = 1;
3322
3323 if (devinfo->gen >= 6) {
3324 emit_discard_jump();
3325 }
3326 break;
3327 }
3328
3329 case nir_intrinsic_load_input: {
3330 /* load_input is only used for flat inputs */
3331 unsigned base = nir_intrinsic_base(instr);
3332 unsigned component = nir_intrinsic_component(instr);
3333 unsigned num_components = instr->num_components;
3334 enum brw_reg_type type = dest.type;
3335
3336 /* Special case fields in the VUE header */
3337 if (base == VARYING_SLOT_LAYER)
3338 component = 1;
3339 else if (base == VARYING_SLOT_VIEWPORT)
3340 component = 2;
3341
3342 if (nir_dest_bit_size(instr->dest) == 64) {
3343 /* const_index is in 32-bit type size units that could not be aligned
3344 * with DF. We need to read the double vector as if it was a float
3345 * vector of twice the number of components to fetch the right data.
3346 */
3347 type = BRW_REGISTER_TYPE_F;
3348 num_components *= 2;
3349 }
3350
3351 for (unsigned int i = 0; i < num_components; i++) {
3352 struct brw_reg interp = interp_reg(base, component + i);
3353 interp = suboffset(interp, 3);
3354 bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i),
3355 retype(fs_reg(interp), type));
3356 }
3357
3358 if (nir_dest_bit_size(instr->dest) == 64) {
3359 shuffle_32bit_load_result_to_64bit_data(bld,
3360 dest,
3361 retype(dest, type),
3362 instr->num_components);
3363 }
3364 break;
3365 }
3366
3367 case nir_intrinsic_load_barycentric_pixel:
3368 case nir_intrinsic_load_barycentric_centroid:
3369 case nir_intrinsic_load_barycentric_sample:
3370 /* Do nothing - load_interpolated_input handling will handle it later. */
3371 break;
3372
3373 case nir_intrinsic_load_barycentric_at_sample: {
3374 const glsl_interp_mode interpolation =
3375 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3376
3377 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3378
3379 if (const_sample) {
3380 unsigned msg_data = const_sample->i32[0] << 4;
3381
3382 emit_pixel_interpolater_send(bld,
3383 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3384 dest,
3385 fs_reg(), /* src */
3386 brw_imm_ud(msg_data),
3387 interpolation);
3388 } else {
3389 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3390 BRW_REGISTER_TYPE_UD);
3391
3392 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3393 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3394 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3395 bld.exec_all().group(1, 0)
3396 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3397 emit_pixel_interpolater_send(bld,
3398 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3399 dest,
3400 fs_reg(), /* src */
3401 msg_data,
3402 interpolation);
3403 } else {
3404 /* Make a loop that sends a message to the pixel interpolater
3405 * for the sample number in each live channel. If there are
3406 * multiple channels with the same sample number then these
3407 * will be handled simultaneously with a single interation of
3408 * the loop.
3409 */
3410 bld.emit(BRW_OPCODE_DO);
3411
3412 /* Get the next live sample number into sample_id_reg */
3413 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3414
3415 /* Set the flag register so that we can perform the send
3416 * message on all channels that have the same sample number
3417 */
3418 bld.CMP(bld.null_reg_ud(),
3419 sample_src, sample_id,
3420 BRW_CONDITIONAL_EQ);
3421 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3422 bld.exec_all().group(1, 0)
3423 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3424 fs_inst *inst =
3425 emit_pixel_interpolater_send(bld,
3426 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3427 dest,
3428 fs_reg(), /* src */
3429 msg_data,
3430 interpolation);
3431 set_predicate(BRW_PREDICATE_NORMAL, inst);
3432
3433 /* Continue the loop if there are any live channels left */
3434 set_predicate_inv(BRW_PREDICATE_NORMAL,
3435 true, /* inverse */
3436 bld.emit(BRW_OPCODE_WHILE));
3437 }
3438 }
3439 break;
3440 }
3441
3442 case nir_intrinsic_load_barycentric_at_offset: {
3443 const glsl_interp_mode interpolation =
3444 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3445
3446 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3447
3448 if (const_offset) {
3449 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3450 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3451
3452 emit_pixel_interpolater_send(bld,
3453 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3454 dest,
3455 fs_reg(), /* src */
3456 brw_imm_ud(off_x | (off_y << 4)),
3457 interpolation);
3458 } else {
3459 fs_reg src = vgrf(glsl_type::ivec2_type);
3460 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3461 BRW_REGISTER_TYPE_F);
3462 for (int i = 0; i < 2; i++) {
3463 fs_reg temp = vgrf(glsl_type::float_type);
3464 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3465 fs_reg itemp = vgrf(glsl_type::int_type);
3466 /* float to int */
3467 bld.MOV(itemp, temp);
3468
3469 /* Clamp the upper end of the range to +7/16.
3470 * ARB_gpu_shader5 requires that we support a maximum offset
3471 * of +0.5, which isn't representable in a S0.4 value -- if
3472 * we didn't clamp it, we'd end up with -8/16, which is the
3473 * opposite of what the shader author wanted.
3474 *
3475 * This is legal due to ARB_gpu_shader5's quantization
3476 * rules:
3477 *
3478 * "Not all values of <offset> may be supported; x and y
3479 * offsets may be rounded to fixed-point values with the
3480 * number of fraction bits given by the
3481 * implementation-dependent constant
3482 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3483 */
3484 set_condmod(BRW_CONDITIONAL_L,
3485 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3486 }
3487
3488 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3489 emit_pixel_interpolater_send(bld,
3490 opcode,
3491 dest,
3492 src,
3493 brw_imm_ud(0u),
3494 interpolation);
3495 }
3496 break;
3497 }
3498
3499 case nir_intrinsic_load_interpolated_input: {
3500 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3501 emit_fragcoord_interpolation(dest);
3502 break;
3503 }
3504
3505 assert(instr->src[0].ssa &&
3506 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3507 nir_intrinsic_instr *bary_intrinsic =
3508 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3509 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3510 enum glsl_interp_mode interp_mode =
3511 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3512 fs_reg dst_xy;
3513
3514 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3515 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3516 /* Use the result of the PI message */
3517 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3518 } else {
3519 /* Use the delta_xy values computed from the payload */
3520 enum brw_barycentric_mode bary =
3521 brw_barycentric_mode(interp_mode, bary_intrin);
3522
3523 dst_xy = this->delta_xy[bary];
3524 }
3525
3526 for (unsigned int i = 0; i < instr->num_components; i++) {
3527 fs_reg interp =
3528 fs_reg(interp_reg(nir_intrinsic_base(instr),
3529 nir_intrinsic_component(instr) + i));
3530 interp.type = BRW_REGISTER_TYPE_F;
3531 dest.type = BRW_REGISTER_TYPE_F;
3532
3533 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3534 fs_reg tmp = vgrf(glsl_type::float_type);
3535 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3536 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3537 } else {
3538 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3539 }
3540 }
3541 break;
3542 }
3543
3544 default:
3545 nir_emit_intrinsic(bld, instr);
3546 break;
3547 }
3548 }
3549
3550 void
3551 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3552 nir_intrinsic_instr *instr)
3553 {
3554 assert(stage == MESA_SHADER_COMPUTE);
3555 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3556
3557 fs_reg dest;
3558 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3559 dest = get_nir_dest(instr->dest);
3560
3561 switch (instr->intrinsic) {
3562 case nir_intrinsic_barrier:
3563 emit_barrier();
3564 cs_prog_data->uses_barrier = true;
3565 break;
3566
3567 case nir_intrinsic_load_subgroup_id:
3568 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3569 break;
3570
3571 case nir_intrinsic_load_local_invocation_id:
3572 case nir_intrinsic_load_work_group_id: {
3573 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3574 fs_reg val = nir_system_values[sv];
3575 assert(val.file != BAD_FILE);
3576 dest.type = val.type;
3577 for (unsigned i = 0; i < 3; i++)
3578 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3579 break;
3580 }
3581
3582 case nir_intrinsic_load_num_work_groups: {
3583 const unsigned surface =
3584 cs_prog_data->binding_table.work_groups_start;
3585
3586 cs_prog_data->uses_num_work_groups = true;
3587
3588 fs_reg surf_index = brw_imm_ud(surface);
3589 brw_mark_surface_used(prog_data, surface);
3590
3591 /* Read the 3 GLuint components of gl_NumWorkGroups */
3592 for (unsigned i = 0; i < 3; i++) {
3593 fs_reg read_result =
3594 emit_untyped_read(bld, surf_index,
3595 brw_imm_ud(i << 2),
3596 1 /* dims */, 1 /* size */,
3597 BRW_PREDICATE_NONE);
3598 read_result.type = dest.type;
3599 bld.MOV(dest, read_result);
3600 dest = offset(dest, bld, 1);
3601 }
3602 break;
3603 }
3604
3605 case nir_intrinsic_shared_atomic_add:
3606 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3607 break;
3608 case nir_intrinsic_shared_atomic_imin:
3609 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3610 break;
3611 case nir_intrinsic_shared_atomic_umin:
3612 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3613 break;
3614 case nir_intrinsic_shared_atomic_imax:
3615 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3616 break;
3617 case nir_intrinsic_shared_atomic_umax:
3618 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3619 break;
3620 case nir_intrinsic_shared_atomic_and:
3621 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3622 break;
3623 case nir_intrinsic_shared_atomic_or:
3624 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3625 break;
3626 case nir_intrinsic_shared_atomic_xor:
3627 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3628 break;
3629 case nir_intrinsic_shared_atomic_exchange:
3630 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3631 break;
3632 case nir_intrinsic_shared_atomic_comp_swap:
3633 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3634 break;
3635
3636 case nir_intrinsic_load_shared: {
3637 assert(devinfo->gen >= 7);
3638
3639 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3640
3641 /* Get the offset to read from */
3642 fs_reg offset_reg;
3643 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3644 if (const_offset) {
3645 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3646 } else {
3647 offset_reg = vgrf(glsl_type::uint_type);
3648 bld.ADD(offset_reg,
3649 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3650 brw_imm_ud(instr->const_index[0]));
3651 }
3652
3653 /* Read the vector */
3654 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3655 instr->num_components);
3656 break;
3657 }
3658
3659 case nir_intrinsic_store_shared: {
3660 assert(devinfo->gen >= 7);
3661
3662 /* Block index */
3663 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3664
3665 /* Value */
3666 fs_reg val_reg = get_nir_src(instr->src[0]);
3667
3668 /* Writemask */
3669 unsigned writemask = instr->const_index[1];
3670
3671 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3672 * since the untyped writes below operate in units of 32-bits, which
3673 * means that we need to write twice as many components each time.
3674 * Also, we have to suffle 64-bit data to be in the appropriate layout
3675 * expected by our 32-bit write messages.
3676 */
3677 unsigned type_size = 4;
3678 if (nir_src_bit_size(instr->src[0]) == 64) {
3679 type_size = 8;
3680 val_reg = shuffle_64bit_data_for_32bit_write(bld,
3681 val_reg, instr->num_components);
3682 }
3683
3684 unsigned type_slots = type_size / 4;
3685
3686 /* Combine groups of consecutive enabled channels in one write
3687 * message. We use ffs to find the first enabled channel and then ffs on
3688 * the bit-inverse, down-shifted writemask to determine the length of
3689 * the block of enabled bits.
3690 */
3691 while (writemask) {
3692 unsigned first_component = ffs(writemask) - 1;
3693 unsigned length = ffs(~(writemask >> first_component)) - 1;
3694
3695 /* We can't write more than 2 64-bit components at once. Limit the
3696 * length of the write to what we can do and let the next iteration
3697 * handle the rest
3698 */
3699 if (type_size > 4)
3700 length = MIN2(2, length);
3701
3702 fs_reg offset_reg;
3703 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3704 if (const_offset) {
3705 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3706 type_size * first_component);
3707 } else {
3708 offset_reg = vgrf(glsl_type::uint_type);
3709 bld.ADD(offset_reg,
3710 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3711 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3712 }
3713
3714 emit_untyped_write(bld, surf_index, offset_reg,
3715 offset(val_reg, bld, first_component * type_slots),
3716 1 /* dims */, length * type_slots,
3717 BRW_PREDICATE_NONE);
3718
3719 /* Clear the bits in the writemask that we just wrote, then try
3720 * again to see if more channels are left.
3721 */
3722 writemask &= (15 << (first_component + length));
3723 }
3724
3725 break;
3726 }
3727
3728 default:
3729 nir_emit_intrinsic(bld, instr);
3730 break;
3731 }
3732 }
3733
3734 static fs_reg
3735 brw_nir_reduction_op_identity(const fs_builder &bld,
3736 nir_op op, brw_reg_type type)
3737 {
3738 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3739 switch (type_sz(type)) {
3740 case 2:
3741 assert(type != BRW_REGISTER_TYPE_HF);
3742 return retype(brw_imm_uw(value.u16[0]), type);
3743 case 4:
3744 return retype(brw_imm_ud(value.u32[0]), type);
3745 case 8:
3746 if (type == BRW_REGISTER_TYPE_DF)
3747 return setup_imm_df(bld, value.f64[0]);
3748 else
3749 return retype(brw_imm_u64(value.u64[0]), type);
3750 default:
3751 unreachable("Invalid type size");
3752 }
3753 }
3754
3755 static opcode
3756 brw_op_for_nir_reduction_op(nir_op op)
3757 {
3758 switch (op) {
3759 case nir_op_iadd: return BRW_OPCODE_ADD;
3760 case nir_op_fadd: return BRW_OPCODE_ADD;
3761 case nir_op_imul: return BRW_OPCODE_MUL;
3762 case nir_op_fmul: return BRW_OPCODE_MUL;
3763 case nir_op_imin: return BRW_OPCODE_SEL;
3764 case nir_op_umin: return BRW_OPCODE_SEL;
3765 case nir_op_fmin: return BRW_OPCODE_SEL;
3766 case nir_op_imax: return BRW_OPCODE_SEL;
3767 case nir_op_umax: return BRW_OPCODE_SEL;
3768 case nir_op_fmax: return BRW_OPCODE_SEL;
3769 case nir_op_iand: return BRW_OPCODE_AND;
3770 case nir_op_ior: return BRW_OPCODE_OR;
3771 case nir_op_ixor: return BRW_OPCODE_XOR;
3772 default:
3773 unreachable("Invalid reduction operation");
3774 }
3775 }
3776
3777 static brw_conditional_mod
3778 brw_cond_mod_for_nir_reduction_op(nir_op op)
3779 {
3780 switch (op) {
3781 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3782 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3783 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3784 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3785 case nir_op_imin: return BRW_CONDITIONAL_L;
3786 case nir_op_umin: return BRW_CONDITIONAL_L;
3787 case nir_op_fmin: return BRW_CONDITIONAL_L;
3788 case nir_op_imax: return BRW_CONDITIONAL_GE;
3789 case nir_op_umax: return BRW_CONDITIONAL_GE;
3790 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3791 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3792 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3793 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3794 default:
3795 unreachable("Invalid reduction operation");
3796 }
3797 }
3798
3799 void
3800 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3801 {
3802 fs_reg dest;
3803 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3804 dest = get_nir_dest(instr->dest);
3805
3806 switch (instr->intrinsic) {
3807 case nir_intrinsic_image_var_load:
3808 case nir_intrinsic_image_var_store:
3809 case nir_intrinsic_image_var_atomic_add:
3810 case nir_intrinsic_image_var_atomic_min:
3811 case nir_intrinsic_image_var_atomic_max:
3812 case nir_intrinsic_image_var_atomic_and:
3813 case nir_intrinsic_image_var_atomic_or:
3814 case nir_intrinsic_image_var_atomic_xor:
3815 case nir_intrinsic_image_var_atomic_exchange:
3816 case nir_intrinsic_image_var_atomic_comp_swap: {
3817 using namespace image_access;
3818
3819 if (stage == MESA_SHADER_FRAGMENT &&
3820 instr->intrinsic != nir_intrinsic_image_var_load)
3821 brw_wm_prog_data(prog_data)->has_side_effects = true;
3822
3823 /* Get the referenced image variable and type. */
3824 const nir_variable *var = instr->variables[0]->var;
3825 const glsl_type *type = var->type->without_array();
3826 const brw_reg_type base_type = get_image_base_type(type);
3827
3828 /* Get some metadata from the image intrinsic. */
3829 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3830 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3831 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3832 const unsigned format = var->data.image.format;
3833 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3834
3835 /* Get the arguments of the image intrinsic. */
3836 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3837 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3838 BRW_REGISTER_TYPE_UD);
3839 const fs_reg src0 = (info->num_srcs >= 3 ?
3840 retype(get_nir_src(instr->src[2]), base_type) :
3841 fs_reg());
3842 const fs_reg src1 = (info->num_srcs >= 4 ?
3843 retype(get_nir_src(instr->src[3]), base_type) :
3844 fs_reg());
3845 fs_reg tmp;
3846
3847 /* Emit an image load, store or atomic op. */
3848 if (instr->intrinsic == nir_intrinsic_image_var_load)
3849 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3850
3851 else if (instr->intrinsic == nir_intrinsic_image_var_store)
3852 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3853 var->data.image.write_only ? GL_NONE : format);
3854
3855 else
3856 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3857 surf_dims, arr_dims, dest_components,
3858 get_image_atomic_op(instr->intrinsic, type));
3859
3860 /* Assign the result. */
3861 for (unsigned c = 0; c < dest_components; ++c) {
3862 bld.MOV(offset(retype(dest, base_type), bld, c),
3863 offset(tmp, bld, c));
3864 }
3865 break;
3866 }
3867
3868 case nir_intrinsic_memory_barrier_atomic_counter:
3869 case nir_intrinsic_memory_barrier_buffer:
3870 case nir_intrinsic_memory_barrier_image:
3871 case nir_intrinsic_memory_barrier: {
3872 const fs_builder ubld = bld.group(8, 0);
3873 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3874 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3875 ->size_written = 2 * REG_SIZE;
3876 break;
3877 }
3878
3879 case nir_intrinsic_group_memory_barrier:
3880 case nir_intrinsic_memory_barrier_shared:
3881 /* We treat these workgroup-level barriers as no-ops. This should be
3882 * safe at present and as long as:
3883 *
3884 * - Memory access instructions are not subsequently reordered by the
3885 * compiler back-end.
3886 *
3887 * - All threads from a given compute shader workgroup fit within a
3888 * single subslice and therefore talk to the same HDC shared unit
3889 * what supposedly guarantees ordering and coherency between threads
3890 * from the same workgroup. This may change in the future when we
3891 * start splitting workgroups across multiple subslices.
3892 *
3893 * - The context is not in fault-and-stream mode, which could cause
3894 * memory transactions (including to SLM) prior to the barrier to be
3895 * replayed after the barrier if a pagefault occurs. This shouldn't
3896 * be a problem up to and including SKL because fault-and-stream is
3897 * not usable due to hardware issues, but that's likely to change in
3898 * the future.
3899 */
3900 break;
3901
3902 case nir_intrinsic_shader_clock: {
3903 /* We cannot do anything if there is an event, so ignore it for now */
3904 const fs_reg shader_clock = get_timestamp(bld);
3905 const fs_reg srcs[] = { component(shader_clock, 0),
3906 component(shader_clock, 1) };
3907 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3908 break;
3909 }
3910
3911 case nir_intrinsic_image_var_size: {
3912 /* Get the referenced image variable and type. */
3913 const nir_variable *var = instr->variables[0]->var;
3914 const glsl_type *type = var->type->without_array();
3915
3916 /* Get the size of the image. */
3917 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3918 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3919
3920 /* For 1DArray image types, the array index is stored in the Z component.
3921 * Fix this by swizzling the Z component to the Y component.
3922 */
3923 const bool is_1d_array_image =
3924 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3925 type->sampler_array;
3926
3927 /* For CubeArray images, we should count the number of cubes instead
3928 * of the number of faces. Fix it by dividing the (Z component) by 6.
3929 */
3930 const bool is_cube_array_image =
3931 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3932 type->sampler_array;
3933
3934 /* Copy all the components. */
3935 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3936 if ((int)c >= type->coordinate_components()) {
3937 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3938 brw_imm_d(1));
3939 } else if (c == 1 && is_1d_array_image) {
3940 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3941 offset(size, bld, 2));
3942 } else if (c == 2 && is_cube_array_image) {
3943 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3944 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3945 offset(size, bld, c), brw_imm_d(6));
3946 } else {
3947 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3948 offset(size, bld, c));
3949 }
3950 }
3951
3952 break;
3953 }
3954
3955 case nir_intrinsic_image_var_samples:
3956 /* The driver does not support multi-sampled images. */
3957 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3958 break;
3959
3960 case nir_intrinsic_load_uniform: {
3961 /* Offsets are in bytes but they should always aligned to
3962 * the type size
3963 */
3964 assert(instr->const_index[0] % 4 == 0 ||
3965 instr->const_index[0] % type_sz(dest.type) == 0);
3966
3967 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3968
3969 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3970 if (const_offset) {
3971 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
3972 /* For 16-bit types we add the module of the const_index[0]
3973 * offset to access to not 32-bit aligned element
3974 */
3975 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
3976
3977 for (unsigned j = 0; j < instr->num_components; j++) {
3978 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3979 }
3980 } else {
3981 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3982 BRW_REGISTER_TYPE_UD);
3983
3984 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3985 * go past the end of the uniform. In order to keep the n'th
3986 * component from running past, we subtract off the size of all but
3987 * one component of the vector.
3988 */
3989 assert(instr->const_index[1] >=
3990 instr->num_components * (int) type_sz(dest.type));
3991 unsigned read_size = instr->const_index[1] -
3992 (instr->num_components - 1) * type_sz(dest.type);
3993
3994 bool supports_64bit_indirects =
3995 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
3996
3997 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
3998 for (unsigned j = 0; j < instr->num_components; j++) {
3999 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4000 offset(dest, bld, j), offset(src, bld, j),
4001 indirect, brw_imm_ud(read_size));
4002 }
4003 } else {
4004 const unsigned num_mov_indirects =
4005 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4006 /* We read a little bit less per MOV INDIRECT, as they are now
4007 * 32-bits ones instead of 64-bit. Fix read_size then.
4008 */
4009 const unsigned read_size_32bit = read_size -
4010 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4011 for (unsigned j = 0; j < instr->num_components; j++) {
4012 for (unsigned i = 0; i < num_mov_indirects; i++) {
4013 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4014 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4015 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4016 indirect, brw_imm_ud(read_size_32bit));
4017 }
4018 }
4019 }
4020 }
4021 break;
4022 }
4023
4024 case nir_intrinsic_load_ubo: {
4025 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4026 fs_reg surf_index;
4027
4028 if (const_index) {
4029 const unsigned index = stage_prog_data->binding_table.ubo_start +
4030 const_index->u32[0];
4031 surf_index = brw_imm_ud(index);
4032 brw_mark_surface_used(prog_data, index);
4033 } else {
4034 /* The block index is not a constant. Evaluate the index expression
4035 * per-channel and add the base UBO index; we have to select a value
4036 * from any live channel.
4037 */
4038 surf_index = vgrf(glsl_type::uint_type);
4039 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4040 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4041 surf_index = bld.emit_uniformize(surf_index);
4042
4043 /* Assume this may touch any UBO. It would be nice to provide
4044 * a tighter bound, but the array information is already lowered away.
4045 */
4046 brw_mark_surface_used(prog_data,
4047 stage_prog_data->binding_table.ubo_start +
4048 nir->info.num_ubos - 1);
4049 }
4050
4051 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4052 if (const_offset == NULL) {
4053 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4054 BRW_REGISTER_TYPE_UD);
4055
4056 for (int i = 0; i < instr->num_components; i++)
4057 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4058 base_offset, i * type_sz(dest.type));
4059 } else {
4060 /* Even if we are loading doubles, a pull constant load will load
4061 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4062 * need to load a full dvec4 we will have to emit 2 loads. This is
4063 * similar to demote_pull_constants(), except that in that case we
4064 * see individual accesses to each component of the vector and then
4065 * we let CSE deal with duplicate loads. Here we see a vector access
4066 * and we have to split it if necessary.
4067 */
4068 const unsigned type_size = type_sz(dest.type);
4069
4070 /* See if we've selected this as a push constant candidate */
4071 if (const_index) {
4072 const unsigned ubo_block = const_index->u32[0];
4073 const unsigned offset_256b = const_offset->u32[0] / 32;
4074
4075 fs_reg push_reg;
4076 for (int i = 0; i < 4; i++) {
4077 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4078 if (range->block == ubo_block &&
4079 offset_256b >= range->start &&
4080 offset_256b < range->start + range->length) {
4081
4082 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4083 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4084 break;
4085 }
4086 }
4087
4088 if (push_reg.file != BAD_FILE) {
4089 for (unsigned i = 0; i < instr->num_components; i++) {
4090 bld.MOV(offset(dest, bld, i),
4091 byte_offset(push_reg, i * type_size));
4092 }
4093 break;
4094 }
4095 }
4096
4097 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4098 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4099 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4100
4101 for (unsigned c = 0; c < instr->num_components;) {
4102 const unsigned base = const_offset->u32[0] + c * type_size;
4103 /* Number of usable components in the next block-aligned load. */
4104 const unsigned count = MIN2(instr->num_components - c,
4105 (block_sz - base % block_sz) / type_size);
4106
4107 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4108 packed_consts, surf_index,
4109 brw_imm_ud(base & ~(block_sz - 1)));
4110
4111 const fs_reg consts =
4112 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4113 dest.type);
4114
4115 for (unsigned d = 0; d < count; d++)
4116 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4117
4118 c += count;
4119 }
4120 }
4121 break;
4122 }
4123
4124 case nir_intrinsic_load_ssbo: {
4125 assert(devinfo->gen >= 7);
4126
4127 nir_const_value *const_uniform_block =
4128 nir_src_as_const_value(instr->src[0]);
4129
4130 fs_reg surf_index;
4131 if (const_uniform_block) {
4132 unsigned index = stage_prog_data->binding_table.ssbo_start +
4133 const_uniform_block->u32[0];
4134 surf_index = brw_imm_ud(index);
4135 brw_mark_surface_used(prog_data, index);
4136 } else {
4137 surf_index = vgrf(glsl_type::uint_type);
4138 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4139 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4140
4141 /* Assume this may touch any UBO. It would be nice to provide
4142 * a tighter bound, but the array information is already lowered away.
4143 */
4144 brw_mark_surface_used(prog_data,
4145 stage_prog_data->binding_table.ssbo_start +
4146 nir->info.num_ssbos - 1);
4147 }
4148
4149 fs_reg offset_reg;
4150 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4151 if (const_offset) {
4152 offset_reg = brw_imm_ud(const_offset->u32[0]);
4153 } else {
4154 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4155 }
4156
4157 /* Read the vector */
4158 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4159 instr->num_components);
4160
4161 break;
4162 }
4163
4164 case nir_intrinsic_store_ssbo: {
4165 assert(devinfo->gen >= 7);
4166
4167 if (stage == MESA_SHADER_FRAGMENT)
4168 brw_wm_prog_data(prog_data)->has_side_effects = true;
4169
4170 /* Block index */
4171 fs_reg surf_index;
4172 nir_const_value *const_uniform_block =
4173 nir_src_as_const_value(instr->src[1]);
4174 if (const_uniform_block) {
4175 unsigned index = stage_prog_data->binding_table.ssbo_start +
4176 const_uniform_block->u32[0];
4177 surf_index = brw_imm_ud(index);
4178 brw_mark_surface_used(prog_data, index);
4179 } else {
4180 surf_index = vgrf(glsl_type::uint_type);
4181 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4182 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4183
4184 brw_mark_surface_used(prog_data,
4185 stage_prog_data->binding_table.ssbo_start +
4186 nir->info.num_ssbos - 1);
4187 }
4188
4189 /* Value */
4190 fs_reg val_reg = get_nir_src(instr->src[0]);
4191
4192 /* Writemask */
4193 unsigned writemask = instr->const_index[0];
4194
4195 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4196 * since the untyped writes below operate in units of 32-bits, which
4197 * means that we need to write twice as many components each time.
4198 * Also, we have to suffle 64-bit data to be in the appropriate layout
4199 * expected by our 32-bit write messages.
4200 */
4201 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4202 unsigned type_size = bit_size / 8;
4203
4204 /* Combine groups of consecutive enabled channels in one write
4205 * message. We use ffs to find the first enabled channel and then ffs on
4206 * the bit-inverse, down-shifted writemask to determine the num_components
4207 * of the block of enabled bits.
4208 */
4209 while (writemask) {
4210 unsigned first_component = ffs(writemask) - 1;
4211 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4212 fs_reg write_src = offset(val_reg, bld, first_component);
4213
4214 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4215
4216 if (type_size > 4) {
4217 /* We can't write more than 2 64-bit components at once. Limit
4218 * the num_components of the write to what we can do and let the next
4219 * iteration handle the rest.
4220 */
4221 num_components = MIN2(2, num_components);
4222 write_src = shuffle_64bit_data_for_32bit_write(bld, write_src,
4223 num_components);
4224 } else if (type_size < 4) {
4225 assert(type_size == 2);
4226 /* For 16-bit types we pack two consecutive values into a 32-bit
4227 * word and use an untyped write message. For single values or not
4228 * 32-bit-aligned we need to use byte-scattered writes because
4229 * untyped writes works with 32-bit components with 32-bit
4230 * alignment. byte_scattered_write messages only support one
4231 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4232 * could be enabled we can not guarantee that not constant offsets
4233 * to be 32-bit aligned for 16-bit types. For example an array, of
4234 * 16-bit vec3 with array element stride of 6.
4235 *
4236 * In the case of 32-bit aligned constant offsets if there is
4237 * a 3-components vector we submit one untyped-write message
4238 * of 32-bit (first two components), and one byte-scattered
4239 * write message (the last component).
4240 */
4241
4242 if ( !const_offset || ((const_offset->u32[0] +
4243 type_size * first_component) % 4)) {
4244 /* If we use a .yz writemask we also need to emit 2
4245 * byte-scattered write messages because of y-component not
4246 * being aligned to 32-bit.
4247 */
4248 num_components = 1;
4249 } else if (num_components > 2 && (num_components % 2)) {
4250 /* If there is an odd number of consecutive components we left
4251 * the not paired component for a following emit of length == 1
4252 * with byte_scattered_write.
4253 */
4254 num_components --;
4255 }
4256 /* For num_components == 1 we are also shuffling the component
4257 * because byte scattered writes of 16-bit need values to be dword
4258 * aligned. Shuffling only one component would be the same as
4259 * striding it.
4260 */
4261 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D,
4262 DIV_ROUND_UP(num_components, 2));
4263 shuffle_16bit_data_for_32bit_write(bld, tmp, write_src,
4264 num_components);
4265 write_src = tmp;
4266 }
4267
4268 fs_reg offset_reg;
4269
4270 if (const_offset) {
4271 offset_reg = brw_imm_ud(const_offset->u32[0] +
4272 type_size * first_component);
4273 } else {
4274 offset_reg = vgrf(glsl_type::uint_type);
4275 bld.ADD(offset_reg,
4276 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4277 brw_imm_ud(type_size * first_component));
4278 }
4279
4280 if (type_size < 4 && num_components == 1) {
4281 assert(type_size == 2);
4282 /* Untyped Surface messages have a fixed 32-bit size, so we need
4283 * to rely on byte scattered in order to write 16-bit elements.
4284 * The byte_scattered_write message needs that every written 16-bit
4285 * type to be aligned 32-bits (stride=2).
4286 */
4287 emit_byte_scattered_write(bld, surf_index, offset_reg,
4288 write_src,
4289 1 /* dims */, 1,
4290 bit_size,
4291 BRW_PREDICATE_NONE);
4292 } else {
4293 assert(num_components * type_size <= 16);
4294 assert((num_components * type_size) % 4 == 0);
4295 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4296 offset_reg.ud % 4 == 0);
4297 unsigned num_slots = (num_components * type_size) / 4;
4298
4299 emit_untyped_write(bld, surf_index, offset_reg,
4300 write_src,
4301 1 /* dims */, num_slots,
4302 BRW_PREDICATE_NONE);
4303 }
4304
4305 /* Clear the bits in the writemask that we just wrote, then try
4306 * again to see if more channels are left.
4307 */
4308 writemask &= (15 << (first_component + num_components));
4309 }
4310 break;
4311 }
4312
4313 case nir_intrinsic_store_output: {
4314 fs_reg src = get_nir_src(instr->src[0]);
4315
4316 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4317 assert(const_offset && "Indirect output stores not allowed");
4318
4319 unsigned num_components = instr->num_components;
4320 unsigned first_component = nir_intrinsic_component(instr);
4321 if (nir_src_bit_size(instr->src[0]) == 64) {
4322 src = shuffle_64bit_data_for_32bit_write(bld, src, num_components);
4323 num_components *= 2;
4324 }
4325
4326 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4327 4 * const_offset->u32[0]), src.type);
4328 for (unsigned j = 0; j < num_components; j++) {
4329 bld.MOV(offset(new_dest, bld, j + first_component),
4330 offset(src, bld, j));
4331 }
4332 break;
4333 }
4334
4335 case nir_intrinsic_ssbo_atomic_add:
4336 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4337 break;
4338 case nir_intrinsic_ssbo_atomic_imin:
4339 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4340 break;
4341 case nir_intrinsic_ssbo_atomic_umin:
4342 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4343 break;
4344 case nir_intrinsic_ssbo_atomic_imax:
4345 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4346 break;
4347 case nir_intrinsic_ssbo_atomic_umax:
4348 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4349 break;
4350 case nir_intrinsic_ssbo_atomic_and:
4351 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4352 break;
4353 case nir_intrinsic_ssbo_atomic_or:
4354 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4355 break;
4356 case nir_intrinsic_ssbo_atomic_xor:
4357 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4358 break;
4359 case nir_intrinsic_ssbo_atomic_exchange:
4360 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4361 break;
4362 case nir_intrinsic_ssbo_atomic_comp_swap:
4363 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4364 break;
4365
4366 case nir_intrinsic_get_buffer_size: {
4367 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4368 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4369
4370 /* A resinfo's sampler message is used to get the buffer size. The
4371 * SIMD8's writeback message consists of four registers and SIMD16's
4372 * writeback message consists of 8 destination registers (two per each
4373 * component). Because we are only interested on the first channel of
4374 * the first returned component, where resinfo returns the buffer size
4375 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4376 * the dispatch width.
4377 */
4378 const fs_builder ubld = bld.exec_all().group(8, 0);
4379 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4380 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4381
4382 /* Set LOD = 0 */
4383 ubld.MOV(src_payload, brw_imm_d(0));
4384
4385 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4386 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4387 src_payload, brw_imm_ud(index));
4388 inst->header_size = 0;
4389 inst->mlen = 1;
4390 inst->size_written = 4 * REG_SIZE;
4391
4392 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4393 *
4394 * "Out-of-bounds checking is always performed at a DWord granularity. If
4395 * any part of the DWord is out-of-bounds then the whole DWord is
4396 * considered out-of-bounds."
4397 *
4398 * This implies that types with size smaller than 4-bytes need to be
4399 * padded if they don't complete the last dword of the buffer. But as we
4400 * need to maintain the original size we need to reverse the padding
4401 * calculation to return the correct size to know the number of elements
4402 * of an unsized array. As we stored in the last two bits of the surface
4403 * size the needed padding for the buffer, we calculate here the
4404 * original buffer_size reversing the surface_size calculation:
4405 *
4406 * surface_size = isl_align(buffer_size, 4) +
4407 * (isl_align(buffer_size) - buffer_size)
4408 *
4409 * buffer_size = surface_size & ~3 - surface_size & 3
4410 */
4411
4412 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4413 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4414 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4415
4416 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4417 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4418 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4419
4420 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4421
4422 brw_mark_surface_used(prog_data, index);
4423 break;
4424 }
4425
4426 case nir_intrinsic_load_subgroup_invocation:
4427 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4428 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4429 break;
4430
4431 case nir_intrinsic_load_subgroup_eq_mask:
4432 case nir_intrinsic_load_subgroup_ge_mask:
4433 case nir_intrinsic_load_subgroup_gt_mask:
4434 case nir_intrinsic_load_subgroup_le_mask:
4435 case nir_intrinsic_load_subgroup_lt_mask:
4436 unreachable("not reached");
4437
4438 case nir_intrinsic_vote_any: {
4439 const fs_builder ubld = bld.exec_all().group(1, 0);
4440
4441 /* The any/all predicates do not consider channel enables. To prevent
4442 * dead channels from affecting the result, we initialize the flag with
4443 * with the identity value for the logical operation.
4444 */
4445 if (dispatch_width == 32) {
4446 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4447 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4448 brw_imm_ud(0));
4449 } else {
4450 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4451 }
4452 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4453
4454 /* For some reason, the any/all predicates don't work properly with
4455 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4456 * doesn't read the correct subset of the flag register and you end up
4457 * getting garbage in the second half. Work around this by using a pair
4458 * of 1-wide MOVs and scattering the result.
4459 */
4460 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4461 ubld.MOV(res1, brw_imm_d(0));
4462 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4463 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4464 BRW_PREDICATE_ALIGN1_ANY32H,
4465 ubld.MOV(res1, brw_imm_d(-1)));
4466
4467 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4468 break;
4469 }
4470 case nir_intrinsic_vote_all: {
4471 const fs_builder ubld = bld.exec_all().group(1, 0);
4472
4473 /* The any/all predicates do not consider channel enables. To prevent
4474 * dead channels from affecting the result, we initialize the flag with
4475 * with the identity value for the logical operation.
4476 */
4477 if (dispatch_width == 32) {
4478 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4479 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4480 brw_imm_ud(0xffffffff));
4481 } else {
4482 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4483 }
4484 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4485
4486 /* For some reason, the any/all predicates don't work properly with
4487 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4488 * doesn't read the correct subset of the flag register and you end up
4489 * getting garbage in the second half. Work around this by using a pair
4490 * of 1-wide MOVs and scattering the result.
4491 */
4492 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4493 ubld.MOV(res1, brw_imm_d(0));
4494 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4495 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4496 BRW_PREDICATE_ALIGN1_ALL32H,
4497 ubld.MOV(res1, brw_imm_d(-1)));
4498
4499 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4500 break;
4501 }
4502 case nir_intrinsic_vote_feq:
4503 case nir_intrinsic_vote_ieq: {
4504 fs_reg value = get_nir_src(instr->src[0]);
4505 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4506 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4507 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4508 }
4509
4510 fs_reg uniformized = bld.emit_uniformize(value);
4511 const fs_builder ubld = bld.exec_all().group(1, 0);
4512
4513 /* The any/all predicates do not consider channel enables. To prevent
4514 * dead channels from affecting the result, we initialize the flag with
4515 * with the identity value for the logical operation.
4516 */
4517 if (dispatch_width == 32) {
4518 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4519 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4520 brw_imm_ud(0xffffffff));
4521 } else {
4522 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4523 }
4524 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4525
4526 /* For some reason, the any/all predicates don't work properly with
4527 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4528 * doesn't read the correct subset of the flag register and you end up
4529 * getting garbage in the second half. Work around this by using a pair
4530 * of 1-wide MOVs and scattering the result.
4531 */
4532 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4533 ubld.MOV(res1, brw_imm_d(0));
4534 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4535 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4536 BRW_PREDICATE_ALIGN1_ALL32H,
4537 ubld.MOV(res1, brw_imm_d(-1)));
4538
4539 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4540 break;
4541 }
4542
4543 case nir_intrinsic_ballot: {
4544 const fs_reg value = retype(get_nir_src(instr->src[0]),
4545 BRW_REGISTER_TYPE_UD);
4546 struct brw_reg flag = brw_flag_reg(0, 0);
4547 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4548 * as f0.0. This is a problem for fragment programs as we currently use
4549 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4550 * programs yet so this isn't a problem. When we do, something will
4551 * have to change.
4552 */
4553 if (dispatch_width == 32)
4554 flag.type = BRW_REGISTER_TYPE_UD;
4555
4556 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4557 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4558
4559 if (instr->dest.ssa.bit_size > 32) {
4560 dest.type = BRW_REGISTER_TYPE_UQ;
4561 } else {
4562 dest.type = BRW_REGISTER_TYPE_UD;
4563 }
4564 bld.MOV(dest, flag);
4565 break;
4566 }
4567
4568 case nir_intrinsic_read_invocation: {
4569 const fs_reg value = get_nir_src(instr->src[0]);
4570 const fs_reg invocation = get_nir_src(instr->src[1]);
4571 fs_reg tmp = bld.vgrf(value.type);
4572
4573 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4574 bld.emit_uniformize(invocation));
4575
4576 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4577 break;
4578 }
4579
4580 case nir_intrinsic_read_first_invocation: {
4581 const fs_reg value = get_nir_src(instr->src[0]);
4582 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4583 break;
4584 }
4585
4586 case nir_intrinsic_shuffle: {
4587 const fs_reg value = get_nir_src(instr->src[0]);
4588 const fs_reg index = get_nir_src(instr->src[1]);
4589
4590 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4591 break;
4592 }
4593
4594 case nir_intrinsic_first_invocation: {
4595 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4596 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4597 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4598 fs_reg(component(tmp, 0)));
4599 break;
4600 }
4601
4602 case nir_intrinsic_quad_broadcast: {
4603 const fs_reg value = get_nir_src(instr->src[0]);
4604 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4605 assert(nir_src_bit_size(instr->src[1]) == 32);
4606
4607 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4608 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4609 break;
4610 }
4611
4612 case nir_intrinsic_quad_swap_horizontal: {
4613 const fs_reg value = get_nir_src(instr->src[0]);
4614 const fs_reg tmp = bld.vgrf(value.type);
4615 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4616
4617 const fs_reg src_left = horiz_stride(value, 2);
4618 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4619 const fs_reg tmp_left = horiz_stride(tmp, 2);
4620 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4621
4622 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4623 *
4624 * "When source or destination datatype is 64b or operation is
4625 * integer DWord multiply, regioning in Align1 must follow
4626 * these rules:
4627 *
4628 * [...]
4629 *
4630 * 3. Source and Destination offset must be the same, except
4631 * the case of scalar source."
4632 *
4633 * In order to work around this, we have to emit two 32-bit MOVs instead
4634 * of a single 64-bit MOV to do the shuffle.
4635 */
4636 if (type_sz(value.type) > 4 &&
4637 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4638 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4639 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4640 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4641 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4642 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4643 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4644 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4645 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4646 } else {
4647 ubld.MOV(tmp_left, src_right);
4648 ubld.MOV(tmp_right, src_left);
4649 }
4650 bld.MOV(retype(dest, value.type), tmp);
4651 break;
4652 }
4653
4654 case nir_intrinsic_quad_swap_vertical: {
4655 const fs_reg value = get_nir_src(instr->src[0]);
4656 if (nir_src_bit_size(instr->src[0]) == 32) {
4657 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4658 const fs_reg tmp = bld.vgrf(value.type);
4659 const fs_builder ubld = bld.exec_all();
4660 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4661 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4662 bld.MOV(retype(dest, value.type), tmp);
4663 } else {
4664 /* For larger data types, we have to either emit dispatch_width many
4665 * MOVs or else fall back to doing indirects.
4666 */
4667 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4668 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4669 brw_imm_w(0x2));
4670 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4671 }
4672 break;
4673 }
4674
4675 case nir_intrinsic_quad_swap_diagonal: {
4676 const fs_reg value = get_nir_src(instr->src[0]);
4677 if (nir_src_bit_size(instr->src[0]) == 32) {
4678 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4679 const fs_reg tmp = bld.vgrf(value.type);
4680 const fs_builder ubld = bld.exec_all();
4681 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4682 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4683 bld.MOV(retype(dest, value.type), tmp);
4684 } else {
4685 /* For larger data types, we have to either emit dispatch_width many
4686 * MOVs or else fall back to doing indirects.
4687 */
4688 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4689 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4690 brw_imm_w(0x3));
4691 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4692 }
4693 break;
4694 }
4695
4696 case nir_intrinsic_reduce: {
4697 fs_reg src = get_nir_src(instr->src[0]);
4698 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4699 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4700 if (cluster_size == 0 || cluster_size > dispatch_width)
4701 cluster_size = dispatch_width;
4702
4703 /* Figure out the source type */
4704 src.type = brw_type_for_nir_type(devinfo,
4705 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4706 nir_src_bit_size(instr->src[0])));
4707
4708 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4709 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4710 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4711
4712 /* Set up a register for all of our scratching around and initialize it
4713 * to reduction operation's identity value.
4714 */
4715 fs_reg scan = bld.vgrf(src.type);
4716 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4717
4718 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4719
4720 dest.type = src.type;
4721 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4722 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4723 * the distance between clusters is at least 2 GRFs. In this case,
4724 * we don't need the weird striding of the CLUSTER_BROADCAST
4725 * instruction and can just do regular MOVs.
4726 */
4727 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4728 const unsigned groups =
4729 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4730 const unsigned group_size = dispatch_width / groups;
4731 for (unsigned i = 0; i < groups; i++) {
4732 const unsigned cluster = (i * group_size) / cluster_size;
4733 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4734 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4735 component(scan, comp));
4736 }
4737 } else {
4738 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4739 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4740 }
4741 break;
4742 }
4743
4744 case nir_intrinsic_inclusive_scan:
4745 case nir_intrinsic_exclusive_scan: {
4746 fs_reg src = get_nir_src(instr->src[0]);
4747 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4748
4749 /* Figure out the source type */
4750 src.type = brw_type_for_nir_type(devinfo,
4751 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4752 nir_src_bit_size(instr->src[0])));
4753
4754 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4755 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4756 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4757
4758 /* Set up a register for all of our scratching around and initialize it
4759 * to reduction operation's identity value.
4760 */
4761 fs_reg scan = bld.vgrf(src.type);
4762 const fs_builder allbld = bld.exec_all();
4763 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4764
4765 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4766 /* Exclusive scan is a bit harder because we have to do an annoying
4767 * shift of the contents before we can begin. To make things worse,
4768 * we can't do this with a normal stride; we have to use indirects.
4769 */
4770 fs_reg shifted = bld.vgrf(src.type);
4771 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4772 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4773 brw_imm_w(-1));
4774 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4775 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4776 scan = shifted;
4777 }
4778
4779 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4780
4781 bld.MOV(retype(dest, src.type), scan);
4782 break;
4783 }
4784
4785 default:
4786 unreachable("unknown intrinsic");
4787 }
4788 }
4789
4790 void
4791 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4792 int op, nir_intrinsic_instr *instr)
4793 {
4794 if (stage == MESA_SHADER_FRAGMENT)
4795 brw_wm_prog_data(prog_data)->has_side_effects = true;
4796
4797 fs_reg dest;
4798 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4799 dest = get_nir_dest(instr->dest);
4800
4801 fs_reg surface;
4802 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4803 if (const_surface) {
4804 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4805 const_surface->u32[0];
4806 surface = brw_imm_ud(surf_index);
4807 brw_mark_surface_used(prog_data, surf_index);
4808 } else {
4809 surface = vgrf(glsl_type::uint_type);
4810 bld.ADD(surface, get_nir_src(instr->src[0]),
4811 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4812
4813 /* Assume this may touch any SSBO. This is the same we do for other
4814 * UBO/SSBO accesses with non-constant surface.
4815 */
4816 brw_mark_surface_used(prog_data,
4817 stage_prog_data->binding_table.ssbo_start +
4818 nir->info.num_ssbos - 1);
4819 }
4820
4821 fs_reg offset = get_nir_src(instr->src[1]);
4822 fs_reg data1 = get_nir_src(instr->src[2]);
4823 fs_reg data2;
4824 if (op == BRW_AOP_CMPWR)
4825 data2 = get_nir_src(instr->src[3]);
4826
4827 /* Emit the actual atomic operation */
4828
4829 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4830 data1, data2,
4831 1 /* dims */, 1 /* rsize */,
4832 op,
4833 BRW_PREDICATE_NONE);
4834 dest.type = atomic_result.type;
4835 bld.MOV(dest, atomic_result);
4836 }
4837
4838 void
4839 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4840 int op, nir_intrinsic_instr *instr)
4841 {
4842 fs_reg dest;
4843 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4844 dest = get_nir_dest(instr->dest);
4845
4846 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4847 fs_reg offset;
4848 fs_reg data1 = get_nir_src(instr->src[1]);
4849 fs_reg data2;
4850 if (op == BRW_AOP_CMPWR)
4851 data2 = get_nir_src(instr->src[2]);
4852
4853 /* Get the offset */
4854 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4855 if (const_offset) {
4856 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4857 } else {
4858 offset = vgrf(glsl_type::uint_type);
4859 bld.ADD(offset,
4860 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4861 brw_imm_ud(instr->const_index[0]));
4862 }
4863
4864 /* Emit the actual atomic operation operation */
4865
4866 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4867 data1, data2,
4868 1 /* dims */, 1 /* rsize */,
4869 op,
4870 BRW_PREDICATE_NONE);
4871 dest.type = atomic_result.type;
4872 bld.MOV(dest, atomic_result);
4873 }
4874
4875 void
4876 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4877 {
4878 unsigned texture = instr->texture_index;
4879 unsigned sampler = instr->sampler_index;
4880
4881 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4882
4883 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4884 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4885
4886 int lod_components = 0;
4887
4888 /* The hardware requires a LOD for buffer textures */
4889 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4890 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4891
4892 uint32_t header_bits = 0;
4893 for (unsigned i = 0; i < instr->num_srcs; i++) {
4894 fs_reg src = get_nir_src(instr->src[i].src);
4895 switch (instr->src[i].src_type) {
4896 case nir_tex_src_bias:
4897 srcs[TEX_LOGICAL_SRC_LOD] =
4898 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4899 break;
4900 case nir_tex_src_comparator:
4901 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4902 break;
4903 case nir_tex_src_coord:
4904 switch (instr->op) {
4905 case nir_texop_txf:
4906 case nir_texop_txf_ms:
4907 case nir_texop_txf_ms_mcs:
4908 case nir_texop_samples_identical:
4909 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4910 break;
4911 default:
4912 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4913 break;
4914 }
4915 break;
4916 case nir_tex_src_ddx:
4917 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4918 lod_components = nir_tex_instr_src_size(instr, i);
4919 break;
4920 case nir_tex_src_ddy:
4921 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4922 break;
4923 case nir_tex_src_lod:
4924 switch (instr->op) {
4925 case nir_texop_txs:
4926 srcs[TEX_LOGICAL_SRC_LOD] =
4927 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4928 break;
4929 case nir_texop_txf:
4930 srcs[TEX_LOGICAL_SRC_LOD] =
4931 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4932 break;
4933 default:
4934 srcs[TEX_LOGICAL_SRC_LOD] =
4935 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4936 break;
4937 }
4938 break;
4939 case nir_tex_src_ms_index:
4940 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4941 break;
4942
4943 case nir_tex_src_offset: {
4944 nir_const_value *const_offset =
4945 nir_src_as_const_value(instr->src[i].src);
4946 unsigned offset_bits = 0;
4947 if (const_offset &&
4948 brw_texture_offset(const_offset->i32,
4949 nir_tex_instr_src_size(instr, i),
4950 &offset_bits)) {
4951 header_bits |= offset_bits;
4952 } else {
4953 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
4954 retype(src, BRW_REGISTER_TYPE_D);
4955 }
4956 break;
4957 }
4958
4959 case nir_tex_src_projector:
4960 unreachable("should be lowered");
4961
4962 case nir_tex_src_texture_offset: {
4963 /* Figure out the highest possible texture index and mark it as used */
4964 uint32_t max_used = texture + instr->texture_array_size - 1;
4965 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
4966 max_used += stage_prog_data->binding_table.gather_texture_start;
4967 } else {
4968 max_used += stage_prog_data->binding_table.texture_start;
4969 }
4970 brw_mark_surface_used(prog_data, max_used);
4971
4972 /* Emit code to evaluate the actual indexing expression */
4973 fs_reg tmp = vgrf(glsl_type::uint_type);
4974 bld.ADD(tmp, src, brw_imm_ud(texture));
4975 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4976 break;
4977 }
4978
4979 case nir_tex_src_sampler_offset: {
4980 /* Emit code to evaluate the actual indexing expression */
4981 fs_reg tmp = vgrf(glsl_type::uint_type);
4982 bld.ADD(tmp, src, brw_imm_ud(sampler));
4983 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4984 break;
4985 }
4986
4987 case nir_tex_src_ms_mcs:
4988 assert(instr->op == nir_texop_txf_ms);
4989 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
4990 break;
4991
4992 case nir_tex_src_plane: {
4993 nir_const_value *const_plane =
4994 nir_src_as_const_value(instr->src[i].src);
4995 const uint32_t plane = const_plane->u32[0];
4996 const uint32_t texture_index =
4997 instr->texture_index +
4998 stage_prog_data->binding_table.plane_start[plane] -
4999 stage_prog_data->binding_table.texture_start;
5000
5001 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5002 break;
5003 }
5004
5005 default:
5006 unreachable("unknown texture source");
5007 }
5008 }
5009
5010 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5011 (instr->op == nir_texop_txf_ms ||
5012 instr->op == nir_texop_samples_identical)) {
5013 if (devinfo->gen >= 7 &&
5014 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5015 srcs[TEX_LOGICAL_SRC_MCS] =
5016 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5017 instr->coord_components,
5018 srcs[TEX_LOGICAL_SRC_SURFACE]);
5019 } else {
5020 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5021 }
5022 }
5023
5024 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5025 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5026
5027 enum opcode opcode;
5028 switch (instr->op) {
5029 case nir_texop_tex:
5030 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5031 SHADER_OPCODE_TXL_LOGICAL);
5032 break;
5033 case nir_texop_txb:
5034 opcode = FS_OPCODE_TXB_LOGICAL;
5035 break;
5036 case nir_texop_txl:
5037 opcode = SHADER_OPCODE_TXL_LOGICAL;
5038 break;
5039 case nir_texop_txd:
5040 opcode = SHADER_OPCODE_TXD_LOGICAL;
5041 break;
5042 case nir_texop_txf:
5043 opcode = SHADER_OPCODE_TXF_LOGICAL;
5044 break;
5045 case nir_texop_txf_ms:
5046 if ((key_tex->msaa_16 & (1 << sampler)))
5047 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5048 else
5049 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5050 break;
5051 case nir_texop_txf_ms_mcs:
5052 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5053 break;
5054 case nir_texop_query_levels:
5055 case nir_texop_txs:
5056 opcode = SHADER_OPCODE_TXS_LOGICAL;
5057 break;
5058 case nir_texop_lod:
5059 opcode = SHADER_OPCODE_LOD_LOGICAL;
5060 break;
5061 case nir_texop_tg4:
5062 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5063 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5064 else
5065 opcode = SHADER_OPCODE_TG4_LOGICAL;
5066 break;
5067 case nir_texop_texture_samples:
5068 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5069 break;
5070 case nir_texop_samples_identical: {
5071 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5072
5073 /* If mcs is an immediate value, it means there is no MCS. In that case
5074 * just return false.
5075 */
5076 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5077 bld.MOV(dst, brw_imm_ud(0u));
5078 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5079 fs_reg tmp = vgrf(glsl_type::uint_type);
5080 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5081 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5082 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5083 } else {
5084 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5085 BRW_CONDITIONAL_EQ);
5086 }
5087 return;
5088 }
5089 default:
5090 unreachable("unknown texture opcode");
5091 }
5092
5093 if (instr->op == nir_texop_tg4) {
5094 if (instr->component == 1 &&
5095 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5096 /* gather4 sampler is broken for green channel on RG32F --
5097 * we must ask for blue instead.
5098 */
5099 header_bits |= 2 << 16;
5100 } else {
5101 header_bits |= instr->component << 16;
5102 }
5103 }
5104
5105 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5106 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5107 inst->offset = header_bits;
5108
5109 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5110 if (devinfo->gen >= 9 &&
5111 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5112 unsigned write_mask = instr->dest.is_ssa ?
5113 nir_ssa_def_components_read(&instr->dest.ssa):
5114 (1 << dest_size) - 1;
5115 assert(write_mask != 0); /* dead code should have been eliminated */
5116 inst->size_written = util_last_bit(write_mask) *
5117 inst->dst.component_size(inst->exec_size);
5118 } else {
5119 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5120 }
5121
5122 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5123 inst->shadow_compare = true;
5124
5125 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5126 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5127
5128 fs_reg nir_dest[4];
5129 for (unsigned i = 0; i < dest_size; i++)
5130 nir_dest[i] = offset(dst, bld, i);
5131
5132 if (instr->op == nir_texop_query_levels) {
5133 /* # levels is in .w */
5134 nir_dest[0] = offset(dst, bld, 3);
5135 } else if (instr->op == nir_texop_txs &&
5136 dest_size >= 3 && devinfo->gen < 7) {
5137 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5138 fs_reg depth = offset(dst, bld, 2);
5139 nir_dest[2] = vgrf(glsl_type::int_type);
5140 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5141 }
5142
5143 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5144 }
5145
5146 void
5147 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5148 {
5149 switch (instr->type) {
5150 case nir_jump_break:
5151 bld.emit(BRW_OPCODE_BREAK);
5152 break;
5153 case nir_jump_continue:
5154 bld.emit(BRW_OPCODE_CONTINUE);
5155 break;
5156 case nir_jump_return:
5157 default:
5158 unreachable("unknown jump");
5159 }
5160 }
5161
5162 /**
5163 * This helper takes the result of a load operation that reads 32-bit elements
5164 * in this format:
5165 *
5166 * x x x x x x x x
5167 * y y y y y y y y
5168 * z z z z z z z z
5169 * w w w w w w w w
5170 *
5171 * and shuffles the data to get this:
5172 *
5173 * x y x y x y x y
5174 * x y x y x y x y
5175 * z w z w z w z w
5176 * z w z w z w z w
5177 *
5178 * Which is exactly what we want if the load is reading 64-bit components
5179 * like doubles, where x represents the low 32-bit of the x double component
5180 * and y represents the high 32-bit of the x double component (likewise with
5181 * z and w for double component y). The parameter @components represents
5182 * the number of 64-bit components present in @src. This would typically be
5183 * 2 at most, since we can only fit 2 double elements in the result of a
5184 * vec4 load.
5185 *
5186 * Notice that @dst and @src can be the same register.
5187 */
5188 void
5189 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
5190 const fs_reg &dst,
5191 const fs_reg &src,
5192 uint32_t components)
5193 {
5194 assert(type_sz(src.type) == 4);
5195 assert(type_sz(dst.type) == 8);
5196
5197 /* A temporary that we will use to shuffle the 32-bit data of each
5198 * component in the vector into valid 64-bit data. We can't write directly
5199 * to dst because dst can be (and would usually be) the same as src
5200 * and in that case the first MOV in the loop below would overwrite the
5201 * data read in the second MOV.
5202 */
5203 fs_reg tmp = bld.vgrf(dst.type);
5204
5205 for (unsigned i = 0; i < components; i++) {
5206 const fs_reg component_i = offset(src, bld, 2 * i);
5207
5208 bld.MOV(subscript(tmp, src.type, 0), component_i);
5209 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
5210
5211 bld.MOV(offset(dst, bld, i), tmp);
5212 }
5213 }
5214
5215 void
5216 shuffle_32bit_load_result_to_16bit_data(const fs_builder &bld,
5217 const fs_reg &dst,
5218 const fs_reg &src,
5219 uint32_t first_component,
5220 uint32_t components)
5221 {
5222 assert(type_sz(src.type) == 4);
5223 assert(type_sz(dst.type) == 2);
5224
5225 /* A temporary is used to un-shuffle the 32-bit data of each component in
5226 * into a valid 16-bit vector. We can't write directly to dst because it
5227 * can be the same register as src and in that case the first MOV in the
5228 * loop below would overwrite the data read in the second MOV.
5229 */
5230 fs_reg tmp = retype(bld.vgrf(src.type), dst.type);
5231
5232 for (unsigned i = 0; i < components; i++) {
5233 const fs_reg component_i =
5234 subscript(offset(src, bld, (first_component + i) / 2), dst.type,
5235 (first_component + i) % 2);
5236
5237 bld.MOV(offset(tmp, bld, i % 2), component_i);
5238
5239 if (i % 2) {
5240 bld.MOV(offset(dst, bld, i -1), offset(tmp, bld, 0));
5241 bld.MOV(offset(dst, bld, i), offset(tmp, bld, 1));
5242 }
5243 }
5244 if (components % 2) {
5245 bld.MOV(offset(dst, bld, components - 1), tmp);
5246 }
5247 }
5248
5249 /**
5250 * This helper does the inverse operation of
5251 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
5252 *
5253 * We need to do this when we are going to use untyped write messsages that
5254 * operate with 32-bit components in order to arrange our 64-bit data to be
5255 * in the expected layout.
5256 *
5257 * Notice that callers of this function, unlike in the case of the inverse
5258 * operation, would typically need to call this with dst and src being
5259 * different registers, since they would otherwise corrupt the original
5260 * 64-bit data they are about to write. Because of this the function checks
5261 * that the src and dst regions involved in the operation do not overlap.
5262 */
5263 fs_reg
5264 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
5265 const fs_reg &src,
5266 uint32_t components)
5267 {
5268 assert(type_sz(src.type) == 8);
5269
5270 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D, 2 * components);
5271
5272 for (unsigned i = 0; i < components; i++) {
5273 const fs_reg component_i = offset(src, bld, i);
5274 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
5275 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
5276 }
5277
5278 return dst;
5279 }
5280
5281 void
5282 shuffle_16bit_data_for_32bit_write(const fs_builder &bld,
5283 const fs_reg &dst,
5284 const fs_reg &src,
5285 uint32_t components)
5286 {
5287 assert(type_sz(src.type) == 2);
5288 assert(type_sz(dst.type) == 4);
5289
5290 /* A temporary is used to shuffle the 16-bit data of each component in the
5291 * 32-bit data vector. We can't write directly to dst because it can be the
5292 * same register as src and in that case the first MOV in the loop below
5293 * would overwrite the data read in the second MOV.
5294 */
5295 fs_reg tmp = bld.vgrf(dst.type);
5296
5297 for (unsigned i = 0; i < components; i++) {
5298 const fs_reg component_i = offset(src, bld, i);
5299 bld.MOV(subscript(tmp, src.type, i % 2), component_i);
5300 if (i % 2) {
5301 bld.MOV(offset(dst, bld, i / 2), tmp);
5302 }
5303 }
5304 if (components % 2) {
5305 bld.MOV(offset(dst, bld, components / 2), tmp);
5306 }
5307 }
5308
5309 fs_reg
5310 setup_imm_df(const fs_builder &bld, double v)
5311 {
5312 const struct gen_device_info *devinfo = bld.shader->devinfo;
5313 assert(devinfo->gen >= 7);
5314
5315 if (devinfo->gen >= 8)
5316 return brw_imm_df(v);
5317
5318 /* gen7.5 does not support DF immediates straighforward but the DIM
5319 * instruction allows to set the 64-bit immediate value.
5320 */
5321 if (devinfo->is_haswell) {
5322 const fs_builder ubld = bld.exec_all().group(1, 0);
5323 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5324 ubld.DIM(dst, brw_imm_df(v));
5325 return component(dst, 0);
5326 }
5327
5328 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5329 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5330 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5331 *
5332 * Alternatively, we could also produce a normal VGRF (without stride 0)
5333 * by writing to all the channels in the VGRF, however, that would hit the
5334 * gen7 bug where we have to split writes that span more than 1 register
5335 * into instructions with a width of 4 (otherwise the write to the second
5336 * register written runs into an execmask hardware bug) which isn't very
5337 * nice.
5338 */
5339 union {
5340 double d;
5341 struct {
5342 uint32_t i1;
5343 uint32_t i2;
5344 };
5345 } di;
5346
5347 di.d = v;
5348
5349 const fs_builder ubld = bld.exec_all().group(1, 0);
5350 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5351 ubld.MOV(tmp, brw_imm_ud(di.i1));
5352 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5353
5354 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5355 }