intel/compiler: implement nir_instr_type_load_const for 16-bit constants
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 nir_foreach_variable(var, &nir->outputs) {
71 const int loc = var->data.driver_location;
72 if (outputs[loc].file == BAD_FILE) {
73 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s[loc]);
74 for (unsigned i = 0; i < vec4s[loc]; i++) {
75 outputs[loc + i] = offset(reg, bld, 4 * i);
76 }
77 }
78 }
79 }
80
81 void
82 fs_visitor::nir_setup_uniforms()
83 {
84 /* Only the first compile gets to set up uniforms. */
85 if (push_constant_loc) {
86 assert(pull_constant_loc);
87 return;
88 }
89
90 uniforms = nir->num_uniforms / 4;
91
92 if (stage == MESA_SHADER_COMPUTE) {
93 /* Add a uniform for the thread local id. It must be the last uniform
94 * on the list.
95 */
96 assert(uniforms == prog_data->nr_params);
97 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
98 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
99 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
100 }
101 }
102
103 static bool
104 emit_system_values_block(nir_block *block, fs_visitor *v)
105 {
106 fs_reg *reg;
107
108 nir_foreach_instr(instr, block) {
109 if (instr->type != nir_instr_type_intrinsic)
110 continue;
111
112 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
113 switch (intrin->intrinsic) {
114 case nir_intrinsic_load_vertex_id:
115 case nir_intrinsic_load_base_vertex:
116 unreachable("should be lowered by nir_lower_system_values().");
117
118 case nir_intrinsic_load_vertex_id_zero_base:
119 case nir_intrinsic_load_is_indexed_draw:
120 case nir_intrinsic_load_first_vertex:
121 case nir_intrinsic_load_instance_id:
122 case nir_intrinsic_load_base_instance:
123 case nir_intrinsic_load_draw_id:
124 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
125
126 case nir_intrinsic_load_invocation_id:
127 if (v->stage == MESA_SHADER_TESS_CTRL)
128 break;
129 assert(v->stage == MESA_SHADER_GEOMETRY);
130 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
131 if (reg->file == BAD_FILE) {
132 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
133 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
134 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
135 abld.SHR(iid, g1, brw_imm_ud(27u));
136 *reg = iid;
137 }
138 break;
139
140 case nir_intrinsic_load_sample_pos:
141 assert(v->stage == MESA_SHADER_FRAGMENT);
142 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
143 if (reg->file == BAD_FILE)
144 *reg = *v->emit_samplepos_setup();
145 break;
146
147 case nir_intrinsic_load_sample_id:
148 assert(v->stage == MESA_SHADER_FRAGMENT);
149 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
150 if (reg->file == BAD_FILE)
151 *reg = *v->emit_sampleid_setup();
152 break;
153
154 case nir_intrinsic_load_sample_mask_in:
155 assert(v->stage == MESA_SHADER_FRAGMENT);
156 assert(v->devinfo->gen >= 7);
157 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
158 if (reg->file == BAD_FILE)
159 *reg = *v->emit_samplemaskin_setup();
160 break;
161
162 case nir_intrinsic_load_work_group_id:
163 assert(v->stage == MESA_SHADER_COMPUTE);
164 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
165 if (reg->file == BAD_FILE)
166 *reg = *v->emit_cs_work_group_id_setup();
167 break;
168
169 case nir_intrinsic_load_helper_invocation:
170 assert(v->stage == MESA_SHADER_FRAGMENT);
171 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
172 if (reg->file == BAD_FILE) {
173 const fs_builder abld =
174 v->bld.annotate("gl_HelperInvocation", NULL);
175
176 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
177 * pixel mask is in g1.7 of the thread payload.
178 *
179 * We move the per-channel pixel enable bit to the low bit of each
180 * channel by shifting the byte containing the pixel mask by the
181 * vector immediate 0x76543210UV.
182 *
183 * The region of <1,8,0> reads only 1 byte (the pixel masks for
184 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
185 * masks for 2 and 3) in SIMD16.
186 */
187 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
188 abld.SHR(shifted,
189 stride(byte_offset(retype(brw_vec1_grf(1, 0),
190 BRW_REGISTER_TYPE_UB), 28),
191 1, 8, 0),
192 brw_imm_v(0x76543210));
193
194 /* A set bit in the pixel mask means the channel is enabled, but
195 * that is the opposite of gl_HelperInvocation so we need to invert
196 * the mask.
197 *
198 * The negate source-modifier bit of logical instructions on Gen8+
199 * performs 1's complement negation, so we can use that instead of
200 * a NOT instruction.
201 */
202 fs_reg inverted = negate(shifted);
203 if (v->devinfo->gen < 8) {
204 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
205 abld.NOT(inverted, shifted);
206 }
207
208 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
209 * with 1 and negating.
210 */
211 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
212 abld.AND(anded, inverted, brw_imm_uw(1));
213
214 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
215 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
216 *reg = dst;
217 }
218 break;
219
220 default:
221 break;
222 }
223 }
224
225 return true;
226 }
227
228 void
229 fs_visitor::nir_emit_system_values()
230 {
231 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
232 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
233 nir_system_values[i] = fs_reg();
234 }
235
236 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
237 * never end up using it.
238 */
239 {
240 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
241 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
242 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
243
244 const fs_builder allbld8 = abld.group(8, 0).exec_all();
245 allbld8.MOV(reg, brw_imm_v(0x76543210));
246 if (dispatch_width > 8)
247 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
248 if (dispatch_width > 16) {
249 const fs_builder allbld16 = abld.group(16, 0).exec_all();
250 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
251 }
252 }
253
254 nir_foreach_function(function, nir) {
255 assert(strcmp(function->name, "main") == 0);
256 assert(function->impl);
257 nir_foreach_block(block, function->impl) {
258 emit_system_values_block(block, this);
259 }
260 }
261 }
262
263 /*
264 * Returns a type based on a reference_type (word, float, half-float) and a
265 * given bit_size.
266 *
267 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
268 *
269 * @FIXME: 64-bit return types are always DF on integer types to maintain
270 * compability with uses of DF previously to the introduction of int64
271 * support.
272 */
273 static brw_reg_type
274 brw_reg_type_from_bit_size(const unsigned bit_size,
275 const brw_reg_type reference_type)
276 {
277 switch(reference_type) {
278 case BRW_REGISTER_TYPE_HF:
279 case BRW_REGISTER_TYPE_F:
280 case BRW_REGISTER_TYPE_DF:
281 switch(bit_size) {
282 case 16:
283 return BRW_REGISTER_TYPE_HF;
284 case 32:
285 return BRW_REGISTER_TYPE_F;
286 case 64:
287 return BRW_REGISTER_TYPE_DF;
288 default:
289 unreachable("Invalid bit size");
290 }
291 case BRW_REGISTER_TYPE_W:
292 case BRW_REGISTER_TYPE_D:
293 case BRW_REGISTER_TYPE_Q:
294 switch(bit_size) {
295 case 16:
296 return BRW_REGISTER_TYPE_W;
297 case 32:
298 return BRW_REGISTER_TYPE_D;
299 case 64:
300 return BRW_REGISTER_TYPE_Q;
301 default:
302 unreachable("Invalid bit size");
303 }
304 case BRW_REGISTER_TYPE_UW:
305 case BRW_REGISTER_TYPE_UD:
306 case BRW_REGISTER_TYPE_UQ:
307 switch(bit_size) {
308 case 16:
309 return BRW_REGISTER_TYPE_UW;
310 case 32:
311 return BRW_REGISTER_TYPE_UD;
312 case 64:
313 return BRW_REGISTER_TYPE_UQ;
314 default:
315 unreachable("Invalid bit size");
316 }
317 default:
318 unreachable("Unknown type");
319 }
320 }
321
322 void
323 fs_visitor::nir_emit_impl(nir_function_impl *impl)
324 {
325 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
326 for (unsigned i = 0; i < impl->reg_alloc; i++) {
327 nir_locals[i] = fs_reg();
328 }
329
330 foreach_list_typed(nir_register, reg, node, &impl->registers) {
331 unsigned array_elems =
332 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
333 unsigned size = array_elems * reg->num_components;
334 const brw_reg_type reg_type =
335 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
336 nir_locals[reg->index] = bld.vgrf(reg_type, size);
337 }
338
339 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
340 impl->ssa_alloc);
341
342 nir_emit_cf_list(&impl->body);
343 }
344
345 void
346 fs_visitor::nir_emit_cf_list(exec_list *list)
347 {
348 exec_list_validate(list);
349 foreach_list_typed(nir_cf_node, node, node, list) {
350 switch (node->type) {
351 case nir_cf_node_if:
352 nir_emit_if(nir_cf_node_as_if(node));
353 break;
354
355 case nir_cf_node_loop:
356 nir_emit_loop(nir_cf_node_as_loop(node));
357 break;
358
359 case nir_cf_node_block:
360 nir_emit_block(nir_cf_node_as_block(node));
361 break;
362
363 default:
364 unreachable("Invalid CFG node block");
365 }
366 }
367 }
368
369 void
370 fs_visitor::nir_emit_if(nir_if *if_stmt)
371 {
372 /* first, put the condition into f0 */
373 fs_inst *inst = bld.MOV(bld.null_reg_d(),
374 retype(get_nir_src(if_stmt->condition),
375 BRW_REGISTER_TYPE_D));
376 inst->conditional_mod = BRW_CONDITIONAL_NZ;
377
378 bld.IF(BRW_PREDICATE_NORMAL);
379
380 nir_emit_cf_list(&if_stmt->then_list);
381
382 /* note: if the else is empty, dead CF elimination will remove it */
383 bld.emit(BRW_OPCODE_ELSE);
384
385 nir_emit_cf_list(&if_stmt->else_list);
386
387 bld.emit(BRW_OPCODE_ENDIF);
388 }
389
390 void
391 fs_visitor::nir_emit_loop(nir_loop *loop)
392 {
393 bld.emit(BRW_OPCODE_DO);
394
395 nir_emit_cf_list(&loop->body);
396
397 bld.emit(BRW_OPCODE_WHILE);
398 }
399
400 void
401 fs_visitor::nir_emit_block(nir_block *block)
402 {
403 nir_foreach_instr(instr, block) {
404 nir_emit_instr(instr);
405 }
406 }
407
408 void
409 fs_visitor::nir_emit_instr(nir_instr *instr)
410 {
411 const fs_builder abld = bld.annotate(NULL, instr);
412
413 switch (instr->type) {
414 case nir_instr_type_alu:
415 nir_emit_alu(abld, nir_instr_as_alu(instr));
416 break;
417
418 case nir_instr_type_intrinsic:
419 switch (stage) {
420 case MESA_SHADER_VERTEX:
421 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
422 break;
423 case MESA_SHADER_TESS_CTRL:
424 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
425 break;
426 case MESA_SHADER_TESS_EVAL:
427 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
428 break;
429 case MESA_SHADER_GEOMETRY:
430 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
431 break;
432 case MESA_SHADER_FRAGMENT:
433 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
434 break;
435 case MESA_SHADER_COMPUTE:
436 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
437 break;
438 default:
439 unreachable("unsupported shader stage");
440 }
441 break;
442
443 case nir_instr_type_tex:
444 nir_emit_texture(abld, nir_instr_as_tex(instr));
445 break;
446
447 case nir_instr_type_load_const:
448 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
449 break;
450
451 case nir_instr_type_ssa_undef:
452 /* We create a new VGRF for undefs on every use (by handling
453 * them in get_nir_src()), rather than for each definition.
454 * This helps register coalescing eliminate MOVs from undef.
455 */
456 break;
457
458 case nir_instr_type_jump:
459 nir_emit_jump(abld, nir_instr_as_jump(instr));
460 break;
461
462 default:
463 unreachable("unknown instruction type");
464 }
465 }
466
467 /**
468 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
469 * match instr.
470 */
471 bool
472 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
473 const fs_reg &result)
474 {
475 if (!instr->src[0].src.is_ssa ||
476 !instr->src[0].src.ssa->parent_instr)
477 return false;
478
479 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
480 return false;
481
482 nir_alu_instr *src0 =
483 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
484
485 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
486 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
487 return false;
488
489 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
490 assert(element != NULL);
491
492 /* Element type to extract.*/
493 const brw_reg_type type = brw_int_type(
494 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
495 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
496
497 fs_reg op0 = get_nir_src(src0->src[0].src);
498 op0.type = brw_type_for_nir_type(devinfo,
499 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
500 nir_src_bit_size(src0->src[0].src)));
501 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
502
503 set_saturate(instr->dest.saturate,
504 bld.MOV(result, subscript(op0, type, element->u32[0])));
505 return true;
506 }
507
508 bool
509 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
510 const fs_reg &result)
511 {
512 if (!instr->src[0].src.is_ssa ||
513 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
514 return false;
515
516 nir_intrinsic_instr *src0 =
517 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
518
519 if (src0->intrinsic != nir_intrinsic_load_front_face)
520 return false;
521
522 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
523 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
524 return false;
525
526 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
527 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
528 return false;
529
530 fs_reg tmp = vgrf(glsl_type::int_type);
531
532 if (devinfo->gen >= 6) {
533 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
534 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
535
536 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
537 *
538 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
539 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
540 *
541 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
542 *
543 * This negation looks like it's safe in practice, because bits 0:4 will
544 * surely be TRIANGLES
545 */
546
547 if (value1->f32[0] == -1.0f) {
548 g0.negate = true;
549 }
550
551 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
552 g0, brw_imm_uw(0x3f80));
553 } else {
554 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
555 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
556
557 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
558 *
559 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
560 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
561 *
562 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
563 *
564 * This negation looks like it's safe in practice, because bits 0:4 will
565 * surely be TRIANGLES
566 */
567
568 if (value1->f32[0] == -1.0f) {
569 g1_6.negate = true;
570 }
571
572 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
573 }
574 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
575
576 return true;
577 }
578
579 static void
580 emit_find_msb_using_lzd(const fs_builder &bld,
581 const fs_reg &result,
582 const fs_reg &src,
583 bool is_signed)
584 {
585 fs_inst *inst;
586 fs_reg temp = src;
587
588 if (is_signed) {
589 /* LZD of an absolute value source almost always does the right
590 * thing. There are two problem values:
591 *
592 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
593 * 0. However, findMSB(int(0x80000000)) == 30.
594 *
595 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
596 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
597 *
598 * For a value of zero or negative one, -1 will be returned.
599 *
600 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
601 * findMSB(-(1<<x)) should return x-1.
602 *
603 * For all negative number cases, including 0x80000000 and
604 * 0xffffffff, the correct value is obtained from LZD if instead of
605 * negating the (already negative) value the logical-not is used. A
606 * conditonal logical-not can be achieved in two instructions.
607 */
608 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
609
610 bld.ASR(temp, src, brw_imm_d(31));
611 bld.XOR(temp, temp, src);
612 }
613
614 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
615 retype(temp, BRW_REGISTER_TYPE_UD));
616
617 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
618 * from the LSB side. Subtract the result from 31 to convert the MSB
619 * count into an LSB count. If no bits are set, LZD will return 32.
620 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
621 */
622 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
623 inst->src[0].negate = true;
624 }
625
626 static brw_rnd_mode
627 brw_rnd_mode_from_nir_op (const nir_op op) {
628 switch (op) {
629 case nir_op_f2f16_rtz:
630 return BRW_RND_MODE_RTZ;
631 case nir_op_f2f16_rtne:
632 return BRW_RND_MODE_RTNE;
633 default:
634 unreachable("Operation doesn't support rounding mode");
635 }
636 }
637
638 void
639 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
640 {
641 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
642 fs_inst *inst;
643
644 fs_reg result = get_nir_dest(instr->dest.dest);
645 result.type = brw_type_for_nir_type(devinfo,
646 (nir_alu_type)(nir_op_infos[instr->op].output_type |
647 nir_dest_bit_size(instr->dest.dest)));
648
649 fs_reg op[4];
650 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
651 op[i] = get_nir_src(instr->src[i].src);
652 op[i].type = brw_type_for_nir_type(devinfo,
653 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
654 nir_src_bit_size(instr->src[i].src)));
655 op[i].abs = instr->src[i].abs;
656 op[i].negate = instr->src[i].negate;
657 }
658
659 /* We get a bunch of mov's out of the from_ssa pass and they may still
660 * be vectorized. We'll handle them as a special-case. We'll also
661 * handle vecN here because it's basically the same thing.
662 */
663 switch (instr->op) {
664 case nir_op_imov:
665 case nir_op_fmov:
666 case nir_op_vec2:
667 case nir_op_vec3:
668 case nir_op_vec4: {
669 fs_reg temp = result;
670 bool need_extra_copy = false;
671 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
672 if (!instr->src[i].src.is_ssa &&
673 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
674 need_extra_copy = true;
675 temp = bld.vgrf(result.type, 4);
676 break;
677 }
678 }
679
680 for (unsigned i = 0; i < 4; i++) {
681 if (!(instr->dest.write_mask & (1 << i)))
682 continue;
683
684 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
685 inst = bld.MOV(offset(temp, bld, i),
686 offset(op[0], bld, instr->src[0].swizzle[i]));
687 } else {
688 inst = bld.MOV(offset(temp, bld, i),
689 offset(op[i], bld, instr->src[i].swizzle[0]));
690 }
691 inst->saturate = instr->dest.saturate;
692 }
693
694 /* In this case the source and destination registers were the same,
695 * so we need to insert an extra set of moves in order to deal with
696 * any swizzling.
697 */
698 if (need_extra_copy) {
699 for (unsigned i = 0; i < 4; i++) {
700 if (!(instr->dest.write_mask & (1 << i)))
701 continue;
702
703 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
704 }
705 }
706 return;
707 }
708 default:
709 break;
710 }
711
712 /* At this point, we have dealt with any instruction that operates on
713 * more than a single channel. Therefore, we can just adjust the source
714 * and destination registers for that channel and emit the instruction.
715 */
716 unsigned channel = 0;
717 if (nir_op_infos[instr->op].output_size == 0) {
718 /* Since NIR is doing the scalarizing for us, we should only ever see
719 * vectorized operations with a single channel.
720 */
721 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
722 channel = ffs(instr->dest.write_mask) - 1;
723
724 result = offset(result, bld, channel);
725 }
726
727 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
728 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
729 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
730 }
731
732 switch (instr->op) {
733 case nir_op_i2f32:
734 case nir_op_u2f32:
735 if (optimize_extract_to_float(instr, result))
736 return;
737 inst = bld.MOV(result, op[0]);
738 inst->saturate = instr->dest.saturate;
739 break;
740
741 case nir_op_f2f16_rtne:
742 case nir_op_f2f16_rtz:
743 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
744 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
745 /* fallthrough */
746
747 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
748 * on the HW gen, it is a special hw opcode or just a MOV, and
749 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
750 *
751 * But if we want to use that opcode, we need to provide support on
752 * different optimizations and lowerings. As right now HF support is
753 * only for gen8+, it will be better to use directly the MOV, and use
754 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
755 */
756
757 case nir_op_f2f16_undef:
758 inst = bld.MOV(result, op[0]);
759 inst->saturate = instr->dest.saturate;
760 break;
761
762 case nir_op_f2f64:
763 case nir_op_f2i64:
764 case nir_op_f2u64:
765 case nir_op_i2f64:
766 case nir_op_i2i64:
767 case nir_op_u2f64:
768 case nir_op_u2u64:
769 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
770 *
771 * "When source or destination is 64b (...), regioning in Align1
772 * must follow these rules:
773 *
774 * 1. Source and destination horizontal stride must be aligned to
775 * the same qword.
776 * (...)"
777 *
778 * This means that 32-bit to 64-bit conversions need to have the 32-bit
779 * data elements aligned to 64-bit. This restriction does not apply to
780 * BDW and later.
781 */
782 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
783 nir_src_bit_size(instr->src[0].src) == 32 &&
784 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
785 fs_reg tmp = bld.vgrf(result.type, 1);
786 tmp = subscript(tmp, op[0].type, 0);
787 inst = bld.MOV(tmp, op[0]);
788 inst = bld.MOV(result, tmp);
789 inst->saturate = instr->dest.saturate;
790 break;
791 }
792 /* fallthrough */
793 case nir_op_f2f32:
794 case nir_op_f2i32:
795 case nir_op_f2u32:
796 case nir_op_f2i16:
797 case nir_op_f2u16:
798 case nir_op_i2i32:
799 case nir_op_u2u32:
800 case nir_op_i2i16:
801 case nir_op_u2u16:
802 case nir_op_i2f16:
803 case nir_op_u2f16:
804 inst = bld.MOV(result, op[0]);
805 inst->saturate = instr->dest.saturate;
806 break;
807
808 case nir_op_fsign: {
809 if (op[0].abs) {
810 /* Straightforward since the source can be assumed to be
811 * non-negative.
812 */
813 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
814 set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
815
816 } else if (type_sz(op[0].type) < 8) {
817 /* AND(val, 0x80000000) gives the sign bit.
818 *
819 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
820 * zero.
821 */
822 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
823
824 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
825 op[0].type = BRW_REGISTER_TYPE_UD;
826 result.type = BRW_REGISTER_TYPE_UD;
827 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
828
829 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
830 inst->predicate = BRW_PREDICATE_NORMAL;
831 if (instr->dest.saturate) {
832 inst = bld.MOV(result, result);
833 inst->saturate = true;
834 }
835 } else {
836 /* For doubles we do the same but we need to consider:
837 *
838 * - 2-src instructions can't operate with 64-bit immediates
839 * - The sign is encoded in the high 32-bit of each DF
840 * - We need to produce a DF result.
841 */
842
843 fs_reg zero = vgrf(glsl_type::double_type);
844 bld.MOV(zero, setup_imm_df(bld, 0.0));
845 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
846
847 bld.MOV(result, zero);
848
849 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
850 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
851 brw_imm_ud(0x80000000u));
852
853 set_predicate(BRW_PREDICATE_NORMAL,
854 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
855
856 if (instr->dest.saturate) {
857 inst = bld.MOV(result, result);
858 inst->saturate = true;
859 }
860 }
861 break;
862 }
863
864 case nir_op_isign: {
865 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
866 * -> non-negative val generates 0x00000000.
867 * Predicated OR sets 1 if val is positive.
868 */
869 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
870 assert(bit_size == 32 || bit_size == 16);
871
872 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
873 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
874 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
875
876 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
877 bld.ASR(result, op[0], shift);
878 inst = bld.OR(result, result, one);
879 inst->predicate = BRW_PREDICATE_NORMAL;
880 break;
881 }
882
883 case nir_op_frcp:
884 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
885 inst->saturate = instr->dest.saturate;
886 break;
887
888 case nir_op_fexp2:
889 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
890 inst->saturate = instr->dest.saturate;
891 break;
892
893 case nir_op_flog2:
894 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
895 inst->saturate = instr->dest.saturate;
896 break;
897
898 case nir_op_fsin:
899 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
900 inst->saturate = instr->dest.saturate;
901 break;
902
903 case nir_op_fcos:
904 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
905 inst->saturate = instr->dest.saturate;
906 break;
907
908 case nir_op_fddx:
909 if (fs_key->high_quality_derivatives) {
910 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
911 } else {
912 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
913 }
914 inst->saturate = instr->dest.saturate;
915 break;
916 case nir_op_fddx_fine:
917 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
918 inst->saturate = instr->dest.saturate;
919 break;
920 case nir_op_fddx_coarse:
921 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
922 inst->saturate = instr->dest.saturate;
923 break;
924 case nir_op_fddy:
925 if (fs_key->high_quality_derivatives) {
926 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
927 } else {
928 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
929 }
930 inst->saturate = instr->dest.saturate;
931 break;
932 case nir_op_fddy_fine:
933 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936 case nir_op_fddy_coarse:
937 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
938 inst->saturate = instr->dest.saturate;
939 break;
940
941 case nir_op_iadd:
942 case nir_op_fadd:
943 inst = bld.ADD(result, op[0], op[1]);
944 inst->saturate = instr->dest.saturate;
945 break;
946
947 case nir_op_fmul:
948 inst = bld.MUL(result, op[0], op[1]);
949 inst->saturate = instr->dest.saturate;
950 break;
951
952 case nir_op_imul:
953 assert(nir_dest_bit_size(instr->dest.dest) < 64);
954 bld.MUL(result, op[0], op[1]);
955 break;
956
957 case nir_op_imul_high:
958 case nir_op_umul_high:
959 assert(nir_dest_bit_size(instr->dest.dest) < 64);
960 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
961 break;
962
963 case nir_op_idiv:
964 case nir_op_udiv:
965 assert(nir_dest_bit_size(instr->dest.dest) < 64);
966 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
967 break;
968
969 case nir_op_uadd_carry:
970 unreachable("Should have been lowered by carry_to_arith().");
971
972 case nir_op_usub_borrow:
973 unreachable("Should have been lowered by borrow_to_arith().");
974
975 case nir_op_umod:
976 case nir_op_irem:
977 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
978 * appears that our hardware just does the right thing for signed
979 * remainder.
980 */
981 assert(nir_dest_bit_size(instr->dest.dest) < 64);
982 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
983 break;
984
985 case nir_op_imod: {
986 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
987 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
988
989 /* Math instructions don't support conditional mod */
990 inst = bld.MOV(bld.null_reg_d(), result);
991 inst->conditional_mod = BRW_CONDITIONAL_NZ;
992
993 /* Now, we need to determine if signs of the sources are different.
994 * When we XOR the sources, the top bit is 0 if they are the same and 1
995 * if they are different. We can then use a conditional modifier to
996 * turn that into a predicate. This leads us to an XOR.l instruction.
997 *
998 * Technically, according to the PRM, you're not allowed to use .l on a
999 * XOR instruction. However, emperical experiments and Curro's reading
1000 * of the simulator source both indicate that it's safe.
1001 */
1002 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1003 inst = bld.XOR(tmp, op[0], op[1]);
1004 inst->predicate = BRW_PREDICATE_NORMAL;
1005 inst->conditional_mod = BRW_CONDITIONAL_L;
1006
1007 /* If the result of the initial remainder operation is non-zero and the
1008 * two sources have different signs, add in a copy of op[1] to get the
1009 * final integer modulus value.
1010 */
1011 inst = bld.ADD(result, result, op[1]);
1012 inst->predicate = BRW_PREDICATE_NORMAL;
1013 break;
1014 }
1015
1016 case nir_op_flt:
1017 case nir_op_fge:
1018 case nir_op_feq:
1019 case nir_op_fne: {
1020 fs_reg dest = result;
1021 if (nir_src_bit_size(instr->src[0].src) > 32) {
1022 dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
1023 }
1024 brw_conditional_mod cond;
1025 switch (instr->op) {
1026 case nir_op_flt:
1027 cond = BRW_CONDITIONAL_L;
1028 break;
1029 case nir_op_fge:
1030 cond = BRW_CONDITIONAL_GE;
1031 break;
1032 case nir_op_feq:
1033 cond = BRW_CONDITIONAL_Z;
1034 break;
1035 case nir_op_fne:
1036 cond = BRW_CONDITIONAL_NZ;
1037 break;
1038 default:
1039 unreachable("bad opcode");
1040 }
1041 bld.CMP(dest, op[0], op[1], cond);
1042 if (nir_src_bit_size(instr->src[0].src) > 32) {
1043 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1044 }
1045 break;
1046 }
1047
1048 case nir_op_ilt:
1049 case nir_op_ult:
1050 case nir_op_ige:
1051 case nir_op_uge:
1052 case nir_op_ieq:
1053 case nir_op_ine: {
1054 fs_reg dest = result;
1055 if (nir_src_bit_size(instr->src[0].src) > 32) {
1056 dest = bld.vgrf(BRW_REGISTER_TYPE_UQ, 1);
1057 }
1058
1059 brw_conditional_mod cond;
1060 switch (instr->op) {
1061 case nir_op_ilt:
1062 case nir_op_ult:
1063 cond = BRW_CONDITIONAL_L;
1064 break;
1065 case nir_op_ige:
1066 case nir_op_uge:
1067 cond = BRW_CONDITIONAL_GE;
1068 break;
1069 case nir_op_ieq:
1070 cond = BRW_CONDITIONAL_Z;
1071 break;
1072 case nir_op_ine:
1073 cond = BRW_CONDITIONAL_NZ;
1074 break;
1075 default:
1076 unreachable("bad opcode");
1077 }
1078 bld.CMP(dest, op[0], op[1], cond);
1079 if (nir_src_bit_size(instr->src[0].src) > 32) {
1080 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1081 }
1082 break;
1083 }
1084
1085 case nir_op_inot:
1086 if (devinfo->gen >= 8) {
1087 op[0] = resolve_source_modifiers(op[0]);
1088 }
1089 bld.NOT(result, op[0]);
1090 break;
1091 case nir_op_ixor:
1092 if (devinfo->gen >= 8) {
1093 op[0] = resolve_source_modifiers(op[0]);
1094 op[1] = resolve_source_modifiers(op[1]);
1095 }
1096 bld.XOR(result, op[0], op[1]);
1097 break;
1098 case nir_op_ior:
1099 if (devinfo->gen >= 8) {
1100 op[0] = resolve_source_modifiers(op[0]);
1101 op[1] = resolve_source_modifiers(op[1]);
1102 }
1103 bld.OR(result, op[0], op[1]);
1104 break;
1105 case nir_op_iand:
1106 if (devinfo->gen >= 8) {
1107 op[0] = resolve_source_modifiers(op[0]);
1108 op[1] = resolve_source_modifiers(op[1]);
1109 }
1110 bld.AND(result, op[0], op[1]);
1111 break;
1112
1113 case nir_op_fdot2:
1114 case nir_op_fdot3:
1115 case nir_op_fdot4:
1116 case nir_op_ball_fequal2:
1117 case nir_op_ball_iequal2:
1118 case nir_op_ball_fequal3:
1119 case nir_op_ball_iequal3:
1120 case nir_op_ball_fequal4:
1121 case nir_op_ball_iequal4:
1122 case nir_op_bany_fnequal2:
1123 case nir_op_bany_inequal2:
1124 case nir_op_bany_fnequal3:
1125 case nir_op_bany_inequal3:
1126 case nir_op_bany_fnequal4:
1127 case nir_op_bany_inequal4:
1128 unreachable("Lowered by nir_lower_alu_reductions");
1129
1130 case nir_op_fnoise1_1:
1131 case nir_op_fnoise1_2:
1132 case nir_op_fnoise1_3:
1133 case nir_op_fnoise1_4:
1134 case nir_op_fnoise2_1:
1135 case nir_op_fnoise2_2:
1136 case nir_op_fnoise2_3:
1137 case nir_op_fnoise2_4:
1138 case nir_op_fnoise3_1:
1139 case nir_op_fnoise3_2:
1140 case nir_op_fnoise3_3:
1141 case nir_op_fnoise3_4:
1142 case nir_op_fnoise4_1:
1143 case nir_op_fnoise4_2:
1144 case nir_op_fnoise4_3:
1145 case nir_op_fnoise4_4:
1146 unreachable("not reached: should be handled by lower_noise");
1147
1148 case nir_op_ldexp:
1149 unreachable("not reached: should be handled by ldexp_to_arith()");
1150
1151 case nir_op_fsqrt:
1152 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1153 inst->saturate = instr->dest.saturate;
1154 break;
1155
1156 case nir_op_frsq:
1157 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1158 inst->saturate = instr->dest.saturate;
1159 break;
1160
1161 case nir_op_b2i:
1162 case nir_op_b2f:
1163 bld.MOV(result, negate(op[0]));
1164 break;
1165
1166 case nir_op_i2b:
1167 case nir_op_f2b: {
1168 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1169 if (bit_size == 64) {
1170 /* two-argument instructions can't take 64-bit immediates */
1171 fs_reg zero;
1172 fs_reg tmp;
1173
1174 if (instr->op == nir_op_f2b) {
1175 zero = vgrf(glsl_type::double_type);
1176 tmp = vgrf(glsl_type::double_type);
1177 bld.MOV(zero, setup_imm_df(bld, 0.0));
1178 } else {
1179 zero = vgrf(glsl_type::int64_t_type);
1180 tmp = vgrf(glsl_type::int64_t_type);
1181 bld.MOV(zero, brw_imm_q(0));
1182 }
1183
1184 /* A SIMD16 execution needs to be split in two instructions, so use
1185 * a vgrf instead of the flag register as dst so instruction splitting
1186 * works
1187 */
1188 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1189 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1190 } else {
1191 fs_reg zero;
1192 if (bit_size == 32) {
1193 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1194 } else {
1195 assert(bit_size == 16);
1196 zero = instr->op == nir_op_f2b ?
1197 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1198 }
1199 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1200 }
1201 break;
1202 }
1203
1204 case nir_op_ftrunc:
1205 inst = bld.RNDZ(result, op[0]);
1206 inst->saturate = instr->dest.saturate;
1207 break;
1208
1209 case nir_op_fceil: {
1210 op[0].negate = !op[0].negate;
1211 fs_reg temp = vgrf(glsl_type::float_type);
1212 bld.RNDD(temp, op[0]);
1213 temp.negate = true;
1214 inst = bld.MOV(result, temp);
1215 inst->saturate = instr->dest.saturate;
1216 break;
1217 }
1218 case nir_op_ffloor:
1219 inst = bld.RNDD(result, op[0]);
1220 inst->saturate = instr->dest.saturate;
1221 break;
1222 case nir_op_ffract:
1223 inst = bld.FRC(result, op[0]);
1224 inst->saturate = instr->dest.saturate;
1225 break;
1226 case nir_op_fround_even:
1227 inst = bld.RNDE(result, op[0]);
1228 inst->saturate = instr->dest.saturate;
1229 break;
1230
1231 case nir_op_fquantize2f16: {
1232 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1233 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1234 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1235
1236 /* The destination stride must be at least as big as the source stride. */
1237 tmp16.type = BRW_REGISTER_TYPE_W;
1238 tmp16.stride = 2;
1239
1240 /* Check for denormal */
1241 fs_reg abs_src0 = op[0];
1242 abs_src0.abs = true;
1243 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1244 BRW_CONDITIONAL_L);
1245 /* Get the appropriately signed zero */
1246 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1247 retype(op[0], BRW_REGISTER_TYPE_UD),
1248 brw_imm_ud(0x80000000));
1249 /* Do the actual F32 -> F16 -> F32 conversion */
1250 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1251 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1252 /* Select that or zero based on normal status */
1253 inst = bld.SEL(result, zero, tmp32);
1254 inst->predicate = BRW_PREDICATE_NORMAL;
1255 inst->saturate = instr->dest.saturate;
1256 break;
1257 }
1258
1259 case nir_op_imin:
1260 case nir_op_umin:
1261 case nir_op_fmin:
1262 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1263 inst->saturate = instr->dest.saturate;
1264 break;
1265
1266 case nir_op_imax:
1267 case nir_op_umax:
1268 case nir_op_fmax:
1269 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1270 inst->saturate = instr->dest.saturate;
1271 break;
1272
1273 case nir_op_pack_snorm_2x16:
1274 case nir_op_pack_snorm_4x8:
1275 case nir_op_pack_unorm_2x16:
1276 case nir_op_pack_unorm_4x8:
1277 case nir_op_unpack_snorm_2x16:
1278 case nir_op_unpack_snorm_4x8:
1279 case nir_op_unpack_unorm_2x16:
1280 case nir_op_unpack_unorm_4x8:
1281 case nir_op_unpack_half_2x16:
1282 case nir_op_pack_half_2x16:
1283 unreachable("not reached: should be handled by lower_packing_builtins");
1284
1285 case nir_op_unpack_half_2x16_split_x:
1286 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1287 inst->saturate = instr->dest.saturate;
1288 break;
1289 case nir_op_unpack_half_2x16_split_y:
1290 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1291 inst->saturate = instr->dest.saturate;
1292 break;
1293
1294 case nir_op_pack_64_2x32_split:
1295 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1296 break;
1297
1298 case nir_op_unpack_64_2x32_split_x:
1299 case nir_op_unpack_64_2x32_split_y: {
1300 if (instr->op == nir_op_unpack_64_2x32_split_x)
1301 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1302 else
1303 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1304 break;
1305 }
1306
1307 case nir_op_fpow:
1308 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1309 inst->saturate = instr->dest.saturate;
1310 break;
1311
1312 case nir_op_bitfield_reverse:
1313 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1314 bld.BFREV(result, op[0]);
1315 break;
1316
1317 case nir_op_bit_count:
1318 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1319 bld.CBIT(result, op[0]);
1320 break;
1321
1322 case nir_op_ufind_msb: {
1323 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1324 emit_find_msb_using_lzd(bld, result, op[0], false);
1325 break;
1326 }
1327
1328 case nir_op_ifind_msb: {
1329 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1330
1331 if (devinfo->gen < 7) {
1332 emit_find_msb_using_lzd(bld, result, op[0], true);
1333 } else {
1334 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1335
1336 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1337 * count from the LSB side. If FBH didn't return an error
1338 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1339 * count into an LSB count.
1340 */
1341 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1342
1343 inst = bld.ADD(result, result, brw_imm_d(31));
1344 inst->predicate = BRW_PREDICATE_NORMAL;
1345 inst->src[0].negate = true;
1346 }
1347 break;
1348 }
1349
1350 case nir_op_find_lsb:
1351 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1352
1353 if (devinfo->gen < 7) {
1354 fs_reg temp = vgrf(glsl_type::int_type);
1355
1356 /* (x & -x) generates a value that consists of only the LSB of x.
1357 * For all powers of 2, findMSB(y) == findLSB(y).
1358 */
1359 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1360 fs_reg negated_src = src;
1361
1362 /* One must be negated, and the other must be non-negated. It
1363 * doesn't matter which is which.
1364 */
1365 negated_src.negate = true;
1366 src.negate = false;
1367
1368 bld.AND(temp, src, negated_src);
1369 emit_find_msb_using_lzd(bld, result, temp, false);
1370 } else {
1371 bld.FBL(result, op[0]);
1372 }
1373 break;
1374
1375 case nir_op_ubitfield_extract:
1376 case nir_op_ibitfield_extract:
1377 unreachable("should have been lowered");
1378 case nir_op_ubfe:
1379 case nir_op_ibfe:
1380 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1381 bld.BFE(result, op[2], op[1], op[0]);
1382 break;
1383 case nir_op_bfm:
1384 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1385 bld.BFI1(result, op[0], op[1]);
1386 break;
1387 case nir_op_bfi:
1388 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1389 bld.BFI2(result, op[0], op[1], op[2]);
1390 break;
1391
1392 case nir_op_bitfield_insert:
1393 unreachable("not reached: should have been lowered");
1394
1395 case nir_op_ishl:
1396 case nir_op_ishr:
1397 case nir_op_ushr: {
1398 fs_reg shift_count = op[1];
1399
1400 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1401 if (op[1].file == VGRF &&
1402 (result.type == BRW_REGISTER_TYPE_Q ||
1403 result.type == BRW_REGISTER_TYPE_UQ)) {
1404 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1405 BRW_REGISTER_TYPE_UD);
1406 shift_count.stride = 2;
1407 bld.MOV(shift_count, op[1]);
1408 }
1409 }
1410
1411 switch (instr->op) {
1412 case nir_op_ishl:
1413 bld.SHL(result, op[0], shift_count);
1414 break;
1415 case nir_op_ishr:
1416 bld.ASR(result, op[0], shift_count);
1417 break;
1418 case nir_op_ushr:
1419 bld.SHR(result, op[0], shift_count);
1420 break;
1421 default:
1422 unreachable("not reached");
1423 }
1424 break;
1425 }
1426
1427 case nir_op_pack_half_2x16_split:
1428 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1429 break;
1430
1431 case nir_op_ffma:
1432 inst = bld.MAD(result, op[2], op[1], op[0]);
1433 inst->saturate = instr->dest.saturate;
1434 break;
1435
1436 case nir_op_flrp:
1437 inst = bld.LRP(result, op[0], op[1], op[2]);
1438 inst->saturate = instr->dest.saturate;
1439 break;
1440
1441 case nir_op_bcsel:
1442 if (optimize_frontfacing_ternary(instr, result))
1443 return;
1444
1445 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1446 inst = bld.SEL(result, op[1], op[2]);
1447 inst->predicate = BRW_PREDICATE_NORMAL;
1448 break;
1449
1450 case nir_op_extract_u8:
1451 case nir_op_extract_i8: {
1452 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1453 assert(byte != NULL);
1454
1455 /* The PRMs say:
1456 *
1457 * BDW+
1458 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1459 * Use two instructions and a word or DWord intermediate integer type.
1460 */
1461 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1462 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1463
1464 if (instr->op == nir_op_extract_i8) {
1465 /* If we need to sign extend, extract to a word first */
1466 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1467 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1468 bld.MOV(result, w_temp);
1469 } else {
1470 /* Otherwise use an AND with 0xff and a word type */
1471 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1472 }
1473 } else {
1474 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1475 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1476 }
1477 break;
1478 }
1479
1480 case nir_op_extract_u16:
1481 case nir_op_extract_i16: {
1482 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1483 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1484 assert(word != NULL);
1485 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1486 break;
1487 }
1488
1489 default:
1490 unreachable("unhandled instruction");
1491 }
1492
1493 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1494 * to sign extend the low bit to 0/~0
1495 */
1496 if (devinfo->gen <= 5 &&
1497 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1498 fs_reg masked = vgrf(glsl_type::int_type);
1499 bld.AND(masked, result, brw_imm_d(1));
1500 masked.negate = true;
1501 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1502 }
1503 }
1504
1505 void
1506 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1507 nir_load_const_instr *instr)
1508 {
1509 const brw_reg_type reg_type =
1510 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1511 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1512
1513 switch (instr->def.bit_size) {
1514 case 16:
1515 for (unsigned i = 0; i < instr->def.num_components; i++)
1516 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1517 break;
1518
1519 case 32:
1520 for (unsigned i = 0; i < instr->def.num_components; i++)
1521 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1522 break;
1523
1524 case 64:
1525 assert(devinfo->gen >= 7);
1526 if (devinfo->gen == 7) {
1527 /* We don't get 64-bit integer types until gen8 */
1528 for (unsigned i = 0; i < instr->def.num_components; i++) {
1529 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1530 setup_imm_df(bld, instr->value.f64[i]));
1531 }
1532 } else {
1533 for (unsigned i = 0; i < instr->def.num_components; i++)
1534 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1535 }
1536 break;
1537
1538 default:
1539 unreachable("Invalid bit size");
1540 }
1541
1542 nir_ssa_values[instr->def.index] = reg;
1543 }
1544
1545 fs_reg
1546 fs_visitor::get_nir_src(const nir_src &src)
1547 {
1548 fs_reg reg;
1549 if (src.is_ssa) {
1550 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1551 const brw_reg_type reg_type =
1552 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1553 reg = bld.vgrf(reg_type, src.ssa->num_components);
1554 } else {
1555 reg = nir_ssa_values[src.ssa->index];
1556 }
1557 } else {
1558 /* We don't handle indirects on locals */
1559 assert(src.reg.indirect == NULL);
1560 reg = offset(nir_locals[src.reg.reg->index], bld,
1561 src.reg.base_offset * src.reg.reg->num_components);
1562 }
1563
1564 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1565 /* The only 64-bit type available on gen7 is DF, so use that. */
1566 reg.type = BRW_REGISTER_TYPE_DF;
1567 } else {
1568 /* To avoid floating-point denorm flushing problems, set the type by
1569 * default to an integer type - instructions that need floating point
1570 * semantics will set this to F if they need to
1571 */
1572 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1573 BRW_REGISTER_TYPE_D);
1574 }
1575
1576 return reg;
1577 }
1578
1579 /**
1580 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1581 *
1582 * This function should not be called on any value which may be 64 bits.
1583 * We could theoretically support 64-bit on gen8+ but we choose not to
1584 * because it wouldn't work in general (no gen7 support) and there are
1585 * enough restrictions in 64-bit immediates that you can't take the return
1586 * value and treat it the same as the result of get_nir_src().
1587 */
1588 fs_reg
1589 fs_visitor::get_nir_src_imm(const nir_src &src)
1590 {
1591 nir_const_value *val = nir_src_as_const_value(src);
1592 assert(nir_src_bit_size(src) == 32);
1593 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1594 }
1595
1596 fs_reg
1597 fs_visitor::get_nir_dest(const nir_dest &dest)
1598 {
1599 if (dest.is_ssa) {
1600 const brw_reg_type reg_type =
1601 brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
1602 nir_ssa_values[dest.ssa.index] =
1603 bld.vgrf(reg_type, dest.ssa.num_components);
1604 return nir_ssa_values[dest.ssa.index];
1605 } else {
1606 /* We don't handle indirects on locals */
1607 assert(dest.reg.indirect == NULL);
1608 return offset(nir_locals[dest.reg.reg->index], bld,
1609 dest.reg.base_offset * dest.reg.reg->num_components);
1610 }
1611 }
1612
1613 fs_reg
1614 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1615 {
1616 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1617 BRW_REGISTER_TYPE_UD);
1618 fs_reg indirect;
1619 unsigned indirect_max = 0;
1620
1621 for (const nir_deref *tail = &deref->deref; tail->child;
1622 tail = tail->child) {
1623 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1624 assert(tail->child->deref_type == nir_deref_type_array);
1625 const unsigned size = glsl_get_length(tail->type);
1626 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1627 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1628 image = offset(image, bld, base * element_size);
1629
1630 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1631 fs_reg tmp = vgrf(glsl_type::uint_type);
1632
1633 /* Accessing an invalid surface index with the dataport can result
1634 * in a hang. According to the spec "if the index used to
1635 * select an individual element is negative or greater than or
1636 * equal to the size of the array, the results of the operation
1637 * are undefined but may not lead to termination" -- which is one
1638 * of the possible outcomes of the hang. Clamp the index to
1639 * prevent access outside of the array bounds.
1640 */
1641 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1642 BRW_REGISTER_TYPE_UD),
1643 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1644
1645 indirect_max += element_size * (tail->type->length - 1);
1646
1647 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1648 if (indirect.file == BAD_FILE) {
1649 indirect = tmp;
1650 } else {
1651 bld.ADD(indirect, indirect, tmp);
1652 }
1653 }
1654 }
1655
1656 if (indirect.file == BAD_FILE) {
1657 return image;
1658 } else {
1659 /* Emit a pile of MOVs to load the uniform into a temporary. The
1660 * dead-code elimination pass will get rid of what we don't use.
1661 */
1662 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1663 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1664 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1665 offset(tmp, bld, j), offset(image, bld, j),
1666 indirect, brw_imm_ud((indirect_max + 1) * 4));
1667 }
1668 return tmp;
1669 }
1670 }
1671
1672 void
1673 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1674 unsigned wr_mask)
1675 {
1676 for (unsigned i = 0; i < 4; i++) {
1677 if (!((wr_mask >> i) & 1))
1678 continue;
1679
1680 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1681 new_inst->dst = offset(new_inst->dst, bld, i);
1682 for (unsigned j = 0; j < new_inst->sources; j++)
1683 if (new_inst->src[j].file == VGRF)
1684 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1685
1686 bld.emit(new_inst);
1687 }
1688 }
1689
1690 /**
1691 * Get the matching channel register datatype for an image intrinsic of the
1692 * specified GLSL image type.
1693 */
1694 static brw_reg_type
1695 get_image_base_type(const glsl_type *type)
1696 {
1697 switch ((glsl_base_type)type->sampled_type) {
1698 case GLSL_TYPE_UINT:
1699 return BRW_REGISTER_TYPE_UD;
1700 case GLSL_TYPE_INT:
1701 return BRW_REGISTER_TYPE_D;
1702 case GLSL_TYPE_FLOAT:
1703 return BRW_REGISTER_TYPE_F;
1704 default:
1705 unreachable("Not reached.");
1706 }
1707 }
1708
1709 /**
1710 * Get the appropriate atomic op for an image atomic intrinsic.
1711 */
1712 static unsigned
1713 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1714 {
1715 switch (op) {
1716 case nir_intrinsic_image_var_atomic_add:
1717 return BRW_AOP_ADD;
1718 case nir_intrinsic_image_var_atomic_min:
1719 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1720 BRW_AOP_IMIN : BRW_AOP_UMIN);
1721 case nir_intrinsic_image_var_atomic_max:
1722 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1723 BRW_AOP_IMAX : BRW_AOP_UMAX);
1724 case nir_intrinsic_image_var_atomic_and:
1725 return BRW_AOP_AND;
1726 case nir_intrinsic_image_var_atomic_or:
1727 return BRW_AOP_OR;
1728 case nir_intrinsic_image_var_atomic_xor:
1729 return BRW_AOP_XOR;
1730 case nir_intrinsic_image_var_atomic_exchange:
1731 return BRW_AOP_MOV;
1732 case nir_intrinsic_image_var_atomic_comp_swap:
1733 return BRW_AOP_CMPWR;
1734 default:
1735 unreachable("Not reachable.");
1736 }
1737 }
1738
1739 static fs_inst *
1740 emit_pixel_interpolater_send(const fs_builder &bld,
1741 enum opcode opcode,
1742 const fs_reg &dst,
1743 const fs_reg &src,
1744 const fs_reg &desc,
1745 glsl_interp_mode interpolation)
1746 {
1747 struct brw_wm_prog_data *wm_prog_data =
1748 brw_wm_prog_data(bld.shader->stage_prog_data);
1749 fs_inst *inst;
1750 fs_reg payload;
1751 int mlen;
1752
1753 if (src.file == BAD_FILE) {
1754 /* Dummy payload */
1755 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1756 mlen = 1;
1757 } else {
1758 payload = src;
1759 mlen = 2 * bld.dispatch_width() / 8;
1760 }
1761
1762 inst = bld.emit(opcode, dst, payload, desc);
1763 inst->mlen = mlen;
1764 /* 2 floats per slot returned */
1765 inst->size_written = 2 * dst.component_size(inst->exec_size);
1766 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1767
1768 wm_prog_data->pulls_bary = true;
1769
1770 return inst;
1771 }
1772
1773 /**
1774 * Computes 1 << x, given a D/UD register containing some value x.
1775 */
1776 static fs_reg
1777 intexp2(const fs_builder &bld, const fs_reg &x)
1778 {
1779 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1780
1781 fs_reg result = bld.vgrf(x.type, 1);
1782 fs_reg one = bld.vgrf(x.type, 1);
1783
1784 bld.MOV(one, retype(brw_imm_d(1), one.type));
1785 bld.SHL(result, one, x);
1786 return result;
1787 }
1788
1789 void
1790 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1791 {
1792 assert(stage == MESA_SHADER_GEOMETRY);
1793
1794 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1795
1796 if (gs_compile->control_data_header_size_bits == 0)
1797 return;
1798
1799 /* We can only do EndPrimitive() functionality when the control data
1800 * consists of cut bits. Fortunately, the only time it isn't is when the
1801 * output type is points, in which case EndPrimitive() is a no-op.
1802 */
1803 if (gs_prog_data->control_data_format !=
1804 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1805 return;
1806 }
1807
1808 /* Cut bits use one bit per vertex. */
1809 assert(gs_compile->control_data_bits_per_vertex == 1);
1810
1811 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1812 vertex_count.type = BRW_REGISTER_TYPE_UD;
1813
1814 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1815 * vertex n, 0 otherwise. So all we need to do here is mark bit
1816 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1817 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1818 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1819 *
1820 * Note that if EndPrimitive() is called before emitting any vertices, this
1821 * will cause us to set bit 31 of the control_data_bits register to 1.
1822 * That's fine because:
1823 *
1824 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1825 * output, so the hardware will ignore cut bit 31.
1826 *
1827 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1828 * last vertex, so setting cut bit 31 has no effect (since the primitive
1829 * is automatically ended when the GS terminates).
1830 *
1831 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1832 * control_data_bits register to 0 when the first vertex is emitted.
1833 */
1834
1835 const fs_builder abld = bld.annotate("end primitive");
1836
1837 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1838 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1839 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1840 fs_reg mask = intexp2(abld, prev_count);
1841 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1842 * attention to the lower 5 bits of its second source argument, so on this
1843 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1844 * ((vertex_count - 1) % 32).
1845 */
1846 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1847 }
1848
1849 void
1850 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1851 {
1852 assert(stage == MESA_SHADER_GEOMETRY);
1853 assert(gs_compile->control_data_bits_per_vertex != 0);
1854
1855 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1856
1857 const fs_builder abld = bld.annotate("emit control data bits");
1858 const fs_builder fwa_bld = bld.exec_all();
1859
1860 /* We use a single UD register to accumulate control data bits (32 bits
1861 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1862 * at a time.
1863 *
1864 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1865 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1866 * use the Channel Mask phase to enable/disable which DWord within that
1867 * group to write. (Remember, different SIMD8 channels may have emitted
1868 * different numbers of vertices, so we may need per-slot offsets.)
1869 *
1870 * Channel masking presents an annoying problem: we may have to replicate
1871 * the data up to 4 times:
1872 *
1873 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1874 *
1875 * To avoid penalizing shaders that emit a small number of vertices, we
1876 * can avoid these sometimes: if the size of the control data header is
1877 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1878 * land in the same 128-bit group, so we can skip per-slot offsets.
1879 *
1880 * Similarly, if the control data header is <= 32 bits, there is only one
1881 * DWord, so we can skip channel masks.
1882 */
1883 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1884
1885 fs_reg channel_mask, per_slot_offset;
1886
1887 if (gs_compile->control_data_header_size_bits > 32) {
1888 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1889 channel_mask = vgrf(glsl_type::uint_type);
1890 }
1891
1892 if (gs_compile->control_data_header_size_bits > 128) {
1893 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1894 per_slot_offset = vgrf(glsl_type::uint_type);
1895 }
1896
1897 /* Figure out which DWord we're trying to write to using the formula:
1898 *
1899 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1900 *
1901 * Since bits_per_vertex is a power of two, and is known at compile
1902 * time, this can be optimized to:
1903 *
1904 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1905 */
1906 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1907 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1908 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1909 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1910 unsigned log2_bits_per_vertex =
1911 util_last_bit(gs_compile->control_data_bits_per_vertex);
1912 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1913
1914 if (per_slot_offset.file != BAD_FILE) {
1915 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1916 * the appropriate OWord within the control data header.
1917 */
1918 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1919 }
1920
1921 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1922 * write to the appropriate DWORD within the OWORD.
1923 */
1924 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1925 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1926 channel_mask = intexp2(fwa_bld, channel);
1927 /* Then the channel masks need to be in bits 23:16. */
1928 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1929 }
1930
1931 /* Store the control data bits in the message payload and send it. */
1932 int mlen = 2;
1933 if (channel_mask.file != BAD_FILE)
1934 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1935 if (per_slot_offset.file != BAD_FILE)
1936 mlen++;
1937
1938 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1939 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1940 int i = 0;
1941 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1942 if (per_slot_offset.file != BAD_FILE)
1943 sources[i++] = per_slot_offset;
1944 if (channel_mask.file != BAD_FILE)
1945 sources[i++] = channel_mask;
1946 while (i < mlen) {
1947 sources[i++] = this->control_data_bits;
1948 }
1949
1950 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1951 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1952 inst->mlen = mlen;
1953 /* We need to increment Global Offset by 256-bits to make room for
1954 * Broadwell's extra "Vertex Count" payload at the beginning of the
1955 * URB entry. Since this is an OWord message, Global Offset is counted
1956 * in 128-bit units, so we must set it to 2.
1957 */
1958 if (gs_prog_data->static_vertex_count == -1)
1959 inst->offset = 2;
1960 }
1961
1962 void
1963 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1964 unsigned stream_id)
1965 {
1966 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1967
1968 /* Note: we are calling this *before* increasing vertex_count, so
1969 * this->vertex_count == vertex_count - 1 in the formula above.
1970 */
1971
1972 /* Stream mode uses 2 bits per vertex */
1973 assert(gs_compile->control_data_bits_per_vertex == 2);
1974
1975 /* Must be a valid stream */
1976 assert(stream_id < MAX_VERTEX_STREAMS);
1977
1978 /* Control data bits are initialized to 0 so we don't have to set any
1979 * bits when sending vertices to stream 0.
1980 */
1981 if (stream_id == 0)
1982 return;
1983
1984 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1985
1986 /* reg::sid = stream_id */
1987 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1988 abld.MOV(sid, brw_imm_ud(stream_id));
1989
1990 /* reg:shift_count = 2 * (vertex_count - 1) */
1991 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1992 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1993
1994 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1995 * attention to the lower 5 bits of its second source argument, so on this
1996 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1997 * stream_id << ((2 * (vertex_count - 1)) % 32).
1998 */
1999 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2000 abld.SHL(mask, sid, shift_count);
2001 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2002 }
2003
2004 void
2005 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2006 unsigned stream_id)
2007 {
2008 assert(stage == MESA_SHADER_GEOMETRY);
2009
2010 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2011
2012 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2013 vertex_count.type = BRW_REGISTER_TYPE_UD;
2014
2015 /* Haswell and later hardware ignores the "Render Stream Select" bits
2016 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2017 * and instead sends all primitives down the pipeline for rasterization.
2018 * If the SOL stage is enabled, "Render Stream Select" is honored and
2019 * primitives bound to non-zero streams are discarded after stream output.
2020 *
2021 * Since the only purpose of primives sent to non-zero streams is to
2022 * be recorded by transform feedback, we can simply discard all geometry
2023 * bound to these streams when transform feedback is disabled.
2024 */
2025 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2026 return;
2027
2028 /* If we're outputting 32 control data bits or less, then we can wait
2029 * until the shader is over to output them all. Otherwise we need to
2030 * output them as we go. Now is the time to do it, since we're about to
2031 * output the vertex_count'th vertex, so it's guaranteed that the
2032 * control data bits associated with the (vertex_count - 1)th vertex are
2033 * correct.
2034 */
2035 if (gs_compile->control_data_header_size_bits > 32) {
2036 const fs_builder abld =
2037 bld.annotate("emit vertex: emit control data bits");
2038
2039 /* Only emit control data bits if we've finished accumulating a batch
2040 * of 32 bits. This is the case when:
2041 *
2042 * (vertex_count * bits_per_vertex) % 32 == 0
2043 *
2044 * (in other words, when the last 5 bits of vertex_count *
2045 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2046 * integer n (which is always the case, since bits_per_vertex is
2047 * always 1 or 2), this is equivalent to requiring that the last 5-n
2048 * bits of vertex_count are 0:
2049 *
2050 * vertex_count & (2^(5-n) - 1) == 0
2051 *
2052 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2053 * equivalent to:
2054 *
2055 * vertex_count & (32 / bits_per_vertex - 1) == 0
2056 *
2057 * TODO: If vertex_count is an immediate, we could do some of this math
2058 * at compile time...
2059 */
2060 fs_inst *inst =
2061 abld.AND(bld.null_reg_d(), vertex_count,
2062 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2063 inst->conditional_mod = BRW_CONDITIONAL_Z;
2064
2065 abld.IF(BRW_PREDICATE_NORMAL);
2066 /* If vertex_count is 0, then no control data bits have been
2067 * accumulated yet, so we can skip emitting them.
2068 */
2069 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2070 BRW_CONDITIONAL_NEQ);
2071 abld.IF(BRW_PREDICATE_NORMAL);
2072 emit_gs_control_data_bits(vertex_count);
2073 abld.emit(BRW_OPCODE_ENDIF);
2074
2075 /* Reset control_data_bits to 0 so we can start accumulating a new
2076 * batch.
2077 *
2078 * Note: in the case where vertex_count == 0, this neutralizes the
2079 * effect of any call to EndPrimitive() that the shader may have
2080 * made before outputting its first vertex.
2081 */
2082 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2083 inst->force_writemask_all = true;
2084 abld.emit(BRW_OPCODE_ENDIF);
2085 }
2086
2087 emit_urb_writes(vertex_count);
2088
2089 /* In stream mode we have to set control data bits for all vertices
2090 * unless we have disabled control data bits completely (which we do
2091 * do for GL_POINTS outputs that don't use streams).
2092 */
2093 if (gs_compile->control_data_header_size_bits > 0 &&
2094 gs_prog_data->control_data_format ==
2095 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2096 set_gs_stream_control_data_bits(vertex_count, stream_id);
2097 }
2098 }
2099
2100 void
2101 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2102 const nir_src &vertex_src,
2103 unsigned base_offset,
2104 const nir_src &offset_src,
2105 unsigned num_components,
2106 unsigned first_component)
2107 {
2108 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2109
2110 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2111 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2112 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2113
2114 /* TODO: figure out push input layout for invocations == 1 */
2115 /* TODO: make this work with 64-bit inputs */
2116 if (gs_prog_data->invocations == 1 &&
2117 type_sz(dst.type) <= 4 &&
2118 offset_const != NULL && vertex_const != NULL &&
2119 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2120 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2121 vertex_const->u32[0] * push_reg_count;
2122 for (unsigned i = 0; i < num_components; i++) {
2123 bld.MOV(offset(dst, bld, i),
2124 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2125 }
2126 return;
2127 }
2128
2129 /* Resort to the pull model. Ensure the VUE handles are provided. */
2130 assert(gs_prog_data->base.include_vue_handles);
2131
2132 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2133 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2134
2135 if (gs_prog_data->invocations == 1) {
2136 if (vertex_const) {
2137 /* The vertex index is constant; just select the proper URB handle. */
2138 icp_handle =
2139 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2140 BRW_REGISTER_TYPE_UD);
2141 } else {
2142 /* The vertex index is non-constant. We need to use indirect
2143 * addressing to fetch the proper URB handle.
2144 *
2145 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2146 * indicating that channel <n> should read the handle from
2147 * DWord <n>. We convert that to bytes by multiplying by 4.
2148 *
2149 * Next, we convert the vertex index to bytes by multiplying
2150 * by 32 (shifting by 5), and add the two together. This is
2151 * the final indirect byte offset.
2152 */
2153 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2154 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2155 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2156 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2157
2158 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2159 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2160 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2161 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2162 /* Convert vertex_index to bytes (multiply by 32) */
2163 bld.SHL(vertex_offset_bytes,
2164 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2165 brw_imm_ud(5u));
2166 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2167
2168 /* Use first_icp_handle as the base offset. There is one register
2169 * of URB handles per vertex, so inform the register allocator that
2170 * we might read up to nir->info.gs.vertices_in registers.
2171 */
2172 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2173 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2174 fs_reg(icp_offset_bytes),
2175 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2176 }
2177 } else {
2178 assert(gs_prog_data->invocations > 1);
2179
2180 if (vertex_const) {
2181 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2182 bld.MOV(icp_handle,
2183 retype(brw_vec1_grf(first_icp_handle +
2184 vertex_const->i32[0] / 8,
2185 vertex_const->i32[0] % 8),
2186 BRW_REGISTER_TYPE_UD));
2187 } else {
2188 /* The vertex index is non-constant. We need to use indirect
2189 * addressing to fetch the proper URB handle.
2190 *
2191 */
2192 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2193
2194 /* Convert vertex_index to bytes (multiply by 4) */
2195 bld.SHL(icp_offset_bytes,
2196 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2197 brw_imm_ud(2u));
2198
2199 /* Use first_icp_handle as the base offset. There is one DWord
2200 * of URB handles per vertex, so inform the register allocator that
2201 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2202 */
2203 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2204 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2205 fs_reg(icp_offset_bytes),
2206 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2207 REG_SIZE));
2208 }
2209 }
2210
2211 fs_inst *inst;
2212
2213 fs_reg tmp_dst = dst;
2214 fs_reg indirect_offset = get_nir_src(offset_src);
2215 unsigned num_iterations = 1;
2216 unsigned orig_num_components = num_components;
2217
2218 if (type_sz(dst.type) == 8) {
2219 if (num_components > 2) {
2220 num_iterations = 2;
2221 num_components = 2;
2222 }
2223 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2224 tmp_dst = tmp;
2225 first_component = first_component / 2;
2226 }
2227
2228 for (unsigned iter = 0; iter < num_iterations; iter++) {
2229 if (offset_const) {
2230 /* Constant indexing - use global offset. */
2231 if (first_component != 0) {
2232 unsigned read_components = num_components + first_component;
2233 fs_reg tmp = bld.vgrf(dst.type, read_components);
2234 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2235 inst->size_written = read_components *
2236 tmp.component_size(inst->exec_size);
2237 for (unsigned i = 0; i < num_components; i++) {
2238 bld.MOV(offset(tmp_dst, bld, i),
2239 offset(tmp, bld, i + first_component));
2240 }
2241 } else {
2242 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2243 icp_handle);
2244 inst->size_written = num_components *
2245 tmp_dst.component_size(inst->exec_size);
2246 }
2247 inst->offset = base_offset + offset_const->u32[0];
2248 inst->mlen = 1;
2249 } else {
2250 /* Indirect indexing - use per-slot offsets as well. */
2251 const fs_reg srcs[] = { icp_handle, indirect_offset };
2252 unsigned read_components = num_components + first_component;
2253 fs_reg tmp = bld.vgrf(dst.type, read_components);
2254 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2255 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2256 if (first_component != 0) {
2257 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2258 payload);
2259 inst->size_written = read_components *
2260 tmp.component_size(inst->exec_size);
2261 for (unsigned i = 0; i < num_components; i++) {
2262 bld.MOV(offset(tmp_dst, bld, i),
2263 offset(tmp, bld, i + first_component));
2264 }
2265 } else {
2266 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2267 payload);
2268 inst->size_written = num_components *
2269 tmp_dst.component_size(inst->exec_size);
2270 }
2271 inst->offset = base_offset;
2272 inst->mlen = 2;
2273 }
2274
2275 if (type_sz(dst.type) == 8) {
2276 shuffle_32bit_load_result_to_64bit_data(
2277 bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
2278
2279 for (unsigned c = 0; c < num_components; c++)
2280 bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
2281 }
2282
2283 if (num_iterations > 1) {
2284 num_components = orig_num_components - 2;
2285 if(offset_const) {
2286 base_offset++;
2287 } else {
2288 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2289 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2290 indirect_offset = new_indirect;
2291 }
2292 }
2293 }
2294 }
2295
2296 fs_reg
2297 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2298 {
2299 nir_src *offset_src = nir_get_io_offset_src(instr);
2300 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2301
2302 if (const_value) {
2303 /* The only constant offset we should find is 0. brw_nir.c's
2304 * add_const_offset_to_base() will fold other constant offsets
2305 * into instr->const_index[0].
2306 */
2307 assert(const_value->u32[0] == 0);
2308 return fs_reg();
2309 }
2310
2311 return get_nir_src(*offset_src);
2312 }
2313
2314 static void
2315 do_untyped_vector_read(const fs_builder &bld,
2316 const fs_reg dest,
2317 const fs_reg surf_index,
2318 const fs_reg offset_reg,
2319 unsigned num_components)
2320 {
2321 if (type_sz(dest.type) <= 2) {
2322 assert(dest.stride == 1);
2323 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2324
2325 if (is_const_offset) {
2326 uint32_t start = offset_reg.ud & ~3;
2327 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2328 end = ALIGN(end, 4);
2329 assert (end - start <= 16);
2330
2331 /* At this point we have 16-bit component/s that have constant
2332 * offset aligned to 4-bytes that can be read with untyped_reads.
2333 * untyped_read message requires 32-bit aligned offsets.
2334 */
2335 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2336 unsigned num_components_32bit = (end - start) / 4;
2337
2338 fs_reg read_result =
2339 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2340 1 /* dims */,
2341 num_components_32bit,
2342 BRW_PREDICATE_NONE);
2343 shuffle_32bit_load_result_to_16bit_data(bld,
2344 retype(dest, BRW_REGISTER_TYPE_W),
2345 retype(read_result, BRW_REGISTER_TYPE_D),
2346 first_component, num_components);
2347 } else {
2348 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2349 for (unsigned i = 0; i < num_components; i++) {
2350 if (i == 0) {
2351 bld.MOV(read_offset, offset_reg);
2352 } else {
2353 bld.ADD(read_offset, offset_reg,
2354 brw_imm_ud(i * type_sz(dest.type)));
2355 }
2356 /* Non constant offsets are not guaranteed to be aligned 32-bits
2357 * so they are read using one byte_scattered_read message
2358 * for each component.
2359 */
2360 fs_reg read_result =
2361 emit_byte_scattered_read(bld, surf_index, read_offset,
2362 1 /* dims */, 1,
2363 type_sz(dest.type) * 8 /* bit_size */,
2364 BRW_PREDICATE_NONE);
2365 bld.MOV(offset(dest, bld, i),
2366 subscript (read_result, dest.type, 0));
2367 }
2368 }
2369 } else if (type_sz(dest.type) == 4) {
2370 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2371 1 /* dims */,
2372 num_components,
2373 BRW_PREDICATE_NONE);
2374 read_result.type = dest.type;
2375 for (unsigned i = 0; i < num_components; i++)
2376 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2377 } else if (type_sz(dest.type) == 8) {
2378 /* Reading a dvec, so we need to:
2379 *
2380 * 1. Multiply num_components by 2, to account for the fact that we
2381 * need to read 64-bit components.
2382 * 2. Shuffle the result of the load to form valid 64-bit elements
2383 * 3. Emit a second load (for components z/w) if needed.
2384 */
2385 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2386 bld.MOV(read_offset, offset_reg);
2387
2388 int iters = num_components <= 2 ? 1 : 2;
2389
2390 /* Load the dvec, the first iteration loads components x/y, the second
2391 * iteration, if needed, loads components z/w
2392 */
2393 for (int it = 0; it < iters; it++) {
2394 /* Compute number of components to read in this iteration */
2395 int iter_components = MIN2(2, num_components);
2396 num_components -= iter_components;
2397
2398 /* Read. Since this message reads 32-bit components, we need to
2399 * read twice as many components.
2400 */
2401 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2402 1 /* dims */,
2403 iter_components * 2,
2404 BRW_PREDICATE_NONE);
2405
2406 /* Shuffle the 32-bit load result into valid 64-bit data */
2407 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2408 shuffle_32bit_load_result_to_64bit_data(
2409 bld, packed_result, read_result, iter_components);
2410
2411 /* Move each component to its destination */
2412 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2413 for (int c = 0; c < iter_components; c++) {
2414 bld.MOV(offset(dest, bld, it * 2 + c),
2415 offset(packed_result, bld, c));
2416 }
2417
2418 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2419 }
2420 } else {
2421 unreachable("Unsupported type");
2422 }
2423 }
2424
2425 void
2426 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2427 nir_intrinsic_instr *instr)
2428 {
2429 assert(stage == MESA_SHADER_VERTEX);
2430
2431 fs_reg dest;
2432 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2433 dest = get_nir_dest(instr->dest);
2434
2435 switch (instr->intrinsic) {
2436 case nir_intrinsic_load_vertex_id:
2437 case nir_intrinsic_load_base_vertex:
2438 unreachable("should be lowered by nir_lower_system_values()");
2439
2440 case nir_intrinsic_load_vertex_id_zero_base:
2441 case nir_intrinsic_load_instance_id:
2442 case nir_intrinsic_load_base_instance:
2443 case nir_intrinsic_load_draw_id: {
2444 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2445 fs_reg val = nir_system_values[sv];
2446 assert(val.file != BAD_FILE);
2447 dest.type = val.type;
2448 bld.MOV(dest, val);
2449 break;
2450 }
2451
2452 case nir_intrinsic_load_input: {
2453 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2454 unsigned first_component = nir_intrinsic_component(instr);
2455 unsigned num_components = instr->num_components;
2456
2457 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2458 assert(const_offset && "Indirect input loads not allowed");
2459 src = offset(src, bld, const_offset->u32[0]);
2460
2461 if (type_sz(dest.type) == 8)
2462 first_component /= 2;
2463
2464 for (unsigned j = 0; j < num_components; j++) {
2465 bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
2466 }
2467
2468 if (type_sz(dest.type) == 8) {
2469 shuffle_32bit_load_result_to_64bit_data(bld,
2470 dest,
2471 retype(dest, BRW_REGISTER_TYPE_F),
2472 instr->num_components);
2473 }
2474 break;
2475 }
2476
2477 case nir_intrinsic_load_first_vertex:
2478 case nir_intrinsic_load_is_indexed_draw:
2479 unreachable("lowered by brw_nir_lower_vs_inputs");
2480
2481 default:
2482 nir_emit_intrinsic(bld, instr);
2483 break;
2484 }
2485 }
2486
2487 void
2488 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2489 nir_intrinsic_instr *instr)
2490 {
2491 assert(stage == MESA_SHADER_TESS_CTRL);
2492 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2493 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2494
2495 fs_reg dst;
2496 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2497 dst = get_nir_dest(instr->dest);
2498
2499 switch (instr->intrinsic) {
2500 case nir_intrinsic_load_primitive_id:
2501 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2502 break;
2503 case nir_intrinsic_load_invocation_id:
2504 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2505 break;
2506 case nir_intrinsic_load_patch_vertices_in:
2507 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2508 brw_imm_d(tcs_key->input_vertices));
2509 break;
2510
2511 case nir_intrinsic_barrier: {
2512 if (tcs_prog_data->instances == 1)
2513 break;
2514
2515 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2516 fs_reg m0_2 = component(m0, 2);
2517
2518 const fs_builder chanbld = bld.exec_all().group(1, 0);
2519
2520 /* Zero the message header */
2521 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2522
2523 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2524 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2525 brw_imm_ud(INTEL_MASK(16, 13)));
2526
2527 /* Shift it up to bits 27:24. */
2528 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2529
2530 /* Set the Barrier Count and the enable bit */
2531 chanbld.OR(m0_2, m0_2,
2532 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2533
2534 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2535 break;
2536 }
2537
2538 case nir_intrinsic_load_input:
2539 unreachable("nir_lower_io should never give us these.");
2540 break;
2541
2542 case nir_intrinsic_load_per_vertex_input: {
2543 fs_reg indirect_offset = get_indirect_offset(instr);
2544 unsigned imm_offset = instr->const_index[0];
2545
2546 const nir_src &vertex_src = instr->src[0];
2547 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2548
2549 fs_inst *inst;
2550
2551 fs_reg icp_handle;
2552
2553 if (vertex_const) {
2554 /* Emit a MOV to resolve <0,1,0> regioning. */
2555 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2556 bld.MOV(icp_handle,
2557 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2558 vertex_const->i32[0] & 7),
2559 BRW_REGISTER_TYPE_UD));
2560 } else if (tcs_prog_data->instances == 1 &&
2561 vertex_src.is_ssa &&
2562 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2563 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2564 /* For the common case of only 1 instance, an array index of
2565 * gl_InvocationID means reading g1. Skip all the indirect work.
2566 */
2567 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2568 } else {
2569 /* The vertex index is non-constant. We need to use indirect
2570 * addressing to fetch the proper URB handle.
2571 */
2572 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2573
2574 /* Each ICP handle is a single DWord (4 bytes) */
2575 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2576 bld.SHL(vertex_offset_bytes,
2577 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2578 brw_imm_ud(2u));
2579
2580 /* Start at g1. We might read up to 4 registers. */
2581 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2582 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2583 brw_imm_ud(4 * REG_SIZE));
2584 }
2585
2586 /* We can only read two double components with each URB read, so
2587 * we send two read messages in that case, each one loading up to
2588 * two double components.
2589 */
2590 unsigned num_iterations = 1;
2591 unsigned num_components = instr->num_components;
2592 unsigned first_component = nir_intrinsic_component(instr);
2593 fs_reg orig_dst = dst;
2594 if (type_sz(dst.type) == 8) {
2595 first_component = first_component / 2;
2596 if (instr->num_components > 2) {
2597 num_iterations = 2;
2598 num_components = 2;
2599 }
2600
2601 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2602 dst = tmp;
2603 }
2604
2605 for (unsigned iter = 0; iter < num_iterations; iter++) {
2606 if (indirect_offset.file == BAD_FILE) {
2607 /* Constant indexing - use global offset. */
2608 if (first_component != 0) {
2609 unsigned read_components = num_components + first_component;
2610 fs_reg tmp = bld.vgrf(dst.type, read_components);
2611 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2612 for (unsigned i = 0; i < num_components; i++) {
2613 bld.MOV(offset(dst, bld, i),
2614 offset(tmp, bld, i + first_component));
2615 }
2616 } else {
2617 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2618 }
2619 inst->offset = imm_offset;
2620 inst->mlen = 1;
2621 } else {
2622 /* Indirect indexing - use per-slot offsets as well. */
2623 const fs_reg srcs[] = { icp_handle, indirect_offset };
2624 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2625 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2626 if (first_component != 0) {
2627 unsigned read_components = num_components + first_component;
2628 fs_reg tmp = bld.vgrf(dst.type, read_components);
2629 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2630 payload);
2631 for (unsigned i = 0; i < num_components; i++) {
2632 bld.MOV(offset(dst, bld, i),
2633 offset(tmp, bld, i + first_component));
2634 }
2635 } else {
2636 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2637 payload);
2638 }
2639 inst->offset = imm_offset;
2640 inst->mlen = 2;
2641 }
2642 inst->size_written = (num_components + first_component) *
2643 inst->dst.component_size(inst->exec_size);
2644
2645 /* If we are reading 64-bit data using 32-bit read messages we need
2646 * build proper 64-bit data elements by shuffling the low and high
2647 * 32-bit components around like we do for other things like UBOs
2648 * or SSBOs.
2649 */
2650 if (type_sz(dst.type) == 8) {
2651 shuffle_32bit_load_result_to_64bit_data(
2652 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2653
2654 for (unsigned c = 0; c < num_components; c++) {
2655 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2656 offset(dst, bld, c));
2657 }
2658 }
2659
2660 /* Copy the temporary to the destination to deal with writemasking.
2661 *
2662 * Also attempt to deal with gl_PointSize being in the .w component.
2663 */
2664 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2665 assert(type_sz(dst.type) < 8);
2666 inst->dst = bld.vgrf(dst.type, 4);
2667 inst->size_written = 4 * REG_SIZE;
2668 bld.MOV(dst, offset(inst->dst, bld, 3));
2669 }
2670
2671 /* If we are loading double data and we need a second read message
2672 * adjust the write offset
2673 */
2674 if (num_iterations > 1) {
2675 num_components = instr->num_components - 2;
2676 imm_offset++;
2677 }
2678 }
2679 break;
2680 }
2681
2682 case nir_intrinsic_load_output:
2683 case nir_intrinsic_load_per_vertex_output: {
2684 fs_reg indirect_offset = get_indirect_offset(instr);
2685 unsigned imm_offset = instr->const_index[0];
2686 unsigned first_component = nir_intrinsic_component(instr);
2687
2688 fs_inst *inst;
2689 if (indirect_offset.file == BAD_FILE) {
2690 /* Replicate the patch handle to all enabled channels */
2691 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2692 bld.MOV(patch_handle,
2693 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2694
2695 {
2696 if (first_component != 0) {
2697 unsigned read_components =
2698 instr->num_components + first_component;
2699 fs_reg tmp = bld.vgrf(dst.type, read_components);
2700 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2701 patch_handle);
2702 inst->size_written = read_components * REG_SIZE;
2703 for (unsigned i = 0; i < instr->num_components; i++) {
2704 bld.MOV(offset(dst, bld, i),
2705 offset(tmp, bld, i + first_component));
2706 }
2707 } else {
2708 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2709 patch_handle);
2710 inst->size_written = instr->num_components * REG_SIZE;
2711 }
2712 inst->offset = imm_offset;
2713 inst->mlen = 1;
2714 }
2715 } else {
2716 /* Indirect indexing - use per-slot offsets as well. */
2717 const fs_reg srcs[] = {
2718 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2719 indirect_offset
2720 };
2721 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2722 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2723 if (first_component != 0) {
2724 unsigned read_components =
2725 instr->num_components + first_component;
2726 fs_reg tmp = bld.vgrf(dst.type, read_components);
2727 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2728 payload);
2729 inst->size_written = read_components * REG_SIZE;
2730 for (unsigned i = 0; i < instr->num_components; i++) {
2731 bld.MOV(offset(dst, bld, i),
2732 offset(tmp, bld, i + first_component));
2733 }
2734 } else {
2735 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2736 payload);
2737 inst->size_written = instr->num_components * REG_SIZE;
2738 }
2739 inst->offset = imm_offset;
2740 inst->mlen = 2;
2741 }
2742 break;
2743 }
2744
2745 case nir_intrinsic_store_output:
2746 case nir_intrinsic_store_per_vertex_output: {
2747 fs_reg value = get_nir_src(instr->src[0]);
2748 bool is_64bit = (instr->src[0].is_ssa ?
2749 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2750 fs_reg indirect_offset = get_indirect_offset(instr);
2751 unsigned imm_offset = instr->const_index[0];
2752 unsigned mask = instr->const_index[1];
2753 unsigned header_regs = 0;
2754 fs_reg srcs[7];
2755 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2756
2757 if (indirect_offset.file != BAD_FILE) {
2758 srcs[header_regs++] = indirect_offset;
2759 }
2760
2761 if (mask == 0)
2762 break;
2763
2764 unsigned num_components = util_last_bit(mask);
2765 enum opcode opcode;
2766
2767 /* We can only pack two 64-bit components in a single message, so send
2768 * 2 messages if we have more components
2769 */
2770 unsigned num_iterations = 1;
2771 unsigned iter_components = num_components;
2772 unsigned first_component = nir_intrinsic_component(instr);
2773 if (is_64bit) {
2774 first_component = first_component / 2;
2775 if (instr->num_components > 2) {
2776 num_iterations = 2;
2777 iter_components = 2;
2778 }
2779 }
2780
2781 mask = mask << first_component;
2782
2783 for (unsigned iter = 0; iter < num_iterations; iter++) {
2784 if (!is_64bit && mask != WRITEMASK_XYZW) {
2785 srcs[header_regs++] = brw_imm_ud(mask << 16);
2786 opcode = indirect_offset.file != BAD_FILE ?
2787 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2788 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2789 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2790 /* Expand the 64-bit mask to 32-bit channels. We only handle
2791 * two channels in each iteration, so we only care about X/Y.
2792 */
2793 unsigned mask32 = 0;
2794 if (mask & WRITEMASK_X)
2795 mask32 |= WRITEMASK_XY;
2796 if (mask & WRITEMASK_Y)
2797 mask32 |= WRITEMASK_ZW;
2798
2799 /* If the mask does not include any of the channels X or Y there
2800 * is nothing to do in this iteration. Move on to the next couple
2801 * of 64-bit channels.
2802 */
2803 if (!mask32) {
2804 mask >>= 2;
2805 imm_offset++;
2806 continue;
2807 }
2808
2809 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2810 opcode = indirect_offset.file != BAD_FILE ?
2811 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2812 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2813 } else {
2814 opcode = indirect_offset.file != BAD_FILE ?
2815 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2816 SHADER_OPCODE_URB_WRITE_SIMD8;
2817 }
2818
2819 for (unsigned i = 0; i < iter_components; i++) {
2820 if (!(mask & (1 << (i + first_component))))
2821 continue;
2822
2823 if (!is_64bit) {
2824 srcs[header_regs + i + first_component] = offset(value, bld, i);
2825 } else {
2826 /* We need to shuffle the 64-bit data to match the layout
2827 * expected by our 32-bit URB write messages. We use a temporary
2828 * for that.
2829 */
2830 unsigned channel = iter * 2 + i;
2831 fs_reg dest = shuffle_64bit_data_for_32bit_write(bld,
2832 offset(value, bld, channel), 1);
2833
2834 srcs[header_regs + (i + first_component) * 2] = dest;
2835 srcs[header_regs + (i + first_component) * 2 + 1] =
2836 offset(dest, bld, 1);
2837 }
2838 }
2839
2840 unsigned mlen =
2841 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2842 (is_64bit ? 2 * first_component : first_component);
2843 fs_reg payload =
2844 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2845 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2846
2847 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2848 inst->offset = imm_offset;
2849 inst->mlen = mlen;
2850
2851 /* If this is a 64-bit attribute, select the next two 64-bit channels
2852 * to be handled in the next iteration.
2853 */
2854 if (is_64bit) {
2855 mask >>= 2;
2856 imm_offset++;
2857 }
2858 }
2859 break;
2860 }
2861
2862 default:
2863 nir_emit_intrinsic(bld, instr);
2864 break;
2865 }
2866 }
2867
2868 void
2869 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2870 nir_intrinsic_instr *instr)
2871 {
2872 assert(stage == MESA_SHADER_TESS_EVAL);
2873 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2874
2875 fs_reg dest;
2876 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2877 dest = get_nir_dest(instr->dest);
2878
2879 switch (instr->intrinsic) {
2880 case nir_intrinsic_load_primitive_id:
2881 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2882 break;
2883 case nir_intrinsic_load_tess_coord:
2884 /* gl_TessCoord is part of the payload in g1-3 */
2885 for (unsigned i = 0; i < 3; i++) {
2886 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2887 }
2888 break;
2889
2890 case nir_intrinsic_load_input:
2891 case nir_intrinsic_load_per_vertex_input: {
2892 fs_reg indirect_offset = get_indirect_offset(instr);
2893 unsigned imm_offset = instr->const_index[0];
2894 unsigned first_component = nir_intrinsic_component(instr);
2895
2896 if (type_sz(dest.type) == 8) {
2897 first_component = first_component / 2;
2898 }
2899
2900 fs_inst *inst;
2901 if (indirect_offset.file == BAD_FILE) {
2902 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2903 * which is 16 registers (since each holds 2 vec4 slots).
2904 */
2905 unsigned slot_count = 1;
2906 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2907 slot_count++;
2908
2909 const unsigned max_push_slots = 32;
2910 if (imm_offset + slot_count <= max_push_slots) {
2911 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2912 for (int i = 0; i < instr->num_components; i++) {
2913 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2914 i + first_component;
2915 bld.MOV(offset(dest, bld, i), component(src, comp));
2916 }
2917
2918 tes_prog_data->base.urb_read_length =
2919 MAX2(tes_prog_data->base.urb_read_length,
2920 DIV_ROUND_UP(imm_offset + slot_count, 2));
2921 } else {
2922 /* Replicate the patch handle to all enabled channels */
2923 const fs_reg srcs[] = {
2924 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2925 };
2926 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2927 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2928
2929 if (first_component != 0) {
2930 unsigned read_components =
2931 instr->num_components + first_component;
2932 fs_reg tmp = bld.vgrf(dest.type, read_components);
2933 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2934 patch_handle);
2935 inst->size_written = read_components * REG_SIZE;
2936 for (unsigned i = 0; i < instr->num_components; i++) {
2937 bld.MOV(offset(dest, bld, i),
2938 offset(tmp, bld, i + first_component));
2939 }
2940 } else {
2941 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2942 patch_handle);
2943 inst->size_written = instr->num_components * REG_SIZE;
2944 }
2945 inst->mlen = 1;
2946 inst->offset = imm_offset;
2947 }
2948 } else {
2949 /* Indirect indexing - use per-slot offsets as well. */
2950
2951 /* We can only read two double components with each URB read, so
2952 * we send two read messages in that case, each one loading up to
2953 * two double components.
2954 */
2955 unsigned num_iterations = 1;
2956 unsigned num_components = instr->num_components;
2957 fs_reg orig_dest = dest;
2958 if (type_sz(dest.type) == 8) {
2959 if (instr->num_components > 2) {
2960 num_iterations = 2;
2961 num_components = 2;
2962 }
2963 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2964 dest = tmp;
2965 }
2966
2967 for (unsigned iter = 0; iter < num_iterations; iter++) {
2968 const fs_reg srcs[] = {
2969 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2970 indirect_offset
2971 };
2972 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2973 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2974
2975 if (first_component != 0) {
2976 unsigned read_components =
2977 num_components + first_component;
2978 fs_reg tmp = bld.vgrf(dest.type, read_components);
2979 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2980 payload);
2981 for (unsigned i = 0; i < num_components; i++) {
2982 bld.MOV(offset(dest, bld, i),
2983 offset(tmp, bld, i + first_component));
2984 }
2985 } else {
2986 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2987 payload);
2988 }
2989 inst->mlen = 2;
2990 inst->offset = imm_offset;
2991 inst->size_written = (num_components + first_component) *
2992 inst->dst.component_size(inst->exec_size);
2993
2994 /* If we are reading 64-bit data using 32-bit read messages we need
2995 * build proper 64-bit data elements by shuffling the low and high
2996 * 32-bit components around like we do for other things like UBOs
2997 * or SSBOs.
2998 */
2999 if (type_sz(dest.type) == 8) {
3000 shuffle_32bit_load_result_to_64bit_data(
3001 bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
3002
3003 for (unsigned c = 0; c < num_components; c++) {
3004 bld.MOV(offset(orig_dest, bld, iter * 2 + c),
3005 offset(dest, bld, c));
3006 }
3007 }
3008
3009 /* If we are loading double data and we need a second read message
3010 * adjust the offset
3011 */
3012 if (num_iterations > 1) {
3013 num_components = instr->num_components - 2;
3014 imm_offset++;
3015 }
3016 }
3017 }
3018 break;
3019 }
3020 default:
3021 nir_emit_intrinsic(bld, instr);
3022 break;
3023 }
3024 }
3025
3026 void
3027 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3028 nir_intrinsic_instr *instr)
3029 {
3030 assert(stage == MESA_SHADER_GEOMETRY);
3031 fs_reg indirect_offset;
3032
3033 fs_reg dest;
3034 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3035 dest = get_nir_dest(instr->dest);
3036
3037 switch (instr->intrinsic) {
3038 case nir_intrinsic_load_primitive_id:
3039 assert(stage == MESA_SHADER_GEOMETRY);
3040 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3041 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3042 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3043 break;
3044
3045 case nir_intrinsic_load_input:
3046 unreachable("load_input intrinsics are invalid for the GS stage");
3047
3048 case nir_intrinsic_load_per_vertex_input:
3049 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3050 instr->src[1], instr->num_components,
3051 nir_intrinsic_component(instr));
3052 break;
3053
3054 case nir_intrinsic_emit_vertex_with_counter:
3055 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3056 break;
3057
3058 case nir_intrinsic_end_primitive_with_counter:
3059 emit_gs_end_primitive(instr->src[0]);
3060 break;
3061
3062 case nir_intrinsic_set_vertex_count:
3063 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3064 break;
3065
3066 case nir_intrinsic_load_invocation_id: {
3067 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3068 assert(val.file != BAD_FILE);
3069 dest.type = val.type;
3070 bld.MOV(dest, val);
3071 break;
3072 }
3073
3074 default:
3075 nir_emit_intrinsic(bld, instr);
3076 break;
3077 }
3078 }
3079
3080 /**
3081 * Fetch the current render target layer index.
3082 */
3083 static fs_reg
3084 fetch_render_target_array_index(const fs_builder &bld)
3085 {
3086 if (bld.shader->devinfo->gen >= 6) {
3087 /* The render target array index is provided in the thread payload as
3088 * bits 26:16 of r0.0.
3089 */
3090 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3091 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3092 brw_imm_uw(0x7ff));
3093 return idx;
3094 } else {
3095 /* Pre-SNB we only ever render into the first layer of the framebuffer
3096 * since layered rendering is not implemented.
3097 */
3098 return brw_imm_ud(0);
3099 }
3100 }
3101
3102 /**
3103 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3104 * framebuffer at the current fragment coordinates and sample index.
3105 */
3106 fs_inst *
3107 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3108 unsigned target)
3109 {
3110 const struct gen_device_info *devinfo = bld.shader->devinfo;
3111
3112 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3113 const brw_wm_prog_key *wm_key =
3114 reinterpret_cast<const brw_wm_prog_key *>(key);
3115 assert(!wm_key->coherent_fb_fetch);
3116 const struct brw_wm_prog_data *wm_prog_data =
3117 brw_wm_prog_data(stage_prog_data);
3118
3119 /* Calculate the surface index relative to the start of the texture binding
3120 * table block, since that's what the texturing messages expect.
3121 */
3122 const unsigned surface = target +
3123 wm_prog_data->binding_table.render_target_read_start -
3124 wm_prog_data->base.binding_table.texture_start;
3125
3126 brw_mark_surface_used(
3127 bld.shader->stage_prog_data,
3128 wm_prog_data->binding_table.render_target_read_start + target);
3129
3130 /* Calculate the fragment coordinates. */
3131 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3132 bld.MOV(offset(coords, bld, 0), pixel_x);
3133 bld.MOV(offset(coords, bld, 1), pixel_y);
3134 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3135
3136 /* Calculate the sample index and MCS payload when multisampling. Luckily
3137 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3138 * shouldn't be necessary to recompile based on whether the framebuffer is
3139 * CMS or UMS.
3140 */
3141 if (wm_key->multisample_fbo &&
3142 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3143 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3144
3145 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3146 const fs_reg mcs = wm_key->multisample_fbo ?
3147 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3148
3149 /* Use either a normal or a CMS texel fetch message depending on whether
3150 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3151 * message just in case the framebuffer uses 16x multisampling, it should
3152 * be equivalent to the normal CMS fetch for lower multisampling modes.
3153 */
3154 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3155 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3156 SHADER_OPCODE_TXF_CMS_LOGICAL;
3157
3158 /* Emit the instruction. */
3159 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3160 sample, mcs,
3161 brw_imm_ud(surface), brw_imm_ud(0),
3162 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3163 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3164
3165 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3166 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3167
3168 return inst;
3169 }
3170
3171 /**
3172 * Actual coherent framebuffer read implemented using the native render target
3173 * read message. Requires SKL+.
3174 */
3175 static fs_inst *
3176 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3177 {
3178 assert(bld.shader->devinfo->gen >= 9);
3179 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3180 inst->target = target;
3181 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3182
3183 return inst;
3184 }
3185
3186 static fs_reg
3187 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3188 {
3189 if (n && regs[0].file != BAD_FILE) {
3190 return regs[0];
3191
3192 } else {
3193 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3194
3195 for (unsigned i = 0; i < n; i++)
3196 regs[i] = tmp;
3197
3198 return tmp;
3199 }
3200 }
3201
3202 static fs_reg
3203 alloc_frag_output(fs_visitor *v, unsigned location)
3204 {
3205 assert(v->stage == MESA_SHADER_FRAGMENT);
3206 const brw_wm_prog_key *const key =
3207 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3208 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3209 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3210
3211 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3212 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3213
3214 else if (l == FRAG_RESULT_COLOR)
3215 return alloc_temporary(v->bld, 4, v->outputs,
3216 MAX2(key->nr_color_regions, 1));
3217
3218 else if (l == FRAG_RESULT_DEPTH)
3219 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3220
3221 else if (l == FRAG_RESULT_STENCIL)
3222 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3223
3224 else if (l == FRAG_RESULT_SAMPLE_MASK)
3225 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3226
3227 else if (l >= FRAG_RESULT_DATA0 &&
3228 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3229 return alloc_temporary(v->bld, 4,
3230 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3231
3232 else
3233 unreachable("Invalid location");
3234 }
3235
3236 void
3237 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3238 nir_intrinsic_instr *instr)
3239 {
3240 assert(stage == MESA_SHADER_FRAGMENT);
3241
3242 fs_reg dest;
3243 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3244 dest = get_nir_dest(instr->dest);
3245
3246 switch (instr->intrinsic) {
3247 case nir_intrinsic_load_front_face:
3248 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3249 *emit_frontfacing_interpolation());
3250 break;
3251
3252 case nir_intrinsic_load_sample_pos: {
3253 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3254 assert(sample_pos.file != BAD_FILE);
3255 dest.type = sample_pos.type;
3256 bld.MOV(dest, sample_pos);
3257 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3258 break;
3259 }
3260
3261 case nir_intrinsic_load_layer_id:
3262 dest.type = BRW_REGISTER_TYPE_UD;
3263 bld.MOV(dest, fetch_render_target_array_index(bld));
3264 break;
3265
3266 case nir_intrinsic_load_helper_invocation:
3267 case nir_intrinsic_load_sample_mask_in:
3268 case nir_intrinsic_load_sample_id: {
3269 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3270 fs_reg val = nir_system_values[sv];
3271 assert(val.file != BAD_FILE);
3272 dest.type = val.type;
3273 bld.MOV(dest, val);
3274 break;
3275 }
3276
3277 case nir_intrinsic_store_output: {
3278 const fs_reg src = get_nir_src(instr->src[0]);
3279 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3280 assert(const_offset && "Indirect output stores not allowed");
3281 const unsigned location = nir_intrinsic_base(instr) +
3282 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3283 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3284 src.type);
3285
3286 for (unsigned j = 0; j < instr->num_components; j++)
3287 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3288 offset(src, bld, j));
3289
3290 break;
3291 }
3292
3293 case nir_intrinsic_load_output: {
3294 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3295 BRW_NIR_FRAG_OUTPUT_LOCATION);
3296 assert(l >= FRAG_RESULT_DATA0);
3297 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3298 assert(const_offset && "Indirect output loads not allowed");
3299 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3300 const fs_reg tmp = bld.vgrf(dest.type, 4);
3301
3302 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3303 emit_coherent_fb_read(bld, tmp, target);
3304 else
3305 emit_non_coherent_fb_read(bld, tmp, target);
3306
3307 for (unsigned j = 0; j < instr->num_components; j++) {
3308 bld.MOV(offset(dest, bld, j),
3309 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3310 }
3311
3312 break;
3313 }
3314
3315 case nir_intrinsic_discard:
3316 case nir_intrinsic_discard_if: {
3317 /* We track our discarded pixels in f0.1. By predicating on it, we can
3318 * update just the flag bits that aren't yet discarded. If there's no
3319 * condition, we emit a CMP of g0 != g0, so all currently executing
3320 * channels will get turned off.
3321 */
3322 fs_inst *cmp;
3323 if (instr->intrinsic == nir_intrinsic_discard_if) {
3324 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3325 brw_imm_d(0), BRW_CONDITIONAL_Z);
3326 } else {
3327 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3328 BRW_REGISTER_TYPE_UW));
3329 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3330 }
3331 cmp->predicate = BRW_PREDICATE_NORMAL;
3332 cmp->flag_subreg = 1;
3333
3334 if (devinfo->gen >= 6) {
3335 emit_discard_jump();
3336 }
3337 break;
3338 }
3339
3340 case nir_intrinsic_load_input: {
3341 /* load_input is only used for flat inputs */
3342 unsigned base = nir_intrinsic_base(instr);
3343 unsigned component = nir_intrinsic_component(instr);
3344 unsigned num_components = instr->num_components;
3345 enum brw_reg_type type = dest.type;
3346
3347 /* Special case fields in the VUE header */
3348 if (base == VARYING_SLOT_LAYER)
3349 component = 1;
3350 else if (base == VARYING_SLOT_VIEWPORT)
3351 component = 2;
3352
3353 if (nir_dest_bit_size(instr->dest) == 64) {
3354 /* const_index is in 32-bit type size units that could not be aligned
3355 * with DF. We need to read the double vector as if it was a float
3356 * vector of twice the number of components to fetch the right data.
3357 */
3358 type = BRW_REGISTER_TYPE_F;
3359 num_components *= 2;
3360 }
3361
3362 for (unsigned int i = 0; i < num_components; i++) {
3363 struct brw_reg interp = interp_reg(base, component + i);
3364 interp = suboffset(interp, 3);
3365 bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i),
3366 retype(fs_reg(interp), type));
3367 }
3368
3369 if (nir_dest_bit_size(instr->dest) == 64) {
3370 shuffle_32bit_load_result_to_64bit_data(bld,
3371 dest,
3372 retype(dest, type),
3373 instr->num_components);
3374 }
3375 break;
3376 }
3377
3378 case nir_intrinsic_load_barycentric_pixel:
3379 case nir_intrinsic_load_barycentric_centroid:
3380 case nir_intrinsic_load_barycentric_sample:
3381 /* Do nothing - load_interpolated_input handling will handle it later. */
3382 break;
3383
3384 case nir_intrinsic_load_barycentric_at_sample: {
3385 const glsl_interp_mode interpolation =
3386 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3387
3388 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3389
3390 if (const_sample) {
3391 unsigned msg_data = const_sample->i32[0] << 4;
3392
3393 emit_pixel_interpolater_send(bld,
3394 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3395 dest,
3396 fs_reg(), /* src */
3397 brw_imm_ud(msg_data),
3398 interpolation);
3399 } else {
3400 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3401 BRW_REGISTER_TYPE_UD);
3402
3403 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3404 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3405 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3406 bld.exec_all().group(1, 0)
3407 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3408 emit_pixel_interpolater_send(bld,
3409 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3410 dest,
3411 fs_reg(), /* src */
3412 msg_data,
3413 interpolation);
3414 } else {
3415 /* Make a loop that sends a message to the pixel interpolater
3416 * for the sample number in each live channel. If there are
3417 * multiple channels with the same sample number then these
3418 * will be handled simultaneously with a single interation of
3419 * the loop.
3420 */
3421 bld.emit(BRW_OPCODE_DO);
3422
3423 /* Get the next live sample number into sample_id_reg */
3424 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3425
3426 /* Set the flag register so that we can perform the send
3427 * message on all channels that have the same sample number
3428 */
3429 bld.CMP(bld.null_reg_ud(),
3430 sample_src, sample_id,
3431 BRW_CONDITIONAL_EQ);
3432 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3433 bld.exec_all().group(1, 0)
3434 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3435 fs_inst *inst =
3436 emit_pixel_interpolater_send(bld,
3437 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3438 dest,
3439 fs_reg(), /* src */
3440 msg_data,
3441 interpolation);
3442 set_predicate(BRW_PREDICATE_NORMAL, inst);
3443
3444 /* Continue the loop if there are any live channels left */
3445 set_predicate_inv(BRW_PREDICATE_NORMAL,
3446 true, /* inverse */
3447 bld.emit(BRW_OPCODE_WHILE));
3448 }
3449 }
3450 break;
3451 }
3452
3453 case nir_intrinsic_load_barycentric_at_offset: {
3454 const glsl_interp_mode interpolation =
3455 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3456
3457 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3458
3459 if (const_offset) {
3460 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3461 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3462
3463 emit_pixel_interpolater_send(bld,
3464 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3465 dest,
3466 fs_reg(), /* src */
3467 brw_imm_ud(off_x | (off_y << 4)),
3468 interpolation);
3469 } else {
3470 fs_reg src = vgrf(glsl_type::ivec2_type);
3471 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3472 BRW_REGISTER_TYPE_F);
3473 for (int i = 0; i < 2; i++) {
3474 fs_reg temp = vgrf(glsl_type::float_type);
3475 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3476 fs_reg itemp = vgrf(glsl_type::int_type);
3477 /* float to int */
3478 bld.MOV(itemp, temp);
3479
3480 /* Clamp the upper end of the range to +7/16.
3481 * ARB_gpu_shader5 requires that we support a maximum offset
3482 * of +0.5, which isn't representable in a S0.4 value -- if
3483 * we didn't clamp it, we'd end up with -8/16, which is the
3484 * opposite of what the shader author wanted.
3485 *
3486 * This is legal due to ARB_gpu_shader5's quantization
3487 * rules:
3488 *
3489 * "Not all values of <offset> may be supported; x and y
3490 * offsets may be rounded to fixed-point values with the
3491 * number of fraction bits given by the
3492 * implementation-dependent constant
3493 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3494 */
3495 set_condmod(BRW_CONDITIONAL_L,
3496 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3497 }
3498
3499 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3500 emit_pixel_interpolater_send(bld,
3501 opcode,
3502 dest,
3503 src,
3504 brw_imm_ud(0u),
3505 interpolation);
3506 }
3507 break;
3508 }
3509
3510 case nir_intrinsic_load_interpolated_input: {
3511 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3512 emit_fragcoord_interpolation(dest);
3513 break;
3514 }
3515
3516 assert(instr->src[0].ssa &&
3517 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3518 nir_intrinsic_instr *bary_intrinsic =
3519 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3520 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3521 enum glsl_interp_mode interp_mode =
3522 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3523 fs_reg dst_xy;
3524
3525 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3526 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3527 /* Use the result of the PI message */
3528 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3529 } else {
3530 /* Use the delta_xy values computed from the payload */
3531 enum brw_barycentric_mode bary =
3532 brw_barycentric_mode(interp_mode, bary_intrin);
3533
3534 dst_xy = this->delta_xy[bary];
3535 }
3536
3537 for (unsigned int i = 0; i < instr->num_components; i++) {
3538 fs_reg interp =
3539 fs_reg(interp_reg(nir_intrinsic_base(instr),
3540 nir_intrinsic_component(instr) + i));
3541 interp.type = BRW_REGISTER_TYPE_F;
3542 dest.type = BRW_REGISTER_TYPE_F;
3543
3544 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3545 fs_reg tmp = vgrf(glsl_type::float_type);
3546 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3547 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3548 } else {
3549 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3550 }
3551 }
3552 break;
3553 }
3554
3555 default:
3556 nir_emit_intrinsic(bld, instr);
3557 break;
3558 }
3559 }
3560
3561 void
3562 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3563 nir_intrinsic_instr *instr)
3564 {
3565 assert(stage == MESA_SHADER_COMPUTE);
3566 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3567
3568 fs_reg dest;
3569 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3570 dest = get_nir_dest(instr->dest);
3571
3572 switch (instr->intrinsic) {
3573 case nir_intrinsic_barrier:
3574 emit_barrier();
3575 cs_prog_data->uses_barrier = true;
3576 break;
3577
3578 case nir_intrinsic_load_subgroup_id:
3579 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3580 break;
3581
3582 case nir_intrinsic_load_local_invocation_id:
3583 case nir_intrinsic_load_work_group_id: {
3584 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3585 fs_reg val = nir_system_values[sv];
3586 assert(val.file != BAD_FILE);
3587 dest.type = val.type;
3588 for (unsigned i = 0; i < 3; i++)
3589 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3590 break;
3591 }
3592
3593 case nir_intrinsic_load_num_work_groups: {
3594 const unsigned surface =
3595 cs_prog_data->binding_table.work_groups_start;
3596
3597 cs_prog_data->uses_num_work_groups = true;
3598
3599 fs_reg surf_index = brw_imm_ud(surface);
3600 brw_mark_surface_used(prog_data, surface);
3601
3602 /* Read the 3 GLuint components of gl_NumWorkGroups */
3603 for (unsigned i = 0; i < 3; i++) {
3604 fs_reg read_result =
3605 emit_untyped_read(bld, surf_index,
3606 brw_imm_ud(i << 2),
3607 1 /* dims */, 1 /* size */,
3608 BRW_PREDICATE_NONE);
3609 read_result.type = dest.type;
3610 bld.MOV(dest, read_result);
3611 dest = offset(dest, bld, 1);
3612 }
3613 break;
3614 }
3615
3616 case nir_intrinsic_shared_atomic_add:
3617 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3618 break;
3619 case nir_intrinsic_shared_atomic_imin:
3620 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3621 break;
3622 case nir_intrinsic_shared_atomic_umin:
3623 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3624 break;
3625 case nir_intrinsic_shared_atomic_imax:
3626 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3627 break;
3628 case nir_intrinsic_shared_atomic_umax:
3629 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3630 break;
3631 case nir_intrinsic_shared_atomic_and:
3632 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3633 break;
3634 case nir_intrinsic_shared_atomic_or:
3635 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3636 break;
3637 case nir_intrinsic_shared_atomic_xor:
3638 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3639 break;
3640 case nir_intrinsic_shared_atomic_exchange:
3641 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3642 break;
3643 case nir_intrinsic_shared_atomic_comp_swap:
3644 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3645 break;
3646
3647 case nir_intrinsic_load_shared: {
3648 assert(devinfo->gen >= 7);
3649
3650 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3651
3652 /* Get the offset to read from */
3653 fs_reg offset_reg;
3654 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3655 if (const_offset) {
3656 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3657 } else {
3658 offset_reg = vgrf(glsl_type::uint_type);
3659 bld.ADD(offset_reg,
3660 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3661 brw_imm_ud(instr->const_index[0]));
3662 }
3663
3664 /* Read the vector */
3665 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3666 instr->num_components);
3667 break;
3668 }
3669
3670 case nir_intrinsic_store_shared: {
3671 assert(devinfo->gen >= 7);
3672
3673 /* Block index */
3674 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3675
3676 /* Value */
3677 fs_reg val_reg = get_nir_src(instr->src[0]);
3678
3679 /* Writemask */
3680 unsigned writemask = instr->const_index[1];
3681
3682 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3683 * since the untyped writes below operate in units of 32-bits, which
3684 * means that we need to write twice as many components each time.
3685 * Also, we have to suffle 64-bit data to be in the appropriate layout
3686 * expected by our 32-bit write messages.
3687 */
3688 unsigned type_size = 4;
3689 if (nir_src_bit_size(instr->src[0]) == 64) {
3690 type_size = 8;
3691 val_reg = shuffle_64bit_data_for_32bit_write(bld,
3692 val_reg, instr->num_components);
3693 }
3694
3695 unsigned type_slots = type_size / 4;
3696
3697 /* Combine groups of consecutive enabled channels in one write
3698 * message. We use ffs to find the first enabled channel and then ffs on
3699 * the bit-inverse, down-shifted writemask to determine the length of
3700 * the block of enabled bits.
3701 */
3702 while (writemask) {
3703 unsigned first_component = ffs(writemask) - 1;
3704 unsigned length = ffs(~(writemask >> first_component)) - 1;
3705
3706 /* We can't write more than 2 64-bit components at once. Limit the
3707 * length of the write to what we can do and let the next iteration
3708 * handle the rest
3709 */
3710 if (type_size > 4)
3711 length = MIN2(2, length);
3712
3713 fs_reg offset_reg;
3714 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3715 if (const_offset) {
3716 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3717 type_size * first_component);
3718 } else {
3719 offset_reg = vgrf(glsl_type::uint_type);
3720 bld.ADD(offset_reg,
3721 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3722 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3723 }
3724
3725 emit_untyped_write(bld, surf_index, offset_reg,
3726 offset(val_reg, bld, first_component * type_slots),
3727 1 /* dims */, length * type_slots,
3728 BRW_PREDICATE_NONE);
3729
3730 /* Clear the bits in the writemask that we just wrote, then try
3731 * again to see if more channels are left.
3732 */
3733 writemask &= (15 << (first_component + length));
3734 }
3735
3736 break;
3737 }
3738
3739 default:
3740 nir_emit_intrinsic(bld, instr);
3741 break;
3742 }
3743 }
3744
3745 static fs_reg
3746 brw_nir_reduction_op_identity(const fs_builder &bld,
3747 nir_op op, brw_reg_type type)
3748 {
3749 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3750 switch (type_sz(type)) {
3751 case 2:
3752 assert(type != BRW_REGISTER_TYPE_HF);
3753 return retype(brw_imm_uw(value.u16[0]), type);
3754 case 4:
3755 return retype(brw_imm_ud(value.u32[0]), type);
3756 case 8:
3757 if (type == BRW_REGISTER_TYPE_DF)
3758 return setup_imm_df(bld, value.f64[0]);
3759 else
3760 return retype(brw_imm_u64(value.u64[0]), type);
3761 default:
3762 unreachable("Invalid type size");
3763 }
3764 }
3765
3766 static opcode
3767 brw_op_for_nir_reduction_op(nir_op op)
3768 {
3769 switch (op) {
3770 case nir_op_iadd: return BRW_OPCODE_ADD;
3771 case nir_op_fadd: return BRW_OPCODE_ADD;
3772 case nir_op_imul: return BRW_OPCODE_MUL;
3773 case nir_op_fmul: return BRW_OPCODE_MUL;
3774 case nir_op_imin: return BRW_OPCODE_SEL;
3775 case nir_op_umin: return BRW_OPCODE_SEL;
3776 case nir_op_fmin: return BRW_OPCODE_SEL;
3777 case nir_op_imax: return BRW_OPCODE_SEL;
3778 case nir_op_umax: return BRW_OPCODE_SEL;
3779 case nir_op_fmax: return BRW_OPCODE_SEL;
3780 case nir_op_iand: return BRW_OPCODE_AND;
3781 case nir_op_ior: return BRW_OPCODE_OR;
3782 case nir_op_ixor: return BRW_OPCODE_XOR;
3783 default:
3784 unreachable("Invalid reduction operation");
3785 }
3786 }
3787
3788 static brw_conditional_mod
3789 brw_cond_mod_for_nir_reduction_op(nir_op op)
3790 {
3791 switch (op) {
3792 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3793 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3794 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3795 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3796 case nir_op_imin: return BRW_CONDITIONAL_L;
3797 case nir_op_umin: return BRW_CONDITIONAL_L;
3798 case nir_op_fmin: return BRW_CONDITIONAL_L;
3799 case nir_op_imax: return BRW_CONDITIONAL_GE;
3800 case nir_op_umax: return BRW_CONDITIONAL_GE;
3801 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3802 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3803 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3804 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3805 default:
3806 unreachable("Invalid reduction operation");
3807 }
3808 }
3809
3810 void
3811 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3812 {
3813 fs_reg dest;
3814 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3815 dest = get_nir_dest(instr->dest);
3816
3817 switch (instr->intrinsic) {
3818 case nir_intrinsic_image_var_load:
3819 case nir_intrinsic_image_var_store:
3820 case nir_intrinsic_image_var_atomic_add:
3821 case nir_intrinsic_image_var_atomic_min:
3822 case nir_intrinsic_image_var_atomic_max:
3823 case nir_intrinsic_image_var_atomic_and:
3824 case nir_intrinsic_image_var_atomic_or:
3825 case nir_intrinsic_image_var_atomic_xor:
3826 case nir_intrinsic_image_var_atomic_exchange:
3827 case nir_intrinsic_image_var_atomic_comp_swap: {
3828 using namespace image_access;
3829
3830 if (stage == MESA_SHADER_FRAGMENT &&
3831 instr->intrinsic != nir_intrinsic_image_var_load)
3832 brw_wm_prog_data(prog_data)->has_side_effects = true;
3833
3834 /* Get the referenced image variable and type. */
3835 const nir_variable *var = instr->variables[0]->var;
3836 const glsl_type *type = var->type->without_array();
3837 const brw_reg_type base_type = get_image_base_type(type);
3838
3839 /* Get some metadata from the image intrinsic. */
3840 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3841 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3842 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3843 const unsigned format = var->data.image.format;
3844 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3845
3846 /* Get the arguments of the image intrinsic. */
3847 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3848 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3849 BRW_REGISTER_TYPE_UD);
3850 const fs_reg src0 = (info->num_srcs >= 3 ?
3851 retype(get_nir_src(instr->src[2]), base_type) :
3852 fs_reg());
3853 const fs_reg src1 = (info->num_srcs >= 4 ?
3854 retype(get_nir_src(instr->src[3]), base_type) :
3855 fs_reg());
3856 fs_reg tmp;
3857
3858 /* Emit an image load, store or atomic op. */
3859 if (instr->intrinsic == nir_intrinsic_image_var_load)
3860 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3861
3862 else if (instr->intrinsic == nir_intrinsic_image_var_store)
3863 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3864 var->data.image.write_only ? GL_NONE : format);
3865
3866 else
3867 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3868 surf_dims, arr_dims, dest_components,
3869 get_image_atomic_op(instr->intrinsic, type));
3870
3871 /* Assign the result. */
3872 for (unsigned c = 0; c < dest_components; ++c) {
3873 bld.MOV(offset(retype(dest, base_type), bld, c),
3874 offset(tmp, bld, c));
3875 }
3876 break;
3877 }
3878
3879 case nir_intrinsic_memory_barrier_atomic_counter:
3880 case nir_intrinsic_memory_barrier_buffer:
3881 case nir_intrinsic_memory_barrier_image:
3882 case nir_intrinsic_memory_barrier: {
3883 const fs_builder ubld = bld.group(8, 0);
3884 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3885 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3886 ->size_written = 2 * REG_SIZE;
3887 break;
3888 }
3889
3890 case nir_intrinsic_group_memory_barrier:
3891 case nir_intrinsic_memory_barrier_shared:
3892 /* We treat these workgroup-level barriers as no-ops. This should be
3893 * safe at present and as long as:
3894 *
3895 * - Memory access instructions are not subsequently reordered by the
3896 * compiler back-end.
3897 *
3898 * - All threads from a given compute shader workgroup fit within a
3899 * single subslice and therefore talk to the same HDC shared unit
3900 * what supposedly guarantees ordering and coherency between threads
3901 * from the same workgroup. This may change in the future when we
3902 * start splitting workgroups across multiple subslices.
3903 *
3904 * - The context is not in fault-and-stream mode, which could cause
3905 * memory transactions (including to SLM) prior to the barrier to be
3906 * replayed after the barrier if a pagefault occurs. This shouldn't
3907 * be a problem up to and including SKL because fault-and-stream is
3908 * not usable due to hardware issues, but that's likely to change in
3909 * the future.
3910 */
3911 break;
3912
3913 case nir_intrinsic_shader_clock: {
3914 /* We cannot do anything if there is an event, so ignore it for now */
3915 const fs_reg shader_clock = get_timestamp(bld);
3916 const fs_reg srcs[] = { component(shader_clock, 0),
3917 component(shader_clock, 1) };
3918 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3919 break;
3920 }
3921
3922 case nir_intrinsic_image_var_size: {
3923 /* Get the referenced image variable and type. */
3924 const nir_variable *var = instr->variables[0]->var;
3925 const glsl_type *type = var->type->without_array();
3926
3927 /* Get the size of the image. */
3928 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3929 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3930
3931 /* For 1DArray image types, the array index is stored in the Z component.
3932 * Fix this by swizzling the Z component to the Y component.
3933 */
3934 const bool is_1d_array_image =
3935 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3936 type->sampler_array;
3937
3938 /* For CubeArray images, we should count the number of cubes instead
3939 * of the number of faces. Fix it by dividing the (Z component) by 6.
3940 */
3941 const bool is_cube_array_image =
3942 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3943 type->sampler_array;
3944
3945 /* Copy all the components. */
3946 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3947 if ((int)c >= type->coordinate_components()) {
3948 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3949 brw_imm_d(1));
3950 } else if (c == 1 && is_1d_array_image) {
3951 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3952 offset(size, bld, 2));
3953 } else if (c == 2 && is_cube_array_image) {
3954 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3955 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3956 offset(size, bld, c), brw_imm_d(6));
3957 } else {
3958 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3959 offset(size, bld, c));
3960 }
3961 }
3962
3963 break;
3964 }
3965
3966 case nir_intrinsic_image_var_samples:
3967 /* The driver does not support multi-sampled images. */
3968 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3969 break;
3970
3971 case nir_intrinsic_load_uniform: {
3972 /* Offsets are in bytes but they should always aligned to
3973 * the type size
3974 */
3975 assert(instr->const_index[0] % 4 == 0 ||
3976 instr->const_index[0] % type_sz(dest.type) == 0);
3977
3978 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3979
3980 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3981 if (const_offset) {
3982 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
3983 /* For 16-bit types we add the module of the const_index[0]
3984 * offset to access to not 32-bit aligned element
3985 */
3986 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
3987
3988 for (unsigned j = 0; j < instr->num_components; j++) {
3989 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3990 }
3991 } else {
3992 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3993 BRW_REGISTER_TYPE_UD);
3994
3995 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3996 * go past the end of the uniform. In order to keep the n'th
3997 * component from running past, we subtract off the size of all but
3998 * one component of the vector.
3999 */
4000 assert(instr->const_index[1] >=
4001 instr->num_components * (int) type_sz(dest.type));
4002 unsigned read_size = instr->const_index[1] -
4003 (instr->num_components - 1) * type_sz(dest.type);
4004
4005 bool supports_64bit_indirects =
4006 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4007
4008 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4009 for (unsigned j = 0; j < instr->num_components; j++) {
4010 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4011 offset(dest, bld, j), offset(src, bld, j),
4012 indirect, brw_imm_ud(read_size));
4013 }
4014 } else {
4015 const unsigned num_mov_indirects =
4016 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4017 /* We read a little bit less per MOV INDIRECT, as they are now
4018 * 32-bits ones instead of 64-bit. Fix read_size then.
4019 */
4020 const unsigned read_size_32bit = read_size -
4021 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4022 for (unsigned j = 0; j < instr->num_components; j++) {
4023 for (unsigned i = 0; i < num_mov_indirects; i++) {
4024 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4025 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4026 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4027 indirect, brw_imm_ud(read_size_32bit));
4028 }
4029 }
4030 }
4031 }
4032 break;
4033 }
4034
4035 case nir_intrinsic_load_ubo: {
4036 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4037 fs_reg surf_index;
4038
4039 if (const_index) {
4040 const unsigned index = stage_prog_data->binding_table.ubo_start +
4041 const_index->u32[0];
4042 surf_index = brw_imm_ud(index);
4043 brw_mark_surface_used(prog_data, index);
4044 } else {
4045 /* The block index is not a constant. Evaluate the index expression
4046 * per-channel and add the base UBO index; we have to select a value
4047 * from any live channel.
4048 */
4049 surf_index = vgrf(glsl_type::uint_type);
4050 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4051 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4052 surf_index = bld.emit_uniformize(surf_index);
4053
4054 /* Assume this may touch any UBO. It would be nice to provide
4055 * a tighter bound, but the array information is already lowered away.
4056 */
4057 brw_mark_surface_used(prog_data,
4058 stage_prog_data->binding_table.ubo_start +
4059 nir->info.num_ubos - 1);
4060 }
4061
4062 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4063 if (const_offset == NULL) {
4064 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4065 BRW_REGISTER_TYPE_UD);
4066
4067 for (int i = 0; i < instr->num_components; i++)
4068 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4069 base_offset, i * type_sz(dest.type));
4070 } else {
4071 /* Even if we are loading doubles, a pull constant load will load
4072 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4073 * need to load a full dvec4 we will have to emit 2 loads. This is
4074 * similar to demote_pull_constants(), except that in that case we
4075 * see individual accesses to each component of the vector and then
4076 * we let CSE deal with duplicate loads. Here we see a vector access
4077 * and we have to split it if necessary.
4078 */
4079 const unsigned type_size = type_sz(dest.type);
4080
4081 /* See if we've selected this as a push constant candidate */
4082 if (const_index) {
4083 const unsigned ubo_block = const_index->u32[0];
4084 const unsigned offset_256b = const_offset->u32[0] / 32;
4085
4086 fs_reg push_reg;
4087 for (int i = 0; i < 4; i++) {
4088 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4089 if (range->block == ubo_block &&
4090 offset_256b >= range->start &&
4091 offset_256b < range->start + range->length) {
4092
4093 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4094 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4095 break;
4096 }
4097 }
4098
4099 if (push_reg.file != BAD_FILE) {
4100 for (unsigned i = 0; i < instr->num_components; i++) {
4101 bld.MOV(offset(dest, bld, i),
4102 byte_offset(push_reg, i * type_size));
4103 }
4104 break;
4105 }
4106 }
4107
4108 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4109 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4110 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4111
4112 for (unsigned c = 0; c < instr->num_components;) {
4113 const unsigned base = const_offset->u32[0] + c * type_size;
4114 /* Number of usable components in the next block-aligned load. */
4115 const unsigned count = MIN2(instr->num_components - c,
4116 (block_sz - base % block_sz) / type_size);
4117
4118 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4119 packed_consts, surf_index,
4120 brw_imm_ud(base & ~(block_sz - 1)));
4121
4122 const fs_reg consts =
4123 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4124 dest.type);
4125
4126 for (unsigned d = 0; d < count; d++)
4127 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4128
4129 c += count;
4130 }
4131 }
4132 break;
4133 }
4134
4135 case nir_intrinsic_load_ssbo: {
4136 assert(devinfo->gen >= 7);
4137
4138 nir_const_value *const_uniform_block =
4139 nir_src_as_const_value(instr->src[0]);
4140
4141 fs_reg surf_index;
4142 if (const_uniform_block) {
4143 unsigned index = stage_prog_data->binding_table.ssbo_start +
4144 const_uniform_block->u32[0];
4145 surf_index = brw_imm_ud(index);
4146 brw_mark_surface_used(prog_data, index);
4147 } else {
4148 surf_index = vgrf(glsl_type::uint_type);
4149 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4150 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4151
4152 /* Assume this may touch any UBO. It would be nice to provide
4153 * a tighter bound, but the array information is already lowered away.
4154 */
4155 brw_mark_surface_used(prog_data,
4156 stage_prog_data->binding_table.ssbo_start +
4157 nir->info.num_ssbos - 1);
4158 }
4159
4160 fs_reg offset_reg;
4161 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4162 if (const_offset) {
4163 offset_reg = brw_imm_ud(const_offset->u32[0]);
4164 } else {
4165 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4166 }
4167
4168 /* Read the vector */
4169 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4170 instr->num_components);
4171
4172 break;
4173 }
4174
4175 case nir_intrinsic_store_ssbo: {
4176 assert(devinfo->gen >= 7);
4177
4178 if (stage == MESA_SHADER_FRAGMENT)
4179 brw_wm_prog_data(prog_data)->has_side_effects = true;
4180
4181 /* Block index */
4182 fs_reg surf_index;
4183 nir_const_value *const_uniform_block =
4184 nir_src_as_const_value(instr->src[1]);
4185 if (const_uniform_block) {
4186 unsigned index = stage_prog_data->binding_table.ssbo_start +
4187 const_uniform_block->u32[0];
4188 surf_index = brw_imm_ud(index);
4189 brw_mark_surface_used(prog_data, index);
4190 } else {
4191 surf_index = vgrf(glsl_type::uint_type);
4192 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4193 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4194
4195 brw_mark_surface_used(prog_data,
4196 stage_prog_data->binding_table.ssbo_start +
4197 nir->info.num_ssbos - 1);
4198 }
4199
4200 /* Value */
4201 fs_reg val_reg = get_nir_src(instr->src[0]);
4202
4203 /* Writemask */
4204 unsigned writemask = instr->const_index[0];
4205
4206 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4207 * since the untyped writes below operate in units of 32-bits, which
4208 * means that we need to write twice as many components each time.
4209 * Also, we have to suffle 64-bit data to be in the appropriate layout
4210 * expected by our 32-bit write messages.
4211 */
4212 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4213 unsigned type_size = bit_size / 8;
4214
4215 /* Combine groups of consecutive enabled channels in one write
4216 * message. We use ffs to find the first enabled channel and then ffs on
4217 * the bit-inverse, down-shifted writemask to determine the num_components
4218 * of the block of enabled bits.
4219 */
4220 while (writemask) {
4221 unsigned first_component = ffs(writemask) - 1;
4222 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4223 fs_reg write_src = offset(val_reg, bld, first_component);
4224
4225 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4226
4227 if (type_size > 4) {
4228 /* We can't write more than 2 64-bit components at once. Limit
4229 * the num_components of the write to what we can do and let the next
4230 * iteration handle the rest.
4231 */
4232 num_components = MIN2(2, num_components);
4233 write_src = shuffle_64bit_data_for_32bit_write(bld, write_src,
4234 num_components);
4235 } else if (type_size < 4) {
4236 assert(type_size == 2);
4237 /* For 16-bit types we pack two consecutive values into a 32-bit
4238 * word and use an untyped write message. For single values or not
4239 * 32-bit-aligned we need to use byte-scattered writes because
4240 * untyped writes works with 32-bit components with 32-bit
4241 * alignment. byte_scattered_write messages only support one
4242 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4243 * could be enabled we can not guarantee that not constant offsets
4244 * to be 32-bit aligned for 16-bit types. For example an array, of
4245 * 16-bit vec3 with array element stride of 6.
4246 *
4247 * In the case of 32-bit aligned constant offsets if there is
4248 * a 3-components vector we submit one untyped-write message
4249 * of 32-bit (first two components), and one byte-scattered
4250 * write message (the last component).
4251 */
4252
4253 if ( !const_offset || ((const_offset->u32[0] +
4254 type_size * first_component) % 4)) {
4255 /* If we use a .yz writemask we also need to emit 2
4256 * byte-scattered write messages because of y-component not
4257 * being aligned to 32-bit.
4258 */
4259 num_components = 1;
4260 } else if (num_components > 2 && (num_components % 2)) {
4261 /* If there is an odd number of consecutive components we left
4262 * the not paired component for a following emit of length == 1
4263 * with byte_scattered_write.
4264 */
4265 num_components --;
4266 }
4267 /* For num_components == 1 we are also shuffling the component
4268 * because byte scattered writes of 16-bit need values to be dword
4269 * aligned. Shuffling only one component would be the same as
4270 * striding it.
4271 */
4272 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D,
4273 DIV_ROUND_UP(num_components, 2));
4274 shuffle_16bit_data_for_32bit_write(bld, tmp, write_src,
4275 num_components);
4276 write_src = tmp;
4277 }
4278
4279 fs_reg offset_reg;
4280
4281 if (const_offset) {
4282 offset_reg = brw_imm_ud(const_offset->u32[0] +
4283 type_size * first_component);
4284 } else {
4285 offset_reg = vgrf(glsl_type::uint_type);
4286 bld.ADD(offset_reg,
4287 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4288 brw_imm_ud(type_size * first_component));
4289 }
4290
4291 if (type_size < 4 && num_components == 1) {
4292 assert(type_size == 2);
4293 /* Untyped Surface messages have a fixed 32-bit size, so we need
4294 * to rely on byte scattered in order to write 16-bit elements.
4295 * The byte_scattered_write message needs that every written 16-bit
4296 * type to be aligned 32-bits (stride=2).
4297 */
4298 emit_byte_scattered_write(bld, surf_index, offset_reg,
4299 write_src,
4300 1 /* dims */, 1,
4301 bit_size,
4302 BRW_PREDICATE_NONE);
4303 } else {
4304 assert(num_components * type_size <= 16);
4305 assert((num_components * type_size) % 4 == 0);
4306 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4307 offset_reg.ud % 4 == 0);
4308 unsigned num_slots = (num_components * type_size) / 4;
4309
4310 emit_untyped_write(bld, surf_index, offset_reg,
4311 write_src,
4312 1 /* dims */, num_slots,
4313 BRW_PREDICATE_NONE);
4314 }
4315
4316 /* Clear the bits in the writemask that we just wrote, then try
4317 * again to see if more channels are left.
4318 */
4319 writemask &= (15 << (first_component + num_components));
4320 }
4321 break;
4322 }
4323
4324 case nir_intrinsic_store_output: {
4325 fs_reg src = get_nir_src(instr->src[0]);
4326
4327 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4328 assert(const_offset && "Indirect output stores not allowed");
4329
4330 unsigned num_components = instr->num_components;
4331 unsigned first_component = nir_intrinsic_component(instr);
4332 if (nir_src_bit_size(instr->src[0]) == 64) {
4333 src = shuffle_64bit_data_for_32bit_write(bld, src, num_components);
4334 num_components *= 2;
4335 }
4336
4337 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4338 4 * const_offset->u32[0]), src.type);
4339 for (unsigned j = 0; j < num_components; j++) {
4340 bld.MOV(offset(new_dest, bld, j + first_component),
4341 offset(src, bld, j));
4342 }
4343 break;
4344 }
4345
4346 case nir_intrinsic_ssbo_atomic_add:
4347 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4348 break;
4349 case nir_intrinsic_ssbo_atomic_imin:
4350 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4351 break;
4352 case nir_intrinsic_ssbo_atomic_umin:
4353 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4354 break;
4355 case nir_intrinsic_ssbo_atomic_imax:
4356 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4357 break;
4358 case nir_intrinsic_ssbo_atomic_umax:
4359 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4360 break;
4361 case nir_intrinsic_ssbo_atomic_and:
4362 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4363 break;
4364 case nir_intrinsic_ssbo_atomic_or:
4365 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4366 break;
4367 case nir_intrinsic_ssbo_atomic_xor:
4368 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4369 break;
4370 case nir_intrinsic_ssbo_atomic_exchange:
4371 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4372 break;
4373 case nir_intrinsic_ssbo_atomic_comp_swap:
4374 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4375 break;
4376
4377 case nir_intrinsic_get_buffer_size: {
4378 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4379 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4380
4381 /* A resinfo's sampler message is used to get the buffer size. The
4382 * SIMD8's writeback message consists of four registers and SIMD16's
4383 * writeback message consists of 8 destination registers (two per each
4384 * component). Because we are only interested on the first channel of
4385 * the first returned component, where resinfo returns the buffer size
4386 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4387 * the dispatch width.
4388 */
4389 const fs_builder ubld = bld.exec_all().group(8, 0);
4390 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4391 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4392
4393 /* Set LOD = 0 */
4394 ubld.MOV(src_payload, brw_imm_d(0));
4395
4396 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4397 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4398 src_payload, brw_imm_ud(index));
4399 inst->header_size = 0;
4400 inst->mlen = 1;
4401 inst->size_written = 4 * REG_SIZE;
4402
4403 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4404 *
4405 * "Out-of-bounds checking is always performed at a DWord granularity. If
4406 * any part of the DWord is out-of-bounds then the whole DWord is
4407 * considered out-of-bounds."
4408 *
4409 * This implies that types with size smaller than 4-bytes need to be
4410 * padded if they don't complete the last dword of the buffer. But as we
4411 * need to maintain the original size we need to reverse the padding
4412 * calculation to return the correct size to know the number of elements
4413 * of an unsized array. As we stored in the last two bits of the surface
4414 * size the needed padding for the buffer, we calculate here the
4415 * original buffer_size reversing the surface_size calculation:
4416 *
4417 * surface_size = isl_align(buffer_size, 4) +
4418 * (isl_align(buffer_size) - buffer_size)
4419 *
4420 * buffer_size = surface_size & ~3 - surface_size & 3
4421 */
4422
4423 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4424 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4425 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4426
4427 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4428 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4429 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4430
4431 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4432
4433 brw_mark_surface_used(prog_data, index);
4434 break;
4435 }
4436
4437 case nir_intrinsic_load_subgroup_invocation:
4438 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4439 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4440 break;
4441
4442 case nir_intrinsic_load_subgroup_eq_mask:
4443 case nir_intrinsic_load_subgroup_ge_mask:
4444 case nir_intrinsic_load_subgroup_gt_mask:
4445 case nir_intrinsic_load_subgroup_le_mask:
4446 case nir_intrinsic_load_subgroup_lt_mask:
4447 unreachable("not reached");
4448
4449 case nir_intrinsic_vote_any: {
4450 const fs_builder ubld = bld.exec_all().group(1, 0);
4451
4452 /* The any/all predicates do not consider channel enables. To prevent
4453 * dead channels from affecting the result, we initialize the flag with
4454 * with the identity value for the logical operation.
4455 */
4456 if (dispatch_width == 32) {
4457 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4458 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4459 brw_imm_ud(0));
4460 } else {
4461 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4462 }
4463 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4464
4465 /* For some reason, the any/all predicates don't work properly with
4466 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4467 * doesn't read the correct subset of the flag register and you end up
4468 * getting garbage in the second half. Work around this by using a pair
4469 * of 1-wide MOVs and scattering the result.
4470 */
4471 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4472 ubld.MOV(res1, brw_imm_d(0));
4473 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4474 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4475 BRW_PREDICATE_ALIGN1_ANY32H,
4476 ubld.MOV(res1, brw_imm_d(-1)));
4477
4478 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4479 break;
4480 }
4481 case nir_intrinsic_vote_all: {
4482 const fs_builder ubld = bld.exec_all().group(1, 0);
4483
4484 /* The any/all predicates do not consider channel enables. To prevent
4485 * dead channels from affecting the result, we initialize the flag with
4486 * with the identity value for the logical operation.
4487 */
4488 if (dispatch_width == 32) {
4489 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4490 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4491 brw_imm_ud(0xffffffff));
4492 } else {
4493 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4494 }
4495 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4496
4497 /* For some reason, the any/all predicates don't work properly with
4498 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4499 * doesn't read the correct subset of the flag register and you end up
4500 * getting garbage in the second half. Work around this by using a pair
4501 * of 1-wide MOVs and scattering the result.
4502 */
4503 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4504 ubld.MOV(res1, brw_imm_d(0));
4505 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4506 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4507 BRW_PREDICATE_ALIGN1_ALL32H,
4508 ubld.MOV(res1, brw_imm_d(-1)));
4509
4510 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4511 break;
4512 }
4513 case nir_intrinsic_vote_feq:
4514 case nir_intrinsic_vote_ieq: {
4515 fs_reg value = get_nir_src(instr->src[0]);
4516 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4517 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4518 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4519 }
4520
4521 fs_reg uniformized = bld.emit_uniformize(value);
4522 const fs_builder ubld = bld.exec_all().group(1, 0);
4523
4524 /* The any/all predicates do not consider channel enables. To prevent
4525 * dead channels from affecting the result, we initialize the flag with
4526 * with the identity value for the logical operation.
4527 */
4528 if (dispatch_width == 32) {
4529 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4530 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4531 brw_imm_ud(0xffffffff));
4532 } else {
4533 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4534 }
4535 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4536
4537 /* For some reason, the any/all predicates don't work properly with
4538 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4539 * doesn't read the correct subset of the flag register and you end up
4540 * getting garbage in the second half. Work around this by using a pair
4541 * of 1-wide MOVs and scattering the result.
4542 */
4543 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4544 ubld.MOV(res1, brw_imm_d(0));
4545 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4546 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4547 BRW_PREDICATE_ALIGN1_ALL32H,
4548 ubld.MOV(res1, brw_imm_d(-1)));
4549
4550 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4551 break;
4552 }
4553
4554 case nir_intrinsic_ballot: {
4555 const fs_reg value = retype(get_nir_src(instr->src[0]),
4556 BRW_REGISTER_TYPE_UD);
4557 struct brw_reg flag = brw_flag_reg(0, 0);
4558 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4559 * as f0.0. This is a problem for fragment programs as we currently use
4560 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4561 * programs yet so this isn't a problem. When we do, something will
4562 * have to change.
4563 */
4564 if (dispatch_width == 32)
4565 flag.type = BRW_REGISTER_TYPE_UD;
4566
4567 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4568 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4569
4570 if (instr->dest.ssa.bit_size > 32) {
4571 dest.type = BRW_REGISTER_TYPE_UQ;
4572 } else {
4573 dest.type = BRW_REGISTER_TYPE_UD;
4574 }
4575 bld.MOV(dest, flag);
4576 break;
4577 }
4578
4579 case nir_intrinsic_read_invocation: {
4580 const fs_reg value = get_nir_src(instr->src[0]);
4581 const fs_reg invocation = get_nir_src(instr->src[1]);
4582 fs_reg tmp = bld.vgrf(value.type);
4583
4584 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4585 bld.emit_uniformize(invocation));
4586
4587 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4588 break;
4589 }
4590
4591 case nir_intrinsic_read_first_invocation: {
4592 const fs_reg value = get_nir_src(instr->src[0]);
4593 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4594 break;
4595 }
4596
4597 case nir_intrinsic_shuffle: {
4598 const fs_reg value = get_nir_src(instr->src[0]);
4599 const fs_reg index = get_nir_src(instr->src[1]);
4600
4601 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4602 break;
4603 }
4604
4605 case nir_intrinsic_first_invocation: {
4606 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4607 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4608 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4609 fs_reg(component(tmp, 0)));
4610 break;
4611 }
4612
4613 case nir_intrinsic_quad_broadcast: {
4614 const fs_reg value = get_nir_src(instr->src[0]);
4615 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4616 assert(nir_src_bit_size(instr->src[1]) == 32);
4617
4618 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4619 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4620 break;
4621 }
4622
4623 case nir_intrinsic_quad_swap_horizontal: {
4624 const fs_reg value = get_nir_src(instr->src[0]);
4625 const fs_reg tmp = bld.vgrf(value.type);
4626 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4627
4628 const fs_reg src_left = horiz_stride(value, 2);
4629 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4630 const fs_reg tmp_left = horiz_stride(tmp, 2);
4631 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4632
4633 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4634 *
4635 * "When source or destination datatype is 64b or operation is
4636 * integer DWord multiply, regioning in Align1 must follow
4637 * these rules:
4638 *
4639 * [...]
4640 *
4641 * 3. Source and Destination offset must be the same, except
4642 * the case of scalar source."
4643 *
4644 * In order to work around this, we have to emit two 32-bit MOVs instead
4645 * of a single 64-bit MOV to do the shuffle.
4646 */
4647 if (type_sz(value.type) > 4 &&
4648 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4649 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4650 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4651 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4652 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4653 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4654 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4655 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4656 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4657 } else {
4658 ubld.MOV(tmp_left, src_right);
4659 ubld.MOV(tmp_right, src_left);
4660 }
4661 bld.MOV(retype(dest, value.type), tmp);
4662 break;
4663 }
4664
4665 case nir_intrinsic_quad_swap_vertical: {
4666 const fs_reg value = get_nir_src(instr->src[0]);
4667 if (nir_src_bit_size(instr->src[0]) == 32) {
4668 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4669 const fs_reg tmp = bld.vgrf(value.type);
4670 const fs_builder ubld = bld.exec_all();
4671 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4672 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4673 bld.MOV(retype(dest, value.type), tmp);
4674 } else {
4675 /* For larger data types, we have to either emit dispatch_width many
4676 * MOVs or else fall back to doing indirects.
4677 */
4678 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4679 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4680 brw_imm_w(0x2));
4681 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4682 }
4683 break;
4684 }
4685
4686 case nir_intrinsic_quad_swap_diagonal: {
4687 const fs_reg value = get_nir_src(instr->src[0]);
4688 if (nir_src_bit_size(instr->src[0]) == 32) {
4689 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4690 const fs_reg tmp = bld.vgrf(value.type);
4691 const fs_builder ubld = bld.exec_all();
4692 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4693 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4694 bld.MOV(retype(dest, value.type), tmp);
4695 } else {
4696 /* For larger data types, we have to either emit dispatch_width many
4697 * MOVs or else fall back to doing indirects.
4698 */
4699 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4700 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4701 brw_imm_w(0x3));
4702 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4703 }
4704 break;
4705 }
4706
4707 case nir_intrinsic_reduce: {
4708 fs_reg src = get_nir_src(instr->src[0]);
4709 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4710 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4711 if (cluster_size == 0 || cluster_size > dispatch_width)
4712 cluster_size = dispatch_width;
4713
4714 /* Figure out the source type */
4715 src.type = brw_type_for_nir_type(devinfo,
4716 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4717 nir_src_bit_size(instr->src[0])));
4718
4719 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4720 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4721 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4722
4723 /* Set up a register for all of our scratching around and initialize it
4724 * to reduction operation's identity value.
4725 */
4726 fs_reg scan = bld.vgrf(src.type);
4727 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4728
4729 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4730
4731 dest.type = src.type;
4732 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4733 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4734 * the distance between clusters is at least 2 GRFs. In this case,
4735 * we don't need the weird striding of the CLUSTER_BROADCAST
4736 * instruction and can just do regular MOVs.
4737 */
4738 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4739 const unsigned groups =
4740 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4741 const unsigned group_size = dispatch_width / groups;
4742 for (unsigned i = 0; i < groups; i++) {
4743 const unsigned cluster = (i * group_size) / cluster_size;
4744 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4745 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4746 component(scan, comp));
4747 }
4748 } else {
4749 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4750 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4751 }
4752 break;
4753 }
4754
4755 case nir_intrinsic_inclusive_scan:
4756 case nir_intrinsic_exclusive_scan: {
4757 fs_reg src = get_nir_src(instr->src[0]);
4758 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4759
4760 /* Figure out the source type */
4761 src.type = brw_type_for_nir_type(devinfo,
4762 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4763 nir_src_bit_size(instr->src[0])));
4764
4765 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4766 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4767 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4768
4769 /* Set up a register for all of our scratching around and initialize it
4770 * to reduction operation's identity value.
4771 */
4772 fs_reg scan = bld.vgrf(src.type);
4773 const fs_builder allbld = bld.exec_all();
4774 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4775
4776 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4777 /* Exclusive scan is a bit harder because we have to do an annoying
4778 * shift of the contents before we can begin. To make things worse,
4779 * we can't do this with a normal stride; we have to use indirects.
4780 */
4781 fs_reg shifted = bld.vgrf(src.type);
4782 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4783 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4784 brw_imm_w(-1));
4785 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4786 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4787 scan = shifted;
4788 }
4789
4790 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4791
4792 bld.MOV(retype(dest, src.type), scan);
4793 break;
4794 }
4795
4796 default:
4797 unreachable("unknown intrinsic");
4798 }
4799 }
4800
4801 void
4802 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4803 int op, nir_intrinsic_instr *instr)
4804 {
4805 if (stage == MESA_SHADER_FRAGMENT)
4806 brw_wm_prog_data(prog_data)->has_side_effects = true;
4807
4808 fs_reg dest;
4809 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4810 dest = get_nir_dest(instr->dest);
4811
4812 fs_reg surface;
4813 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4814 if (const_surface) {
4815 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4816 const_surface->u32[0];
4817 surface = brw_imm_ud(surf_index);
4818 brw_mark_surface_used(prog_data, surf_index);
4819 } else {
4820 surface = vgrf(glsl_type::uint_type);
4821 bld.ADD(surface, get_nir_src(instr->src[0]),
4822 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4823
4824 /* Assume this may touch any SSBO. This is the same we do for other
4825 * UBO/SSBO accesses with non-constant surface.
4826 */
4827 brw_mark_surface_used(prog_data,
4828 stage_prog_data->binding_table.ssbo_start +
4829 nir->info.num_ssbos - 1);
4830 }
4831
4832 fs_reg offset = get_nir_src(instr->src[1]);
4833 fs_reg data1 = get_nir_src(instr->src[2]);
4834 fs_reg data2;
4835 if (op == BRW_AOP_CMPWR)
4836 data2 = get_nir_src(instr->src[3]);
4837
4838 /* Emit the actual atomic operation */
4839
4840 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4841 data1, data2,
4842 1 /* dims */, 1 /* rsize */,
4843 op,
4844 BRW_PREDICATE_NONE);
4845 dest.type = atomic_result.type;
4846 bld.MOV(dest, atomic_result);
4847 }
4848
4849 void
4850 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4851 int op, nir_intrinsic_instr *instr)
4852 {
4853 fs_reg dest;
4854 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4855 dest = get_nir_dest(instr->dest);
4856
4857 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4858 fs_reg offset;
4859 fs_reg data1 = get_nir_src(instr->src[1]);
4860 fs_reg data2;
4861 if (op == BRW_AOP_CMPWR)
4862 data2 = get_nir_src(instr->src[2]);
4863
4864 /* Get the offset */
4865 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4866 if (const_offset) {
4867 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4868 } else {
4869 offset = vgrf(glsl_type::uint_type);
4870 bld.ADD(offset,
4871 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4872 brw_imm_ud(instr->const_index[0]));
4873 }
4874
4875 /* Emit the actual atomic operation operation */
4876
4877 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4878 data1, data2,
4879 1 /* dims */, 1 /* rsize */,
4880 op,
4881 BRW_PREDICATE_NONE);
4882 dest.type = atomic_result.type;
4883 bld.MOV(dest, atomic_result);
4884 }
4885
4886 void
4887 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4888 {
4889 unsigned texture = instr->texture_index;
4890 unsigned sampler = instr->sampler_index;
4891
4892 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4893
4894 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4895 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4896
4897 int lod_components = 0;
4898
4899 /* The hardware requires a LOD for buffer textures */
4900 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4901 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4902
4903 uint32_t header_bits = 0;
4904 for (unsigned i = 0; i < instr->num_srcs; i++) {
4905 fs_reg src = get_nir_src(instr->src[i].src);
4906 switch (instr->src[i].src_type) {
4907 case nir_tex_src_bias:
4908 srcs[TEX_LOGICAL_SRC_LOD] =
4909 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4910 break;
4911 case nir_tex_src_comparator:
4912 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4913 break;
4914 case nir_tex_src_coord:
4915 switch (instr->op) {
4916 case nir_texop_txf:
4917 case nir_texop_txf_ms:
4918 case nir_texop_txf_ms_mcs:
4919 case nir_texop_samples_identical:
4920 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4921 break;
4922 default:
4923 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4924 break;
4925 }
4926 break;
4927 case nir_tex_src_ddx:
4928 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4929 lod_components = nir_tex_instr_src_size(instr, i);
4930 break;
4931 case nir_tex_src_ddy:
4932 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4933 break;
4934 case nir_tex_src_lod:
4935 switch (instr->op) {
4936 case nir_texop_txs:
4937 srcs[TEX_LOGICAL_SRC_LOD] =
4938 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4939 break;
4940 case nir_texop_txf:
4941 srcs[TEX_LOGICAL_SRC_LOD] =
4942 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4943 break;
4944 default:
4945 srcs[TEX_LOGICAL_SRC_LOD] =
4946 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4947 break;
4948 }
4949 break;
4950 case nir_tex_src_ms_index:
4951 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4952 break;
4953
4954 case nir_tex_src_offset: {
4955 nir_const_value *const_offset =
4956 nir_src_as_const_value(instr->src[i].src);
4957 unsigned offset_bits = 0;
4958 if (const_offset &&
4959 brw_texture_offset(const_offset->i32,
4960 nir_tex_instr_src_size(instr, i),
4961 &offset_bits)) {
4962 header_bits |= offset_bits;
4963 } else {
4964 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
4965 retype(src, BRW_REGISTER_TYPE_D);
4966 }
4967 break;
4968 }
4969
4970 case nir_tex_src_projector:
4971 unreachable("should be lowered");
4972
4973 case nir_tex_src_texture_offset: {
4974 /* Figure out the highest possible texture index and mark it as used */
4975 uint32_t max_used = texture + instr->texture_array_size - 1;
4976 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
4977 max_used += stage_prog_data->binding_table.gather_texture_start;
4978 } else {
4979 max_used += stage_prog_data->binding_table.texture_start;
4980 }
4981 brw_mark_surface_used(prog_data, max_used);
4982
4983 /* Emit code to evaluate the actual indexing expression */
4984 fs_reg tmp = vgrf(glsl_type::uint_type);
4985 bld.ADD(tmp, src, brw_imm_ud(texture));
4986 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4987 break;
4988 }
4989
4990 case nir_tex_src_sampler_offset: {
4991 /* Emit code to evaluate the actual indexing expression */
4992 fs_reg tmp = vgrf(glsl_type::uint_type);
4993 bld.ADD(tmp, src, brw_imm_ud(sampler));
4994 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4995 break;
4996 }
4997
4998 case nir_tex_src_ms_mcs:
4999 assert(instr->op == nir_texop_txf_ms);
5000 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5001 break;
5002
5003 case nir_tex_src_plane: {
5004 nir_const_value *const_plane =
5005 nir_src_as_const_value(instr->src[i].src);
5006 const uint32_t plane = const_plane->u32[0];
5007 const uint32_t texture_index =
5008 instr->texture_index +
5009 stage_prog_data->binding_table.plane_start[plane] -
5010 stage_prog_data->binding_table.texture_start;
5011
5012 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5013 break;
5014 }
5015
5016 default:
5017 unreachable("unknown texture source");
5018 }
5019 }
5020
5021 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5022 (instr->op == nir_texop_txf_ms ||
5023 instr->op == nir_texop_samples_identical)) {
5024 if (devinfo->gen >= 7 &&
5025 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5026 srcs[TEX_LOGICAL_SRC_MCS] =
5027 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5028 instr->coord_components,
5029 srcs[TEX_LOGICAL_SRC_SURFACE]);
5030 } else {
5031 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5032 }
5033 }
5034
5035 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5036 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5037
5038 enum opcode opcode;
5039 switch (instr->op) {
5040 case nir_texop_tex:
5041 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5042 SHADER_OPCODE_TXL_LOGICAL);
5043 break;
5044 case nir_texop_txb:
5045 opcode = FS_OPCODE_TXB_LOGICAL;
5046 break;
5047 case nir_texop_txl:
5048 opcode = SHADER_OPCODE_TXL_LOGICAL;
5049 break;
5050 case nir_texop_txd:
5051 opcode = SHADER_OPCODE_TXD_LOGICAL;
5052 break;
5053 case nir_texop_txf:
5054 opcode = SHADER_OPCODE_TXF_LOGICAL;
5055 break;
5056 case nir_texop_txf_ms:
5057 if ((key_tex->msaa_16 & (1 << sampler)))
5058 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5059 else
5060 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5061 break;
5062 case nir_texop_txf_ms_mcs:
5063 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5064 break;
5065 case nir_texop_query_levels:
5066 case nir_texop_txs:
5067 opcode = SHADER_OPCODE_TXS_LOGICAL;
5068 break;
5069 case nir_texop_lod:
5070 opcode = SHADER_OPCODE_LOD_LOGICAL;
5071 break;
5072 case nir_texop_tg4:
5073 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5074 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5075 else
5076 opcode = SHADER_OPCODE_TG4_LOGICAL;
5077 break;
5078 case nir_texop_texture_samples:
5079 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5080 break;
5081 case nir_texop_samples_identical: {
5082 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5083
5084 /* If mcs is an immediate value, it means there is no MCS. In that case
5085 * just return false.
5086 */
5087 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5088 bld.MOV(dst, brw_imm_ud(0u));
5089 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5090 fs_reg tmp = vgrf(glsl_type::uint_type);
5091 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5092 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5093 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5094 } else {
5095 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5096 BRW_CONDITIONAL_EQ);
5097 }
5098 return;
5099 }
5100 default:
5101 unreachable("unknown texture opcode");
5102 }
5103
5104 if (instr->op == nir_texop_tg4) {
5105 if (instr->component == 1 &&
5106 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5107 /* gather4 sampler is broken for green channel on RG32F --
5108 * we must ask for blue instead.
5109 */
5110 header_bits |= 2 << 16;
5111 } else {
5112 header_bits |= instr->component << 16;
5113 }
5114 }
5115
5116 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5117 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5118 inst->offset = header_bits;
5119
5120 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5121 if (devinfo->gen >= 9 &&
5122 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5123 unsigned write_mask = instr->dest.is_ssa ?
5124 nir_ssa_def_components_read(&instr->dest.ssa):
5125 (1 << dest_size) - 1;
5126 assert(write_mask != 0); /* dead code should have been eliminated */
5127 inst->size_written = util_last_bit(write_mask) *
5128 inst->dst.component_size(inst->exec_size);
5129 } else {
5130 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5131 }
5132
5133 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5134 inst->shadow_compare = true;
5135
5136 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5137 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5138
5139 fs_reg nir_dest[4];
5140 for (unsigned i = 0; i < dest_size; i++)
5141 nir_dest[i] = offset(dst, bld, i);
5142
5143 if (instr->op == nir_texop_query_levels) {
5144 /* # levels is in .w */
5145 nir_dest[0] = offset(dst, bld, 3);
5146 } else if (instr->op == nir_texop_txs &&
5147 dest_size >= 3 && devinfo->gen < 7) {
5148 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5149 fs_reg depth = offset(dst, bld, 2);
5150 nir_dest[2] = vgrf(glsl_type::int_type);
5151 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5152 }
5153
5154 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5155 }
5156
5157 void
5158 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5159 {
5160 switch (instr->type) {
5161 case nir_jump_break:
5162 bld.emit(BRW_OPCODE_BREAK);
5163 break;
5164 case nir_jump_continue:
5165 bld.emit(BRW_OPCODE_CONTINUE);
5166 break;
5167 case nir_jump_return:
5168 default:
5169 unreachable("unknown jump");
5170 }
5171 }
5172
5173 /**
5174 * This helper takes the result of a load operation that reads 32-bit elements
5175 * in this format:
5176 *
5177 * x x x x x x x x
5178 * y y y y y y y y
5179 * z z z z z z z z
5180 * w w w w w w w w
5181 *
5182 * and shuffles the data to get this:
5183 *
5184 * x y x y x y x y
5185 * x y x y x y x y
5186 * z w z w z w z w
5187 * z w z w z w z w
5188 *
5189 * Which is exactly what we want if the load is reading 64-bit components
5190 * like doubles, where x represents the low 32-bit of the x double component
5191 * and y represents the high 32-bit of the x double component (likewise with
5192 * z and w for double component y). The parameter @components represents
5193 * the number of 64-bit components present in @src. This would typically be
5194 * 2 at most, since we can only fit 2 double elements in the result of a
5195 * vec4 load.
5196 *
5197 * Notice that @dst and @src can be the same register.
5198 */
5199 void
5200 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
5201 const fs_reg &dst,
5202 const fs_reg &src,
5203 uint32_t components)
5204 {
5205 assert(type_sz(src.type) == 4);
5206 assert(type_sz(dst.type) == 8);
5207
5208 /* A temporary that we will use to shuffle the 32-bit data of each
5209 * component in the vector into valid 64-bit data. We can't write directly
5210 * to dst because dst can be (and would usually be) the same as src
5211 * and in that case the first MOV in the loop below would overwrite the
5212 * data read in the second MOV.
5213 */
5214 fs_reg tmp = bld.vgrf(dst.type);
5215
5216 for (unsigned i = 0; i < components; i++) {
5217 const fs_reg component_i = offset(src, bld, 2 * i);
5218
5219 bld.MOV(subscript(tmp, src.type, 0), component_i);
5220 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
5221
5222 bld.MOV(offset(dst, bld, i), tmp);
5223 }
5224 }
5225
5226 void
5227 shuffle_32bit_load_result_to_16bit_data(const fs_builder &bld,
5228 const fs_reg &dst,
5229 const fs_reg &src,
5230 uint32_t first_component,
5231 uint32_t components)
5232 {
5233 assert(type_sz(src.type) == 4);
5234 assert(type_sz(dst.type) == 2);
5235
5236 /* A temporary is used to un-shuffle the 32-bit data of each component in
5237 * into a valid 16-bit vector. We can't write directly to dst because it
5238 * can be the same register as src and in that case the first MOV in the
5239 * loop below would overwrite the data read in the second MOV.
5240 */
5241 fs_reg tmp = retype(bld.vgrf(src.type), dst.type);
5242
5243 for (unsigned i = 0; i < components; i++) {
5244 const fs_reg component_i =
5245 subscript(offset(src, bld, (first_component + i) / 2), dst.type,
5246 (first_component + i) % 2);
5247
5248 bld.MOV(offset(tmp, bld, i % 2), component_i);
5249
5250 if (i % 2) {
5251 bld.MOV(offset(dst, bld, i -1), offset(tmp, bld, 0));
5252 bld.MOV(offset(dst, bld, i), offset(tmp, bld, 1));
5253 }
5254 }
5255 if (components % 2) {
5256 bld.MOV(offset(dst, bld, components - 1), tmp);
5257 }
5258 }
5259
5260 /**
5261 * This helper does the inverse operation of
5262 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
5263 *
5264 * We need to do this when we are going to use untyped write messsages that
5265 * operate with 32-bit components in order to arrange our 64-bit data to be
5266 * in the expected layout.
5267 *
5268 * Notice that callers of this function, unlike in the case of the inverse
5269 * operation, would typically need to call this with dst and src being
5270 * different registers, since they would otherwise corrupt the original
5271 * 64-bit data they are about to write. Because of this the function checks
5272 * that the src and dst regions involved in the operation do not overlap.
5273 */
5274 fs_reg
5275 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
5276 const fs_reg &src,
5277 uint32_t components)
5278 {
5279 assert(type_sz(src.type) == 8);
5280
5281 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D, 2 * components);
5282
5283 for (unsigned i = 0; i < components; i++) {
5284 const fs_reg component_i = offset(src, bld, i);
5285 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
5286 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
5287 }
5288
5289 return dst;
5290 }
5291
5292 void
5293 shuffle_16bit_data_for_32bit_write(const fs_builder &bld,
5294 const fs_reg &dst,
5295 const fs_reg &src,
5296 uint32_t components)
5297 {
5298 assert(type_sz(src.type) == 2);
5299 assert(type_sz(dst.type) == 4);
5300
5301 /* A temporary is used to shuffle the 16-bit data of each component in the
5302 * 32-bit data vector. We can't write directly to dst because it can be the
5303 * same register as src and in that case the first MOV in the loop below
5304 * would overwrite the data read in the second MOV.
5305 */
5306 fs_reg tmp = bld.vgrf(dst.type);
5307
5308 for (unsigned i = 0; i < components; i++) {
5309 const fs_reg component_i = offset(src, bld, i);
5310 bld.MOV(subscript(tmp, src.type, i % 2), component_i);
5311 if (i % 2) {
5312 bld.MOV(offset(dst, bld, i / 2), tmp);
5313 }
5314 }
5315 if (components % 2) {
5316 bld.MOV(offset(dst, bld, components / 2), tmp);
5317 }
5318 }
5319
5320 fs_reg
5321 setup_imm_df(const fs_builder &bld, double v)
5322 {
5323 const struct gen_device_info *devinfo = bld.shader->devinfo;
5324 assert(devinfo->gen >= 7);
5325
5326 if (devinfo->gen >= 8)
5327 return brw_imm_df(v);
5328
5329 /* gen7.5 does not support DF immediates straighforward but the DIM
5330 * instruction allows to set the 64-bit immediate value.
5331 */
5332 if (devinfo->is_haswell) {
5333 const fs_builder ubld = bld.exec_all().group(1, 0);
5334 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5335 ubld.DIM(dst, brw_imm_df(v));
5336 return component(dst, 0);
5337 }
5338
5339 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5340 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5341 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5342 *
5343 * Alternatively, we could also produce a normal VGRF (without stride 0)
5344 * by writing to all the channels in the VGRF, however, that would hit the
5345 * gen7 bug where we have to split writes that span more than 1 register
5346 * into instructions with a width of 4 (otherwise the write to the second
5347 * register written runs into an execmask hardware bug) which isn't very
5348 * nice.
5349 */
5350 union {
5351 double d;
5352 struct {
5353 uint32_t i1;
5354 uint32_t i2;
5355 };
5356 } di;
5357
5358 di.d = v;
5359
5360 const fs_builder ubld = bld.exec_all().group(1, 0);
5361 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5362 ubld.MOV(tmp, brw_imm_ud(di.i1));
5363 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5364
5365 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5366 }